1
|
Wang N, Tong X, Li YK. The mouse pubic symphysis: a narrative review. Front Physiol 2025; 16:1497250. [PMID: 40206383 PMCID: PMC11978666 DOI: 10.3389/fphys.2025.1497250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Remodeling and relaxation of the mouse pubic symphysis (PS) are responsible for separating the pubic bone, allowing the passage of the full-term fetus, and ensuring safe delivery. PS in postpartum mice can rapidly return to a similar non-pregnant state, providing mechanical stability for the reproductive tract. During pregnancy and postpartum recovery, PS changes in mice are involved in many aspects, including extracellular matrix (ECM), matrix metalloproteinases (MMPs), cell phenotypes, hormones, and immune cells. The changes in PS in mice during pregnancy and postpartum convalescence were reviewed, and the possible mechanisms were discussed. We hope to attract more research interest to explore the biological mechanisms of this process better.
Collapse
Affiliation(s)
- Ning Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xue Tong
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yi-kai Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Doan TNA, Bianco-Miotto T, Parry L, Winter M. The role of angiotensin II and relaxin in vascular adaptation to pregnancy. Reproduction 2022; 164:R87-R99. [PMID: 36018774 DOI: 10.1530/rep-21-0428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
In brief There is a pregnancy-induced vasodilation of blood vessels, which is known to have a protective effect on cardiovascular function and can be maintained postpartum. This review outlines the cardiovascular changes that occur in a healthy human and rodent pregnancy, as well as different pathways that are activated by angiotensin II and relaxin that result in blood vessel dilation. Abstract During pregnancy, systemic and uteroplacental blood flow increase to ensure an adequate blood supply that carries oxygen and nutrients from the mother to the fetus. This results in changes to the function of the maternal cardiovascular system. There is also a pregnancy-induced vasodilation of blood vessels, which is known to have a protective effect on cardiovascular health/function. Additionally, there is evidence that the effects of maternal vascular vasodilation are maintained post-partum, which may reduce the risk of developing high blood pressure in the next pregnancy and reduce cardiovascular risk later in life. At both non-pregnant and pregnant stages, vascular endothelial cells produce a number of vasodilators and vasoconstrictors, which transduce signals to the contractile vascular smooth muscle cells to control the dilation and constriction of blood vessels. These vascular cells are also targets of other vasoactive factors, including angiotensin II (Ang II) and relaxin. The binding of Ang II to its receptors activates different pathways to regulate the blood vessel vasoconstriction/vasodilation, and relaxin can interact with some of these pathways to induce vasodilation. Based on the available literature, this review outlines the cardiovascular changes that occur in a healthy human pregnancy, supplemented by studies in rodents. A specific focus is placed on vasodilation of blood vessels during pregnancy; the role of endothelial cells and endothelium-derived vasodilators will also be discussed. Additionally, different pathways that are activated by Ang II and relaxin that result in blood vessel dilation will also be reviewed.
Collapse
Affiliation(s)
- Thu Ngoc Anh Doan
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Laura Parry
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Marnie Winter
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Chunduri P, Patel SA, Levick SP. Relaxin/serelaxin for cardiac dysfunction and heart failure in hypertension. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:183-211. [PMID: 35659372 DOI: 10.1016/bs.apha.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The pregnancy related hormone relaxin is produced throughout the reproductive system. However, relaxin also has important cardiovascular effects as part of the adaptation that the cardiovascular system undergoes in response to the extra demands of pregnancy. These effects are primarily mediated by the relaxin family peptide receptor 1, which is one of four known relaxin receptors. The effects of relaxin on the cardiovascular system during pregnancy, as well as its anti-fibrotic and anti-inflammatory properties, have led to extensive studies into the potential of relaxin therapy as an approach to treat heart failure. Cardiomyocytes, cardiac fibroblasts, and endothelial cells all possess relaxin family peptide receptor 1, allowing for direct effects of therapeutic relaxin on the heart. Many pre-clinical animal studies have demonstrated a beneficial effect of exogenous relaxin on adverse cardiac remodeling including inflammation, fibrosis, cardiomyocyte hypertrophy and apoptosis, as well as effects on cardiac contractile function. Despite this, clinical studies have yielded disappointing results for the synthetic seralaxin, even though seralaxin was well tolerated. This article will provide background on relaxin in the context of normal physiology, as well as the role of relaxin in pregnancy-related adaptations of the cardiovascular system. We will also present evidence from pre-clinical animal studies that demonstrate the potential benefits of relaxin therapy, as well as discussing the results from clinical trials. Finally, we will discuss possible reasons for the failure of these clinical trials as well as steps being taken to potentially improve relaxin therapy for heart failure.
Collapse
Affiliation(s)
- Prasad Chunduri
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shrey A Patel
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Scott P Levick
- Physiology and Pharmacology, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
4
|
Yan T, Kong Y, Fan W, Kang J, Chen H, He H, Huang F. Expression of nitric oxide synthases in rat odontoblasts and the role of nitric oxide in odontoblastic differentiation of rat dental papilla cells. Dev Growth Differ 2021; 63:354-371. [PMID: 34411285 DOI: 10.1111/dgd.12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 12/01/2022]
Abstract
As precursor cells of odontoblasts, dental papilla cells (DPCs) form the dentin-pulp complex during tooth development. Nitric oxide (NO) regulates the functions of multiple cells and organ tissues, including stem cell differentiation and bone formation. In this paper, we explored the involvement of NO in odontoblastic differentiation. We verified the expression of NO synthase (NOS) in rat odontoblasts by nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) staining and immunohistochemistry in vivo. The expression of all three NOS isoforms in rat DPCs was confirmed by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), immunofluorescence, and western blotting in vitro. The expression of neuronal NOS and endothelial NOS was upregulated during the odontoblastic differentiation of DPCs. Inhibition of NOS function by NOS inhibitor l-NG -monomethyl arginine (L-NMMA) resulted in reduced formation of mineralized nodules and expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein (DMP1) during DPC differentiation. The NO donor S-nitroso-N-acetylpenicillamine (SNAP, 0.1, 1, 10, and 100 μM) promoted the viability of DPCs. Extracellular matrix mineralization and odontogenic markers expression were elevated by SNAP at low concentrations (0.1, 1, and 10 μM) and suppressed at high concentration (100 μM). Blocking the generation of cyclic guanosine monophosphate (cGMP) with 1H-(1,2,4)oxadiazolo-(4,3-a)quinoxalin-1-one (ODQ) abolished the positive influence of SNAP on the odontoblastic differentiation of DPCs. These findings demonstrate that NO regulates the odontoblastic differentiation of DPCs, thereby influencing dentin formation and tooth development.
Collapse
Affiliation(s)
- Tong Yan
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yu Kong
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jun Kang
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Haoling Chen
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Romero G, Salama G. Relaxin abrogates genomic remodeling of the aged heart. VITAMINS AND HORMONES 2021; 115:419-448. [PMID: 33706957 DOI: 10.1016/bs.vh.2020.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
"Healthy" aging drives structural and functional changes in the heart including maladaptive electrical remodeling, fibrosis and inflammation, which lower the threshold for cardiovascular diseases such as heart failure (HF) and atrial fibrillation (AF). Despite mixed results in clinical trials, Relaxin-therapy for 2-days reduced mortality by 37% at 180-days post-treatment, in patients with acute decompensated HF. Relaxin's short lifespan (2-3h) but long-lasting protective actions suggested that relaxin acts at a genomic level to reverse maladaptive remodeling in AF, HF and aging. Our recent studies showed that a 2-week treatment with Relaxin (0.4mg/kg/day) of aged (24months old F-344 rats) increases the expression of voltage-gated Na+ channels (mRNA, Nav1.5 and INa), connexin-43, abrogates inflammatory and immune responses and reverses myocardial fibrosis and cellular hypertrophy of the aged hearts. Relaxin acts directly at a wide range of cell types in the cardiovascular system that express its cognate GPCR receptor, RXFP1. RNA-seq analysis of young and aged hearts with and without Relaxin treatment revealed that "normal" aging altered the expression of ~10% of genes expressed in the ventricles, including: ion channels, components of fibrosis, hemodynamic biomarkers, immune and inflammatory responses which were reversed by Relaxin. The extensive cardiovascular remodeling caused by Relaxin was mediated through the activation of the Wnt/β-catenin signaling pathway which was otherwise suppressed by in adult cardiomyocytes intracellular by cytosolic Dickkopf1 (Dkk1). Wnt/β-catenin signaling is a mechanism that can explain the pleiotropic actions of Relaxin and the marked reversal of genomic changes that occur in aged hearts.
Collapse
Affiliation(s)
- Guillermo Romero
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Guy Salama
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Papoutsis K, Kapelouzou A, Georgiopoulos G, Kontogiannis C, Kourek C, Mylonas KS, Patelis N, Cokkinos DV, Karavokyros I, Georgopoulos S. Tissue-specific relaxin-2 is differentially associated with the presence/size of an arterial aneurysm and the severity of atherosclerotic disease in humans. Acta Pharmacol Sin 2020; 41:745-752. [PMID: 32024951 PMCID: PMC7471450 DOI: 10.1038/s41401-019-0350-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022]
Abstract
Circulating or tissue-related biomarkers are of clinical value for risk stratification in patients with abdominal aortic aneurysms. Relaxin-2 (RL2) has been linked to the presence and size of arterial aneurysms, and to the extent of atherosclerosis in human subjects. Here, we assessed the expression levels of RL2 in aneurysmal (AA, n = 16) and atherosclerotic (ATH, n = 22) arteries, and established the correlation between RL2 levels and the presence/size of AA and the clinical severity of atherosclerosis. The expression levels of metalloproteinases (MMPs) and endothelial nitric oxide synthetase (eNOS) were also detected for correlations with different phenotypes of atherosclerosis and AA. Temporal artery biopsy specimens (n = 6) and abdominal aortic tissues harvested from accident victims during autopsy (n = 10) were used as controls. Quantitative tissue biomarker analysis revealed that tissue-specific RL2 was increased in patients with larger or symptomatic AA compared to subjects with atherosclerotic disease and healthy controls. In situ RL2 levels were proportional to the size and the severity of aneurysmatic disease, and were substantially elevated in patients with symptomatic aneurysm of any diameter or asymptomatic aneurysm of a diameter >350% of that of the normal artery. In contrast, tissue RL2 was inversely associated with the clinical severity of atherosclerotic lesions. Correlation between RL2 and MMP2 was different between ATH1 and ATH2, depending on atherosclerosis grade. Overall, tissue RL2 is differentially associated with discrete phenotypes of arterial disease and might exert multipotent biological effects on vascular wall integrity and remodeling in human subjects.
Collapse
Affiliation(s)
- Konstantinos Papoutsis
- First Department of Surgery, Vascular Unit, Laiko General Hospital, National & Kapodistrian University of Athens, 11527, Athens, Greece
| | - Alkistis Kapelouzou
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Georgios Georgiopoulos
- School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Christos Kontogiannis
- Department of Clinical Therapeutics, "Alexandra" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Christos Kourek
- School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Konstantinos S Mylonas
- School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Nikolaos Patelis
- First Department of Surgery, Vascular Unit, Laiko General Hospital, National & Kapodistrian University of Athens, 11527, Athens, Greece
| | - Dennis V Cokkinos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Ioannis Karavokyros
- First Department of Surgery, Vascular Unit, Laiko General Hospital, National & Kapodistrian University of Athens, 11527, Athens, Greece
| | - Sotirios Georgopoulos
- First Department of Surgery, Vascular Unit, Laiko General Hospital, National & Kapodistrian University of Athens, 11527, Athens, Greece
| |
Collapse
|
7
|
Valkovic AL, Bathgate RA, Samuel CS, Kocan M. Understanding relaxin signalling at the cellular level. Mol Cell Endocrinol 2019; 487:24-33. [PMID: 30592984 DOI: 10.1016/j.mce.2018.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
Abstract
The peptide hormone relaxin mediates many biological actions including anti-fibrotic, vasodilatory, angiogenic, anti-inflammatory, anti-apoptotic, and organ protective effects across a range of tissues. At the cellular level, relaxin binds to the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1) to activate a variety of downstream signal transduction pathways. This signalling cascade is complex and also varies in diverse cellular backgrounds. Moreover, RXFP1 signalling shows crosstalk with other receptors to mediate some of its physiological functions. This review summarises known signalling pathways induced by acute versus chronic treatment with relaxin across a range of cell types, it describes RXFP1 crosstalk with other receptors, signalling pathways activated by other ligands targeting RXFP1, and it also outlines physiological relevance of RXFP1 signalling outputs. Comprehensive understanding of the mechanism of relaxin actions in fibrosis, vasodilation, as well as organ protection, will further support relaxin's clinical potential.
Collapse
Affiliation(s)
- Adam L Valkovic
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ross Ad Bathgate
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3010, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, 3800, Australia
| | - Martina Kocan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
8
|
Martin B, Romero G, Salama G. Cardioprotective actions of relaxin. Mol Cell Endocrinol 2019; 487:45-53. [PMID: 30625345 DOI: 10.1016/j.mce.2018.12.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 01/19/2023]
Abstract
Relaxin is a hormone of pregnancy first discovered for its ability to induce ligament relaxation in nonpregnant guinea pig and is important for softening of the birth canal during parturition, decidualization, implantation, nipple development and increased maternal renal perfusion, glomerular filtration, and cardiac output. Subsequently, relaxin has been shown to exert multiple beneficial cardiovascular effects during pathological events such as hypertension, atrial fibrillation, heart failure and myocardial infarction, including suppression of arrhythmia and inflammation, and reversal of fibrosis. Despite extensive studies, the mechanisms underlying relaxin's effects are not well understood. Relaxin signals primarily through its G protein coupled receptor, the relaxin family peptide receptor-1, to activate multiple signaling pathways and this review summarizes our understanding of these pathways as they relate to the cardioprotective actions of relaxin, focusing on relaxin's anti-fibrotic, anti-arrhythmic and anti-inflammatory properties. Further, this review includes a brief overview of relaxin in clinical trials for heart failure and progress in the development of relaxin mimetics.
Collapse
Affiliation(s)
- Brian Martin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Guillermo Romero
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Guy Salama
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
9
|
Kumar A, Singh KP, Bali P, Anwar S, Kaul A, Singh OP, Gupta BK, Kumari N, Noor Alam M, Raziuddin M, Sinha MP, Gourinath S, Sharma AK, Sohail M. iNOS polymorphism modulates iNOS/NO expression via impaired antioxidant and ROS content in P. vivax and P. falciparum infection. Redox Biol 2018; 15:192-206. [PMID: 29268202 PMCID: PMC5738204 DOI: 10.1016/j.redox.2017.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 01/09/2023] Open
Abstract
Nitric oxide (NO) has dicotomic influence on modulating host-parasite interplay, synchronizing physiological orchestrations and diagnostic potential; instigated us to investigate the plausible association and genetic regulation among NO level, components of oxidative stress, iNOS polymorphisms and risk of malaria. Here, we experimentally elucidate that iNOS promoter polymorphisms are associated with risk of malaria; employing mutation specific genotyping, functional interplay using western blot and RT-PCR, quantitative estimation of NO, total antioxidant content (TAC) and reactive oxygen species (ROS). Genotyping revealed significantly associated risk of P. vivax (adjusted OR = 1.92 and 1.72) and P. falciparum (adjusted OR = 1.68 and 1.75) infection with SNP at iNOS-954G/C and iNOS-1173C/T positions, respectively; though vivax showed higher risk of infection. Intriguingly, mutation and infection specific differential upregulation of iNOS expression/NO level was observed and found to be significantly associated with mutant genotypes. Moreover, P. vivax showed pronounced iNOS protein (2.4 fold) and mRNA (2.5 fold) expression relative to healthy subjects. Furthermore, TAC and ROS were significantly decreased in infection; and differentially decreased in mutant genotypes. Our findings endorse polymorphic regulation of iNOS expression, altered oxidant-antioxidant components and evidences of risk association as the hallmark of malaria pathogenesis. iNOS/NO may serve as potential diagnostic marker in assessing clinical malaria.
Collapse
Affiliation(s)
- Amod Kumar
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India
| | - Krishn Pratap Singh
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India
| | - Prerna Bali
- National Institute of Malaria Research, Dawarka, Delhi, India
| | - Shadab Anwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Asha Kaul
- National Institute of Malaria Research, Dawarka, Delhi, India
| | - Om P Singh
- National Institute of Malaria Research, Dawarka, Delhi, India
| | - Birendra Kumar Gupta
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India
| | - Nutan Kumari
- Department of Physiology, Patna Medical College and Hospital, Patna, India
| | - Md Noor Alam
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India
| | - Mohammad Raziuddin
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India
| | | | | | - Ajay Kumar Sharma
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India.
| | - Mohammad Sohail
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India.
| |
Collapse
|
10
|
Sarwar M, Du XJ, Dschietzig TB, Summers RJ. The actions of relaxin on the human cardiovascular system. Br J Pharmacol 2016; 174:933-949. [PMID: 27239943 DOI: 10.1111/bph.13523] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022] Open
Abstract
The insulin-like peptide relaxin, originally identified as a hormone of pregnancy, is now known to exert a range of pleiotropic effects including vasodilatory, anti-fibrotic, angiogenic, anti-apoptotic and anti-inflammatory effects in both males and females. Relaxin produces these effects by binding to a cognate receptor RXFP1 and activating a variety of signalling pathways including cAMP, cGMP and MAPKs as well as by altering gene expression of TGF-β, MMPs, angiogenic growth factors and endothelin receptors. The peptide has been shown to be effective in halting or reversing many of the adverse effects including fibrosis in animal models of cardiovascular disease including ischaemia/reperfusion injury, myocardial infarction, hypertensive heart disease and cardiomyopathy. Relaxin given to humans is safe and produces favourable haemodynamic changes. Serelaxin, the recombinant form of relaxin, is now in extended phase III clinical trials for the treatment of acute heart failure. Previous clinical studies indicated that a 48 h infusion of relaxin improved 180 day mortality, yet the mechanism underlying this effect is not clear. This article provides an overview of the cellular mechanism of effects of relaxin and summarizes its beneficial actions in animal models and in the clinic. We also hypothesize potential mechanisms for the clinical efficacy of relaxin, identify current knowledge gaps and suggest new ways in which relaxin could be useful therapeutically. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Mohsin Sarwar
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Thomas B Dschietzig
- Immundiagnostik AG, Bensheim, Germany.,Campus Mitte, Medical Clinic for Cardiology and Angiology, Charité-University Medicine Berlin, Berlin, Germany.,Relaxera Pharmazeutische Gesellschaft mbH & Co. KG, Bensheim, Germany
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| |
Collapse
|
11
|
Pini A, Boccalini G, Baccari MC, Becatti M, Garella R, Fiorillo C, Calosi L, Bani D, Nistri S. Protection from cigarette smoke-induced vascular injury by recombinant human relaxin-2 (serelaxin). J Cell Mol Med 2016; 20:891-902. [PMID: 26915460 PMCID: PMC4831370 DOI: 10.1111/jcmm.12802] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/02/2016] [Indexed: 12/14/2022] Open
Abstract
Smoking is regarded as a major risk factor for the development of cardiovascular diseases (CVD). This study investigates whether serelaxin (RLX, recombinant human relaxin-2) endowed with promising therapeutic properties in CVD, can be credited of a protective effect against cigarette smoke (CS)-induced vascular damage and dysfunction. Guinea pigs exposed daily to CS for 8 weeks were treated with vehicle or RLX, delivered by osmotic pumps at daily doses of 1 or 10 μg. Controls were non-smoking animals. Other studies were performed on primary guinea pig aortic endothelial (GPAE) cells, challenged with CS extracts (CSE) in the absence and presence of 100 ng/ml (17 nmol/l) RLX. In aortic specimens from CS-exposed guinea pigs, both the contractile and the relaxant responses to phenylephrine and acetylcholine, respectively, were significantly reduced in amplitude and delayed, in keeping with the observed adverse remodelling of the aortic wall, endothelial injury and endothelial nitric oxide synthase (eNOS) down-regulation. RLX at both doses maintained the aortic contractile and relaxant responses to a control-like pattern and counteracted aortic wall remodelling and endothelial derangement. The experiments with GPAE cells showed that CSE significantly decreased cell viability and eNOS expression and promoted apoptosis by sparkling oxygen free radical-related cytotoxicity, while RLX counterbalanced the adverse effects of CSE. These findings demonstrate that RLX is capable of counteracting CS-mediated vascular damage and dysfunction by reducing oxidative stress, thus adding a tile to the growing mosaic of the beneficial effects of RLX in CVD.
Collapse
Affiliation(s)
- Alessandro Pini
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | - Giulia Boccalini
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | | | - Matteo Becatti
- Department of Experimental & Clinical Biomedical Sciences 'Mario Serio', Section of Biochemistry, University of Florence, Florence, Italy
| | - Rachele Garella
- Section of Physiology, University of Florence, Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental & Clinical Biomedical Sciences 'Mario Serio', Section of Biochemistry, University of Florence, Florence, Italy
| | - Laura Calosi
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | - Silvia Nistri
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Sarwar M, Samuel CS, Bathgate RA, Stewart DR, Summers RJ. Enhanced serelaxin signalling in co-cultures of human primary endothelial and smooth muscle cells. Br J Pharmacol 2016; 173:484-96. [PMID: 26493539 DOI: 10.1111/bph.13371] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE In the phase III clinical trial, RELAX-AHF, serelaxin caused rapid and long-lasting haemodynamic changes. However, the cellular mechanisms involved are unclear in humans. EXPERIMENTAL APPROACH This study examined the effects of serelaxin in co-cultures of human primary endothelial cells (ECs) and smooth muscle cells (SMCs) on cAMP and cGMP signalling. KEY RESULTS Stimulation of HUVECs or human coronary artery endothelial cells (HCAECs) with serelaxin, concentration-dependently increased cGMP accumulation in co-cultured SMCs to a greater extent than in monocultures of either cell type. This was not observed in human umbilical artery endothelial cells (HUAECs) that do not express the relaxin receptor, RXFP1. Treatment of ECs with l-N(G) -nitro arginine (NOARG; 30 μM, 30 min) inhibited serelaxin-mediated (30 nM) cGMP accumulation in HUVECs, HCAECs and co-cultured SMCs. In HCAECs, but not HUVECs, pre-incubation with indomethacin (30 μM, 30 min) also inhibited cGMP accumulation in SMCs. Pre-incubation of SMCs with the guanylate cyclase inhibitor ODQ (1 μM, 30 min) had no effect on serelaxin-mediated (30 nM) cGMP accumulation in HUVECs and HCAECs but inhibited cGMP accumulation in SMCs. Serelaxin stimulation of HCAECs, but not HUVECs, increased cAMP accumulation concentration-dependently in SMCs. Pre-incubation of HCAECs with indomethacin, but not l-NOARG, abolished cAMP accumulation in co-cultured SMCs, suggesting involvement of prostanoids. CONCLUSIONS AND IMPLICATIONS In co-cultures, treatment of ECs with serelaxin caused marked cGMP accumulation in SMCs and with HCAEC also cAMP accumulation. Responses involved EC-derived NO and with HCAEC prostanoid production. Thus, serelaxin differentially modulates vascular tone in different vascular beds.
Collapse
Affiliation(s)
- M Sarwar
- Drug Discovery Biology, Monash Institute of Pharmacology, Monash University, Australia
| | - C S Samuel
- Department of Pharmacology, Monash University, Australia
| | - R A Bathgate
- The Florey Institute of Neuroscience and Mental Health and the Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | | | - R J Summers
- Drug Discovery Biology, Monash Institute of Pharmacology, Monash University, Australia
| |
Collapse
|
13
|
Sarwar M, Samuel CS, Bathgate RA, Stewart DR, Summers RJ. Serelaxin-mediated signal transduction in human vascular cells: bell-shaped concentration-response curves reflect differential coupling to G proteins. Br J Pharmacol 2014; 172:1005-19. [PMID: 25297987 DOI: 10.1111/bph.12964] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/16/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE In a recently conducted phase III clinical trial, RELAX-AHF, serelaxin infusion over 48 h improved short- and long-term clinical outcomes in patients with acute heart failure. In this study we used human primary cells from the umbilical vasculature to better understand the signalling mechanisms activated by serelaxin. EXPERIMENTAL APPROACH We examined the acute effects of serelaxin on signal transduction mechanisms in primary human umbilical vascular cells and its chronic actions on markers of cardiovascular function and disease. KEY RESULTS The RXFP1 receptor, the cognate serelaxin receptor, was expressed at the cell surface in HUVECs and human umbilical vein smooth muscle cells (HUVSMCs), human umbilical artery smooth muscle cells (HUASMCs) and human cardiac fibroblasts (HCFs), but not human umbilical artery endothelial cells. In HUVECs and HUVSMCs, serelaxin increased cAMP, cGMP accumulation and pERK1/2, and the concentration-response curves (CRCs) were bell-shaped. Similar bell-shaped CRCs for cGMP and pERK1/2 were observed in HCFs, whereas in HUASMCs, serelaxin increased cAMP, cGMP and pERK1/2 with sigmoidal CRCs. Gαi/o and lipid raft disruption, but not Gαs inhibition, altered the serelaxin CRC for cAMP and cGMP accumulation in HUVSMC but not HUASMC. Longer term serelaxin exposure increased the expression of neuronal NOS, VEGF, ETβ receptors and MMPs (gelatinases) in RXFP1 receptor-expressing cells. CONCLUSIONS AND IMPLICATIONS Serelaxin caused acute and chronic changes in human umbilical vascular cells that were cell background dependent. Bell-shaped CRCs that were observed only in venous cells and fibroblasts involved Gαi/o located within membrane lipid rafts.
Collapse
Affiliation(s)
- M Sarwar
- Drug Discovery Biology, Monash Institute of Pharmacology, Monash University, Melbourne, Vic., Australia
| | | | | | | | | |
Collapse
|
14
|
Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev 2013; 93:405-80. [PMID: 23303914 DOI: 10.1152/physrev.00001.2012] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- R A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS One 2012; 7:e48111. [PMID: 23110185 PMCID: PMC3482178 DOI: 10.1371/journal.pone.0048111] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 09/20/2012] [Indexed: 12/13/2022] Open
Abstract
Neutrophils (PMNs) and cytokines have a critical role to play in host defense and systemic inflammatory response syndrome (SIRS). Neutrophil extracellular traps (NETs) have been shown to extracellularly kill pathogens, and inflammatory potential of NETs has been shown. Microbial killing inside the phagosomes or by NETs is mediated by reactive oxygen and nitrogen species (ROS/RNS). The present study was undertaken to assess circulating NETs contents and frequency of NETs generation by isolated PMNs from SIRS patients. These patients displayed significant augmentation in the circulating myeloperoxidase (MPO) activity and DNA content, while PMA stimulated PMNs from these patients, generated more free radicals and NETs. Plasma obtained from SIRS patients, if added to the PMNs isolated from healthy subjects, enhanced NETs release and free radical formation. Expressions of inflammatory cytokines (IL-1β, TNFα and IL-8) in the PMNs as well as their circulating levels were significantly augmented in SIRS subjects. Treatment of neutrophils from healthy subjects with TNFα, IL-1β, or IL-8 enhanced free radicals generation and NETs formation, which was mediated through the activation of NADPH oxidase and MPO. Pre-incubation of plasma from SIRS with TNFα, IL-1β, or IL-8 antibodies reduced the NETs release. Role of IL-1β, TNFα and IL-8 thus seems to be involved in the enhanced release of NETs in SIRS subjects.
Collapse
|
16
|
Huang X, Gai Y, Yang N, Lu B, Samuel CS, Thannickal VJ, Zhou Y. Relaxin regulates myofibroblast contractility and protects against lung fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2751-65. [PMID: 21983071 DOI: 10.1016/j.ajpath.2011.08.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/18/2011] [Accepted: 08/22/2011] [Indexed: 12/11/2022]
Abstract
Myofibroblasts are specialized contractile cells that participate in tissue fibrosis and remodeling, including idiopathic pulmonary fibrosis (IPF). Mechanotransduction, a process by which mechanical stimuli are converted into biochemical signals, regulates myofibroblast differentiation. Relaxin is a peptide hormone that mediates antifibrotic effects through regulation of collagen synthesis and turnover. In this study, we demonstrate enhanced myofibroblast contraction in bleomycin-induced lung fibrosis in mice and in fibroblastic foci of human subjects with IPF, using phosphorylation of the regulatory myosin light chain (MLC(20)) as a biomarker of in vivo cellular contractility. Compared with wild-type mice, relaxin knockout mice express higher lung levels of phospho-MLC(20) and develop more severe bleomycin-induced lung fibrosis. Exogenous relaxin inhibits MLC(20) phosphorylation and bleomycin-induced lung fibrosis in both relaxin knockout and wild-type mice. Ex vivo studies of IPF lung myofibroblasts demonstrate decreases in MLC(20) phosphorylation and reduced contractility in response to relaxin. Characterization of the signaling pathway reveals that relaxin regulates MLC(20) dephosphorylation and lung myofibroblast contraction by inactivating RhoA/Rho-associated protein kinase through a nitric oxide/cGMP/protein kinase G-dependent mechanism. These studies identify a novel antifibrotic role of relaxin involving the inhibition of the contractile phenotype of lung myofibroblasts and suggest that targeting myofibroblast contractility with relaxin-like peptides may be of therapeutic benefit in the treatment of fibrotic lung disease.
Collapse
Affiliation(s)
- Xiangwei Huang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Saluja R, Jyoti A, Chatterjee M, Habib S, Verma A, Mitra K, Barthwal MK, Bajpai VK, Dikshit M. Molecular and biochemical characterization of nitric oxide synthase isoforms and their intracellular distribution in human peripheral blood mononuclear cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1700-7. [PMID: 21722677 DOI: 10.1016/j.bbamcr.2011.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
Nitric oxide synthase (NOS) expression and catalytic status in human peripheral blood mononuclear cells (PBMCs) is debatable, while its sub-cellular distribution remains unascertained. The present study characterizes NOS transcripts by real time PCR, NOS protein by immunoprecipitation (IP)/Western blot (WB), nitric oxide (NO) generation by DAF-2DA and NOS sub-cellular distribution by immunogold electron microscopy in resting PBMCs, monocytes and lymphocytes obtained from healthy donors. We observed constitutive expression of full length NOS isoforms (nNOS, iNOS and eNOS) in PBMCs: with the highest expression of iNOS in comparison to nNOS and eNOS. Isolated monocytes expressed more eNOS transcript and protein as compared to nNOS and iNOS. Lymphocytes however had more iNOS transcripts and protein than nNOS and eNOS. NOS was catalytically active in PBMCs, monocytes as well as in lymphocytes as evident by NO generation in the presence of substrate and cofactors, which was significantly reduced in the presence of NOS inhibitor. Immunogold electron microscopy and morphometric analysis revealed the distinct pattern of NOS distribution in monocytes and lymphocytes and also exhibited differences in the nuclear-cytoplasmic ratio. nNOS localization was much more in the cytosol than in the nucleus among both monocytes and lymphocytes. Interestingly, iNOS distribution was comparable in both cytosol and nucleus among monocytes, but in lymphocytes iNOS was predominantly localized to the cytosol. The present study exhibits constitutive presence of all the NOS isoforms in PBMCs and reports the distinct pattern of NOS distribution among monocytes and lymphocytes.
Collapse
|
18
|
Sasser JM, Molnar M, Baylis C. Relaxin ameliorates hypertension and increases nitric oxide metabolite excretion in angiotensin II but not N(ω)-nitro-L-arginine methyl ester hypertensive rats. Hypertension 2011; 58:197-204. [PMID: 21670419 DOI: 10.1161/hypertensionaha.110.164392] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previous findings suggest a potential therapeutic action of relaxin, the putative vasodilatory signal of normal pregnancy, in some forms of cardiovascular disease. However, the mechanisms underlying the beneficial effects of relaxin have not been fully elucidated. The purpose of this study was to determine whether the vasodilatory effects of relaxin are dependent on activation of NO synthase. We examined the effect of relaxin in male Sprague-Dawley rats given angiotensin II (Ang II; 200 ng/kg per minute SC by minipump), the NO synthase inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME; 1.5 mg/100 g IV followed by 150 mg/L in drinking water), or vehicle for 3 weeks. After 7 days of Ang II or l-NAME, mean arterial pressure was elevated compared with baseline. Relaxin was administered (4 μg/h, SC by minipump) for the next 2 weeks of Ang II, l-NAME, or vehicle treatment. Two-week relaxin treatment alone slightly reduced mean arterial pressure in normotensive rats. Three weeks of either Ang II or l-NAME treatment alone produced hypertension, albuminuria, mild glomerular sclerosis, reduced nitric oxide metabolite excretion, and increased oxidative stress (excretion of hydrogen peroxide and thiobarbituric acid reactive substances and renal cortex nitrotyrosine abundance). Relaxin reduced mean arterial pressure, albumin excretion, and oxidative stress markers and preserved glomerular structure and nitric oxide metabolite excretion in Ang II-treated rats; however, relaxin did not attenuate these changes in the rats treated with l-NAME. None of the treatments affected protein abundance of neuronal or endothelial NO synthase in the kidney cortex. These data suggest that the vasodilatory effects of relaxin are dependent on a functional NO synthase system and increased NO bioavailability possibly because of a reduction in oxidative stress.
Collapse
Affiliation(s)
- Jennifer M Sasser
- Department of Physiology and Functional Genomics, University of Florida, PO Box 100274, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
19
|
Radestock Y, Willing C, Kehlen A, Hoang-Vu C, Hombach-Klonisch S. Relaxin Enhances S100A4 and Promotes Growth of Human Thyroid Carcinoma Cell Xenografts. Mol Cancer Res 2010; 8:494-506. [DOI: 10.1158/1541-7786.mcr-09-0307] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Wang X, Zhao Y, Fu Z, He Y, Xiang D, Zhang L. Prelining autogenic endothelial cells in allogeneic vessels inhibits thrombosis and intimal hyperplasia: an efficacy study in dogs. J Surg Res 2010; 169:148-55. [PMID: 20080261 DOI: 10.1016/j.jss.2009.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/31/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND The long-term patency rates in vascular transplants (diameter<3.0-4.0mm) are very low due to thrombus formation and intimal hyperplasia. A possible mechanism is the loss of the endothelial cells (ECs) lining. Previous attempts to reseed ECs had poor results due to seeded cell loss, severe antigenicity, and low compliance. The objectives of this study were to generate an allogeneic vascular substitution with autogenic ECs and low antigenicity. METHODS ECs from mongrels were obtained and multiplied in vitro, then seeded to the allogeneic vein luminal surface, which was preserved by freeze-drying radiation. The cultivated cells' secretory function was confirmed by von Willebrand factor detection. The allogeneic vascular was then transplanted into animals' necks in situ. The physical properties, EC state, and vascular structure of the allogeneic vascular grafts were studied. RESULTS The secretory function of ECs did not vary in vitro. The expression level of MHC-II antigen in freeze-dried radiation-treated vasculature was lower than normal fresh vasculature (P<0.05). ECs covered the vascular inner surface and adhered tightly after implantation. As assessed by scanning electron micrograph, most ECs adhered tightly, and the cell polarity changed in accordance with the direction of the force. Allograft blood vessels with autogenic ECs implanted showed significant decreases in both thrombosis and intimal hyperplasia. CONCLUSION Allograft blood vessels seeded with autogenic ECs improved the patency of small-diameter grafts in a canine model. Our study showed a significant decrease in both thrombosis and intimal hyperplasia.
Collapse
Affiliation(s)
- Xuehu Wang
- Department of Vascular Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
21
|
Cardoso LC, Nascimento AR, Royer C, Porto CS, Lazari MFM. Locally produced relaxin may affect testis and vas deferens function in rats. Reproduction 2010; 139:185-96. [DOI: 10.1530/rep-09-0146] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously shown that the rat testis and vas deferens contain high levels of the relaxin receptor, RXFP1. The present study was undertaken to determine the expression of relaxin in these tissues, and the effect of exogenous relaxin on Sertoli cell proliferation and on the mRNA levels of some proteins that may contribute to epithelial secretion and tissue reorganization in the vas deferens. Relaxin mRNA levels in testis and vas deferens were much lower than in the prostate. Sertoli cells seem to be an important source of relaxin mRNA in testis. Relaxin immunoreactivity was detected in the seminiferous epithelium but not in the interstitial compartment. The relaxin precursor was expressed in the vas deferens, and relaxin immunoreactivity was detected in apical cells of the vas deferens. Castration, but not treatment with the anti-estrogen ICI 182,780, dramatically reduced relaxin mRNA levels in the prostate and vas deferens, and this effect was prevented by testosterone.Rxfp1mRNA levels in the vas deferens and prostate were not affected by castration or treatment with ICI 182,780. Exogenous relaxin increased the incorporation of3H-thymidine in cultured Sertoli cells, and treatment of the vas deferens with 100 ng/ml relaxin increased the mRNA levels for the cystic fibrosis chloride channel (cystic fibrosis transmembrane regulator) about three times, and doubled mRNA levels for the inducible form of nitric oxide synthase and metalloproteinase 7. These results suggest that locally produced relaxin acts as an autocrine or paracrine agent in the testis and vas deferens to affect spermatogenesis and seminal fluid composition.
Collapse
|
22
|
|
23
|
Giannelli M, Bani D, Tani A, Pini A, Margheri M, Zecchi-Orlandini S, Tonelli P, Formigli L. In vitro evaluation of the effects of low-intensity Nd:YAG laser irradiation on the inflammatory reaction elicited by bacterial lipopolysaccharide adherent to titanium dental implants. J Periodontol 2009; 80:977-84. [PMID: 19485829 DOI: 10.1902/jop.2009.080648] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The bacterial endotoxin lipopolysaccharide (LPS) represents a prime pathogenic factor of peri-implantitis because of its ability to adhere tenaciously to dental titanium implants. Despite this, the current therapeutic approach to this disease remains based mainly on bacterial decontamination, paying little attention to the neutralization of bioactive bacterial products. The purpose of the present study was to evaluate whether irradiation with low-energy neodymium-doped:yttrium, aluminum, and garnet (Nd:YAG) laser, in addition to the effects on bacterial implant decontamination, was capable of attenuating the LPS-induced inflammatory response. METHODS RAW 264.7 macrophages or human umbilical vein endothelial cells were cultured on titanium disks coated with Porphyromonas gingivalis LPS, subjected or not to irradiation with the Nd:YAG laser, and examined for the production of inflammatory cytokines and the expression of morphologic and molecular markers of cell activation. RESULTS Laser irradiation of LPS-coated titanium disks significantly reduced LPS-induced nitric oxide production and cell activation by the macrophages and strongly attenuated intercellular adhesion molecule-1 and vascular cell adhesion molecule expression, as well as interleukin-8 production by the endothelial cells. CONCLUSION By blunting the LPS-induced inflammatory response, Nd:YAG laser irradiation may be viewed as a promising tool for the therapeutic management of peri-implantitis.
Collapse
Affiliation(s)
- Marco Giannelli
- Department of Odontostomatology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Jeyabalan A, Shroff SG, Novak J, Conrad KP. The Vascular Actions of Relaxin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 612:65-87. [DOI: 10.1007/978-0-387-74672-2_6] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Abstract
Hypertension, atherothrombosis, myocardial infarction, stroke, peripheral vascular disease, and renal failure are the main manifestations of cardiovascular disease (CVD), the leading cause of death and disability in developed countries. Continuing insight into the pathophysiology of CVD can allow identification of effective therapeutic strategies to reduce the occurrence of death and/or severe disabilities. In this context, a healthy endothelium is deemed crucial to proper functioning and maintenance of anatomical integrity of the vascular system in many organs. Of note, epidemiologic studies indicate that the incidence of CVD in women is very low until menopause and increases sharply thereafter. The loss of protection against CVD in post-menopausal women has been chiefly attributed to ovarian steroid deficiency. However, besides steroids, the ovary also produces the peptide hormone relaxin (RLX), which provides potent vasoactive effects which render it the most likely candidate as the elusive physiological shield against CVD in fertile women. In particular, RLX has a specific relaxant effect on peripheral and coronary vasculature, exerted by the stimulation of endogenous nitric oxide (NO) generation by cells of the vascular wall, and can induce angiogenesis. Moreover, RLX inhibits the activation of inflammatory leukocytes and platelets, which play a key role in CVD. Experimental studies performed in vascular and blood cell in vitro and in animal models of vascular dysfunction, as well as pioneer clinical observations, have provided evidence that RLX can prevent and/or improve CVD, thus offering background to clinical trials aimed at exploring the broad therapeutic potential of human recombinant RLX as a new cardiovascular drug.
Collapse
Affiliation(s)
- Daniele Bani
- Department of Anatomy, Histology and Forensic Medicine, Sect. Histology, University of Florence Italy.
| |
Collapse
|
26
|
Abstract
Just as the blood-brain barrier (BBB) is not a static barrier, the adipocytes are not inert storage depots. Adipokines are peptides or polypeptides produced by white adipose tissue; they play important roles in normal physiology as well as in the metabolic syndrome. Adipokines secreted into the circulation can interact with the BBB and exert potent CNS effects. The specific transport systems for two important adipokines, leptin and tumor necrosis factor alpha, have been characterized during the past decade. By contrast, transforming growth factor beta-1 and adiponectin do not show specific permeation across the BBB, but modulate endothelial functions. Still others, like interleukin-6, may reach the brain but are rapidly degraded. This review summarizes current knowledge and recent findings of the rapidly growing family of adipokines and their interactions with the BBB.
Collapse
Affiliation(s)
- Weihong Pan
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, United States.
| | | |
Collapse
|
27
|
Joy S, Siow RCM, Rowlands DJ, Becker M, Wyatt AW, Aaronson PI, Coen CW, Kallo I, Jacob R, Mann GE. The Isoflavone Equol Mediates Rapid Vascular Relaxation. J Biol Chem 2006; 281:27335-45. [PMID: 16840783 DOI: 10.1074/jbc.m602803200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently reported that soy isoflavones increase gene expression of endothelial nitric-oxide synthase (eNOS) and antioxidant defense enzymes, resulting in improved endothelial function and lower blood pressure in vivo. In this study, we establish that equol (1-100 nM) causes acute endothelium- and nitric oxide (NO)-dependent relaxation of aortic rings and rapidly (2 min) activates eNOS in human aortic and umbilical vein endothelial cells. Intracellular Ca2+ and cyclic AMP levels were unaffected by treatment (100 nM, 2 min) with equol, daidzein, or genistein. Rapid phosphorylation of ERK1/2, protein kinase B/Akt, and eNOS serine 1177 by equol was paralleled by association of eNOS with heat shock protein 90 (Hsp90) and NO synthesis in human umbilical vein endothelial cells, expressing estrogen receptors (ER)alpha and ERbeta. Inhibition of phosphatidylinositol 3-kinase and ERK1/2 inhibited eNOS activity, whereas pertussis toxin and the ER antagonists ICI 182,750 and tamoxifen had negligible effects. Our findings provide the first evidence that nutritionally relevant plasma concentrations of equol (and other soy protein isoflavones) rapidly stimulate phosphorylation of ERK1/2 and phosphatidylinositol 3-kinase/Akt, leading to the activation of NOS and increased NO production at resting cytosolic Ca2+ levels. Identification of the nongenomic mechanisms by which equol mediates vascular relaxation provides a basis for evaluating potential benefits of equol in the treatment of postmenopausal women and patients at risk of cardiovascular disease.
Collapse
Affiliation(s)
- Sheeja Joy
- Cardiovascular Division, School of Biomedical and Health Sciences, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Farhangkhoee H, Khan ZA, Chen S, Chakrabarti S. Differential effects of curcumin on vasoactive factors in the diabetic rat heart. Nutr Metab (Lond) 2006; 3:27. [PMID: 16848894 PMCID: PMC1543622 DOI: 10.1186/1743-7075-3-27] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 07/18/2006] [Indexed: 01/06/2023] Open
Abstract
Background Increased oxidative stress has been associated with the pathogenesis of chronic diabetic complications, including cardiomyopathy. Recent studies indicate that curcumin, a potent antioxidant, may be beneficial in preventing diabetes-induced oxidative stress and subsequent secondary complications. We have investigated the effects of curcumin on the nitric oxide (NO) pathway in cardiac tissues and cultured cells. Methods Streptozotocin-induced diabetic rats were treated with curcumin for a period of one month. Heart tissues were then analyzed for endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) mRNA expression. Oxidative protein and DNA damage were assessed by immunohistochemical analysis of nitrotyrosine and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Heart tissues were further subjected to endothelin-1 (ET-1) mRNA expression. In order to further characterize the effects of curcumin, we assayed microvascular endothelial cells (MVECs). Cultured MVECs, exposed either to glucose or glucose and varying concentrations of curcumin, were assessed for alterations of NOS expression and activation of nuclear factor-κB (NF-κB) and activating protein-1 (AP-1). Oxidative stress and ET-1 expression levels were also assayed. Results Our results indicate that one month of diabetes causes an upregulation of both eNOS and iNOS mRNA levels, and nitrotyrosine and 8-OHdG immunoreactivity in the heart. Treatment of diabetic rats with curcumin reduced eNOS and iNOS levels in association with reduced oxidative DNA and protein damage. Interestingly, curcumin further increased vasoconstrictor ET-1 in the heart. Exposure of MVECs to high glucose increased both eNOS and iNOS levels and oxidative stress. Curcumin prevented NOS alteration and oxidative stress in a dose-dependent manner which was mediated by nuclear factor-κB and activating protein-1. Exposure to curcumin also increased ET-1 levels in the MVECs. Conclusion Our studies indicate the differential effects of curcumin in vasoactive factor expression in the heart and indicate the importance of tissue microenvironment in the treatment of diabetic complications.
Collapse
Affiliation(s)
- Hana Farhangkhoee
- Department of Pathology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Zia A Khan
- Department of Pathology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
- Vascular Biology Program and Department of Surgery, Children's Hospital Boston, Harvard Medical School, MA 02115, USA
| | - Shali Chen
- Department of Pathology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Subrata Chakrabarti
- Department of Pathology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
29
|
Palatka K, Serfozo Z, Veréb Z, Bátori R, Lontay B, Hargitay Z, Nemes Z, Udvardy M, Erdodi F, Altorjay I. Effect of IBD sera on expression of inducible and endothelial nitric oxide synthase in human umbilical vein endothelial cells. World J Gastroenterol 2006; 12:1730-8. [PMID: 16586542 PMCID: PMC4124348 DOI: 10.3748/wjg.v12.i11.1730] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To study the expression of endothelial and inducible nitric oxide synthases (eNOS and iNOS) and their role in inflammatory bowel disease (IBD).
METHODS: We examined the effect of sera obtained from patients with active Crohn’s disease (CD) and ulcerative colitis (UC) on the function and viability of human umbilical vein endothelial cells (HUVEC). HUVECs were cultured for 0-48 h in the presence of a medium containing pooled serum of healthy controls, or serum from patients with active CD or UC. Expression of eNOS and iNOS was visualized by immunofluorescence, and quantified by the densitometry of Western blots. Proliferation activity was assessed by computerized image analyses of Ki-67 immunoreactive cells, and also tested in the presence of the NOS inhibitor, 10-4 mol/L L-NAME. Apoptosis and necrosis was examined by the annexin-V-biotin method and by propidium iodide staining, respectively.
RESULTS: In HUVEC immediately after exposure to UC, serum eNOS was markedly induced, reaching a peak at 12 h. In contrast, a decrease in eNOS was observed after incubation with CD sera and the eNOS level was minimal at 20 h compared to control (18% ± 16% vs 23% ± 15% P<0.01). UC or CD serum caused a significant increase in iNOS compared to control (UC: 300% ± 21%; CD: 275% ± 27% vs 108% ± 14%, P<0.01). Apoptosis/necrosis characteristics did not differ significantly in either experiment. Increased proliferation activity was detected in the presence of CD serum or after treatment with L-NAME. Cultures showed tube-like formations after 24 h treatment with CD serum.
CONCLUSION: IBD sera evoked changes in the ratio of eNOS/iNOS, whereas did not influence the viability of HUVEC. These involved down-regulation of eNOS and up-regulation of iNOS simultaneously, leading to increased proliferation activity and possibly a reduced anti-inflammatory protection of endothelial cells.
Collapse
Affiliation(s)
- Károly Palatka
- 2nd Department of Internal Medicine, Medical and Health Science Center, University of Debrecen, Nagyerdei körút 98, Debrecen H-4001, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
San Martín R, Sobrevia L. Gestational diabetes and the adenosine/L-arginine/nitric oxide (ALANO) pathway in human umbilical vein endothelium. Placenta 2006; 27:1-10. [PMID: 16310032 DOI: 10.1016/j.placenta.2005.01.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 01/18/2005] [Accepted: 01/20/2005] [Indexed: 01/22/2023]
Abstract
Altered endothelial cell function is a key factor associated with vascular disorders and is critical in the fetal growth and development. Pregnancies affected by diseases such as gestational diabetes are associated with human umbilical vein endothelial dysfunction, a finding that has been associated with a high incidence of vascular complications during the adult life. Limited information is available addressing cellular mechanisms associated with altered human umbilical vein endothelial function in gestational diabetes. One of the key signalling pathways associated with altered vascular physiology is the synthesis of the vasodilator nitric oxide (NO) from the cationic amino acid L-arginine by the endothelium (i.e. the endothelial L-arginine/NO pathway). The activity of this signalling pathway is modulated by D-glucose, adenosine, insulin, and ATP, among other molecules, and is upregulated (transcriptional, post-transcriptional and post-translational levels) in gestational diabetes. This review focuses on the cellular and molecular mechanisms involved with elevated adenosine levels in fetal umbilical vein blood and the endothelial L-arginine/NO pathway activity in gestational diabetes. We suggest that a lower capacity of adenosine transport by the fetal endothelium in gestational diabetes leads to extracellular accumulation of this nucleoside and its higher bio-availability activates endothelial P1 type purinoceptors. A functional association between A2a purinoceptor subtype signalling and the activity of the l-arginine transport mediated by human cationic amino acid transporters and endothelial NO synthase activity (i.e. 'ALANO pathway') is proposed, revealing in part the mechanisms that account for human umbilical vein endothelial cell dysfunction programmed through the development of the fetus in gestational diabetes.
Collapse
Affiliation(s)
- R San Martín
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics and Gynaecology, Medical Research Centre (CIM), School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile
| | | |
Collapse
|
31
|
Samuel CS, Zhao C, Yang Q, Wang H, Tian H, Tregear GW, Amento EP. The relaxin gene knockout mouse: a model of progressive scleroderma. J Invest Dermatol 2005; 125:692-9. [PMID: 16185267 DOI: 10.1111/j.0022-202x.2005.23880.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Relaxin is a peptide hormone with anti-fibrotic properties. To investigate the long-term effects of relaxin deficiency on the ageing skin, we compared structural changes in the skin of ageing relaxin-deficient (RLX-/-) and normal (RLX+/+) mice, by biochemical, histological, and magnetic resonance imaging analyses. Skin biopsies from RLX+/+ and RLX-/- mice were obtained at different ages and analyzed for changes in collagen expression and distribution. We demonstrated an age-related progression of dermal fibrosis and thickening in male and female RLX-/- mice, associated with marked increases in types I and III collagen. The increased collagen was observed primarily in the dermis of RLX-/- mice by 1 mo of age, and eventually superseded the hypodermal layer. Additionally, fibroblasts from the dermis of RLX-/- mice were shown to produce increased collagen in vitro. Recombinant human gene-2 (H2) relaxin treatment of RLX-/- mice resulted in the complete reversal of dermal fibrosis, when applied to the early onset of disease, but was ineffective when applied to more established stages of dermal scarring. These combined findings demonstrate that relaxin provides a means to regulate excessive collagen deposition in disease states characterized by dermal fibrosis and with our previously published work demonstrate the relaxin-null mouse as a model of progressive scleroderma.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Relaxin Group, Howard Florey Institute of Experimental Physiology & Medicine, The University of Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|