1
|
Nemkov T, Stephenson D, Erickson C, Dzieciatkowska M, Key A, Moore A, Earley EJ, Page GP, Lacroix IS, Stone M, Deng X, Raife T, Kleinman S, Zimring JC, Roubinian N, Hansen KC, Busch MP, Norris PJ, D’Alessandro A. Regulation of kynurenine metabolism by blood donor genetics and biology impacts red cell hemolysis in vitro and in vivo. Blood 2024; 143:456-472. [PMID: 37976448 PMCID: PMC10862365 DOI: 10.1182/blood.2023022052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023] Open
Abstract
ABSTRACT In the field of transfusion medicine, the clinical relevance of the metabolic markers of the red blood cell (RBC) storage lesion is incompletely understood. Here, we performed metabolomics of RBC units from 643 donors enrolled in the Recipient Epidemiology and Donor Evaluation Study, REDS RBC Omics. These units were tested on storage days 10, 23, and 42 for a total of 1929 samples and also characterized for end-of-storage hemolytic propensity after oxidative and osmotic insults. Our results indicate that the metabolic markers of the storage lesion poorly correlated with hemolytic propensity. In contrast, kynurenine was not affected by storage duration and was identified as the top predictor of osmotic fragility. RBC kynurenine levels were affected by donor age and body mass index and were reproducible within the same donor across multiple donations from 2 to 12 months apart. To delve into the genetic underpinnings of kynurenine levels in stored RBCs, we thus tested kynurenine levels in stored RBCs on day 42 from 13 091 donors from the REDS RBC Omics study, a population that was also genotyped for 879 000 single nucleotide polymorphisms. Through a metabolite quantitative trait loci analysis, we identified polymorphisms in SLC7A5, ATXN2, and a series of rate-limiting enzymes (eg, kynurenine monooxygenase, indoleamine 2,3-dioxygenase, and tryptophan dioxygenase) in the kynurenine pathway as critical factors affecting RBC kynurenine levels. By interrogating a donor-recipient linkage vein-to-vein database, we then report that SLC7A5 polymorphisms are also associated with changes in hemoglobin and bilirubin levels, suggestive of in vivo hemolysis in 4470 individuals who were critically ill and receiving single-unit transfusions.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Christopher Erickson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Amy Moore
- Research Triangle Institute International, Atlanta, GA
| | | | - Grier P. Page
- Research Triangle Institute International, Atlanta, GA
| | - Ian S. Lacroix
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Thomas Raife
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Steven Kleinman
- Department of Pathology, University of British Columbia, Victoria, BC, Canada
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Nareg Roubinian
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
- Kaiser Permanente Northern California Division of Research, Oakland, CA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| |
Collapse
|
2
|
LaCroix IS, Cohen M, Moore EE, Dzieciatkowska M, Silliman CC, Hansen KC, D'Alessandro A. Omics markers of platelet transfusion in trauma patients. Transfusion 2023; 63:1447-1462. [PMID: 37466356 DOI: 10.1111/trf.17472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Even in the era of the COVID-19 pandemic, trauma remains the global leading cause of mortality under the age of 49. Trauma-induced coagulopathy is a leading driver of early mortality in critically ill patients, and transfusion of platelet products is a life-saving intervention to restore hemostasis in the bleeding patient. However, despite extensive functional studies based on viscoelastic assays, limited information is available about the impact of platelet transfusion on the circulating molecular signatures in trauma patients receiving platelet transfusion. MATERIALS AND METHODS To bridge this gap, we leveraged metabolomics and proteomics approaches to characterize longitudinal plasma samples (n = 118; up to 11 time points; total samples: 759) from trauma patients enrolled in the Control Of Major Bleeding After Trauma (COMBAT) study. Samples were collected in the field, in the emergency department (ED), and at intervals up to 168 h (7 days) post-hospitalization. Transfusion of platelet (PLT) products was performed (n = 30; total samples: 250) in the ED through 24 h post-hospitalization. Longitudinal plasma samples were subjected to mass spectrometry-based metabolomics and proteomics workflows. Multivariate analyses were performed to determine omics markers of transfusion of one, two, three, or more PLT transfusions. RESULTS Higher levels of tranexamic acid (TXA), inflammatory proteins, carnitines, and polyamines were detected in patients requiring PLT transfusion. Correlation of PLT units with omics data suggested sicker patients required more units and partially overlap with the population requiring transfusion of packed red blood cell products. Furthermore, platelet activation was likely increased in the most severely injured patients. Fatty acid levels were significantly lower in PLT transfusion recipients (at time of maximal transfusion: Hour 4) compared with non-recipients, while carnitine levels were significantly higher. Fatty acid levels restore later in the time course (e.g., post-PLT transfusion). DISCUSSION The present study provides the first multi-omics characterization of platelet transfusion efficacy in a clinically relevant cohort of trauma patients. Physiological alterations following transfusion were detected, highlighting the efficacy of mass spectrometry-based omics techniques to improve personalized transfusion medicine. More specialized clinical research studies focused on PLT transfusion, including organized pre and post transfusion sample collection and limitation to PLT products only, are required to fully understand subsequent metabolomic and proteomic alterations.
Collapse
Affiliation(s)
- Ian S LaCroix
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mitchell Cohen
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ernest E Moore
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
- "Ernest E Moore" Trauma Center at Denver Health, Denver, Colorado, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher C Silliman
- Vitalant Research Institute, Denver, Colorado, USA
- Department of Pediatrics, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Nishioka N, Luo Y, Taniguchi T, Ohnishi T, Kimachi M, Ng RC, Watanabe N. Carnitine supplements for people with chronic kidney disease requiring dialysis. Cochrane Database Syst Rev 2022; 12:CD013601. [PMID: 36472884 PMCID: PMC9724937 DOI: 10.1002/14651858.cd013601.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Carnitine deficiency is common in patients with chronic kidney disease (CKD) who require dialysis. Several clinical studies have suggested that carnitine supplementation is beneficial for dialysis-related symptoms. However, the clinical effectiveness and potential adverse effects of carnitine supplementation in dialysis patients have not been determined. OBJECTIVES This review aimed to evaluate the effectiveness and safety of carnitine supplementation for the treatment of dialysis-related complications in CKD patients requiring dialysis. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 16 August 2022 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA We included all randomised controlled trials (RCTs) and quasi-RCTs (RCTs in which allocation to treatment was obtained by alternation, use of alternate medical records, date of birth, or other predictable methods) that compared carnitine supplements with placebo or standard care in people with CKD requiring dialysis. DATA COLLECTION AND ANALYSIS Two authors independently extracted study data and assessed study quality. We used a random-effects model to perform a quantitative synthesis of the data. We used the I² statistic to measure heterogeneity amongst the studies in each analysis. We indicated summary estimates as a risk ratio (RR) for dichotomous outcomes, mean difference (MD) for continuous outcomes, or standardised mean differences (SMD) if different scales were used, with 95% confidence intervals (CI). We assessed the certainty of the evidence for each of the main outcomes using the GRADE (Grades of Recommendation, Assessment, Development, and Evaluation) approach. MAIN RESULTS We included 52 studies (47 parallel RCTs and five cross-over RCTs) (3398 randomised participants). All studies compared L-carnitine with a placebo, other treatment, or no treatment. Standard care was continued as co-interventions in each group. Most studies were judged to have an unclear or high risk of bias. L-carnitine may have little or no effect on the quality of life (QoL) SF-36 physical component score (PCS) (4 studies, 134 participants: SMD 0.57, 95% CI -0.15 to 1.28; I² = 73%; low certainty of evidence), and the total QoL score (Kidney Disease Quality of Life (KDQOL), VAS (general well-being), or PedsQL) (3 studies, 230 participants: SMD -0.02, 95% CI -0.29 to 0.25; I² = 0%; low certainty of evidence). L-carnitine may improve SF-36 mental component score (MCS) (4 studies, 134 participants: SMD 0.70, 95% CI 0.22 to 1.18; I² = 42%; low certainty of evidence). L-carnitine may have little or no effect on fatigue score (2 studies, 353 participants: SMD 0.01, 95% CI -0.20 to 0.23; I² = 0%; low certainty of evidence), adverse events (12 studies, 1041 participants: RR, 1.14, 95% CI 0.86 to 1.51; I² = 0%; low certainty of evidence), muscle cramps (2 studies, 102 participants: RR, 0.44, 95% CI 0.18 to 1.09; I² = 23%; low certainty of evidence), and intradialytic hypotension (3 studies, 128 participants: RR, 0.76, 95% CI 0.34 to 1.69; I² = 0%; low certainty of evidence). L-carnitine may improve haemoglobin levels (26 studies, 1795 participants: MD 0.46 g/dL, 95% CI 0.18 to 0.74; I² = 86%; low certainty of evidence) and haematocrit values (14 studies, 950 participants: MD 1.78%, 95% CI 0.38 to 3.18; I² = 84%; low certainty of evidence). AUTHORS' CONCLUSIONS The available evidence does not currently support the use of carnitine supplementation in the treatment of dialysis-related carnitine deficiency. Although carnitine supplementation may slightly improve anaemia-related markers, carnitine supplementation makes little or no difference to adverse events. However, these conclusions are based on limited data and, therefore, should be interpreted with caution.
Collapse
Affiliation(s)
- Norihiro Nishioka
- Department of Preventive Services, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yan Luo
- Department of Health Promotion and Human Behaviour, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan
| | - Takuya Taniguchi
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsuyoshi Ohnishi
- Department of Nephrology, Kasukabe Chuo General Hospital, Saitama, Japan
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Miho Kimachi
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Roland Ck Ng
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Norio Watanabe
- Department of Psychiatry, Soseikai General Hospital, Kyoto, Japan
| |
Collapse
|
4
|
Protective effect of L-carnitine on platelet apoptosis during storage of platelet concentrate. Transfus Clin Biol 2020; 27:139-146. [PMID: 32544525 DOI: 10.1016/j.tracli.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/16/2020] [Accepted: 06/08/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Platelet apoptosis is considered as one of the important factors involved in platelet storage lesion (PSL) and affect the quality of platelets during storage. The beneficial effect of L-carnitine (LC) on platelet apoptosis during platelet concentrates (PCs) storage has not been fully investigated. The aim of this study was to evaluate the effects of LC on platelets of PC regarding their apoptosis markers during storage. METHODS Ten PCs from healthy donors were investigated in this study. PCs were prepared by platelet rich plasma (PRP) method and stored at 22±2°C with gentle agitation during storage. The effects of LC (15mM) on the platelet apoptosis were assessed by analyzing different indicative presence or absence of LC. Sampling was performed to evaluate apoptosis markers during platelet storage. RESULTS The results indicated significantly higher mitochondrial membrane potential for LC-treated platelets than the untreated on the days 2 and 5 of storage (Pday2=0.001, Pday5=0.001). Phosphatidylserine (PS) exposure significantly increased on the untreated compared with LC-treated platelets on the second and third days of storage (Pday2=0.014, Pday3=0.012). Also, active caspase 3 was lower in the LC- treated platelets than the control group on the day 5 of storage (Pday5=0.004). Cytosolic cytochrome C was so significantly lower in LC-treated compared to the untreated platelets during storage time (Pday2=0.002, Pday3=0.001, Pday5=0.001). CONCLUSION The results of this study indicate that the use of LC as an additive solution in platelets may be useful to reduce PSL by decreasing platelet apoptosis via mitochondrial pathway and increase platelet quality during storage.
Collapse
|
5
|
Preventive effect of l-carnitine and its derivatives on endothelial dysfunction and platelet aggregation. Clin Nutr ESPEN 2016; 15:1-10. [DOI: 10.1016/j.clnesp.2016.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/10/2016] [Indexed: 11/18/2022]
|
6
|
Nassiri A, Dashti-Khavidaki S, Khalili H, Nassiri-Toosi M, Abdollahi A. Serum carnitine level and its associated factors in patients with chronic viral hepatitis. Future Virol 2014. [DOI: 10.2217/fvl.14.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT: Aim: Serum carnitine level and its associated factors have been evaluated in patients with chronic viral hepatitis. Methods: Patients with confirmed chronic viral hepatitis based on the serological markers and liver biopsy were included. In total, 86 volunteers and 86 patients with chronic viral hepatitis completed the study. Demographic data, type of treatment regimen and nutritional status of the patients were recorded and one blood sample was collected from each patient after an overnight fasting. A double antibody sandwich ELISA kit was used to measure carnitine serum level. Results: Mean ± standard deviation of serum carnitine level in the case and control groups were 34.3 ± 15.3 and 55.7 ± 28.4 μmol/l, respectively (p = 0.001). Regarding carnitine deficiency definition, 64 out of 86 patients (74.4%) and 21 out of 86 (24.5%) healthy individuals suffered from carnitine deficiency (p < 0.001). Carnitine dietary intake was significantly lower (p < 0.001). Compared with patients with chronic hepatitis C infection, a more severe form of carnitine deficiency was detected in patients with chronic hepatitis B infection (18.39 ± 15.68 μmol/l vs 42.30 ± 32.92 μmol/l; p = 0.03). In addition, serum carnitine level (41.1 ± 14.8 μmol/l) was significantly higher in the cirrhotic than noncirrhotic patients (31.60 ± 13.2 μmol/l; p = 0.04). Conclusion: Although the cirrhotic patients had higher serum carnitine level compared with noncirrhotic patients, serum carnitine level in the patients with chronic hepatitis was significantly lower than the healthy individuals. Also compared with the defined cut-off point for normal carnitine serum level, carnitine deficiency was common in Iranian patients with chronic hepatitis.
Collapse
Affiliation(s)
- Azin Nassiri
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Khalili
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nassiri-Toosi
- Imam-Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Vali-E-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Chen Y, Abbate M, Tang L, Cai G, Gong Z, Wei R, Zhou J, Chen X. L-Carnitine supplementation for adults with end-stage kidney disease requiring maintenance hemodialysis: a systematic review and meta-analysis. Am J Clin Nutr 2014; 99:408-22. [PMID: 24368434 DOI: 10.3945/ajcn.113.062802] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A previous meta-analysis indicated that l-carnitine significantly increased hemoglobin and decreased the required erythropoietin dose in maintenance hemodialysis patients. OBJECTIVE An updated systematic review and meta-analysis of randomized controlled trials (RCTs) was performed to reevaluate effects of l-carnitine. DESIGN The Cochrane Library, PubMed, and EMBASE databases (31 December 2012) were searched to identify RCTs that investigated effects of l-carnitine in adults with end-stage kidney disease that required maintenance hemodialysis. RESULTS Forty-nine RCTs (1734 participants) were included. l-Carnitine significantly decreased serum low-density lipoprotein (LDL) (mean difference: -5.82 mg/dL; 95% CI: -11.61, -0.04 mg/dL) and C-reactive protein (CRP) (-3.65 mg/L; -6.19, -1.12 mg/L). There were no significant differences in triglycerides (-0.89 mg/dL; -29.32, 27.53 mg/dL), cholesterol (0.14 mg/dL; -6.15, 6.42 mg/dL), high-density lipoprotein (1.13 mg/dL; -2.44, 4.70 mg/dL), hemoglobin (0.68 g/dL; 0.14, 1.50 g/dL), hematocrit (2.04%; -1.39, 5.48%), albumin (1.65 g/L; -0.22, 3.51 g/L), or the required erythropoietin dose (-0.76 KU/wk; -1.75, 0.23 KU/wk). No adverse effects were reported. CONCLUSIONS This meta-analysis failed to confirm the previous findings regarding the effects of l-carnitine on hemoglobin and the erythropoietin dose but showed that l-carnitine significantly decreased serum LDL and CRP. The extent of the decrease in LDL was not clinically relevant, whereas the significant decrease in CRP was both statistically and clinically relevant. However, the relevance of decrease in CRP with hard endpoints such as all-cause mortality and cardiovascular complications still remains to be clarified.
Collapse
Affiliation(s)
- Yizhi Chen
- Division of Nephrology, State Key Discipline of Internal Medicine (Nephrology), State Key Laboratory of Kidney Disease (2011DAV00088), and National Clinical Medical Research Center for Kidney Disease, Chinese People's Liberation Army (PLA) General Hospital (301 Hospital), Chinese PLA Medical Academy, Beijing, China (YC, GC, RW, JZ, LT, and XC); the Department of Renal Medicine, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Clinical Research Center for Rare Diseases, Aldo e Cele Dacco, Bergamo, Italy (MA); and the Division of Infectious Diseases, Chinese PLA 532 Hospital, Huangshan, China (ZG)
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Malaguarnera M, Vacante M, Giordano M, Motta M, Bertino G, Pennisi M, Neri S, Malaguarnera M, Volti GL, Galvano F. L-carnitine supplementation improves hematological pattern in patients affected by HCV treated with Peg interferon-α 2b plus ribavirin. World J Gastroenterol 2011; 17:4414-20. [PMID: 22110268 PMCID: PMC3218156 DOI: 10.3748/wjg.v17.i39.4414] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/19/2011] [Accepted: 02/26/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the efficacy of L-carnitine on alleviating anemia, thrombocytopenia and leukopenia, and minimizing dose reductions in patients with chronic hepatitis C virus (HCV) in treatment with Interferon α (IFN-α) plus ribavirin.
METHODS: Sixty-nine patients with chronic hepatitis C were enrolled in the study and divided into two groups. group A (n = 35) received Peg-IFN-α 2b plus ribavirin plus L-carnitine, and group B (n = 34) received Peg-IFN-α and ribavirin for 12 mo. All patients underwent laboratory investigations including: red cell count, hemoglobin, white cell count, platelets, bilirubin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and viremia.
RESULTS: After 12 mo in group A compared to group B we observed significant differences in AST 108.8 vs 76.8 (IU/L; P < 0.001), ALT 137.9 vs 112.3 (IU/L; P < 0.001), viremia 4.04 vs 2.36 (× 106 copies/mL; P < 0.001), Hb 1 vs 3.5 (g/dL; P < 0.05), red blood cells 0.3 vs 1.1 (× 1012/L; P < 0.001), white blood cells 1.5 vs 3 (× 109/L; P < 0.001) and platelets 86 vs 85 (× 109/L; P < 0.001). The end treatment responders were 18 vs 12 (60% vs 44%) and the non responders were 12 vs 15 (40% vs 50%) [odds ratio (OR) 1.65, 95% CI = 0.65-5.37, P < 0.05]. In group A compared to group B there was a significant improvement of sustained virological response in 15 vs 7 patients (50% vs 25%), while the relapsers were 3 vs 5 (10% vs 18%) (OR 3.57, 95% CI = 0.65-19.3, P < 0.001).
CONCLUSION: L-carnitine supplementations modulate erythropoiesis, leucopoiesis and thrombocytopoiesis, and may be useful in patients treated for HCV. L-carnitine treatment offers the possibility of achieving a sustained virological response while preventing overtreatment.
Collapse
|
9
|
Saluk-Juszczak J, Olas B, Wachowicz B, Glowacki R, Bald E. L-carnitine modulates blood platelet oxidative stress. Cell Biol Toxicol 2010; 26:355-65. [PMID: 20069352 DOI: 10.1007/s10565-009-9148-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/09/2009] [Indexed: 12/14/2022]
Abstract
The oxidative stress induced by acute exertion may interfere with blood platelet activation. The beneficial effect of L-carnitine (gamma-trimethylamino-beta-hydroxybutyric acid) on oxidative stress in blood platelets has not been fully investigated; however, different studies indicate that this compound modulates platelet functions. The aim of our study was to assess the effects of L-carnitine on platelet activation and oxidative/nitrative protein damage (determined by the levels of protein carbonyl groups, thiol groups, and 3-nitrotyrosine residues) in resting blood platelets or platelets treated with peroxynitrite (ONOO(-), a strong physiological oxidant) in vitro. We also investigated the effects of L-carnitine on the level of platelet glutathione and on the formation of superoxide anion radicals O2(-*), lipid peroxidation measured by thiobarbituric acid reactive substances (TBARS) in blood platelets stimulated by thrombin (a strong physiological agonist), and platelet aggregation induced by adenosine diphosphate (a strong physiological stimulator). We have observed that carnitine decreases platelet activation (measured by platelet aggregation, the generation of O2(-*), and TBARS production). Moreover, our results in vitro demonstrate that carnitine may protect against oxidation of thiol groups induced by ONOO(-). Thus, carnitine may have some protectory effects against oxidative changes induced in blood platelets.
Collapse
Affiliation(s)
- Joanna Saluk-Juszczak
- Department of General Biochemistry, Institute of Biochemistry, University of Lodz, Lodz, Poland.
| | | | | | | | | |
Collapse
|