1
|
Jeddou H, Tzedakis S, Chaouch MA, Sulpice L, Samson M, Boudjema K. Viability Assessment During Normothermic Machine Liver Perfusion: A Literature Review. Liver Int 2025; 45:e16244. [PMID: 39821671 PMCID: PMC11740183 DOI: 10.1111/liv.16244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
BACKGROUND AND OBJECTIVE The discrepancy between donor organ availability and demand leads to a significant waiting-list dropout rate and mortality. Although quantitative tools such as the Donor Risk Index (DRI) help assess organ suitability, many potentially viable organs are still discarded due to the lack of universally accepted markers to predict post-transplant outcomes. Normothermic machine perfusion (NMP) offers a platform to assess viability before transplantation. Thus, livers considered unsuitable for transplantation based on the DRI can be evaluated and potentially transplanted. During NMP, various viability criteria have been proposed. These criteria are neither homogeneous nor consensual. In this review, we aimed to describe the viability criteria during NMP and evaluate their ability to predict hepatic graft function following transplantation. We conducted a PubMed search using the terms 'liver transplantation', 'normothermic machine perfusion' and 'assessment', including only English publications up to February 2024. Viability assessment during NMP includes multiple hepatocellular and cholangiocellular criteria. Lactate clearance and bile production are commonly used indicators, but their ability to predict post-transplant outcomes varies significantly. The predictive value of cholangiocellular criteria such as bile pH, bicarbonate and glucose levels remains under investigation. Novel markers, such as microRNAs and proteomic profiles, offer the potential to enhance graft evaluation accuracy and provide insights into the molecular mechanisms underlying liver viability. Combining perfusion parameters with biomarkers may improve the prediction of long-term graft survival. Future research should focus on standardising viability assessment protocols and exploring real-time biomarker evaluations, which could enhance transplantation outcomes and expand the donor pool.
Collapse
Affiliation(s)
- Heithem Jeddou
- Department of Hepatobiliary and Digestive SurgeryUniversity Hospital, Rennes 1 UniversityRennesFrance
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)‐UMR_S 1085, Université de RennesRennesFrance
| | - Stylianos Tzedakis
- Department of Hepato‐Biliary, Digestive and Endocrine SurgeryCochin Hospital, APHPParisFrance
- Université Paris CitéParisFrance
| | - Mohamed Ali Chaouch
- Department of Visceral and Digestive SurgeryMonastir University HospitalMonastirTunisia
| | - Laurent Sulpice
- Department of Hepatobiliary and Digestive SurgeryUniversity Hospital, Rennes 1 UniversityRennesFrance
- INSERM OSS U1242, University Hospital, Rennes 1 UniversityRennesFrance
| | - Michel Samson
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)‐UMR_S 1085, Université de RennesRennesFrance
| | - Karim Boudjema
- Department of Hepatobiliary and Digestive SurgeryUniversity Hospital, Rennes 1 UniversityRennesFrance
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)‐UMR_S 1085, Université de RennesRennesFrance
| |
Collapse
|
2
|
Kukreja J, Campo-Canaveral de la Cruz JL, Van Raemdonck D, Cantu E, Date H, D'Ovidio F, Hartwig M, Klapper JA, Kelly RF, Lindstedt S, Rosso L, Schaheen L, Smith M, Whitson B, Saddoughi SA, Cypel M. The 2024 American Association for Thoracic Surgery expert consensus document: Current standards in donor lung procurement and preservation. J Thorac Cardiovasc Surg 2025; 169:484-504. [PMID: 39826938 DOI: 10.1016/j.jtcvs.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Donor lung procurement and preservation is critical for lung transplantation success. Unfortunately, the large variability in techniques impacts organ utilization rates and transplantation outcomes. Compounding this variation, recent developments in cold static preservation and new technological advances with machine perfusion have increased the complexity of the procedure. The objective of the American Association for Thoracic Surgery (AATS) Clinical Practice Standards Committee (CPSC) expert panel was to make evidence-based recommendations for best practices in donor lung procurement and preservation based on review of the existing literature. METHODS The AATS CPSC assembled an expert panel of 16 lung transplantation surgeons from 14 centers who developed a consensus document of recommendations. The panel was divided into 7 subgroups covering (1) intraoperative donor assessment, (2) surgical techniques, (3) ex situ static lung preservation methods, (4) hypothermic preservation, (5) normothermic ex vivo lung perfusion (EVLP), (6) donation after circulatory death (DCD) and normothermic regional perfusion, and (7) donor management centers, organ assessment centers, and third-party procurement teams. Following a focused literature review, each subgroup formulated recommendation statements for each subtopic, which were reviewed and further refined using a Delphi process until a 75% consensus was achieved on each final statement by the voting group. RESULTS The expert panel achieved consensus on 34 recommendations for current best practices in donor lung procurement and preservation both in brain-dead as well as DCD donation. The use of new methods of cold preservation, the role of EVLP, and DCD with and without concomitant heart donation are described in detail. CONCLUSIONS Consistent and best practices in donor lung procurement and preservation are critical to improve both lung transplantation numbers as well as recipient outcomes. The recommendations described here provide guidance for professionals involved in the care of patients with end-stage lung disease considered for transplantation.
Collapse
Affiliation(s)
- Jasleen Kukreja
- Department of Surgery, University of California, San Francisco, Calif.
| | | | - Dirk Van Raemdonck
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Edward Cantu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadephia, Pa
| | - Hiroshi Date
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Frank D'Ovidio
- Division of Thoracic Surgery, Columbia University Medical Center, New York, NY
| | - Matthew Hartwig
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Jacob A Klapper
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Rosemary F Kelly
- Division of CardioThoracic Surgery, University of Minnesota, Minneapolis, Minn
| | - Sandra Lindstedt
- Division of Thoracic Surgery, Skane University Hospital, Lund, Sweden
| | - Lorenzo Rosso
- Department of Pathophysiology and Transplantation, Fondazione IRCCS Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Lara Schaheen
- St Joseph's Hospital and Medical Center, Phoenix, Ariz
| | - Michael Smith
- St Joseph's Hospital and Medical Center, Phoenix, Ariz
| | - Bryan Whitson
- Division of Cardiac Surgery, Ohio State University Medical Center, Columbus, Ohio
| | | | - Marcelo Cypel
- Division of Thoracic Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Wang Y, Lan T, Wu SH, Ma J, Zou X. A betaine-contained solution reduced cold ischemia damage through inhibiting vacuolar degeneration in livers. Transpl Immunol 2024; 87:102144. [PMID: 39491596 DOI: 10.1016/j.trim.2024.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
A new osmoprotectant-containing multiple saccharide (MS) solution was formulated for this study. The primary objectives were to compare the effects of the MS solution with those of the University of Wisconsin (UW) solution and hypertonic citrate adenine (HCA) solution on liver cold preservation, as well as to investigate the mechanisms underlying osmolarity-induced injury. Rat livers were cold-stored for 18 h at 4 °C using the different solutions and subsequently subjected to 2 h of normothermic machine perfusion (NMP) for functional assessment. The livers were categorized into four groups: HCA, UW, MS, and a control group. Liver function and histological changes were evaluated using biochemical markers such as lactate dehydrogenase (LDH), alongside histopathological analysis. Additionally, the expression of aquaporin 9 (AQP9) and hydrogen peroxide (H2O2) in hepatocytes was examined. Liver damage was significantly reduced in the UW and MS groups (p < 0.05). Histopathological analysis revealed a decrease in hepatic apoptosis and injury scores in the MS group compared to the HCA group (p < 0.05). No significant differences in liver function changes were observed between the MS and UW groups. Furthermore, examination of liver tissue showed increased H2O2 fluorescence intensity and decreased AQP9 protein levels in livers exhibiting vacuolar degeneration. In conclusion, the MS solution demonstrated superior effectiveness in preserving the liver during cold storage by inhibiting vacuolar degeneration caused by intracellular H2O2 accumulation.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tingting Lan
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300190, China
| | - Shao-Hua Wu
- Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Jiangong Ma
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xunfeng Zou
- Department of General Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China.
| |
Collapse
|
4
|
O'Brien Laramy M, Robinson J, Venkatramani CJ, Horn S, Steiner C, Son YJ. Drug Development Considerations for Additives to Organ Preservation Solutions. Transplantation 2024:00007890-990000000-00888. [PMID: 39375888 DOI: 10.1097/tp.0000000000005221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The addition of a novel therapeutic agent to an organ preservation solution has the potential to address unmet needs in organ transplantation and enhance outcomes for transplant recipients. However, the development expectations for novel therapeutic agents in this context are unclear because of limited precedence and published regulatory guidance documents. To address these gaps, we have articulated a drug development strategy that leverages expectations for parenteral drug products administered via more conventional routes (eg, intravenous) and provided considerations for when deviations may be justified. We have supplemented this strategy with a comparison to available regulatory guidance from the US Food and Drug Administration to highlight potential areas for further clarification. The strategy articulated here is based on Genentech's internal experience for a program intended for use in kidney transplantation.
Collapse
Affiliation(s)
| | - Jamie Robinson
- Pharma Technical Regulatory, Genentech, Inc., South San Francisco, CA
| | - C J Venkatramani
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA
| | - Stephanie Horn
- Pharma Technical Regulatory-Device and Combination Products, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Carine Steiner
- Analytical Research & Development, Pharma Technical Development, F. Hoffmann-La Roche, Basel, Switzerland
| | - Yoen-Ju Son
- Pharma Technical Development Project and Portfolio Development, South San Francisco, CA
| |
Collapse
|
5
|
Shwaartz C, McGilvray I. Editorial on "Complex Hepatectomy Under Total Vascular Exclusion of the Liver Preserving the Caval Flow with Portal Hypothermic Perfusion and Temporary Porta-Caval Shunt: A Proof of Concept". Ann Surg Oncol 2024; 31:6348-6349. [PMID: 39207542 DOI: 10.1245/s10434-024-15765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Chaya Shwaartz
- Ajmera Transplant Program and HPB Surgical Oncology, Toronto General Hospital, University of Toronto, Toronto, Canada.
| | - Ian McGilvray
- Ajmera Transplant Program and HPB Surgical Oncology, Toronto General Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Chen H, Ellis BW, Dinicu AT, Mojoudi M, Wilks BT, Tessier SN, Toner M, Uygun K, Uygun BE. Polyethylene glycol and caspase inhibitor emricasan alleviate cold injury in primary rat hepatocytes. Cryobiology 2024; 116:104926. [PMID: 38880369 PMCID: PMC11374468 DOI: 10.1016/j.cryobiol.2024.104926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Current methods of storing explanted donor livers at 4 °C in University of Wisconsin (UW) solution result in loss of graft function and ultimately lead to less-than-ideal outcomes post transplantation. Our lab has previously shown that supplementing UW solution with 35-kilodalton polyethylene glycol (PEG) has membrane stabilizing effects for cold stored primary rat hepatocytes in suspension. Expanding on past studies, we here investigate if PEG has the same beneficial effects in an adherent primary rat hepatocyte cold storage model. In addition, we investigated the extent of cold-induced apoptosis through treating cold-stored hepatocytes with pan caspase inhibitor emricasan. In parallel to storage at the current cold storage standard of 4 °C, we investigated the effects of lowering the storage temperature to -4 °C, at which the storage solution remains ice-free due to the supercooling phenomenon. We show the addition of 5 % PEG to the storage medium significantly reduced the release of lactate dehydrogenase (LDH) in plated rat hepatocytes and a combinatorial treatment with emricasan maintains hepatocyte viability and morphology following recovery from cold storage. These results show that cold-stored hepatocytes undergo multiple mechanisms of cold-induced injury and that PEG and emricasan treatment in combination with supercooling may improve cell and organ preservation.
Collapse
Affiliation(s)
- Huyun Chen
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Bradley W Ellis
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Antonia T Dinicu
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Mohammadreza Mojoudi
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Benjamin T Wilks
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Basak E Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA.
| |
Collapse
|
7
|
Lopes-Martins RAB, Barbosa LV, Sousa MMB, Lobo AB, Santos ELDR, Sá Filho ASD, Souza MB, Jaime JC, Silva CTXD, Ruiz-Silva C, Leonardo PS. The Effects of Body Cold Exposure (Cryolipolysis) on Fat Mass and Plasma Cholesterol. Life (Basel) 2024; 14:1082. [PMID: 39337866 PMCID: PMC11433038 DOI: 10.3390/life14091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION This study investigates the impact of cryolipolysis on reducing localized fat and altering plasma lipid profiles in 30 overweight and obese women. Conducted at the Health Technology Laboratory of the Evangelical University of Goiás, this clinical research adhered to stringent ethical guidelines. METHODS Participants underwent three cryolipolysis sessions, with comprehensive assessments of body composition and plasma lipids performed pre- and post-intervention. RESULTS Significant findings include a reduction in abdominal fat mass by an average of 4.1 kg and a decrease in BMI by 0.7 points (p < 0.05). Notably, total cholesterol levels decreased by an average of 15.7 mg/dL, and LDL cholesterol saw a reduction of 10.2 mg/dL (p < 0.01), with no significant changes in HDL cholesterol or triglyceride levels. These results suggest that cryolipolysis, in conjunction with standardized dietary control, offers a non-invasive alternative to surgical fat reduction, potentially mitigating cardiovascular risks associated with obesity. CONCLUSIONS The study confirms the efficacy of cryolipolysis in targeted fat reduction and underscores its role in improving key cardiovascular risk factors. These findings warrant further exploration into the long-term benefits of cryolipolysis in metabolic health management and not only for aesthetic treatments.
Collapse
Affiliation(s)
- Rodrigo Alvaro Brandão Lopes-Martins
- Laboratory of Biophotonics and Experimental Therapeutics (LABITEX), Universidade Evangélica de Goiás, Av. Universitária Km 3,5, Anápolis 75083-515, Brazil
- Programa de Pós-Graduação em Bioengenharia, Universidade Brasil, Av. Carolina Fonseca 236, Itaquera, São Paulo 08230-030, Brazil
| | - Ludymilla Vicente Barbosa
- Laboratory of Health Technologies (LATES), Universidade Evangélica de Goiás, Av. Universitária Km 3,5, Anápolis 75083-515, Brazil
| | - Mirian Martins Barbosa Sousa
- Laboratory of Biophotonics and Experimental Therapeutics (LABITEX), Universidade Evangélica de Goiás, Av. Universitária Km 3,5, Anápolis 75083-515, Brazil
| | - Anna Beatriz Lobo
- Laboratory of Biophotonics and Experimental Therapeutics (LABITEX), Universidade Evangélica de Goiás, Av. Universitária Km 3,5, Anápolis 75083-515, Brazil
| | - Elize Leonice da Rocha Santos
- Laboratory of Health Technologies (LATES), Universidade Evangélica de Goiás, Av. Universitária Km 3,5, Anápolis 75083-515, Brazil
| | - Alberto Souza de Sá Filho
- Department of Physical Education, Evangelical University of Goiás (UniEVANGÉLICA), Anápolis 75083-515, Brazil
| | - Matheus Bernardes Souza
- Laboratory of Biophotonics and Experimental Therapeutics (LABITEX), Universidade Evangélica de Goiás, Av. Universitária Km 3,5, Anápolis 75083-515, Brazil
| | - Jivago Carneiro Jaime
- Laboratory of Biophotonics and Experimental Therapeutics (LABITEX), Universidade Evangélica de Goiás, Av. Universitária Km 3,5, Anápolis 75083-515, Brazil
| | - Constanza Thaise Xavier da Silva
- Laboratory of Biophotonics and Experimental Therapeutics (LABITEX), Universidade Evangélica de Goiás, Av. Universitária Km 3,5, Anápolis 75083-515, Brazil
| | - Carlos Ruiz-Silva
- Programa de Pós-Graduação em Bioengenharia, Universidade Brasil, Av. Carolina Fonseca 236, Itaquera, São Paulo 08230-030, Brazil
| | - Patrícia Sardinha Leonardo
- Laboratory of Health Technologies (LATES), Universidade Evangélica de Goiás, Av. Universitária Km 3,5, Anápolis 75083-515, Brazil
| |
Collapse
|
8
|
Leon M. Revolutionizing Donor Heart Procurement: Innovations and Future Directions for Enhanced Transplantation Outcomes. J Cardiovasc Dev Dis 2024; 11:235. [PMID: 39195143 DOI: 10.3390/jcdd11080235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Heart failure persists as a critical public health challenge, with heart transplantation esteemed as the optimal treatment for patients with end-stage heart failure. However, the limited availability of donor hearts presents a major obstacle to meeting patient needs. In recent years, the most groundbreaking progress in heart transplantation has been in donor heart procurement, significantly expanding the donor pool and enhancing clinical outcomes. This review comprehensively examines these advancements, including the resurgence of heart donation after circulatory death and innovative recovery and evaluation technologies such as normothermic machine perfusion and thoraco-abdominal normothermic regional perfusion. Additionally, novel preservation methods, including controlled hypothermic preservation and hypothermic oxygenated perfusion, are evaluated. The review also explores the use of extended-criteria donors, post-cardiopulmonary resuscitation donors, and high-risk donors, all contributing to increased donor availability without compromising outcomes. Future directions, such as xenotransplantation, biomarkers, and artificial intelligence in donor heart evaluation and procurement, are discussed. These innovations promise to address current limitations and optimize donor heart utilization, ultimately enhancing transplantation success. By identifying recent advancements and proposing future research directions, this review aims to provide insights into advancing heart transplantation and improving patient outcomes.
Collapse
Affiliation(s)
- Marc Leon
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Falk CVRB, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Risbey CWG, Lau NS, Niu A, Zhang WB, Crawford M, Pulitano C. Return of the cold: How hypothermic oxygenated machine perfusion is changing liver transplantation. Transplant Rev (Orlando) 2024; 38:100853. [PMID: 38581881 DOI: 10.1016/j.trre.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Hypothermic Oxygenated machine PErfusion (HOPE) has recently emerged as a preservation technique which can reduce ischemic injury and improve clinical outcomes following liver transplantation. First developed with the advent solid organ transplantation techniques, hypothermic machine perfusion largely fell out of favour following the development of preservation solutions which can satisfactorily preserve grafts using the cheap and simple method, static cold storage (SCS). However, with an increasing need to develop techniques to reduce graft injury and better utilise marginal and donation after circulatory death (DCD) grafts, HOPE has emerged as a relatively simple and safe technique to optimise clinical outcomes following liver transplantation. Perfusing the graft with cold, acellular, oxygenated perfusate either via the portal vein (PV) alone, or via both the PV and hepatic artery (HA), HOPE is generally commenced for a period of 1-2 h immediately prior to implantation. The technique has been validated by multiple randomised control trials, and pre-clinical evidence suggests HOPE primarily reduces graft injury by decreasing the accumulation of harmful mitochondrial intermediates, and subsequently, the severity of post-reperfusion injury. HOPE can also facilitate real time graft assessment, most notably via the measurement of flavin mononucleotide (FMN) in the perfusate, allowing transplant teams to make better informed clinical decisions prior to transplantation. HOPE may also provide a platform to administer novel therapeutic agents to ex situ organs without risk of systemic side effects. As such, HOPE is uniquely positioned to revolutionise how liver transplantation is approached and facilitate optimised clinical outcomes for liver transplant recipients.
Collapse
Affiliation(s)
- Charles W G Risbey
- Department of Transplant Surgery, Royal Prince Alfred Hospital, 50 Missenden Rd, Camperdown 2050, NSW, Australia; Centre for Organ Assessment, Repair, & Optimization (COARO), 145 Missenden Rd, Camperdown 2050, NSW, Australia; Royal Prince Alfred Hospital Transplant Institute (RPATI), 145 Missenden Rd, Camperdown 2050, NSW, Australia; Central Clinical School, The University of Sydney, John Hopkins Dr, Camperdown 2050, NSW, Australia
| | - Ngee-Soon Lau
- Department of Transplant Surgery, Royal Prince Alfred Hospital, 50 Missenden Rd, Camperdown 2050, NSW, Australia; Centre for Organ Assessment, Repair, & Optimization (COARO), 145 Missenden Rd, Camperdown 2050, NSW, Australia; Royal Prince Alfred Hospital Transplant Institute (RPATI), 145 Missenden Rd, Camperdown 2050, NSW, Australia
| | - Anita Niu
- Department of Transplant Surgery, Royal Prince Alfred Hospital, 50 Missenden Rd, Camperdown 2050, NSW, Australia; Centre for Organ Assessment, Repair, & Optimization (COARO), 145 Missenden Rd, Camperdown 2050, NSW, Australia; Royal Prince Alfred Hospital Transplant Institute (RPATI), 145 Missenden Rd, Camperdown 2050, NSW, Australia
| | - Wesley B Zhang
- Centre for Organ Assessment, Repair, & Optimization (COARO), 145 Missenden Rd, Camperdown 2050, NSW, Australia
| | - Michael Crawford
- Department of Transplant Surgery, Royal Prince Alfred Hospital, 50 Missenden Rd, Camperdown 2050, NSW, Australia; Centre for Organ Assessment, Repair, & Optimization (COARO), 145 Missenden Rd, Camperdown 2050, NSW, Australia; Royal Prince Alfred Hospital Transplant Institute (RPATI), 145 Missenden Rd, Camperdown 2050, NSW, Australia; Central Clinical School, The University of Sydney, John Hopkins Dr, Camperdown 2050, NSW, Australia
| | - Carlo Pulitano
- Department of Transplant Surgery, Royal Prince Alfred Hospital, 50 Missenden Rd, Camperdown 2050, NSW, Australia; Centre for Organ Assessment, Repair, & Optimization (COARO), 145 Missenden Rd, Camperdown 2050, NSW, Australia; Royal Prince Alfred Hospital Transplant Institute (RPATI), 145 Missenden Rd, Camperdown 2050, NSW, Australia; Central Clinical School, The University of Sydney, John Hopkins Dr, Camperdown 2050, NSW, Australia.
| |
Collapse
|
10
|
Czerny M, Grabenwöger M, Berger T, Aboyans V, Della Corte A, Chen EP, Desai ND, Dumfarth J, Elefteriades JA, Etz CD, Kim KM, Kreibich M, Lescan M, Di Marco L, Martens A, Mestres CA, Milojevic M, Nienaber CA, Piffaretti G, Preventza O, Quintana E, Rylski B, Schlett CL, Schoenhoff F, Trimarchi S, Tsagakis K, Siepe M, Estrera AL, Bavaria JE, Pacini D, Okita Y, Evangelista A, Harrington KB, Kachroo P, Hughes GC. EACTS/STS Guidelines for Diagnosing and Treating Acute and Chronic Syndromes of the Aortic Organ. Ann Thorac Surg 2024; 118:5-115. [PMID: 38416090 DOI: 10.1016/j.athoracsur.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Affiliation(s)
- Martin Czerny
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany; Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany.
| | - Martin Grabenwöger
- Department of Cardiovascular Surgery, Clinic Floridsdorf, Vienna, Austria; Medical Faculty, Sigmund Freud Private University, Vienna, Austria.
| | - Tim Berger
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany; Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Victor Aboyans
- Department of Cardiology, Dupuytren-2 University Hospital, Limoges, France; EpiMaCT, Inserm 1094 & IRD 270, Limoges University, Limoges, France
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy; Cardiac Surgery Unit, Monaldi Hospital, Naples, Italy
| | - Edward P Chen
- Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, North Carolina
| | - Nimesh D Desai
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julia Dumfarth
- University Clinic for Cardiac Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - John A Elefteriades
- Aortic Institute at Yale New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Christian D Etz
- Department of Cardiac Surgery, University Medicine Rostock, University of Rostock, Rostock, Germany
| | - Karen M Kim
- Division of Cardiovascular and Thoracic Surgery, The University of Texas at Austin/Dell Medical School, Austin, Texas
| | - Maximilian Kreibich
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany; Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Mario Lescan
- Department of Thoracic and Cardiovascular Surgery, University Medical Centre Tübingen, Tübingen, Germany
| | - Luca Di Marco
- Cardiac Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andreas Martens
- Department of Cardiac Surgery, Klinikum Oldenburg, Oldenburg, Germany; The Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Carlos A Mestres
- Department of Cardiothoracic Surgery and the Robert WM Frater Cardiovascular Research Centre, The University of the Free State, Bloemfontein, South Africa
| | - Milan Milojevic
- Department of Cardiac Surgery and Cardiovascular Research, Dedinje Cardiovascular Institute, Belgrade, Serbia
| | - Christoph A Nienaber
- Division of Cardiology at the Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gabriele Piffaretti
- Vascular Surgery Department of Medicine and Surgery, University of Insubria School of Medicine, Varese, Italy
| | - Ourania Preventza
- Division of Cardiothoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Eduard Quintana
- Department of Cardiovascular Surgery, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Bartosz Rylski
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany; Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Christopher L Schlett
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany; Department of Diagnostic and Interventional Radiology, University Hospital Freiburg, Freiburg, Germany
| | - Florian Schoenhoff
- Department of Cardiac Surgery, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Santi Trimarchi
- Department of Cardiac Thoracic and Vascular Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Konstantinos Tsagakis
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University Medicine Essen, Essen, Germany
| | - Matthias Siepe
- EACTS Review Coordinator; Department of Cardiac Surgery, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Anthony L Estrera
- STS Review Coordinator; Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Joseph E Bavaria
- Department of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Davide Pacini
- Division of Cardiac Surgery, S. Orsola University Hospital, IRCCS Bologna, Bologna, Italy
| | - Yutaka Okita
- Cardio-Aortic Center, Takatsuki General Hospital, Osaka, Japan
| | - Arturo Evangelista
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain; Departament of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Instituto del Corazón, Quirónsalud-Teknon, Barcelona, Spain
| | - Katherine B Harrington
- Department of Cardiothoracic Surgery, Baylor Scott and White The Heart Hospital, Plano, Texas
| | - Puja Kachroo
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St Louis, Missouri
| | - G Chad Hughes
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Duke University, Durham, North Carolina
| |
Collapse
|
11
|
Cesaretti M, Izzo A, Pellegrino RA, Galli A, Mavrothalassitis O. Cold ischemia time in liver transplantation: An overview. World J Hepatol 2024; 16:883-890. [PMID: 38948435 PMCID: PMC11212655 DOI: 10.4254/wjh.v16.i6.883] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
The standard approach to organ preservation in liver transplantation is by static cold storage and the time between the cross-clamping of a graft in a donor and its reperfusion in the recipient is defined as cold ischemia time (CIT). This simple definition reveals a multifactorial time frame that depends on donor hepatectomy time, transit time, and recipient surgery time, and is one of the most important donor-related risk factors which may influence the graft and recipient's survival. Recently, the growing demand for the use of marginal liver grafts has prompted scientific exploration to analyze ischemia time factors and develop different organ preservation strategies. This review details the CIT definition and analyzes its different factors. It also explores the most recent strategies developed to implement each timestamp of CIT and to protect the graft from ischemic injury.
Collapse
Affiliation(s)
- Manuela Cesaretti
- Department of HPB and Liver Transplantation, Brotzu Hospital, Cagliari 09122, Italy
- Department of Nanophysic, Istituto Italiano di Tecnologia, Genova 16163, Italy.
| | - Alessandro Izzo
- Department of HPB and Liver Transplantation, Brotzu Hospital, Cagliari 09122, Italy
| | | | - Alessandro Galli
- Department of Critical Care Medicine and Anesthesia, ASST Papa Giovanni XXIII, Bergamo 24100, Italy
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA 94143, United States
| | - Orestes Mavrothalassitis
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA 94143, United States
| |
Collapse
|
12
|
Teratani T, Fujimoto Y, Sakuma Y, Kasahara N, Maeda M, Miki A, Lefor AK, Sata N, Kitayama J. Improved Preservation of Rat Small Intestine Transplantation Graft by Introduction of Mesenchymal Stem Cell-Secreted Fractions. Transpl Int 2024; 37:11336. [PMID: 38962471 PMCID: PMC11219629 DOI: 10.3389/ti.2024.11336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Segmental grafts from living donors have advantages over grafts from deceased donors when used for small intestine transplantation. However, storage time for small intestine grafts can be extremely short and optimal graft preservation conditions for short-term storage remain undetermined. Secreted factors from mesenchymal stem cells (MSCs) that allow direct activation of preserved small intestine grafts. Freshly excised Luc-Tg LEW rat tissues were incubated in preservation solutions containing MSC-conditioned medium (MSC-CM). Preserved Luc-Tg rat-derived grafts were then transplanted to wild-type recipients, after which survival, injury score, and tight junction protein expression were examined. Luminance for each graft was determined using in vivo imaging. The findings indicated that 30-100 and 3-10 kDa fractions of MSC-CM have superior activating effects for small intestine preservation. Expression of the tight-junction proteins claudin-3, and zonula occludens-1 preserved for 24 h in University of Wisconsin (UW) solution containing MSC-CM with 50-100 kDa, as shown by immunostaining, also indicated effectiveness. Reflecting the improved graft preservation, MSC-CM preloading of grafts increased survival rate from 0% to 87%. This is the first report of successful transplantation of small intestine grafts preserved for more than 24 h using a rodent model to evaluate graft preservation conditions that mimic clinical conditions.
Collapse
Affiliation(s)
- Takumi Teratani
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Yasuhiro Fujimoto
- Transplantation Surgery, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Yasunaru Sakuma
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Naoya Kasahara
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Masashi Maeda
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
| | - Atsushi Miki
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | | | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Joji Kitayama
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
13
|
Dulguerov F, Abdurashidowa T, Christophel-Plathier E, Ion L, Gunga Z, Rancati V, Yerly P, Tozzi P, Albert A, Ltaief Z, Rotman S, Meyer P, Lefol K, Hullin R, Kirsch M. Comparison of HTK-Custodiol and St-Thomas solution as cardiac preservation solutions on early and midterm outcomes following heart transplantation. INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY 2024; 38:ivae093. [PMID: 38806181 DOI: 10.1093/icvts/ivae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Accepted: 05/26/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVES The choice of the cardiac preservation solution for myocardial protection at time of heart procurement remains controversial and uncertainties persist regarding its effect on the early and midterm heart transplantation (HTx) outcomes. We retrospectively compared our adult HTx performed with 2 different solutions, in terms of hospital mortality, mid-term survival, inotropic score, primary graft dysfunction and rejection score. METHODS From January 2009 to December 2020, 154 consecutive HTx of adult patients, followed up in pre- and post-transplantation by 2 different tertiary centres, were performed at the University Hospital of Lausanne, Switzerland. From 2009 to 2015, the cardiac preservation solution used was exclusively St-Thomas, whereafter an institutional decision was made to use HTK-Custodiol only. Patients were classified in 2 groups accordingly. RESULTS There were 75 patients in the St-Thomas group and 79 patients in the HTK-Custodiol group. The 2 groups were comparable in terms of preoperative and intraoperative characteristics. Postoperatively, compared to the St-Thomas group, the Custodiol group patients showed significantly lower inotropic scores [median (interquartile range): 35.7 (17.5-60.2) vs 71.8 (31.8-127), P < 0.001], rejection scores [0.08 (0.0-0.25) vs 0.14 (0.05-0.5), P = 0.036] and 30-day mortality rate (2.5% vs 14.7%, P = 0.007) even after adjusting for potential confounders. Microscopic analysis of the endomyocardial biopsies also showed less specific histological features of subendothelial ischaemia (3.8% vs 17.3%, P = 0.006). There was no difference in primary graft dysfunction requiring postoperative extracorporeal membrane oxygenation. The use of HTK-Custodiol solution significantly improved midterm survival (Custodiol versus St-Thomas: hazard ratio = 0.20, 95% confidence interval: 0.069-0.60, P = 0.004). CONCLUSIONS This retrospective study comparing St-Thomas solution and HTK-Custodiol as myocardial protection during heart procurement showed that Custodiol improves outcomes after HTx, including postoperative inotropic score, rejection score, 30-day mortality and midterm survival.
Collapse
Affiliation(s)
- Filip Dulguerov
- Department of Cardiac Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Tamila Abdurashidowa
- Department of Cardiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | - Lucian Ion
- Department of Cardiac Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Ziyad Gunga
- Department of Cardiac Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Valentina Rancati
- Department of Cardiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Patrick Yerly
- Department of Cardiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Piergiorgio Tozzi
- Department of Cardiac Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Adelin Albert
- Department of Biostatistics and Research Methods (B-STAT), University Hospital of Liège, Liège, Belgium
| | - Zied Ltaief
- Department of Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Samuel Rotman
- Department of Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philippe Meyer
- Department of Medical Specialties, University Hospitals of Geneva (HUG), Geneva, Switzerland
| | - Karl Lefol
- Department of Cardiology, Organ Transplant Centre, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Roger Hullin
- Department of Cardiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Matthias Kirsch
- Department of Cardiac Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
14
|
Sicim H, Tam WSV, Tang PC. Primary graft dysfunction in heart transplantation: the challenge to survival. J Cardiothorac Surg 2024; 19:313. [PMID: 38824545 PMCID: PMC11143673 DOI: 10.1186/s13019-024-02816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024] Open
Abstract
Primary graft dysfunction (PGD) is a life-threatening clinical condition with a high mortality rate, presenting as left, right, or biventricular dysfunction within the initial 24 h following heart transplantation, in the absence of a discernible secondary cause. Given its intricate nature, definitive definition and diagnosis of PGD continues to pose a challenge. The pathophysiology of PGD encompasses numerous underlying mechanisms, some of which remain to be elucidated, including factors like myocardial damage, the release of proinflammatory mediators, and the occurrence of ischemia-reperfusion injury. The dynamic characteristics of both donors and recipients, coupled with the inclination towards marginal lists containing more risk factors, together contribute to the increased incidence of PGD. The augmentation of therapeutic strategies involving mechanical circulatory support accelerates myocardial recovery, thereby significantly contributing to survival. Nonetheless, a universally accepted treatment algorithm for the swift management of this clinical condition, which necessitates immediate intervention upon diagnosis, remains absent. This paper aims to review the existing literature and shed light on how diagnosis, pathophysiology, risk factors, treatment, and perioperative management affect the outcome of PGD.
Collapse
Affiliation(s)
- Hüseyin Sicim
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Wing Sum Vincy Tam
- School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Paul C Tang
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
De Goeij FHC, De Meijer V, Mergental H, Guarrera JV, Asthana S, Ghinolfi D, Boteon YL, Selzner N, Kalisvaart M, Pulitano C, Sonnenday C, Martins PN, Berlakovich G, Schlegel A. Challenges With the Implementation of Machine Perfusion in Clinical Liver Transplantation. Transplantation 2024; 108:1296-1307. [PMID: 38057969 DOI: 10.1097/tp.0000000000004872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Dynamic organ preservation is a relatively old technique which has regained significant interest in the last decade. Machine perfusion (MP) techniques are applied in various fields of solid organ transplantation today. The first clinical series of ex situ MP in liver transplantation was presented in 2010. Since then, the number of research and clinical applications has substantially increased. Despite the notable beneficial effect on organ quality and recipient outcome, MP is still not routinely used in liver transplantation. Based on the enormous need to better preserve organs and the subsequent demand to continuously innovate and develop perfusion equipment further, this technology is also beneficial to test and deliver future therapeutic strategies to livers before implantation. This article summarizes the various challenges observed during the current shift from static to dynamic liver preservation in the clinical setting. The different organ perfusion strategies are discussed first, together with ongoing clinical trials and future study design. The current status of research and the impact of costs and regulations is highlighted next. Factors contributing to costs and other required resources for a worldwide successful implementation and reimbursement are presented third. The impact of research on cost-utility and effectivity to guide the tailored decision-making regarding the optimal perfusion strategy is discussed next. Finally, this article provides potential solutions to the challenging field of innovation in healthcare considering the various social and economic factors and the role of clinical, regulatory, and financial stakeholders worldwide.
Collapse
Affiliation(s)
- Femke H C De Goeij
- Department of Surgery, Division of Hepatopancreatobiliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vincent De Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Surgery, Surgical Research Laboratory, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hynek Mergental
- The Liver Unit, Queen Elizabeth University Hospital, Birmingham, United Kingdom
- The Liver Unit, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - James V Guarrera
- Division of Abdominal Transplant Surgery, Department of Surgery, Rutgers New Jersey Medical School, Newark, NJ
| | | | - Davide Ghinolfi
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Yuri L Boteon
- Instituto Israelita de Ensino e Pesquisa Albert Einstein, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil
| | - Nazia Selzner
- Ajmera Transplant Center, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Marit Kalisvaart
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Zurich, Switzerland
| | - Carlo Pulitano
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital and Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Paulo N Martins
- Division of Organ Transplantation, Department of Surgery, University of Massachusetts Memorial Hospital, University of Massachusetts, Worcester, MA
| | - Gabriela Berlakovich
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Andrea Schlegel
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
16
|
Bodenstein DF, Siebiger G, Zhao Y, Clasky AJ, Mukkala AN, Beroncal EL, Banh L, Aslostovar L, Brijbassi S, Hogan SE, McCully JD, Mehrabian M, Petersen TH, Robinson LA, Walker M, Zachos C, Viswanathan S, Gu FX, Rotstein OD, Cypel M, Radisic M, Andreazza AC. Bridging the gap between in vitro and in vivo models: a way forward to clinical translation of mitochondrial transplantation in acute disease states. Stem Cell Res Ther 2024; 15:157. [PMID: 38816774 PMCID: PMC11140916 DOI: 10.1186/s13287-024-03771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
Mitochondrial transplantation and transfer are being explored as therapeutic options in acute and chronic diseases to restore cellular function in injured tissues. To limit potential immune responses and rejection of donor mitochondria, current clinical applications have focused on delivery of autologous mitochondria. We recently convened a Mitochondrial Transplant Convergent Working Group (CWG), to explore three key issues that limit clinical translation: (1) storage of mitochondria, (2) biomaterials to enhance mitochondrial uptake, and (3) dynamic models to mimic the complex recipient tissue environment. In this review, we present a summary of CWG conclusions related to these three issues and provide an overview of pre-clinical studies aimed at building a more robust toolkit for translational trials.
Collapse
Affiliation(s)
- David F Bodenstein
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Gabriel Siebiger
- Institute of Medical Science (IMS), University of Toronto, Toronto, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Avinash N Mukkala
- Institute of Medical Science (IMS), University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Erika L Beroncal
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Lauren Banh
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Lili Aslostovar
- Centre for Commercialization of Regenerative Medicine, Toronto, Canada
| | - Sonya Brijbassi
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Sarah E Hogan
- Regenerative Medicine Department, United Therapeutics Corporation, Silver Spring, USA
| | - James D McCully
- Harvard Medical School, Boston, USA
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, USA
| | | | - Thomas H Petersen
- Regenerative Medicine Department, United Therapeutics Corporation, Silver Spring, USA
| | - Lisa A Robinson
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Melanie Walker
- Department of Neurological Surgery, University of Washington, Seattle, USA
| | | | - Sowmya Viswanathan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Frank X Gu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
| | - Ori D Rotstein
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Toronto Lung Transplant Program, Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
- Terence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
You X, Zuo B, Jiang J, Cheng D, Li P, Xing H, Yang C, Zhang Y. Liver resection with two-step vascular exclusion, in situ hypothermic portal perfusion for the treatment of end-stage hepatic alveolar echinococcosis. Langenbecks Arch Surg 2024; 409:168. [PMID: 38819706 DOI: 10.1007/s00423-024-03351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE To evaluate the safety and efficacy of two-step vascular exclusion and in situ hypothermic portal perfusion in patients with end-stage hepatic hydatidosis. METHODS This study involved patients with advanced hepatic hydatid disease undergoing surgical treatment between 2022 and 2023, which included resection and reconstruction of the hepatic veins, inferior vena cava (IVC), and portal vein (PV). We described the technical details of liver resection and vascular reconstruction, as well as the use of two-step vascular exclusion and in situ hypothermic portal perfusion techniques during the vascular reconstruction process. RESULT We included 7 patients with advanced hepatic hydatid disease who underwent surgical resection using two-step vascular exclusion and in situ hypothermic portal perfusion. The mean duration of surgery was 12.5 h (range, 7.5-15.0 h). The average hepatic ischemia time was 45 min (range, 25-77 min), while the occlusion time of the IVC was 87 min (range, 72-105 min). The total blood loss was 1000 milliliters (range, 500-1250 milliliters). Postoperatively, patients exhibited good recovery of liver and renal function. The mean ICU stay was 2 days (range, 1-3 days), and the mean postoperative hospital stay was 13 days (range, 9-16 days), with no Grade III or above complications observed during a mean follow-up period of 15 months (range, 9-24 months), CONCLUSION: two-step vascular exclusion and in situ hypothermic portal perfusion for surgical resection of end-stage hepatic hydatid disease is safe and effective. This significantly reduces the anhepatic time.
Collapse
Affiliation(s)
- Xinyu You
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Bangyou Zuo
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jipeng Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Donghui Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Li
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongming Xing
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
18
|
Preston WA, Pace DJ, Altshuler PJ, Yi M, Kittle HD, Vincent SA, Andreoni KA, Frank AM, Glorioso JM, Ramirez CG, Maley WR, Shah AP, Bodzin AS. A propensity score matched analysis of liver transplantation outcomes in the setting of preservation solution shortage. Am J Transplant 2024; 24:619-630. [PMID: 37940005 DOI: 10.1016/j.ajt.2023.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
The recent shortage of the University of Wisconsin (UW) solution prompted increased utilization of histidine-tryptophan-ketoglutarate (HTK) solution for liver graft preservation. This contemporary study analyzed deceased donor liver transplant outcomes following preservation with HTK vs UW. Patients receiving deceased donor liver transplantations between January 1, 2019, and June 30, 2022, were retrospectively identified utilizing the Organ Procurement and Transplant Network database, stratified by preservation with HTK vs UW, and a propensity score matching analysis was performed. Outcomes assessed included rates of primary nonfunction, graft survival, and patient survival. There were 4447 patients in each cohort. Primary nonfunction occurred in 60 (1.35%) patients in the HTK group vs 25 (0.54%) in the UW group (P < .001). HTK was associated with lower 90-day graft survival (94.39% vs 96.09%; P < .001) and 90-day patient survival (95.97% vs 97.38%; P = .001). Unmatched donation after cardiac death-specific analysis of HTK vs UW demonstrated respective rates of primary nonfunction of 1.63% vs 0.82% (P = .20), 90-day graft survival of 92.50% vs 95.29% (P = .069), and 90-day patient survival of 93.90% vs 96.35% (P = .077). These results suggest that HTK may not be an equivalent preservation solution for deceased donor liver transplantation.
Collapse
Affiliation(s)
- William A Preston
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Devon J Pace
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Peter J Altshuler
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Misung Yi
- Department of Biostatistics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Haley D Kittle
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sage A Vincent
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kenneth A Andreoni
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam M Frank
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jaime M Glorioso
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Carlo G Ramirez
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Warren R Maley
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ashesh P Shah
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam S Bodzin
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
19
|
Salehi S, Lippert Lozano E, Zhang Y, Guo Y, Liu R, Tran K, Messner F, Brandacher G, Grayson WL. Design of a Multiparametric Perfusion Bioreactor System for Evaluating Sub-Normothermic Preservation of Rat Abdominal Wall Vascularized Composite Allografts. Bioengineering (Basel) 2024; 11:307. [PMID: 38671729 PMCID: PMC11047557 DOI: 10.3390/bioengineering11040307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Static cold storage (SCS), the current clinical gold standard for organ preservation, provides surgeons with a limited window of time between procurement and transplantation. In vascularized composite allotransplantation (VCA), this time limitation prevents many viable allografts from being designated to the best-matched recipients. Machine perfusion (MP) systems hold significant promise for extending and improving organ preservation. Most of the prior MP systems for VCA have been built and tested for large animal models. However, small animal models are beneficial for high-throughput biomolecular investigations. This study describes the design and development of a multiparametric bioreactor with a circuit customized to perfuse rat abdominal wall VCAs. To demonstrate its concept and functionality, this bioreactor system was employed in a small-scale demonstrative study in which biomolecular metrics pertaining to graft viability were evaluated non-invasively and in real time. We additionally report a low incidence of cell death from ischemic necrosis as well as minimal interstitial edema in machine perfused grafts. After up to 12 h of continuous perfusion, grafts were shown to survive transplantation and reperfusion, successfully integrating with recipient tissues and vasculature. Our multiparametric bioreactor system for rat abdominal wall VCA provides an advanced framework to test novel techniques to enhance normothermic and sub-normothermic VCA preservations in small animal models.
Collapse
Affiliation(s)
- Sara Salehi
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, MD 21231, USA; (S.S.); (E.L.L.); (R.L.); (K.T.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Ernesto Lippert Lozano
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, MD 21231, USA; (S.S.); (E.L.L.); (R.L.); (K.T.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Yichuan Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (Y.G.); (F.M.); (G.B.)
| | - Yinan Guo
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (Y.G.); (F.M.); (G.B.)
| | - Renee Liu
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, MD 21231, USA; (S.S.); (E.L.L.); (R.L.); (K.T.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Kenny Tran
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, MD 21231, USA; (S.S.); (E.L.L.); (R.L.); (K.T.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Franka Messner
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (Y.G.); (F.M.); (G.B.)
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Gerald Brandacher
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (Y.G.); (F.M.); (G.B.)
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Warren L. Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, MD 21231, USA; (S.S.); (E.L.L.); (R.L.); (K.T.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 2121, USA
| |
Collapse
|
20
|
Westhaver LP, Nersesian S, Arseneau RJ, Hefler J, Hargreaves BK, Edgar A, Azizieh Y, Cuesta-Gomez N, Izquierdo DL, Shapiro AJ, Gala-Lopez BL, Boudreau JE. Mitochondrial DNA levels in perfusate and bile during ex vivo normothermic machine correspond with donor liver quality. Heliyon 2024; 10:e27122. [PMID: 38463874 PMCID: PMC10920371 DOI: 10.1016/j.heliyon.2024.e27122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024] Open
Abstract
Ex vivo normothermic machine perfusion (NMP) preserves donor organs and permits real-time assessment of allograft health, but the most effective indicators of graft viability are uncertain. Mitochondrial DNA (mtDNA), released consequent to traumatic cell injury and death, including the ischemia-reperfusion injury inherent in transplantation, may meet the need for a biomarker in this context. We describe a real time PCR-based approach to assess cell-free mtDNA during NMP as a universal biomarker of allograft quality. Measured in the perfusate fluid of 29 livers, the quantity of mtDNA correlated with metrics of donor liver health including International Normalized Ratio (INR), lactate, and warm ischemia time, and inversely correlated with inferior vena cava (IVC) flow during perfusion. Our findings endorse mtDNA as a simple and rapidly measured feature that can inform donor liver health, opening the possibility to better assess livers acquired from extended criteria donors to improve organ supply.
Collapse
Affiliation(s)
| | - Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Joshua Hefler
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Alexander Edgar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Yara Azizieh
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Nerea Cuesta-Gomez
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Dayne L. Izquierdo
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - A.M. James Shapiro
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Boris L. Gala-Lopez
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Jeanette E. Boudreau
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| |
Collapse
|
21
|
Flores Carvalho M, Boteon YL, Guarrera JV, Modi PR, Lladó L, Lurje G, Kasahara M, Dutkowski P, Schlegel A. Obstacles to implement machine perfusion technology in routine clinical practice of transplantation: Why are we not there yet? Hepatology 2024; 79:713-730. [PMID: 37013926 DOI: 10.1097/hep.0000000000000394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/05/2023] [Indexed: 04/05/2023]
Abstract
Machine perfusion of solid human organs is an old technique, and the basic principles were presented as early as 1855 by Claude Barnard. More than 50 years ago, the first perfusion system was used in clinical kidney transplantation. Despite the well-known benefits of dynamic organ preservation and significant medical and technical development in the last decades, perfusion devices are still not in routine use. This article describes the various challenges to implement this technology in practice, critically analyzing the role of all involved stakeholders, including clinicians, hospitals, regulatory, and industry, on the background of regional differences worldwide. The clinical need for this technology is discussed first, followed by the current status of research and the impact of costs and regulations. Considering the need for strong collaborations between clinical users, regulatory bodies, and industry, integrated road maps and pathways required to achieve a wider implementation are presented. The role of research development, clear regulatory pathways, and the need for more flexible reimbursement schemes is discussed together with potential solutions to address the most relevant hurdles. This article paints an overall picture of the current liver perfusion landscape and highlights the role of clinical, regulatory, and financial stakeholders worldwide.
Collapse
Affiliation(s)
- Mauricio Flores Carvalho
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, University of Florence, AOU Careggi, Florence, Italy
| | - Yuri L Boteon
- Liver Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - James V Guarrera
- Division of Abdominal Transplant Surgery, Rutgers New Jersey Medical School, Department of Surgery, Newark, New Jersey, USA
| | - Pranjal R Modi
- Department of Transplantation Surgery, Institute of Kidney Diseases and Research Center and Dr. H L Trivedi Institute of Transplantation Sciences (IKDRC-ITS), Ahmedabad, India
| | - Laura Lladó
- Liver Transplant Unit, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mureo Kasahara
- Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Andrea Schlegel
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, University of Florence, AOU Careggi, Florence, Italy
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, 20100 Milan, Italy
| |
Collapse
|
22
|
Bejaoui M, Slim C, Peralta C, Ben Abdennebi H. Effect of PERLA®, a new cold-storage solution, on oxidative stress injury and early graft function in rat kidney transplantation model. BMC Nephrol 2024; 25:62. [PMID: 38389057 PMCID: PMC10882783 DOI: 10.1186/s12882-024-03488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The composition of organ preservation solutions is crucial for maintaining graft integrity and early graft function after transplantation. The aim of this study is to compare new organ preservation solution PERLA® with the gold standard preservation solution University of Wisconsin (UW) regarding oxidative stress and early graft injury. METHODS In order to assess oxidative stress after cold storage, kidney grafts have been preserved for 18 h at 4° C in either UW solution or PERLA® solution and then assessed for oxidative stress injury (protocol 1). To assess kidney injuries and oxidative stress after reperfusion, rat kidneys were harvested, stored in cold UW or in PERLA® solutions for 18 h at 4 °C and then transplanted heterotopically for 6 h (protocol 2). PERLA® is a high Na+/low K+ solution including PEG-35 (1 g/L), trimetazidine (1 µM), carvedilol (10 µM) and tacrolimus (5 µM). RESULTS Our results showed that preservation of kidneys in PERLA® solution significantly attenuates oxidative stress parameters after cold storage and reperfusion. We found a significant decrease in oxidative damage indicators (MDA, CD and CP) and a significant increase in antioxidant indicators (GPx, GSH, CAT, SOD and PSH). Moreover, PERLA® solution decreased kidney injury after reperfusion (creatinine, LDH and uric acid). CONCLUSION PERLA® solution was more effective than UW storage solution in preserving rat's kidney grafts.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Chérifa Slim
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| |
Collapse
|
23
|
Czerny M, Grabenwöger M, Berger T, Aboyans V, Della Corte A, Chen EP, Desai ND, Dumfarth J, Elefteriades JA, Etz CD, Kim KM, Kreibich M, Lescan M, Di Marco L, Martens A, Mestres CA, Milojevic M, Nienaber CA, Piffaretti G, Preventza O, Quintana E, Rylski B, Schlett CL, Schoenhoff F, Trimarchi S, Tsagakis K. EACTS/STS Guidelines for diagnosing and treating acute and chronic syndromes of the aortic organ. Eur J Cardiothorac Surg 2024; 65:ezad426. [PMID: 38408364 DOI: 10.1093/ejcts/ezad426] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/15/2023] [Accepted: 12/19/2023] [Indexed: 02/28/2024] Open
Affiliation(s)
- Martin Czerny
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Martin Grabenwöger
- Department of Cardiovascular Surgery, Clinic Floridsdorf, Vienna, Austria
- Medical Faculty, Sigmund Freud Private University, Vienna, Austria
| | - Tim Berger
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Victor Aboyans
- Department of Cardiology, Dupuytren-2 University Hospital, Limoges, France
- EpiMaCT, Inserm 1094 & IRD 270, Limoges University, Limoges, France
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
- Cardiac Surgery Unit, Monaldi Hospital, Naples, Italy
| | - Edward P Chen
- Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Nimesh D Desai
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Dumfarth
- University Clinic for Cardiac Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - John A Elefteriades
- Aortic Institute at Yale New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| | - Christian D Etz
- Department of Cardiac Surgery, University Medicine Rostock, University of Rostock, Rostock, Germany
| | - Karen M Kim
- Division of Cardiovascular and Thoracic Surgery, The University of Texas at Austin/Dell Medical School, Austin, TX, USA
| | - Maximilian Kreibich
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Mario Lescan
- Department of Thoracic and Cardiovascular Surgery, University Medical Centre Tübingen, Tübingen, Germany
| | - Luca Di Marco
- Cardiac Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andreas Martens
- Department of Cardiac Surgery, Klinikum Oldenburg, Oldenburg, Germany
- The Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Carlos A Mestres
- Department of Cardiothoracic Surgery and the Robert WM Frater Cardiovascular Research Centre, The University of the Free State, Bloemfontein, South Africa
| | - Milan Milojevic
- Department of Cardiac Surgery and Cardiovascular Research, Dedinje Cardiovascular Institute, Belgrade, Serbia
| | - Christoph A Nienaber
- Division of Cardiology at the Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Gabriele Piffaretti
- Vascular Surgery Department of Medicine and Surgery, University of Insubria School of Medicine, Varese, Italy
| | - Ourania Preventza
- Division of Cardiothoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Eduard Quintana
- Department of Cardiovascular Surgery, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Bartosz Rylski
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Christopher L Schlett
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Freiburg, Freiburg, Germany
| | - Florian Schoenhoff
- Department of Cardiac Surgery, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Santi Trimarchi
- Department of Cardiac Thoracic and Vascular Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Konstantinos Tsagakis
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University Medicine Essen, Essen, Germany
| |
Collapse
|
24
|
Chullo G, Panisello-Rosello A, Marquez N, Colmenero J, Brunet M, Pera M, Rosello-Catafau J, Bataller R, García-Valdecasas JC, Fundora Y. Focusing on Ischemic Reperfusion Injury in the New Era of Dynamic Machine Perfusion in Liver Transplantation. Int J Mol Sci 2024; 25:1117. [PMID: 38256190 PMCID: PMC10816079 DOI: 10.3390/ijms25021117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Liver transplantation is the most effective treatment for end-stage liver disease. Transplant indications have been progressively increasing, with a huge discrepancy between the supply and demand of optimal organs. In this context, the use of extended criteria donor grafts has gained importance, even though these grafts are more susceptible to ischemic reperfusion injury (IRI). Hepatic IRI is an inherent and inevitable consequence of all liver transplants; it involves ischemia-mediated cellular damage exacerbated upon reperfusion and its severity directly affects graft function and post-transplant complications. Strategies for organ preservation have been constantly improving since they first emerged. The current gold standard for preservation is perfusion solutions and static cold storage. However, novel approaches that allow extended preservation times, organ evaluation, and their treatment, which could increase the number of viable organs for transplantation, are currently under investigation. This review discusses the mechanisms associated with IRI, describes existing strategies for liver preservation, and emphasizes novel developments and challenges for effective organ preservation and optimization.
Collapse
Affiliation(s)
- Gabriela Chullo
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Arnau Panisello-Rosello
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Noel Marquez
- Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain;
| | - Jordi Colmenero
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
- Liver Transplant Unit, Service of Hepatology, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades hepaticas y digestives (CIBERehd), University of Barcelona, 08036 Barcelona, Spain
| | - Merce Brunet
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades hepaticas y digestives (CIBERehd), University of Barcelona, 08036 Barcelona, Spain
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Miguel Pera
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Joan Rosello-Catafau
- Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (IBB-CSIC), 08036 Barcelona, Spain;
| | - Ramon Bataller
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
- Liver Transplant Unit, Service of Hepatology, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades hepaticas y digestives (CIBERehd), University of Barcelona, 08036 Barcelona, Spain
| | - Juan Carlos García-Valdecasas
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Yiliam Fundora
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| |
Collapse
|
25
|
Sakata T, Kohno H, Inui T, Ikeuchi H, Shiko Y, Kawasaki Y, Suzuki S, Tanaka S, Obana M, Ishikawa K, Fujio Y, Matsumiya G. Cardioprotective effect of Interleukin-11 against warm ischemia-reperfusion injury in a rat heart donor model. Eur J Pharmacol 2023; 961:176145. [PMID: 37923160 DOI: 10.1016/j.ejphar.2023.176145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Shortage of donor organs for heart transplantation is a worldwide problem. Donation after circulatory death (DCD) has been proposed to expand the donor pool. However, in contrast to the donation after brain death that undergoes immediate cold preservation, warm ischemia and subsequent reperfusion injury are inevitable in DCD. It has been reported that interleukin-11 (IL-11) mitigates ischemia-reperfusion injury in rodent models of myocardial infarction and donation after brain death heart transplantation. We hypothesized that IL-11 also offers benefit to warm ischemia in an experimental model of cardiac transplantation that resembles DCD. The hearts of naïve male Sprague Dawley rats (n = 15/group) were procured, subjected to 25-min warm ischemia, and reperfused for 60 min using Langendorff apparatus. IL-11 or saline was administered intravenously before the procurement, added to maintenance buffer, and infused via perfusion during reperfusion. IL-11 group exhibited significantly better cardiac function post-reperfusion. Severely damaged mitochondria was found in the electron microscopic analysis of control hearts whereas the mitochondrial structure was better preserved in the IL-11 treated hearts. Immunoblot analysis using neonatal rat cardiomyocytes revealed increased signal transducer and activator of transcription 3 (STAT3) phosphorylation at Ser727 after IL-11 treatment, suggesting its role in mitochondrial protection. Consistent with expected activation of mitochondrial respiration by mitochondrial STAT3, immunohistochemical staining demonstrated a higher mitochondrial cytochrome c oxidase subunit 2 expression. In summary, IL-11 protects the heart from warm ischemia reperfusion injury by alleviating mitochondrial injury and could be a viable therapeutic option for DCD heart transplantation.
Collapse
Affiliation(s)
- Tomoki Sakata
- Department of Cardiovascular Surgery, Chiba University Hospital, Chiba, Japan; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Hiroki Kohno
- Department of Cardiovascular Surgery, Chiba University Hospital, Chiba, Japan
| | - Tomohiko Inui
- Department of Cardiovascular Surgery, Chiba University Hospital, Chiba, Japan
| | - Hiroki Ikeuchi
- Department of Cardiovascular Surgery, Chiba University Hospital, Chiba, Japan
| | - Yuki Shiko
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Yohei Kawasaki
- Faculty of Nursing, Japanese Red Cross College of Nursing, Tokyo, Japan
| | - Shota Suzuki
- Laboratory of Clinical Science and Biomedicine, Osaka University Graduate School of Pharmaceutical Sciences, Osaka, Japan
| | - Shota Tanaka
- Laboratory of Clinical Science and Biomedicine, Osaka University Graduate School of Pharmaceutical Sciences, Osaka, Japan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Osaka University Graduate School of Pharmaceutical Sciences, Osaka, Japan
| | - Kiyotake Ishikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Osaka University Graduate School of Pharmaceutical Sciences, Osaka, Japan
| | - Goro Matsumiya
- Department of Cardiovascular Surgery, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
26
|
Ngai J, Jankowska A. Donation After Circulatory Death Heart Transplants: Doing More and Waiting Less. J Cardiothorac Vasc Anesth 2023; 37:2409-2412. [PMID: 37743133 DOI: 10.1053/j.jvca.2023.08.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Jennie Ngai
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Health, New York, NY.
| | - Anna Jankowska
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Health, New York, NY
| |
Collapse
|
27
|
Chen H, Ellis BW, Dinicu AT, Mojoudi M, Wilks BT, Tessier SN, Toner M, Uygun K, Uygun BE. Polyethylene Glycol and Caspase Inhibitor Emricasan Alleviates Cold Injury in Primary Rat Hepatocytes. RESEARCH SQUARE 2023:rs.3.rs-3669876. [PMID: 38076969 PMCID: PMC10705698 DOI: 10.21203/rs.3.rs-3669876/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Current methods of storing explanted donor livers at 4°C in University of Wisconsin (UW) solution result in loss of graft function and ultimately leads to less-than-ideal outcomes post transplantation. Our lab has previously shown that supplementing UW solution with 35-kilodalton polyethylene glycol (PEG) has membrane stabilizing effects for cold stored primary rat hepatocytes in suspension. Expanding on past studies, we here investigate if PEG has the same beneficial effects in an adherent primary rat hepatocyte cold storage model. In addition, we investigated the extent of cold-induced apoptosis through treating cold-stored hepatocytes with pan caspase inhibitor emricasan. In parallel to storage at the current cold storage standard of 4°C, we investigated the effects of lowering the storage temperature to -4°C, at which the storage solution remains ice-free due to the supercooling phenomenon. We show the addition of 5% PEG to the storage medium significantly reduced the release of lactate dehydrogenase (LDH) in plated rat hepatocytes and a combinatorial treatment with emricasan maintains hepatocyte viability and morphology following recovery from cold storage. These results show that cold-stored hepatocytes undergo multiple mechanisms of cold-induced injury and that PEG and emricasan treatment in combination with supercooling may improve cell and organ preservation.
Collapse
Affiliation(s)
- Huyun Chen
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Bradley W Ellis
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Antonia T Dinicu
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Mohammadreza Mojoudi
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Benjamin T Wilks
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Basak E Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| |
Collapse
|
28
|
Hetzel J, Awad N, Bhupalam V, Nestor M. Cryolipolysis in the United States-Review of the clinical data. J Cosmet Dermatol 2023; 22 Suppl 3:8-14. [PMID: 37988714 DOI: 10.1111/jocd.16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Noninvasive body contouring is becoming more popular in the United States as an alternative to liposuction. The most popular of these methods, cryolipolysis, uses precisely controlled cooling to reduce focal adiposities. The number of cryolipolysis procedures performed annually has experienced rampant growth in United States markets, and the indications have likewise diversified. In light of this change, it is imperative to perform an updated review of available US safety and efficacy data on cryolipolysis. AIMS To examine the safety and efficacy of cryolipolysis treatments in the United States using data extracted from research performed exclusively at US-based sites. METHODS In order to identify relevant studies, a literature search was conducted on PubMed using the terms "CoolSculpting" OR "cryolipolysis" OR "lipocryolysis." Articles were manually reviewed to exclude literature reviews, research not performed on humans, studies on experimental combinations of techniques, and any studies not performed in the United States. RESULTS The initial literature search returned 246 results. Following manual review, a total of 18 studies were selected for data extraction. Mean reduction in fat thickness by ultrasound was 2.0-5.1 mm or 19.6%-32.3%; mean reduction by body caliper was 2.3-7 mm or 14.9%-21.5%. Side effects were mild and transient. Four instances of PAH were documented in 3453 treatment cycles. CONCLUSIONS Cryolipolysis is a safe, modestly effective method for reducing focal adiposity. Complications are rare and treatable. However, US-based studies are few in number and often of low power and/or quality. More high-quality research is needed for all aspects of cryolipolysis.
Collapse
Affiliation(s)
- John Hetzel
- Center for Clinical and Cosmetic Research, Aventura, Florida, USA
| | - Nardin Awad
- Center for Clinical and Cosmetic Research, Aventura, Florida, USA
| | - Vishnu Bhupalam
- Center for Clinical and Cosmetic Research, Aventura, Florida, USA
- University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Mark Nestor
- Center for Clinical and Cosmetic Research, Aventura, Florida, USA
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine Miami, Miami, Florida, USA
- Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine Miami, Miami, Florida, USA
| |
Collapse
|
29
|
Mohan MS, Aswani SS, Aparna NS, Boban PT, Sudhakaran PR, Saja K. Effect of acute cold exposure on cardiac mitochondrial function: role of sirtuins. Mol Cell Biochem 2023; 478:2257-2270. [PMID: 36781815 DOI: 10.1007/s11010-022-04656-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/30/2022] [Indexed: 02/15/2023]
Abstract
Cardiac function depends mainly on mitochondrial metabolism. Cold conditions increase the risk of cardiovascular diseases by increasing blood pressure. Adaptive thermogenesis leads to increased mitochondrial biogenesis and function in skeletal muscles and adipocytes. Here, we studied the effect of acute cold exposure on cardiac mitochondrial function and its regulation by sirtuins. Significant increase in mitochondrial DNA copy number as measured by the ratio between mitochondrial-coded COX-II and nuclear-coded cyclophilin A gene expression by qRT-PCR and increase in the expression of PGC-1α, a mitochondriogenic factor and its downstream target NRF-1 were observed on cold exposure. This was associated with an increase in the activity of SIRT-1, which is known to activate PGC-1α. Mitochondrial SIRT-3 was also upregulated. Increase in sirtuin activity was reflected in total protein acetylome, which decreased in cold-exposed cardiac tissue. An increase in mitochondrial MnSOD further indicated enhanced mitochondrial function. Further evidence for this was obtained from ex vivo studies of cardiac tissue treated with norepinephrine, which caused a significant increase in mitochondrial MnSOD and SIRT-3. SIRT-3 appears to mediate the regulation of MnSOD, as treatment with AGK-7, a SIRT-3 inhibitor reversed the norepinephrine-induced upregulation of MnSOD. It, therefore, appears that SIRT-3 activation in response to SIRT-1-PGC-1α activation contributes to the regulation of cardiac mitochondrial activity during acute cold exposure.
Collapse
Affiliation(s)
- Mithra S Mohan
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - S S Aswani
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - N S Aparna
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - P T Boban
- Department of Biochemistry, Government College, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - P R Sudhakaran
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - K Saja
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India.
| |
Collapse
|
30
|
Năstase G, Botea F, Beșchea GA, Câmpean ȘI, Barcu A, Neacșu I, Herlea V, Popescu I, Chang TT, Rubinsky B, Șerban A. Isochoric Supercooling Organ Preservation System. Bioengineering (Basel) 2023; 10:934. [PMID: 37627819 PMCID: PMC10451689 DOI: 10.3390/bioengineering10080934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
This technical paper introduces a novel organ preservation system based on isochoric (constant volume) supercooling. The system is designed to enhance the stability of the metastable supercooling state, offering potential long-term preservation of large biological organs at subfreezing temperatures without the need for cryoprotectant additives. Detailed technical designs and usage protocols are provided for researchers interested in exploring this field. The paper also presents a control system based on the thermodynamics of isochoric freezing, utilizing pressure monitoring for process control. Sham experiments were performed using whole pig liver sourced from a local food supplier to evaluate the system's ability to sustain supercooling without ice nucleation for extended periods. The results demonstrated sustained supercooling without ice nucleation in pig liver tissue for 24 and 48 h. These findings suggest the potential of this technology for large-volume, cryoprotectant-free organ preservation with real-time control over the preservation process. The simplicity of the isochoric supercooling device and the design details provided in the paper are expected to serve as encouragement for other researchers in the field to pursue further research on isochoric supercooling. However, final evidence that these preserved organs can be successfully transplanted is still lacking.
Collapse
Affiliation(s)
- Gabriel Năstase
- Department of Building Services, Faculty of Civil Engineering, Transilvania University of Brasov, 500152 Brasov, Romania; (G.-A.B.); (Ș.-I.C.)
| | - Florin Botea
- Center of Excellence in Translational Medicine CEMT, “Dan Setlacec” Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.B.); (V.H.); (I.P.)
- Department of Medical-Surgical and Profilactical Disciplines, “Titu Maiorescu” University, 040441 Bucharest, Romania
| | - George-Andrei Beșchea
- Department of Building Services, Faculty of Civil Engineering, Transilvania University of Brasov, 500152 Brasov, Romania; (G.-A.B.); (Ș.-I.C.)
| | - Ștefan-Ioan Câmpean
- Department of Building Services, Faculty of Civil Engineering, Transilvania University of Brasov, 500152 Brasov, Romania; (G.-A.B.); (Ș.-I.C.)
| | - Alexandru Barcu
- Center of Excellence in Translational Medicine CEMT, “Dan Setlacec” Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.B.); (V.H.); (I.P.)
| | | | - Vlad Herlea
- Center of Excellence in Translational Medicine CEMT, “Dan Setlacec” Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.B.); (V.H.); (I.P.)
| | - Irinel Popescu
- Center of Excellence in Translational Medicine CEMT, “Dan Setlacec” Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.B.); (V.H.); (I.P.)
- Department of Medical-Surgical and Profilactical Disciplines, “Titu Maiorescu” University, 040441 Bucharest, Romania
| | - Tammy T. Chang
- Department of Surgery, University of California, San Francisco, CA 94143, USA;
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA;
| | - Alexandru Șerban
- Department of Thermotechnics, Engines, Thermal and Refrigeration Equipment, Faculty of Mechanical Engineering and Mechatronics, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| |
Collapse
|
31
|
Gartzke LP, Hendriks KDW, Hoogstra-Berends F, Joschko CP, Strandmoe AL, Vogelaar PC, Krenning G, Henning RH. Inhibition of Ferroptosis Enables Safe Rewarming of HEK293 Cells following Cooling in University of Wisconsin Cold Storage Solution. Int J Mol Sci 2023; 24:10939. [PMID: 37446116 DOI: 10.3390/ijms241310939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The prolonged cooling of cells results in cell death, in which both apoptosis and ferroptosis have been implicated. Preservation solutions such as the University of Wisconsin Cold Storage Solution (UW) encompass approaches addressing both. The use of UW improves survival and thus extends preservation limits, yet it remains unclear how exactly organ preservation solutions exert their cold protection. Thus, we explored cooling effects on lipid peroxidation and adenosine triphosphate (ATP) levels and the actions of blockers of apoptosis and ferroptosis, and of compounds enhancing mitochondrial function. Cooling and rewarming experiments were performed in a cellular transplantation model using Human Embryonic Kidney (HEK) 293 cells. Cell viability was assessed by neutral red assay. Lipid peroxidation levels were measured by Western blot against 4-Hydroxy-Nonenal (4HNE) and the determination of Malondialdehyde (MDA). ATP was measured by luciferase assay. Cooling beyond 5 h in Dulbecco's Modified Eagle Medium (DMEM) induced complete cell death in HEK293, whereas cooling in UW preserved ~60% of the cells, with a gradual decline afterwards. Cooling-induced cell death was not precluded by inhibiting apoptosis. In contrast, the blocking of ferroptosis by Ferrostatin-1 or maintaining of mitochondrial function by the 6-chromanol SUL150 completely inhibited cell death both in DMEM- and UW-cooled cells. Cooling for 24 h in UW followed by rewarming for 15 min induced a ~50% increase in MDA, while concomitantly lowering ATP by >90%. Treatment with SUL150 of cooled and rewarmed HEK293 effectively precluded the increase in MDA and preserved normal ATP in both DMEM- and UW-cooled cells. Likewise, treatment with Ferrostatin-1 blocked the MDA increase and preserved the ATP of rewarmed UW HEK293 cells. Cooling-induced HEK293 cell death from hypothermia and/or rewarming was caused by ferroptosis rather than apoptosis. UW slowed down ferroptosis during hypothermia, but lipid peroxidation and ATP depletion rapidly ensued upon rewarming, ultimately resulting in complete cell death. Treatment throughout UW cooling with small-molecule Ferrostatin-1 or the 6-chromanol SUL150 effectively prevented ferroptosis, maintained ATP, and limited lipid peroxidation in UW-cooled cells. Counteracting ferroptosis during cooling in UW-based preservation solutions may provide a simple method to improve graft survival following cold static cooling.
Collapse
Affiliation(s)
- Lucas P Gartzke
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Koen D W Hendriks
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Femke Hoogstra-Berends
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Christian P Joschko
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Anne-Lise Strandmoe
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Pieter C Vogelaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Sulfateq B.V. Admiraal de Ruyterlaan 5, 9726 GN Groningen, The Netherlands
| | - Guido Krenning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Sulfateq B.V. Admiraal de Ruyterlaan 5, 9726 GN Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
32
|
Clarysse M, Accarie A, Panisello-Roselló A, Farré R, Canovai E, Monbaliu D, De Hertogh G, Vanuytsel T, Pirenne J, Ceulemans LJ. Intravenous Polyethylene Glycol Alleviates Intestinal Ischemia-Reperfusion Injury in a Rodent Model. Int J Mol Sci 2023; 24:10775. [PMID: 37445954 DOI: 10.3390/ijms241310775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Intestinal ischemia-reperfusion injury (IRI) is a common clinical entity, and its outcome is unpredictable due to the triad of inflammation, increased permeability and bacterial translocation. Polyethylene glycol (PEG) is a polyether compound that is extensively used in pharmacology as an excipient in various products. More recently, this class of products have shown to have potent anti-inflammatory, anti-apoptotic, immunosuppressive and cell-membrane-stabilizing properties. However, its effects on the outcome after intestinal IRI have not yet been investigated. We hypothesized that PEG administration would reduce the effects of intestinal IRI in rodents. In a previously described rat model of severe IRI (45 min of ischemia followed by 60 min of reperfusion), we evaluated the effect of IV PEG administration at different doses (50 and 100 mg/kg) before and after the onset of ischemia. In comparison to control animals, PEG administration stabilized the endothelial glycocalyx, leading to reduced reperfusion edema, bacterial translocation and inflammatory reaction as well as improved 7-day survival. These effects were seen both in a pretreatment and in a treatment setting. The fact that this product is readily available and safe should encourage further clinical investigations in settings of intestinal IRI, organ preservation and transplantation.
Collapse
Affiliation(s)
- Mathias Clarysse
- Department of Abdominal Transplant Surgery & Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium
- Abdominal Transplantation Laboratory, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Leuven Intestinal Failure and Transplantation Center (LIFT), University Hospitals Leuven, 3000 Leuven, Belgium
| | - Alison Accarie
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Arnau Panisello-Roselló
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Cientificas (CSIC)-Institut D'Investigacions Biomèdique August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Emilio Canovai
- Department of Abdominal Transplant Surgery & Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium
- Abdominal Transplantation Laboratory, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Leuven Intestinal Failure and Transplantation Center (LIFT), University Hospitals Leuven, 3000 Leuven, Belgium
| | - Diethard Monbaliu
- Department of Abdominal Transplant Surgery & Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium
- Abdominal Transplantation Laboratory, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Leuven Intestinal Failure and Transplantation Center (LIFT), University Hospitals Leuven, 3000 Leuven, Belgium
| | - Gert De Hertogh
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium
- Laboratory of Translational Cell & Tissue Research, KU Leuven, 3000 Leuven, Belgium
| | - Tim Vanuytsel
- Leuven Intestinal Failure and Transplantation Center (LIFT), University Hospitals Leuven, 3000 Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Jacques Pirenne
- Department of Abdominal Transplant Surgery & Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium
- Abdominal Transplantation Laboratory, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Leuven Intestinal Failure and Transplantation Center (LIFT), University Hospitals Leuven, 3000 Leuven, Belgium
| | - Laurens J Ceulemans
- Leuven Intestinal Failure and Transplantation Center (LIFT), University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
33
|
Patrono D, De Stefano N, Vissio E, Apostu AL, Petronio N, Vitelli G, Catalano G, Rizza G, Catalano S, Colli F, Chiusa L, Romagnoli R. How to Preserve Steatotic Liver Grafts for Transplantation. J Clin Med 2023; 12:3982. [PMID: 37373676 DOI: 10.3390/jcm12123982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Liver allograft steatosis is a significant risk factor for postoperative graft dysfunction and has been associated with inferior patient and graft survival, particularly in the case of moderate or severe macrovesicular steatosis. In recent years, the increasing incidence of obesity and fatty liver disease in the population has led to a higher proportion of steatotic liver grafts being used for transplantation, making the optimization of their preservation an urgent necessity. This review discusses the mechanisms behind the increased susceptibility of fatty livers to ischemia-reperfusion injury and provides an overview of the available strategies to improve their utilization for transplantation, with a focus on preclinical and clinical evidence supporting donor interventions, novel preservation solutions, and machine perfusion techniques.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicola De Stefano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Elena Vissio
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Ana Lavinia Apostu
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicoletta Petronio
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giovanni Vitelli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Rizza
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Silvia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Fabio Colli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Luigi Chiusa
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| |
Collapse
|
34
|
Hosgood SA, Callaghan CJ, Wilson CH, Smith L, Mullings J, Mehew J, Oniscu GC, Phillips BL, Bates L, Nicholson ML. Normothermic machine perfusion versus static cold storage in donation after circulatory death kidney transplantation: a randomized controlled trial. Nat Med 2023; 29:1511-1519. [PMID: 37231075 PMCID: PMC10287561 DOI: 10.1038/s41591-023-02376-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
Kidney transplantation is the optimal treatment for end-stage renal disease, but it is still severely limited by a lack of suitable organ donors. Kidneys from donation after circulatory death (DCD) donors have been used to increase transplant rates, but these organs are susceptible to cold ischemic injury in the storage period before transplantation, the clinical consequence of which is high rates of delayed graft function (DGF). Normothermic machine perfusion (NMP) is an emerging technique that circulates a warmed, oxygenated red-cell-based perfusate through the kidney to maintain near-physiological conditions. We conducted a randomized controlled trial to compare the outcome of DCD kidney transplants after conventional static cold storage (SCS) alone or SCS plus 1-h NMP. A total of 338 kidneys were randomly allocated to SCS (n = 168) or NMP (n = 170), and 277 kidneys were included in the final intention-to-treat analysis. The primary endpoint was DGF, defined as the requirement for dialysis in the first 7 d after transplant. The rate of DGF was 82 of 135 (60.7%) in NMP kidneys versus 83 of 142 (58.5%) in SCS kidneys (adjusted odds ratio (95% confidence interval) 1.13 (0.69-1.84); P = 0.624). NMP was not associated with any increase in transplant thrombosis, infectious complications or any other adverse events. A 1-h period of NMP at the end of SCS did not reduce the rate of DGF in DCD kidneys. NMP was demonstrated to be feasible, safe and suitable for clinical application. Trial registration number: ISRCTN15821205 .
Collapse
Affiliation(s)
- Sarah A Hosgood
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Christopher J Callaghan
- Department of Nephrology and Transplantation, Guy's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Colin H Wilson
- Freeman Hospital, Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Smith
- NHS Blood and Transplant (NHSBT) Clinical Trials Unit, NHSBT Stoke Gifford, Bristol, UK
| | - Joanne Mullings
- NHS Blood and Transplant (NHSBT) Clinical Trials Unit, NHSBT Stoke Gifford, Bristol, UK
| | - Jennifer Mehew
- NHS Blood and Transplant (NHSBT) Clinical Trials Unit, NHSBT Stoke Gifford, Bristol, UK
| | - Gabriel C Oniscu
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Benedict L Phillips
- Department of Nephrology and Transplantation, Guy's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Lucy Bates
- Freeman Hospital, Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Michael L Nicholson
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
35
|
Neto D, Guenthart B, Shudo Y, Currie ME. World's first en bloc heart-lung transplantation using the paragonix lungguard donor preservation system. J Cardiothorac Surg 2023; 18:131. [PMID: 37041582 PMCID: PMC10091844 DOI: 10.1186/s13019-023-02281-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
We present the first en bloc heart-lung donor transplant procurement using the Paragonix LUNGguard™ donor preservation system. This system offers reliable static hypothermic conditions designed to prevent major complications such as cold ischemic injury, uneven cooling and physical damage. While this represents a single case, the encouraging results warrant further investigation.
Collapse
Affiliation(s)
- Daniel Neto
- Department of Cardiothoracic Surgery, Center for Academic Medicine, Stanford University School of Medicine, 453 Quarry Road, Stanford, CA, 94305, USA
| | - Brandon Guenthart
- Department of Cardiothoracic Surgery, Center for Academic Medicine, Stanford University School of Medicine, 453 Quarry Road, Stanford, CA, 94305, USA
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Center for Academic Medicine, Stanford University School of Medicine, 453 Quarry Road, Stanford, CA, 94305, USA
| | - Maria E Currie
- Department of Cardiothoracic Surgery, Center for Academic Medicine, Stanford University School of Medicine, 453 Quarry Road, Stanford, CA, 94305, USA.
| |
Collapse
|
36
|
Werenski H, Stratta RJ, Sharda B, Garner M, Farney AC, Orlando G, McCracken E, Jay CL. Knowing When to Ignore the Numbers: Single-Center Experience Transplanting Deceased Donor Kidneys with Poor Perfusion Parameters. J Am Coll Surg 2023; 236:848-857. [PMID: 36735482 DOI: 10.1097/xcs.0000000000000611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hypothermic machine perfusion is frequently used in evaluating marginal kidneys with poor perfusion parameters (PPP) contributing to delays in kidney placement or discard. We examined outcomes in deceased donor kidney transplants with PPP compared with those with optimal perfusion parameters (OPP). STUDY DESIGN We conducted a retrospective single-center cohort study from 2001 to 2021 comparing PPP (n = 91) with OPP (n = 598) deceased donor kidney transplants. PPP was defined as terminal flow ≤80 mL/min and terminal resistance ≥0.40 mmHg/mL/min. OPP was defined as terminal flow ≥120 mL/min and terminal resistance ≤0.20 mmHg/mL/min. RESULTS Mean terminal flow was PPP 66 ± 16 vs OPP 149 ± 21 mL/min and resistance was PPP 0.47 ± 0.10 vs OPP 0.15 ± 0.04 mmHg/mL/min (both p < 0.001). Donor age, donation after cardiac death, and terminal serum creatinine levels were similar between groups. Mean Kidney Donor Profile Index was higher among PPP donors (PPP 65 ± 23% vs OPP 52 ± 27%, p < 0.001). The PPP transplant group had more females and lower weight and BMI. Delayed graft function was comparable (PPP 32% vs OPP 27%, p = 0.33) even though cold ischemia times trended toward longer in PPP kidneys (PPP 28 ± 10 vs OPP 26 ± 9 hours, p = 0.09). One-year patient survival (PPP 98% vs OPP 97%, p = 0.84) and graft survival (PPP 91% vs OPP 92%, p = 0.23) were equivalent. PPP did predict inferior overall and death-censored graft survival long-term (overall hazard ratio 1.63, 95% CI 1.19 to 2.23 and death-censored hazard ratio 1.77, 95% CI 1.15 to 2.74). At 1 year, the estimated glomerular filtration rate was higher with OPP kidneys (PPP 40 ± 17 vs OPP 52 ± 19 mL/min/1.73 m 2 , p < 0.001). CONCLUSIONS Short-term outcomes in PPP kidneys were comparable to OPP kidneys despite higher Kidney Donor Profile Index and longer cold ischemia times, suggesting a role for increased utilization of these organs with careful recipient selection.
Collapse
Affiliation(s)
- Hope Werenski
- From the Department of Surgery, Section of Abdominal Organ Transplantation, Atrium Health Wake Forest Baptist, Winston-Salem, NC
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Banker A, Bhatt N, Rao PS, Agrawal P, Shah M, Nayak M, Mohanka R. A Review of Machine Perfusion Strategies in Liver Transplantation. J Clin Exp Hepatol 2023; 13:335-349. [PMID: 36950485 PMCID: PMC10025749 DOI: 10.1016/j.jceh.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/17/2023] Open
Abstract
The acceptance of liver transplantation as the standard of care for end-stage liver diseases has led to a critical shortage of donor allografts. To expand the donor organ pool, many countries have liberalized the donor criteria including extended criteria donors and donation after circulatory death. These marginal livers are at a higher risk of injury when they are preserved using the standard static cold storage (SCS) preservation techniques. In recent years, research has focused on optimizing organ preservation techniques to protect these marginal livers. Machine perfusion (MP) of the expanded donor liver has witnessed considerable advancements in the last decade. Research has showed MP strategies to confer significant advantages over the SCS techniques, such as longer preservation times, viability assessment and the potential to recondition high risk allografts prior to implantation. In this review article, we address the topic of MP in liver allograft preservation, with emphasis on current trends in clinical application. We discuss the relevant clinical trials related to the techniques of hypothermic MP, normothermic MP, hypothermic oxygenated MP, and controlled oxygenated rewarming. We also discuss the potential applications of ex vivo therapeutics which may be relevant in the future to further optimize the allograft prior to transplantation.
Collapse
Key Words
- ALP, Alkaline phosphatase
- ALT, Alanine transaminase
- ASO, Antisense oligonucleotides
- AST, Aspartate transaminase
- CIT, Cold ischemia times
- COPE, Consortium for Organ Preservation in Europe
- COR, Controlled oxygenated rewarming
- DBD, Donation after brain death
- DCD, Donation after circulatory death
- DHOPE, dual hypothermic oxygenated machine perfusion
- EAD, Early allograft dysfunction
- ECD, Extended criteria donors
- ETC, Electron transport chain
- GGT, Gamma glutamyl transferase
- HCV, Hepatitis C virus
- HMP, Hypothermic machine perfusion
- HOPE, Hypothermic oxygenated machine perfusion
- ICU, Intensive care unit
- IGL, Institute George Lopez-1
- INR, International normalized ratio
- IRI, ischemia reperfusion injury
- LDH, Lactate dehydrogenase
- MELD, Model for end-stage liver disease
- MP, Machine perfusion
- NAS, Non-anastomotic biliary strictures
- NMP, Normothermic machine perfusion
- NO, Nitric oxide
- PNF, Primary nonfunction
- ROS, Reactive oxygen species
- RT-PCR, Reverse transcription polymerase chain reaction
- SNMP, Sub-normothermic machine perfusion
- UW, University of Wisconsin
- WIT, Warm ischemia times
- hypothermic machine perfusion
- hypothermic oxygenated machine perfusion
- machine perfusion
- normothermic machine perfusion
- static cold storage
Collapse
Affiliation(s)
- Amay Banker
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Neha Bhatt
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Prashantha S. Rao
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Pravin Agrawal
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Mitul Shah
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Madhavi Nayak
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Ravi Mohanka
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| |
Collapse
|
38
|
Tawa P, Goutard M, Andrews AR, de Vries RJ, Rosales IA, Yeh H, Uygun B, Randolph MA, Lellouch AG, Uygun K, Cetrulo CL. Continuous versus Pulsatile Flow in 24-Hour Vascularized Composite Allograft Machine Perfusion in Swine: A Pilot Study. J Surg Res 2023; 283:1145-1153. [PMID: 36915006 PMCID: PMC10867902 DOI: 10.1016/j.jss.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Multiple perfusion systems have been investigated on vascularized composite allografts, with various temperatures and different preservation solutions, most using continuous flow (CF). However, physiological flow is pulsatile and provides better outcomes in kidney and lung ex vivo perfusions. The objective of this pilot study is to compare pulsatile flow (PF) with CF in our 24-h subnormothermic machine perfusion protocol for swine hindlimbs. METHODS Partial hindlimbs were harvested from Yorkshire pigs and perfused with a modified Steen solution at 21°C for 24 h either with CF (n = 3) or with pulsatile flow (PF) at 60 beats/min (n = 3). Perfusion parameters, endothelial markers, and muscle biopsies were assessed at different timepoints. RESULTS Overall, lactate levels were significantly lower in the PF group (P = 0.001). Glucose uptake and potassium concentration were similar in both groups throughout perfusion. Total nitric oxide levels were significantly higher in the PF group throughout perfusion (P = 0.032). Nitric oxide/endothelin-1 ratio also tends to be higher in the PF group, reflecting a potentially better vasoconductivity with PF, although not reaching statistical significance (P = 0.095). Arterial resistances were higher in the PF group (P < 0.001). Histological assessment did not show significant difference in muscular injury between the two groups. Weight increased quicker in the CF group but reached similar values with the PF after 24 h. CONCLUSIONS This pilot study suggests that PF may provide superior preservation of vascularized composite allografts when perfused for 24 h at subnormothermic temperatures, with potential improvement in endothelial function and decreased ischemic injury.
Collapse
Affiliation(s)
- Pierre Tawa
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Service de Chirurgie Plastique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Descartes, Paris, France
| | - Marion Goutard
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Service de Chirurgie Plastique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Descartes, Paris, France
| | - Alec R Andrews
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts
| | - Reinier J de Vries
- Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Department of Surgery, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ivy A Rosales
- Harvard Medical School, Boston, Massachusetts; Immunopathology Research Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts
| | - Heidi Yeh
- Harvard Medical School, Boston, Massachusetts; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Basak Uygun
- Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark A Randolph
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts
| | - Alexandre G Lellouch
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Service de Chirurgie Plastique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Descartes, Paris, France
| | - Korkut Uygun
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts.
| | - Curtis L Cetrulo
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts.
| |
Collapse
|
39
|
Blondeel J, Monbaliu D, Gilbo N. Dynamic liver preservation: Are we still missing pieces of the puzzle? Artif Organs 2023; 47:248-259. [PMID: 36227006 DOI: 10.1111/aor.14397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 02/03/2023]
Abstract
To alleviate the persistent shortage of donor livers, high-risk liver grafts are increasingly being considered for liver transplantation. Conventional preservation with static cold storage falls short in protecting these high-risk livers from ischemia-reperfusion injury, as evident from higher rates of post-transplant complications such as early allograft dysfunction and ischemic cholangiopathy. Moreover, static cold storage does not allow for a functional assessment of the liver prior to transplantation. To overcome these limitations, dynamic strategies of liver preservation have been proposed, designed to provide a protective effect while allowing pre-transplant functional assessment. In this review, we discuss how different dynamic preservation strategies exert their effects, where we stand in assessing liver function and what challenges are lying ahead.
Collapse
Affiliation(s)
- Joris Blondeel
- Department of Microbiology, Immunology and Transplantation, Laboratory of Abdominal Transplantation, KU Leuven, Leuven, Belgium.,Department of Abdominal Transplant Surgery and Coordination, University Hospitals Leuven, Leuven, Belgium
| | - Diethard Monbaliu
- Department of Microbiology, Immunology and Transplantation, Laboratory of Abdominal Transplantation, KU Leuven, Leuven, Belgium.,Department of Abdominal Transplant Surgery and Coordination, University Hospitals Leuven, Leuven, Belgium
| | - Nicholas Gilbo
- Department of Microbiology, Immunology and Transplantation, Laboratory of Abdominal Transplantation, KU Leuven, Leuven, Belgium.,Department of Abdominal Transplant Surgery and Coordination, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Lee YS, Gavzy SJ, Jang J, Kamberi S, Zhang T, Sands L, Scalea JR. Transport-Associated Vibrational Stress Triggers Drug-Reversible Apoptosis and Cardiac Allograft Failure in Mice. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2023; 11:145-150. [PMID: 36816099 PMCID: PMC9904449 DOI: 10.1109/jtehm.2023.3239790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Increasingly complex and long-range donor organ allocation routes coupled with implementation of unmanned aerial vehicles (UAVs) have prompted investigations of the conditions affecting organs once packaged for shipment. Our group has previously demonstrated that different modes of organ transport exert unique environmental stressors, in particular vibration. Using a mouse heart transplant model, we demonstrated that vibrational forces exert tangible, cellular effects in the form of cardiomyocyte apoptosis and cytoskeletal derangement. Functionally, these changes translated into accelerated allograft loss. Notably, administration of an apoptosis inhibitor, Z-VAD-FMK, helped to ameliorate the detrimental cellular and functional effects of mechanical vibration in a dose-dependent manner. These findings constitute one of the first reports of the negative impact of transit environment on transplant outcomes, a contributing mechanism underpinning this effect, and a potential agent to prophylax against this process. Given current limitations in measuring donor organ transit environments in situ, further study is required to better characterize the impact of transport environment and to potentially improve the care of donor organs during shipment. Clinical and Translational Impact Statement: We show that apoptosis inhibitor, Z-VAD-FMK, ameliorated transport-related vibrational stress in murine heart transplants, which presents a potential therapeutic or preservation solution additive for future use in transporting donor organs.
Collapse
Affiliation(s)
- Young S. Lee
- Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Center for Vascular and Inflammatory DiseasesUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Samuel J. Gavzy
- Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Center for Vascular and Inflammatory DiseasesUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Jihyun Jang
- Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Center for Vascular and Inflammatory DiseasesUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Shani Kamberi
- Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Tianshu Zhang
- Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Center for Vascular and Inflammatory DiseasesUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Lauren Sands
- Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Joseph R. Scalea
- Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Center for Vascular and Inflammatory DiseasesUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Department of SurgeryMedical University of South CarolinaCharlestonSC29425USA
| |
Collapse
|
41
|
Simona MS, Alessandra V, Emanuela C, Elena T, Michela M, Fulvia G, Vincenzo S, Ilaria B, Federica M, Eloisa A, Massimo A, Maristella G. Evaluation of Oxidative Stress and Metabolic Profile in a Preclinical Kidney Transplantation Model According to Different Preservation Modalities. Int J Mol Sci 2023; 24:ijms24021029. [PMID: 36674540 PMCID: PMC9861050 DOI: 10.3390/ijms24021029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
This study addresses a joint nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy approach to provide a platform for dynamic assessment of kidney viability and metabolism. On porcine kidney models, ROS production, oxidative damage kinetics, and metabolic changes occurring both during the period between organ retrieval and implantation and after kidney graft were examined. The 1H-NMR metabolic profile—valine, alanine, acetate, trimetylamine-N-oxide, glutathione, lactate, and the EPR oxidative stress—resulting from ischemia/reperfusion injury after preservation (8 h) by static cold storage (SCS) and ex vivo machine perfusion (HMP) methods were monitored. The functional recovery after transplantation (14 days) was evaluated by serum creatinine (SCr), oxidative stress (ROS), and damage (thiobarbituric-acid-reactive substances and protein carbonyl enzymatic) assessments. At 8 h of preservation storage, a significantly (p < 0.0001) higher ROS production was measured in the SCS vs. HMP group. Significantly higher concentration data (p < 0.05−0.0001) in HMP vs. SCS for all the monitored metabolites were found as well. The HMP group showed a better function recovery. The comparison of the areas under the SCr curves (AUC) returned a significantly smaller (−12.5 %) AUC in the HMP vs. SCS. EPR-ROS concentration (μmol·g−1) from bioptic kidney tissue samples were significantly lower in HMP vs. SCS. The same result was found for the NMR monitored metabolites: lactate: −59.76%, alanine: −43.17%; valine: −58.56%; and TMAO: −77.96%. No changes were observed in either group under light microscopy. In conclusion, a better and more rapid normalization of oxidative stress and functional recovery after transplantation were observed by HMP utilization.
Collapse
Affiliation(s)
- Mrakic-Sposta Simona
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20159 Milano, Italy
| | - Vezzoli Alessandra
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20159 Milano, Italy
- Correspondence: (V.A.); (G.M.)
| | - Cova Emanuela
- Department of Molecular Medicine, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Ticcozzelli Elena
- Department of Surgery, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Montorsi Michela
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Roma, Italy
| | - Greco Fulvia
- Institute of Chemical Sciences and Technologies “G. Natta”, National Research Council (SCITEC-CNR), 20133 Milan, Italy
| | - Sepe Vincenzo
- Department of Molecular Medicine, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Benzoni Ilaria
- Department of Surgery, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Meloni Federica
- Section of Pneumology, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Arbustini Eloisa
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Abelli Massimo
- Department of Surgery, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Gussoni Maristella
- Institute of Chemical Sciences and Technologies “G. Natta”, National Research Council (SCITEC-CNR), 20133 Milan, Italy
- Correspondence: (V.A.); (G.M.)
| |
Collapse
|
42
|
Hou W, Yang S, Lu J, Shi Y, Chen J, Chen D, Wang F, Liu L. Hypothermic machine perfusion alleviates ischemia-reperfusion injury of intestinal transplantation in pigs. Front Immunol 2023; 14:1117292. [PMID: 36926337 PMCID: PMC10011072 DOI: 10.3389/fimmu.2023.1117292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Background Intestinal transplantation (IT) has become an important procedure for the treatment of irreversible intestinal failure. However, IT is extremely vulnerable to ischemia-reperfusion injury (IRI). Due to the limitations of static cold storage (SCS), hypothermic machine perfusion (HMP) is rapidly gaining popularity. In this study, the intestinal HMP system is established and HMP is compared with SCS. Methods An intestinal HMP system was built. Ten miniature pigs were randomly divided into the HMP and SCS groups, and their intestines were perfused using the HMP device and SCS, respectively, followed by orthotopic auto-transplantation. Analysis was done on the grafts between the two groups. Results Operation success rates of the surgery were 100% in both groups. The 7-day survival rate was 100% in the HMP group, which was significantly higher than that of the SCS group (20%, P< 0.05). The pathological results showed that fewer injuries of grafts were in the HMP group. Endotoxin (ET), IL-1, IL-6, IFN-γ and TNF-α levels in the HMP group were significantly lower than in the SCS group (P<0.05), whereas IL-10 levels were significantly higher (P<0.05).The intestinal expression levels of ZO-1 and Occludin were higher in the HMP group compared to the SCS group, whereas Toll-like receptor 4 (TLR4), nuclear factor kappa B (NFκB), and caspase-3 were lower. Conclusions In this study, we established a stable intestinal HMP system and demonstrated that HMP could significantly alleviate intestinal IRI and improve the outcome after IT.
Collapse
Affiliation(s)
- Wen Hou
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Shuang Yang
- National Health Commission's Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Jiansen Lu
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Yuan Shi
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin, China
| | - Jing Chen
- Organ Transplant Department, Tianjin First Central Hospital, Tianjin, China
| | - Decheng Chen
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Fei Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Lei Liu
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin, China.,Organ Transplant Department, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
43
|
Azizieh Y, Westhaver LP, Badrudin D, Boudreau JE, Gala-Lopez BL. Changing liver utilization and discard rates in clinical transplantation in the ex-vivo machine preservation era. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1079003. [PMID: 36908294 PMCID: PMC9996101 DOI: 10.3389/fmedt.2023.1079003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Liver transplantation is a well-established treatment for many with end-stage liver disease. Unfortunately, the increasing organ demand has surpassed the donor supply, and approximately 30% of patients die while waiting for a suitable liver. Clinicians are often forced to consider livers of inferior quality to increase organ donation rates, but ultimately, many of those organs end up being discarded. Extensive testing in experimental animals and humans has shown that ex-vivo machine preservation allows for a more objective characterization of the graft outside the body, with particular benefit for suboptimal organs. This review focuses on the history of the implementation of ex-vivo liver machine preservation and how its enactment may modify our current concept of organ acceptability. We provide a brief overview of the major drivers of organ discard (age, ischemia time, steatosis, etc.) and how this technology may ultimately revert such a trend. We also discuss future directions for this technology, including the identification of new markers of injury and repair and the opportunity for other ex-vivo regenerative therapies. Finally, we discuss the value of this technology, considering current and future donor characteristics in the North American population that may result in a significant organ discard.
Collapse
Affiliation(s)
- Yara Azizieh
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | - David Badrudin
- Department of Surgery, Université de Montréal, Montréal, QC, Canada
| | - Jeanette E Boudreau
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Boris L Gala-Lopez
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.,Department of Surgery, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
44
|
Hypothermic Oxygenated Machine Perfusion (HOPE) Prior to Liver Transplantation Mitigates Post-Reperfusion Syndrome and Perioperative Electrolyte Shifts. J Clin Med 2022; 11:jcm11247381. [PMID: 36555997 PMCID: PMC9786550 DOI: 10.3390/jcm11247381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Post-reperfusion syndrome (PRS) and electrolyte shifts (ES) represent considerable challenges during liver transplantation (LT) being associated with significant morbidity. We aimed to investigate the impact of hypothermic oxygenated machine perfusion (HOPE) on PRS and ES in LT. (2) Methods: In this retrospective study, we compared intraoperative parameters of 100 LTs, with 50 HOPE preconditioned liver grafts and 50 grafts stored in static cold storage (SCS). During reperfusion phase, prospectively registered serum parameters and vasopressor administration were analyzed. (3) Results: Twelve percent of patients developed PRS in the HOPE cohort vs. 42% in the SCS group (p = 0.0013). Total vasopressor demand in the first hour after reperfusion was lower after HOPE pretreatment, with reduced usage of norepinephrine (−26%; p = 0.122) and significant reduction of epinephrine consumption (−52%; p = 0.018). Serum potassium concentration dropped by a mean of 14.1% in transplantations after HOPE, compared to a slight decrease of 1% (p < 0.001) after SCS. The overall incidence of early allograft dysfunction (EAD) was reduced by 44% in the HOPE group (p = 0.04). (4) Conclusions: Pre-transplant graft preconditioning with HOPE results in higher hemodynamic stability during reperfusion and lower incidence of PRS and EAD. HOPE has the potential to mitigate ES by preventing hyperpotassemic complications that need to be addressed in LT with HOPE-pre-treated grafts.
Collapse
|
45
|
ADD10 protects renal cells from cold injuries by improving energy metabolism. Biochem Biophys Res Commun 2022; 634:62-69. [DOI: 10.1016/j.bbrc.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/21/2022]
|
46
|
Ravaioli M, Germinario G, Dajti G, Sessa M, Vasuri F, Siniscalchi A, Morelli MC, Serenari M, Del Gaudio M, Zanfi C, Odaldi F, Bertuzzo VR, Maroni L, Laurenzi A, Cescon M. Hypothermic oxygenated perfusion in extended criteria donor liver transplantation-A randomized clinical trial. Am J Transplant 2022; 22:2401-2408. [PMID: 35671067 PMCID: PMC9796786 DOI: 10.1111/ajt.17115] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/12/2022] [Accepted: 06/03/2022] [Indexed: 01/25/2023]
Abstract
Hypothermic Oxygenated Perfusion (HOPE) of the liver can reduce the incidence of early allograft dysfunction (EAD) and failure in extended criteria donors (ECD) grafts, although data from prospective studies are very limited. In this monocentric, open-label study, from December 2018 to January 2021, 110 patients undergoing transplantation of an ECD liver graft were randomized to receive a liver after HOPE or after static cold storage (SCS) alone. The primary endpoint was the incidence of EAD. The secondary endpoints included graft and patient survival, the EASE risk score, and the rate of graft or other graft-related complications. Patients in the HOPE group had a significantly lower rate of EAD (13% vs. 35%, p = .007) and were more frequently allocated to the intermediate or higher risk group according to the EASE score (2% vs. 11%, p = .05). The survival analysis confirmed that patients in the HOPE group were associated with higher graft survival one year after LT (p = .03, log-rank test). In addition, patients in the SCS group had a higher re-admission and overall complication rate at six months, in particular cardio-vascular adverse events (p = .04 and p = .03, respectively). HOPE of ECD grafts compared to the traditional SCS preservation method is associated with lower dysfunction rates and better graft survival.
Collapse
Affiliation(s)
- Matteo Ravaioli
- Department of General Surgery and TransplantationIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | - Giuliana Germinario
- Department of General Surgery and TransplantationIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | - Gerti Dajti
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | - Maurizio Sessa
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - Francesco Vasuri
- Department of Specialized, Experimental and Diagnostic Medicine, Pathology UnitIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Antonio Siniscalchi
- Department of General Surgery and TransplantationIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Maria Cristina Morelli
- Department of General Surgery and TransplantationIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Matteo Serenari
- Department of General Surgery and TransplantationIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Massimo Del Gaudio
- Department of General Surgery and TransplantationIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Chiara Zanfi
- Department of General Surgery and TransplantationIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Federica Odaldi
- Department of General Surgery and TransplantationIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Valentina Rosa Bertuzzo
- Department of General Surgery and TransplantationIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Lorenzo Maroni
- Department of General Surgery and TransplantationIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | - Andrea Laurenzi
- Department of General Surgery and TransplantationIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Matteo Cescon
- Department of General Surgery and TransplantationIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| |
Collapse
|
47
|
A Potential Route to Reduce Ischemia/Reperfusion Injury in Organ Preservation. Cells 2022; 11:cells11172763. [PMID: 36078175 PMCID: PMC9455584 DOI: 10.3390/cells11172763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The pathophysiological process of ischemia and reperfusion injury (IRI), an inevitable step in organ transplantation, causes important biochemical and structural changes that can result in serious organ damage. IRI is relevant for early graft dysfunction and graft survival. Today, in a global context of organ shortages, most organs come from extended criteria donors (ECDs), which are more sensitive to IRI. The main objective of organ preservation solutions is to protect against IRI through the application of specific, nonphysiological components, under conditions of no blood or oxygen, and then under conditions of metabolic reduction by hypothermia. The composition of hypothermic solutions includes osmotic and oncotic buffering components, and they are intracellular (rich in potassium) or extracellular (rich in sodium). However, above all, they all contain the same type of components intended to protect against IRI, such as glutathione, adenosine and allopurinol. These components have not changed for more than 30 years, even though our knowledge of IRI, and much of the relevant literature, questions their stability or efficacy. In addition, several pharmacological molecules have been the subjects of preclinical studies to optimize this protection. Among them, trimetazidine, tacrolimus and carvedilol have shown the most benefits. In fact, these drugs are already in clinical use, and it is a question of repositioning them for this novel use, without additional risk. This new strategy of including them would allow us to shift from cold storage solutions to cold preservation solutions including multitarget pharmacological components, offering protection against IRI and thus protecting today's more vulnerable organs.
Collapse
|
48
|
Wisneski A, Smith JW, Nguyen TC, Fiedler AG. Molecules, Machines, and the Perfusate Milieu: Organ Preservation and Emerging Concepts for Heart Transplant. INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY 2022; 17:363-367. [PMID: 36271669 DOI: 10.1177/15569845221127305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Andrew Wisneski
- Division of Cardiothoracic Surgery, Department of Surgery, University of California San Francisco, CA, USA
| | - Jason W Smith
- Division of Cardiothoracic Surgery, Department of Surgery, University of California San Francisco, CA, USA
| | - Tom C Nguyen
- Division of Cardiothoracic Surgery, Department of Surgery, University of California San Francisco, CA, USA
| | - Amy G Fiedler
- Division of Cardiothoracic Surgery, Department of Surgery, University of California San Francisco, CA, USA
| |
Collapse
|
49
|
Eguchi N, Damyar K, Alexander M, Dafoe D, Lakey JRT, Ichii H. Anti-Oxidative Therapy in Islet Cell Transplantation. Antioxidants (Basel) 2022; 11:1038. [PMID: 35739935 PMCID: PMC9219662 DOI: 10.3390/antiox11061038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023] Open
Abstract
Islet cell transplantation has become a favorable therapeutic approach in the treatment of Type 1 Diabetes due to the lower surgical risks and potential complications compared to conventional pancreas transplantation. Despite significant improvements in islet cell transplantation outcomes, several limitations hamper long-term graft survival due to tremendous damage and loss of islet cells during the islet cell transplantation process. Oxidative stress has been identified as an omnipresent stressor that negatively affects both the viability and function of isolated islets. Furthermore, it has been established that at baseline, pancreatic β cells exhibit reduced antioxidative capacity, rendering them even more susceptible to oxidative stress during metabolic stress. Thus, identifying antioxidants capable of conferring protection against oxidative stressors present throughout the islet transplantation process is a valuable approach to improving the overall outcomes of islet cell transplantation. In this review we discuss the potential application of antioxidative therapy during each step of islet cell transplantation.
Collapse
Affiliation(s)
- Natsuki Eguchi
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Kimia Damyar
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Michael Alexander
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Donald Dafoe
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Jonathan R. T. Lakey
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
- Department of Biomedical Engineering, University of California, Irvine, CA 92686, USA
| | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| |
Collapse
|
50
|
Bardallo RG, da Silva RT, Carbonell T, Palmeira C, Folch-Puy E, Roselló-Catafau J, Adam R, Panisello-Rosello A. Liver Graft Hypothermic Static and Oxygenated Perfusion (HOPE) Strategies: A Mitochondrial Crossroads. Int J Mol Sci 2022; 23:5742. [PMID: 35628554 PMCID: PMC9143961 DOI: 10.3390/ijms23105742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Marginal liver grafts, such as steatotic livers and those from cardiac death donors, are highly vulnerable to ischemia-reperfusion injury that occurs in the complex route of the graft from "harvest to revascularization". Recently, several preservation methods have been developed to preserve liver grafts based on hypothermic static preservation and hypothermic oxygenated perfusion (HOPE) strategies, either combined or alone. However, their effects on mitochondrial functions and their relevance have not yet been fully investigated, especially if different preservation solutions/effluents are used. Ischemic liver graft damage is caused by oxygen deprivation conditions during cold storage that provoke alterations in mitochondrial integrity and function and energy metabolism breakdown. This review deals with the relevance of mitochondrial machinery in cold static preservation and how the mitochondrial respiration function through the accumulation of succinate at the end of cold ischemia is modulated by different preservation solutions such as IGL-2, HTK, and UW (gold-standard reference). IGL-2 increases mitochondrial integrity and function (ALDH2) when compared to UW and HTK. This mitochondrial protection by IGL-2 also extends to protective HOPE strategies when used as an effluent instead of Belzer MP. The transient oxygenation in HOPE sustains the mitochondrial machinery at basal levels and prevents, in part, the accumulation of energy metabolites such as succinate in contrast to those that occur in cold static preservation conditions. Additionally, several additives for combating oxygen deprivation and graft energy metabolism breakdown during hypothermic static preservation such as oxygen carriers, ozone, AMPK inducers, and mitochondrial UCP2 inhibitors, and whether they are or not to be combined with HOPE, are presented and discussed. Finally, we affirm that IGL-2 solution is suitable for protecting graft mitochondrial machinery and simplifying the complex logistics in clinical transplantation where traditional (static preservation) and innovative (HOPE) strategies may be combined. New mitochondrial markers are presented and discussed. The final goal is to take advantage of marginal livers to increase the pool of suitable organs and thereby shorten patient waiting lists at transplantation clinics.
Collapse
Affiliation(s)
- Raquel G. Bardallo
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Rui T. da Silva
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal; (R.T.d.S.); (C.P.)
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Carlos Palmeira
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal; (R.T.d.S.); (C.P.)
| | - Emma Folch-Puy
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France;
| | - Arnau Panisello-Rosello
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France;
| |
Collapse
|