1
|
Tu S, Wang J, Yang P, He Y, Gong Z, Zhong W. Enhanced chlorogenic acid production from glucose via systematic metabolic engineering of Saccharomyces cerevisiae. Synth Syst Biotechnol 2025; 10:707-718. [PMID: 40248482 PMCID: PMC12002710 DOI: 10.1016/j.synbio.2025.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/15/2025] [Accepted: 03/05/2025] [Indexed: 04/19/2025] Open
Abstract
Chlorogenic acid (CGA) is a valuable phenolic acid with various pharmaceutical functions. In our previous study, de novo synthesis of CGA in Saccharomyces cerevisiae was achieved. However, its yield required improvement before large scale production. In this study, systematic metabolic engineering strategy was used to reconstruct chassis cell S. cerevisiae YC0707 to enhance its CGA yield from glucose. To balance the supply of phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P), ZWF1 (encoding glucose-6-phosphate dehydrogenase) and GND1 (encoding 6-phosphogluconate dehydrogenase) were overexpressed by strong promoter P TEF1 swapping, thereby strengthening the pentose phosphate pathway. The mutant of phosphofructokinase (PFK2 S718D ) was further introduced to weaken the glycolytic pathway. Then, the p-coumaric acid synthesis capacity was enhanced by employing tyrosine ammonia lyase from Rhodotorula glutinis (RgTAL), ΔHAM1, and ΔYJL028W. Fusion expression of AtC4H (cinnamate-4-hydroxylase) and At4CL1 (4-coumarate CoA ligase 1), together with CsHQT (hydroxycinnamoyl CoA quinate transferase) and AtC3'H (p-coumaroyl shikimate 3-hydroxylase), improved biosynthetic flux to CGA. Subsequently, the microenvironment of P450 enzymes was improved by overexpressing INO2 (a transcription factor for lipid biosynthesis) and removal of heme oxygenase gene HMX1. Furthermore, screening potential transporters to facilitate CGA accumulation. Finally, we optimized the fermentation conditions. Using these strategies, CGA titers increased from 234.8 mg/L to 837.2 mg/L in shake flasks and reached 1.62 g/L in a 5-L bioreactor, representing the highest report in S. cerevisiae and providing new insights for CGA production.
Collapse
Affiliation(s)
- Shuai Tu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junjie Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pengming Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhixing Gong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Lopatto EDB, Santiago-Borges JM, Sanick DA, Malladi SK, Azimzadeh PN, Timm MW, Fox IF, Schmitz AJ, Turner JS, Sayed Ahmed SM, Ortinau L, Gualberto NC, Pinkner JS, Dodson KW, Ellebedy AH, Kau AL, Hultgren SJ. Monoclonal antibodies targeting the FimH adhesin protect against uropathogenic E. coli UTI. SCIENCE ADVANCES 2025; 11:eadw0698. [PMID: 40540557 DOI: 10.1126/sciadv.adw0698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 05/16/2025] [Indexed: 06/22/2025]
Abstract
As antimicrobial resistance increases, urinary tract infections (UTIs) are expected to pose an increased burden in morbidity and expense on the health care system, increasing the need for alternative antibiotic-sparing treatments. Most UTIs are caused by uropathogenic Escherichia coli (UPEC), whereas Klebsiella pneumoniae causes a large portion of non-UPEC UTIs. Both bacteria express type 1 pili tipped with the mannose-binding FimH adhesin critical for UTI pathogenesis. We generated and biochemically characterized 33 murine monoclonal antibodies (mAbs) to FimH. Three mAbs protected mice from E. coli UTI. Mechanistically, we show that this protection is Fc independent and mediated by the ability of these mAbs to sterically block FimH function by recognizing a high-affinity FimH conformation. Our data reveal that FimH mAbs hold promise as an antibiotic-sparing treatment strategy.
Collapse
Affiliation(s)
- Edward D B Lopatto
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University in St. Louis, St. Louis, MO, USA
| | - Jesús M Santiago-Borges
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University in St. Louis, St. Louis, MO, USA
- Division of Allergy and Immunology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Denise A Sanick
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University in St. Louis, St. Louis, MO, USA
| | - Sameer Kumar Malladi
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Philippe N Azimzadeh
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University in St. Louis, St. Louis, MO, USA
| | - Morgan W Timm
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University in St. Louis, St. Louis, MO, USA
| | - Isabella F Fox
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Shaza M Sayed Ahmed
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Lillian Ortinau
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University in St. Louis, St. Louis, MO, USA
- Division of Allergy and Immunology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Nathaniel C Gualberto
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University in St. Louis, St. Louis, MO, USA
| | - Jerome S Pinkner
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University in St. Louis, St. Louis, MO, USA
| | - Karen W Dodson
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University in St. Louis, St. Louis, MO, USA
| | - Ali H Ellebedy
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew L Kau
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University in St. Louis, St. Louis, MO, USA
- Division of Allergy and Immunology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University in St. Louis, St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Swain S, Jain N. Blocking mutant IDH1 phosphorylation triggers APC/C CDH1-dependent ubiquitination in mitotic cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:120002. [PMID: 40513618 DOI: 10.1016/j.bbamcr.2025.120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 05/09/2025] [Accepted: 06/08/2025] [Indexed: 06/16/2025]
Abstract
IDH1 mutation occurs early in glioma development; thus, mutant IDH1-specific inhibitors are being developed as glioma therapy. But, recent reports suggest that mutant IDH1 inhibitors treatments result in loss of therapeutic vulnerabilities and makes cells resistant to anticancer agents. To overcome resistance, the new paradigm in drug discovery is to develop molecules that can degrade oncogenes by harnessing cellular ubiquitination machinery. Therefore, it is imperative to identify strategies for degrading mutant IDH1 employing cellular ubiquitination machinery. To address this, we found that concerted action of the mitotic kinases Cdk1/Cyclin B1 and Plk1 increases mutant IDH1 enzyme activity. It is known that phosphorylation is linked to protein stability, phosphorylation of a short linear degron motif or phosphodegron can trigger target protein ubiquitination. By contrast, phosphorylation of constitutively active degron motifs can block target protein ubiquitination - phospho-inactivated degron. As phosphorylation can trigger or block ubiquitination, it is unknown if phosphorylation affects mutant IDH1 ubiquitination in mitosis. Therefore, in this study, we asked if phosphorylation of mutant IDH1 is linked to ubiquitination. To answer this question, we examined ubiquitination of phosphomutants and phosphomimetics of mutant IDH1 in mitosis. We found that blocking IDH1R132H phosphorylation is linked to ubiquitination. We observed that APC/C CDH1 ubiquitinates IDH1R132H-T77A-S94A. Further, we show that APC/C CDH1 ubiquitinates lysines 301 and 321 in C-terminal domain of IDH1R132H-T77A-S94A. Thus, blocking mutant IDH1 phosphorylation triggers APC/C CDH1-dependent ubiquitination in mitotic cells. We suggest employing mitotic inhibitors that also block phosphorylation of mutant IDH1 can ubiquitinate mutant IDH1 in cancer cells.
Collapse
Affiliation(s)
- Sonam Swain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Walla B, Dietrich AM, Brames E, Bischoff D, Fritzsche S, Castiglione K, Janowski R, Niessing D, Weuster-Botz D. Application of a Rational Crystal Contact Engineering Strategy on a Poly(ethylene terephthalate)-Degrading Cutinase. Bioengineering (Basel) 2025; 12:561. [PMID: 40564377 PMCID: PMC12189717 DOI: 10.3390/bioengineering12060561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/19/2025] [Accepted: 05/21/2025] [Indexed: 06/28/2025] Open
Abstract
Industrial biotechnology offers a potential ecological solution for PET recycling under relatively mild reaction conditions via enzymatic degradation, particularly using the leaf branch compost cutinase (LCC) quadruple mutant ICCG. To improve the efficient downstream processing of this biocatalyst after heterologous gene expression with a suitable production host, protein crystallization can serve as an effective purification/capture step. Enhancing protein crystallization was achieved in recent studies by introducing electrostatic (and aromatic) interactions in two homologous alcohol dehydrogenases (Lb/LkADH) and an ene reductase (NspER1-L1,5) produced with Escherichia coli. In this study, ICCG, which is difficult to crystallize, was utilized for the application of crystal contact engineering strategies, resulting in ICCG mutant L50Y (ICCGY). Previously focused on the Lys-Glu interaction for the introduction of electrostatic interactions at crystal contacts, the applicability of the engineering strategy was extended here to an Arg-Glu interaction to increase crystallizability, as shown for ICCGY T110E. Furthermore, the rationale of the engineering approach is demonstrated by introducing Lys and Glu at non-crystal contacts or sites without potential interaction partners as negative controls. These resulting mutants crystallized comparably but not superior to the wild-type protein. As demonstrated by this study, crystal contact engineering emerges as a promising approach for rationally enhancing protein crystallization. This advancement could significantly streamline biotechnological downstream processing, offering a more efficient pathway for research and industry.
Collapse
Affiliation(s)
- Brigitte Walla
- Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany; (B.W.); (D.B.)
| | - Anna-Maria Dietrich
- Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany; (B.W.); (D.B.)
| | - Edwin Brames
- Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany; (B.W.); (D.B.)
| | - Daniel Bischoff
- Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany; (B.W.); (D.B.)
| | - Stefanie Fritzsche
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052 Erlangen, Germany; (S.F.); (K.C.)
| | - Kathrin Castiglione
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052 Erlangen, Germany; (S.F.); (K.C.)
| | - Robert Janowski
- Molecular Targets and Therapeutics Center, Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; (R.J.); (D.N.)
| | - Dierk Niessing
- Molecular Targets and Therapeutics Center, Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; (R.J.); (D.N.)
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081 Ulm, Germany
| | - Dirk Weuster-Botz
- Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany; (B.W.); (D.B.)
| |
Collapse
|
5
|
Mühle J, Alenfelder J, Rodrigues MJ, Jürgenliemke L, Guixà-González R, Grätz L, Andres F, Bacchin A, Hennig M, Schihada H, Crüsemann M, König GM, Schertler G, Kostenis E, Deupi X. Cyclic peptide inhibitors function as molecular glues to stabilize Gq/11 heterotrimers. Proc Natl Acad Sci U S A 2025; 122:e2418398122. [PMID: 40333756 PMCID: PMC12088423 DOI: 10.1073/pnas.2418398122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Heterotrimeric Gα:Gβγ G proteins function as molecular switches downstream of G protein-coupled receptors (GPCRs). They alternate between a heterotrimeric GDP-bound OFF-state and a GTP-bound ON-state in which GαGTP is separated from the Gβγ dimer. Consequently, pharmacological tools to securely prevent the OFF-ON transition are of utmost importance to investigate their molecular switch function, specific contribution to GPCR signal transduction, and potential as drug targets. FR900359 (FR) and YM-254890 (YM), two natural cyclic peptides and highly specific inhibitors of Gq/11 heterotrimers, are exactly such tools. To date, their efficient and long-lasting inhibition of Gq/11 signaling has been attributed solely to a wedge-like binding to Gα, thereby preventing separation of the GTPase and α-helical domains and thus GDP release. Here, we use X-ray crystallography, biochemical and signaling assays, and BRET-based biosensors to show that FR and YM also function as stabilizers of the Gα:Gβγ subunit interface. Our high-resolution structures reveal a network of residues in Gα and two highly conserved amino acids in Gβ that are targeted by FR and YM to glue the Gβγ complex to the inactive GαGDP subunit. Unlike all previously developed nucleotide-state specific inhibitors that sequester Gα in its OFF-state but compete with Gβγ, FR and YM actively promote the inhibitory occlusion of GαGDP by Gβγ. In doing so, they securely lock the entire heterotrimer, not just Gα, in its inactive state. Our results identify FR and YM as molecular glues for Gα and Gβγ that combine simultaneous binding to both subunits with inhibition of G protein signaling.
Collapse
Affiliation(s)
- Jonas Mühle
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen5232, Switzerland
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
| | - Matthew J. Rodrigues
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen5232, Switzerland
| | - Lars Jürgenliemke
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
- Research Training Group RTG 2873, University of Bonn, Bonn, Germany
| | - Ramon Guixà-González
- Condensed Matter Theory Group, PSI Center for Scientific Computing, Theory and Data, Villigen5232, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1015, Switzerland
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia-Spanish National Research Council (IQAC-CSIC), Barcelona08034, Spain
| | - Lukas Grätz
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
| | - Fabio Andres
- LeadXpro AG, Park Innovaare, Villigen5234, Switzerland
| | | | | | - Hannes Schihada
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg35032, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt60438, Germany
| | - Gabriele M. König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
| | - Gebhard Schertler
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen5232, Switzerland
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
| | - Xavier Deupi
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen5232, Switzerland
- Condensed Matter Theory Group, PSI Center for Scientific Computing, Theory and Data, Villigen5232, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1015, Switzerland
| |
Collapse
|
6
|
Zhou H, Kunzendorf A, Xu G, Frietema HOT, Thunnissen AWH, Poelarends GJ. Engineering 2-Deoxy-D-ribose-5-phosphate Aldolase for anti- and syn-Selective Epoxidations of α,β-Unsaturated Aldehydes. Angew Chem Int Ed Engl 2025; 64:e202503054. [PMID: 39993220 PMCID: PMC12070355 DOI: 10.1002/anie.202503054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
The enzyme 2-deoxy-D-ribose-5-phosphate aldolase (DERA) naturally catalyzes the reversible aldol addition between acetaldehyde and D-glyceraldehyde-3-phosphate to yield 2-deoxy-D-ribose-5-phosphate. Herein we describe the redesign of DERA into a proficient non-natural peroxygenase that promotes the asymmetric epoxidation of various α,β-unsaturated aldehydes. This repurposed aldolase, named DERA-EP, is able to utilize H2O2 to accomplish both anti- and syn-selective epoxidations of various α,β-unsaturated aldehydes to give the corresponding epoxides with moderate to high diastereoselectivity (diastereomeric ratio up to 99 : 1) and excellent enantioselectivity (enantiomeric ratio up to 99 : 1). Crystallographic analysis of DERA-EP in a substrate-free and substrate-bound state provides a structural context for the evolved activity, a clear explanation for the high enantioselectivity, and compelling evidence for catalysis via enzyme-bound iminium ion intermediates. The unprecedented anti-selectivity of DERA-EP with multiple α,β-unsaturated aldehydes is complementary to the syn-selectivity of previously reported enzyme-, metal- and organo-catalysts, making DERA-EP an attractive new asset to the toolbox of epoxidation catalysts.
Collapse
Affiliation(s)
- Hangyu Zhou
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713 AVGroningen, TheNetherlands.
| | - Andreas Kunzendorf
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713 AVGroningen, TheNetherlands.
| | - Guangcai Xu
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713 AVGroningen, TheNetherlands.
| | - Hylke O. T. Frietema
- Molecular Enzymology GroupGroningen Institute of Biomolecular Sciences and BiotechnologyUniversity of GroningenNijenborgh 49747 AGGroningen, TheNetherlands
| | - Andy‐Mark W. H. Thunnissen
- Molecular Enzymology GroupGroningen Institute of Biomolecular Sciences and BiotechnologyUniversity of GroningenNijenborgh 49747 AGGroningen, TheNetherlands
| | - Gerrit J. Poelarends
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713 AVGroningen, TheNetherlands.
| |
Collapse
|
7
|
Benhadid-Brahmi Y, Amaris Hobson C, Abdelmoumene L, Jaouen E, Magnan M, Gits-Muselli M, Lescat M, Tenaillon O, Bonacorsi S, Birgy A. Evaluation of phenotypic and genotypic methods for detecting KPC variants. Antimicrob Agents Chemother 2025; 69:e0008225. [PMID: 40178306 PMCID: PMC12057356 DOI: 10.1128/aac.00082-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Klebsiella pneumoniae carbapenemases (KPCs) have spread and diversified extensively. To date, 242 clinical variants have been identified and harbor different hydrolytic capacities, thereby interfering with rapid diagnostic tests. The accurate detection of KPC variants is crucial to guide treatment and control measures in healthcare settings. We constructed KPC variants to assess the mutational impact on detection capacities of resistance-based tests. KPC variants (n = 45) were characterized phenotypically and used to measure the detection sensitivity of KPC detection methods (two lateral flow immunoassays [LFIAs], three hydrolysis tests, three selective culture media, and two PCR-based tests). We identified four antibiotic susceptibility patterns: "KPC-like" (23/45; 51%), "extended-spectrum beta-lactamase-like" (6/45; 13%), "ceftazidimase" (9/45; 20%), and outlier variants with "mixed-profiles" (5/45; 11%). These phenotypes had different impacts on the detection capabilities of hydrolysis tests (0%-100%), LFIA (44%-100%), and selective culture media (0%-100%), highlighting a risk of misdiagnosis for some KPC variants. All variants were detected with PCR-based tests. To detect the maximum of KPC variants, fecal carriage screening requires a combination of selective media targeting resistance to carbapenems, third-generation cephalosporins, and ceftazidime-avibactam. From antibiotic susceptibility testing, resistance to ceftazidime ± avibactam and specific phenotypic profiles should be used as warnings to track the presence of KPC variants. We recommend LFIA as a first-line test, owing to its high sensitivity in detecting KPC variants. Nevertheless, using a combination of tests may remain wise in some situations. The spread of KPC variants remains a significant concern, particularly as reversion to ancestral phenotype could restore carbapenem resistance and lead to therapeutic failure.
Collapse
Affiliation(s)
- Yasmine Benhadid-Brahmi
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
- Service de Microbiologie, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Claire Amaris Hobson
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
- Service de Maladies Infectieuses et Tropicales, Hôpital Bichat, AP-HP, Paris, France
| | - Lydia Abdelmoumene
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
| | - Ella Jaouen
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
| | - Mélanie Magnan
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
| | - Maud Gits-Muselli
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
- Service de Microbiologie, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Mathilde Lescat
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
- Bacteriology Unit, CNR le Charbon, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, Île-de-France, France
| | - Olivier Tenaillon
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
| | - Stéphane Bonacorsi
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
- Service de Microbiologie, Hôpital Robert-Debré, AP-HP, Paris, France
| | - André Birgy
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
- Service de Microbiologie, Hôpital Robert-Debré, AP-HP, Paris, France
| |
Collapse
|
8
|
Chang S, Yang Q, Chu W, Liu X, Li J, Liu Z, Lin J, Liu D, Zhao D, Peng X, Xin M, Yao Y, Xie X, Peng H, Ni Z, Sun Q, Hu Z. Lysine deacetylase TaSRT1 mediates wheat drought tolerance by deacetylating TaDT-A to reduce its protein stability and transcriptional activity. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1650-1667. [PMID: 39977256 PMCID: PMC12018820 DOI: 10.1111/pbi.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/26/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025]
Abstract
Drought is one of the major environmental stresses limiting crop growth and yield. Epigenetic regulations play crucial roles in plant adaptation to environmental changes, whereas the epigenetic mechanism of drought resistance in crops remains largely elusive. Here, we report that the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase TaSRT1 negatively regulates drought tolerance in wheat. Compared with the wild type, the tasrt1 mutant had higher relative water contents, along with a smaller stomatal aperture and improved water use efficiency under drought conditions, whereas TaSRT1 overexpression plants exhibited opposite phenotypes. TaSRT1 directly interacted with the drought-resistant pivotal factor TaDT-A to regulate its protein stability and transcriptional activity through lysine deacetylation. Furthermore, the key lysine residue of TaDT-A was identified as a deacetylation/acetylation site that plays an important role in regulating its stability. In addition, genetic analysis indicated TaDT-A functions downstream of TaSRT1 to modulate drought resistance. These findings uncover how the functional interplay between epigenetic regulator and transcription factors regulates drought resistance in plants, and illustrate a mechanism by which lysine deacetylase affects gene transcription via influencing non-histone protein acetylation and regulating their function.
Collapse
Affiliation(s)
- Shumin Chang
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Qun Yang
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Wei Chu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xingbei Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jinpeng Li
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zehui Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jingchen Lin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Debiao Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Danyang Zhao
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xiao Peng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xiaodong Xie
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental SciencesTianjin Agricultural UniversityTianjinChina
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
9
|
Schumann C, Kugler A, Shah BA, Berggren G, Land H, Blikstad C, Stensjö K. Structure-guided engineering of α-ketoisocaproate dioxygenase increases isobutene production in Synechocystis sp. PCC 6803. Microb Cell Fact 2025; 24:93. [PMID: 40269832 PMCID: PMC12020224 DOI: 10.1186/s12934-025-02708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Isobutene is a promising precursor for jet fuel due to its high energy density and favorable combustion properties. Light-driven bioproduction of isobutene has recently been investigated as an alternative strategy to crude oil refinement or fermentation-based manufacturing processes by harnessing the unicellular cyanobacterium Synechocystis sp. PCC 6803 and the α-ketoisocaproate dioxygenase (RnKICD) from Rattus norvegicus. However, the obtained production level was not sufficient, partially due to the promiscuous activity of RnKICD. The enzyme catalyzes both the reaction with ρ-hydroxyphenylpyruvate (HPP) for homogentisate formation, as well as the reaction with α-ketoisocaproate (KIC), the precursor for isobutene synthesis. Here, to overcome this bottleneck step in the isobutene biosynthesis, protein engineering was employed to improve RnKICD activity and in vivo isobutene production. Purified RnKICD variants were characterized by measuring in vitro KIC and HPP consumption rates, as well as isobutene formation rate. The active site mutations F336V, N363A altered the KIC and HPP consumption rates, while the KIC-to-isobutene conversion ratio was only marginally affected. Besides, the RnKICD variants F336V, N363A and F336V/N363A exhibited a substantially enhanced substrate selectivity for KIC over HPP. Among the examined engineered Synechocystis strains, Syn-F336V showed a 4-fold improvement in isobutene production, compared to the base strain (Syn-RnKICD). Our findings reveal that residues F336 and N363 play a crucial role in substrate interactions, as targeted mutations at these sites shifted the substrate selectivity towards KIC while F336V elevated the in vivo isobutene production levels significantly. We conclude that engineering the active site of RnKICD is a potent tool for improving isobutene bioproduction in Synechocystis.
Collapse
Affiliation(s)
- Conrad Schumann
- Department of Chemistry-Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Amit Kugler
- Department of Chemistry-Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Bhavik Ashwin Shah
- Department of Chemistry-Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Gustav Berggren
- Department of Chemistry-Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Henrik Land
- Department of Chemistry-Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Cecilia Blikstad
- Department of Chemistry-Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Karin Stensjö
- Department of Chemistry-Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden.
| |
Collapse
|
10
|
Xie Z, Lv J, Huang W, Wu Z, Zhu R, Deng Z, Long F. Structural basis for the reversal of human MRP4-mediated multidrug resistance by lapatinib. Cell Rep 2025; 44:115466. [PMID: 40138312 DOI: 10.1016/j.celrep.2025.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/06/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Multidrug resistance proteins (MRPs) are one of the major mechanisms for developing cancer drug resistance. Human MRP4 (hMRP4) plays an important role in various chemotherapy-resistant cancers. Here, we show hMRP4 mediates the resistance of a broad spectrum of antitumor reagents in the cultured tumor cells, among which the cell resistance to vincristine and 5-fluorouracil is rescued by supplementing a tyrosinase inhibitor, lapatinib. The cryoelectron microscopy (cryo-EM) structures of hMRP4 in the substrate- or inhibitor-bound form are determined. Although lapatinib shares partial binding sites with vincristine and 5-fluorouracil using a similar set of crucial residues located in the central cavity of hMRP4, the high binding affinity of lapatinib and its unique binding mode with transmembrane helices TM2 and TM12 inside the pathway tunnel prohibit hMRP4 from structural transition between intermediate states during drug translocation. This study provides mechanistic insights into the therapeutical potential of lapatinib in combating hMRP4-mediated MDR.
Collapse
Affiliation(s)
- Zhipeng Xie
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jiaxiang Lv
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Wei Huang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhikun Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Rongli Zhu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zixin Deng
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Feng Long
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
11
|
Hurtado JE, Schieferecke AJ, Halperin SO, Guan J, Aidlen D, Schaffer DV, Dueber JE. Nickase fidelity drives EvolvR-mediated diversification in mammalian cells. Nat Commun 2025; 16:3723. [PMID: 40253348 PMCID: PMC12009436 DOI: 10.1038/s41467-025-58414-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/20/2025] [Indexed: 04/21/2025] Open
Abstract
In vivo genetic diversifiers have previously enabled efficient searches of genetic variant fitness landscapes for continuous directed evolution. However, existing genomic diversification modalities for mammalian genomic loci exclusively rely on deaminases to generate transition mutations within target loci, forfeiting access to most missense mutations. Here, we engineer CRISPR-guided error-prone DNA polymerases (EvolvR) to diversify all four nucleotides within genomic loci in mammalian cells. We demonstrate that EvolvR generates both transition and transversion mutations throughout a mutation window of at least 40 bp and implement EvolvR to evolve previously unreported drug-resistant MAP2K1 variants via substitutions not achievable with deaminases. Moreover, we discover that the nickase's mismatch tolerance limits EvolvR's mutation window and substitution biases in a gRNA-specific fashion. To compensate for gRNA-to-gRNA variability in mutagenesis, we maximize the number of gRNA target sequences by incorporating a PAM-flexible nickase into EvolvR. Finally, we find a strong correlation between predicted free energy changes underlying R-loop formation and EvolvR's performance using a given gRNA. The EvolvR system diversifies all four nucleotides to enable the evolution of mammalian cells, while nuclease and gRNA-specific properties underlying nickase fidelity can be engineered to further enhance EvolvR's mutation rates.
Collapse
Affiliation(s)
- Juan E Hurtado
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Adam J Schieferecke
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- QB3, University of California, Berkeley, Berkeley, CA, USA
| | - Shakked O Halperin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - John Guan
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Dylan Aidlen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- QB3, University of California, Berkeley, Berkeley, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - John E Dueber
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- QB3, University of California, Berkeley, Berkeley, CA, USA.
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
12
|
Kraußer F, Rabe K, Topham CM, Voland J, Lilienthal L, Kundoch JO, Ohde D, Liese A, Walther T. Cell-Free Reaction System for ATP Regeneration from d-Fructose. ACS Synth Biol 2025; 14:1250-1263. [PMID: 40143462 PMCID: PMC12012885 DOI: 10.1021/acssynbio.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Adenosine triphosphate (ATP)-dependent in vitro bioprocesses, such as cell-free protein synthesis and the production of phosphorylated fine chemicals, are of considerable industrial significance. However, their implementation is mainly hindered by the high cost of ATP. We propose and demonstrate the feasibility of a cell-free ATP regeneration system based on the in situ generation of the high-energy compound acetyl phosphate from low-cost d-fructose and inorganic phosphate substrates. The enzyme cascade chains d-fructose phosphoketolase, d-erythrose isomerase, d-erythrulose phosphoketolase, and glycolaldehyde phosphoketolase activities theoretically enabling production of 3 mol ATP per mol of d-fructose. Through a semirational engineering approach and the screening of nine single-mutation libraries, we optimized the phosphoketolase (PKT) from Bifidobacterium adolescentis, identifying the improved variant Bad.F6Pkt H548N. This mutant exhibited a 5.6-fold increase in d-fructose activity, a 2.2-fold increase in d-erythrulose activity, and a 1.3-fold increase in glycolaldehyde activity compared to the wild-type enzyme. The Bad.F6Pkt H548N mutant was initially implemented in a cell-free reaction system together with an acetate kinase from Geobacillus stearothermophilus and a glycerol kinase from Cellulomonas sp. for the production of glycerol-3 phosphate from ADP and glycerol. We demonstrated the feasibility of ATP regeneration from 25 mM d-fructose with a stoichiometry of 1 mol of ATP per mol of C6 ketose. Subsequently, the reaction system was enhanced by incorporating d-erythrose isomerase activity provided by a l-rhamnose isomerase from Pseudomonas stutzeri. In the complete system, the ATP yield increased to 2.53 mol molfructose-1 with a maximum productivity of 7.2 mM h-1.
Collapse
Affiliation(s)
- Franziska Kraußer
- Chair
of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01062 Dresden, Germany
| | - Kenny Rabe
- Chair
of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01062 Dresden, Germany
| | | | - Julian Voland
- Chair
of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01062 Dresden, Germany
| | - Laura Lilienthal
- Chair
of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01062 Dresden, Germany
| | - Jan-Ole Kundoch
- Institute
of Technical Biocatalysis, Hamburg University
of Technology, Denickestr.
15, 21073 Hamburg, Germany
| | - Daniel Ohde
- Institute
of Technical Biocatalysis, Hamburg University
of Technology, Denickestr.
15, 21073 Hamburg, Germany
| | - Andreas Liese
- Institute
of Technical Biocatalysis, Hamburg University
of Technology, Denickestr.
15, 21073 Hamburg, Germany
| | - Thomas Walther
- Chair
of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01062 Dresden, Germany
| |
Collapse
|
13
|
Yang J, Lin S, Li W, Wang X, Li R. Biodegradation of p-nitrophenol by Rhodococcus sp. 21391 unveils a two-component p-nitrophenol monooxygenase with broad substrate specificity. Microb Cell Fact 2025; 24:85. [PMID: 40247276 PMCID: PMC12007285 DOI: 10.1186/s12934-025-02712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Bioremediation relying on highly efficient degrading bacteria constitutes a promising and sustainable avenue for controlling and reducing nitrophenol contamination in the environment. A thorough understanding of the bacterial degradation mechanism of nitrophenol is of paramount importance for supporting the development of efficient microbial remediation technology. RESULTS In this study, a new bacterium, Rhodococcus sp. 21391, endowed with superior p-nitrophenol (PNP) degradation ability was obtained. Genomic and comparative proteomic analyses revealed that it utilizes the 1,2,4-benzenetriol (BT) pathway for PNP degradation. The catalytic properties of the two-component p-nitrophenol monooxygenase RsNcpAB from the strain were investigated in vitro. The enzyme exhibited a broad substrate selectivity, catalyzing the oxidation of various nitrophenols and halogenated phenols, with significant potential for further research and development. Additionally, the crystal structure of the oxidative component of p-nitrophenol monooxygenase, RsNcpA, was determined. Structural analysis and site-directed mutagenesis revealed that residues Arg100 and His293 in the active site play a crucial role in enzyme catalysis, and a catalytic mechanism model was subsequently proposed. CONCLUSIONS This study reports a high-performance nitrophenol-degrading bacterium and enzyme, and reveals their mechanisms at the molecular level. These findings increase the understanding of the bacterial degradation of nitrophenol, thereby providing a crucial foundation for the development of efficient bioremediation technologies.
Collapse
Affiliation(s)
- Jian Yang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan, China.
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Guangzhou, China.
| | - Shanshan Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xianjie Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Ru Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Guangzhou, China.
- University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Tang X, Qin L, Xia Y, Ju D, Hu H. Enhancing catalytic efficiency of two microbial uricases making by directed evolution. Int J Biol Macromol 2025; 301:140485. [PMID: 39892538 DOI: 10.1016/j.ijbiomac.2025.140485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Uricase is a key enzyme in purine metabolism that catalyzes the oxidation of uric acid to allantoin, widely used in the treatment of hyperuricemia and gout. In this study, error-prone PCR and one high-throughput screening method were employed to generate uricase mutants with enhanced enzymatic activity from Aspergillus flavus and Candida utilis. After several rounds of mutation and selection, an A. flavus uricase mutant, af-UAM, with activity of 46.21 U/mg, and a C. utilis uricase mutant, cu-UAM, with activity of 31.43 U/mg, were obtained-representing the highest uricase activities reported up to date. Site-directed mutagenesis revealed that the Thr231Ala substitution in A. flavus uricase and the Val234Met substitution in C. utilis uricase were key factors driving their enhanced activities. Furthermore, in vivo experiments demonstrated significant clinical potential of these mutants. These findings offer new insights into the structure-function relationship of uricase and present promising candidates for therapeutic applications in hyperuricemia treatment.
Collapse
Affiliation(s)
- Xiaoyuan Tang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, 826 Zhangheng Road, Pudong, Shanghai 201203, PR China
| | - Liling Qin
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, 826 Zhangheng Road, Pudong, Shanghai 201203, PR China
| | - Yuze Xia
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, 826 Zhangheng Road, Pudong, Shanghai 201203, PR China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, 826 Zhangheng Road, Pudong, Shanghai 201203, PR China.
| | - Haifeng Hu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, PR China.
| |
Collapse
|
15
|
Li G, Yi S, Wang H, Qiu H, Wang W, Gao L, Xu Q, Han B, Yin X. Salidroside production through cascade biocatalysis with a thermostability-enhanced UDP-glycosyltransferase. Int J Biol Macromol 2025; 299:140261. [PMID: 39855494 DOI: 10.1016/j.ijbiomac.2025.140261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Salidroside is a phenylpropanoid glycoside with wide applications in the food, pharmaceutical, and cosmetic industries; however, the plant genus Rhodiola, the natural source of salidroside, has slow growth and limited distribution. In this study, we designed a novel six-enzyme biocatalytic cascade for the efficient production of salidroside, utilizing cost-effective bio-based L-Tyrosine as the starting material. A preliminary analysis revealed that the poor thermostability of the Bacillus licheniformis UDP-glycosyltransferase (EC 2.4.1.384) BlYjiC M6 is a bottleneck in the cascade. Therefore, a combined computational strategy was used to engineer it and finally obtained a mutant TSM6 (T304V/G307A/N309W/F123W/T344V/D271G) with a 134-fold longer half-life at 40 °C and a 13 °C higher Tmapp compared to M6. The integration of TSM6 into the cascade improved salidroside productivity significantly, while reducing residual intermediates. After further optimization, the whole-cell biocatalytic cascade achieved a high salidroside titer of 12.8 g·L-1 in a 5 L bioreactor, giving a productivity of 0.53 g·L-1·h-1. This study provides a green and efficient biosynthetic process for salidroside production and highlights the potential of enzyme engineering to enhance the biocatalytic cascade.
Collapse
Affiliation(s)
- Guosi Li
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, Anhui, China
| | - Shanyong Yi
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, Anhui, China
| | - Haijiao Wang
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hulin Qiu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519080, China
| | - Wei Wang
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, Anhui, China
| | - Leilei Gao
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, Anhui, China
| | - Qilin Xu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, Anhui, China
| | - Bangxing Han
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, Anhui, China.
| | - Xinjian Yin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519080, China.
| |
Collapse
|
16
|
Yin Z, Wei W, Song W, Wen J, Hu G, Li X, Gao C, Liu J, Wu J. Reshaping Interface Interactions of P. litoralis Acyltransferase for Efficient Chemoenzymatic Epoxidation in Aqueous Phase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7364-7375. [PMID: 40099799 DOI: 10.1021/acs.jafc.4c12046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Epoxides, a class of ethers with a three-membered ring structure, are widely used in the textile, pharmaceutical, and packaging industries. Chemoenzymatic epoxidation presents a promising method for synthesizing epoxides. However, its epoxidation efficiency is hindered by low chemoselective perhydrolysis, which is caused by the hydrolysis side reaction in the aqueous phase. In this study, a chemoenzymatic epoxidation process in the aqueous phase was developed by utilizing an acyltransferase from P. litoralis (PlAcT) for its chemoselective perhydrolysis. Crystal structure analysis, molecular dynamics simulations, and quantum mechanics calculations, along with site-specific mutagenesis, revealed that the selectivity of perhydrolysis is due to a lower energy barrier in the acyl transfer step compared to that in hydrolysis. Furthermore, the mutant PlAcTM3-2 exhibited a 7.6-fold improvement in solvent stability and a 1.3-fold increase in perhydrolysis activity compared to the wild type, achieved by reshaping interface interactions. As a result, the engineered strain Y07, harboring PlAcTM3-2, successfully synthesized compounds 3a-3n with conversions ranging from 11-99%, and the titers of compounds α-pinene oxide(3i), β-pinene oxide(3j), 3-carene oxide(3k), and limonene dioxide(3l-3) reached 55.8, 16.7, 75.2, and 21.4 g/L, respectively. These results demonstrate a sustainable method for chemoenzymatic epoxidation in the aqueous phase.
Collapse
Affiliation(s)
- Zihao Yin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Guinto F, Robinson SC, Alexander RW. Distal Domains of the Bacterial-Exclusive Wobble-Modifying Enzyme TilS Contribute to Catalysis. ACS OMEGA 2025; 10:11618-11626. [PMID: 40160746 PMCID: PMC11947777 DOI: 10.1021/acsomega.5c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
tRNAIle2 lysidine synthetase (TilS) is a bacterial-specific wobble-modifying enzyme that acts on the isoleucine-accepting tRNAIle2 CAU. TilS installs a lysine at the C34 position of the anticodon, generating the lysidine modification. The resulting LAU anticodon enables exclusive decoding of infrequently used AUA isoleucine codons, rejecting AUG methionine codons. Compared to other wobble-modifying enzymes that contact only the anticodon arm of their cognate tRNAs, TilS is distinct in containing additional domains outside of the N-terminal active site. For type I TilS enzymes such as the B. cenocepacia TilS (BcTilS) investigated here, appended domains contact the tRNAIle2 substrate along the body and through the acceptor stem, up to 60 Å away from the target C34. Among bacterial tRNAs, only unmodified tRNAIle2 and tRNAMet share an anticodon, suggesting that the appended domains of TilS provide substrate recognition strategies that other wobble-modifying enzymes do not need. Here, we investigate both protein and tRNA elements to understand the strategy by which TilS accepts its cognate tRNAIle2 substrate and rejects the near-cognate tRNAMet.
Collapse
Affiliation(s)
- Ferdiemar
C. Guinto
- Department of Chemistry and
Center for Molecular Signaling, Wake Forest
University, Winston-Salem, North Carolina 27109, United States
| | | | - Rebecca W. Alexander
- Department of Chemistry and
Center for Molecular Signaling, Wake Forest
University, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
18
|
Walla B, Maslakova A, Bischoff D, Janowski R, Niessing D, Weuster-Botz D. Rational Introduction of Electrostatic Interactions at Crystal Contacts to Enhance Protein Crystallization of an Ene Reductase. Biomolecules 2025; 15:467. [PMID: 40305164 PMCID: PMC12024682 DOI: 10.3390/biom15040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
Protein crystallization is an alternative to well-established but cost-intensive and time-consuming chromatography in biotechnological processes, with protein crystallization defined as an essential unit operation for isolating proteins, e.g., active pharmaceutical ingredients. Crystalline therapeutic proteins attract interest in formulation and delivery processes of biopharmaceuticals due to the high purity, concentration, and stability of the crystalline state. Although improving protein crystallization is mainly achieved by high-throughput screening of crystallization conditions, recent studies have established a rational protein engineering approach to enhance crystallization for two homologous alcohol dehydrogenases from Lactobacillus brevis (LbADH) and Lactobacillus kefiri (LkADH). As generalizing crystallization processes across a wide range of target proteins remains challenging, this study takes a further step by applying the successful crystal contact engineering strategies for LbADH/LkADH to a non-homologous protein, an NADH-binding derivative of the Nostoc sp. PCC 1720 ene reductase (NspER1-L1,5). Here, the focus lies on introducing electrostatic interactions at crystal contacts, specifically between lysine and glutamic acid. Out of the nine tested NspER1-L1,5 mutants produced in E. coli, six crystallized, while four mutants revealed an increased propensity to crystallize in static µL-batch crystallization compared to the wild type: Q204K, Q350K, D352K, and T354K. The best-performing mutant Q204K was selected for upscaling, crystallizing faster than the wild type in a stirred batch crystallizer. Even when spiked with E. coli cell lysate, the mutant maintained increased crystallizability compared to the wild type. The results of this study highlight the potential of crystal contact engineering as a reliable tool for improving protein crystallization as an alternative to chromatography, paving the way for more efficient biotechnological downstream processing.
Collapse
Affiliation(s)
- Brigitte Walla
- Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany; (B.W.); (D.B.)
| | - Anna Maslakova
- Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany; (B.W.); (D.B.)
| | - Daniel Bischoff
- Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany; (B.W.); (D.B.)
| | - Robert Janowski
- Molecular Targets and Therapeutics Center, Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany (D.N.)
| | - Dierk Niessing
- Molecular Targets and Therapeutics Center, Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany (D.N.)
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081 Ulm, Germany
| | - Dirk Weuster-Botz
- Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany; (B.W.); (D.B.)
| |
Collapse
|
19
|
Mousavi N, Zhou E, Razavi A, Ebrahimi E, Varela-Castillo P, Yang XJ. P3 site-directed mutagenesis: An efficient method based on primer pairs with 3'-overhangs. J Biol Chem 2025; 301:108219. [PMID: 39863101 PMCID: PMC11910099 DOI: 10.1016/j.jbc.2025.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Site-directed mutagenesis is a fundamental tool indispensable for protein and plasmid engineering. An important technological question is how to achieve the ideal efficiency of 100%. Based on complementary primer pairs, the QuickChange method has been widely used, but it requires significant improvements due to its low efficiency and frequent unwanted mutations. An alternative and innovative strategy is to utilize primer pairs with 3'-overhangs, but this approach has not been fully developed. As the first step toward reaching the efficiency of 100%, we have optimized this approach systematically (such as use of newly designed short primers, test of different Pfu DNA polymerases, and modification of PCR parameters) and evaluated the resulting method extensively with >100 mutations on 12 mammalian expression vectors, ranging from 7.0 to 13.4 kb in size and encoding ten epigenetic regulators linked to cancer and neurodevelopmental disorders. We have also tested the new method with two expression vectors for the SARS-CoV-2 spike protein. Compared to the QuickChange method, the success rate has increased substantially, with an average efficiency of ∼50%, with some at or close to 100%, and requiring much less time for engineering various mutations. Therefore, we have developed a new site-directed mutagenesis method for efficient and economical generation of various mutations. Notably, the method failed with a human KAT2B expression plasmid that possesses extremely GC-rich sequences. Thus, this study also sheds light on how to improve the method for developing ideal mutagenesis methods with the efficiency of ∼100% for a wide spectrum of plasmids.
Collapse
Affiliation(s)
- Negar Mousavi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ethan Zhou
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Arezousadat Razavi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Elham Ebrahimi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
20
|
Rotolo T, Kaye A, Fahrenkrog L, Flynn K, Ford EC, Selinsky BS. Expression, purification and characterization of a dual function α-dioxygenase/peroxidase from Mycolicibacterium smegmatis. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159587. [PMID: 39701374 DOI: 10.1016/j.bbalip.2024.159587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
An open reading frame from the actinobacterium Mycolicibacterium smegmatis annotated as a Prostaglandin H Synthase (PGHS) was expressed with an N-terminal (his)6 tag and purified to homogeneity. The enzyme has a monomeric molecular weight of 68.3 kD and exists as a dimer in the presence of nonionic detergent. The enzyme uses saturated and unsaturated fatty acids as substrates and catalyzes two reactions: the addition of molecular oxygen alpha to the carboxylate group to form the 2-hydroperoxy fatty acid, followed by reduction to the 2-hydroxy fatty acid. The initial reduction reaction does not require a source of electrons, but electrons must be provided from an appropriate donor such as epinephrine for the reduction reaction to go to completion. Minor reaction products one carbon atom shorter than the original fatty acid substrate are also observed; These most likely arise from the spontaneous decarboxylation of the 2-hydroperoxy fatty acid product to form an aldehyde. This dual function dioxygenase/peroxidase is unusual among the lipid dioxygenases and may represent a bacterial precursor to mammalian PGHS.
Collapse
Affiliation(s)
- Teresa Rotolo
- Department of Chemistry and Biochemistry, Villanova University, Villanova, PA 19085, USA
| | - Anna Kaye
- Department of Chemistry and Biochemistry, Villanova University, Villanova, PA 19085, USA
| | - Lauren Fahrenkrog
- Department of Chemistry and Biochemistry, Villanova University, Villanova, PA 19085, USA
| | - Kate Flynn
- Department of Chemistry and Biochemistry, Villanova University, Villanova, PA 19085, USA
| | - Elisabeth C Ford
- Department of Chemistry and Biochemistry, Villanova University, Villanova, PA 19085, USA
| | - Barry S Selinsky
- Department of Chemistry and Biochemistry, Villanova University, Villanova, PA 19085, USA.
| |
Collapse
|
21
|
Das A, Ray A, Chaudhuri NR, Mukherjee S, Ghosh Dastidar S, Ghosh A, Ganguly S, Jana K, Sarkar S. Binary protein interactome mapping of the Giardia lamblia proteasome lid reveals extra proteasomal functions of GlRpn11. FEBS J 2025. [PMID: 39985201 DOI: 10.1111/febs.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025]
Abstract
The assembly of the 26S proteasome, a multi-subunit complex for regulated protein turnover, proceeds via the formation of intermediates. Giardia lamblia does not encode proteasome regulatory subunit Rpn12 or proteasome complex subunit Sem1, two proteins crucial for assembling the proteasome lid. To understand how the interactions between the giardial proteasome lid subunits may have changed to compensate for their absence, we used yeast two-hybrid to generate a binary interactome map of Giardia's lid subunits. Most interactions within the Giardia lid are stronger than Saccharomyces cerevisiae lid, which may compensate for Rpn12 and Sem1 absence. A notable exception was the weaker interaction between the two non-ATPase lid subunits, GlRpn11 and GlRpn8, compared to the strong interaction between yeast orthologs Rpn11 and Rpn8. The Rpn11-Rpn8 dimer provides a platform for lid assembly. Their interaction involves the insertion of a methionine residue of Rpn11 into a hydrophobic pocket of Rpn8. Molecular modeling indicates that GlRpn8's pocket is wider, reconciling the experimental observation of its weak interaction with GlRpn11. This weaker interaction may have evolved to support proteasome-independent functions of GlRpn11, which localizes to multiple subcellular regions, including the mitosomes, where other proteasome subunits cannot be detected. Functional complementation in yeast shows that GlRpn11 can influence mitochondrial function and distribution. Together these observations show that GlRpn11 functions at the mitosome. Thus, this parasite's proteasome lid has a simpler subunit architecture than that of yeast with structural attributes to support dual functionalities for GlRpn11. Such parasite-specific proteasome features provide opportunities for controlling parasite transmission.
Collapse
Affiliation(s)
- Ankita Das
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Atrayee Ray
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | | | | | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Sandipan Ganguly
- Division of Parasitology, National Institute for Research in Bacterial Infections, Kolkata, India
| | - Kuladip Jana
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Srimonti Sarkar
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
22
|
Ihle N, Grüßner L, Alkim C, Nguyen TAS, Walther T, Frazão CJR. Cofactor engineering for improved production of 2,4-dihydroxybutyric acid via the synthetic homoserine pathway. Front Bioeng Biotechnol 2025; 13:1504785. [PMID: 40051839 PMCID: PMC11882521 DOI: 10.3389/fbioe.2025.1504785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/23/2025] [Indexed: 03/09/2025] Open
Abstract
(L)-2,4-dihydroxybutyrate (DHB) is a versatile compound that can serve as a precursor for the synthesis of the methionine analog 2-hydroxy-4-(methylthio)butyrate and new advanced polymers. We previously implemented in Escherichia coli an artificial biosynthetic pathway for the aerobic production of DHB from glucose, which relies on the deamination of (L)-homoserine followed by the reduction of 2-oxo-4-hydroxybutyrate (OHB) and yields DHB by an enzyme-bearing NADH-dependent OHB reductase activity. Under aerobic conditions, using NADPH as a cofactor is more favorable for reduction processes. We report the construction of an NADPH-dependent OHB reductase and increased intracellular NADPH supply by metabolic engineering to improve DHB production. Key cofactor discriminating positions were identified in the previously engineered NADH-dependent OHB reductase (E. coli malate dehydrogenase I12V:R81A:M85Q:D86S:G179D) and tested by mutational scanning. The two point mutations D34G:I35R were found to increase the specificity for NADPH by more than three orders of magnitude. Using the new OHB reductase enzyme, replacing the homoserine transaminase with the improved variant Ec.AlaC A142P:Y275D and increasing the NADPH supply by overexpressing the pntAB gene encoding the membrane-bound transhydrogenase yielded a strain that produced DHB from glucose at a yield of 0.25 molDHB molGlucose -1 in shake-flask experiments, which corresponds to a 50% increase compared to previous producer strains. Upon 24 h of batch cultivation of the most advanced DHB producer strain constructed in this work, a volumetric productivity of 0.83 mmolDHB L-1 h-1 was reached.
Collapse
Affiliation(s)
- Nadine Ihle
- Chair of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Dresden, Germany
| | - Laura Grüßner
- Chair of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Dresden, Germany
| | - Ceren Alkim
- Toulouse Biotechnology Institute, UMR INSA-CNRS5504 and UMR INSA-INRAE 792, Toulouse, France
| | - T. A. Stefanie Nguyen
- Chair of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Dresden, Germany
| | - Thomas Walther
- Chair of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Dresden, Germany
| | - Cláudio J. R. Frazão
- Chair of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Dresden, Germany
| |
Collapse
|
23
|
Krysenko S, Emani CS, Bäuerle M, Oswald M, Kulik A, Meyners C, Hillemann D, Merker M, Prosser G, Wohlers I, Hausch F, Brötz-Oesterhelt H, Mitulski A, Reiling N, Wohlleben W. GlnA3 Mt is able to glutamylate spermine but it is not essential for the detoxification of spermine in Mycobacterium tuberculosis. J Bacteriol 2025; 207:e0043924. [PMID: 39882905 PMCID: PMC11841054 DOI: 10.1128/jb.00439-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Mycobacterium tuberculosis is well adapted to survive and persist in the infected host, escaping the host's immune response. Since polyamines such as spermine, which are synthesized by infected macrophages, are able to inhibit the growth of M. tuberculosis, the pathogen needs strategies to cope with these toxic metabolites. The actinomycete Streptomyces coelicolor, a close relative of M. tuberculosis, makes use of a gamma-glutamylation pathway to functionally neutralize spermine. We therefore considered whether a similar pathway would be functional in M. tuberculosis. In the current study, we demonstrated that M. tuberculosis growth was inhibited by the polyamine spermine. Using in vitro enzymatic assays we determined that GlnA3Mt (Rv1878) possesses genuine gamma-glutamylspermine synthetase catalytic activity. We further showed that purified His-Strep-GlnA3Mt, as well as native GlnA3Mt, prefer spermine as a substrate over putrescine, cadaverine, spermidine, or other monoamines and amino acids, suggesting that GlnA3Mt may play a specific role in the detoxification of the polyamine spermine. However, the deletion of the glnA3 gene in M. tuberculosis did not result in growth inhibition or enhanced sensitivity of M. tuberculosis in the presence of high spermine concentrations. Gene expression analysis of spermine-treated M. tuberculosis revealed no difference in the level of glnA3Mt expression relative to untreated cells, whereas a gene encoding a previously characterized efflux pump (Mmr; rv3065) was significantly upregulated. This suggests that bacterial survival under elevated spermine concentrations can not only be achieved by detoxification of spermine itself but also by mechanisms resulting in decreased spermine levels in the bacteria. IMPORTANCE Upon Mycobacterium tuberculosis infection macrophages synthesize the polyamine spermine, which at elevated concentrations is toxic for M. tuberculosis. Based on our investigations of spermine resistance in the closely related actinomycete Streptomyces coelicolor, we hypothesized that the glutamylspermine synthetase GlnA3 may be responsible for the resistance of M. tuberculosis against toxic spermine. Here we show that GlnA3Mt can indeed covalently modify spermine via glutamylation. However, GlnA3Mt is probably not the only resistance mechanism since a glnA3 null mutant of M. tuberculosis can survive under spermine stress. Gene expression studies suggest that an efflux pump may participate in resistance. Thus a combination of GlnA3Mt and specific efflux pumps acting as putative spermine transporters may constitute an active spermine-detoxification system in M. tuberculosis.
Collapse
Affiliation(s)
- Sergii Krysenko
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Carine Sao Emani
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Schleswig-Holstein, Germany
| | - Moritz Bäuerle
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Maria Oswald
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Andreas Kulik
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Christian Meyners
- Institute of Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Hessen, Germany
| | - Doris Hillemann
- National Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Schleswig-Holstein, Germany
| | - Matthias Merker
- Evolution of the Resistome, Research Center Borstel, Leibniz Lung Center, Borstel, Schleswig-Holstein, Germany
| | - Gareth Prosser
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Schleswig-Holstein, Germany
| | - Inken Wohlers
- Data Science, Research Center Borstel, Leibniz Lung Center, Borstel, Schleswig-Holstein, Germany
| | - Felix Hausch
- Institute of Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Hessen, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Hessen, Germany
| | - Heike Brötz-Oesterhelt
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbial Bioactive Compounds, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Agnieszka Mitulski
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbial Bioactive Compounds, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Schleswig-Holstein, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Baden-Württemberg, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Mousavi N, Zhou E, Razavi A, Ebrahimi E, Varela‐Castillo P, Yang X. Efficient Site-Directed Mutagenesis Mediated by Primer Pairs with 3'-Overhangs. Curr Protoc 2025; 5:e70104. [PMID: 39945594 PMCID: PMC11823567 DOI: 10.1002/cpz1.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Site-directed mutagenesis is an essential tool in molecular biology, protein engineering, plasmid engineering and synthetic biology. While the QuickChange method has been one of the most employed methods for site-directed mutagenesis, it is hindered by low efficiency and frequent introduction of unwanted mutations at the primer sites, raising the urgent need for new, more efficient, and reliable methods. Here, we present an optimized site-directed mutagenesis protocol that leverages partially complementary primer pairs with 3'-overhangs to improve mutagenesis efficiency and reduce error rates. Our method significantly enhances success rates, achieving an average efficiency of ∼50% with some instances approaching the ideal threshold of 100%, while also minimizing the time required for mutant generation. Typically, only 3 colonies need to be analyzed per mutagenesis reaction, and a skillful trainee can engineer 1 to 2 dozen mutant plasmids within a week. In addition, with an in-house protocol for preparing highly competent bacterial cells, we have further increased the reliability and cost-effectiveness of the method. Notably, such competent cells have been kept in a liquid nitrogen tank for >12 years with minimal loss of competency. Thus, this refined method offers a robust, efficient, and scalable solution for high-precision gene modification in vitro, with broad applications in protein and plasmid engineering. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: In vitro site-directed mutagenesis using an optimized primer design strategy Basic Protocol 2: Preparation of high-efficiency chemocompetent DH5α cells for transformation of mutagenized plasmid products Basic Protocol 3: Transformation of chemocompetent DH5α cells and obtaining bacterial colonies with correctly mutagenized plasmid products Alternate Protocol: Transformation if glycerol stocks are unavailable.
Collapse
Affiliation(s)
- Negar Mousavi
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
- Department of MedicineMcGill UniversityMontrealCanada
- These authors contributed equally to this work
| | - Ethan Zhou
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
- Department of MedicineMcGill UniversityMontrealCanada
- These authors contributed equally to this work
| | - Arezousadat Razavi
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
- Department of MedicineMcGill UniversityMontrealCanada
- These authors contributed equally to this work
| | - Elham Ebrahimi
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
- Department of BiochemistryMcGill UniversityMontrealCanada
| | - Paulina Varela‐Castillo
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
- Department of MedicineMcGill UniversityMontrealCanada
| | - Xiang‐Jiao Yang
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
- Department of MedicineMcGill UniversityMontrealCanada
- Department of BiochemistryMcGill UniversityMontrealCanada
- McGill University Health CenterMontrealCanada
| |
Collapse
|
25
|
Zhan J, Chakraborty S, Sethi A, Mok YF, Yan F, Moseley GW, Gooley PR. Analysis of mechanisms of the rabies virus P protein-nucleocapsid interaction using engineered N-protein peptides and potential applications in antivirals design. Antiviral Res 2025; 234:106075. [PMID: 39736335 DOI: 10.1016/j.antiviral.2024.106075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
The Phosphoprotein (P protein) of the rabies virus has multiple roles in virus replication. A critical function is to act as a cofactor in genome replication and mRNA production through binding via its N-terminal region to the L protein, the essential enzyme for mRNA and genome synthesis/processing, and via its C-terminal domain (PCTD) to the N protein and viral RNA (N-RNA) ribonucleoprotein complex. The binding site of the PCTD on the N protein is a disordered loop that is expected to be phosphorylated at Ser389. This interface may provide novel targets for antiviral approaches. Following an alanine scan of the peptide we selected two single site mutations that showed improved affinity and combined these mutations with a phosphomimetic (S389E) to produce double and triple mutants in the context of linear and cyclic peptides of the disordered loop, with the goal of generating a competitive peptide against the N-RNA complex. To assess the binding properties of the peptides we characterized their thermodynamics identifying complex properties of improved enthalpy but with compensating entropy for mutants and cyclized peptides. Nevertheless, a triple mutant shows 3.5-fold stronger affinity for PCTD than the full-length S389E N protein. Structural characterization of the triple mutant suggests the improved affinity may be due to trapping a favoured β-strand structure for binding to the PCTD. This novel peptide may serve as a template for the future design of antivirals.
Collapse
Affiliation(s)
- Jingyu Zhan
- Department of Biochemistry and Pharmacology, University of Melbourne, 3010, Parkville, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010, Parkville, VIC, Australia
| | - Shatabdi Chakraborty
- Department of Biochemistry and Pharmacology, University of Melbourne, 3010, Parkville, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010, Parkville, VIC, Australia
| | - Ashish Sethi
- Department of Biochemistry and Pharmacology, University of Melbourne, 3010, Parkville, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010, Parkville, VIC, Australia; Australian Nuclear Science Technology Organisation, The Australian Synchrotron, 800 Blackburn Rd, 3168, Clayton, VIC, Australia
| | - Yee-Foong Mok
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010, Parkville, VIC, Australia
| | - Fei Yan
- Department of Biochemistry and Pharmacology, University of Melbourne, 3010, Parkville, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010, Parkville, VIC, Australia
| | - Gregory W Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, VIC, 3800, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, University of Melbourne, 3010, Parkville, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010, Parkville, VIC, Australia.
| |
Collapse
|
26
|
Duan J, Rutz A, Kawamoto A, Naskar S, Edenharter K, Leimkühler S, Hofmann E, Happe T, Kurisu G. Structural determinants of oxygen resistance and Zn 2+-mediated stability of the [FeFe]-hydrogenase from Clostridium beijerinckii. Proc Natl Acad Sci U S A 2025; 122:e2416233122. [PMID: 39805018 PMCID: PMC11760498 DOI: 10.1073/pnas.2416233122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H2-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from Clostridium beijerinckii has a unique mechanism to protect the H-cluster from oxygen-induced degradation. The protective strategy of CbA5H was proposed based on a partial protein structure of CbA5H's oxygen-shielded form. Here, we present a cryo-EM structure of 2.2 Å resolution from the entire enzyme in its dimeric and active state and elucidate the structural parameters of the reversible cofactor protection mechanism. We found that both subunits of the homodimeric structure of CbA5H have a Zn2+-binding four-helix domain, which does not play a role in electron transport as described for other complex protein structures. Biochemical data instead confirm that two [4Fe-4S] clusters are responsible for electron transfer in CbA5H, while the identified zinc atom is critical for oligomerization and protein stability.
Collapse
Affiliation(s)
- Jifu Duan
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum44801, Germany
| | - Andreas Rutz
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum44801, Germany
| | - Akihiro Kawamoto
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka565-0871, Japan
| | - Shuvankar Naskar
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum44801, Germany
| | - Kristina Edenharter
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum44801, Germany
| | - Silke Leimkühler
- Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam14476, Germany
| | - Eckhard Hofmann
- Protein crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum44801, Germany
| | - Thomas Happe
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum44801, Germany
| | - Genji Kurisu
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
27
|
Zhang M, Wang X, Liu W, Cui X, Wang Y, Fan L, Cui H, Shen Y, Cui H, Zhang L. Engineering a Binding Peptide for Oriented Immobilization and Efficient Bioelectrocatalytic Oxygen Reduction of Multicopper Oxidases. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2355-2364. [PMID: 39693326 DOI: 10.1021/acsami.4c12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Enzymatic fuel cells (EFCs) are emerging as promising technologies in renewable energy and biomedical applications, utilizing enzyme catalysts to convert the chemical energy of renewable biomass into electrical energy, known for their high energy conversion efficiency and excellent biocompatibility. Currently, EFCs face challenges of poor stability and catalytic efficiency at the cathodes, necessitating solutions to enhance the oriented immobilization of multicopper oxidases for improved heterogeneous electron transfer efficiency. This study successfully identified a surface-binding peptide (SBP, 13 amino acids) derived from a methionine-rich fragment (MetRich, 53 amino acids) in E. coli CueO through semirational design. The first phase of engineering focused on the structural characteristics of MetRich, pinpointing fragment N394-H406 (SBP 1.0, corresponding to variant CueO-M12) as the key region dominating the binding. Subsequent site-saturation mutagenesis, combined with electrochemical screening, yielded three variants, and among them, the variant CueO-M12-1 (CueO-M12 H398I) exhibited a more uniform favorable orientation with a 1.38-fold increase in current density. Further electrocatalytic kinetics analysis revealed a significant 21.2-fold improvement in kinetics current density (Jk) compared with that of CueO-WT, leading to the development of SBP 2.0. When SBPs were fused to laccase from Bacillus pumilus (BpL) and fungal bilirubin oxidase from Myrothecium verrucaria (MvBOD), respectively, they transformed a sluggish adsorption process into a rapid and oriented one. In addition, compared with SBP 1.0, SBP 2.0 endows BpL and MvBOD with enhanced electrocatalytic capabilities for oxygen reduction and glucose/O2 EFC performance. The engineered SBPs are promising for serving as a versatile "glue" to enable the immobilization of oxidoreductases in an oriented manner, which leads to a breakthrough in bioelectrocatalysis and thereby overcoming the current bottleneck of EFCs.
Collapse
Affiliation(s)
- Meng Zhang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Xiufeng Wang
- School of Life Sciences, Nanjing Normal University, Nanjing 210009, P. R. China
| | - Weisong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinyu Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuanming Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin Fan
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huijuan Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Yanbing Shen
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Haiyang Cui
- School of Life Sciences, Nanjing Normal University, Nanjing 210009, P. R. China
| | - Lingling Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
28
|
Sakoleva T, Vesenmaier F, Koch L, Schunke JE, Novak KD, Grobe S, Dörr M, Bornscheuer UT, Bayer T. Biosensor-Guided Engineering of a Baeyer-Villiger Monooxygenase for Aliphatic Ester Production. Chembiochem 2025; 26:e202400712. [PMID: 39320950 PMCID: PMC11727011 DOI: 10.1002/cbic.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Esters are valuable aroma compounds and can be produced enzymatically by Baeyer-Villiger monooxygenases (BVMOs) from (aliphatic) ketone precursors. However, a genetically encoded biosensor system for the assessment of BVMO activity and the detection of reaction products is missing. In this work, we assembled a synthetic enzyme cascade - featuring an esterase, an alcohol dehydrogenase, and LuxAB - in the heterologous host Escherichia coli. Target esters are produced by a BVMO, subsequently cleaved, and the corresponding alcohol oxidized through the artificial pathway. Ultimately, aldehyde products are detected in vivo by LuxAB, a luciferase from Photorhabdus luminescens that emits bioluminescence upon the oxidation of aldehydes to the corresponding carboxylates. This biosensor system greatly accelerated the screening and selection of active BVMO variants from a focused library, omitting commonly used low-throughput chromatographic analysis. Engineered enzymes accepted linear aliphatic ketones such as 2-undecanone and 2-dodecanone and exhibited improved ester formation.
Collapse
Affiliation(s)
- Thaleia Sakoleva
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Florian Vesenmaier
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Lena Koch
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Jarne E. Schunke
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | | | - Sascha Grobe
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Mark Dörr
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| |
Collapse
|
29
|
Quinodoz M, Rutz S, Peter V, Garavelli L, Innes AM, Lehmann EF, Kellenberger S, Peng Z, Barone A, Campos-Xavier B, Unger S, Rivolta C, Dutzler R, Superti-Furga A. De novo variants in LRRC8C resulting in constitutive channel activation cause a human multisystem disorder. EMBO J 2025; 44:413-436. [PMID: 39623139 PMCID: PMC11729881 DOI: 10.1038/s44318-024-00322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/23/2024] [Accepted: 11/08/2024] [Indexed: 01/15/2025] Open
Abstract
Volume-regulated anion channels (VRACs) are multimeric proteins composed of different paralogs of the LRRC8 family. They are activated in response to hypotonic swelling, but little is known about their specific functions. We studied two human individuals with the same congenital syndrome affecting blood vessels, brain, eyes, and bones. The LRRC8C gene harbored de novo variants in both patients, located in a region of the gene encoding the boundary between the pore and a cytoplasmic domain, which is depleted of sequence variations in control subjects. When studied by cryo-EM, both LRRC8C mutant proteins assembled as their wild-type counterparts, but showed increased flexibility, suggesting a destabilization of subunit interactions. When co-expressed with the obligatory LRRC8A subunit, the mutants exhibited enhanced activation, resulting in channel activity even at isotonic conditions in which wild-type channels are closed. We conclude that structural perturbations of LRRC8C impair channel gating and constitute the mechanistic basis of the dominant gain-of-function effect of these pathogenic variants. The pleiotropic phenotype of this novel clinical entity associated with monoallelic LRRC8C variants indicates the fundamental roles of VRACs in different tissues and organs.
Collapse
Affiliation(s)
- Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Sonja Rutz
- Department of Biochemistry University of Zurich, 8057, Zurich, Switzerland
| | - Virginie Peter
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland
| | - Livia Garavelli
- Clinical Genetics Unit, Azienda USL-IRCCS of Reggio Emilia, 42123, Reggio Emilia, Italy
| | - A Micheil Innes
- Department of Medical Genetics and Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T3B 6A8, Canada
| | - Elena F Lehmann
- Department of Biochemistry University of Zurich, 8057, Zurich, Switzerland
| | - Stephan Kellenberger
- Department of biomedical Sciences, University of, Lausanne, 1011, Lausanne, Switzerland
| | - Zhong Peng
- Department of biomedical Sciences, University of, Lausanne, 1011, Lausanne, Switzerland
| | - Angelica Barone
- Pediatric Onco-Hematology Unit, Children's Hospital, Parma University Hospital, Parma, Italy
| | - Belinda Campos-Xavier
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), and University of Lausanne, 1011, Lausanne, Switzerland
| | - Sheila Unger
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), and University of Lausanne, 1011, Lausanne, Switzerland
- Genetica AG, Zurich and Lausanne, Switzerland
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland.
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| | - Raimund Dutzler
- Department of Biochemistry University of Zurich, 8057, Zurich, Switzerland.
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), and University of Lausanne, 1011, Lausanne, Switzerland.
- Genetica AG, Zurich and Lausanne, Switzerland.
| |
Collapse
|
30
|
Ma Z, Li W, Shen Y, Xu Y, Liu G, Chang J, Li Z, Qin H, Tian B, Gong H, Liu DR, Thuronyi BW, Voigt CA, Zhang S. EvoAI enables extreme compression and reconstruction of the protein sequence space. Nat Methods 2025; 22:102-112. [PMID: 39528677 DOI: 10.1038/s41592-024-02504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Designing proteins with improved functions requires a deep understanding of how sequence and function are related, a vast space that is hard to explore. The ability to efficiently compress this space by identifying functionally important features is extremely valuable. Here we establish a method called EvoScan to comprehensively segment and scan the high-fitness sequence space to obtain anchor points that capture its essential features, especially in high dimensions. Our approach is compatible with any biomolecular function that can be coupled to a transcriptional output. We then develop deep learning and large language models to accurately reconstruct the space from these anchors, allowing computational prediction of novel, highly fit sequences without prior homology-derived or structural information. We apply this hybrid experimental-computational method, which we call EvoAI, to a repressor protein and find that only 82 anchors are sufficient to compress the high-fitness sequence space with a compression ratio of 1048. The extreme compressibility of the space informs both applied biomolecular design and understanding of natural evolution.
Collapse
Affiliation(s)
- Ziyuan Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Wenjie Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yunhao Shen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yunxin Xu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Gengjiang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jiamin Chang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zeju Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Hong Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Haipeng Gong
- School of Life Sciences, Tsinghua University, Beijing, China
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - B W Thuronyi
- Department of Chemistry, Williams College, Williamstown, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shuyi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| |
Collapse
|
31
|
Valerie NCK, Sanjiv K, Mortusewicz O, Zhang SM, Alam S, Pires MJ, Stigsdotter H, Rasti A, Langelier MF, Rehling D, Throup A, Purewal-Sidhu O, Desroses M, Onireti J, Wakchaure P, Almlöf I, Boström J, Bevc L, Benzi G, Stenmark P, Pascal JM, Helleday T, Page BDG, Altun M. Coupling cellular drug-target engagement to downstream pharmacology with CeTEAM. Nat Commun 2024; 15:10347. [PMID: 39643609 PMCID: PMC11624193 DOI: 10.1038/s41467-024-54415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/11/2024] [Indexed: 12/09/2024] Open
Abstract
Cellular target engagement technologies enable quantification of intracellular drug binding; however, simultaneous assessment of drug-associated phenotypes has proven challenging. Here, we present cellular target engagement by accumulation of mutant as a platform that can concomitantly evaluate drug-target interactions and phenotypic responses using conditionally stabilized drug biosensors. We observe that drug-responsive proteotypes are prevalent among reported mutants of known drug targets. Compatible mutants appear to follow structural and biophysical logic that permits intra-protein and paralogous expansion of the biosensor pool. We then apply our method to uncouple target engagement from divergent cellular activities of MutT homolog 1 (MTH1) inhibitors, dissect Nudix hydrolase 15 (NUDT15)-associated thiopurine metabolism with the R139C pharmacogenetic variant, and profile the dynamics of poly(ADP-ribose) polymerase 1/2 (PARP1/2) binding and DNA trapping by PARP inhibitors (PARPi). Further, PARP1-derived biosensors facilitated high-throughput screening for PARP1 binders, as well as multimodal ex vivo analysis and non-invasive tracking of PARPi binding in live animals. This approach can facilitate holistic assessment of drug-target engagement by bridging drug binding events and their biological consequences.
Collapse
Affiliation(s)
- Nicholas C K Valerie
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-141 52, Sweden.
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Oliver Mortusewicz
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Si Min Zhang
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Seher Alam
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-141 52, Sweden
| | - Maria J Pires
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-141 52, Sweden
| | - Hannah Stigsdotter
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Azita Rasti
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Marie-France Langelier
- Département de Biochimie and Médecine Moléculaire, Faculté de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Daniel Rehling
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Adam Throup
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Oryn Purewal-Sidhu
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Matthieu Desroses
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Jacob Onireti
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-141 52, Sweden
| | - Prasad Wakchaure
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Johan Boström
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-141 52, Sweden
| | - Luka Bevc
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Giorgia Benzi
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-106 91, Sweden
| | - John M Pascal
- Département de Biochimie and Médecine Moléculaire, Faculté de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Brent D G Page
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Mikael Altun
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-141 52, Sweden
| |
Collapse
|
32
|
Arroyo-Pérez EE, Hook JC, Alvarado A, Wimmi S, Glatter T, Thormann K, Ringgaard S. A conserved cell-pole determinant organizes proper polar flagellum formation. eLife 2024; 13:RP93004. [PMID: 39636223 PMCID: PMC11620751 DOI: 10.7554/elife.93004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The coordination of cell cycle progression and flagellar synthesis is a complex process in motile bacteria. In γ-proteobacteria, the localization of the flagellum to the cell pole is mediated by the SRP-type GTPase FlhF. However, the mechanism of action of FlhF, and its relationship with the cell pole landmark protein HubP remain unclear. In this study, we discovered a novel protein called FipA that is required for normal FlhF activity and function in polar flagellar synthesis. We demonstrated that membrane-localized FipA interacts with FlhF and is required for normal flagellar synthesis in Vibrio parahaemolyticus, Pseudomonas putida, and Shewanella putrefaciens, and it does so independently of the polar localization mediated by HubP. FipA exhibits a dynamic localization pattern and is present at the designated pole before flagellar synthesis begins, suggesting its role in licensing flagellar formation. This discovery provides insight into a new pathway for regulating flagellum synthesis and coordinating cellular organization in bacteria that rely on polar flagellation and FlhF-dependent localization.
Collapse
Affiliation(s)
- Erick E Arroyo-Pérez
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - John C Hook
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität GiessenGiessenGermany
| | - Alejandra Alvarado
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Bacterial Metabolomics, University of TübingenTübingenGermany
| | - Stephan Wimmi
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Institute for Biological Physics, University of CologneKölnGermany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Kai Thormann
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität GiessenGiessenGermany
| | - Simon Ringgaard
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität MünchenMunichGermany
| |
Collapse
|
33
|
Yan C, Tao Y, Fan J, Dai J, Li S, Huang Q, Zhou R. Generation and characterization of two acid-resistant macrocin O-methyltransferase variants with a higher enzyme activity at 30 °C from Streptomyces fradiae. Comput Struct Biotechnol J 2024; 23:3232-3240. [PMID: 39257526 PMCID: PMC11384511 DOI: 10.1016/j.csbj.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Tylosin is an important macrolide antibiotic produced by Streptomyces fradiae. In the biosynthesis of tylosin, macrocin O-methyltransferase TylF catalyzes the conversion of the side-product tylosin C (macrocin) to the primary component tylosin A (C/A conversion). This conversion is the rate-limiting step in the biosynthesis of tylosin, and affects the quality of the end product. To find a high activity and environment-adapted TylF enzyme, a TylF variant pool has been constructed via protein evolution approach in our previous study (Fan et al., 2023 [41]). In this study, the TylF variants with higher C/A conversion rates were expressed in E. coli and purified. The variants TylFY139F, TylFQ138H, F232Y and TylFT36S, V54A were shown to have a higher C/A conversion rate at 30 °C than that of TylF at 38 °C. Moreover, they had a greater acid resistance and showed more adaptable to the pH change during fermentation. Further protein structural and substrate-binding affinity analyses revealed that the T36S, V54A, Q138H, Y139F, and F232Y mutations enlarged the volume of the substrate-binding pocket, thereby increasing the affinity of enzyme variants for their substrates of SAM and macrocin, and decreasing the inhibition of SAH. Three of the TylF variants were overexpressed in the industrial tylosin-producing S. fradiae strain, and the recombinant strains showed the highest C/A conversion at 30 °C without heating up to 38 °C during the last 24 h of fermentation. This is of great energy-saving significance for tylosin industrial production.
Collapse
Affiliation(s)
- Chaoyue Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujun Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyan Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jun Dai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The HZAU-HVSEN Institute, Wuhan 430060, China
| | - Shuo Li
- The HZAU-HVSEN Institute, Wuhan 430060, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- The HZAU-HVSEN Institute, Wuhan 430060, China
| |
Collapse
|
34
|
Zhu M, Wang Y, Mu H, Han F, Wang Q, Pei Y, Wang X, Dai X. Plasmid-encoded phosphatase RapP enhances cell growth in non-domesticated Bacillus subtilis strains. Nat Commun 2024; 15:9567. [PMID: 39500898 PMCID: PMC11538241 DOI: 10.1038/s41467-024-53992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The trade-off between rapid growth and other important physiological traits (e.g., survival and adaptability) poses a fundamental challenge for microbes to achieve fitness maximization. Studies on Bacillus subtilis biology often use strains derived after a process of lab 'domestication' from an ancestral strain known as Marburg strain. The domestication process led to loss of a large plasmid (pBS32) encoding a phosphatase (RapP) that dephosphorylates the Spo0F protein and thus regulates biofilm formation and sporulation. Here, we show that plasmid pBS32, and more specifically rapP, enhance growth rates by preventing premature expression of the Spo0F-Spo0A-mediated adaptive response during exponential phase. This results in reallocation of proteome resources towards biosynthetic, growth-promoting pathways without compromising long-term fitness during stationary phase. Thus, RapP helps B. subtilis to constrain physiological trade-offs and economize cellular resources for fitness improvement.
Collapse
Affiliation(s)
- Manlu Zhu
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Yiheng Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Haoyan Mu
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Fei Han
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Qian Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Yongfu Pei
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Xin Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Xiongfeng Dai
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China.
| |
Collapse
|
35
|
Zeyer KA, Bornert O, Nelea V, Bao X, Leytens A, Sharoyan S, Sengle G, Antonyan A, Bruckner-Tuderman L, Dengjel J, Reinhardt DP, Nyström A. Dipeptidyl Peptidase-4-Mediated Fibronectin Processing Evokes a Profibrotic Extracellular Matrix. J Invest Dermatol 2024; 144:2477-2487.e13. [PMID: 38570029 DOI: 10.1016/j.jid.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Fibronectin serves as a platform to guide and facilitate deposition of collagen and fibrillin microfibrils. During development of fibrotic diseases, altered fibronectin deposition in the extracellular matrix (ECM) is generally an early event. After this, dysregulated organization of fibrillins and fibrillar collagens occurs. Because fibronectin is an essential orchestrator of healthy ECM, perturbation of its ECM-organizational capacity may be involved in development of fibrosis. To investigate this, we employed recessive dystrophic epidermolysis bullosa as a disease model with progressive, severe dermal fibrosis. Fibroblasts from donors with recessive dystrophic epidermolysis bullosa in 2-dimensional and 3-dimensional cultures displayed dysregulated fibronectin deposition. Our analyses revealed that increase of profibrotic dipeptidyl peptidase-4-positive fibroblasts coincides with altered fibronectin deposition. Dipeptidyl peptidase-4 inhibitors normalized deposition of fibronectin and subsequently of fibrillin microfibrils and collagen I. Intriguingly, proteomics and inhibitor and mutagenesis studies disclosed that dipeptidyl peptidase-4 modulates ECM deposition through the proteolysis of the fibronectin N-terminus. Our study provides mechanistic insights into the observed profibrotic activities of dipeptidyl peptidase-4 and extends the understanding of fibronectin-guided ECM assembly in health and disease.
Collapse
Affiliation(s)
- Karina A Zeyer
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Olivier Bornert
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Valentin Nelea
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Xinyi Bao
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Alexandre Leytens
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Svetlana Sharoyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, Yerevan, Republic of Armenia
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| | - Alvard Antonyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, Yerevan, Republic of Armenia
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
36
|
Luan J, Song C, Liu Y, He R, Guo R, Cui Q, Jiang C, Li X, Hao K, Stewart AF, Fu J, Zhang Y, Wang H. Seamless site-directed mutagenesis in complex cloned DNA sequences using the RedEx method. Nat Protoc 2024; 19:3360-3388. [PMID: 39009664 DOI: 10.1038/s41596-024-01016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/01/2024] [Indexed: 07/17/2024]
Abstract
Seamless site-directed mutagenesis is an important technique for studying protein functions, tuning enzyme catalytic activities and modifying genetic elements in multiple rounds because it can insert, delete or substitute nucleotides, DNA segments or even entire genes at the target site without introducing any unwanted change. To facilitate seamless site-directed mutagenesis in large plasmids and bacterial artificial chromosomes (BACs) with repetitive sequences, we recently developed the RedEx strategy. Compared with previous methods, our approach achieves the recovery of correct recombinants with high accuracy by circumventing unwanted recombination between repetitive sequences. RedEx readily yields more than 80% accuracy in seamless DNA insertion and deletion in large multimodular polyketide synthase gene clusters, which are among the most difficult targets due to the large number of repetitive DNA sequences in modules encoding almost identical enzymes. Here we present the RedEx method by describing in detail the seamless site-directed mutagenesis in a BAC vector. Overall, the process includes three parts: (1) insertion of the RedEx cassette containing the desired mutation together with selection-counterselection markers flanked by unique restriction sites and 20-bp overlapping sequences into the target site by recombineering, (2) removal of the selection-counterselection markers in the BAC by restriction digestion and (3) circularization of the linear BAC by exonuclease-mediated in vitro DNA annealing. This protocol can be performed within 3 weeks and will enable researchers with DNA cloning experience to master seamless site-directed mutagenesis to accelerate their research.
Collapse
Affiliation(s)
- Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Chaoyi Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Yan Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Ruoting He
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Ruofei Guo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Qingwen Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Chanjuan Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Xiaochen Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Kexin Hao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - A Francis Stewart
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
37
|
Lee Y, Kang M, Jang WD, Choi SY, Yang JE, Lee SY. Microbial production of an aromatic homopolyester. Trends Biotechnol 2024; 42:1453-1478. [PMID: 39174388 DOI: 10.1016/j.tibtech.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 08/24/2024]
Abstract
We report the development of a metabolically engineered bacterium for the fermentative production of polyesters containing aromatic side chains, serving as sustainable alternatives to petroleum-based plastics. A metabolic pathway was constructed in an Escherichia coli strain to produce poly[d-phenyllactate(PhLA)], followed by three strategies to enhance polymer production. First, polyhydroxyalkanoate (PHA) granule-associated proteins (phasins) were introduced to increase the polymer accumulation. Next, metabolic engineering was performed to redirect the metabolic flux toward PhLA. Furthermore, PHA synthase was engineered based on in silico simulation results to enhance the polymerization of PhLA. The final strain was capable of producing 12.3 g/l of poly(PhLA), marking it the first bio-based process for producing an aromatic homopolyester. Additional heterologous gene introductions led to the high level production of poly(3-hydroxybutyrate-co-11.7 mol% PhLA) copolymer (61.4 g/l). The strategies described here will be useful for the bio-based production of aromatic polyesters from renewable resources.
Collapse
Affiliation(s)
- Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Minju Kang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Woo Dae Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jung Eun Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
38
|
Carr SC, Rehman F, Hagel JM, Chen X, Ng KKS, Facchini PJ. Two ubiquitous aldo-keto reductases in the genus Papaver support a patchwork model for morphine pathway evolution. Commun Biol 2024; 7:1410. [PMID: 39472466 PMCID: PMC11522673 DOI: 10.1038/s42003-024-07100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The evolution of morphinan alkaloid biosynthesis in plants of the genus Papaver includes permutation of several processes including gene duplication, fusion, neofunctionalization, and deletion resulting in the present chemotaxonomy. A critical gene fusion event resulting in the key bifunctional enzyme reticuline epimerase (REPI), which catalyzes the stereochemical inversion of (S)-reticuline, was suggested to precede neofunctionalization of downstream enzymes leading to morphine biosynthesis in opium poppy (Papaver somniferum). The ancestrally related aldo-keto reductases 1,2-dehydroreticuline reductase (DRR), which occurs in some species as a component of REPI, and codeinone reductase (COR) catalyze the second and penultimate steps, respectively, in the pathway converting (S)-reticuline to morphine. Orthologs for each enzyme isolated from the transcriptomes of 12 Papaver species were shown to catalyze their respective reactions in species that capture states of the metabolic pathway prior to key evolutionary events, including the gene fusion event leading to REPI, thus suggesting a patchwork model for pathway evolution. Analysis of the structure and substrate preferences of DRR orthologs in comparison with COR orthologs revealed structure-function relationships underpinning the functional latency of DRR and COR orthologs in the genus Papaver, thus providing insights into the molecular events leading to the evolution of the pathway.
Collapse
Affiliation(s)
- Samuel C Carr
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Fasih Rehman
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jillian M Hagel
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Enveric Biosciences Inc., Calgary, AB, Canada
| | - Xue Chen
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Kenneth K S Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
39
|
Li W, Lin S, Wang X, Chen S, Long L, Yang J. Molecular insights into the hydrolysis and transglycosylation of a deep-sea Planctomycetota-derived GH16 family laminarinase. Appl Environ Microbiol 2024; 90:e0094224. [PMID: 39287396 PMCID: PMC11497802 DOI: 10.1128/aem.00942-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
The biochemical and structural characteristics of PtLam, a laminarinase from deep-sea Planctomycetota, have been extensively elucidated, unveiling the fundamental molecular mechanisms governing substrate recognition and enzymatic catalysis. PtLam functions as an exo-laminarinase with the ability to sequentially hydrolyze laminarin, cleaving glucose units individually. Notably, PtLam exhibits proficient transglycosylation capabilities, utilizing various sugar alcohols as acceptors, with lyxose, in particular, yielding exclusively transglycosylated products. Structural analysis of both apo-PtLam and its laminarin oligosaccharide-bound complex revealed significant conformational alterations in active residues upon substrate binding. Moreover, pivotal residues involved in substrate recognition were identified, with subsequent mutation assays indicating the contribution of positive subsites in modulating exo-hydrolysis and transglycosidic activities. These results enhance our comprehension of laminarin cycling mechanisms by marine Planctomycetota, while also providing essential enzyme components for laminarin hetero-oligosaccharide synthesis.IMPORTANCEThe ubiquitous Planctomycetota, with distinctive physiological traits, exert a significant influence on global carbon and nitrogen fluxes. Their intimate association with algae suggests a propensity for efficient polysaccharide degradation; however, research on glycoside hydrolases derived from Planctomycetota remains scarce. Herein, we unveil the GH16 family laminarinase PtLam from deep-sea Planctomycetota, shedding light on its catalytic mechanisms underlying hydrolysis and transglycosylation. Our findings elucidate the enzymatic pathways governing the marine laminarin cycle orchestrated by Planctomycetota, thereby fostering the exploration of novel polysaccharide hydrolases with promising practical implications.
Collapse
Affiliation(s)
- Wei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shanshan Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xianjie Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shiting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jian Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
40
|
Chen M, Shang Y, Cui W, Wang X, Zhu J, Dong H, Wang H, Su T, Wang W, Zhang K, Li B, Xu S, Hu W, Zhang F, Gu L. Molecular mechanism of proteolytic cleavage-dependent activation of CadC-mediated response to acid in E. coli. Commun Biol 2024; 7:1335. [PMID: 39415060 PMCID: PMC11484849 DOI: 10.1038/s42003-024-06931-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024] Open
Abstract
Colonizing in the gastrointestinal tract, Escherichia coli confronts diverse acidic challenges and evolves intricate acid resistance strategies for its survival. The lysine-mediated decarboxylation (Cad) system, featuring lysine decarboxylase CadA, lysine/cadaverine antiporter CadB, and transcriptional activator CadC, plays a crucial role in E. coli's adaptation to moderate acidic stress. While the activation of the one-component system CadC and subsequent upregulation of cadBA operon in response to acid and lysine presence have been proposed, the molecular mechanisms governing the transition of CadC from an inactive to an active state remain elusive. Under neutral conditions, CadC is inhibited by forming a complex with lysine-specific permease LysP, stabilized in this inactive state by a disulfide bond. Our study unveils that, in an acidic environment, the disulfide bond in CadC is reduced by the disulfide bond isomerase DsbC, exposing R184 to periplasmic proteases, namely DegQ and DegP. Cleavage at R184 by DegQ and DegP generates an active N-terminal DNA-binding domain of CadC, which binds to the cadBA promoter, resulting in the upregulated transcription of the cadA and cadB genes. Upon activation, CadA decarboxylates lysine, producing cadaverine, subsequently transported extracellularly by CadB. We propose that accumulating cadaverine gradually binds to the CadC pH-sensing domain, preventing cleavage and activation of CadC as a feedback mechanism. The identification of DegP, DegQ, and DsbC completes a comprehensive roadmap for the activation and regulation of the Cad system in response to moderate acidic stress in E. coli.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Ye Shang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Wenhao Cui
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Xiaomeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Jiakun Zhu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Hongjie Dong
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Tiantian Su
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, jinan, China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, jinan, China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China.
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China.
| |
Collapse
|
41
|
Betts PC, Blakely SJ, Rutkowski BN, Bender B, Klingler C, Froese JT. Engineering of Rieske dioxygenase variants with improved cis-dihydroxylation activity for benzoates. Biotechnol Bioeng 2024; 121:3144-3154. [PMID: 38951963 DOI: 10.1002/bit.28786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024]
Abstract
Rieske dioxygenases have a long history of being utilized as green chemical tools in the organic synthesis of high-value compounds, due to their capacity to perform the cis-dihydroxylation of a wide variety of aromatic substrates. The practical utility of these enzymes has been hampered however by steric and electronic constraints on their substrate scopes, resulting in limited reactivity with certain substrate classes. Herein, we report the engineering of a widely used member of the Rieske dioxygenase class of enzymes, toluene dioxygenase (TDO), to produce improved variants with greatly increased activity for the cis-dihydroxylation of benzoates. Through rational mutagenesis and screening, TDO variants with substantially improved activity over the wild-type enzyme were identified. Homology modeling, docking studies, molecular dynamics simulations, and substrate tunnel analysis were applied in an effort to elucidate how the identified mutations resulted in improved activity for this polar substrate class. These analyses revealed modification of the substrate tunnel as the likely cause of the improved activity observed with the best-performing enzyme variants.
Collapse
Affiliation(s)
- Phillip C Betts
- Department of Chemistry, Ball State University, Muncie, Indiana, USA
| | - Spencer J Blakely
- Department of Chemistry, Ball State University, Muncie, Indiana, USA
| | | | - Brandon Bender
- Department of Chemistry, Ball State University, Muncie, Indiana, USA
| | - Cole Klingler
- Department of Chemistry, Ball State University, Muncie, Indiana, USA
| | - Jordan T Froese
- Department of Chemistry, Ball State University, Muncie, Indiana, USA
| |
Collapse
|
42
|
de Munnik M, Lang PA, Calvopiña K, Rabe P, Brem J, Schofield CJ. Biochemical and crystallographic studies of L,D-transpeptidase 2 from Mycobacterium tuberculosis with its natural monomer substrate. Commun Biol 2024; 7:1173. [PMID: 39294212 PMCID: PMC11410929 DOI: 10.1038/s42003-024-06785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
The essential L,D-transpeptidase of Mycobacterium tuberculosis (LdtMt2) catalyses the formation of 3 → 3 cross-links in cell wall peptidoglycan and is a target for development of antituberculosis therapeutics. Efforts to inhibit LdtMt2 have been hampered by lack of knowledge of how it binds its substrate. To address this gap, we optimised the isolation of natural disaccharide tetrapeptide monomers from the Corynebacterium jeikeium bacterial cell wall through overproduction of the peptidoglycan sacculus. The tetrapeptides were used in binding / turnover assays and biophysical studies on LdtMt2. We determined a crystal structure of wild-type LdtMt2 reacted with its natural substrate, the tetrapeptide monomer of the peptidoglycan layer. This structure shows formation of a thioester linking the catalytic cysteine and the donor substrate, reflecting an intermediate in the transpeptidase reaction; it informs on the mode of entrance of the donor substrate into the LdtMt2 active site. The results will be useful in design of LdtMt2 inhibitors, including those based on substrate binding interactions, a strategy successfully employed for other nucleophilic cysteine enzymes.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Karina Calvopiña
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK.
| |
Collapse
|
43
|
Bayer T, Palm GJ, Berndt L, Meinert H, Branson Y, Schmidt L, Cziegler C, Somvilla I, Zurr C, Graf LG, Janke U, Badenhorst CPS, König S, Delcea M, Garscha U, Wei R, Lammers M, Bornscheuer UT. Structural Elucidation of a Metagenomic Urethanase and Its Engineering Towards Enhanced Hydrolysis Profiles. Angew Chem Int Ed Engl 2024; 63:e202404492. [PMID: 38948941 DOI: 10.1002/anie.202404492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
While plastics like polyethylene terephthalate can already be degraded efficiently by the activity of hydrolases, other synthetic polymers like polyurethanes (PUs) and polyamides (PAs) largely resist biodegradation. In this study, we solved the first crystal structure of the metagenomic urethanase UMG-SP-1, identified highly flexible loop regions to comprise active site residues, and targeted a total of 20 potential hot spots by site-saturation mutagenesis. Engineering campaigns yielded variants with single mutations, exhibiting almost 3- and 8-fold improved activity against highly stable N-aryl urethane and amide bonds, respectively. Furthermore, we demonstrated the release of the corresponding monomers from a thermoplastic polyester-PU and a PA (nylon 6) by the activity of a single, metagenome-derived urethanase after short incubation times. Thereby, we expanded the hydrolysis profile of UMG-SP-1 beyond the reported low-molecular weight carbamates. Together, these findings promise advanced strategies for the bio-based degradation and recycling of plastic materials and waste, aiding efforts to establish a circular economy for synthetic polymers.
Collapse
Affiliation(s)
- Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Gottfried J Palm
- Department of Synthetic & Structural Biochemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Leona Berndt
- Department of Synthetic & Structural Biochemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Hannes Meinert
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Yannick Branson
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Louis Schmidt
- Department of Pharmaceutical & Medicinal Chemistry Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Clemens Cziegler
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Ina Somvilla
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Celine Zurr
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Leonie G Graf
- Department of Synthetic & Structural Biochemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Una Janke
- Department of Biophysical Chemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Christoffel P S Badenhorst
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Stefanie König
- Department of Pharmaceutical & Medicinal Chemistry Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical & Medicinal Chemistry Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Ren Wei
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic & Structural Biochemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
44
|
Königshausen E, Zierhut UM, Ruetze M, Rump LC, Sellin L. A molecular mechanism for angiotensin II receptor blocker-mediated slit membrane protection: Angiotensin II increases nephrin endocytosis via AT1-receptor-dependent ERK 1/2 activation. FASEB J 2024; 38:e70018. [PMID: 39212304 DOI: 10.1096/fj.202400369r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Albuminuria is characterized by a disruption of the glomerular filtration barrier, which is composed of the fenestrated endothelium, the glomerular basement membrane, and the slit diaphragm. Nephrin is a major component of the slit diaphragm. Apart from hemodynamic effects, Ang II enhances albuminuria by β-Arrestin2-mediated nephrin endocytosis. Blocking the AT1 receptor with candesartan and irbesartan reduces the Ang II-mediated nephrin-β-Arrestin2 interaction. The inhibition of MAPK ERK 1/2 blocks Ang II-enhanced nephrin-β-Arrestin2 binding. ERK 1/2 signaling, which follows AT1 receptor activation, is mediated by G-protein signaling, EGFR transactivation, and β-Arrestin2 recruitment. A mutant AT1 receptor defective in EGFR transactivation and β-Arrestin2 recruitment reduces the Ang II-mediated increase in nephrin β-Arrestin2 binding. The mutation of β-Arrestin2K11,K12, critical for AT1 receptor binding, completely abrogates the interaction with nephrin, independent of Ang II stimulation. β-Arrestin2K11R,K12R does not influence nephrin cell surface expression. The data presented here deepen our molecular understanding of a blood-pressure-independent molecular mechanism of AT-1 receptor blockers (ARBs) in reducing albuminuria.
Collapse
Affiliation(s)
- Eva Königshausen
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Ulf M Zierhut
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Martin Ruetze
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Lars C Rump
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Lorenz Sellin
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
45
|
Barbarin-Bocahu I, Ulryck N, Rigobert A, Ruiz Gutierrez N, Decourty L, Raji M, Garkhal B, Le Hir H, Saveanu C, Graille M. Structure of the Nmd4-Upf1 complex supports conservation of the nonsense-mediated mRNA decay pathway between yeast and humans. PLoS Biol 2024; 22:e3002821. [PMID: 39331656 PMCID: PMC11463774 DOI: 10.1371/journal.pbio.3002821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/09/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway clears eukaryotic cells of mRNAs containing premature termination codons (PTCs) or normal stop codons located in specific contexts. It therefore plays an important role in gene expression regulation. The precise molecular mechanism of the NMD pathway has long been considered to differ substantially from yeast to metazoa, despite the involvement of universally conserved factors such as the central ATP-dependent RNA-helicase Upf1. Here, we describe the crystal structure of the yeast Upf1 bound to its recently identified but yet uncharacterized partner Nmd4, show that Nmd4 stimulates Upf1 ATPase activity and that this interaction contributes to the elimination of NMD substrates. We also demonstrate that a region of Nmd4 critical for the interaction with Upf1 in yeast is conserved in the metazoan SMG6 protein, another major NMD factor. We show that this conserved region is involved in the interaction of SMG6 with UPF1 and that mutations in this region affect the levels of endogenous human NMD substrates. Our results support the universal conservation of the NMD mechanism in eukaryotes.
Collapse
Affiliation(s)
- Irène Barbarin-Bocahu
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Nathalie Ulryck
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Amandine Rigobert
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Nadia Ruiz Gutierrez
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Laurence Decourty
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
| | - Mouna Raji
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Bhumika Garkhal
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Hervé Le Hir
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Cosmin Saveanu
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
46
|
Khanppnavar B, Choo JPS, Hagedoorn PL, Smolentsev G, Štefanić S, Kumaran S, Tischler D, Winkler FK, Korkhov VM, Li Z, Kammerer RA, Li X. Structural basis of the Meinwald rearrangement catalysed by styrene oxide isomerase. Nat Chem 2024; 16:1496-1504. [PMID: 38744914 PMCID: PMC11374702 DOI: 10.1038/s41557-024-01523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Membrane-bound styrene oxide isomerase (SOI) catalyses the Meinwald rearrangement-a Lewis-acid-catalysed isomerization of an epoxide to a carbonyl compound-and has been used in single and cascade reactions. However, the structural information that explains its reaction mechanism has remained elusive. Here we determine cryo-electron microscopy (cryo-EM) structures of SOI bound to a single-domain antibody with and without the competitive inhibitor benzylamine, and elucidate the catalytic mechanism using electron paramagnetic resonance spectroscopy, functional assays, biophysical methods and docking experiments. We find ferric haem b bound at the subunit interface of the trimeric enzyme through H58, where Fe(III) acts as the Lewis acid by binding to the epoxide oxygen. Y103 and N64 and a hydrophobic pocket binding the oxygen of the epoxide and the aryl group, respectively, position substrates in a manner that explains the high regio-selectivity and stereo-specificity of SOI. Our findings can support extending the range of epoxide substrates and be used to potentially repurpose SOI for the catalysis of new-to-nature Fe-based chemical reactions.
Collapse
Affiliation(s)
- Basavraj Khanppnavar
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Joel P S Choo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Saša Štefanić
- Nanobody Service Facility. AgroVet-Strickhof, University of Zurich, Lindau, Switzerland
| | | | - Dirk Tischler
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Volodymyr M Korkhov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| | - Xiaodan Li
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
47
|
Niu W, Vu T, Du G, Bogdanov M, Zheng L. Lysophospholipid remodeling mediated by the LplT and Aas protein complex in the bacterial envelope. J Biol Chem 2024; 300:107704. [PMID: 39173951 PMCID: PMC11416262 DOI: 10.1016/j.jbc.2024.107704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Lysophospholipid transporter LplT and acyltransferase Aas consist of a lysophospholipid-remodeling system ubiquitously found in gram-negative microorganisms. LplT flips lysophospholipid across the inner membrane which is subsequently acylated by Aas on the cytoplasmic membrane surface. Our previous study showed that the proper functioning of this system is important to protecting Escherichia coli from phospholipase-mediated host attack by maintaining the integrity of the bacterial cell envelope. However, the working mechanism of this system is still unclear. Herein, we report that LplT and Aas form a membrane protein complex in E. coli which allows these two enzymes to cooperate efficiently to move lysophospholipids across the bacterial membrane and catalyze their acylation. The direct interaction of LplT and Aas was demonstrated both in vivo and in vitro with a binding affinity of 2.3 μM. We found that a cytoplasmic loop of LplT adjacent to the exit of the substrate translocation pathway plays an important role in maintaining its interaction with Aas. Aas contains an acyl-acyl carrier protein synthase domain and an acyl-transferase domain. Its interaction with LplT is mediated exclusively by its transferase domain. Mutations within the three loops near the putative catalytic site of the transferase domain, respectively, disrupt its interaction with LplT and lysophospholipid acylation activity. These results support a hypothesis of the functional coupling mechanism, in which LplT directly interacts with the transferase domain of Aas for specific substrate membrane migration, providing synchronization of substrate translocation and biosynthetic events.
Collapse
Affiliation(s)
- Wei Niu
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Trung Vu
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Lei Zheng
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA.
| |
Collapse
|
48
|
Zhu HX, Wright BW, Logel DY, Needham P, Yehl K, Molloy MP, Jaschke PR. IbpAB small heat shock proteins are not host factors for bacteriophage ϕX174 replication. Virology 2024; 597:110169. [PMID: 38996611 DOI: 10.1016/j.virol.2024.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Bacteriophage ϕX174 is a small icosahedral virus of the Microviridae with a rapid replication cycle. Previously, we found that in ϕX174 infections of Escherichia coli, the most highly upregulated host proteins are two small heat shock proteins, IbpA and IbpB, belonging to the HSP20 family, which is a universally conserved group of stress-induced molecular chaperones that prevent irreversible aggregation of proteins. Heat shock proteins were found to protect against ϕX174 lysis, but IbpA/B have not been studied. In this work, we disrupted the ibpA and ibpB genes and measured the effects on ϕX174 replication. We found that in contrast to other E. coli heat shock proteins, they are not necessary for ϕX174 replication; moreover, their absence has no discernible effect on ϕX174 fecundity. These results suggest IbpA/B upregulation is a response to ϕX174 protein expression but does not play a role in phage replication, and they are not Microviridae host factors.
Collapse
Affiliation(s)
- Hannah X Zhu
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Bradley W Wright
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Dominic Y Logel
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Patrick Needham
- Miami University, Department of Chemistry and Biochemistry, Oxford, 45056, USA
| | - Kevin Yehl
- Miami University, Department of Chemistry and Biochemistry, Oxford, 45056, USA
| | - Mark P Molloy
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; Kolling Institute, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
49
|
Carr SC, Facchini PJ, Ng KKS. Structural analysis of a ligand-triggered intermolecular disulfide switch in a major latex protein from opium poppy. Acta Crystallogr D Struct Biol 2024; 80:675-685. [PMID: 39207895 PMCID: PMC11394122 DOI: 10.1107/s2059798324007733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Several proteins from plant pathogenesis-related family 10 (PR10) are highly abundant in the latex of opium poppy and have recently been shown to play diverse and important roles in the biosynthesis of benzylisoquinoline alkaloids (BIAs). The recent determination of the first crystal structures of PR10-10 showed how large conformational changes in a surface loop and adjacent β-strand are coupled to the binding of BIA compounds to the central hydrophobic binding pocket. A more detailed analysis of these conformational changes is now reported to further clarify how ligand binding is coupled to the formation and cleavage of an intermolecular disulfide bond that is only sterically allowed when the BIA binding pocket is empty. To decouple ligand binding from disulfide-bond formation, each of the two highly conserved cysteine residues (Cys59 and Cys155) in PR10-10 was replaced with serine using site-directed mutagenesis. Crystal structures of the Cys59Ser mutant were determined in the presence of papaverine and in the absence of exogenous BIA compounds. A crystal structure of the Cys155Ser mutant was also determined in the absence of exogenous BIA compounds. All three of these crystal structures reveal conformations similar to that of wild-type PR10-10 with bound BIA compounds. In the absence of exogenous BIA compounds, the Cys59Ser and Cys155Ser mutants appear to bind an unidentified ligand or mixture of ligands that was presumably introduced during expression of the proteins in Escherichia coli. The analysis of conformational changes triggered by the binding of BIA compounds suggests a molecular mechanism coupling ligand binding to the disruption of an intermolecular disulfide bond. This mechanism may be involved in the regulation of biosynthetic reactions in plants and possibly other organisms.
Collapse
Affiliation(s)
- Samuel C Carr
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Kenneth K S Ng
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
50
|
Zhang J, Lin H, Zheng C, Yang B, Liang M, Lin Y, Zhang L. Efficient 2,3-Butanediol Production from Ethanol by a Modified Four-Enzyme Synthetic Biosystem. Molecules 2024; 29:3934. [PMID: 39203012 PMCID: PMC11357561 DOI: 10.3390/molecules29163934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
2,3-butanediol (2,3-BD) is a versatile bio-based platform chemical. An artificial four-enzyme synthetic biosystem composed of ethanol dehydrogenase, NADH oxidase, formolase and 2,3-butanediol dehydrogenase was designed for upgrading ethanol to 2,3-BD in our previous study. However, a key challenge in developing in vitro enzymatic systems for 2,3-BD synthesis is the relatively sluggish catalytic efficiency of formolase, which catalyzes the rate-limiting step in such systems. Herein, this study reports how engineering the tunnel and substrate binding pocket of FLS improved its catalytic performance. A series of single-point and combinatorial variants were successfully obtained which displayed both higher catalytic efficiency and better substrate tolerance than wild-type FLS. Subsequently, a cell-free biosystem based on the FLS:I28V/L482E enzyme was implemented for upgrading ethanol to 2,3-BD. Ultimately, this system achieved efficient production of 2,3-BD from ethanol by the fed-batch method, reaching a concentration of 1.39 M (124.83 g/L) of the product and providing both excellent productivity and yield values of 5.94 g/L/h and 92.7%, respectively. Taken together, this modified enzymatic catalysis system provides a highly promising alternative approach for sustainable and cost-competitive production of 2,3-BD.
Collapse
Affiliation(s)
- Jiming Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
| | - Hui Lin
- Institute of Edible Fungi, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China;
| | - Chaosong Zheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Z.); (M.L.)
| | - Bin Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Z.); (M.L.)
| | - Miao Liang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Z.); (M.L.)
| | - Yi Lin
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
| | - Liaoyuan Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Z.); (M.L.)
| |
Collapse
|