1
|
Ernst E, Abramson B, Acosta K, Hoang PTN, Mateo-Elizalde C, Schubert V, Pasaribu B, Albert PS, Hartwick N, Colt K, Aylward A, Ramu U, Birchler JA, Schubert I, Lam E, Michael TP, Martienssen RA. Duckweed genomes and epigenomes underlie triploid hybridization and clonal reproduction. Curr Biol 2025:S0960-9822(25)00298-2. [PMID: 40174586 DOI: 10.1016/j.cub.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
The Lemnaceae (duckweeds) are the world's smallest but fastest-growing flowering plants. Prolific clonal propagation facilitates continuous micro-cropping for plant-based protein and starch production and holds tremendous promise for sequestration of atmospheric CO2. Here, we present chromosomal assemblies, annotations, and phylogenomic analysis of Lemna genomes that uncover candidate genes responsible for the unique metabolic and developmental traits of the family, such as anatomical reduction, adaxial stomata, lack of stomatal closure, and carbon sequestration via crystalline calcium oxalate. Lemnaceae have selectively lost genes required for RNA interference, including Argonaute genes required for reproductive isolation (the triploid block) and haploid gamete formation. Triploid hybrids arise commonly among Lemna, and we have found mutations in highly conserved meiotic crossover genes that could support polyploid meiosis. Further, mapping centromeres by chromatin immunoprecipitation suggests their epigenetic origin despite divergence of underlying tandem repeats and centromeric retrotransposons. Syntenic comparisons with Wolffia and Spirodela reveal that diversification of these genera coincided with the "Azolla event" in the mid-Eocene, during which aquatic macrophytes reduced high atmospheric CO2 levels to those of the current ice age. Facile regeneration of transgenic fronds from tissue culture, aided by reduced epigenetic silencing, makes Lemna a powerful biotechnological platform, as exemplified by recent engineering of high-oil Lemna that outperforms oil-seed crops.
Collapse
Affiliation(s)
- Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Bradley Abramson
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kenneth Acosta
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Phuong T N Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany; Biology Faculty, Dalat University, 1 Phu Dong Thien Vuong, Dalat City 670000, Vietnam
| | - Cristian Mateo-Elizalde
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Buntora Pasaribu
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA; Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Bandung Sumedang Highway KM 21, Jatinangor 40600, Indonesia
| | - Patrice S Albert
- Biological Sciences, University of Missouri, Columbia, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Nolan Hartwick
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kelly Colt
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Anthony Aylward
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - James A Birchler
- Biological Sciences, University of Missouri, Columbia, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Eric Lam
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
2
|
Harvey LM, Frédérick PM, Gudipati RK, Michaud P, Houle F, Young D, Desbiens C, Ladouceur S, Dufour A, Großhans H, Simard MJ. Dipeptidyl peptidase DPF-3 is a gatekeeper of microRNA Argonaute compensation in animals. Nat Commun 2025; 16:2738. [PMID: 40108168 PMCID: PMC11923051 DOI: 10.1038/s41467-025-58141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
MicroRNAs (miRNAs) are essential regulators involved in multiple biological processes. To achieve their gene repression function, they are loaded in miRNA-specific Argonautes to form the miRNA-induced silencing complex (miRISC). Mammals and C. elegans possess more than one paralog of miRNA-specific Argonautes, but the dynamic between them remains unclear. Here, we report the conserved dipeptidyl peptidase DPF-3 as an interactor of the miRNA-specific Argonaute ALG-1 in C. elegans. Knockout of dpf-3 increases ALG-2 levels and miRISC formation in alg-1 loss-of-function animals, thereby compensating for ALG-1 loss and rescuing miRNA-related defects observed. DPF-3 can cleave an ALG-2 N-terminal peptide in vitro but does not appear to rely on this catalytic activity to regulate ALG-2 in vivo. This study uncovers the importance of DPF-3 in the miRNA pathway and provides insights into how multiple miRNA Argonautes contribute to achieving proper miRNA-mediated gene regulation in animals.
Collapse
Affiliation(s)
- Louis-Mathieu Harvey
- Oncology Division, CHU de Québec - Université Laval Research Center, Québec, Canada
- Université Laval Cancer Research Centre, Québec, Canada
| | - Pierre-Marc Frédérick
- Oncology Division, CHU de Québec - Université Laval Research Center, Québec, Canada
- Université Laval Cancer Research Centre, Québec, Canada
| | | | - Pascale Michaud
- Oncology Division, CHU de Québec - Université Laval Research Center, Québec, Canada
- Université Laval Cancer Research Centre, Québec, Canada
| | - François Houle
- Oncology Division, CHU de Québec - Université Laval Research Center, Québec, Canada
- Université Laval Cancer Research Centre, Québec, Canada
| | - Daniel Young
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Catherine Desbiens
- Oncology Division, CHU de Québec - Université Laval Research Center, Québec, Canada
- Université Laval Cancer Research Centre, Québec, Canada
| | - Shanna Ladouceur
- Oncology Division, CHU de Québec - Université Laval Research Center, Québec, Canada
- Université Laval Cancer Research Centre, Québec, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Martin J Simard
- Oncology Division, CHU de Québec - Université Laval Research Center, Québec, Canada.
- Université Laval Cancer Research Centre, Québec, Canada.
| |
Collapse
|
3
|
Quiobe SP, Kalirad A, Röseler W, Witte H, Wang Y, Rödelsperger C, Sommer RJ. EBAX-1/ZSWIM8 destabilizes miRNAs, resulting in transgenerational inheritance of a predatory trait. SCIENCE ADVANCES 2025; 11:eadu0875. [PMID: 40073139 PMCID: PMC11900880 DOI: 10.1126/sciadv.adu0875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
Environmental influences on traits and associated transgenerational epigenetic inheritance have widespread implications but remain controversial and underlying mechanisms poorly understood. We introduce long-term environmental induction experiments on alternative diets in Pristionchus pacificus, a nematode exhibiting mouth-form plasticity including predation, by propagating 110 isogenic lines for 101 generations with associated food-reversal experiments. We found dietary induction and subsequent transgenerational inheritance of the predatory morph and identified a role of ubiquitin ligase EBAX-1/ZSWIM8 in this process. Ppa-ebax-1 mutants are transgenerational inheritance defective, and Ppa-EBAX-1 destabilizes the clustered microRNA family miR-2235a/miR-35. Deletions of a cluster of 44 identical miR-2235a copies resulted in precocious and extended transgenerational inheritance of the predatory morph. These findings indicate that EBAX-1/ZSWIM8 destabilizes miRNAs, resulting in transgenerational inheritance, suggesting a role for target-directed miRNA degradation.
Collapse
Affiliation(s)
- Shiela Pearl Quiobe
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Ata Kalirad
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Yinan Wang
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| |
Collapse
|
4
|
Tian J, Zhang L, La X, Fan X, Li Z. MiR-769-5p of macrophage exosomes induced by GRP78 promotes stemness and chemoresistance in colorectal cancer. Cell Death Dis 2025; 16:156. [PMID: 40044682 PMCID: PMC11882909 DOI: 10.1038/s41419-025-07466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/09/2025]
Abstract
The tumor microenvironment (TME) plays an important role in tumorigenesis and development. Tumor-associated macrophages (TAMs) are essential members of the TME, the exosomes and miRNAs they secrete are crucial in tumor regulation. Our previous study showed that GRP78-induced macrophages infinitely tend to be M2-type TAMs. In this study, the exosomes of M0 and GRP78-induced macrophage were collected and co-incubated with colorectal cancer (CRC) cells. The results implied that macrophage exosomes induced by GRP78 (GRP78-exos) significantly promoted stemness and chemoresistance in CRC in vitro and in vivo. Further, the top 5 miRNAs upregulated in GRP78-exos were obtained from miRNA sequencing data. The qRT-PCR validation revealed that miR-769-5p was the most observably upregulated and could be directly transferred into CRC cells via GRP78-exos. Mechanistically, the study indicated that miR-769-5p targeted MAPK1 to regulate the cell cycle-related proteins RB1, cyclin D1, and cyclin E1. This contributes to CRC cells entering a quiescent state, which leads to the development of chemoresistance. Moreover, miR-769-5p is also expressed higher in the tissues of 5-FU-resistant CRC patients. In summary, the findings indicate a novel function of miR-769-5p as a potential marker for the diagnosis and treatment of chemotherapy resistance in CRC.
Collapse
Affiliation(s)
- Jinmiao Tian
- Key Laboratory of Chemical Biology and Molecular Engineering of the National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Lichao Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Xiaoqin La
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Xiaxia Fan
- Key Laboratory of Chemical Biology and Molecular Engineering of the National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Zhuoyu Li
- Key Laboratory of Chemical Biology and Molecular Engineering of the National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
5
|
Heda V, Dogra S, Kouznetsova VL, Kumar A, Kesari S, Tsigelny IF. miRNA-Based Diagnosis of Schizophrenia Using Machine Learning. Int J Mol Sci 2025; 26:2280. [PMID: 40076899 PMCID: PMC11900116 DOI: 10.3390/ijms26052280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Diagnostic practices for schizophrenia are unreliable due to the lack of a stable biomarker. However, machine learning holds promise in aiding in the diagnosis of schizophrenia and other neurological disorders. Dysregulated miRNAs were extracted from public sources. Datasets of miRNAs selected from the literature and random miRNAs with designated gene targets along with related pathways were assigned as descriptors of machine-learning models. These data were preprocessed and classified using WEKA and TensorFlow, and several classifiers were tested to train the model. The Sequential neural network developed by authors performed the best of the classifiers tested, achieving an accuracy of 94.32%. Naïve Bayes was the next best model, with an accuracy of 72.23%. MLP achieved an accuracy of 65.91%, followed by Hoeffding tree with an accuracy of 64.77%, Random tree with an accuracy of 63.64%, Random forest, which achieved an accuracy of 61.36%, and lastly ADABoostM1, which achieved an accuracy of 53.41%. The Sequential neural network and Naïve Bayes classifier were tested to validate the model as they achieved the highest accuracy. Naïve Bayes achieved a validation accuracy of 72.22%, whereas the sequential neural network achieved an accuracy of 88.88%. Our results demonstrate the practicality of machine learning in psychiatric diagnosis. Dysregulated miRNA combined with machine learning can serve as a diagnostic aid to physicians for schizophrenia and potentially other neurological disorders as well.
Collapse
Affiliation(s)
- Vishrut Heda
- Scholars Program, CureScience Institute, San Diego, CA 92121, USA;
| | - Saanvi Dogra
- MAP Program, University of California San Diego, La Jolla, CA 92093, USA;
| | - Valentina L. Kouznetsova
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Sciences, CureScience Institute, San Diego, CA 92121, USA
| | - Alex Kumar
- Computing and Mathematical Sciences Department, California Institute of Technology, Pasadena, CA 91125, USA;
| | - Santosh Kesari
- Department of Neuro-Oncology, Pacific Neuroscience Institute, Santa Monica, CA 90404, USA;
| | - Igor F. Tsigelny
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Sciences, CureScience Institute, San Diego, CA 92121, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Gan M, Wang X, Ma J, Chen L, Wang Y, Shen L, Zhu L. Small RNA data sets of mouse testes and ovaries before and after sexual maturity. Sci Data 2025; 12:354. [PMID: 40016227 PMCID: PMC11868417 DOI: 10.1038/s41597-025-04555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/29/2025] [Indexed: 03/01/2025] Open
Abstract
For a considerable period, reproductive health, fertility, and reproductive-related diseases have posed challenges to human well-being, as well as to the conservation of endangered species and the advancement of animal husbandry. PANDORA-seq, a recently introduced sequencing technique, demonstrates heightened sensitivity towards highly modified small RNAs like tsRNA and rsRNA. In this research endeavor, we leveraged PANDORA-seq to capture the small RNA expression profiles of mouse testes and ovaries pre- and post-sexual maturation. Our investigation successfully pinpointed an array of abundantly expressed small RNAs across various tissues, encompassing tsRNA, rsRNA, piRNA, miRNA, snoRNA, and ysRNA. Next, we conducted an expression profile analysis of these small RNAs to assist researchers in screening and validating them for various areas of interest. This dataset is poised to become an invaluable resource for exploring the postnatal development of testes and ovaries, offering new insights into the epigenetic mechanisms underlying germ cell production and differentiation.
Collapse
Affiliation(s)
- Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xingyu Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Jianfeng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China.
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China.
| |
Collapse
|
7
|
Guo J, Chen X, Ren J, Wang Y, Wang K, Yang S. The Role of tRNA-Derived Small RNAs (tsRNAs) in Regulating Cell Death of Cardiovascular Diseases. BIOLOGY 2025; 14:218. [PMID: 40001986 PMCID: PMC11853139 DOI: 10.3390/biology14020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Transfer RNA is a class of non-coding RNA that plays a role in amino acid translocation during protein synthesis. After specific modification, the cleaved fragment is called tRNA-derived small RNA. The advancement of bioinformatics technology has led to an increase in the visibility of small RNA derived from tRNA, and their functions in biological processes are being revealed. These include gene silencing, transcription and translation, epigenetics, and cell death. These properties have led to the implication of tsRNAs in various diseases. Although the current research mainly focuses on the role of tRNA-derived small RNA in cancer, there is mounting evidence that they are also strongly associated with cardiovascular disease, including cardiac hypertrophy, atrial fibrillation, heart failure, and myocarditis. Therefore, the regulatory role of tRNA-derived small RNA in cardiovascular disease will become an emerging therapeutic strategy. This review succinctly summarizes the characteristics, classification, and regulatory effect of tsRNA. By exploring the mechanism of tsRNA, it will provide a new tool for the diagnosis and prognosis of cardiovascular disease.
Collapse
Affiliation(s)
- Jiaxu Guo
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; (J.G.); (X.C.); (J.R.)
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; (J.G.); (X.C.); (J.R.)
| | - Jiahao Ren
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; (J.G.); (X.C.); (J.R.)
| | - Yunhong Wang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China;
| | - Kun Wang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; (J.G.); (X.C.); (J.R.)
| | - Sumin Yang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; (J.G.); (X.C.); (J.R.)
| |
Collapse
|
8
|
Nunes S, Bastos R, Marinho AI, Vieira R, Benício I, de Noronha MA, Lírio S, Brodskyn C, Tavares NM. Recent advances in the development and clinical application of miRNAs in infectious diseases. Noncoding RNA Res 2025; 10:41-54. [PMID: 39296638 PMCID: PMC11406675 DOI: 10.1016/j.ncrna.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
In the search for new biomarkers and therapeutic targets for infectious diseases, several molecules have been investigated. Small RNAs, known as microRNAs (miRs), are important regulators of gene expression, and have emerged as promising candidates for these purposes. MiRs are a class of small, endogenous non-coding RNAs that play critical roles in several human diseases, including host-pathogen interaction mechanisms. Recently, miRs signatures have been reported in different infectious diseases, opening new perspectives for molecular diagnosis and therapy. MiR profiles can discriminate between healthy individuals and patients, as well as distinguish different disease stages. Furthermore, the possibility of assessing miRs in biological fluids, such as serum and whole blood, renders these molecules feasible for the development of new non-invasive diagnostic and prognostic tools. In this manuscript, we will comprehensively describe miRs as biomarkers and therapeutic targets in infectious diseases and explore how they can contribute to the advance of existing and new tools. Additionally, we will discuss different miR analysis platforms to understand the obstacles and advances of this molecular approach and propose their potential clinical applications and contributions to public health.
Collapse
Affiliation(s)
- Sara Nunes
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Rana Bastos
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ananda Isis Marinho
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Raissa Vieira
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ingra Benício
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | | | - Sofia Lírio
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Bahiana School of Medicine and Public Health, Salvador, Brazil
| | - Cláudia Brodskyn
- Federal University of Bahia (UFBA), Salvador, Brazil
- Laboratory of Parasite-Host Interaction and Epidemiology (LaIPHE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) Iii - Instituto de Investigação Em Imunologia, São Paulo, Brazil
| | - Natalia Machado Tavares
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) Iii - Instituto de Investigação Em Imunologia, São Paulo, Brazil
| |
Collapse
|
9
|
Wang Y, Tian F, Yue S, Li J, Li A, Liu Y, Liang J, Gao Y, Xue S. miR-17-5p-Mediated RNA Activation Upregulates KPNA2 Expression and Inhibits High-Glucose-Induced Apoptosis of Sheep Granulosa Cells. Int J Mol Sci 2025; 26:943. [PMID: 39940713 PMCID: PMC11817598 DOI: 10.3390/ijms26030943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
The glucose metabolism homeostasis in the follicular fluid microenvironment plays an important role in follicular maturation and ovulation, and excessively high or low glucose concentrations have adverse effects on the differentiation of follicular granulosa cells (GCs). However, a limited number of microRNAs (miRNA) have been reported to be involved in glucose-stimulated GCs differentiation. In this study, we characterized the miRNA expression profiles of sheep ovarian GCs cultured in high-glucose and optimal glucose concentrations and focused on a differentially expressed miRNA: miR-17-5p, which may be involved in regulating high-glucose-induced GC apoptosis by targeting KPNA2. We found that overexpression of miR-17-5p significantly promoted GCs proliferation and inhibited cell apoptosis, while downregulated the mRNA and protein expression of apoptosis-related makers (Bax, Caspase-3, Caspase-9, and Bcl-2). In contrast to the classical mechanism of miRNA silencing target gene expression, miR-17-5p overexpression significantly upregulated the expression of target gene KPNA2. A dual luciferase reporter gene assay verified the targeted binding relationship between miR-17-5p and KPNA2 promoter. Meanwhile, overexpression of KPNA2 further promoted the downregulation of apoptosis-related genes driven by miR-17-5p mimics. Knockdown of KPNA2 blocked the inhibitory effect of miR-17-5p mimics on the expression of apoptosis-related genes. Our results demonstrated that miR-17-5p activated the KPNA2 promoter region and upregulated KPNA2 expression, thereby inhibiting GCs apoptosis under high glucose.
Collapse
Affiliation(s)
- Yong Wang
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (Y.W.); (F.T.); (J.L.); (Y.L.); (J.L.); (Y.G.)
| | - Feng Tian
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (Y.W.); (F.T.); (J.L.); (Y.L.); (J.L.); (Y.G.)
| | - Sicong Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (S.Y.); (A.L.)
| | - Jiuyue Li
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (Y.W.); (F.T.); (J.L.); (Y.L.); (J.L.); (Y.G.)
| | - Ao Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (S.Y.); (A.L.)
| | - Yang Liu
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (Y.W.); (F.T.); (J.L.); (Y.L.); (J.L.); (Y.G.)
| | - Jianyong Liang
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (Y.W.); (F.T.); (J.L.); (Y.L.); (J.L.); (Y.G.)
| | - Yuan Gao
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (Y.W.); (F.T.); (J.L.); (Y.L.); (J.L.); (Y.G.)
| | - Shuyuan Xue
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (Y.W.); (F.T.); (J.L.); (Y.L.); (J.L.); (Y.G.)
| |
Collapse
|
10
|
Cayatineto HW, Hakim ST. hsa-miR-548d-3p: a potential microRNA to target nucleocapsid and/or capsid genes in multiple members of the Flaviviridae family. FRONTIERS IN BIOINFORMATICS 2025; 4:1487292. [PMID: 39877236 PMCID: PMC11772435 DOI: 10.3389/fbinf.2024.1487292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Flaviviridae comprise a group of enveloped, positive-stranded RNA viruses that are mainly transmitted through either mosquitoes or tick bites and/or contaminated blood, blood products, or other body secretions. These viruses cause diseases ranging from mild to severe and are considered important human pathogens. MicroRNAs (miRNAs) are non-coding molecules involved in growth, development, cell proliferation, protein synthesis, apoptosis, and pathogenesis. These small molecules are even being used as gene suppressors in antiviral therapeutics, inhibiting viral replication. In the current study, we used bioinformatic tools to predict a possible miRNA sequence that could be complementary to the nucleocapsid (NP) and/or capsid (CP) gene of the Flaviviridae family and provide an inhibitory solution. Methods Bioinformatics is a field of science that includes tremendous computational analysis, logarithms, and sequence alignments. To predict the right alignments between miRNA and viral mRNA genomes, we used computational databases such as miRBase, NCBI, and Basic Alignment Search Tool-nucleotides (BLAST-n). Results Of the 2,600 mature miRNAs, hsa-miR-548d-3p revealed complementary sequences with the flavivirus capsid gene and bovine viral diarrhea virus (BVDV) capsid gene and was selected as a possible candidate to inhibit flaviviruses. Conclusion Although more detailed in vitro and in vivo studies are required to test the possible inhibitory effects of hsa-miR-548d-3p against flaviviruses, this computational study may be the first step to study further, developing a novel therapeutic for lethal viruses within the Flaviviridae family using suggested candidate miRNAs.
Collapse
Affiliation(s)
| | - S. T. Hakim
- Hakim’s Lab, Department of Biology, School of STEM, Diné College, Tuba City, AZ, United States
| |
Collapse
|
11
|
Chang B, Zhang X, Fang R, Li H, Zhou Y, Wang Y. Downregulation of serum miR-30c-5p serves as a biomarker to predict disease onset and short-term prognosis in acute coronary syndrome patients. J Cardiothorac Surg 2025; 20:12. [PMID: 39755617 DOI: 10.1186/s13019-024-03258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND & OBJECTIVE Timely intervention for Acute coronary syndrome (ACS) could effectively reduce the mortality rate of ACS patients. This study aimed to investigate the clinical significance of miR-30c-5p for ACS and to provide a convenient biomarker for diagnosing of ACS. METHODS Baseline information was collected from a total of 173 subjects (98 ACS subjects and 65 healthy subjects). The miR-30c-5p expression was evaluated by the Polymerase chain reaction (PCR). The predictive value of miR-30c-5p for ACS was assessed by Receiver Operating Characteristic (ROC) curve and multivariate logistic regression analysis. The relationship between miR-30c-5p expression and ACS severity was assessed by correlation analysis. Furthermore, the prognostic value of miR-30c-5p on Major Adverse Cardiovascular Events (MACE) occurrence was assessed by the Kaplan-Meier (K-M) curve to evaluate its prognostic significance. RESULTS Downregulation of miR-30c-5p was observed in ACS subjects and its diagnostic value on ACS was confirmed by the ROC curve. MiR-30c-5p could also discriminate acute myocardial infarction (AMI) from unstable angina pectoris (UAP) subjects in ACS. The expression of miR-30c-5p was negatively correlated with the cardiac troponin I (cTnI) levels and the Gensini score. A lower miR-30c-5p expression was observed in ACS subjects who developed MACE (P = 0.020), and the K-M curve further confirmed the close correlation between miR-30c-5p expression and MACE occurrence in ACS. MiR-30c-5p was also identified as an independent prognostic factor for MACE in ACS. CONCLUSIONS Serum miR-30c-5p expression was correlated with the severity of ACS, and downregulated miR-30c-5p expression showed a diagnostic and prognostic value in ACS.
Collapse
Affiliation(s)
- Bo Chang
- Department of Cardiology, The Sixth People's Hospital of Nantong, Nantong, 226001, China
| | - Xiangfeng Zhang
- Department of Internal Medicine, Shanghai Hospital of PAP, Shanghai, 201103, China
| | - Riliang Fang
- Department of Cardiovascular Medicine, The First People's Hospital of Xiaoshan District, No. 199 Shi Xin Nan Lu, Xiaoshan District, Hangzhou, 311200, China
| | - Huibin Li
- Department of Cardiovascular Medicine, The First People's Hospital of Xiaoshan District, No. 199 Shi Xin Nan Lu, Xiaoshan District, Hangzhou, 311200, China.
| | - Youdan Zhou
- Department of Cardiovascular Medicine, The First People's Hospital of Xiaoshan District, No. 199 Shi Xin Nan Lu, Xiaoshan District, Hangzhou, 311200, China
| | - Yakun Wang
- Department of Intensive Care Medicine, Hangzhou TCM, Hospital Affiliated to Zhejiang Chinese Medicine University, No.1630, Huanding Road, Shangcheng District, Hangzhou, 310044, China.
| |
Collapse
|
12
|
Foutadakis S, Soureas K, Roupakia E, Besta S, Avgeris M, Kolettas E. Identification of Oncogene-Induced Senescence-Associated MicroRNAs. Methods Mol Biol 2025; 2906:189-213. [PMID: 40082357 DOI: 10.1007/978-1-0716-4426-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Cellular senescence, a state of permanent cell cycle arrest, recapitulates the aging process at the cellular level. It can be triggered by intrinsic or extrinsic factors including telomere shortening (replicative senescence) and in response to various types of stresses such as oncogenic stress (oncogene-induced senescence, OIS). Senescence has been detected in vitro and in premalignant lesions in mice and humans expressing mutant oncogenes. MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression at the posttranscriptional level, and have been involved in both replicative senescence and OIS. Several methods have been used to identify miRNAs and compare their expression in normal versus oncogene-induced senescent cells, as well as to analyze their role and their targets in senescence. Here, we describe several methods that can be employed to identify miRNAs in cells undergoing OIS, including miRNA-sequencing, RT-qPCR-based detection and quantification of miRNAs and Nanostring miRNA analysis (nCounter miRNA Expression Assay). Moreover, we perform a meta-analysis of studies employing the above methodologies, pinpoint miRNAs with consistent expression changes across senescence models, and predict their target genes and the pathways in which they partake.
Collapse
Affiliation(s)
- Spyros Foutadakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Hellenic Institute for the Study of Sepsis, Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece
| | - Eugenia Roupakia
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, and Institute of Biosciences, Centre for Research and Innovation, University of Ioannina, Ioannina, Greece
- Molecular Cancer Biology & Senescence Group, Biomedical Research Institute, Foundation for Research and Technology, Ioannina, Greece
| | - Simoni Besta
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, and Institute of Biosciences, Centre for Research and Innovation, University of Ioannina, Ioannina, Greece
- Molecular Cancer Biology & Senescence Group, Biomedical Research Institute, Foundation for Research and Technology, Ioannina, Greece
- International Oncology Institute, The first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, and Institute of Biosciences, Centre for Research and Innovation, University of Ioannina, Ioannina, Greece.
- Molecular Cancer Biology & Senescence Group, Biomedical Research Institute, Foundation for Research and Technology, Ioannina, Greece.
| |
Collapse
|
13
|
Otsuka K, Kuriki D, Kamachi K, Tanaka A, Matsuoka R. Analysis of the Effects of Short-Term Pterostilbene Intake on Healthy Participants: A Pilot Study. J Nutr Sci Vitaminol (Tokyo) 2025; 71:70-80. [PMID: 40024751 DOI: 10.3177/jnsv.71.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Pterostilbene, a polyphenolic compound and an analog of resveratrol, exerts various biological activities and has higher bioavailability and metabolic stability than resveratrol. However, the effectiveness of pterostilbene intake in humans, particularly its effect on blood microRNA (miRNA) expression levels, has not been evaluated. Accordingly, this pilot study aimed to investigate the effects of pterostilbene on blood biochemistry and blood miRNA expression levels and the safety of continuous intake at doses of 10 or 100 mg/d over 12 wk. A double-blind, placebo-controlled parallel-arm comparison trial was conducted with 30 healthy men. In the analysis of blood miRNA expression levels, miR-34a and miR-193b showed very high increases at week 4 and after week 4 of intake, respectively, suggesting that the responders might be present among participants in the pterostilbene intake group. No adverse events were reported during the trial in any participant, and no abnormalities were observed upon examination by the responsible physician. Thus, pterostilbene intake would regulate blood miRNA expression levels, and the results can be utilized in human studies investigating miRNA expression levels with functional food ingredients.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Division of Translational Oncology, Fundamental Innovative Oncology Core, National Cancer Center Research Institute
- R&D Division, Kewpie Corporation Sengawa Kewport
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University
- Tokyo NODAI Research Institute, Tokyo University of Agriculture
| | - Daisuke Kuriki
- Division of Translational Oncology, Fundamental Innovative Oncology Core, National Cancer Center Research Institute
- R&D Division, Kewpie Corporation Sengawa Kewport
| | | | | | | |
Collapse
|
14
|
Barrero-Torres DM, Herrera-Torres G, Pérez J, Martínez-Moreno Á, Martínez-Moreno FJ, Flores-Velázquez LM, Buffoni L, Rufino-Moya PJ, Ruiz-Campillo MT, Molina-Hernández V. Unraveling the microRNAs Involved in Fasciolosis: Master Regulators of the Host-Parasite Crosstalk. Int J Mol Sci 2024; 26:204. [PMID: 39796061 PMCID: PMC11719827 DOI: 10.3390/ijms26010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Fasciolosis is a neglected tropical disease caused by helminth parasites of the genus Fasciola spp., including Fasciola hepatica (F. hepatica) and Fasciola gigantica (F. gigantica), being a major zoonotic problem of human and animal health. Its control with antihelminthics is becoming ineffective due to the increase in parasite resistance. Developing new therapeutic protocols is crucial to a deeper knowledge of the molecular bases in the host-parasite interactions. The high-throughput omics technologies have dramatically provided unprecedented insights into the complexity of the molecular host-parasite crosstalk. MicroRNAs (miRNAs) are key players as critical regulators in numerous biological processes, modifying the gene expression of cells by degradation of messenger RNA (mRNA), regulating transcription and translation functions, protein positioning, cell cycle integrity, differentiation and apoptosis. The large-scale exploration of miRNAs, including the miRNome, has offered great scientific knowledge of steps in fasciolosis, further scrutinizing the pathogenesis, the growth and development of their strains and their interaction with the host for the survival of the different parasite stages. This review compiles the updated knowledge related to miRNAs involved in fasciolosis and the generated miRNome, highlighting the importance of these key molecules in the host-parasite interactions and the pathogenesis of Fasciola spp. directing towards the development of new biotherapeutic protocols for the control of fasciolosis.
Collapse
Affiliation(s)
- Diana María Barrero-Torres
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (D.M.B.-T.); (G.H.-T.); (J.P.); (L.M.F.-V.)
| | - Guillem Herrera-Torres
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (D.M.B.-T.); (G.H.-T.); (J.P.); (L.M.F.-V.)
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (D.M.B.-T.); (G.H.-T.); (J.P.); (L.M.F.-V.)
| | - Álvaro Martínez-Moreno
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (Á.M.-M.); (F.J.M.-M.); (L.B.); (P.J.R.-M.)
| | - Francisco Javier Martínez-Moreno
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (Á.M.-M.); (F.J.M.-M.); (L.B.); (P.J.R.-M.)
| | - Luis Miguel Flores-Velázquez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (D.M.B.-T.); (G.H.-T.); (J.P.); (L.M.F.-V.)
- Unidad de Anatomía, Histología y Patología Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias Naturales, Universidad San Sebastián, Campus Puerto Montt, Puerto Montt 5480000, Chile
| | - Leandro Buffoni
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (Á.M.-M.); (F.J.M.-M.); (L.B.); (P.J.R.-M.)
| | - Pablo José Rufino-Moya
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (Á.M.-M.); (F.J.M.-M.); (L.B.); (P.J.R.-M.)
| | - María Teresa Ruiz-Campillo
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (D.M.B.-T.); (G.H.-T.); (J.P.); (L.M.F.-V.)
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (D.M.B.-T.); (G.H.-T.); (J.P.); (L.M.F.-V.)
| |
Collapse
|
15
|
Kong D, Xu M, Liu S, Liu T, Liu B, Wang X, Dong Z, Ma X, Zhao J, Lei X. Genome-Wide Identification and Expression Profiling of the SPL Transcription Factor Family in Response to Abiotic Stress in Centipedegrass. PLANTS (BASEL, SWITZERLAND) 2024; 14:62. [PMID: 39795323 PMCID: PMC11723030 DOI: 10.3390/plants14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
SQUAMOSA promoter-binding protein-like (SPL) transcription factors play a critical role in the regulation of gene expression and are indispensable in orchestrating plant growth and development while also improving resistance to environmental stressors. Although it has been identified across a wide array of plant species, there have been no comprehensive studies on the SPL gene family in centipedegrass [Eremochloa ophiuroides (Munro) Hack.], which is an important warm-season perennial C4 turfgrass. In this study, 19 potential EoSPL genes in centipedegrass were identified and assigned the names EoSPL1-EoSPL19. Gene structure and motif analysis demonstrated that there was relative consistency among the branches of the phylogenetic tree. Five pairs of segmental duplication events were detected within centipedegrass. Ten EoSPL genes were predicted to be targeted by miR156. Additionally, the EoSPL genes were found to be predominantly expressed in leaves and demonstrated diverse responses to abiotic stress (salt, drought, glufosinate ammonium, aluminum, and cold). This study offers a comprehensive insight into the SPL gene family in centipedegrass, creating a foundation for elucidating the functions of EoSPL genes and investigating their involvement in abiotic stress responses.
Collapse
Affiliation(s)
- Dandan Kong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Maotao Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Boyang Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyun Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhixiao Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu 611731, China
| |
Collapse
|
16
|
Swanson K, Bell J, Hendrix D, Jiang D, Kutzler M, Batty B, Hanlon M, Bionaz M. Bovine milk consumption affects the transcriptome of porcine adipose stem cells: Do exosomes play any role? PLoS One 2024; 19:e0302702. [PMID: 39705291 DOI: 10.1371/journal.pone.0302702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/03/2024] [Indexed: 12/22/2024] Open
Abstract
The potential association of milk with childhood obesity has been widely debated and researched. Milk is known to contain many bioactive compounds as well as bovine exosomes rich in micro-RNA (miR) that can have effects on various cells, including stem cells. Among them, adipose stem cells (ASC) are particularly interesting due to their role in adipose tissue growth and, thus, obesity. The objective of this study was to evaluate the effect of milk consumption on miR present in circulating exosomes and the transcriptome of ASC in piglets. Piglets were supplemented for 11 weeks with 750 mL of whole milk (n = 6; M) or an isocaloric maltodextrin solution (n = 6; C). After euthanasia, ASC were isolated, quantified, and characterized. RNA was extracted from passage 1 ASC and sequenced. Exosomes were isolated and quantified from the milk and plasma of the pigs at 6-8 hours after milk consumption, and miRs were isolated from exosomes and sequenced. The transfer of exosomes from milk to porcine plasma was assessed by measuring bovine milk-specific miRs and mRNA in exosomes isolated from the plasma of 3 piglets during the first 6h after milk consumption. We observed a higher proportion of exosomes in the 80 nM diameter, enriched in milk, in M vs. C pigs. Over 500 genes were differentially expressed (DEG) in ASC isolated from M vs. C pigs. Bioinformatic analysis of DEG indicated an inhibition of the immune, neuronal, and endocrine systems and insulin-related pathways in ASC of milk-fed pigs compared with maltodextrin-fed pigs. Of the 900 identified miRs in porcine plasma exosomes, only 3 miRs were differentially abundant between the two groups and could target genes associated with neuronal functions. We could not detect exosomal miRs or mRNA transfer from milk to porcine-circulating plasma exosomes. Our data highlights the significant nutrigenomic role of milk consumption on ASC, a finding that does not appear to be attributed to miRs in bovine milk exosomes. The downregulation of insulin resistance and inflammatory-related pathways in the ASC of milk-fed pigs should be further explored in relation to milk and human health. In conclusion, the bioinformatic analyses and the absence of bovine exosomal miRs in porcine plasma suggest that miRs are not vertically transferred from milk exosomes.
Collapse
Affiliation(s)
- Katherine Swanson
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Jimmy Bell
- Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - David Hendrix
- Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Duo Jiang
- Statistics, Oregon State University, Corvallis, Oregon, United States of America
| | - Michelle Kutzler
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Brandon Batty
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Melanie Hanlon
- Food Science and Technology, Oregon State University, Corvallis, Oregon, United States of America
| | - Massimo Bionaz
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
17
|
Mastriano S, Kanoria S, Rennie W, Liu C, Li D, Cheng J, Ding Y, Lu J. High-Throughput Quantification of miRNA-3'-Untranslated-Region Regulatory Effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.626985. [PMID: 39677669 PMCID: PMC11643113 DOI: 10.1101/2024.12.05.626985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
MicroRNAs (miRNAs) regulate gene expression post-transcriptionally, primarily through binding sites in 3' untranslated regions (3' UTRs). While computational and biochemical approaches have been developed to predict miRNA binding sites on target messenger RNAs, reliable and high-throughput assessment of the regulatory effects of miRNAs on full-length 3' UTRs can still be challenging. Utilizing a miniaturized and high-throughput reporter assay, we present a 'pilot miRNA-targeting map', containing 4,994 successfully measured miRNA:3' UTR regulatory outputs by pairwise assays between 461 miRNAs and eleven 3' UTRs. This collection represents a large experimental miRNA:3' UTR dataset to date on a single platform. The methodology can be generally applied to studies of miRNA-mediated regulation of critical genes. We found that seedless sites can lead to substantial downregulation. We utilized this dataset in the development of a quantitative total score for modeling the total regulatory effects by both seed and seedless sites on a full-length 3' UTR. To assess the predictive value of the total score, we analyzed data from mRNA expression and proteomics studies. We found that the score can discriminate the potent miRNA inhibition from the weak inhibition and is thus useful for quantitative prediction of miRNA regulation. The score has been added to the STarMir program of the Sfold package now available via GitHub at https://github.com/Ding-RNA-Lab/Sfold.
Collapse
Affiliation(s)
- Stephen Mastriano
- Department of Genetics and Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
- Yale Cancer Center and Center for RNA Science and Medicine, Yale University, New Haven, CT 06520, USA
| | - Shaveta Kanoria
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - William Rennie
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Chaochun Liu
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Dan Li
- Department of Genetics and Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
- Yale Cancer Center and Center for RNA Science and Medicine, Yale University, New Haven, CT 06520, USA
- Current address: Shanghai Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jijun Cheng
- Department of Genetics and Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
- Yale Cancer Center and Center for RNA Science and Medicine, Yale University, New Haven, CT 06520, USA
| | - Ye Ding
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Jun Lu
- Department of Genetics and Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
- Yale Cancer Center and Center for RNA Science and Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
18
|
Ortiz-Melo MT, Campos JE, Sánchez-Guzmán E, Herrera-Aguirre ME, Castro-Muñozledo F. Regulation of corneal epithelial differentiation: miR-141-3p promotes the arrest of cell proliferation and enhances the expression of terminal phenotype. PLoS One 2024; 19:e0315296. [PMID: 39642122 PMCID: PMC11623785 DOI: 10.1371/journal.pone.0315296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/22/2024] [Indexed: 12/08/2024] Open
Abstract
In recent years, different laboratories have provided evidence on the role of miRNAs in regulation of corneal epithelial metabolism, permeability and wound healing, as well as their alteration after surgery and in some ocular pathologies. We searched the available databases reporting miRNA expression in the human eye, looking for miRNAs highly expressed in central cornea, which could be crucial for maintenance of the epithelial phenotype. Using the rabbit RCE1(5T5) cell line as a model of corneal epithelial differentiation, we describe the participation of miR-141-3p as a possible negative regulator of the proliferative/migratory phenotype in corneal epithelial cells. The expression of miR-141-3p followed a time course similar to the differentiation-linked KRT3 cytokeratin, being delayed 24-48 hours relative to PAX6 expression; such result suggested that miR-141-3p only regulates the expression of terminal phenotype. Inhibition of miR-141-3p led to increased cell proliferation and motility, and induced the expression of molecular makers characteristic of an Epithelial Mesenchymal Transition (EMT). Comparison between the transcriptional profile of cells in which miR-141-3p was knocked down, and the transcriptomes from proliferative non-differentiated and differentiated stratified epithelia suggest that miR-141-3p is involved in the expression of terminal differentiation mediating the arrest of cell proliferation and inhibiting the EMT in highly motile early differentiating cells.
Collapse
Affiliation(s)
- María Teresa Ortiz-Melo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Jorge E. Campos
- Unidad de Biotecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Erika Sánchez-Guzmán
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - María Esther Herrera-Aguirre
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| |
Collapse
|
19
|
Semik-Gurgul E, Pawlina-Tyszko K, Gurgul A, Szmatoła T, Rybińska J, Ząbek T. In search of epigenetic hallmarks of different tissues: an integrative omics study of horse liver, lung, and heart. Mamm Genome 2024; 35:600-620. [PMID: 39143382 PMCID: PMC11522055 DOI: 10.1007/s00335-024-10057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
DNA methylation and microRNA (miRNA) expression are epigenetic mechanisms essential for regulating tissue-specific gene expression and metabolic processes. However, high-resolution transcriptome, methylome, or miRNAome data is only available for a few model organisms and selected tissues. Up to date, only a few studies have reported on gene expression, DNA methylation, or miRNA expression in adult equine tissues at the genome-wide level. In the present study, we used RNA-Seq, miRNA-seq, and reduced representation bisulfite sequencing (RRBS) data from the heart, lung, and liver tissues of healthy cold-blooded horses to identify differentially expressed genes (DEGs), differentially expressed miRNA (DE miRNA) and differentially methylated sites (DMSs) between three types of horse tissues. Additionally, based on integrative omics analysis, we described the observed interactions of epigenetic mechanisms with tissue-specific gene expression alterations. The obtained data allowed identification from 4067 to 6143 DMSs, 9733 to 11,263 mRNAs, and 155 to 185 microRNAs, differentially expressed between various tissues. We pointed out specific genes whose expression level displayed a negative correlation with the level of CpG methylation and miRNA expression and revealed biological processes that they enrich. Furthermore, we confirmed and validated the accuracy of the Next-Generation Sequencing (NGS) results with bisulfite sequencing PCR (BSP) and quantitative PCR (qPCR). This comprehensive analysis forms a strong foundation for exploring the epigenetic mechanisms involved in tissue differentiation, especially the growth and development of the equine heart, lungs, and liver.
Collapse
Affiliation(s)
- Ewelina Semik-Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland.
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, Krakow, 30-248, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, Krakow, 30-248, Poland
| | - Justyna Rybińska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| | - Tomasz Ząbek
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| |
Collapse
|
20
|
Zhang F, Ling LZ, Gao LZ. Genome-Wide Dissection of Selection on microRNA Target Genes Involved in Rice Flower Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:3281. [PMID: 39683074 DOI: 10.3390/plants13233281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Although genome-wide studies have identified a number of candidate regions evolving under selection in domesticated animals and cultivated plants, few attempts have been made, from the point of a definite biological process, to assess sequence variation and characterize the regimes of the selection on miRNA-associated motifs. Here, we performed a genome-wide dissection of nucleotide variation and selection of miRNA targets associated with rice flower development. By sampling and resequencing 26 miRNA targets for globally diverse representative populations of Asian cultivated rice and wild relatives, we found that purifying selection has reduced genetic variation at the conserved miRNA binding sites on the whole, and highly conserved miRNA binding sequences were maintained in the studied rice populations. Conversely, non-neutral evolution of positive and/or artificial selection accelerates the elevated variations at nonconserved binding sites in a population-specific behavior which may have contributed to flower development-related phenotypic variation. Taken together, our results elucidate that miRNA targets involved in flower development are under distinctive selection regimes during rice evolution.
Collapse
Affiliation(s)
- Fen Zhang
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China
| | - Li-Zhen Ling
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, The Chinese Academy of Sciences, 132, Lanhei Road, Kunming 650204, China
| | - Li-Zhi Gao
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, The Chinese Academy of Sciences, 132, Lanhei Road, Kunming 650204, China
| |
Collapse
|
21
|
Wijenayake S, Eisha S, Purohit MK, McGowan PO. Milk derived extracellular vesicle uptake in human microglia regulates the DNA methylation machinery : Short title: milk-derived extracellular vesicles and the epigenetic machinery. Sci Rep 2024; 14:28630. [PMID: 39562680 PMCID: PMC11576889 DOI: 10.1038/s41598-024-79724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
Mammalian milk contains milk-derived extracellular vesicles (MEVs), a group of biological nanovesicles that transport macromolecules. Their ability to cross the blood brain barrier and the presence of cargo capable of modifying gene function have led to the hypothesis that MEVs may play a role in brain function and development. Here, we investigated the uptake of MEVs by human microglia cells in vitro and explored the functional outcomes of MEV uptake. We examined the expression of the miR-148/152 family, highly abundant MEV microRNAs, that directly suppress the translation of DNA methyltransferase (DNMT) enzymes crucial for catalyzing DNA methylation modifications. We also measured phenotypic and inflammatory gene expression in baseline homeostatic and IFN-γ primed microglia to determine if MEVs induce anti-inflammatory effects. We found that MEVs are taken up and localize in baseline and primed microglia. In baseline microglia, MEV supplementation reduced miR-148a-5P levels, increased DNMT1 transcript, protein abundance, and enzymatic activity, compared to cells that did not receive MEVs. In primed microglia, MEV supplementation decreased miR-148a-5P levels and increased DNMT1 protein abundance, but DNMT1 transcript and enzymatic levels remained unchanged. Contrary to predictions, MEV supplementation failed to attenuate pro-inflammatory IL1β expression in primed microglia. This study provides the first evidence of MEV uptake by a brain macrophage, suggesting a potential role in regulating epigenetic machinery and neuroimmune modulation.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada.
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada.
| | - Shafinaz Eisha
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mansi Kamlesh Purohit
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Patrick Owen McGowan
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Department of Psychology, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Pareek CS, Sachajko M, Kalra G, Sultana S, Szostak A, Chalaskiewicz K, Kepka-Borkowska K, Poławska E, Ogłuszka M, Pierzchała D, Starzyński R, Taniguchi H, Juszczuk-Kubiak E, Lepczyński A, Ślaska B, Kozera W, Czarnik U, Wysocki P, Kadarmideen HN, Te Pas MFW, Szyda J, Pierzchała M. Identification of trait-associated microRNA modules in liver transcriptome of pig fed with PUFAs-enriched supplementary diet. J Appl Genet 2024:10.1007/s13353-024-00912-w. [PMID: 39546271 DOI: 10.1007/s13353-024-00912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024]
Abstract
Dietary lipids provide energy, are cellular structural components, and are involved in physiological processes. Lipids are the dietary source in supplementary diet experiments in pigs. This study aims to investigate the dietary effects of PUFAs on the hepatic transcriptome and physiological pathways of two diets on two pig breeds. Polish Landrace (PL: n = 6) and six PLxDuroc (PLxD: n = 6) pigs were fed with a normal diet (n = 3) or PUFAs-enriched healthy diet (n = 3), and the hepatic miRNA profiles were studied for weighted gene co-expression network analysis biological interactions between gene networks and metabolic pathways of DE miRNA genes. The study identified trait-associated modules that were significantly associated with four phenotypic traits in the dietary groups of PL and PLxD: meat colour (a*), shoulder subcutaneous fat thickness, conductivity 24 h post-mortem (PE24), and ashes. Trait-wise, a large set of co-expressed miRNAs of porcine liver were identified in these trait-associated significant modules (9, 7, 2, and 8) in PL and PLxD. Each module is represented by a module eigengene (ME). Forty-four miRNAs out of 94 miRNAs interacted with 6719 statistically significant target genes with a target score > 90. The GO/pathway analysis showed association with pathways including regulation of metallopeptidase activity, sebaceous gland development, collagen fibril organization, WNT signalling, epithelial tube morphogenesis, etc. The study showed the differences in miRNA expression between the dietary groups of PL and PLxD breeds. Hub genes of discovered miRNA clusters can be considered predicted miRNA genes associated with PE24, meat colour, shoulder subcutaneous fat thickness, and ashes. Discovered target genes for miRNA clusters play significant roles in biological functions such as (i) muscle and body growth development, (ii) different cellular processes and developments, (iii) system development, and (iv) metabolic processes.
Collapse
Affiliation(s)
- C S Pareek
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Toruń, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - M Sachajko
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - G Kalra
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - S Sultana
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - A Szostak
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - K Chalaskiewicz
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - K Kepka-Borkowska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - E Poławska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - M Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - D Pierzchała
- Maria Sklodowska-Curie National Research Institute of Oncology, W.K. Roentgena 5 Str, 02-781, Warsaw, Poland
| | - R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - H Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
- African Genome Center, Mohammed VI Polytechnic University, UM6P, Lot 660, Hay Moulay Rachid Ben Guerir, 43150, Morocco
| | - E Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology Prof. Wacław, Dąbrowski Institute of Agriculture and Food Biotechnology - State Research Institute (IBPRS-PIB), Rakowiecka 36 Str, 02-532, Warsaw, Poland
| | - A Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, K. Janickiego 32 Str, 71-270, Szczecin, Poland
| | - B Ślaska
- Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13 Str, 20-950, Lublin, Poland
| | - W Kozera
- Department of Pig Breeding, Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bio-Engineering, University of Warmia and Mazury in Olsztyn, Ul. M. Oczapowskiego 5 Str, 10-719, Olsztyn, Poland
| | - U Czarnik
- Department of Pig Breeding, Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bio-Engineering, University of Warmia and Mazury in Olsztyn, Ul. M. Oczapowskiego 5 Str, 10-719, Olsztyn, Poland
| | - P Wysocki
- Department of Pig Breeding, Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bio-Engineering, University of Warmia and Mazury in Olsztyn, Ul. M. Oczapowskiego 5 Str, 10-719, Olsztyn, Poland
| | - H N Kadarmideen
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Alle 20, 8830, Tjele, Denmark
| | - M F W Te Pas
- Wageningen Livestock Research, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - J Szyda
- Biostatistics Group, Department of Genetics, Wrocław University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wrocław, Poland
| | - M Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland.
| |
Collapse
|
23
|
Li X, Qian B, Chen X, Shen M, Zhao S, Zhang X, He J. The role of miR-152 in urological tumors: potential biomarkers and therapeutic targets. Front Immunol 2024; 15:1464327. [PMID: 39606232 PMCID: PMC11599204 DOI: 10.3389/fimmu.2024.1464327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Urological malignant tumors pose a significant threat to human health, with a high incidence rate each year. Prostate cancer, bladder cancer, and renal cell carcinoma are among the most prevalent and extensively researched urological malignancies. Despite advancements in research, the prognosis for these tumors remains unfavorable due to late detection, postoperative recurrence, and treatment resistance. A thorough investigation into their pathogenesis is crucial for early diagnosis and treatment. Recent studies have highlighted the close association between microRNAs (miRNAs) and cancer progression. miRNAs are small non-coding RNAs composed of 19-23 nucleotides that regulate gene expression by binding to the 3' untranslated region (3'UTR) of target mRNAs, impacting key cellular processes such as proliferation, differentiation, apoptosis, and migration. Dysregulation of miRNAs can disrupt the expression of oncogenes and tumor suppressor genes, contributing to cancer development. Among the various miRNAs studied, miR-152 has garnered attention for its role in urological malignancies. Several studies have indicated that dysregulation of miR-152 expression is significant in these cancers, warranting a comprehensive review of the evidence. This review focuses on the expression and function of miR-152 in prostate cancer, bladder cancer, and renal cell carcinoma, elucidating its mechanisms in cancer progression and exploring its potential as a therapeutic target and biomarker in urological malignancies.
Collapse
Affiliation(s)
- Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Biao Qian
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xu Chen
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xinsheng Zhang
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian He
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
24
|
Mohajeri Khorasani A, Raghibi A, Haj Mohammad Hassani B, Bolbolizadeh P, Amali A, Sadeghi M, Farshidi N, Dehghani A, Mousavi P. Decoding the Role of NEIL1 Gene in DNA Repair and Lifespan: A Literature Review with Bioinformatics Analysis. Adv Biol (Weinh) 2024; 8:e2300708. [PMID: 39164210 DOI: 10.1002/adbi.202300708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/21/2024] [Indexed: 08/22/2024]
Abstract
Longevity, the length of an organism's lifespan, is impacted by environmental factors, metabolic processes, and genetic determinants. The base excision repair (BER) pathway is crucial for maintaining genomic integrity by repairing oxidatively modified base lesions. Nei-like DNA Glycosylase 1 (NEIL1), part of the BER pathway, is vital in repairing oxidative bases in G-rich DNA regions, such as telomeres and promoters. Hence, in this comprehensive review, it have undertaken a meticulous investigation of the intricate association between NEIL1 and longevity. The analysis delves into the multifaceted aspects of the NEIL1 gene, its various RNA transcripts, and the diverse protein isoforms. In addition, a combination of bioinformatic analysis is conducted to identify NEIL1 mutations, transcription factors, and epigenetic modifications, as well as its lncRNA/pseudogene/circRNA-miRNA-mRNA regulatory network. The findings suggest that the normal function of NEIL1 is a significant factor in human health and longevity, with defects in NEIL1 potentially leading to various cancers and related syndromes, Alzheimer's disease, obesity, and diabetes.
Collapse
Affiliation(s)
- Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Alireza Raghibi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416634793, Iran
| | - Behzad Haj Mohammad Hassani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Pedram Bolbolizadeh
- Student Research Committee, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Arian Amali
- School of Infection & Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mahboubeh Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Narges Farshidi
- Department of Pharmaceutics, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- USERN Office, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Aghdas Dehghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| |
Collapse
|
25
|
Pale M, Pérez-Torres CA, Arenas-Huertero C, Villafán E, Sánchez-Rangel D, Ibarra-Laclette E. Genome-Wide Transcriptional Response of Avocado to Fusarium sp. Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2886. [PMID: 39458832 PMCID: PMC11511450 DOI: 10.3390/plants13202886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
The avocado crop is relevant for its economic importance and because of its unique evolutionary history. However, there is a lack of information regarding the molecular processes during the defense response against fungal pathogens. Therefore, using a genome-wide approach in this work, we investigated the transcriptional response of the Mexican horticultural race of avocado (Persea americana var. drymifolia), including miRNAs profile and their possible targets. For that, we established an avocado-Fusarium hydroponic pathosystem and studied the response for 21 days. To guarantee robustness in the analysis, first, we improved the avocado genome assembly available for this variety, resulting in 822.49 Mbp in length with 36,200 gene models. Then, using an RNA-seq approach, we identified 13,778 genes differentially expressed in response to the Fusarium infection. According to their expression profile across time, these genes can be clustered into six groups, each associated with specific biological processes. Regarding non-coding RNAs, 8 of the 57 mature miRNAs identified in the avocado genome are responsive to infection caused by Fusarium, and the analysis revealed a total of 569 target genes whose transcript could be post-transcriptionally regulated. This study represents the first research in avocados to comprehensively explore the role of miRNAs in orchestrating defense responses against Fusarium spp. Also, this work provides valuable data about the genes involved in the intricate response of the avocado during fungal infection.
Collapse
Affiliation(s)
- Michel Pale
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Catalina Arenas-Huertero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, San Luis Potosí, Mexico;
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Diana Sánchez-Rangel
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| |
Collapse
|
26
|
Tavares WCM, Maretto V, Silveira V, Pinto VB, Bustamante-Filho IC, Quirino CR, Ortiz Vega WH, Caldas-Bussiere MC. Impact of the near-physiological temperature on the in vitro maturation of bovine oocytes: A comparative proteomic approach. Theriogenology 2024; 228:64-74. [PMID: 39098122 DOI: 10.1016/j.theriogenology.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
In vivo, the temperature inside preovulatory follicles of cows is approximately 1 °C lower than rectal temperature. However, standard bovine oocyte in vitro maturation (IVM) protocols use 38.5 °C based on rectal temperature. This study evaluated the effect of reducing IVM temperature to 37.5 °C on the proteomic profile of oocytes compared to the routine 38.5 °C. Nuclear maturation rate and cumulus cell (CC) expansion (30 COCs per group, 21 replicates) were assessed by observing the first polar body and using a subjective scoring method (0-4). Total nitrite concentrations in the culture medium were measured using the Griess method. Differential proteomics was performed using LC-MS/MS on pooled oocyte samples (500 matured oocytes per group, three replicates), followed by gene ontology enrichment, protein-protein interaction, and putative miRNA target analyses. No significant differences were observed between the groups in nuclear maturation, CC expansion, or nitrite concentration (P > 0.05). A total of 806 proteins were identified, with 7 up-regulated and 12 down-regulated in the treatment group compared to the control. Additionally, 12 proteins were unique to the control group, and 8 were unique to the treatment group. IVM at 37.5 °C resulted in the upregulation of proteins involved in protein folding and GTP binding, and the downregulation of enzymes with oxidoreductase activity and proteins involved in cytoskeletal fiber formation. Furthermore, 43 bovine miRNAs potentially regulating these genes (DES, HMOX2, KRT75, FARSA, IDH2, CARHSP1) were identified. We conclude that IVM of bovine oocytes at 37.5 °C induces significant proteomic changes without impacting nuclear maturation, cumulus cell expansion, or nitrite concentration in the IVM medium.
Collapse
Affiliation(s)
- Winny Caldas Moreno Tavares
- Laboratory of Animal Reproduction and Breeding, State University of Norte Fluminense 'Darcy Ribeiro' (Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF), Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, RJ, 28013-602, Brazil
| | - Vinicius Maretto
- Laboratory of Animal Reproduction and Breeding, State University of Norte Fluminense 'Darcy Ribeiro' (Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF), Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, RJ, 28013-602, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Vitor Batista Pinto
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Ivan Cunha Bustamante-Filho
- Laboratório de Biotecnologia da Reprodução Animal, Universidade do Vale do Taquari - Univates, Rua Avelino Tallini, 171, Lajeado, RS, 95914-014, Brazil
| | - Celia Raquel Quirino
- Laboratory of Animal Reproduction and Breeding, State University of Norte Fluminense 'Darcy Ribeiro' (Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF), Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, RJ, 28013-602, Brazil
| | - Wilder Hernando Ortiz Vega
- Laboratory of Animal Reproduction and Breeding, State University of Norte Fluminense 'Darcy Ribeiro' (Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF), Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, RJ, 28013-602, Brazil
| | - Maria Clara Caldas-Bussiere
- Laboratory of Animal Reproduction and Breeding, State University of Norte Fluminense 'Darcy Ribeiro' (Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF), Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, RJ, 28013-602, Brazil.
| |
Collapse
|
27
|
Woronowicz KC, Esin EV, Markevich GN, Martinez CS, McMenamin SK, Daane JM, Harris MP, Shkil FN. Phylogenomic analysis of the Lake Kronotskoe species flock of Dolly Varden charr reveals genetic and developmental signatures of sympatric radiation. Development 2024; 151:dev203002. [PMID: 39417576 PMCID: PMC11698049 DOI: 10.1242/dev.203002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Recent adaptive radiations provide experimental opportunities to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetic analyses as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, charr species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotskoe represent the most extensive radiation described for the genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages within the clade. We find that changes in genes associated with thyroid signaling and craniofacial development provided a foundational shift in evolution to the lake. The thyroid axis is further implicated in subsequent lineage partitioning events. These results delineate a genetic scenario for the diversification of specialized lineages and highlight a common axis of change biasing the generation of specific forms during adaptive radiation.
Collapse
Affiliation(s)
- Katherine C. Woronowicz
- Department of Orthopedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Evgeny V. Esin
- Laboratory of Lower Vertebrate Ecology, Severtsov Institute, Moscow 119071, Russian Federation
| | - Grigorii N. Markevich
- Laboratory of Lower Vertebrate Ecology, Severtsov Institute, Moscow 119071, Russian Federation
| | | | | | - Jacob M. Daane
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Matthew P. Harris
- Department of Orthopedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Fedor N. Shkil
- Laboratory of Evolutionary Morphology, Severtsov Institute, Moscow 119071, Russian Federation
- Laboratory of Postembryonic Development, Koltzov Institute, Moscow 119071, Russian Federation
| |
Collapse
|
28
|
Chamorro CI, Fossum M. Exploring the Role of miR-132 in Rat Bladders and Human Urothelial Cells during Wound Healing. Int J Mol Sci 2024; 25:11039. [PMID: 39456820 PMCID: PMC11508042 DOI: 10.3390/ijms252011039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Urinary bladder wound healing shares many features with skin healing, involving several molecular players, including microRNAs (miRs). This study investigated the role of miR-132 in urothelial cells. We analyzed miR-132 expression in rat bladder using in situ hybridization and conducted gain and loss of miR-132 function assays in primary human urothelial cells (HUCs). These assays included cell proliferation and migration studies. To explore the regulation of miR-132 expression, cells were treated with wound-healing-related factors such as interleukin 6 (IL-6), interleukin 10 (IL-10), and transforming growth factor beta-1 (TGF-β1). Predictive bioinformatics and a literature review identified potential miR-132 targets, which were validated through real-time polymerase chain reaction (RT-PCR) and Western blot analysis. miR-132 was found to promote cellular proliferation and migration during the early stages of urothelial wound repair. Its expression was modulated by key cytokines such as IL-6, IL-10, and TGF-β1. miR-132 played a crucial role in urothelial wound healing by enhancing cell proliferation and migration, regulated by cytokines, suggesting its action within a complex regulatory network. These findings highlight the therapeutic potential of targeting miR-132 in bladder injury repair, offering new insights into bladder repair mechanisms.
Collapse
Affiliation(s)
- Clara I. Chamorro
- Department of Women’s and Children’s Health, Karolinska Institutet, Biomedicum A4, Tomtebodavägen 16, Solna, 17165 Stockholm, Sweden
- Laboratory of Tissue Engineering, Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospitalet Rigshospitalet, 2100 Copenhagen, Denmark
| | - Magdalena Fossum
- Department of Women’s and Children’s Health, Karolinska Institutet, Biomedicum A4, Tomtebodavägen 16, Solna, 17165 Stockholm, Sweden
- Laboratory of Tissue Engineering, Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospitalet Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, 2200 Copenhagen, Denmark
| |
Collapse
|
29
|
Lin J, Wu Z, Zheng Y, Shen Z, Gan Z, Ma S, Liu Y, Xiong F. Plasma-derived exosomal miRNA profiles reveal potential epigenetic pathogenesis of premature ovarian failure. Hum Genet 2024; 143:1021-1034. [PMID: 38054996 DOI: 10.1007/s00439-023-02618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/11/2023] [Indexed: 12/07/2023]
Abstract
The role of plasma-derived exosomal miRNA in premature ovarian failure (POF) remains unclear. This study aimed to investigate the epigenetic pathogenesis of POF through exosomal miRNA sequencing. Exosomes were isolated and characterized from six POF patients and four healthy individuals using nanoparticle tracking analysis, transmission electron microscopy and western blot analysis. Exosomal miRNA sequencing was performed to identify differentially expressed miRNAs with |fold change| greater than 1.5 and p value less than 0.05. Bioinformatics analysis in GSE39501 dataset and our sequencing data was conducted to investigate underlying mechanisms of POF. The functional role of hsa-miR-19b-3p was assessed using CCK8, western blot, flow cytometry and fluorescence staining. The regulatory effect of hsa-miR-19b-3p on BMPR2 was investigated through miRNA transfection, qPCR analysis, and luciferase reporter assay. Statistical significance was determined using t-tests and one-way ANOVA (p < 0.05). Exosomal miRNA sequencing revealed 18 dysregulated miRNAs in POF patients compared to healthy controls. Functional enrichment analysis demonstrated their involvement in cell growth, oocyte meiosis and PI3K-Akt signaling pathways. Moreover, the constructed miRNA-mRNA network unveiled potential regulatory mechanisms underlying POF, particularly implicating hsa-miR-19b-3p in the regulation of BMPR2. In vitro assays conducted on KGN cells confirmed that hsa-miR-19b-3p promoted apoptosis, as evidenced by reduced cell viability, decayed mitochondrial membrane potential and increased apoptotic rate, thereby supporting its role in POF. Notably, hsa-miR-19b-3p was found to significantly downregulate BMPR2 expression via targeting its 3'UTR, while co-expression analysis revealed strong associations between BMPR2 and POF-related processes. This study sheds light on the epigenetic pathogenesis of POF by investigating exosomal miRNA profiles. Particularly, hsa-miR-19b-3p emerged as a potential regulator of BMPR2 and demonstrated its functional significance in POF through modulation of apoptosis.
Collapse
Affiliation(s)
- Jiaqiong Lin
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, China
| | - Zhihong Wu
- Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Yingchun Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zongrui Shen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongzhi Gan
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shunfei Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanhui Liu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Fu Xiong
- Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
30
|
Thivierge C, Bellefeuille M, Diwan SS, Dyakov BJA, Leventis R, Perron G, Najafabadi HS, Gravel SP, Gingras AC, Duchaine TF. Paraspeckle-independent co-transcriptional regulation of nuclear microRNA biogenesis by SFPQ. Cell Rep 2024; 43:114695. [PMID: 39250314 DOI: 10.1016/j.celrep.2024.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in physiological functions and disease, but the regulation of their nuclear biogenesis remains poorly understood. Here, BioID on Drosha, the catalytic subunit of the microprocessor complex, reveals its proximity to splicing factor proline- and glutamine (Q)-rich (SFPQ), a multifunctional RNA-binding protein (RBP) involved in forming paraspeckle nuclear condensates. SFPQ depletion impacts both primary and mature miRNA expression, while other paraspeckle proteins (PSPs) or the paraspeckle scaffolding RNA NEAT1 do not, indicating a paraspeckle-independent role. Comprehensive transcriptomic analyses show that SFPQ loss broadly affects RNAs and miRNA host gene (HG) expression, influencing both their transcription and the stability of their products. Notably, SFPQ protects the oncogenic miR-17∼92 polycistron from degradation by the nuclear exosome targeting (NEXT)-exosome complex and is tightly linked with its overexpression across a broad variety of cancers. Our findings reveal a dual role for SFPQ in regulating miRNA HG transcription and stability, as well as its significance in cancers.
Collapse
Affiliation(s)
- Caroline Thivierge
- Rosalind and Morris Goodman Cancer Institute, McGill Centre for RNA Sciences & Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Maxime Bellefeuille
- Rosalind and Morris Goodman Cancer Institute, McGill Centre for RNA Sciences & Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Sarah-Slim Diwan
- Rosalind and Morris Goodman Cancer Institute, McGill Centre for RNA Sciences & Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Boris J A Dyakov
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Rania Leventis
- Rosalind and Morris Goodman Cancer Institute, McGill Centre for RNA Sciences & Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Gabrielle Perron
- McGill Genome Centre & Department of Human Genetics, McGill University, Montréal, QC H3A 0G1, Canada
| | - Hamed S Najafabadi
- McGill Genome Centre & Department of Human Genetics, McGill University, Montréal, QC H3A 0G1, Canada
| | | | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Thomas F Duchaine
- Rosalind and Morris Goodman Cancer Institute, McGill Centre for RNA Sciences & Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
31
|
Ma H, Liu Y, Tian X, Chen Y, Gao S. Transcriptome-Wide Evaluation Characterization of microRNAs and Assessment of Their Functional Roles as Regulators of Diapause in Ostrinia furnacalis Larvae (Lepidoptera: Crambidae). INSECTS 2024; 15:702. [PMID: 39336670 PMCID: PMC11432511 DOI: 10.3390/insects15090702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
microRNAs (miRNAs) function as vital regulators of diapause in insects through their ability to post-transcriptionally suppress target gene expression. In this study, the miRNA of Ostrinia furnacalis, an economically important global crop pest species, was characterized. For the included analyses, 9 small RNA libraries were constructed using O. furnacalis larvae in different diapause states (non-diapause, ND; diapause, D; diapause-termination, DT). The results identified 583 total miRNAs, of which 256 had previously been identified, whereas 327 were novel. Furthermore, comparison analysis revealed that 119 and 27 miRNAs were differentially expressed in the D vs. ND and DT vs. D, respectively. Moreover, the expression patterns of their miRNAs were also analyzed. GO and KEGG analysis of the target genes of differentially expressed miRNAs highlighted the importance of these miRNAs as diapause regulators in O. furnacalis, especially through metabolic processes, endocrine processes, 20-hydroxyecdysone, and circadian clock signaling pathways. In summary, this study highlighted the involvement of specific miRNAs in the control of diapause in O. furnacalis. To the best of our knowledge, this is the first study to identify miRNA expression patterns in O. furnacalis, thereby providing reference and novel evidence enhancing our current understanding of how small RNAs influence insect diapause.
Collapse
Affiliation(s)
- Hongyue Ma
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.L.); (X.T.); (Y.C.)
| | - Ye Liu
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.L.); (X.T.); (Y.C.)
| | - Xun Tian
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.L.); (X.T.); (Y.C.)
| | - Yujie Chen
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.L.); (X.T.); (Y.C.)
| | - Shujing Gao
- Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| |
Collapse
|
32
|
Cherlin T, Jing Y, Shah S, Kennedy A, Telonis AG, Pliatsika V, Wilson H, Thompson L, Vlantis PI, Loher P, Leiby B, Rigoutsos I. The subcellular distribution of miRNA isoforms, tRNA-derived fragments, and rRNA-derived fragments depends on nucleotide sequence and cell type. BMC Biol 2024; 22:205. [PMID: 39267057 PMCID: PMC11397057 DOI: 10.1186/s12915-024-01970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/01/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND MicroRNA isoforms (isomiRs), tRNA-derived fragments (tRFs), and rRNA-derived fragments (rRFs) represent most of the small non-coding RNAs (sncRNAs) found in cells. Members of these three classes modulate messenger RNA (mRNA) and protein abundance and are dysregulated in diseases. Experimental studies to date have assumed that the subcellular distribution of these molecules is well-understood, independent of cell type, and the same for all isoforms of a sncRNA. RESULTS We tested these assumptions by investigating the subcellular distribution of isomiRs, tRFs, and rRFs in biological replicates from three cell lines from the same tissue and same-sex donors that model the same cancer subtype. In each cell line, we profiled the isomiRs, tRFs, and rRFs in the nucleus, cytoplasm, whole mitochondrion (MT), mitoplast (MP), and whole cell. Using a rigorous mathematical model we developed, we accounted for cross-fraction contamination and technical errors and adjusted the measured abundances accordingly. Analyses of the adjusted abundances show that isomiRs, tRFs, and rRFs exhibit complex patterns of subcellular distributions. These patterns depend on each sncRNA's exact sequence and the cell type. Even in the same cell line, isoforms of the same sncRNA whose sequences differ by a few nucleotides (nts) can have different subcellular distributions. CONCLUSIONS SncRNAs with similar sequences have different subcellular distributions within and across cell lines, suggesting that each isoform could have a different function. Future computational and experimental studies of isomiRs, tRFs, and rRFs will need to distinguish among each molecule's various isoforms and account for differences in each isoform's subcellular distribution in the cell line at hand. While the findings add to a growing body of evidence that isomiRs, tRFs, rRFs, tRNAs, and rRNAs follow complex intracellular trafficking rules, further investigation is needed to exclude alternative explanations for the observed subcellular distribution of sncRNAs.
Collapse
Affiliation(s)
- Tess Cherlin
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Jing
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
| | - Siddhartha Shah
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
| | - Anne Kennedy
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aristeidis G Telonis
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- University of Miami, Miami, FL, USA
| | - Venetia Pliatsika
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- New York University, New York, NY, USA
| | - Haley Wilson
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lily Thompson
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Panagiotis I Vlantis
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- Independent Scholar, Athens, Greece
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
| | - Benjamin Leiby
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA, 19017, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA.
| |
Collapse
|
33
|
Timofeeva AM, Nikitin AO, Nevinsky GA. Circulating miRNAs in the Plasma of Post-COVID-19 Patients with Typical Recovery and Those with Long-COVID Symptoms: Regulation of Immune Response-Associated Pathways. Noncoding RNA 2024; 10:48. [PMID: 39311385 PMCID: PMC11417918 DOI: 10.3390/ncrna10050048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Following the acute phase of SARS-CoV-2 infection, certain individuals experience persistent symptoms referred to as long COVID. This study analyzed the patients categorized into three distinct groups: (1) individuals presenting rheumatological symptoms associated with long COVID, (2) patients who have successfully recovered from COVID-19, and (3) donors who have never contracted COVID-19. A notable decline in the expression of miR-200c-3p, miR-766-3p, and miR-142-3p was identified among patients exhibiting rheumatological symptoms of long COVID. The highest concentration of miR-142-3p was found in healthy donors. One potential way to reduce miRNA concentrations is through antibody-mediated hydrolysis. Not only can antibodies possessing RNA-hydrolyzing activity recognize the miRNA substrate specifically, but they also catalyze its hydrolysis. The analysis of the catalytic activity of plasma antibodies revealed that antibodies from patients with long COVID demonstrated lower hydrolysis activity against five fluorescently labeled oligonucleotide sequences corresponding to the Flu-miR-146b-5p, Flu-miR-766-3p, Flu-miR-4742-3p, and Flu-miR-142-3p miRNAs and increased activity against the Flu-miR-378a-3p miRNA compared to other patient groups. The changes in miRNA concentrations and antibody-mediated hydrolysis of miRNAs are assumed to have a complex regulatory mechanism that is linked to gene pathways associated with the immune system. We demonstrate that all six miRNAs under analysis are associated with a large number of signaling pathways associated with immune response-associated pathways.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem O. Nikitin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
34
|
Đorđević DB, Koračević GP, Đorđević AD, Lović DB. Hypertension and left ventricular hypertrophy. J Hypertens 2024; 42:1505-1515. [PMID: 38747417 DOI: 10.1097/hjh.0000000000003774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
In the initial stage, left ventricular hypertrophy (LVH) is adaptive, but in time, it transforms to maladaptive LVH which is specific for the development of various phenotypes that cause heart failure, initially with preserved, but later with reduced left ventricular ejection fraction. Pathophysiological mechanisms, which are characteristic for remodeling procedure, are numerous and extremely complex, and should be subjected to further research with the aim of making a comprehensive overview of hypertensive heart disease (HHD) and discovering new options for preventing and treating HHD. The contemporary methods, such as cardiac magnetic resonance (CMR) and computed tomography (CT) provide very accurate morphological and functional information on HHD. The objective of this review article is to summarize the available scientific information in terms of prevalence, pathophysiology, diagnostics, prevention, contemporary therapeutic options, as well as to present potential therapeutic solutions based on the research of pathological mechanisms which are at the core of HHD.
Collapse
Affiliation(s)
- Dragan B Đorđević
- Faculty of Medicine, University of Nis
- Institute for Treatment and Rehabilitation Niska Banja
| | - Goran P Koračević
- Faculty of Medicine, University of Nis
- Department for Cardiovascular Diseases, Clinical Center Nis, Nis, Serbia
| | | | - Dragan B Lović
- Clinic for Internal Diseases Intermedica, Singidunum University Nis, Jovana Ristica, Nis, Serbia
- Veterans Affair Medical Centre, Washington DC, USA
| |
Collapse
|
35
|
Pinto GV, Rai P, Kabekkodu SP, Karunasagar I, Kumar BK. Identification of circulating miRNA biomarkers in leptospirosis for early detection: A promising diagnostic approach. Microb Pathog 2024; 193:106781. [PMID: 38969187 DOI: 10.1016/j.micpath.2024.106781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Leptospirosis is a zoonotic disease of global significance, contributing to morbidity and mortality worldwide. It is endemic to tropical regions, with outbreaks during monsoons. The disease manifestations are similar to that of other febrile illness such as dengue, malaria hence often misdiagnosed and underreported. The zoonoses if undetected, progresses to cause severe life-threatening complications also known as Weil's disease. Routine diagnostic tests are based on the detection of antibodies in patient serum and are not accurate during the initial phase of the infection. Therefore, it is necessary to detect novel biomarkers that can be used in early detection of leptospirosis. Circulating miRNAs are known to be promising biomarkers for various diseases including cancer, tuberculosis, influenza; hence in this study the potential of miRNAs as biomarkers for leptospirosis was evaluated. A total of 30 leptospirosis cases were screened for the differential expression of 10 miRNA by RT-qPCR assay. The differential expression was calculated by relative quantification using healthy individuals as controls. Among the 10 miRNA,3 miRNA, miR-28-5p, miR-302c-3p and miR-302a-3p were reported to exhibit a significant trend of upregulation. Further their role in immune pathways and biological processes was investigated by KEGG analysis and Gene Ontology. The 3 miRNAs were observed to target various immune response pathways, thus confirming their role in host immune response. Based on the results obtained in this study, miR-28-5p, miR-302c-3p and miR-302a-3p can be considered as potential biomarkers for the detection of leptospirosis.
Collapse
Affiliation(s)
- Gillaine Vail Pinto
- Nitte (Deemed to Be University), Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Praveen Rai
- Nitte (Deemed to Be University), Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Shama Prakash Kabekkodu
- Nitte (Deemed to Be University), Department of General Medicine, K.S. Hegde Medical Academy, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Indrani Karunasagar
- Nitte (Deemed to Be University), Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to Be University), Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
36
|
Konigsberg IR, Lin NW, Liao SY, Liu C, MacPhail K, Mroz MM, Davidson E, Restrepo CI, Sharma S, Li L, Maier LA, Yang IV. Multi-omic signatures of sarcoidosis and progression in bronchoalveolar lavage cells. Respir Res 2024; 25:289. [PMID: 39080656 PMCID: PMC11290275 DOI: 10.1186/s12931-024-02919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Sarcoidosis is a heterogeneous granulomatous disease with no accurate biomarkers of disease progression. Therefore, we profiled and integrated the DNA methylome, mRNAs, and microRNAs to identify molecular changes associated with sarcoidosis and disease progression that might illuminate underlying mechanisms of disease and potential biomarkers. METHODS Bronchoalveolar lavage cells from 64 sarcoidosis subjects and 16 healthy controls were used. DNA methylation was profiled on Illumina HumanMethylationEPIC arrays, mRNA by RNA-sequencing, and miRNAs by small RNA-sequencing. Linear models were fit to test for effect of sarcoidosis diagnosis and progression phenotype, adjusting for age, sex, smoking, and principal components of the data. We built a supervised multi-omics model using a subset of features from each dataset. RESULTS We identified 1,459 CpGs, 64 mRNAs, and five miRNAs associated with sarcoidosis versus controls and four mRNAs associated with disease progression. Our integrated model emphasized the prominence of the PI3K/AKT1 pathway, which is important in T cell and mTOR function. Novel immune related genes and miRNAs including LYST, RGS14, SLFN12L, and hsa-miR-199b-5p, distinguished sarcoidosis from controls. Our integrated model also demonstrated differential expression/methylation of IL20RB, ABCC11, SFSWAP, AGBL4, miR-146a-3p, and miR-378b between non-progressive and progressive sarcoidosis. CONCLUSIONS Leveraging the DNA methylome, transcriptome, and miRNA-sequencing in sarcoidosis BAL cells, we detected widespread molecular changes associated with disease, many which are involved in immune response. These molecules may serve as diagnostic/prognostic biomarkers and/or drug targets, although future testing is required for confirmation.
Collapse
Affiliation(s)
- Iain R Konigsberg
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA.
| | - Nancy W Lin
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA.
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Shu-Yi Liao
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, CO, USA
| | - Cuining Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Kristyn MacPhail
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Margaret M Mroz
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Elizabeth Davidson
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Clara I Restrepo
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Sunita Sharma
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Li Li
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Lisa A Maier
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, CO, USA
| | - Ivana V Yang
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
37
|
de Oliveira AC, Bovolenta LA, Figueiredo L, Ribeiro ADO, Pereira BJA, de Almeida TRA, Campos VF, Patton JG, Pinhal D. MicroRNA Transcriptomes Reveal Prevalence of Rare and Species-Specific Arm Switching Events During Zebrafish Ontogenesis. Evol Bioinform Online 2024; 20:11769343241263230. [PMID: 39055772 PMCID: PMC11271096 DOI: 10.1177/11769343241263230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
In metazoans, microRNAs (miRNAs) are essential regulators of gene expression, affecting critical cellular processes from differentiation and proliferation, to homeostasis. During miRNA biogenesis, the miRNA strand that loads onto the RNA-induced Silencing Complex (RISC) can vary, leading to changes in gene targeting and modulation of biological pathways. To investigate the impact of these "arm switching" events on gene regulation, we analyzed a diverse range of tissues and developmental stages in zebrafish by comparing 5p and 3p arms accumulation dynamics between embryonic developmental stages, adult tissues, and sexes. We also compared variable arm usage patterns observed in zebrafish to other vertebrates including arm switching data from fish, birds, and mammals. Our comprehensive analysis revealed that variable arm usage events predominantly take place during embryonic development. It is also noteworthy that isomiR occurrence correlates to changes in arm selection evidencing an important role of microRNA distinct isoforms in reinforcing and modifying gene regulation by promoting dynamics switches on miRNA 5p and 3p arms accumulation. Our results shed new light on the emergence and coordination of gene expression regulation and pave the way for future investigations in this field.
Collapse
Affiliation(s)
- Arthur Casulli de Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Luiz Augusto Bovolenta
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Lucas Figueiredo
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Amanda De Oliveira Ribeiro
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Beatriz Jacinto Alves Pereira
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Talita Roberto Aleixo de Almeida
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Vinicius Farias Campos
- Laboratory of Structural Genomics, Postgraduate Program in Biotechnology, Center for Technological Development, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA
| | - Danillo Pinhal
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
38
|
Cui J, Piao J, Han H, Peng W, Lin M, Zhou D, Zhu C, Gong X. Semiarbitrary qPCR for Sensitive Detection of Circulating miRNA via Terminal Deoxynucleotidyl Transferase-Assisted RNA-Primed DNA Polymerization. Anal Chem 2024; 96:10496-10505. [PMID: 38896549 DOI: 10.1021/acs.analchem.3c05723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Circulating microRNAs (miRNAs) have recently emerged as noninvasive disease biomarkers. Quantitative detection of circulating miRNAs could offer significant information for clinical diagnosis due to its significance in the development of biological processes. In response to the current challenges of circulating miRNA detection, we introduce a sensitive, selective, and versatile circulating miRNA detection strategy using terminal deoxynucleotidyl transferase (TdT)-catalyzed RNA-primed DNA polymerization (TCRDP) coupled with semiarbitrary qPCR (SAPCR). Semiarbitrary qPCR was first developed here to detect long fragment targets with only a short-known sequence or to detect a short fragment target after extension with terminal transferase. Besides, the subsequent results show that TdT has a preference for RNA, particularly for extending RNAs with purine-rich and unstructured ends. Consequently, utilizing this assay, we have successfully applied it to the quantitative analysis of circulating miR-122 in animal models, a sensitive and informative biomarker for drug-induced liver injury, and as low as 200 zmol of the target is detected with desirable specificity and sensitivity, indicating that the TCRDP-SAPCR can offer a promising platform for nucleic acids analysis.
Collapse
Affiliation(s)
- Jingyu Cui
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jiafang Piao
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Houyu Han
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Weipan Peng
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Mengyao Lin
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Dianming Zhou
- Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiaoqun Gong
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
39
|
Pasquariello R, Pennarossa G, Arcuri S, Fernandez-Fuertes B, Lonergan P, Brevini TAL, Gandolfi F. Sperm fertilizing ability in vitro influences bovine blastocyst miRNA content. Theriogenology 2024; 222:1-9. [PMID: 38581760 DOI: 10.1016/j.theriogenology.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that orchestrate a wide range of biological processes through post-transcriptional regulation of gene expression. During development, miRNAs play a key role in driving embryo patterning and morphogenesis in a specific and stage-dependent manner. Here, we investigated whether sperm from bulls with different fertilizing ability in vitro influence blastocyst quality and miRNA content. Results demonstrate that blastocysts obtained using sperm from high fertility sires (H group) display significantly greater cleavage and blastocyst development as well as greater transcript abundance in blastocysts for the developmental competence markers CDX2, KRT8, NANOG, OCT4, PLAC8, PTGS2, SOX17, and SOX2, compared to blastocysts generated using sperm from low fertility sires (L group). In parallel, high throughput deep sequencing and differential expression studies revealed that H blastocysts exhibit a greater miRNA content compared to L blastocysts, with hsa-miR-4755-5p and hsa-miR-548d-3p uniquely detected in the H group, and greater abundance of hsa-miR-1225-3p in the H group. Gene ontology (GO) and KEGG pathway analyses indicated that the 3 differentially expressed miRNAs identified are involved in the regulation of many biological mechanisms with a key role in aspects of early embryo development, including transcriptional regulation, cellular biosynthesis, nucleic acid metabolism, cellular differentiation, apoptosis, cytoskeleton remodeling, cell-to-cell interactions, and endocytosis. Overall, our results indicate that sperm fertilizing ability influences blastocyst developmental ability and miRNA content. In addition, we demonstrate an association between blastocyst quality and miRNA content, thus suggesting the possibility to score miRNA expression as biomarkers for improved routine embryo selection technologies to support assisted reproductive efforts.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy.
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Beatriz Fernandez-Fuertes
- Animal Reproduction Department, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
40
|
Aravind VA, Kouznetsova VL, Kesari S, Tsigelny IF. Using Machine Learning and miRNA for the Diagnosis of Esophageal Cancer. J Appl Lab Med 2024; 9:684-695. [PMID: 38721901 DOI: 10.1093/jalm/jfae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/20/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Esophageal cancer (EC) remains a global health challenge, often diagnosed at advanced stages, leading to high mortality rates. Current diagnostic tools for EC are limited in their efficacy. This study aims to harness the potential of microRNAs (miRNAs) as novel, noninvasive diagnostic biomarkers for EC. Our objective was to determine the diagnostic accuracy of miRNAs, particularly in distinguishing miRNAs associated with EC from control miRNAs. METHODS We applied machine learning (ML) techniques in WEKA (Waikato Environment for Knowledge Analysis) and TensorFlow Keras to a dataset of miRNA sequences and gene targets, assessing the predictive power of several classifiers: naïve Bayes, multilayer perceptron, Hoeffding tree, random forest, and random tree. The data were further subjected to InfoGain feature selection to identify the most informative miRNA sequence and gene target descriptors. The ML models' abilities to distinguish between miRNA implicated in EC and control group miRNA was then tested. RESULTS Of the tested WEKA classifiers, the top 3 performing ones were random forest, Hoeffding tree, and naïve Bayes. The TensorFlow Keras neural network model was subsequently trained and tested, the model's predictive power was further validated using an independent dataset. The TensorFlow Keras gave an accuracy 0.91. The WEKA best algorithm (naïve Bayes) model yielded an accuracy of 0.94. CONCLUSIONS The results demonstrate the potential of ML-based miRNA classifiers in diagnosing EC. However, further studies are necessary to validate these findings and explore the full clinical potential of this approach.
Collapse
Affiliation(s)
- Vishnu A Aravind
- REHS program, San Diego Supercomputer Center, UC San Diego, San Diego, CA, United States
| | - Valentina L Kouznetsova
- San Diego Supercomputer Center, UC San Diego, San Diego, CA, United States
- BiAna, La Jolla, CA, United States
- CureScience Institute, San Diego, CA, United States
| | - Santosh Kesari
- Pacific Neuroscience Institute, Department of Translational Neurosciences, Santa Monica, United States
| | - Igor F Tsigelny
- San Diego Supercomputer Center, UC San Diego, San Diego, CA, United States
- BiAna, La Jolla, CA, United States
- CureScience Institute, San Diego, CA, United States
- Department of Neurosciences, UC San Diego, San Diego, CA, United States
| |
Collapse
|
41
|
Garbo S, D'Andrea D, Colantoni A, Fiorentino F, Mai A, Ramos A, Tartaglia GG, Tancredi A, Tripodi M, Battistelli C. m6A modification inhibits miRNAs' intracellular function, favoring their extracellular export for intercellular communication. Cell Rep 2024; 43:114369. [PMID: 38878288 DOI: 10.1016/j.celrep.2024.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Epitranscriptomics represents a further layer of gene expression regulation. Specifically, N6-methyladenosine (m6A) regulates RNA maturation, stability, degradation, and translation. Regarding microRNAs (miRNAs), while it has been reported that m6A impacts their biogenesis, the functional effects on mature miRNAs remain unclear. Here, we show that m6A modification on specific miRNAs weakens their coupling to AGO2, impairs their function on target mRNAs, determines their delivery into extracellular vesicles (EVs), and provides functional information to receiving cells. Mechanistically, the intracellular functional impairment is caused by m6A-mediated inhibition of AGO2/miRNA interaction, the EV loading is favored by m6A-mediated recognition by the RNA-binding protein (RBP) hnRNPA2B1, and the EV-miRNA function in the receiving cell requires their FTO-mediated demethylation. Consequently, cells express specific miRNAs that do not impact endogenous transcripts but provide regulatory information for cell-to-cell communication. This highlights that a further level of complexity should be considered when relating cellular dynamics to specific miRNAs.
Collapse
Affiliation(s)
- Sabrina Garbo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Daniel D'Andrea
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Alessio Colantoni
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Fiorentino
- Center for Life Nano- and Neuro-Science, RNA Systems Biology Lab, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies Sapienza University of Rome, Ple. Aldo Moro 5, 00185 Rome, Italy
| | - Andres Ramos
- Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6XA, UK
| | - Gian Gaetano Tartaglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Andrea Tancredi
- Dipartimento Metodi e Modelli per l'Economia, il Territorio e la Finanza MEMOTEF, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Tripodi
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| | - Cecilia Battistelli
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
42
|
Frédérick PM, Jannot G, Banville I, Simard M. Interaction between a J-domain co-chaperone and a specific Argonaute protein contributes to microRNA function in animals. Nucleic Acids Res 2024; 52:6253-6268. [PMID: 38613392 PMCID: PMC11194074 DOI: 10.1093/nar/gkae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
MicroRNAs (miRNAs) are essential regulators of several biological processes. They are loaded onto Argonaute (AGO) proteins to achieve their repressive function, forming the microRNA-Induced Silencing Complex known as miRISC. While several AGO proteins are expressed in plants and animals, it is still unclear why specific AGOs are strictly binding miRNAs. Here, we identified the co-chaperone DNJ-12 as a new interactor of ALG-1, one of the two major miRNA-specific AGOs in Caenorhabditis elegans. DNJ-12 does not interact with ALG-2, the other major miRNA-specific AGO, and PRG-1 and RDE-1, two AGOs involved in other small RNA pathways, making it a specific actor in ALG-1-dependent miRNA-mediated gene silencing. The loss of DNJ-12 causes developmental defects associated with defective miRNA function. Using the Auxin Inducible Degron system, a powerful tool to acutely degrade proteins in specific tissues, we show that DNJ-12 depletion hampers ALG-1 interaction with HSP70, a chaperone required for miRISC loading in vitro. Moreover, DNJ-12 depletion leads to the decrease of several miRNAs and prevents their loading onto ALG-1. This study uncovers the importance of a co-chaperone for the miRNA function in vivo and provides insights to explain how different small RNAs associate with specific AGO in animals.
Collapse
Affiliation(s)
- Pierre-Marc Frédérick
- Oncology Division, CHU de Québec—Université Laval Research Center, Québec, QC G1R 3S3, Canada
- Université Laval Cancer Research Centre, Québec, QC G1R 3S3, Canada
| | - Guillaume Jannot
- Oncology Division, CHU de Québec—Université Laval Research Center, Québec, QC G1R 3S3, Canada
- Université Laval Cancer Research Centre, Québec, QC G1R 3S3, Canada
| | - Isabelle Banville
- Oncology Division, CHU de Québec—Université Laval Research Center, Québec, QC G1R 3S3, Canada
- Université Laval Cancer Research Centre, Québec, QC G1R 3S3, Canada
| | - Martin J Simard
- Oncology Division, CHU de Québec—Université Laval Research Center, Québec, QC G1R 3S3, Canada
- Université Laval Cancer Research Centre, Québec, QC G1R 3S3, Canada
| |
Collapse
|
43
|
Ma X, Jin W, Chen W, Liu Q, Jiang H, Zhou Y, Xu P, Wen H, Xu D. Chromosome-level genome assembly of the freshwater mussel Sinosolenaia oleivora (Heude, 1877). Sci Data 2024; 11:606. [PMID: 38851789 PMCID: PMC11162450 DOI: 10.1038/s41597-024-03451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
Sinosolenaia oleivora (Bivalve, Unionida, Unionidae), is a near-endangered edible mussel. In 2022, it was selected by the Ministry of Agriculture and Rural Affairs as a top-ten aquatic germplasm resource, with potential for industrial development. Using Illumina, PacBio, and Hi-C technology, a high-quality chromosome-level genome of S. oleivora was assembled. The assembled S. oleivora genome spanned 2052.29 Mb with a contig N50 size of 20.36 Mb and a scaffold N50 size of 103.57 Mb. The 302 contigs, accounting for 98.41% of the total assembled genome, were anchored into 19 chromosomes using Hi-C scaffolding. A total of 1171.78 Mb repeat sequences were annotated and 22,971 protein-coding genes were predicted. Compared with the nearest ancestor, a total of 603 expanded and 1767 contracted gene families were found. This study provides important genomic resources for conservation, evolutionary research, and genetic improvements of many economic traits like growth performance.
Collapse
Affiliation(s)
- Xueyan Ma
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wu Jin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Wanwen Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Qian Liu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Haizhou Jiang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Yanfeng Zhou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Pao Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Haibo Wen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| | - Dongpo Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| |
Collapse
|
44
|
Pal A, Vasudevan V, Houle F, Lantin M, Maniates K, Huberdeau MQ, Abbott A, Simard M. Defining the contribution of microRNA-specific Argonautes with slicer capability in animals. Nucleic Acids Res 2024; 52:5002-5015. [PMID: 38477356 PMCID: PMC11109967 DOI: 10.1093/nar/gkae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
microRNAs regulate gene expression through interaction with an Argonaute protein. While some members of this protein family retain an enzymatic activity capable of cleaving RNA molecules complementary to Argonaute-bound small RNAs, the role of the slicer residues in the canonical microRNA pathway is still unclear in animals. To address this, we created Caenorhabditis elegans strains with mutated slicer residues in the endogenous ALG-1 and ALG-2, the only two slicing Argonautes essential for the miRNA pathway in this animal model. We observe that the mutation in ALG-1 and ALG-2 catalytic residues affects overall animal fitness and causes phenotypes reminiscent of miRNA defects only when grown and maintained at restrictive temperature. Furthermore, the analysis of global miRNA expression shows that the slicer residues of ALG-1 and ALG-2 contribute differentially to regulate the level of specific subsets of miRNAs in young adults. We also demonstrate that altering the catalytic tetrad of those miRNA-specific Argonautes does not result in any defect in the production of canonical miRNAs. Together, these data support that the slicer residues of miRNA-specific Argonautes contribute to maintaining levels of a set of miRNAs for optimal viability and fitness in animals particularly exposed to specific growing conditions.
Collapse
Affiliation(s)
- Anisha Pal
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Vaishnav Vasudevan
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - François Houle
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Michael Lantin
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Katherine A Maniates
- Waksman Institute of Microbiology and Department of Genetics, Rutgers University, USA
| | - Miguel Quévillon Huberdeau
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Allison L Abbott
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Martin J Simard
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| |
Collapse
|
45
|
Tran F, Scharmacher A, Baran N, Mishra N, Wozny M, Chavez SP, Bhardwaj A, Hinz S, Juzenas S, Bernardes JP, Sievers LK, Lessing M, Aden K, Lassen A, Bergfeld A, Weber HJ, Neas L, Vetrano S, Schreiber S, Rosenstiel P. Dynamic changes in extracellular vesicle-associated miRNAs elicited by ultrasound in inflammatory bowel disease patients. Sci Rep 2024; 14:10925. [PMID: 38740826 DOI: 10.1038/s41598-024-61532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Blood-based biomarkers that reliably indicate disease activity in the intestinal tract are an important unmet need in the management of patients with IBD. Extracellular vesicles (EVs) are cell-derived membranous microparticles, which reflect the cellular and functional state of their site of site of origin. As ultrasound waves may lead to molecular shifts of EV contents, we hypothesized that application of ultrasound waves on inflamed intestinal tissue in IBD may amplify the inflammation-specific molecular shifts in EVs like altered EV-miRNA expression, which in turn can be detected in the peripheral blood. 26 patients with IBD were included in the prospective clinical study. Serum samples were collected before and 30 min after diagnostic transabdominal ultrasound. Differential miRNA expression was analyzed by sequencing. Candidate inducible EV-miRNAs were functionally assessed in vitro by transfection of miRNA mimics and qPCR of predicted target genes. Serum EV-miRNA concentration at baseline correlated with disease severity, as determined by clinical activity scores and sonographic findings. Three miRNAs (miR-942-5p, mir-5588, mir-3195) were significantly induced by sonography. Among the significantly regulated EV-miRNAs, miR-942-5p was strongly induced in higher grade intestinal inflammation and correlated with clinical activity in Crohn's disease. Prediction of target regulation and transfection of miRNA mimics inferred a role of this EV-miRNA in regulating barrier function in inflammation. Induction of mir-5588 and mir-3195 did not correlate with inflammation grade. This proof-of-concept trial highlights the principle of induced molecular shifts in EVs from inflamed tissue through transabdominal ultrasound. These inducible EVs and their molecular cargo like miRNA could become novel biomarkers for intestinal inflammation in IBD.
Collapse
Affiliation(s)
- Florian Tran
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany.
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany.
| | - Alena Scharmacher
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Nathan Baran
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Neha Mishra
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Marek Wozny
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Samuel Pineda Chavez
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Archana Bhardwaj
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Sophia Hinz
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Simonas Juzenas
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Institute of Biotechnology, Life Science Centre, Vilnius University, Vilnius, Lithuania
| | - Joana P Bernardes
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Laura Katharina Sievers
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Matthias Lessing
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Arne Lassen
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Arne Bergfeld
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Hauke Jann Weber
- Department of Gastroenterology, Asklepios Westklinikum, 22559, Hamburg, Germany
- Institute of Infection Medicine, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, 24105, Kiel, Germany
| | - Lennart Neas
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| |
Collapse
|
46
|
Qi L, Xing J, Yuan Y, Lei M. Noncoding RNAs in atherosclerosis: regulation and therapeutic potential. Mol Cell Biochem 2024; 479:1279-1295. [PMID: 37418054 PMCID: PMC11116212 DOI: 10.1007/s11010-023-04794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
Atherosclerosis, a chronic disease of arteries, results in high mortality worldwide as the leading cause of cardiovascular disease. The development of clinically relevant atherosclerosis involves the dysfunction of endothelial cells and vascular smooth muscle cells. A large amount of evidence indicates that noncoding RNAs, such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in various physiological and pathological processes. Recently, noncoding RNAs were identified as key regulators in the development of atherosclerosis, including the dysfunction of endothelial cells, and vascular smooth muscle cells and it is pertinent to understand the potential function of noncoding RNAs in atherosclerosis development. In this review, the latest available research relates to the regulatory role of noncoding RNAs in the progression of atherosclerosis and the therapeutic potential for atherosclerosis is summarized. This review aims to provide a comprehensive overview of the regulatory and interventional roles of ncRNAs in atherosclerosis and to inspire new insights for the prevention and treatment of this disease.
Collapse
MESH Headings
- Humans
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/therapy
- Atherosclerosis/pathology
- Animals
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
Collapse
Affiliation(s)
- Luyao Qi
- Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China
| | - Jixiang Xing
- Peripheral Vascular Department, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300150, Tianjin, China
| | - Yuesong Yuan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, 250014, Jinan, Shandong, China
| | - Ming Lei
- Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China.
| |
Collapse
|
47
|
Hamada H, Casciaro C, Moisiadis VG, Constantinof A, Kostaki A, Matthews SG. Prenatal maternal glucocorticoid exposure modifies sperm miRNA profiles across multiple generations in the guinea-pig. J Physiol 2024; 602:2127-2139. [PMID: 38285002 DOI: 10.1113/jp284942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024] Open
Abstract
Maternal stress and glucocorticoid exposure during pregnancy have multigenerational effects on neuroendocrine function and behaviours in offspring. Importantly, effects are transmitted through the paternal lineage. Altered phenotypes are associated with profound differences in transcription and DNA methylation in the brain. In the present study, we hypothesized that maternal prenatal synthetic glucocorticoid (sGC) exposure in the F0 pregnancy will result in differences in miRNA levels in testes germ cells and sperm across multiple generations, and that these changes will associate with modified microRNA (miRNA) profiles and gene expression in the prefrontal cortex (PFC) of subsequent generations. Pregnant guinea-pigs (F0) were treated with multiple courses of the sGC betamethasone (Beta) (1 mg kg-1; gestational days 40, 41, 50, 51, 60 and 61) in late gestation. miRNA levels were assessed in testes germ cells and in F2 PFC using the GeneChip miRNA 4.0 Array and candidate miRNA measured in epididymal sperm by quantitative real-time PCR. Maternal Beta exposure did not alter miRNA levels in germ cells derived from the testes of adult male offspring. However, there were significant differences in the levels of four candidate miRNAs in the sperm of F1 and F2 adult males. There were no changes in miRNA levels in the PFC of juvenile F2 female offspring. The present study has identified that maternal Beta exposure leads to altered miRNA levels in sperm that are apparent for at least two generations. The fact that differences were confined to epididymal sperm suggests that the intergenerational effects of Beta may target the epididymis. KEY POINTS: Paternal glucocorticoid exposure prior to conception leads to profound epigenetic changes in the brain and somatic tissues in offspring, and microRNAs (miRNAs) in sperm may mediate these changes. We show that there were significant differences in the miRNA profile of epididymal sperm in two generations following prenatal glucocorticoid exposure that were not observed in germ cells derived from the testes. The epididymis is a probable target for intergenerational programming. The effects of prenatal glucocorticoid treatment may span multiple generations.
Collapse
Affiliation(s)
- Hirotaka Hamada
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada
- Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Christopher Casciaro
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada
| | - Vasilis G Moisiadis
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrea Constantinof
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada
| | - Alisa Kostaki
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen G Matthews
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada
| |
Collapse
|
48
|
Mohajeri Khorasani A, Mohammadi S, Raghibi A, Haj Mohammad Hassani B, Bazghandi B, Mousavi P. miR-17-92a-1 cluster host gene: a key regulator in colorectal cancer development and progression. Clin Exp Med 2024; 24:85. [PMID: 38662056 PMCID: PMC11045601 DOI: 10.1007/s10238-024-01331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
Colorectal cancer (CRC), recognized among the five most prevalent malignancies and most deadly cancers, manifests multifactorial influences stemming from environmental exposures, dietary patterns, age, and genetic predisposition. Although substantial progress has been made in comprehending the etiology of CRC, the precise genetic components driving its pathogenesis remain incompletely elucidated. Within the expansive repertoire of non-coding RNAs, particular focus has centered on the miR-17-92a-1 cluster host gene (MIR17HG) and its associated miRNAs, which actively participate in diverse cellular processes and frequently exhibit heightened expression in various solid tumors, notably CRC. Therefore, the primary objective of this research is to undertake an extensive inquiry into the regulatory mechanisms, structural features, functional attributes, and potential diagnostic and therapeutic implications associated with this cluster in CRC. Furthermore, the intricate interplay between this cluster and the development and progression of CRC will be explored. Our findings underscore the upregulation of the miR-17-92a-1 cluster host gene (MIR17HG) and its associated miRNAs in CRC compared to normal tissues, thus implying their profound involvement in the progression of CRC. Collectively, these molecules are implicated in critical oncogenic processes, encompassing metastatic activity, regulation of apoptotic pathways, cellular proliferation, and drug resistance. Consequently, these findings shed illuminating insights into the potential of MIR17HG and its associated miRNAs as promising targets for therapeutic interventions in the management of CRC.
Collapse
Affiliation(s)
- Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Samane Mohammadi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Raghibi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Haj Mohammad Hassani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behina Bazghandi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
49
|
Westemeier-Rice ES, Winters MT, Rawson TW, Martinez I. More than the SRY: The Non-Coding Landscape of the Y Chromosome and Its Importance in Human Disease. Noncoding RNA 2024; 10:21. [PMID: 38668379 PMCID: PMC11054740 DOI: 10.3390/ncrna10020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
Historically, the Y chromosome has presented challenges to classical methodology and philosophy of understanding the differences between males and females. A genetic unsolved puzzle, the Y chromosome was the last chromosome to be fully sequenced. With the advent of the Human Genome Project came a realization that the human genome is more than just genes encoding proteins, and an entire universe of RNA was discovered. This dark matter of biology and the black box surrounding the Y chromosome have collided over the last few years, as increasing numbers of non-coding RNAs have been identified across the length of the Y chromosome, many of which have played significant roles in disease. In this review, we will uncover what is known about the connections between the Y chromosome and the non-coding RNA universe that originates from it, particularly as it relates to long non-coding RNAs, microRNAs and circular RNAs.
Collapse
Affiliation(s)
- Emily S. Westemeier-Rice
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Michael T. Winters
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (M.T.W.); (T.W.R.)
| | - Travis W. Rawson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (M.T.W.); (T.W.R.)
| | - Ivan Martinez
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (M.T.W.); (T.W.R.)
| |
Collapse
|
50
|
McCarty KJ, DeCarlo AN, Ricks RE, Pratt SL, Long NM. Effects of maternal nutrient restriction during gestation on bovine serum microRNA abundance. Anim Reprod Sci 2024; 263:107435. [PMID: 38401394 DOI: 10.1016/j.anireprosci.2024.107435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
The objective was to determine the effects of maternal nutrient restriction during gestation on serum microRNA (miRNA) abundance in cattle. Primiparous Angus-cross cows (n=22) were fed either control (CON; to gain 1 Kg/week) or nutrient restricted (NR; 0.55% NEm) diets based on National Research Council requirements. On day 30 of gestation, cows were blocked by body condition and randomly assigned to one of three diets: CON (n=8) days 30-190; NR (n=7) days 30-110 followed by CON days 110-190 (NR/C); or CON (n=7) days 30-110 followed by NR days 110-190 (C/NR). At 190 days of gestation, maternal serum was collected for RNA isolation and analyzed using a miRNA microarray of known Bos taurus sequences. Data were normalized using LOWESS and analyzed via ANOVA. At 190 days of gestation, 16 miRNAs exhibited differential abundance (P<0.05) between treatments. Cows that underwent NR, irrespective of when the insult occurred, had downregulated bta-miR-126-3p compared to CON cows. Bta-miR-16b was downregulated and three miRNAs upregulated in NR/C compared to C/NR and CON cows. Additionally, seven miRNAs were downregulated and four miRNAs upregulated in C/NR compared to NR/C and CON cows. Comparison of NR/C and C/NR cows revealed three differentially abundant (P<0.04) miRNAs (bta-miR-2487_L-2R-3_1ss15CT, bta-miR-215, and bta-miR-760-5p). Top KEGG pathway enrichment of target genes included: pathways in cancer, PI3K-Akt signaling, focal adhesion, Ras signaling, proteoglycans in cancer, and MAPK signaling. In summary, maternal nutrient restriction altered serum miRNA abundance profiles irrespective of the time at which the nutritional insult was induced.
Collapse
Affiliation(s)
- K J McCarty
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - A N DeCarlo
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - R E Ricks
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - S L Pratt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - N M Long
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|