1
|
Chen RY, Liu YJ, Wang R, Yu J, Shi JJ, Yang GJ, Chen J. Fingerprint of ubiquitin coupled enzyme UBC13 in health and disease. Bioorg Chem 2025; 161:108524. [PMID: 40319811 DOI: 10.1016/j.bioorg.2025.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Ubiquitination is one of the most well-known post-translational modifications in eukaryotes. UBC13 is an E2 ubiquitin coupling enzyme, which interacts with different E3 ligases and exerts ubiquitination activity to assemble and synthesize lysine-63-linked (Lys63) ubiquitin strands, thus playing an important role in cell homeostasis, various diseases caused by inflammation, and the occurrence and development of cancer. In this paper, we review the structure and function of UBC13, summarize the diverse pathways it mediates, and discuss its involvement in bacterial and non-bacterial inflammatory diseases. Additionally, we explore UBC13's role in physiological damage repair mechanisms, cancer development, DNA damage repair, immune cell maturation, and function. Furthermore, We also elucidate the progress of the discovery of small molecule inhibitors targeting UBC13 and summarize their structure, which suggests that targeting UBC13 may be a potential disease treatment strategy.
Collapse
Affiliation(s)
- Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
2
|
Chiu C, Stetson S, Thayer KM. MD Multi-Sector Selector: Recursive Extraction and Refinement of Molecular Dynamics Based Sectors Yields Two Sectors in p53 Tumor Suppressor Protein. J Phys Chem B 2025; 129:3747-3760. [PMID: 40173308 PMCID: PMC12010330 DOI: 10.1021/acs.jpcb.4c08495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
Allosteric signaling in proteins allows perturbations at one locale to modulate activity at an orthosteric distant site. This may explain how distal mutations disrupt protein activity and offer pathways for the development of allosteric therapeutics, a novel class of restorative compounds to reactivate native function. Despite the ubiquitous presence of allosteric control in nature and the promises that it holds for treating currently untreatable diseases, quantitative theory of the mechanism of allostery is lacking. Working to fill this critical gap, we have developed a novel method to identify groups of covarying residues which the sector hypothesis suggests are capable of transmitting allosteric signals in proteins. A major problem with sectors computed from covariance measures is the selection relies upon a full covariance matrix rather than on the covariance among the residues posited to be in the sector. We demonstrate a novel method which constructs sectors on the basis of cohesion within the residues in the sector to eliminate the incongruity between the sector idea and the way it is calculated. Furthermore, the refinement can be iteratively applied, enabling the extraction of more than one sector in a well-defined, systematic manner. In this study, we report on the development of MD multi-sector selector and its application to allosteric signaling in the tumor suppressor protein p53. We consider the implications of our findings on our long-term goal of allosterically reactivating mutant p53 as a means of curing cancer, and critically assess the broader applicability of MD multi-sector selector across diverse fields.
Collapse
Affiliation(s)
- Christopher
A. Chiu
- Quantitative
Analysis CenterWesleyan University, Allbritton Center, 222 Church Street, Middletown, Connecticut 06459, United States
| | - Sean Stetson
- Mathematics
and Computer Science, Wesleyan University 54 Lawn Avenue, Hall-Atwater Laboratories,
Chemistry Station, Middletown, Connecticut 06459, United States
| | - Kelly M. Thayer
- Quantitative
Analysis CenterWesleyan University, Allbritton Center, 222 Church Street, Middletown, Connecticut 06459, United States
- Mathematics
and Computer Science, Wesleyan University 54 Lawn Avenue, Hall-Atwater Laboratories,
Chemistry Station, Middletown, Connecticut 06459, United States
- Molecular
Biophysics Program, Wesleyan University, 54 Lawn Avenue, Hall-Atwater Laboratories,
Chemistry Station, Middletown, Connecticut 06459, United States
- College
of Integrative Sciences, Wesleyan University, 54 Lawn Avenue, Hall-Atwater Laboratories,
Chemistry Station, Middletown, Connecticut 06459, United States
| |
Collapse
|
3
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Stafylidis C, Vlachopoulou D, Kontandreopoulou CN, Diamantopoulos PΤ. Unmet Horizons: Assessing the Challenges in the Treatment of TP53-Mutated Acute Myeloid Leukemia. J Clin Med 2024; 13:1082. [PMID: 38398394 PMCID: PMC10889132 DOI: 10.3390/jcm13041082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Acute myeloid leukemia (AML) remains a challenging hematologic malignancy. The presence of TP53 mutations in AML poses a therapeutic challenge, considering that standard treatments face significant setbacks in achieving meaningful responses. There is a pressing need for the development of innovative treatment modalities to overcome resistance to conventional treatments attributable to the unique biology of TP53-mutated (TP53mut) AML. This review underscores the role of TP53 mutations in AML, examines the current landscape of treatment options, and highlights novel therapeutic approaches, including targeted therapies, combination regimens, and emerging immunotherapies, as well as agents being explored in preclinical studies according to their potential to address the unique hurdles posed by TP53mut AML.
Collapse
Affiliation(s)
| | | | | | - Panagiotis Τ. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.S.); (D.V.); (C.-N.K.)
| |
Collapse
|
5
|
Ning Q, Yang T, Guo X, Huang Y, Gao Y, Liu M, Yang P, Guan Y, Liu N, Wang Y, Chen D. CHB patients with rtA181T-mutated HBV infection are associated with higher risk hepatocellular carcinoma due to increases in mutation rates of tumour suppressor genes. J Viral Hepat 2023; 30:951-958. [PMID: 37735836 DOI: 10.1111/jvh.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
The HBV rtA181T mutation is associated with an increased risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). This study aimed to evaluate the mechanism by which rtA181T mutation increases the risk of HCC. We enrolled 470 CHB patients with rtA181T and rtA181V mutation in this study; 68 (22.15%) of the 307 patients with rtA181T mutation and 22 (13.5%) of the 163 patients with rtA181V mutation developed HCC (p < .05). The median follow-up periods were 8.148 and 8.055 years (p > .05). Serum HBV DNA and HBsAg levels in rtA181T-positive patients were similar to that in rtA181V-positive patients. However, the serum HBeAg levels in the rtA181T-positive patients were significantly higher than that in rtA181V-positive patients. In situ hybridization experiments showed that the HBV cccDNA and HBV RNA levels were significantly higher in the liver cancer tissues of patients with the rtA181T mutation compared to that in the tissues of patients with the rtA181V mutation. The percentage of anti-tumour hot-gene site mutations was significantly higher in the rtA181T-positive HCC liver tissue compared to that in the rtA181T-negative HCC liver tissue (7.65% and 4.3%, p < .05). This is the first study to use a large cohort and a follow-up of more than 5 years (average 8 years) to confirm that the rtA181T mutation increased the risk of HCC, and that it could be related to the increase in the mutation rate of hotspots of tumour suppressor genes (CTNNB1, TP53, NRAS and PIK3CA).
Collapse
Affiliation(s)
- Qiqi Ning
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Tongwang Yang
- Academician Workstation, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Xianghua Guo
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Yanxiang Huang
- Clinical laboratory center, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Yuxue Gao
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Mengcheng Liu
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Pengxiang Yang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Yuanyue Guan
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Ning Liu
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Yang Wang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| |
Collapse
|
6
|
Goswami P, Šislerová L, Dobrovolná M, Havlík J, Šťastný J, Brázda V. Interaction of C-terminal p53 isoforms depends strongly upon DNA sequence and topology. Biochimie 2022; 208:93-99. [PMID: 36549455 DOI: 10.1016/j.biochi.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The p53 protein is a key tumor suppressor and the most commonly mutated and down-regulated protein in human tumors. It functions mainly through interaction with DNA, and p53 acts as a transcription factor that recognizes the so-called p53 target sites on the promoters of various genes. P53 has been shown to exist as many isoforms, including three C-terminal isoforms that are produced by alternative splicing. Because the C-terminal domain is responsible for sequence-nonspecific binding and regulation of p53 binding, we have analyzed DNA recognition by these C-terminal isoforms. Using atomic force microscopy, we show for the first time that all C-terminal isoforms recognize superhelical DNA. It is particularly noteworthy that a sequence-specific p53 consensus binding site is bound by p53α and β isoforms with similar affinities, whilst p53α shows higher binding to a quadruplex sequence than both p53β and p53γ, and p53γ loses preferential binding to both the consensus binding sequence and the quadruplex-forming sequence. These results show the important role of the variable p53 C-terminal amino acid sequences for DNA recognition.
Collapse
Affiliation(s)
- Pratik Goswami
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Michaela Dobrovolná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Jan Havlík
- Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Jiří Šťastný
- Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Choi Y, Luo Y, Lee S, Jin H, Yoon HJ, Hahn Y, Bae J, Lee HH. FOXL2 and FOXA1 cooperatively assemble on the TP53 promoter in alternative dimer configurations. Nucleic Acids Res 2022; 50:8929-8946. [PMID: 35920317 PMCID: PMC9410875 DOI: 10.1093/nar/gkac673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Although both the p53 and forkhead box (FOX) family proteins are key transcription factors associated with cancer progression, their direct relationship is unknown. Here, we found that FOX family proteins bind to the non-canonical homotypic cluster of the p53 promoter region (TP53). Analysis of crystal structures of FOX proteins (FOXL2 and FOXA1) bound to the p53 homotypic cluster indicated that they interact with a 2:1 stoichiometry accommodated by FOX-induced DNA allostery. In particular, FOX proteins exhibited distinct dimerization patterns in recognition of the same p53-DNA; dimer formation of FOXA1 involved protein-protein interaction, but FOXL2 did not. Biochemical and biological functional analyses confirmed the cooperative binding of FOX proteins to the TP53 promoter for the transcriptional activation of TP53. In addition, up-regulation of TP53 was necessary for FOX proteins to exhibit anti-proliferative activity in cancer cells. These analyses reveal the presence of a discrete characteristic within FOX family proteins in which FOX proteins regulate the transcription activity of the p53 tumor suppressor via cooperative binding to the TP53 promoter in alternative dimer configurations.
Collapse
Affiliation(s)
- Yuri Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Yongyang Luo
- School of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Seunghwa Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Hanyong Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
8
|
Kovalev RA, Fedorova ND, Pantina RA, Semenova EV, Filatov MV, Varfolomeeva EY. Stochasticity of p53 Protein Expression in Cells of Primary and Transferable Human Lines. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922030101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Zhao L, Yin XX, Qin J, Wang W, He XF. Association Between the TP53 Polymorphisms and Breast Cancer Risk: An Updated Meta-Analysis. Front Genet 2022; 13:807466. [PMID: 35571038 PMCID: PMC9091657 DOI: 10.3389/fgene.2022.807466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The relationship of TP53 codons 72, IVS3 16 bp, and IVS6+62A > G polymorphisms with breast cancer (BC) risk has been analyzed in seventeen published meta-analyses. However, the credibility of statistically significant associations was ignored and many new studies have been reported on these themes. Objectives: To explore whether TP53 codons 72, IVS3 16 bp, and IVS6+62A > G polymorphisms are associated with BC risk and the clinical phenomena. Methods: To comprehensively search the data (through October 25, 2021), we provided a clear search strategy and reviewed the references of published meta-analyses. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) were used. Results: The current meta-analysis had a larger sample size than the previous ones: 99 studies with 43,951 BC and 48,479 controls for TP53 codon 72 polymorphism, 35 studies with 8,705 BC and 7,516 controls for IVS3 16 bp polymorphism, and 25 studies with 12,222 BC and 12,895 controls for IVS6+62A > G polymorphism. Five gene models were used to explore the association between the three polymorphisms and BC risk, and partial positive results were similar to published meta-analyses results. However, a large number of significant results were considered to be unreliable after correcting with Bayesian false-discovery probability (BFDP), except for the association between TP53 IVS3 16 bp polymorphism and BC risk in overall analysis (GG vs. CC: BFDP = 0.738), matched studies (GG vs. CC: BFDP = 0.173; GG vs. CC + CG: BFDP = 0.447), and tumor size below 2 cm (GG vs. CC: BFDP = 0.088; GG + CG vs. CC: BFDP = 0.730; GG vs. CC + CG: BFDP = 0.311). These unreliable results were confirmed again without new solid results emerging in further sensitivity analysis (only studies in compliance with the quality assessment standard). Conclusion: After considering the quality of the included studies and the reliability of the results, the present meta-analysis suggested that TP53 codons 72, IVS3 16 bp, and IVS6+62A > G polymorphisms were not significantly associated with the BC risk. Those results which prove that these three polymorphisms increase BC risk are more likely to be false-positive results due to various confounding factors.
Collapse
Affiliation(s)
- Lin Zhao
- Teaching Reform Class of 2018 of the First Clinical College, Changzhi Medical College, Changzhi, China
| | - Xiang-Xiongyi Yin
- Fifth Class of 2018 of the Second Clinical College, Changzhi Medical College, Changzhi, China
| | - Jun Qin
- General Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Wei Wang
- Beijing Zhendong Guangming Pharmaceutical Research Institute, Beijing, China
- *Correspondence: Wei Wang, ; Xiao-Feng He,
| | - Xiao-Feng He
- Institute of Evidence-Based Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Wang, ; Xiao-Feng He,
| |
Collapse
|
10
|
Li Q, Wang M, Zeng L, Guo W, Xu Y, Li C, Lai Y, Ye L, Peng X. Deletion of Wild-type p53 Facilitates Bone Metastatic Function by Blocking the AIP4 Mediated Ligand-Induced Degradation of CXCR4. Front Pharmacol 2022; 12:792293. [PMID: 35177982 PMCID: PMC8844016 DOI: 10.3389/fphar.2021.792293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Management of patients with prostate cancer and bone metastatic disease remains a major clinical challenge. Loss or mutation of p53 has been identified to be involved in the tumor progression and metastasis. Nevertheless, direct evidence of a specific role for wild-type p53 (wt-p53) in bone metastasis and the mechanism by which this function is mediated in prostate cancer remain obscure. Methods: The expression and protein levels of wt-53, AIP4, and CXCR4 in prostate cancer cells and clinical specimens were assessed by real-time PCR, immunohistochemistry and western blot analysis. The role of wt-p53 in suppressing aggressive and metastatic tumor phenotypes was assessed using in vitro transwell chemotaxis, wound healing, and competitive colocalization assays. Furthermore, whether p53 deletion facilitates prostate cancer bone-metastatic capacity was explored using an in vivo bone-metastatic model. The mechanistic model of wt-p53 in regulating gene expression was further explored by a luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. Results: Our findings revealed that wt-p53 suppressed the prostate cancer cell migration rate, chemotaxis and attachment toward the osteoblasts in vitro. The bone-metastatic model showed that deletion of wt-p53 remarkably increased prostate cancer bone-metastatic capacity in vivo. Mechanistically, wt-p53 could induce the ligand-induced degradation of the chemokine receptor CXCR4 by transcriptionally upregulating the expression of ubiquitin ligase AIP4. Treatment with the CXCR4 inhibitor AMD3100 or transduction of the AIP4 plasmid abrogated the pro-bone metastasis effects of TP53 deletion. Conclusion: Wt-p53 suppresses the metastasis of prostate cancer cells to bones by regulating the CXCR4/CXCL12 activity in the tumor cells/bone marrow microenvironment interactions. Our findings suggest that targeting the wt-p53/AIP4/CXCR4 axis might be a promising therapeutic strategy to manage prostate cancer bone metastasis.
Collapse
Affiliation(s)
- Qiji Li
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangzhou, China
| | - Min Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangzhou, China.,Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wei Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuandong Xu
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chenxin Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yingrong Lai
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liping Ye
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangzhou, China.,Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Mathematical Modelling of p53 Signalling during DNA Damage Response: A Survey. Int J Mol Sci 2021; 22:ijms221910590. [PMID: 34638930 PMCID: PMC8508851 DOI: 10.3390/ijms221910590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023] Open
Abstract
No gene has garnered more interest than p53 since its discovery over 40 years ago. In the last two decades, thanks to seminal work from Uri Alon and Ghalit Lahav, p53 has defined a truly synergistic topic in the field of mathematical biology, with a rich body of research connecting mathematic endeavour with experimental design and data. In this review we survey and distill the extensive literature of mathematical models of p53. Specifically, we focus on models which seek to reproduce the oscillatory dynamics of p53 in response to DNA damage. We review the standard modelling approaches used in the field categorising them into three types: time delay models, spatial models and coupled negative-positive feedback models, providing sample model equations and simulation results which show clear oscillatory dynamics. We discuss the interplay between mathematics and biology and show how one informs the other; the deep connections between the two disciplines has helped to develop our understanding of this complex gene and paint a picture of its dynamical response. Although yet more is to be elucidated, we offer the current state-of-the-art understanding of p53 response to DNA damage.
Collapse
|
12
|
Al-Gabri NA, Saghir SAM, Al-Hashedi SA, El-Far AH, Khafaga AF, Swelum AA, Al-Wajeeh AS, Mousa SA, Abd El-Hack ME, Naiel MAE, El-Tarabily KA. Therapeutic Potential of Thymoquinone and Its Nanoformulations in Pulmonary Injury: A Comprehensive Review. Int J Nanomedicine 2021; 16:5117-5131. [PMID: 34349511 PMCID: PMC8326280 DOI: 10.2147/ijn.s314321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
As a crucial organ, the lung is exposed to various harmful agents that may induce inflammation and oxidative stress, which may cause chronic or acute lung injury. Nigella sativa, also known as black seed, has been widely used to treat various diseases and is one of the most extensively researched medicinal plants. Thymoquinone (TQ) is the main component of black seed volatile oil and has been proven to have antioxidant, anti-inflammatory, and antineoplastic properties. The potential therapeutic properties of TQ against various pulmonary disorders have been studied in both in vitro and in vivo studies. Furthermore, the application of nanotechnology may increase drug solubility, cellular absorption, drug release (sustained or control), and drug delivery to lung tissue target sites. As a result, fabricating TQ as nanoparticles (NPs) is a potential therapeutic approach against a variety of lung diseases. In this current review, we summarize recent findings on the efficacy of TQ and its nanotypes in lung disorders caused by immunocompromised conditions such as cancer, diabetes, gastric ulcers, and other neurodegenerative diseases. It is concluded that TQ nanoparticles with anti-inflammatory, antioxidant, antiasthma, and antitumor activity may be safely applied to treat lung disorders. However, more research is required before TQ nanoparticles can be used as pharmaceutical preparations in human studies.
Collapse
Affiliation(s)
- Naif A Al-Gabri
- Department of Pathology, Faculty of Veterinary Medicine, Thamar University, Dhamar, Yemen.,Laboratory of Regional Djibouti Livestock Quarantine, Abu Yasar international Est. 1999, Arta, Djibouti
| | - Sultan A M Saghir
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, AlHussein Bin Talal University, Ma'an, 71111, Jordan
| | | | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | | | - Shaker A Mousa
- Department of Pharmaceutical Sciences, the Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Mohammed A E Naiel
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.,Biosecurity and One Health Research Centre, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|
13
|
Pradhan S, Das S, Singh AK, Das C, Basu A, Majumder PP, Biswas NK. dbGENVOC: database of GENomic Variants of Oral Cancer, with special reference to India. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6287646. [PMID: 34048545 PMCID: PMC8163239 DOI: 10.1093/database/baab034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 11/18/2022]
Abstract
Oral cancer is highly prevalent in India and is the most frequent cancer type among Indian males. It is also very common in southeast Asia. India has participated in the International Cancer Genome Consortium (ICGC) and some national initiatives to generate large-scale genomic data on oral cancer patients and analyze to identify associations and systematically catalog the associated variants. We have now created an open, web-accessible database of these variants found significantly associated with Indian oral cancer patients, with a user-friendly interface to enable easy mining. We have value added to this database by including relevant data collated from various sources on other global populations, thereby providing opportunities of comparative geographical and/or ethnic analyses. Currently, no other database of similar nature is available on oral cancer. We have developed Database of GENomic Variants of Oral Cancer, a browsable online database framework for storage, retrieval and analysis of large-scale data on genomic variants and make it freely accessible to the scientific community. Presently, the web-accessible database allows potential users to mine data on ∼24 million clinically relevant somatic and germline variants derived from exomes (n = 100) and whole genomes (n = 5) of Indian oral cancer patients; all generated by us. Variant data from The Cancer Genome Atlas and data manually curated from peer-reviewed publications were also incorporated into the database for comparative analyses. It allows users to query the database by a single gene, multiple genes, multiple variant sites, genomic region, patient ID and pathway identities. Database URL: http://research.nibmg.ac.in/dbcares/dbgenvoc/
Collapse
Affiliation(s)
- Sanchari Pradhan
- Human Genetics Unit, National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Subrata Das
- Human Genetics Unit, National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Animesh K Singh
- Human Genetics Unit, National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Chitrarpita Das
- Human Genetics Unit, National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Analabha Basu
- Human Genetics Unit, National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Partha P Majumder
- Human Genetics Unit, National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India.,Human Genetics Unit, Indian Statistical Institute, Kolkata, West Bengal 700108, India
| | - Nidhan K Biswas
- Human Genetics Unit, National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| |
Collapse
|
14
|
Lv T, Lv H, Fei J, Xie Y, Lian D, Hu J, Tang L, Shi X, Wang J, Zhang S, Li F, Jiang X, Yi Y. p53-R273H promotes cancer cell migration via upregulation of neuraminidase-1. J Cancer 2020; 11:6874-6882. [PMID: 33123278 PMCID: PMC7591995 DOI: 10.7150/jca.44718] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates that hotspot p53 mutants have gain-of-function in promoting cell migration and tumor metastasis. However, the molecular mechanisms are not completely understood. Here, we show that a hotspot mutation, p53-R273H, promotes non-small cell lung cancer (NSCLC) cell migration and upregulates the mRNA and protein expression of neuraminidase-1 (NEU1), a sialidase involved in cell proliferation, cell migration and tumorigenesis. Silencing of NEU1 leads to upregulation of integrin β4 which significantly inhibits NSCLC cell migration induced by p53-R273H. Mechanistically, p53-R273H promotes NEU1 transcription via activation of AKT signaling. Importantly, NEU1 expression is upregulated in human NSCLC samples harboring mutant p53 and is associated with poor clinical outcome. Overall, this study highlights an important role of NEU1 in p53-R273H-induced NSCLC cell migration and provides a potential target for NSCLC diagnosis and treatment.
Collapse
Affiliation(s)
- Tao Lv
- Center for Yunnan Plateau Biological Resources Protection Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Hong Lv
- Hematology Department, The First People's Hospital of Qujing, Qujing, Yunnan, China 655000
| | - Junjie Fei
- Center of Growth, Metabolism and Aging, and Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China 610064
| | - Yajun Xie
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, China 400016
| | - Daqing Lian
- Center for Yunnan Plateau Biological Resources Protection Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jiang Hu
- Center for Yunnan Plateau Biological Resources Protection Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Lizhou Tang
- Center for Yunnan Plateau Biological Resources Protection Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Xiaodong Shi
- Center for Yunnan Plateau Biological Resources Protection Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jianling Wang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Shibo Zhang
- Hematology Department, The First People's Hospital of Qujing, Qujing, Yunnan, China 655000
| | - Fengtian Li
- Center of Growth, Metabolism and Aging, and Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China 610064
| | - Xianjie Jiang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, and Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China 610064
| |
Collapse
|
15
|
Xu Z, Shu H, Zhang F, Luo W, Li Y, Chu J, Zhao Q, Lv Y. Nimotuzumab Combined With Irradiation Enhances the Inhibition to the HPV16 E6-Promoted Growth of Cervical Squamous Cell Carcinoma. Front Oncol 2020; 10:1327. [PMID: 32850421 PMCID: PMC7419688 DOI: 10.3389/fonc.2020.01327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
Human papillomavirus (HPV) 16 E6 has been proved to increase the radiosensitivity and lead to the EGFR overexpression in cervical cancer cells. In this study, to investigate the inhibition of nimotuzumab-mediated EGFR blockade combined with radiotherapy, we established a C33A cervical squamous cell line overexpressed HPV16-E6 and a nude mouse model bearing these cell lines. The CCK-8 assay was used to detect the effects of various treatments on the proliferation of C33A cells. Flow cytometry was used to detect the rates of apoptosis and cell cycle arrest. Gene transcription and protein expression were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. Immunohistochemical staining was used to evaluate protein expression in tumor tissue. We revealed that E6-overexpressing C33A cells grew faster and were more sensitive to radiotherapy than control cells in vitro and in vivo. The expression levels of EGFR, as well as those of downstream signaling molecules AKT and ERK 1/2, were significantly upregulated in C33A cells that overexpressed E6. We observed that nimotuzumab combined with radiotherapy could enhance the inhibition of C33A cell growth induced by E6, both in vitro and in vivo. We also observed enhanced effect after combination on G2/M cell cycle arrest and apoptosis in E6-overexpressing C33A cells. Furthermore, the combined therapy of nimotuzumab and radiation remarkably reduced the protein expression levels of EGFR, AKT, ERK 1/2 in vitro, and in vivo. In conclusion, HPV16 E6 expression is positively correlated with levels of EGFR, AKT, and ERK 1/2 protein expression. The combined treatment with nimotuzumab and radiotherapy to enhance radiosensitivity in E6-positive cervical squamous cell carcinoma was related to enhanced G2/M cell cycle arrest and caspase-related apoptosis.
Collapse
Affiliation(s)
- Zhonghua Xu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hang Shu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weiwei Luo
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Li
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinjin Chu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Yin Lv
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Benor G, Fuks G, Chin S, Rueda OM, Mukherjee S, Arandkar S, Aylon Y, Caldas C, Domany E, Oren M. Transcriptional profiling reveals a subset of human breast tumors that retain wt TP53 but display mutant p53-associated features. Mol Oncol 2020; 14:1640-1652. [PMID: 32484602 PMCID: PMC7400784 DOI: 10.1002/1878-0261.12736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 11/25/2022] Open
Abstract
TP53 gene mutations are very common in human cancer. While such mutations abrogate the tumor suppressive activities of the wild-type (wt) p53 protein, some of them also endow the mutant (mut) protein with oncogenic gain of function (GOF), facilitating cancer progression. Yet, p53 may acquire altered functionality even without being mutated; in particular, experiments with cultured cells revealed that wtp53 can be rewired to adopt mut-like features in response to growth factors or cancer-mimicking genetic manipulations. To assess whether such rewiring also occurs in human tumors, we interrogated gene expression profiles and pathway deregulation patterns in the METABRIC breast cancer (BC) dataset as a function of TP53 gene mutation status. Harnessing the power of machine learning, we optimized a gene expression classifier for ER+Her2- patients that distinguishes tumors carrying TP53 mutations from those retaining wt TP53. Interestingly, a small subset of wt TP53 tumors displayed gene expression and pathway deregulation patterns markedly similar to those of TP53-mutated tumors. Moreover, similar to TP53-mutated tumors, these 'pseudomutant' cases displayed a signature for enhanced proliferation and had worse prognosis than typical wtp53 tumors. Notably, these tumors revealed upregulation of genes which, in BC cell lines, were reported to be positively regulated by p53 GOF mutants. Thus, such tumors may benefit from mut p53-associated activities without having to accrue TP53 mutations.
Collapse
Affiliation(s)
- Gal Benor
- Department of Physics of Complex SystemsThe Weizmann Institute of ScienceRehovotIsrael
| | - Garold Fuks
- Department of Physics of Complex SystemsThe Weizmann Institute of ScienceRehovotIsrael
| | - Suet‐Feung Chin
- Cancer Research UK Cambridge Institute and Department of OncologyLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Oscar M. Rueda
- Cancer Research UK Cambridge Institute and Department of OncologyLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Saptaparna Mukherjee
- Department of Molecular Cell BiologyThe Weizmann Institute of ScienceRehovotIsrael
| | - Sharathchandra Arandkar
- Department of Molecular Cell BiologyThe Weizmann Institute of ScienceRehovotIsrael
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKhargharIndia
| | - Yael Aylon
- Department of Molecular Cell BiologyThe Weizmann Institute of ScienceRehovotIsrael
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of OncologyLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Eytan Domany
- Department of Physics of Complex SystemsThe Weizmann Institute of ScienceRehovotIsrael
| | - Moshe Oren
- Department of Molecular Cell BiologyThe Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
17
|
Barbosa K, Li S, Adams PD, Deshpande AJ. The role of TP53 in acute myeloid leukemia: Challenges and opportunities. Genes Chromosomes Cancer 2019; 58:875-888. [PMID: 31393631 PMCID: PMC12042961 DOI: 10.1002/gcc.22796] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
The tumor suppressor gene TP53 is one of the most frequently mutated genes in human cancer. The central role of the TP53 protein in several fundamental processes such as cancer, aging, senescence, and DNA repair has ensured enormous attention. However, the role of TP53 in acute myeloid leukemia (AML) is enigmatic. Unlike many other human cancers, a vast majority of AMLs display no genomic TP53 alterations. There is now growing appreciation of the fact that the unaltered TP53 status of tumor cells can be exploited therapeutically. As most AMLs have an intact TP53 gene, its physiological tumor-suppressive roles could be harnessed. Therefore, the use of pharmacological activators of the TP53 pathway may provide clinical benefit in AML. Conversely, even though the frequency of TP53 mutations in AML is substantially lower than in other human cancers, TP53 mutations are associated with chemoresistance and high risk of relapse. In patients with TP53 mutations, these alterations may lead to novel, selective vulnerabilities, creating opportunities for therapeutic targeting of TP53 mutant AML. The mutational status of TP53 therefore poses challenges and opportunities in terms of advancing effective treatment strategies in AML. An increasing armamentarium of small-molecule activators of the TP53 pathway, and a growing understanding of molecular pathways triggered by mutant TP53 have accelerated efforts aimed at targeting TP53 function in AML. In combination with standard AML chemotherapy or emerging targeted therapies, pharmacological targeting of the TP53 pathway may provide therapeutic benefit in AML.
Collapse
Affiliation(s)
- Karina Barbosa
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Sha Li
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Peter D Adams
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Aniruddha J Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| |
Collapse
|
18
|
Brisuda A, Háček J, Čechová M, Škapa P, Babjuk M. Diagnosis of urinary bladder urothelial carcinoma by immunocytology with p53,
MCM
5,
MCM
2 and Ki‐67 antibodies using cell blocks derived from urine. Cytopathology 2019; 30:510-518. [DOI: 10.1111/cyt.12698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 02/18/2019] [Accepted: 03/24/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Antonín Brisuda
- Department of Urology 2nd Faculty of Medicine Charles University Prague Czech Republic
| | - Jaromír Háček
- Department of Pathology and Molecular Medicine 2nd Faculty of Medicine Charles University Prague Czech Republic
| | - Marcela Čechová
- Department of Urology 2nd Faculty of Medicine Charles University Prague Czech Republic
| | - Petr Škapa
- Department of Pathology and Molecular Medicine 2nd Faculty of Medicine Charles University Prague Czech Republic
| | - Marek Babjuk
- Department of Urology 2nd Faculty of Medicine Charles University Prague Czech Republic
| |
Collapse
|
19
|
McCullough AK, Lloyd RS. Mechanisms underlying aflatoxin-associated mutagenesis - Implications in carcinogenesis. DNA Repair (Amst) 2019; 77:76-86. [PMID: 30897375 PMCID: PMC6959417 DOI: 10.1016/j.dnarep.2019.03.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 01/07/2023]
Abstract
Chronic dietary exposure to aflatoxin B1 (AFB1), concomitant with hepatitis B infection is associated with a significant increased risk for hepatocellular carcinomas (HCCs) in people living in Southeast Asia and sub-Saharan Africa. Human exposures to AFB1 occur through the consumption of foods that are contaminated with pervasive molds, including Aspergillus flavus. Even though dietary exposures to aflatoxins constitute the second largest global environmental risk factor for cancer development, there are still significant questions concerning the molecular mechanisms driving carcinogenesis and what factors may modulate an individual's risk for HCC. The objective of this review is to summarize key discoveries that established the association of chronic inflammation (most commonly associated with hepatitis B viral (HBV) infection) and environmental exposures to aflatoxin with increased HCC risk. Special emphasis will be given to recent investigations that have: 1) refined the aflatoxin-associated mutagenic signature, 2) expanded the DNA repair mechanisms that limit mutagenesis via adduct removal prior to replication-induced mutagenesis, 3) implicated a specific DNA polymerase in the error-prone bypass and resulting mutagenesis, and 4) identified human polymorphic variants that may modulate individual susceptibility to aflatoxin-induced cancers. Collectively, these investigations revealed that specific sequence contexts are differentially resistant against, or prone to, aflatoxin-induced mutagenesis and that these associations are remarkably similar between in vitro and in vivo analyses. These recent investigations also established DNA polymerase ζ as the major polymerase that confers the G to T transversion signature. Additionally, although the nucleotide excision repair (NER) pathway has been previously shown to repair aflatoxin-induced DNA adducts, recent murine data demonstrated that NEIL1-initiated base excision repair was significantly more important than NER relative to the removal of the highly mutagenic AFB1-Fapy-dG adducts. These data suggest that inactivating polymorphic variants of NEIL1 could be a potential driver of HCCs in aflatoxin-exposed populations.
Collapse
Affiliation(s)
- Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
20
|
Vidaurre T, Casavilca S, Montenegro P, Gomez H, Calderón M, Navarro J, Aramburu J, Poquioma E, Tsuchiya Y, Asai T, Ajioka Y, Sato A, Ikoma T, Nakamura K. Tumor Protein p53 and K-ras Gene Mutations in Peruvian Patients with Gallbladder Cancer. Asian Pac J Cancer Prev 2019; 20:289-294. [PMID: 30678452 PMCID: PMC6485555 DOI: 10.31557/apjcp.2019.20.1.289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Recent studies have shown that genetic alterations are associated with the effect of patient geographic
location on gallbladder cancer development. Peru has a high incidence of gallbladder cancer, but causative factors
have not yet been identified. We examined the frequency of mutations in TP53 and K-ras genes in Peruvian patients
with gallbladder cancer, and compared this with data from Bolivia, Hungary, Chile, and Japan, which have a high
gallbladder cancer incidence. Methods: DNA was extracted from formalin-fixed paraffin-embedded gallbladder tissue
sections of 30 gallbladder cancer patients (9 men and 21 women) obtained using microdissection. Mutations in exons
5 to 8 of TP53 and codons 12, 13, and 61 of K-ras were examined using direct sequencing. Results: TP53 mutations
were observed in 10 (33.3%) of patients, but K-ras mutations were absent. Nine (90%) TP53 mutations were point
mutations (7 missense and 2 silent mutations), and the most frequent substitution was a G:C to A:T transition. G:C to
A:T transitions at the CpG site or G:C to T:A transversions were found in one patient each. No significant differences
were found in the frequency of TP53 and K-ras mutations among patients in the 5 countries. Conclusions: Our findings
suggest that endogenous mechanisms and exogenous carcinogens may affect the carcinogenic process in Peruvian
gallbladder cancer patients, similar to that in Bolivian patients. Further studies with a larger sample size are needed
to clarify these findings.
Collapse
|
21
|
Pellerano M, Naud-Martin D, Mahuteau-Betzer F, Morille M, Morris MC. Fluorescent Biosensor for Detection of the R248Q Aggregation-Prone Mutant of p53. Chembiochem 2019; 20:605-613. [PMID: 30548750 DOI: 10.1002/cbic.201800531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/10/2018] [Indexed: 01/28/2023]
Abstract
The p53 tumour suppressor and guardian of the genome undergoes missense mutations that lead to functional inactivation in 50 % of human cancers. These mutations occur mostly in the DNA-binding domain of the protein, and several of these result in conformational changes that lead to amyloid-like protein aggregation. Herein, we describe a fluorescent biosensor that reports on the R248Q mutant of p53 in vitro and in living cells, engineered through conjugation of an environmentally sensitive probe onto a peptide derived from the primary aggregation segment of p53. This biosensor was characterised both in vitro and by means of fluorescence microscopy following facilitated delivery into cultured cells. It is shown that this biosensor preferentially reports on the p53 R248Q mutant in the PC9 lung cancer cell line compared with other lung cancer cell lines harbouring either wild-type or no p53.
Collapse
Affiliation(s)
- Morgan Pellerano
- Institut des Biomolécules Max Mousseron-IBMM-UMR 5247, Université de Montpellier, Faculté de Pharmacie, 15, Av. Charles Flahault, 34093, Montpellier, France
| | - Delphine Naud-Martin
- Institut Curie, PSL Research University, CNRS, INSERM, UMR9187-U1196, 91405, Orsay, France
| | | | - Marie Morille
- Institut Charles Gerhardt-UMR 5253 CNRS-UM-ENSCM, Université de Montpellier, Faculté de Pharmacie, 15, Av. Charles Flahault, 34093, Montpellier, France
| | - May C Morris
- Institut des Biomolécules Max Mousseron-IBMM-UMR 5247, Université de Montpellier, Faculté de Pharmacie, 15, Av. Charles Flahault, 34093, Montpellier, France
| |
Collapse
|
22
|
Imanishi M, Yamamoto Y, Wang X, Sugaya A, Hirose M, Endo S, Natori Y, Yamato K, Hyodo I. Augmented antitumor activity of 5-fluorouracil by double knockdown of MDM4 and MDM2 in colon and gastric cancer cells. Cancer Sci 2019; 110:639-649. [PMID: 30488540 PMCID: PMC6361612 DOI: 10.1111/cas.13893] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022] Open
Abstract
Inactivation of the TP53 tumor suppressor gene is essential during cancer development and progression. Mutations of TP53 are often missense and occur in various human cancers. In some fraction of wild‐type (wt) TP53 tumors, p53 is inactivated by upregulated murine double minute homolog 2 (MDM2) and MDM4. We previously reported that simultaneous knockdown of MDM4 and MDM2 using synthetic DNA‐modified siRNAs revived p53 activity and synergistically inhibited in vitro cell growth in cancer cells with wt TP53 and high MDM4 expression (wtTP53/highMDM4). In the present study, MDM4/MDM2 double knockdown with the siRNAs enhanced 5‐fluorouracil (5‐FU)‐induced p53 activation, arrested the cell cycle at G1 phase, and potentiated the antitumor effect of 5‐FU in wtTP53/highMDM4 human colon (HCT116 and LoVo) and gastric (SNU‐1 and NUGC‐4) cancer cells. Exposure to 5‐FU alone induced MDM2 as well as p21 and PUMA by p53 activation. As p53‐MDM2 forms a negative feedback loop, enhancement of the antitumor effect of 5‐FU by MDM4/MDM2 double knockdown could be attributed to blocking of the feedback mechanism in addition to direct suppression of these p53 antagonists. Intratumor injection of the MDM4/MDM2 siRNAs suppressed in vivo tumor growth and boosted the antitumor effect of 5‐FU in an athymic mouse xenograft model using HCT116 cells. These results suggest that a combination of MDM4/MDM2 knockdown and conventional cytotoxic drugs could be a promising treatment strategy for wtTP53/highMDM4 gastrointestinal cancers.
Collapse
Affiliation(s)
- Mamiko Imanishi
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshiyuki Yamamoto
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Xiaoxuan Wang
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akinori Sugaya
- Department of Gastroenterology, Kasumigaura Medical Center, Tsuchiura, Japan
| | - Mitsuaki Hirose
- Department of Gastroenterology, Tsuchiura Clinical Education and Training Center, University of Tsukuba Hospital, Tsuchiura, Japan
| | - Shinji Endo
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Gastroenterology and Hepatology, Shinmatsudo Central General Hospital, Matsudo, Japan
| | | | - Kenji Yamato
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ichinosuke Hyodo
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
23
|
Olotu FA, Soliman MES. Dynamic perspectives into the mechanisms of mutation-induced p53-DNA binding loss and inactivation using active perturbation theory: Structural and molecular insights toward the design of potent reactivators in cancer therapy. J Cell Biochem 2018; 120:951-966. [PMID: 30160791 DOI: 10.1002/jcb.27458] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/19/2018] [Indexed: 01/08/2023]
Abstract
The DNA-binding ability of p53 represents the crux of its tumor suppressive activities, which involves transcriptional activation of target genes responsible for apoptosis and cell-cycle arrest. Mutational occurrences within or in close proximity to the DNA-binding surface of p53 have accounted for the loss of direct DNA-binding ability and inactivation implicated in many cases of cancer. Moreover, the design of therapeutic compounds that can restore DNA-binding ability in p53 mutants has been identified as a way forward in curtailing their oncogenic activities. However, there is still the need for more insights into evaluate the perturbations that occur at the DNA-binding interface of mp53 relative to DNA-binding loss, inactivation, and design of potent reactivators, hence the purpose of this study. Therefore, we evaluated p53-structural (R175H) and contact (R273C) mutational effects using tunnel perturbation analysis and other computational tools. We identified significant perturbations in the active tunnels of p53, which resulted in altered geometry and loss, unlike in the wild-type p53. This corroborated with structural, DNA-binding, and interaction network analysis, which showed that loss of flexibility, repulsion of DNA-interactive residues, and instability occurred at the binding interface of both mutants. Also, these mutations altered bonding interactions and network topology at the DNA-binding interface, resulting in the reduction of p53-DNA binding proximity and affinity. Therefore, these findings would aid the structure-based design of novel chemical entities capable of restoring p53-DNA binding and activation.
Collapse
Affiliation(s)
- Fisayo A Olotu
- Molecular Bio-Computation and Drug Design Laboratory, Department of Pharmaceutical Chemistry, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Laboratory, Department of Pharmaceutical Chemistry, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
24
|
Javadi H, Lotfi AS, Hosseinkhani S, Mehrani H, Amani J, Soheili ZS, Hojati Z, Kamali M. The combinational effect of E6/E7 siRNA and anti-miR-182 on apoptosis induction in HPV16-positive cervical cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:727-736. [PMID: 29873516 DOI: 10.1080/21691401.2018.1468770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the present research, we assumed that reducing the amounts of E6 and E7 oncoproteins by a specific siRNA sequence and recovering p53 and RB proteins, along with the recovery of the FOXO1 protein by applying anti-miR-182, would increase apoptosis and reduce proliferation rate in cancer cells. The HPV16-positive CaSki cervical cancer cell line was used. 48 hours after transfection of siRNA for targeting E6 and E7 oncoproteins and anti-miR-182, expression of its cellular targets p53, p21 and FOXO1 was assessed by real-time PCR, western blot analysis and immunocytofluorescence staining. In all treatments, apoptosis rate and viability were evaluated using Annexin-V-FITC apoptosis detection kits and MTT assays, respectively. Among the designed siRNAs, E6-1 and E7-2 proved the most effective in reducing E6 and E7 expressions by increasing the apoptotic rates to 12.4% and 16%, respectively, after 48 hours. Also, using anti-miR-182 increased apoptotic rate to 12.7% 48 hours after transfection of cervical cancer cells. The combinational use of either E6-1 or E7-2 siRNAs with anti-miR-182 resulted in a rise in apoptosis to 19.3% and 26%, respectively, higher than those obtained from the individual application of either without anti-miR-182. The simultaneous use of siRNA E6-1 and siRNA E7-2 with cisplatin increased sensitivity to cisplatin and reduced the viability of the cancer cells as compared to the use of cisplatin alone. The simultaneous use of cisplatin and anti-miR-182 had no considerable effect on viability or apoptosis rate compared to cisplatin alone.
Collapse
Affiliation(s)
- Hamidreza Javadi
- a Nanobiotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran.,b Department of Molecular Medicine , Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | - Abbas Sahebghadam Lotfi
- c Department of Clinical Biochemistry, Faculty of Medicine , Tarbiat Modares University , Tehran , Iran
| | - Saman Hosseinkhani
- d Department of Biochemistry, Faculty of Basic Sciences , Tarbiat Modares University , Tehran , Iran
| | - Hossein Mehrani
- e Department of Biochemistry, Faculty of Science , Islamic Azad University Branch of Neyshabur , Neyshabur , Iran
| | - Jafar Amani
- f Applied Microbiology Research Center, System Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Zahra Soheila Soheili
- b Department of Molecular Medicine , Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | - Zahra Hojati
- b Department of Molecular Medicine , Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | - Mehdi Kamali
- a Nanobiotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
25
|
Affiliation(s)
- Emanuela Guerra
- Laboratory of Experimental Oncology, Department of Cell Biology and Oncology, Institute Mario Negri – Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Saverio Alberti
- Laboratory of Experimental Oncology, Department of Cell Biology and Oncology, Institute Mario Negri – Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| |
Collapse
|
26
|
Targeting p53 as a promising therapeutic option for cancer by re-activating the wt or mutant p53’s tumor suppression. Future Med Chem 2018; 10:755-777. [DOI: 10.4155/fmc-2017-0175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
p53 protein, a product of the TP53 tumor suppressor gene, controls the cellular genome’s integrity and is an important regulator of cell cycling, proliferation, apoptosis and metabolism. Mutations of TP53 or inactivation of its gene product are among the first events initiating malignant transformation. The consequent loss of control over the cell cycle, resulting in accelerated cell proliferation and facilitating metabolic reprogramming, gives the initiated (premalignant) cells numerous advantages over healthy cells. Interestingly, p53 status is not only an important marker in cancer diagnosis; it has also become a promising target of personalized therapy. Depending on the TP53 status different therapeutic options have been developed. (Re)-activation of p53 functionality in cancer cells offers promising new alternatives to existing oncological therapies.
Collapse
|
27
|
Daher T, Tur MK, Brobeil A, Etschmann B, Witte B, Engenhart-Cabillic R, Krombach G, Blau W, Grimminger F, Seeger W, Klussmann JP, Bräuninger A, Gattenlöhner S. Combined human papillomavirus typing and TP53 mutation analysis in distinguishing second primary tumors from lung metastases in patients with head and neck squamous cell carcinoma. Head Neck 2018. [PMID: 29522268 DOI: 10.1002/hed.25041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND In head and neck squamous cell carcinoma (HNSCC), the occurrence of concurrent lung malignancies poses a significant diagnostic challenge because metastatic HNSCC is difficult to discern from second primary lung squamous cell carcinoma (SCC). However, this differentiation is crucial because the recommended treatments for metastatic HNSCC and second primary lung SCC differ profoundly. METHODS We analyzed the origin of lung tumors in 32 patients with HNSCC using human papillomavirus (HPV) typing and targeted next generation sequencing of all coding exons of tumor protein 53 (TP53). RESULTS Lung tumors were clearly identified as HNSCC metastases or second primary tumors in 29 patients, thus revealing that 16 patients had received incorrect diagnoses based on clinical and morphological data alone. CONCLUSION The HPV typing and mutation analysis of all TP53 coding exons is a valuable diagnostic tool in patients with HNSCC and concurrent lung SCC, which can help to ensure that patients receive the most suitable treatment.
Collapse
Affiliation(s)
- Tamas Daher
- Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Mehmet Kemal Tur
- Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Alexander Brobeil
- Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Benjamin Etschmann
- Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Biruta Witte
- Department of General and Thoracic Surgery, University Hospital Giessen, Giessen, Germany
| | | | - Gabriele Krombach
- Department of Diagnostic and Interventional Radiology, University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Wolfgang Blau
- Department of Internal Medicine V, University Hospital Giessen, Giessen, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine V, University Hospital Giessen, Giessen, Germany
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jens Peter Klussmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Andreas Bräuninger
- Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Stefan Gattenlöhner
- Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
28
|
Guerra E, Vacca G, Palombo B, Alberti S. Prognostic Value of Mutations in TP53 and RAS Genes in Breast Cancer. Int J Biol Markers 2018. [DOI: 10.1177/172460080301800108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The identification of molecular indicators of higher risk for specific subgroups of cancer patients may allow to develop more aggressive therapeutic strategies aimed at cases with the highest likelihood of response. This would avoid unnecessary toxicity to patients and alleviate the burden of cancer care for healthcare systems. Activated oncogenes and mutated tumor suppressor genes are causal determinants of the appearance and progression of tumors in man. They therefore represent potential indicators of prognosis and/or response to therapy. However, even in cases of well-studied oncogenes and tumor suppressor genes such as TP53 and RAS, their attributed prognostic and predictive value is often based on studies of insufficient statistical power that often lead to conflicting conclusions. Findings in favor or against the use of TP53 and RAS as prognostic and predictive indicators in breast cancer are reviewed and discussed here.
Collapse
Affiliation(s)
- E. Guerra
- Laboratory of Experimental Oncology, Department of Cell Biology and Oncology, Mario Negri Institute - Consorzio Mario Negri Sud, Santa Maria Imbaro (CH)
| | - G. Vacca
- Department of Oncology, School of Medicine, University “G. D'Annunzio”, Chieti - Italy
| | - B. Palombo
- Laboratory of Experimental Oncology, Department of Cell Biology and Oncology, Mario Negri Institute - Consorzio Mario Negri Sud, Santa Maria Imbaro (CH)
| | - S. Alberti
- Laboratory of Experimental Oncology, Department of Cell Biology and Oncology, Mario Negri Institute - Consorzio Mario Negri Sud, Santa Maria Imbaro (CH)
| |
Collapse
|
29
|
Abstract
In this review, we take a survey of bioinformatics databases and quantitative structure-activity relationship studies reported in published literature. Databases from the most general to special cancer-related ones have been included. Most commonly used methods of structure-based analysis of molecules have been reviewed, along with some case studies where they have been used in cancer research. This article is expected to be of use for general bioinformatics researchers interested in cancer and will also provide an update to those who have been actively pursuing this field of research.
Collapse
Affiliation(s)
- Adeel Malik
- Department of Biosciences, Jamia Millia Islamia University, New Delhi-110025, India
| | - Hemajit Singh
- Department of Biosciences, Jamia Millia Islamia University, New Delhi-110025, India
| | - Munazah Andrabi
- Department of Biosciences, Jamia Millia Islamia University, New Delhi-110025, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia University, New Delhi-110025, India
| | - Shandar Ahmad
- Department of Biosciences, Jamia Millia Islamia University, New Delhi-110025, India
| |
Collapse
|
30
|
Šebera J, Hattori Y, Sato D, Reha D, Nencka R, Kohno T, Kojima C, Tanaka Y, Sychrovský V. The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine. Nucleic Acids Res 2017; 45:5231-5242. [PMID: 28334993 PMCID: PMC5435939 DOI: 10.1093/nar/gkx157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
The excision of 8-oxoguanine (oxoG) by the human 8-oxoguanine DNA glycosylase 1 (hOGG1) base-excision repair enzyme was studied by using the QM/MM (M06-2X/6-31G(d,p):OPLS2005) calculation method and nuclear magnetic resonance (NMR) spectroscopy. The calculated glycosylase reaction included excision of the oxoG base, formation of Lys249-ribose enzyme–substrate covalent adduct and formation of a Schiff base. The formation of a Schiff base with ΔG# = 17.7 kcal/mol was the rate-limiting step of the reaction. The excision of the oxoG base with ΔG# = 16.1 kcal/mol proceeded via substitution of the C1΄-N9 N-glycosidic bond with an H-N9 bond where the negative charge on the oxoG base and the positive charge on the ribose were compensated in a concerted manner by NH3+(Lys249) and CO2−(Asp268), respectively. The effect of Asp268 on the oxoG excision was demonstrated with 1H NMR for WT hOGG1 and the hOGG1(D268N) mutant: the excision of oxoG was notably suppressed when Asp268 was mutated to Asn. The loss of the base-excision function was rationalized with QM/MM calculations and Asp268 was confirmed as the electrostatic stabilizer of ribose oxocarbenium through the initial base-excision step of DNA repair. The NMR experiments and QM/MM calculations consistently illustrated the base-excision reaction operated by hOGG1.
Collapse
Affiliation(s)
- Jakub Šebera
- The Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Praha, Czech Republic
| | - Yoshikazu Hattori
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama-Boji 180, Yamashiro-cho, Tokushima 770 8514, Japan
| | - Daichi Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980 8578, Japan
| | - David Reha
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Zámek 136, 373 33 Nové Hrady, Czech Republic
| | - Radim Nencka
- The Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Praha, Czech Republic
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104 0045, Japan
| | - Chojiro Kojima
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240 8501, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama-Boji 180, Yamashiro-cho, Tokushima 770 8514, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980 8578, Japan
| | - Vladimír Sychrovský
- The Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha, Czech Republic.,Department of Electrotechnology, Electrical Engineering Czech Technical University, Technická 2, 166 27 Praha, Czech Republic
| |
Collapse
|
31
|
Tsoutsou P, Annibaldi A, Viertl D, Ollivier J, Buchegger F, Vozenin MC, Bourhis J, Widmann C, Matzinger O. TAT-RasGAP 317-326 Enhances Radiosensitivity of Human Carcinoma Cell Lines In Vitro and In Vivo through Promotion of Delayed Mitotic Cell Death. Radiat Res 2017; 187:562-569. [PMID: 28323576 DOI: 10.1667/rr14509.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The synthetic peptide TAT-RasGAP317-326 has been shown to potentiate the efficacy of anti-cancer drugs. In this study, we explored the action of TAT-RasGAP317-326 when combined with radiation by investigating its radiosensitizing activity in vitro and in vivo. To investigate the modulation of intrinsic radiosensitivity induced by TAT-RasGAP317-326, clonogenic assays were performed using four human cancer cell lines, HCT116 p53+/+ (ATCC: CCL-247), HCT116 p53-/-, PANC-1 (ATCC: CRL-1469) and HeLa (ATCC: CCL-2), as well as one nontumor cell line, HaCaT (CLS: 300493). Next, to investigate tumor growth delay after irradiation, HCT116 cell lines were selected and xenografted onto nude mice that were then treated with TAT-RasGAP317-326 alone or in combination with radiation or cisplatin. Afterwards, cell cycle and death modulation were investigated by quantification of micronuclei and apoptosis-related protein array. TAT-RasGAP317-326 radiosensitized all four human carcinoma cell lines tested but displayed no effect on normal cells. It also displayed no effect when administered as monotherapy. This radiosensitizing effect was confirmed in vivo in both p53-positive and p53-negative HCT116 xenografts. TAT-RasGAP317-326 combined with radiation enhanced the number of cells in S phase and subsequently delayed cell death, but had almost no effect on major apoptosis-related proteins. TAT-RasGAP317-326 is a radiosensitizing agent that acts on carcinoma cells and its radiosensitizing effect might be mediated, at least in part, by the enhancement of mitotic cell death.
Collapse
Affiliation(s)
- Pelagia Tsoutsou
- Department of a Radiation Oncology, Lausanne University Hospital, Lausanne, Switzerland.,c Laboratoire de Radio-Oncologie, CHUV, Lausanne, Switzerland.,e Department of Radiation Oncology, Hôpital Neuchâtelois, La Chaux-de-Fonds, Switzerland
| | | | - David Viertl
- Department of a Radiation Oncology, Lausanne University Hospital, Lausanne, Switzerland.,b Department of Nuclear Medicine, Lausanne University Hospital, Lausanne, Switzerland.,c Laboratoire de Radio-Oncologie, CHUV, Lausanne, Switzerland
| | | | - Franz Buchegger
- b Department of Nuclear Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Jean Bourhis
- Department of a Radiation Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Christian Widmann
- d Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Oscar Matzinger
- Department of a Radiation Oncology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
32
|
Zhang X, Zhao Y, Duan X, Zhang HN, Cao Z, Mo Y. Mechanisms for the deamination reaction of 8-oxoguanine catalyzed by 8-oxoguanine deaminase: A combined QM/MM molecular dynamics study. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2016. [DOI: 10.1142/s0219633616500668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The deamination reaction of 8-oxoguanine (8-oxoG) catalyzed by 8-oxoguanine deaminase (8-oxoGD) plays a critically important role in the DNA repair activity for oxidative damage. In order to elucidate the complete enzymatic catalysis mechanism at the stages of 8-oxoguanine binding, departure of 2-hydroxy-1H-purine-6,8(7H,9H)-dione from the active site, and formation of 8-oxoxanthine, extensive combined QM(PM3)/MM molecular dynamics simulations have been performed. Computations show that the rate-limiting step corresponds to the nucleophilic attack from zinc-coordinate hydroxide group to free 8-oxoguanine. Through conformational analyses, we demonstrate that Trp115, Trp123 and Leu119 connect to O8@8-oxoguanine with hydrogen bonds, and we suggest that mutations of tryptophan (115 and 123) to histidine or phenylalanine and mutation of leucine (119) to alanine could potentially lead to a mutant with enhanced activity. On this ground, a proton transfer mechanism for the formation of 8-oxoxanthine was further discussed. Both Glu218 and water molecule could be used as proton shuttles, and water molecule plays a major role in proton transfer in substrate. On the other hand, comparative simulations on the deamination of guanine and isocytosine reveal that, for the helping of hydrogen bonds between O8@8-oxoguanine and enzyme, O8@8-oxoguanine is the fastest to be deaminated among the three substrates which are also supported by the experimental kinetic constants.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Yuan Zhao
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Xinli Duan
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hui N. Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Yirong Mo
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA
| |
Collapse
|
33
|
Guerra E, Cimadamore A, Simeone P, Vacca G, Lattanzio R, Botti G, Gatta V, D'Aurora M, Simionati B, Piantelli M, Alberti S. p53, cathepsin D, Bcl-2 are joint prognostic indicators of breast cancer metastatic spreading. BMC Cancer 2016; 16:649. [PMID: 27538498 PMCID: PMC4991058 DOI: 10.1186/s12885-016-2713-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/11/2016] [Indexed: 02/04/2023] Open
Abstract
Background Traditional prognostic indicators of breast cancer, i.e. lymph node diffusion, tumor size, grading and estrogen receptor expression, are inadequate predictors of metastatic relapse. Thus, additional prognostic parameters appear urgently needed. Individual oncogenic determinants have largely failed in this endeavour. Only a few individual tumor growth drivers, e.g. mutated p53, Her-2, E-cadherin, Trops, did reach some prognostic/predictive power in clinical settings. As multiple factors are required to drive solid tumor progression, clusters of such determinants were expected to become stronger indicators of tumor aggressiveness and malignant progression than individual parameters. To identify such prognostic clusters, we went on to coordinately analyse molecular and histopathological determinants of tumor progression of post-menopausal breast cancers in the framework of a multi-institutional case series/case-control study. Methods A multi-institutional series of 217 breast cancer cases was analyzed. Twenty six cases (12 %) showed disease relapse during follow-up. Relapsed cases were matched with a set of control patients by tumor diameter, pathological stage, tumor histotype, age, hormone receptors and grading. Histopathological and molecular determinants of tumor development and aggressiveness were then analyzed in relapsed versus non-relapsed cases. Stepwise analyses and model structure fitness assessments were carried out to identify clusters of molecular alterations with differential impact on metastatic relapse. Results p53, Bcl-2 and cathepsin D were shown to be coordinately associated with unique levels of relative risk for disease relapse. As many Ras downstream targets, among them matrix metalloproteases, are synergistically upregulated by mutated p53, whole-exon sequence analyses were performed for TP53, Ki-RAS and Ha-RAS, and findings were correlated with clinical phenotypes. Notably, TP53 insertion/deletion mutations were only detected in relapsed cases. Correspondingly, Ha-RAS missense oncogenic mutations were only found in a subgroup of relapsing tumors. Conclusions We have identified clusters of specific molecular alterations that greatly improve prognostic assessment with respect to singularly-analysed indicators. The combined analysis of these multiple tumor-relapse risk factors promises to become a powerful approach to identify patients subgroups with unfavourable disease outcome. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2713-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emanuela Guerra
- Unit of Cancer Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | | | - Pasquale Simeone
- Unit of Cancer Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Giovanna Vacca
- Unit of Cancer Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Rossano Lattanzio
- Unit of Cancer Pathology, CeSI-MeT, University of Chieti, Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University 'G. D'Annunzio', Chieti, Italy
| | - Gerardo Botti
- Department of Pathology "Foundation G.Pascale", National Cancer Institute, Naples, Italy
| | - Valentina Gatta
- Department of Psychological, Health ad Territorial Sciences, School of Medicine and Life Sciences, University 'G. D'Annunzio', Chieti, Italy
| | - Marco D'Aurora
- Department of Psychological, Health ad Territorial Sciences, School of Medicine and Life Sciences, University 'G. D'Annunzio', Chieti, Italy
| | | | - Mauro Piantelli
- Unit of Cancer Pathology, CeSI-MeT, University of Chieti, Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University 'G. D'Annunzio', Chieti, Italy
| | - Saverio Alberti
- Unit of Cancer Pathology, CeSI-MeT, University of Chieti, Chieti, Italy. .,Department of Neurosciences, Imaging and Clinical Sciences, University 'G. D'Annunzio', Chieti, Italy.
| |
Collapse
|
34
|
Adega F, Borges A, Chaves R. Cat Mammary Tumors: Genetic Models for the Human Counterpart. Vet Sci 2016; 3:vetsci3030017. [PMID: 29056725 PMCID: PMC5606576 DOI: 10.3390/vetsci3030017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/06/2016] [Accepted: 08/11/2016] [Indexed: 12/18/2022] Open
Abstract
The records are not clear, but Man has been sheltering the cat inside his home for over 12,000 years. The close proximity of this companion animal, however, goes beyond sharing the same roof; it extends to the great similarity found at the cellular and molecular levels. Researchers have found a striking resemblance between subtypes of feline mammary tumors and their human counterparts that goes from the genes to the pathways involved in cancer initiation and progression. Spontaneous cat mammary pre-invasive intraepithelial lesions (hyperplasias and neoplasias) and malignant lesions seem to share a wide repertoire of molecular features with their human counterparts. In the present review, we tried to compile all the genetics aspects published (i.e., chromosomal alterations, critical cancer genes and their expression) regarding cat mammary tumors, which support the cat as a valuable alternative in vitro cell and animal model (i.e., cat mammary cell lines and the spontaneous tumors, respectively), but also to present a critical point of view of some of the issues that really need to be investigated in future research.
Collapse
Affiliation(s)
- Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real 5001-801, Portugal.
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa 1749-016, Portugal.
| | - Ana Borges
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real 5001-801, Portugal.
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa 1749-016, Portugal.
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real 5001-801, Portugal.
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa 1749-016, Portugal.
| |
Collapse
|
35
|
Walters B, Thompson SR. Cap-Independent Translational Control of Carcinogenesis. Front Oncol 2016; 6:128. [PMID: 27252909 PMCID: PMC4879784 DOI: 10.3389/fonc.2016.00128] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/10/2016] [Indexed: 01/04/2023] Open
Abstract
Translational regulation has been shown to play an important role in cancer and tumor progression. Despite this fact, the role of translational control in cancer is an understudied and under appreciated field, most likely due to the technological hurdles and paucity of methods available to establish that changes in protein levels are due to translational regulation. Tumors are subjected to many adverse stress conditions such as hypoxia or starvation. Under stress conditions, translation is globally downregulated through several different pathways in order to conserve energy and nutrients. Many of the proteins that are synthesized during stress in order to cope with the stress use a non-canonical or cap-independent mechanism of initiation. Tumor cells have utilized these alternative mechanisms of translation initiation to promote survival during tumor progression. This review will specifically discuss the role of cap-independent translation initiation, which relies on an internal ribosome entry site (IRES) to recruit the ribosomal subunits internally to the messenger RNA. We will provide an overview of the role of IRES-mediated translation in cancer by discussing the types of genes that use IRESs and the conditions under which these mechanisms of initiation are used. We will specifically focus on three well-studied examples: Apaf-1, p53, and c-Jun, where IRES-mediated translation has been demonstrated to play an important role in tumorigenesis or tumor progression.
Collapse
Affiliation(s)
- Beth Walters
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
36
|
Bazrafshani MRR, Nowshadi PA, Shirian S, Daneshbod Y, Nabipour F, Mokhtari M, Hosseini F, Dehghan S, Saeedzadeh A, Mosayebi Z. Deletion/duplication mutation screening of TP53 gene in patients with transitional cell carcinoma of urinary bladder using multiplex ligation-dependent probe amplification. Cancer Med 2016; 5:145-52. [PMID: 26685928 PMCID: PMC4735784 DOI: 10.1002/cam4.561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/10/2022] Open
Abstract
Bladder cancer is a molecular disease driven by the accumulation of genetic, epigenetic, and environmental factors. The aim of this study was to detect the deletions/duplication mutations in TP53 gene exons using multiplex ligation-dependent probe amplification (MLPA) method in the patients with transitional cell carcinoma (TCC). The achieved formalin-fixed paraffin-embedded tissues from 60 patients with TCC of bladder were screened for exonal deletions or duplications of every 12 TP53 gene exons using MLPA. The pathological sections were examined by three pathologists and categorized according to the WHO scoring guideline as 18 (30%) grade I, 22 (37%) grade II, 13 (22%) grade III, and 7 (11%) grade IV cases of TCC. None mutation changes of TP53 gene were detected in 24 (40%) of the patients. Furthermore, mutation changes including, 15 (25%) deletion, 17 (28%) duplication, and 4 (7%) both deletion and duplication cases were observed among 60 samples. From 12 exons of TP53 gene, exon 1 was more subjected to exonal deletion. Deletion of exon 1 of TP53 gene has occurred in 11 (35.4%) patients with TCC. In general, most mutations of TP53, either deletion or duplication, were found in exon 1, which was statistically significant. In addition, no relation between the TCC tumor grade and any type of mutation were observed in this research. MLPA is a simple and efficient method to analyze genomic deletions and duplications of all 12 exons of TP53 gene. The finding of this report that most of the mutations of TP53 occur in exon 1 is in contrast to that of the other reports suggesting that exons 5-8 are the most (frequently) mutated exons of TP53 gene. The mutations of exon 1 of TP53 gene may play an important role in the tumorogenesis of TCC.
Collapse
Affiliation(s)
| | | | - Sadegh Shirian
- Department of PathologySchool of Veterinary PathologyShahrekord UniversityShahrekordIran
- Shefa Neuroscience Research CenterKhatam‐Al‐Anbia HospitalTehranIran
- Brain and Spinal Cord Injury Research CenterTehran University of Medical SciencesTehranIran
| | - Yahya Daneshbod
- Department of CytopathologyResearch Center of Dr. Daneshbod Path LabShirazIran
| | - Fatemeh Nabipour
- Department of PathologyKerman University of Medical SciencesKermanIran
| | - Maral Mokhtari
- Department of PathologyShiraz University of Medical SciencesShirazIran
| | | | - Somayeh Dehghan
- Department of Medical BiotechnologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Abolfazl Saeedzadeh
- Department of CytopathologyResearch Center of Dr. Daneshbod Path LabShirazIran
| | - Ziba Mosayebi
- Department of PediatricsChildren's Medical Center HospitalTehran University of Medical SciencesTehranIran
| |
Collapse
|
37
|
Wu L, Yu H, Zhao Y, Zhang C, Wang J, Yue X, Yang Q, Hu W. HIF-2α mediates hypoxia-induced LIF expression in human colorectal cancer cells. Oncotarget 2015; 6:4406-17. [PMID: 25726527 PMCID: PMC4414199 DOI: 10.18632/oncotarget.3017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/31/2014] [Indexed: 01/16/2023] Open
Abstract
Leukemia inhibitory factor (LIF), a multi-functional cytokine, has a complex role in cancer. While LIF induces the differentiation of several myeloid leukemia cells and inhibits their growth, it also promotes tumor progression, metastasis and chemoresistance in many solid tumors. LIF is frequently overexpressed in a variety of human tumors and its overexpression is often associated with poor prognosis of patients. Currently, the mechanism for LIF overexpression in tumor cells is not well-understood. Here, we report that hypoxia, a hallmark of solid tumors, induced LIF mRNA expression in human colorectal cancer cells. Analysis of LIF promoter revealed several hypoxia-responsive elements (HREs) that can specifically interact with and be transactivated by HIF-2α but not HIF-1α. Consistently, ectopic expression of HIF-2α but not HIF-1α transcriptionally induced LIF expression levels in cells. Knockdown of endogenous HIF-2α but not HIF-1α by siRNA largely abolished the induction of LIF by hypoxia in cells. Furthermore, there is a strong association of HIF-2α overexpression with LIF overexpression in human colorectal cancer specimens. In summary, results from this study demonstrate that hypoxia induces LIF expression in human cancer cells mainly through HIF-2α, which could be an important underlying mechanism for LIF overexpression in human cancers.
Collapse
Affiliation(s)
- Lihua Wu
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA.,First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Haiyang Yu
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| | - Yuhan Zhao
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| | - Cen Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| | - Jiabei Wang
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| | - Xuetian Yue
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| | - Qifeng Yang
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA.,Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
38
|
Ruggeri RM, Vicchio TM, Giovinazzo S, Certo R, Alibrandi A, Trimarchi F, Benvenga S, Trovato M. TP53 polymorphism may contribute to genetic susceptibility to develop Hashimoto's thyroiditis. J Endocrinol Invest 2015; 38:1175-82. [PMID: 25935255 DOI: 10.1007/s40618-015-0292-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 04/09/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE p53, which is encoded by the tumor suppressor gene TP53, plays a crucial role in the regulation of mechanisms of cell cycle arrest and apoptosis. Some SNPs of TP53, involving a different apoptotic ability of p53, have been associated with increased susceptibility to develop autoimmune diseases as well as cancer. We investigated the genotypic distribution of TP53 exon 4 SNPs in a cohort of Caucasian patients affected by Hashimoto's thyroiditis (HT). METHODS Peripheral blood for DNA extraction was collected from 109 Caucasian unrelated subjects, 79 HT patients and 30 healthy controls. SNPs analysis was carried out by amplification and sequencing of exon 4 TP53. RESULTS For the Pro72Arg (rs 1042522) SNP we found these rates in HT patients: 11.4% wild-type C/C (Pro72Pro), 24.0% heterozygous G/C (Pro72Arg), 64.6% homozygous G/G (Arg72Arg). The corresponding rates in healthy controls were 10, 46.7 and 43.3%, respectively. Thus, significantly different were G/C heterozygosity (24.0 vs 46.7 %, p = 0.039) and G/G homozygosity (64.6 vs 43.3%, p = 0.042). These differences were also confirmed when comparing our study population to published Caucasian control groups. The other described SNPs (Pro34Pro rs 11575998, Pro36Pro rs1800370, Pro47Ser rs1800371, and Arg110Leu rs 11540654) were absent or very rare in our study population. CONCLUSIONS Our preliminary data, the first on a Caucasian population, indicate an increased prevalence of the homozygous genotype Arg/Arg and a decreased prevalence of heterozygous genotype Arg/Pro of rs 1042522 in HT patients compared to controls, suggesting that such SNP may contribute to confer susceptibility to HT.
Collapse
Affiliation(s)
- R M Ruggeri
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Messina, Padiglione H, 4 Piano, AOU Policlinico Universitario "G. Martino", via Consolare Valeria, 1, 98125, Messina, Italy.
| | - T M Vicchio
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Messina, Padiglione H, 4 Piano, AOU Policlinico Universitario "G. Martino", via Consolare Valeria, 1, 98125, Messina, Italy
| | - S Giovinazzo
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Messina, Padiglione H, 4 Piano, AOU Policlinico Universitario "G. Martino", via Consolare Valeria, 1, 98125, Messina, Italy
| | - R Certo
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Messina, Padiglione H, 4 Piano, AOU Policlinico Universitario "G. Martino", via Consolare Valeria, 1, 98125, Messina, Italy
| | - A Alibrandi
- Department of Statistical Sciences (SEFISAST), University of Messina, Messina, Italy
| | - F Trimarchi
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Messina, Padiglione H, 4 Piano, AOU Policlinico Universitario "G. Martino", via Consolare Valeria, 1, 98125, Messina, Italy
| | - S Benvenga
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Messina, Padiglione H, 4 Piano, AOU Policlinico Universitario "G. Martino", via Consolare Valeria, 1, 98125, Messina, Italy
| | - M Trovato
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Messina, Padiglione H, 4 Piano, AOU Policlinico Universitario "G. Martino", via Consolare Valeria, 1, 98125, Messina, Italy
- Department of Human Pathology, University of Messina, Messina, Italy
| |
Collapse
|
39
|
Chappell WH, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Terrian D, Steelman LS, McCubrey JA. Novel roles of androgen receptor, epidermal growth factor receptor, TP53, regulatory RNAs, NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, and matrix metalloproteinase-9 in prostate cancer and prostate cancer stem cells. Adv Biol Regul 2015; 60:64-87. [PMID: 26525204 DOI: 10.1016/j.jbior.2015.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022]
Abstract
Approximately one in six men will be diagnosed with some form of prostate cancer in their lifetime. Over 250,000 men worldwide die annually due to complications from prostate cancer. While advancements in prostate cancer screening and therapies have helped in lowering this statistic, better tests and more effective therapies are still needed. This review will summarize the novel roles of the androgen receptor (AR), epidermal growth factor receptor (EGFR), the EGFRvIII variant, TP53, long-non-coding RNAs (lncRNAs), microRNAs (miRs), NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, (NGAL), matrix metalloproteinase-9 (MMP-9), the tumor microenvironment and cancer stem cells (CSC) have on the diagnosis, development and treatment of prostate cancer.
Collapse
Affiliation(s)
- William H Chappell
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - David Terrian
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
40
|
Computational approaches to study the effects of small genomic variations. J Mol Model 2015; 21:251. [PMID: 26350246 DOI: 10.1007/s00894-015-2794-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/23/2015] [Indexed: 10/23/2022]
Abstract
Advances in DNA sequencing technologies have led to an avalanche-like increase in the number of gene sequences deposited in public databases over the last decade as well as the detection of an enormous number of previously unseen nucleotide variants therein. Given the size and complex nature of the genome-wide sequence variation data, as well as the rate of data generation, experimental characterization of the disease association of each of these variations or their effects on protein structure/function would be costly, laborious, time-consuming, and essentially impossible. Thus, in silico methods to predict the functional effects of sequence variations are constantly being developed. In this review, we summarize the major computational approaches and tools that are aimed at the prediction of the functional effect of mutations, and describe the state-of-the-art databases that can be used to obtain information about mutation significance. We also discuss future directions in this highly competitive field.
Collapse
|
41
|
Chen L, Chu C, Lu J, Kong X, Huang T, Cai YD. A computational method for the identification of new candidate carcinogenic and non-carcinogenic chemicals. MOLECULAR BIOSYSTEMS 2015; 11:2541-50. [PMID: 26194467 DOI: 10.1039/c5mb00276a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is one of the leading causes of human death. Based on current knowledge, one of the causes of cancer is exposure to toxic chemical compounds, including radioactive compounds, dioxin, and arsenic. The identification of new carcinogenic chemicals may warn us of potential danger and help to identify new ways to prevent cancer. In this study, a computational method was proposed to identify potential carcinogenic chemicals, as well as non-carcinogenic chemicals. According to the current validated carcinogenic and non-carcinogenic chemicals from the CPDB (Carcinogenic Potency Database), the candidate chemicals were searched in a weighted chemical network constructed according to chemical-chemical interactions. Then, the obtained candidate chemicals were further selected by a randomization test and information on chemical interactions and structures. The analyses identified several candidate carcinogenic chemicals, while those candidates identified as non-carcinogenic were supported by a literature search. In addition, several candidate carcinogenic/non-carcinogenic chemicals exhibit structural dissimilarity with validated carcinogenic/non-carcinogenic chemicals.
Collapse
Affiliation(s)
- Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
42
|
Human Papillomavirus E6/E7-Specific siRNA Potentiates the Effect of Radiotherapy for Cervical Cancer in Vitro and in Vivo. Int J Mol Sci 2015; 16:12243-60. [PMID: 26035754 PMCID: PMC4490442 DOI: 10.3390/ijms160612243] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/02/2015] [Accepted: 05/12/2015] [Indexed: 01/30/2023] Open
Abstract
The functional inactivation of TP53 and Rb tumor suppressor proteins by the HPV-derived E6 and E7 oncoproteins is likely an important step in cervical carcinogenesis. We have previously shown siRNA technology to selectively silence both E6/E7 oncogenes and demonstrated that the synthetic siRNAs could specifically block its expression in HPV-positive cervical cancer cells. Herein, we investigated the potentiality of E6/E7 siRNA candidates as radiosensitizers of radiotherapy for the human cervical carcinomas. HeLa and SiHa cells were transfected with HPV E6/E7 siRNA; the combined cytotoxic effect of E6/E7 siRNA and radiation was assessed by using the cell viability assay, flow cytometric analysis and the senescence-associated β-galactosidase (SA-β-Gal) assay. In addition, we also investigated the effect of combined therapy with irradiation and E6/E7 siRNA intravenous injection in an in vivo xenograft model. Combination therapy with siRNA and irradiation efficiently retarded tumor growth in established tumors of human cervical cancer cell xenografted mice. In addition, the chemically-modified HPV16 and 18 E6/E7 pooled siRNA in combination with irradiation strongly inhibited the growth of cervical cancer cells. Our results indicated that simultaneous inhibition of HPV E6/E7 oncogene expression with radiotherapy can promote potent antitumor activity and radiosensitizing activity in human cervical carcinomas.
Collapse
|
43
|
Human Papillomavirus: Current and Future RNAi Therapeutic Strategies for Cervical Cancer. J Clin Med 2015; 4:1126-55. [PMID: 26239469 PMCID: PMC4470221 DOI: 10.3390/jcm4051126] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/08/2015] [Indexed: 12/16/2022] Open
Abstract
Human papillomaviruses (HPVs) are small DNA viruses; some oncogenic ones can cause different types of cancer, in particular cervical cancer. HPV-associated carcinogenesis provides a classical model system for RNA interference (RNAi) based cancer therapies, because the viral oncogenes E6 and E7 that cause cervical cancer are expressed only in cancerous cells. Previous studies on the development of therapeutic RNAi facilitated the advancement of therapeutic siRNAs and demonstrated its versatility by siRNA-mediated depletion of single or multiple cellular/viral targets. Sequence-specific gene silencing using RNAi shows promise as a novel therapeutic approach for the treatment of a variety of diseases that currently lack effective treatments. However, siRNA-based targeting requires further validation of its efficacy in vitro and in vivo, for its potential off-target effects, and of the design of conventional therapies to be used in combination with siRNAs and their drug delivery vehicles. In this review we discuss what is currently known about HPV-associated carcinogenesis and the potential for combining siRNA with other treatment strategies for the development of future therapies. Finally, we present our assessment of the most promising path to the development of RNAi therapeutic strategies for clinical settings.
Collapse
|
44
|
Li Y, Melnikov AA, Levenson V, Guerra E, Simeone P, Alberti S, Deng Y. A seven-gene CpG-island methylation panel predicts breast cancer progression. BMC Cancer 2015; 15:417. [PMID: 25986046 PMCID: PMC4438505 DOI: 10.1186/s12885-015-1412-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/01/2015] [Indexed: 12/31/2022] Open
Abstract
Background DNA methylation regulates gene expression, through the inhibition/activation of gene transcription of methylated/unmethylated genes. Hence, DNA methylation profiling can capture pivotal features of gene expression in cancer tissues from patients at the time of diagnosis. In this work, we analyzed a breast cancer case series, to identify DNA methylation determinants of metastatic versus non-metastatic tumors. Methods CpG-island methylation was evaluated on a 56-gene cancer-specific biomarker microarray in metastatic versus non-metastatic breast cancers in a multi-institutional case series of 123 breast cancer patients. Global statistical modeling and unsupervised hierarchical clustering were applied to identify a multi-gene binary classifier with high sensitivity and specificity. Network analysis was utilized to quantify the connectivity of the identified genes. Results Seven genes (BRCA1, DAPK1, MSH2, CDKN2A, PGR, PRKCDBP, RANKL) were found informative for prognosis of metastatic diffusion and were used to calculate classifier accuracy versus the entire data-set. Individual-gene performances showed sensitivities of 63–79 %, 53–84 % specificities, positive predictive values of 59–83 % and negative predictive values of 63–80 %. When modelled together, these seven genes reached a sensitivity of 93 %, 100 % specificity, a positive predictive value of 100 % and a negative predictive value of 93 %, with high statistical power. Unsupervised hierarchical clustering independently confirmed these findings, in close agreement with the accuracy measurements. Network analyses indicated tight interrelationship between the identified genes, suggesting this to be a functionally-coordinated module, linked to breast cancer progression. Conclusions Our findings identify CpG-island methylation profiles with deep impact on clinical outcome, paving the way for use as novel prognostic assays in clinical settings. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1412-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Li
- Rush University Medical Center, 653 W Congress Pkwy, Chicago, IL, 60612, USA.
| | | | - Victor Levenson
- US Biomarkers, Inc, 29 Buckingham Ln., Buffalo Grove, IL, 60089, USA. .,Currently at Center for Translational Research, Catholic Health Initiatives, Englewood, USA.
| | - Emanuela Guerra
- Unit of Cancer Pathology, CeSI, 'G. d'Annunzio' University Foundation, Via L. Polacchi 11, 66100, Chieti, Italy.
| | - Pasquale Simeone
- Unit of Cancer Pathology, CeSI, 'G. d'Annunzio' University Foundation, Via L. Polacchi 11, 66100, Chieti, Italy.
| | - Saverio Alberti
- Unit of Cancer Pathology, CeSI, 'G. d'Annunzio' University Foundation, Via L. Polacchi 11, 66100, Chieti, Italy. .,Department of Neuroscience, Imaging and Clinical Sciences, Unit of Physiology and Physiopathology, 'G. d'Annunzio' University, Via dei Vestini, 66100, Chieti, Italy.
| | - Youping Deng
- Rush University Medical Center, 653 W Congress Pkwy, Chicago, IL, 60612, USA.
| |
Collapse
|
45
|
Omar SI, Tuszynski J. Ranking the Binding Energies of p53 Mutant Activators and Their ADMET Properties. Chem Biol Drug Des 2014; 86:163-72. [DOI: 10.1111/cbdd.12480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/20/2014] [Accepted: 11/13/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Sara Ibrahim Omar
- Department of Oncology; University of Alberta; Edmonton AB Canada T6G 1Z2
| | - Jack Tuszynski
- Department of Oncology; University of Alberta; Edmonton AB Canada T6G 1Z2
- Department of Physics; University of Alberta; Edmonton AB Canada T6G 1Z2
| |
Collapse
|
46
|
Hirose M, Yamato K, Endo S, Saito R, Ueno T, Hirai S, Suzuki H, Abei M, Natori Y, Hyodo I. MDM4 expression as an indicator of TP53 reactivation by combined targeting of MDM2 and MDM4 in cancer cells without TP53 mutation. Oncoscience 2014; 1:830-43. [PMID: 25621298 PMCID: PMC4303891 DOI: 10.18632/oncoscience.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/24/2014] [Indexed: 12/17/2022] Open
Abstract
MDM2 and MDM4, a structurally related MDM2 homolog, negatively regulates expression and functions of TP53 tumor suppressor gene. To explore the precise expression patterns and function of MDM2 and MDM4 in wild-type (wt) TP53 cancer cells, we analyzed 11 various cancer cell lines with wt TP53. All cell lines exhibited deregulated expression of MDM2 and MDM4, and were divided into two distinct types; the one expressing high levels of MDM4 and another expressing low levels of MDM4. The low MDM4 type expressed higher MDM2 levels than the high MDM4 type. In cells with high MDM4 expression, knockdown of MDM4 or MDM2 reactivated TP53, and simultaneous knockdown of MDM2 and MDM4 synergistically reactivated TP53. In contrast, in cells with low MDM4 expression, knockdown of only MDM2 reactivated TP53. These results suggest that both MDM2 and MDM4 are closely involved in TP53 inactivation in cancer cells with high MDM4 expression, whereas only MDM2, and not MDM4, is a regulator of TP53 in cells with low MDM4 expression. MDM4 expression in wt TP53-tumors is a potential indicator for TP53 reactivation cancer therapy by simultaneous targeting of MDM4 and MDM2. Specific knockdown of MDM2 and MDM4 might be applicable for TP53 restoration therapy.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kenji Yamato
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinji Endo
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rie Saito
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takunori Ueno
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sachiko Hirai
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideo Suzuki
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masato Abei
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Ichinosuke Hyodo
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
47
|
Pavlopoulou A, Spandidos DA, Michalopoulos I. Human cancer databases (review). Oncol Rep 2014; 33:3-18. [PMID: 25369839 PMCID: PMC4254674 DOI: 10.3892/or.2014.3579] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/31/2014] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the four major non‑communicable diseases (NCD), responsible for ~14.6% of all human deaths. Currently, there are >100 different known types of cancer and >500 genes involved in cancer. Ongoing research efforts have been focused on cancer etiology and therapy. As a result, there is an exponential growth of cancer‑associated data from diverse resources, such as scientific publications, genome‑wide association studies, gene expression experiments, gene‑gene or protein‑protein interaction data, enzymatic assays, epigenomics, immunomics and cytogenetics, stored in relevant repositories. These data are complex and heterogeneous, ranging from unprocessed, unstructured data in the form of raw sequences and polymorphisms to well‑annotated, structured data. Consequently, the storage, mining, retrieval and analysis of these data in an efficient and meaningful manner pose a major challenge to biomedical investigators. In the current review, we present the central, publicly accessible databases that contain data pertinent to cancer, the resources available for delivering and analyzing information from these databases, as well as databases dedicated to specific types of cancer. Examples for this wealth of cancer‑related information and bioinformatic tools have also been provided.
Collapse
Affiliation(s)
- Athanasia Pavlopoulou
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Crete, Greece
| | - Ioannis Michalopoulos
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| |
Collapse
|
48
|
Kim YK, Koo NY, Yun PY. Anticancer effects of CKD-602 (Camtobell ®) via G2/M phase arrest in oral squamous cell carcinoma cell lines. Oncol Lett 2014; 9:136-142. [PMID: 25435947 PMCID: PMC4246617 DOI: 10.3892/ol.2014.2648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 08/22/2014] [Indexed: 11/06/2022] Open
Abstract
CKD-602 (7-[2-(N-isopropylamino) ethyl]-(20S)-camptothecin, belotecan) is a synthetic water-soluble camptothecin derivative and topoisomerase I inhibitor that has been shown to exert a clinical anticancer effect on various types of tumor. In the present study, the anticancer effects of CKD-602 on the following three human oral squamous cell carcinoma (OSCC) cell lines originating from Korean cancer patients: YD-8 (tongue), YD-9 (buccal mucosa) and YD-38 (lower gingiva) were analyzed. The apoptotic proportion of the cells and cell cycle position were analyzed using flow cytometry. The expression of cell cycle regulatory proteins was detected by western blot analysis. CKD-602 was demonstrated to exert a time- and dose-dependent antiproliferative effect in all cell lines in vitro, however, susceptibility to CKD-602 at 72 h following treatment varied among the three cell lines, with 50% inhibition of cell viability at concentrations of 2.4 μg/ml for YD-8, 0.18 μg/ml for YD-9 and 0.05 μg/ml for YD-38. To investigate the underlying mechanism of the CKD-602 antiproliferative effect, a cell cycle-analysis was conducted in the three OSCC cell lines and CKD-602 treatment was observed to induce G2/M phase arrest. Furthermore, western blot analysis revealed that the expression levels of phospho-cdc2 (Tyr 15), cyclin A2 and cyclin B1 were increased in a time-dependent manner, following the administration of CKD-602. In the fluorescence-activated cell sorting analysis, the number of apoptotic cells was also increased in a dose-dependent manner following CKD-602 treatment of the OSCC cell lines. The results suggest that CKD-602 may inhibit the proliferation of OSCC oral cancer cells derived from samples from Korean patients by apoptosis and by G2/M phase arrest.
Collapse
Affiliation(s)
- Young-Kyun Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea
| | - Na-Youn Koo
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea
| | - Pil-Young Yun
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea
| |
Collapse
|
49
|
Bethuyne J, De Gieter S, Zwaenepoel O, Garcia-Pino A, Durinck K, Verhelle A, Hassanzadeh-Ghassabeh G, Speleman F, Loris R, Gettemans J. A nanobody modulates the p53 transcriptional program without perturbing its functional architecture. Nucleic Acids Res 2014; 42:12928-38. [PMID: 25324313 PMCID: PMC4227789 DOI: 10.1093/nar/gku962] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The p53 transcription factor plays an important role in genome integrity. To perform this task, p53 regulates the transcription of genes promoting various cellular outcomes including cell cycle arrest, apoptosis or senescence. The precise regulation of this activity remains elusive as numerous mechanisms, e.g. posttranslational modifications of p53 and (non-)covalent p53 binding partners, influence the p53 transcriptional program. We developed a novel, non-invasive tool to manipulate endogenous p53. Nanobodies (Nb), raised against the DNA-binding domain of p53, allow us to distinctively target both wild type and mutant p53 with great specificity. Nb3 preferentially binds ‘structural’ mutant p53, i.e. R175H and R282W, while a second but distinct nanobody, Nb139, binds both mutant and wild type p53. The co-crystal structure of the p53 DNA-binding domain in complex with Nb139 (1.9 Å resolution) reveals that Nb139 binds opposite the DNA-binding surface. Furthermore, we demonstrate that Nb139 does not disturb the functional architecture of the p53 DNA-binding domain using conformation-specific p53 antibody immunoprecipitations, glutaraldehyde crosslinking assays and chromatin immunoprecipitation. Functionally, the binding of Nb139 to p53 allows us to perturb the transactivation of p53 target genes. We propose that reduced recruitment of transcriptional co-activators or modulation of selected post-transcriptional modifications account for these observations.
Collapse
Affiliation(s)
- Jonas Bethuyne
- Nanobody Lab, Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Steven De Gieter
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussel, Belgium
| | - Olivier Zwaenepoel
- Nanobody Lab, Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Abel Garcia-Pino
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussel, Belgium
| | - Kaat Durinck
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Adriaan Verhelle
- Nanobody Lab, Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | - Frank Speleman
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussel, Belgium
| | - Jan Gettemans
- Nanobody Lab, Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| |
Collapse
|
50
|
Wang X, Hou T, Lu T, Li F. Autonomous Exonuclease III-Assisted Isothermal Cycling Signal Amplification: A Facile and Highly Sensitive Fluorescence DNA Glycosylase Activity Assay. Anal Chem 2014; 86:9626-31. [DOI: 10.1021/ac502125z] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiuzhong Wang
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Ting Hou
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Tingting Lu
- College
of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Feng Li
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| |
Collapse
|