1
|
Prince MEP, Zhou L, Moyer JS, Tao H, Lu L, Owen J, Etigen M, Zheng F, Chang AE, Xia J, Wolf G, Wicha MS, Huang S, Ren X, Li Q. Evaluation of the immunogenicity of ALDH(high) human head and neck squamous cell carcinoma cancer stem cells in vitro. Oral Oncol 2018; 59:30-42. [PMID: 27424180 DOI: 10.1016/j.oraloncology.2016.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 05/04/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To establish the concept that the antigenicity/immunogenicity of ALDH(high) human head and neck squamous cell carcinoma (HNSCC) cancer stem cells (CSC) is distinct from that of ALDH(low) non-CSCs. METHODS We generated CSC-loaded dendritic cells (DCs) to sensitize autologous peripheral blood T, B lymphocytes to react with CSCs using human HNSCC samples in vitro. RESULTS From peripheral blood collected from patients with HNSCC, we obtained PBMCs. DCs generated from the PBMC and pulsed with the lysate of ALDH(high) cells isolated from cultured HNSCC cells (CSC-DC) could sensitize autologous T, B lymphocytes in vitro, which was evident by cytokine production, CTL activity, and antibody secretion of these primed T, B cells in response to ALDH(high) CSCs. In contrast, DCs pulsed with lysate of ALDH(low) cells (ALDH(low)-DC) resulted in limited sensitization/priming of autologous T, B lymphocytes to produce IFNγ, GM-CSF; lyse CSCs, and secrete IgM and IgG in response to ALDH(high) CSCs. These results demonstrated significant differences in the antigenicity/immunogenicity between ALDH(high) CSCs vs. ALDH(low) cells isolated from the tumor specimen of patients with HNSCC, which indicates the existence of unique CSC antigens in the ALDH(high) population. CONCLUSION It is feasible to generate DCs from the PBMCs and isolate ALDH(high) CSCs from cultured tumor cells of the patients with HNSCC to prepare CSC-DC vaccines that can induce anti-HNSCC CSC cellular and humoral immunity, indicating its potential clinical application to treat patients with HNSCC.
Collapse
Affiliation(s)
- Mark E P Prince
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Li Zhou
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA.,Department of Immunology, Biotherapy Center ,Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Jeffrey S Moyer
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Huimin Tao
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA.,Hubei Province Stem Cell Research & Appling Center, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Lu
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA.,State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - John Owen
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Martin Etigen
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Fang Zheng
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA.,Hubei Province Stem Cell Research & Appling Center, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alfred E Chang
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Jianchuan Xia
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gregory Wolf
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Max S Wicha
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Shiang Huang
- Hubei Province Stem Cell Research & Appling Center, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiubao Ren
- Department of Immunology, Biotherapy Center ,Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Qiao Li
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Yu J, Tian R, Xiu B, Yan J, Jia R, Zhang L, Chang AE, Song H, Li Q. Antitumor activity of T cells generated from lymph nodes draining the SEA-expressing murine B16 melanoma and secondarily activated with dendritic cells. Int J Biol Sci 2009; 5:135-46. [PMID: 19173035 PMCID: PMC2631223 DOI: 10.7150/ijbs.5.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/19/2009] [Indexed: 01/21/2023] Open
Abstract
The successful use of tumor-draining lymph nodes (TDLN) as a source of effector cells for cancer immunotherapy depends largely on the immunogenicity of the tumor drained by the lymph nodes as well as the methods for secondary in vitro T cell activation and expansion. We transferred the bacterial superantigen staphylococcal enterotoxin A (SEA) gene into B16 murine melanoma tumor cells, and used them to induce TDLN (SEA TDLN) in syngeneic hosts. Wild-type (wt) TDLN induced by parental B16 tumor was used as a control. In vitro, SEA TDLN cells proliferated more vigorously, produced more IFNγ and demonstrated higher CTL activity than wt TDLN cells when activated with anti-CD3/anti-CD28/IL-2. In vivo, SEA TDLN cells mediated tumor eradication more effectively than similarly activated wt TDLN cells (p<0.01). Furthermore, use of dendritic cells (DC) plus tumor antigen in vitro in addition to anti-CD3/anti-CD28/IL-2 stimulation further amplified the immune function and therapeutic efficacy of SEA TDLN cells. DC-stimulated SEA TDLN cells eliminated nearly 90% of the pulmonary metastasis in mice bearing established B16 melanoma micrometastases. These results indicate that enforced expression of superantigen SEA in poorly immunogenic tumor cells can enhance their immunogenicity as a vaccine in vivo. The combined use of genetically modified tumor cells as vaccine to induce TDLN followed by secondary stimulation using antigen-presenting cells and tumor antigen in a sequential immunization/activation procedure may represent a unique method to generate more potent effector T cells for adoptive immunotherapy of cancer.
Collapse
Affiliation(s)
- Jiyun Yu
- Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Liu Z, Fan H, Wu Y, Chen B. Potent in vivo anti-tumor activity of isolated CD62L(low) lymph node cells sensitized in vivo with tumor lysate-pulsed DC-based vaccines. Cytotherapy 2008; 7:353-62. [PMID: 16162457 DOI: 10.1080/14653240500241925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND DC are potent APC that can activate both CD4 and CD8 T cells in vitro and in vivo. Although the efficacy of DC-based cancer vaccines is currently being evaluated in clinical trials, the systemic immune suppression in cancer patients negatively impacts the clinical benefit of this therapeutic approach. Therefore, in this study we tested the feasibility and anti-tumor effect of adoptive immunotherapy using in vitro-activated CD62L(low) lymph node cells that were isolated from DC-vaccinated draining lymph nodes (VDLN). METHODS DC were prepared from BM cells and loaded with tumor lysate for inoculating into naive mice. Subsequently, the VDLN were removed and CD62L(low) cells in the VDLN population isolated, expanded in vitro by 5-day culture with IL-2 and immobilized anti-CD3 stimulation, then injected into mice with established pulmonary tumors. Eighteen days after treatment, mice were killed in order to enumerate pulmonary tumor nodes. RESULTS DC phagocytosed the tumor lysate efficiently and induced detectable T-cell responses and significant cell expansion in the draining lymph nodes. After induction of maturation by LPS treatment, DC expressed higher levels of CD40, CD86 and MHC class II molecules. When CD62L(low) VDLN cells that had been isolated and expanded in vitro were transferred into tumor-bearing mice, as few as 3 x 10(6) cells were able to cure metastatic pulmonary tumors in vivo. DISCUSSION DC-based VDLN T cells are an important source of anti-tumor effector for adoptive immunotherapy. This study provides a novel and an effective protocol using T-cell adoptive immunotherapy for application in cancer patients; therefore, clinical trials based on this protocol may be warranted.
Collapse
Affiliation(s)
- Z Liu
- Department of Thoracic Surgery, Tongji University Affiliated East Hospital, China
| | | | | | | |
Collapse
|
4
|
Grübe M, Melenhorst JJ, Barrett AJ. An APC for every occasion: induction and expansion of human Ag-specific CD4 and CD8 T cells using cellular and non-cellular APC. Cytotherapy 2005; 6:440-9. [PMID: 15512910 DOI: 10.1080/14653240410005230] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
APC are used extensively to induce and expand Ag-specific T cells as well as to test their specificity and function. In the treatment of malignant and infectious diseases, APC are used to stimulate and expand Ag-specific T cells for adoptive transfer, or used directly in vivo to present Ag. The choice of APC to use depends on the particular application and on practical considerations, which include ease of production, availability, reproducibility and (for clinical use) established safety. The diversity of APC in use partly reflects the fact that no single technique of Ag presentation is ideal. For the clinician and laboratory worker alike the field can seem illogical and confusing. In this review we outline the functional requirements of APC for the induction of T cells, classify the APC in common use and describe their laboratory and clinical applications.
Collapse
Affiliation(s)
- M Grübe
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
5
|
Ito F, Li Q, Shreiner AB, Okuyama R, Jure-Kunkel MN, Teitz-Tennenbaum S, Chang AE. Anti-CD137 monoclonal antibody administration augments the antitumor efficacy of dendritic cell-based vaccines. Cancer Res 2004; 64:8411-9. [PMID: 15548712 DOI: 10.1158/0008-5472.can-04-0590] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In weakly and poorly immunogenic tumor models, we examined the effects of stimulating CD137 (4-1BB) in vivo by administering anti-CD137 monoclonal antibody after tumor lysate-pulsed dendritic cell (TP-DC) vaccination. TP-DC subcutaneous vaccination induced a transient up-regulation of CD137 on T cells and natural killer (NK) cells within vaccine-primed lymph nodes (VPLNs). In established pulmonary and subcutaneous tumor models, anti-CD137 synergistically enhanced tumor regression after TP-DC vaccination. In the subcutaneous tumor model, the combined therapy resulted in improved survival. Combined therapy also resulted in improved local control of subcutaneous tumor after surgical resection. Anti-CD137 polarized the cytokine release of VPLNs and spleen cells in response to tumor antigen toward a type 1 (interferon-gamma) versus a type 2 (interleukin-4) profile. Cell depletion and the use of knockout animals identified that CD8(+), CD4(+), and NK cells were involved in the tumor rejection response and that CD8(+) cells had the major effector role. Anti-CD137 administration resulted in increased proliferation of adoptively transferred OT-1 CD8(+) T cells in the VPLNs of mice inoculated with B16-OVA TP-DCs. Polarization toward type 1 (interferon-gamma) versus type 2 (interleukin-4) was also observed with the OT-1 cells from VPLNs and spleen cells after anti-CD137 injections. This polarization effect was abrogated by the in vivo depletion of NK cells. These findings indicate that the adjuvant effect of anti-CD137 given in conjunction with TP-DC vaccination is associated with the polarization of T effector cells toward a type 1 response to tumor antigen and is mediated via NK cells.
Collapse
Affiliation(s)
- Fumito Ito
- Division of Surgical Oncology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The use of recombinant gene technology to produce commercially available amounts of cytokines heralded an era of clinical applications of immunotherapy. Although the response rates to cytokine therapies are modest and sometimes occur at the expense of great cost and toxicity, they are proof of the principal that even large tumor burdens can be overcome by purely immune modulation. The interleukins and the interferons have been used in various phases of clinical trials in RCC. The maturation and final results of phase III trials are needed to guide clinical practice. In the meantime, the knowledge gained clinically and in the laboratory should lead to continued improvements and outcomes in immunotherapy for RCC.
Collapse
Affiliation(s)
- Barbara J Gitlitz
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles, 2333 PVUB, 10945 Le Conte Avenue, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
7
|
Chang AE, Li Q, Jiang G, Teknos TN, Chepeha DB, Bradford CR. Generation of vaccine-primed lymphocytes for the treatment of head and neck cancer. Head Neck 2003; 25:198-209. [PMID: 12599287 DOI: 10.1002/hed.10195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study was performed to assess the ability of autologous tumor vaccines to induce T-cell reactivity to squamous cell cancers (SCC). METHODS Irradiated autologous tumor cells admixed with bacillus Calmette-Guérin (BCG) were given intradermally in patients with advanced head and neck cancers. Vaccine-primed lymph node (VPLN) cells were secondarily activated with anti-CD3 mAb and expanded in IL-2 for adoptive immunotherapy. A mean (+/- SEM) of 2 (+/-0.6) x 10(10) anti-CD3-activated cells were administered in conjunction with IL-2 in six patients. RESULTS Anti-CD3-activated VPLN cells secreted IFN-gamma and GM-CSF in response to autologous tumor cells but not to allogeneic tumor cells in four of five patients analyzed. Both CD4(+) and CD8(+) tumor reactive cells were present in the VPLN. There were no significant tumor responses after transfer of the anti-CD3-activated VPLN. In separate experiments, costimulation of VPLN cells with anti-CD3 and anti-CD28 mAb resulted in enhanced cytokine secretion to autologous tumor compared with anti-CD3 activation alone. CONCLUSIONS Both CD4(+) and CD8(+) responses can be induced to SCC by autologous tumor vaccination. However, additional approaches need to be identified to enhance the therapeutic efficacy of this approach.
Collapse
Affiliation(s)
- Alfred E Chang
- Division of Surgical Oncology, 3302 Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
9
|
Gatza E, Okada CY. Tumor cell lysate-pulsed dendritic cells are more effective than TCR Id protein vaccines for active immunotherapy of T cell lymphoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5227-35. [PMID: 12391241 DOI: 10.4049/jimmunol.169.9.5227] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
TCR Id protein conjugated to keyhole limpet hemocyanin (KLH) (TCR Id:KLH) and injected with a chemical adjuvant (QS-21) induces a protective, Id-specific immune response against the murine T cell lymphoma, C6VL. However, Id-based immunotherapy of C6VL has not demonstrated therapeutic efficacy in tumor-bearing mice. We report here that C6VL lysate-pulsed dendritic cells (C6VL-DC) vaccines display enhanced efficacy in both the prevention and the therapy of T cell lymphoma compared with TCR Id:KLH with QS-21 vaccines. C6VL-DC vaccines stimulated potent tumor-specific immunity that protected mice against lethal challenge with C6VL and significantly enhanced the survival of tumor-bearing mice. Tumor-specific proliferation and secretion of IFN-gamma indicative of a Th1-type immune response were observed upon ex vivo stimulation of vaccine-primed lymph node cells. Adoptive transfer of immune T cell-enriched lymphocytes was sufficient to protect naive recipients from lethal tumor challenge. Furthermore, CD8(+) T cells were absolutely required for tumor protection. Although C6VL-DC and control vaccines stimulated low levels of tumor-specific Ab production in mice, Ab levels did not correlate with the protective ability of the vaccine. Thus, tumor cell lysate-pulsed DC vaccines appear to be an effective approach to generate potent T cell-mediated immune responses against T cell malignancies without requiring identification of tumor-specific Ags or patient-specific Id protein expression.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Neoplasm/biosynthesis
- Antigens, Neoplasm/administration & dosage
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/toxicity
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cancer Vaccines/toxicity
- Cell Fractionation/methods
- Cell-Free System/immunology
- Cytokines/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Female
- Immunization Schedule
- Immunoglobulin Idiotypes/administration & dosage
- Immunoglobulin Idiotypes/immunology
- Immunotherapy, Active/methods
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymphocyte Activation/immunology
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/mortality
- Lymphoma, T-Cell/therapy
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Survival Analysis
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Erin Gatza
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor 48101, USA.
| | | |
Collapse
|
10
|
Tang ZH, Qiu WH, Wu GS, Yang XP, Zou SQ, Qiu FZ. The immunotherapeutic effect of dendritic cells vaccine modified with interleukin-18 gene and tumor cell lysate on mice with pancreatic carcinoma. World J Gastroenterol 2002; 8:908-12. [PMID: 12378640 PMCID: PMC4656585 DOI: 10.3748/wjg.v8.i5.908] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To estimate the effect of a therapeutic vaccine against pancreatic carcinoma based on dendritic cell (DC) vaccine modified with tumor lysate and Interleukin-18 gene.
METHODS: The BALB/C mice model of pancreatic carcinoma was induced with DMBA. DC vaccine was constructed through pulsed with tumor lysate and transfected by the recombinant adenoviral vector encoding IL-18 gene. The immnotherapeutic effects of DC vaccine on mice with pancreatic carcinoma were assessed (divided into DC-IL18-Lysate group, DC-Lysate group, DC-IL18 group, DC group, PBS group).
RESULTS: After vaccination of the DC vaccine, the concentration of IL-18 and IFN-γ were 2161 ± 439 ng·L-1 and 435 ± 72 ng·L-1 in DC-IL18-Lysate group and there was significant difference compared with other groups (P < 0.01). After vaccination of the DC vaccine, the transplanted tumors were observed on 30 d in DC-Lysate groups, on 16 d in DC-IL18 groups, on 3 d in control group, but mice remained tumor-free for at least 50 d in DC-IL18-Lysate group and there was significant difference between DC-IL18-Lysate group and other groups (P < 0.01). The median survival exceeds 62 d in DC-IL18-Lysate group. But the median survival was 48.6 d in DC-Lysate group, 33 d in DC-IL18 group, 17 d in PBS group. The survival period was obviously prolonged in DC-IL18-Lysate group than in other groups (P < 0.05, P < 0.01). The weight of pancreatic tumor was 0.22 ± 0.083 g in DC-IL18-Lysate group, 1.45 ± 0.74 g in DC-Lysate group, 1.89 ± 1.34 g in DC-IL18 group, 3.0 ± 1.6 g in DC group, 2.9 ± 2.0 g in PBS group and the weight of tumor obviously reduced in DC-IL18-Lysate group than in other groups (P < 0.05, P < 0.01).
CONCLUSION: DC vaccine modified with tumor lysate and Interleukin-18 gene can induce a specific and effective immune response against pancreatic carcinoma cell.
Collapse
Affiliation(s)
- Zhao-Hui Tang
- Department of General Surgery of Tong Ji Hospital, Wuhan 430030, Hubei Province, China.
| | | | | | | | | | | |
Collapse
|