1
|
Guo L, Li X. Nurse night shift work and risk of gastrointestinal cancers. Front Public Health 2025; 13:1532623. [PMID: 40356833 PMCID: PMC12066619 DOI: 10.3389/fpubh.2025.1532623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
The prevalence of night-shift employment is on the rise among full-time and part-time workers globally. Those engaged in night-shift work encounter various biological challenges, including exposure to artificial light during nighttime and disruptions to their circadian rhythms. These factors, along with changes in daily routines and activities, may pose significant risks to the health of night workers. Notably, the number of individuals working overtime or on night shifts has increased across various sectors, particularly in transportation, healthcare, and manufacturing. The International Agency for Research on Cancer (IARC) has classified night-shift work as probably carcinogenic to humans (IARC Group 2A). Subsequent research has identified several potential mechanisms through which night-shift work may contribute to carcinogenicity: (1) disruption of circadian rhythms, (2) suppression of melatonin levels due to nighttime light exposure, (3) physiological alterations, (4) lifestyle changes, and (5) reduced vitamin D levels resulting from inadequate sunlight exposure. Colorectal cancer (CRC) poses a significant public health challenge, ranking as the second leading cause of cancer-related death worldwide in 2020. Other than CRC, other gastrointestinal cancers are also creating a great global health issue because of their morbidity and mortality rates. In this review, we highlight the role of night shifts in disturbing circadian rhythm and how this action leads to carcinogenesis in the GI tract.
Collapse
Affiliation(s)
- Lin Guo
- Medical Simulated Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaojun Li
- School of Nursing, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
2
|
Dimopoulou O, Fuller H, Richmond RC, Bouras E, Hayes B, Dimou N, Murphy N, Brenner H, Gsur A, Le Marchand L, Moreno V, Pai RK, Phipps AI, Um CY, van Duijnhoven FJB, Vodicka P, Martin RM, Platz EA, Gunter MJ, Peters U, Lewis SJ, Cao Y, Tsilidis KK. Mendelian randomization study of sleep traits and risk of colorectal cancer. Sci Rep 2025; 15:13478. [PMID: 40251235 PMCID: PMC12008275 DOI: 10.1038/s41598-024-83693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/16/2024] [Indexed: 04/20/2025] Open
Abstract
A potential association of endogenous circadian rhythm disruption with risk of cancer development has been suggested, however, epidemiological evidence for the association of sleep traits with colorectal cancer (CRC) is limited and often contradictory. Here we investigated whether genetically predicted chronotype, insomnia and sleep duration are associated with CRC risk in males, females and overall and according to CRC anatomical subsites using Mendelian randomization (MR). The two-sample inverse variance weighted (IVW) method was applied using summary-level data in up to 58,221 CRC cases and 67,694 controls and genome-wide association data of genetic variants for self-reported sleep traits. Secondary analyses using alternative instruments and sensitivity analyses assessing potential violations of MR assumptions were conducted. Genetically predicted morning preference was associated with 13% lower risk of CRC in men (ORIVW = 0.87, 95% CI = 0.78, 0.97, P = 0.01), but not in women or in both sexes combined. Τhis association remained consistent in some, but not all, sensitivity analyses and was very similar for colon and rectal cancer. There was no evidence of an association for any other sleep trait. Overall, this study provides little to no evidence of an association between genetically predicted sleep traits and CRC risk.
Collapse
Affiliation(s)
- Olympia Dimopoulou
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Harriett Fuller
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rebecca C Richmond
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Bryony Hayes
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research On Cancer-WHO, Lyon, France
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research On Cancer-WHO, Lyon, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Caroline Y Um
- Population Science Department, American Cancer Society, Atlanta, GA, USA
| | | | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Richard M Martin
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol, Bristol, UK
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research On Cancer-WHO, Lyon, France
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Sarah J Lewis
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
3
|
Chen Z, Jiang S, Liu Y, Zhang T, Zheng H, Mao Y, Zhang L, Xu Y, Lu X. Bibliometric analysis of global research status and trends of circadian rhythms in cancer from 2004 to 2024. Chronobiol Int 2025; 42:185-197. [PMID: 39886874 DOI: 10.1080/07420528.2025.2456560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Research linking circadian dysregulation to cancer development has received increasing attention recently. However, a comprehensive understanding of research hotspots and trends in this area remains limited. International studies on the circadian rhythms in cancer were retrieved and downloaded from the Web of Science database. Bibliometric analysis and visualization were performed using VOSviewer, CiteSpace, and HistCite. Three thousand three hundred and eighteen English articles from 2004 to 2024 were screened and evaluated. The increase in publications and citations reflected the rapid expansion of the field. Scholars and institutions in the United States have relatively high academic productivity and impact. Chronobiology International is the most popular journal. Key clustering analysis identified six themes: biochemistry and molecular biology, physiology and immunomodulation, night shift work and health effects, physiological and mental health, tumor therapy research, and oxidative stress and cancer-related mechanisms. Keyword burst analysis identified the regulation of circadian rhythms on cells and tumor microenvironment as the research frontiers. The role of circadian rhythms in tumor immunotherapy was a current research hotspot identified by reference co-citation clustering analysis. This study reveals the current status of research on the circadian rhythms in cancer and predicts future trends. These findings provide new ideas for developing novel cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shitao Jiang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yaoge Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ting Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Han Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yunhan Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yiyao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Matak AM, Mu Y, Mohati SM, Makdissi S, Di Cara F. Circadian rhythm and immunity: decoding chrono-immunology using the model organism Drosophila melanogaster. Genome 2025; 68:1-18. [PMID: 40168693 DOI: 10.1139/gen-2025-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Circadian rhythms are important cellular pathways first described for their essential role in helping organisms adjust to the 24 h day-night cycle and synchronize physiological and behavioral functions. Most organisms have evolved a circadian central clock to anticipate daily environmental changes in light, temperature, and mate availability. It is now understood that multiple clocks exist in organisms to regulate the functions of specific organs. Epidemiological studies in humans reported that disruption of the circadian rhythms caused by sleep deprivation is linked to the onset of immune-related conditions, suggesting the importance of circadian regulation of immunity. Mechanistic studies to define how circadian clocks and immune responses interact have profound implications for human health. However, elucidating the clocks and their tissue-specific functions has been challenging in mammals. Many studies using simple model organisms such as Drosophila melanogaster have been pioneering in discovering that the clock controls innate immune responses and immune challenges can impact circadian rhythms and/or their outcomes. In this review, we will report genetic studies using the humble fruit fly that identified the existence of reciprocal interactions between the circadian pathway and innate immune signaling, contributing to elucidate mechanisms in the growing field of chrono-immunology.
Collapse
Affiliation(s)
- Arash Mohammadi Matak
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Yizhu Mu
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Seyedeh Mahdiye Mohati
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Stephanie Makdissi
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3K 6R8, Canada
| |
Collapse
|
5
|
Lei T, Cai X, Zhang H, Wu X, Cao Z, Li W, Xie X, Zhang B. Bmal1 upregulates ATG5 expression to promote autophagy in skin cutaneous melanoma. Cell Signal 2024; 124:111439. [PMID: 39343115 DOI: 10.1016/j.cellsig.2024.111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is a highly aggressive and malignant tumor that arises from the malignant transformation of melanocytes. In light of the limitations of existing treatment modalities, there is a pressing need to identify new drug targets for SKCM. Aryl-hydrocarbon receptor nuclear translocator-like (ARNTL), also known as Bmal1, is a gene that has been linked to the onset and progression of cancer. However, its role in SKCM remains understudied. METHODS The expression of Bmal1 mRNA and protein was detected using TCGA, GTEx, CCLE, and ULCAN databases. Moreover, survival analysis was performed to investigate the association between Bmal1 and immune invasion and gene expression in immune infiltrating cells via CIBERSORT, R programming, TIMER, Sangerbox, Kaplan-Meier. The study also explored the role of proteins associated with Bmal1 by using R programming and databases (STRING and GSEA). Both in vitro and in vivo studies were conducted to examine the potential role of Bmal1 in SKCM. RESULTS Compared to normal tissues, the expression level of Bmal1 was significantly reduced in SKCM. Which has been associated with its poor prognosis. Similarly, its expression in SKCM was substantially correlated with immune infiltration, while biogenic analysis indicated that it could potentially influence the tumor immune microenvironment (TME) by influencing tumor-associated neutrophils (TANs). Moreover, Bmal1 overexpression suppressed the proliferation and invasion of melanoma cells and enhanced apoptosis, migration, and cell colony formation. CONCLUSION This study concluded that Bmal1 is a novel biomarker that functions as both a diagnostic and prognostic indicator for the progression of SKCM.
Collapse
Affiliation(s)
- Tao Lei
- Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xin Cai
- Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Hao Zhang
- The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, People's Republic of China
| | - Xunping Wu
- Guizhou Provincial People's Hospital Central Laboratory, Guiyang 550002, China
| | - Zhimin Cao
- Beijing Tuberculosis and Thoracic Tumor Institute, Beijing 101149, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People`s Hospital, China; Key Laboratory of Pulmonary Immune Diseases, National Health Commission, Guiyang 550002, China
| | - Xingming Xie
- Guizhou Institute of Precision Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, People's Republic of China.
| | - Bangyan Zhang
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People`s Hospital, China; Key Laboratory of Pulmonary Immune Diseases, National Health Commission, Guiyang 550002, China..
| |
Collapse
|
6
|
Yang Y, Su S, Chen J, Yang X, Zhang S, Sang A. The perspective of ceRNA regulation of circadian rhythm on choroidal neovascularization. Sci Rep 2024; 14:27359. [PMID: 39521855 PMCID: PMC11550829 DOI: 10.1038/s41598-024-78479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Abnormal growth of blood vessels (choroidal neovascularization) can lead to age-related macular degeneration (AMD) and eventually cause vision loss due to detachment of the retinal pigmented epithelium. This indicates that choroidal neovascularization is important for the treatment of AMD. The circadian clock in the mammalian retina is responsible for controlling various functions of the retina, enabling it to adjust to changes in light and darkness. Recent studies have revealed a potential connection between the circadian clock and eye diseases, although a cause-and-effect relationship has not been definitively established. C57BL/6J male mice (aged 6 weeks) were randomly divided into two groups (Control group: 9:00-21:00 light period (300 lx); Jet lag group: 8-hour phase advance once every 4 days). A laser-induced CNV model was created after 2 weeks of feeding in a controlled or jet-lagged environment. Then, full transcriptome sequencing was performed. The pathways regulated by differentially expressed mRNAs were identified by GO analysis and GSEA. Further protein networks were constructed with the STRING database and Cytoscape software. WGCNA was used to further explore the co-expression modules of these differential genes and the correlation between these differential genes and phenotypes. ceRNA networks were constructed with miRanda and TargetScan. The pathways associated with the overlapping differentially expressed mRNAs in the ceRNA network were identified, and the hub genes were validated by qPCR. A total of 661 important DEGs, 31 differentially expressed miRNAs, 106 differentially expressed lncRNAs and 87 differentially expressed circRNAs were identified. GO and GSEA showed that the upregulated DEGs were mainly involved in reproductive structure development and reproductive system development. The STRING database and Cytoscape were used to determine the protein interaction relationships of these DEGs. WGCNA divided the expression of these genes into several modules and screened the hub genes of each module separately. Furthermore, a ceRNA network was constructed. GO analysis and GSEA showed that these target DEmRNAs mainly function in wound healing, cell spreading, epiboly involved in wound healing, epiboly, and morphogenesis of an epithelial sheet. Finally, ten key genes were identified, and their expression patterns were confirmed by real-time qPCR. In this study, we investigated the regulatory mechanism of ceRNAs in choroidal neovascularization according to different light-dark cycles in the eyeball.
Collapse
Affiliation(s)
- Ying Yang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Shu Su
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jia Chen
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaowei Yang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Shenglai Zhang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- Medical School of Nantong University, Nantong, Jiangsu, China.
| | - Aimin Sang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- Medical School of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
7
|
Kisamore C, Kisamore C, Walker W. Circadian Rhythm Disruption in Cancer Survivors: From Oncogenesis to Quality of Life. Cancer Med 2024; 13:e70353. [PMID: 39463009 PMCID: PMC11513439 DOI: 10.1002/cam4.70353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Circadian rhythms are approximately 24-hour cycles in physiological and behavioral processes. They are entrained to the external solar day via blue wavelength light. Disruptions in these intrinsic rhythms can lead to circadian dysfunction, which has several negative implications on human health, including cancer development and progression. AIMS Here we review the molecular mechanisms of circadian disruption and their impact on tumor development and progression, discuss the interplay between circadian dysfunction and cancer in basic scientific studies and clinical data, and propose the potential clinical implications of these data that may be used to improve patient outcomes and reduce cost of treatment. MATERIALS & METHODS Using scientific literature databases, relevant studies were analyzed to draw overarching conclusions of the relationship between circadian rhythm dysruption and cancer. CONCLUSIONS Circadian disruption can be mediated by a number of environmental factors such as exposure to light at night, shift work, jetlag, and social jetlag which drive oncogenesis. Tumor growth and progression, as well as treatment, can lead to long-term alterations in circadian rhythms that negatively affect quality of life in cancer survivors.
Collapse
Affiliation(s)
- Claire O. Kisamore
- Department of Neuroscience, Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Caleb A. Kisamore
- Department of Neuroscience, Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| | - William H. Walker
- Department of Neuroscience, Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
- West Virginia University Cancer InstituteMorgantownWest VirginiaUSA
| |
Collapse
|
8
|
Fellows RC, Chun SK, Larson N, Fortin BM, Mahieu AL, Song WA, Seldin MM, Pannunzio NR, Masri S. Disruption of the intestinal clock drives dysbiosis and impaired barrier function in colorectal cancer. SCIENCE ADVANCES 2024; 10:eado1458. [PMID: 39331712 PMCID: PMC11430476 DOI: 10.1126/sciadv.ado1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
Diet is a robust entrainment cue that regulates diurnal rhythms of the gut microbiome. We and others have shown that disruption of the circadian clock drives the progression of colorectal cancer (CRC). While certain bacterial species have been suggested to play driver roles in CRC, it is unknown whether the intestinal clock impinges on the microbiome to accelerate CRC pathogenesis. To address this, genetic disruption of the circadian clock, in an Apc-driven mouse model of CRC, was used to define the impact on the gut microbiome. When clock disruption is combined with CRC, metagenomic sequencing identified dysregulation of many bacterial genera including Bacteroides, Helicobacter, and Megasphaera. We identify functional changes to microbial pathways including dysregulated nucleic acid, amino acid, and carbohydrate metabolism, as well as disruption of intestinal barrier function. Our findings suggest that clock disruption impinges on microbiota composition and intestinal permeability that may contribute to CRC pathogenesis.
Collapse
Affiliation(s)
- Rachel C. Fellows
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Sung Kook Chun
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Natalie Larson
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Bridget M. Fortin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Alisa L. Mahieu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Wei A. Song
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Nicholas R. Pannunzio
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
- Department of Medicine, Division of Hematology/Oncology, University of California Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Zou W, Lei Y, Ding C, Xiao H, Wang S, Liang S, Luo W, Long Z, He S, Li Q, Qiao H, Liu N, Mao Y. The circadian gene ARNTL2 promotes nasopharyngeal carcinoma invasiveness and metastasis through suppressing AMOTL2-LATS-YAP pathway. Cell Death Dis 2024; 15:466. [PMID: 38956029 PMCID: PMC11220028 DOI: 10.1038/s41419-024-06860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Metastasis is the major culprit of treatment failure in nasopharyngeal carcinoma (NPC). Aryl hydrocarbon receptor nuclear translocator like 2 (ARNTL2), a core circadian gene, plays a crucial role in the development of various tumors. Nevertheless, the biological role and mechanism of ARNTL2 are not fully elucidated in NPC. In this study, ARNTL2 expression was significantly upregulated in NPC tissues and cells. Overexpression of ARNTL2 facilitated NPC cell migration and invasion abilities, while inhibition of ARNTL2 in similarly treated cells blunted migration and invasion abilities in vitro. Consistently, in vivo xenograft tumor models revealed that ARNTL2 silencing reduced nude mice inguinal lymph node and lung metastases, as well as tumor growth. Mechanistically, ARNTL2 negatively regulated the transcription expression of AMOTL2 by directly binding to the AMOTL2 promoter, thus reducing the recruitment and stabilization of AMOTL2 to LATS1/2 kinases, which strengthened YAP nuclear translocation by suppressing LATS-dependent YAP phosphorylation. Inhibition of AMOTL2 counteracted the effects of ARNTL2 knockdown on NPC cell migration and invasion abilities. These findings suggest that ARNTL2 may be a promising therapeutic target to combat NPC metastasis and further supports the crucial roles of circadian genes in cancer development.
Collapse
Affiliation(s)
- Wenqing Zou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Lei
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Cong Ding
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunxin Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Shaobo Liang
- Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weijie Luo
- Department of Medical Oncology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhiqing Long
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Shiwei He
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Qingjie Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Han Qiao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| | - Na Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| | - Yanping Mao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| |
Collapse
|
10
|
Ahmadi M, Mohajeri Khorasani A, Morshedzadeh F, Saffarzadeh N, Ghaderian SMH, Ghafouri-Fard S, Mousavi P. HLF is a promising prognostic, immunological, and therapeutic biomarker in human tumors. Biochem Biophys Rep 2024; 38:101725. [PMID: 38711550 PMCID: PMC11070826 DOI: 10.1016/j.bbrep.2024.101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/14/2024] [Accepted: 04/27/2024] [Indexed: 05/08/2024] Open
Abstract
Despite past research linking HLF mutations to cancer development, no pan-cancer analyses of HLF have been published. As a result, we utilized multiple databases to illustrate the potential roles of HLF in diverse types of cancers. Several databases were used to assess HLF expression in the TCGA cancer samples. Additional assessments were undertaken to investigate the relationship between HLF and overall survival, immune cell infiltration, genetic alterations, promoter methylation, and protein-protein interaction. HLF's putative roles and the relationship between HLF expression and drug reactivity were investigated. HLF expression was shown to be lower in tumor tissues from a variety of malignancies when compared to normal tissues. There was a substantial link found between HLF expression and patient survival, genetic mutations, and immunological infiltration. HLF influenced the pathways of apoptosis, cell cycle, EMT, and PI3K/AKT signaling. Abnormal expression of HLF lowered sensitivity to numerous anti-tumor drugs and small compounds. According to our findings, reduced HLF expression drives cancer growth, and it has the potential to be identified as a vital biomarker for use in prognosis, immunotherapy, and targeted treatment of a range of malignancies.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Firouzeh Morshedzadeh
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Saffarzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
11
|
Sjöland O, Svensson T, Madhawa K, NT H, Chung UI, Svensson AK. Associations of Subjective Sleep Quality with Wearable Device-Derived Resting Heart Rate During REM Sleep and Non-REM Sleep in a Cohort of Japanese Office Workers. Nat Sci Sleep 2024; 16:867-877. [PMID: 38947940 PMCID: PMC11214547 DOI: 10.2147/nss.s455784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024] Open
Abstract
Background Associations between subjective sleep quality and stage-specific heart rate (HR) may have important clinical relevance when aiming to optimize sleep and overall health. The majority of previously studies have been performed during short periods under laboratory-based conditions. The aim of this study was to investigate the associations of subjective sleep quality with heart rate during REM sleep (HR REMS) and non-REM sleep (HR NREMS) using a wearable device (Fitbit Versa). Methods This is a secondary analysis of data from the intervention group of a randomized controlled trial (RCT) performed between December 3, 2018, and March 2, 2019, in Tokyo, Japan. The intervention group consisted of 179 Japanese office workers with metabolic syndrome (MetS), Pre-MetS or a high risk of developing MetS. HR was collected with a wearable device and sleep quality was assessed with a mobile application where participants answered The St. Mary's Hospital Sleep Questionnaire. Both HR and sleep quality was collected daily for a period of 90 days. Associations of between-individual and within-individual sleep quality with HR REMS and HR NREMS were analyzed with multi-level model regression in 3 multivariate models. Results The cohort consisted of 92.6% men (n=151) with a mean age (± standard deviation) of 44.1 (±7.5) years. A non-significant inverse between-individual association was observed for sleep quality with HR REMS (HR REMS -0.18; 95% CI -0.61, 0.24) and HR NREMS (HR NREMS -0.23; 95% CI -0.66, 0.21), in the final multivariable adjusted models; a statistically significant inverse within-individual association was observed for sleep quality with HR REMS (HR REMS -0.21 95% CI -0.27, -0.15) and HR NREMS (HR NREMS -0.21 95% CI -0.27, -0.14) after final adjustments for covariates. Conclusion The present study shows a statistically significant within-individual association of subjective sleep quality with HR REMS and HR NREMS. These findings emphasize the importance of considering sleep quality on the individual level. The results may contribute to early detection and prevention of diseases associated with sleep quality which may have important implications on public health given the high prevalence of sleep disturbances in the population.
Collapse
Affiliation(s)
- Olivia Sjöland
- Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Thomas Svensson
- Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
- Graduate School of Health Innovation, Kanagawa University of Human Services, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, Japan
| | - Kaushalya Madhawa
- Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Hoang NT
- Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ung-Il Chung
- Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Graduate School of Health Innovation, Kanagawa University of Human Services, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, Japan
- Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, Tokyo, Japan
| | - Akiko Kishi Svensson
- Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
- Department of Diabetes and Metabolic Diseases, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Harding BN, Palomar-Cros A, Valentín A, Espinosa A, Sánchez de Miguel A, Castaño-Vinyals G, Pollán M, Perez B, Moreno V, Kogevinas M. Comparing Data from Three Satellites on Artificial Light at Night (ALAN): Focusing on Blue Light's Influence on Colorectal Cancer in a Case-Control Study in Spain. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:57702. [PMID: 38758117 PMCID: PMC11100459 DOI: 10.1289/ehp14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Affiliation(s)
- Barbara N. Harding
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), El Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Anna Palomar-Cros
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), El Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Antonia Valentín
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), El Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Ana Espinosa
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), El Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Alejandro Sánchez de Miguel
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
- Departamento Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, Madrid, Spain
| | - Gemma Castaño-Vinyals
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), El Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Marina Pollán
- CIBER Epidemiology and Public Health (CIBERESP), El Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Perez
- CIBER Epidemiology and Public Health (CIBERESP), El Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Victor Moreno
- CIBER Epidemiology and Public Health (CIBERESP), El Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Spain
- Colorectal Cancer Group, ONCOBELL Program, Institut de Recerca Biomedica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, Spain
| | - Manolis Kogevinas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), El Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
13
|
Chen S, Liu Q, Yan J. The influence of shift work: A bibliometric analysis of research progress and frontiers on health effects. Chronobiol Int 2024; 41:577-586. [PMID: 38588406 DOI: 10.1080/07420528.2024.2337885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Shift work has been found to disrupt the circadian system, leading to negative health effects. The objective of this study was to assess the progress and frontiers in research on the health-related influence of shift work. The study analyzed 3,696 data points from Web of Science, using the bibliometric software CiteSpace to visualize and analyze the field. The results showed a steady increase in annual publications, particularly in the last 5 years, with a rapid increase in publications from China. The United States contributed the most to the number of publications and worldwide collaborations. The most prolific institution and author were the Brigham and Women's Hospital and Professor Bjorn Bjorvatn, respectively. The Journal of Chronobiology International ranked at the top and focused primarily on shift worker research. In the first decade of study, the primary focus was on the associations between shift work and cardiovascular disease and metabolic disorders. Over time, research on the health effects of shift work has expanded to include cancer and mental health, with subsequent studies investigating molecular mechanisms. This study provides a comprehensive and intuitive analysis of the negative health impacts of shift work. It highlights existing research hotspots and provides a roadmap for future studies. Further research is needed to explore the adverse health consequences and related mechanisms of shift work exposure, as well as interventions to mitigate its health effects.
Collapse
Affiliation(s)
- Shibo Chen
- Department of Blood Purification Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingquan Liu
- Department of Blood Purification Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianjun Yan
- Department of Blood Purification Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Li T, Jiang Y, Bai Y, Jiang K, Du G, Chen P, Luo C, Li L, Qiao J, Shen J. A review for the impacts of circadian disturbance on urological cancers. Sleep Biol Rhythms 2024; 22:163-180. [PMID: 38524168 PMCID: PMC10959858 DOI: 10.1007/s41105-023-00500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/18/2023] [Indexed: 03/26/2024]
Abstract
Circadian rhythm is an internal timing system and harmonizes a variety of cellular, behavioral, and physiological processes to daily environment. Circadian disturbance caused by altered life style or disrupted sleep patterns inevitably contributes to various disorders. As the rapidly increased cancer occurrences and subsequent tremendous financial burdens, more researches focus on reducing the morbidity rather than treating it. Recently, many epidemiologic studies demonstrated that circadian disturbance was tightly related to the occurrence and development of cancers. For urinary system, numerous clinical researches observed the incidence and progress of prostate cancer were influenced by nightshift work, sleep duration, chronotypes, light exposure, and meal timing, this was also proved by many genetic and fundamental findings. Although the epidemiological studies regarding the relationship between circadian disturbance and kidney/bladder cancers were relative limited, some basic researches still claimed circadian disruption was closely correlated to these two cancers. The role of circadian chemotherapy on cancers of prostate, kidney, and bladder were also explored, however, it has not been regularly recommended considering the limited evidence and poor standard protocols. Finally, the researches for the impacts of circadian disturbance on cancers of adrenal gland, penis, testis were not found at present. In general, a better understanding the relationship between circadian disturbance and urological cancers might help to provide more scientific work schedules and rational lifestyles which finally saving health resource by reducing urological tumorigenesis, however, the underlying mechanisms are complex which need further exploration.
Collapse
Affiliation(s)
- Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yiting Jiang
- Department of Otorhinolaryngology, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Yunjin Bai
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Guangshi Du
- Translational Medicine Research Center of Guizhou Medical University, Guiyang, China
| | - Peng Chen
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chao Luo
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lei Li
- Gastrointestinal Surgery Center, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Qiao
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jun Shen
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
15
|
Zhou Q, Wang R, Su Y, Wang B, Zhang Y, Qin X. The molecular circadian rhythms regulating the cell cycle. J Cell Biochem 2024; 125:e30539. [PMID: 38372014 DOI: 10.1002/jcb.30539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
The circadian clock controls the expression of a large proportion of protein-coding genes in mammals and can modulate a wide range of physiological processes. Recent studies have demonstrated that disruption or dysregulation of the circadian clock is involved in the development and progression of several diseases, including cancer. The cell cycle is considered to be the fundamental process related to cancer. Accumulating evidence suggests that the circadian clock can control the expression of a large number of genes related to the cell cycle. This article reviews the mechanism of cell cycle-related genes whose chromatin regulatory elements are rhythmically occupied by core circadian clock transcription factors, while their RNAs are rhythmically expressed. This article further reviews the identified oscillatory cell cycle-related genes in higher organisms such as baboons and humans. The potential functions of these identified genes in regulating cell cycle progression are also discussed. Understanding how the molecular clock controls the expression of cell cycle genes will be beneficial for combating and treating cancer.
Collapse
Affiliation(s)
- Qin Zhou
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ruohan Wang
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunxia Su
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Bowen Wang
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunfei Zhang
- Modern Experiment Technology Center, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ximing Qin
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| |
Collapse
|
16
|
Thoré ESJ, Aulsebrook AE, Brand JA, Almeida RA, Brodin T, Bertram MG. Time is of the essence: The importance of considering biological rhythms in an increasingly polluted world. PLoS Biol 2024; 22:e3002478. [PMID: 38289905 PMCID: PMC10826942 DOI: 10.1371/journal.pbio.3002478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Biological rhythms have a crucial role in shaping the biology and ecology of organisms. Light pollution is known to disrupt these rhythms, and evidence is emerging that chemical pollutants can cause similar disruption. Conversely, biological rhythms can influence the effects and toxicity of chemicals. Thus, by drawing insights from the extensive study of biological rhythms in biomedical and light pollution research, we can greatly improve our understanding of chemical pollution. This Essay advocates for the integration of biological rhythmicity into chemical pollution research to gain a more comprehensive understanding of how chemical pollutants affect wildlife and ecosystems. Despite historical barriers, recent experimental and technological advancements now facilitate the integration of biological rhythms into ecotoxicology, offering unprecedented, high-resolution data across spatiotemporal scales. Recognizing the importance of biological rhythms will be essential for understanding, predicting, and mitigating the complex ecological repercussions of chemical pollution.
Collapse
Affiliation(s)
- Eli S. J. Thoré
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- TRANSfarm—Science, Engineering, & Technology Group, KU Leuven, Lovenjoel, Belgium
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Anne E. Aulsebrook
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Jack A. Brand
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Rafaela A. Almeida
- Laboratory of Aquatic Ecology, Evolution, and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Michael G. Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
17
|
Naqeeb H, Zia-Ud-Din, Khan I, Haq IU, Zeb F, Hajira B, Alam I, Iqbal Z, Masood R, Aftab M. Association Between Sleeping Quality and Risk of Breast Cancer Among Women: A Case-Control Study From Pakistan. Cancer Control 2024; 31:10732748241293640. [PMID: 39413266 PMCID: PMC11483779 DOI: 10.1177/10732748241293640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND This case-control study investigated the relationship between sleep duration and quality with the occurrence of breast cancer among women, both pre- and post-menopausal, in the northwest Khyber Pakhtunkhwa (KP) region of Pakistan. METHOD This case-control research was carried in multiple tertiary care facilities. Newly diagnosed primary breast cancer patients were recruited as cases (n = 408), and 5+ years age-matched controls (n = 408) were randomly selected from the general population. Participants completed a Pittsburg sleeping quality index (PSQI) questionnaire that included questions on sleep characteristics. Statistical analysis included independent t-tests to compare mean sleep durations and quality scores between groups, and logistic regression to adjust for potential confounders. RESULTS Sleep onset latency between cases and controls was not significantly associated with health outcomes, with a P-value of .142. However, sleep duration showed a significant association (P = .049). For sleep duration, the adjusted odds ratio for ≤6 h was 1.02 (95% CI: .5-2.1), while for 7-8 h the adjusted odds ratio was 1.0 (95% CI: .6-1.6). Self-reported sleep quality did not demonstrate significant associations, with the P-value for "very good" sleep quality being .561. Sleep duration of less than 6 h among women with triple-negative breast cancer (TNBC) was found to be strongly associated with a more aggressive type of breast cancer, with an adjusted odds ratio of 1.5 (95% CI: 1.02-2.3, P < .05). CONCLUSION This study does not provide evidence to support an association between sleep duration or quality and the risk of breast cancer. However, it reports a significant association, with shorter sleep durations linked to an increased risk particularly in the context of aggressive breast cancer types such as TNBC.
Collapse
Affiliation(s)
- Huma Naqeeb
- Human Nutrition and Dietetics Department, Women University Mardan, Mardan, Pakistan
| | - Zia-Ud-Din
- Department of Human Nutrition, The University of Agriculture, Peshawar, Pakistan
| | - Imran Khan
- Department of Human Nutrition, The University of Agriculture, Peshawar, Pakistan
| | - Ijaz-ul Haq
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Falak Zeb
- Department of Nutrition & Dietetics, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Bibi Hajira
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Iftikhar Alam
- Human Nutrition and Dietetics Department, Bacha Khan University Charsadda, Charsadda, Pakistan
| | - Zafar Iqbal
- Department of Agriculture Chemistry & Biochemistry, The University of Agriculture, Peshawar, Pakistan
| | - Rehana Masood
- Shaheed Benazir Women University, Peshawar, Pakistan
| | - Muhammad Aftab
- Department of Economics, Science Superior College Peshawar, Peshawar, Pakistan
| |
Collapse
|
18
|
Fang G, Wang S, Chen Q, Luo H, Lian X, Shi D. Time-restricted feeding affects the fecal microbiome metabolome and its diurnal oscillations in lung cancer mice. Neoplasia 2023; 45:100943. [PMID: 37852131 PMCID: PMC10590998 DOI: 10.1016/j.neo.2023.100943] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
The homeostasis of the gut microbiota and circadian rhythm is critical to host health, and both are inextricably intertwined with lung cancer. Although time-restricted feeding (TRF) can maintain circadian synchronization and improve metabolic disorders, the effects of TRF on the fecal microbiome, metabolome and their diurnal oscillations in lung cancer have not been discussed. We performed 16S rRNA sequencing and untargeted metabonomic sequencing of the feces prepared from models of tumor-bearing BALB/c nude mice and urethane-induced lung cancer. We demonstrated for the first time that TRF significantly delayed the growth of lung tumors. Moreover, TRF altered the abundances of the fecal microbiome, metabolome and circadian clocks, as well as their rhythmicity, in lung cancer models of tumor-bearing BALB/c nude mice and/or urethane-induced lung cancer C57BL/6J mice. The results of fecal microbiota transplantation proved that the antitumor effects of TRF occur by regulating the fecal microbiota. Notably, Lactobacillus and Bacillus were increased upon TRF and were correlated with most differential metabolites. Pathway enrichment analysis of metabolites revealed that TRF mainly affected immune and inflammatory processes, which might further explain how TRF exerted its anticancer benefits. These findings underscore the possibility that the fecal microbiome/metabolome regulates lung cancer following a TRF paradigm.
Collapse
Affiliation(s)
- Gaofeng Fang
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China
| | - Shengquan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China
| | - Qianyao Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China
| | - Han Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China
| | - Xuemei Lian
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China.
| | - Dan Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
19
|
Bolshette N, Ibrahim H, Reinke H, Asher G. Circadian regulation of liver function: from molecular mechanisms to disease pathophysiology. Nat Rev Gastroenterol Hepatol 2023; 20:695-707. [PMID: 37291279 DOI: 10.1038/s41575-023-00792-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
A wide variety of liver functions are regulated daily by the liver circadian clock and via systemic circadian control by other organs and cells within the gastrointestinal tract as well as the microbiome and immune cells. Disruption of the circadian system, as occurs during jetlag, shift work or an unhealthy lifestyle, is implicated in several liver-related pathologies, ranging from metabolic diseases such as obesity, type 2 diabetes mellitus and nonalcoholic fatty liver disease to liver malignancies such as hepatocellular carcinoma. In this Review, we cover the molecular, cellular and organismal aspects of various liver pathologies from a circadian viewpoint, and in particular how circadian dysregulation has a role in the development and progression of these diseases. Finally, we discuss therapeutic and lifestyle interventions that carry health benefits through support of a functional circadian clock that acts in synchrony with the environment.
Collapse
Affiliation(s)
- Nityanand Bolshette
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hussam Ibrahim
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany
| | - Hans Reinke
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany.
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
20
|
Borisenkov MF, Tserne TA, Popov SV, Smirnov VV, Dorogina OI, Pecherkina AA, Symaniuk EE. Association of Chrononutrition Indices with Anthropometric Parameters, Academic Performance, and Psychoemotional State of Adolescents: A Cross-Sectional Study. Nutrients 2023; 15:4521. [PMID: 37960174 PMCID: PMC10647400 DOI: 10.3390/nu15214521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Adolescents are an at-risk group for circadian misalignment. The contribution of sleep-wake rhythm instability to the psychoemotional, cognitive, and weight disorders of adolescents has been studied in sufficient detail. At the same time, there is insufficient information about the association between chrononutrition indices and the well-being of adolescents. The aim of this study is to investigate the relationship between chrononutrition indices and academic achievement, psychoemotional state, and anthropometric indicators in adolescents. The study involved 12,759 students in grades 6-11 of secondary schools, aged 14.2 ± 1.7 years old; 57.2% of whom were girls. Participants provided personal data, frequency and time of meals during the day and at night, on weekdays and weekends, and completed the Zung Self-Rating Depression Scale and the Yale Food Addiction Scale. There is a U-shaped association between eating mid-phase (EPFc), eating jetlag (EJL), and eating window (EW) with GPA, ZSDSI, and FA. At the same time, the frequency of night eating (NE) is linearly associated with the studied parameters. NE is the strongest predictor of ZSDSI (β = 0.24), FA (β = 0.04), and GPA (β = -0.22). EPFc, EJL, and EW practically do not differ in the strength of their association with the studied indicators. ZSDSI is most closely associated with the chrononutrition indices. There is a weak negative association between BMI and EW (β = -0.03) and NE (β = -0.04). Thus, circadian eating disorders are more often observed in adolescents with poor academic performance, high levels of depression, and food addiction.
Collapse
Affiliation(s)
- Mikhail F. Borisenkov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia; (T.A.T.); (S.V.P.); (V.V.S.)
| | - Tatyana A. Tserne
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia; (T.A.T.); (S.V.P.); (V.V.S.)
| | - Sergey V. Popov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia; (T.A.T.); (S.V.P.); (V.V.S.)
| | - Vasily V. Smirnov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia; (T.A.T.); (S.V.P.); (V.V.S.)
| | - Olga I. Dorogina
- Ural Institute of Humanities, Ural Federal University, 620000 Yekaterinburg, Russia; (O.I.D.); (E.E.S.)
| | - Anna A. Pecherkina
- Ural Institute of Humanities, Ural Federal University, 620000 Yekaterinburg, Russia; (O.I.D.); (E.E.S.)
| | - Elvira E. Symaniuk
- Ural Institute of Humanities, Ural Federal University, 620000 Yekaterinburg, Russia; (O.I.D.); (E.E.S.)
| |
Collapse
|
21
|
Cheng WY, Desmet L, Depoortere I. Time-restricted eating for chronodisruption-related chronic diseases. Acta Physiol (Oxf) 2023; 239:e14027. [PMID: 37553828 DOI: 10.1111/apha.14027] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
The circadian timing system enables organisms to adapt their physiology and behavior to the cyclic environmental changes including light-dark cycle or food availability. Misalignment between the endogenous circadian rhythms and external cues is known as chronodisruption and is closely associated with the development of metabolic and gastrointestinal disorders, cardiovascular diseases, and cancer. Time-restricted eating (TRE, in human) is an emerging dietary approach for weight management. Recent studies have shown that TRE or time-restricted feeding (TRF, when referring to animals) has several beneficial health effects, which, however, are not limited to weight management. This review summarizes the effects of TRE/TRF on regulating energy metabolism, gut microbiota and homeostasis, development of cardiovascular diseases and cancer. Furthermore, we will address the role of circadian clocks in TRE/TRF and propose ways to optimize TRE as a dietary strategy to obtain maximal health benefits.
Collapse
Affiliation(s)
- Wai-Yin Cheng
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Louis Desmet
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Coleman JJ, Robinson CK, von Hippel W, Holmes KE, Kim J, Pearson S, Lawless RA, Hubbard AE, Cohen MJ. What Happens on Call Doesn't Stay on Call. The Effects of In-house Call on Acute Care Surgeons' Sleep and Burnout: Results of the Surgeon Performance (SuPer) Trial. Ann Surg 2023; 278:497-505. [PMID: 37389574 DOI: 10.1097/sla.0000000000005971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
OBJECTIVE We sought to quantify the effects of in-house call(IHC) on sleep patterns and burnout among acute care surgeons (ACS). BACKGROUND Many ACS take INC, which leads to disrupted sleep and high levels of stress and burnout. METHODS Physiological and survey data of 224 ACS with IHC were collected over 6 months. Participants continuously wore a physiological tracking device and responded to daily electronic surveys. Daily surveys captured work and life events as well as feelings of restfulness and burnout. The Maslach Burnout Inventory (MBI) was administered at the beginning and end of the study period. RESULTS Physiological data were recorded for 34,135 days, which includes 4389 nights of IHC. Feelings of moderate, very, or extreme burnout occurred 25.7% of days and feelings of being moderately, slightly, or not at all rested occurred 75.91% of days. Decreased amount of time since the last IHC, reduced sleep duration, being on call, and having a bad outcome all contribute to greater feelings of daily burnout ( P <0.001). Decreased time since last call also exacerbates the negative effect of IHC on burnout ( P <0.01). CONCLUSIONS ACS exhibit lower quality and reduced amount of sleep compared with an age-matched population. Furthermore, reduced sleep and decreased time since the last call led to increased feelings of daily burnout, accumulating in emotional exhaustion as measured on the MBI. A reevaluation of IHC requirements and patterns as well as identification of countermeasures to restore homeostatic wellness in ACS is essential to protect and optimize our workforce.
Collapse
Affiliation(s)
- Jamie J Coleman
- Department of Surgery, University of Louisville, Louisville, KY
| | | | | | - Kristen E Holmes
- Department of Psychology, University of Queensland, Brisbane, Queensland, Australia
| | | | - Samuel Pearson
- Business School, University of Queensland, Brisbane, Queensland, Australia
| | - Ryan A Lawless
- Department of Surgery, Orlando Regional Medical Center, Orlando, FL
| | - Alan E Hubbard
- Department of Biostatistics, University of California Berkeley, Berkeley, CA
| | | |
Collapse
|
23
|
Wu J, Zhang B, Zhou S, Huang Z, Xu Y, Lu X, Zheng X, Ouyang D. Associations between gut microbiota and sleep: a two-sample, bidirectional Mendelian randomization study. Front Microbiol 2023; 14:1236847. [PMID: 37645227 PMCID: PMC10461450 DOI: 10.3389/fmicb.2023.1236847] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction Previous research has reported that the gut microbiota performs an essential role in sleep through the microbiome-gut-brain axis. However, the causal association between gut microbiota and sleep remains undetermined. Methods We performed a two-sample, bidirectional Mendelian randomization (MR) analysis using genome-wide association study summary data of gut microbiota and self-reported sleep traits from the MiBioGen consortium and UK Biobank to investigate causal relationships between 119 bacterial genera and seven sleep-associated traits. We calculated effect estimates by using the inverse-variance weighted (as the main method), maximum likelihood, simple model, weighted model, weighted median, and MR-Egger methods, whereas heterogeneity and pleiotropy were detected and measured by the MR pleiotropy residual sum and outlier method, Cochran's Q statistics, and MR-Egger regression. Results In forward MR analysis, inverse-variance weighted estimates concluded that the genetic forecasts of relative abundance of 42 bacterial genera had causal effects on sleep-associated traits. In the reverse MR analysis, sleep-associated traits had a causal effect on 39 bacterial genera, 13 of which overlapped with the bacterial genera in the forward MR analysis. Discussion In conclusion, our research indicates that gut microbiota may be involved in the regulation of sleep, and conversely, changes in sleep-associated traits may also alter the abundance of gut microbiota. These findings suggest an underlying reciprocal causal association between gut microbiota and sleep.
Collapse
Affiliation(s)
- Jun Wu
- Department of Vascular Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Baofu Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengjie Zhou
- Department of Obstetrics and Gynecology, Taizhou Women and Children’s Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Ziyi Huang
- Department of Vascular Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yindong Xu
- Department of Vascular Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinwu Lu
- Department of Vascular Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangtao Zheng
- Department of Vascular Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dong Ouyang
- Department of Vascular Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Obstetrics and Gynecology, Taizhou Women and Children’s Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
24
|
Sartor F, Xu X, Popp T, Dodd AN, Kovács ÁT, Merrow M. The circadian clock of the bacterium B. subtilis evokes properties of complex, multicellular circadian systems. SCIENCE ADVANCES 2023; 9:eadh1308. [PMID: 37540742 PMCID: PMC10403212 DOI: 10.1126/sciadv.adh1308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Circadian clocks are pervasive throughout nature, yet only recently has this adaptive regulatory program been described in nonphotosynthetic bacteria. Here, we describe an inherent complexity in the Bacillus subtilis circadian clock. We find that B. subtilis entrains to blue and red light and that circadian entrainment is separable from masking through fluence titration and frequency demultiplication protocols. We identify circadian rhythmicity in constant light, consistent with the Aschoff's rule, and entrainment aftereffects, both of which are properties described for eukaryotic circadian clocks. We report that circadian rhythms occur in wild isolates of this prokaryote, thus establishing them as a general property of this species, and that its circadian system responds to the environment in a complex fashion that is consistent with multicellular eukaryotic circadian systems.
Collapse
Affiliation(s)
- Francesca Sartor
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Munich, Germany
| | - Xinming Xu
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Tanja Popp
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Munich, Germany
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Martha Merrow
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Munich, Germany
| |
Collapse
|
25
|
Masoudkabir F, Mohammadifard N, Mani A, Ignaszewski A, Davis MK, Vaseghi G, Mansourian M, Franco C, Gotay C, Sarrafzadegan N. Shared Lifestyle-Related Risk Factors of Cardiovascular Disease and Cancer: Evidence for Joint Prevention. ScientificWorldJournal 2023; 2023:2404806. [PMID: 37520844 PMCID: PMC10386903 DOI: 10.1155/2023/2404806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 02/25/2023] [Accepted: 06/09/2023] [Indexed: 08/01/2023] Open
Abstract
Cardiovascular disease (CVD) and cancer are leading causes of mortality and morbidity worldwide and are the major focus of the World Health Organization's joint prevention programs. While, diverse diseases, CVD and cancer, have many similarities. These include common lifestyle-related risk factors and shared environmental, metabolic, cellular, inflammatory, and genetic pathways. In this review, we will discuss the shared lifestyle-related and environmental risk factors central to both diseases and how the strategies commonly used to prevent atherosclerotic vascular disease can be applied to cancer prevention.
Collapse
Affiliation(s)
- Farzad Masoudkabir
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Mohammadifard
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arya Mani
- Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew Ignaszewski
- Division of Cardiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Margot K. Davis
- Division of Cardiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marjan Mansourian
- Epidemiology and Biostatistics Department, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Christopher Franco
- Division of Cardiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolyn Gotay
- School of Population & Public Health, The University of British Columbia, Vancouver, BC, Canada
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Barber LE, VoPham T, White LF, Roy HK, Palmer JR, Bertrand KA. Circadian Disruption and Colorectal Cancer Incidence in Black Women. Cancer Epidemiol Biomarkers Prev 2023; 32:927-935. [PMID: 36409509 PMCID: PMC10199956 DOI: 10.1158/1055-9965.epi-22-0808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Animal and experimental studies suggest circadian disruption increases colorectal cancer risk, but evidence in humans is limited. We examined night shift work, chronotype, and residential position within a time zone, proxies for circadian disruption, in relation to colorectal cancer risk. METHODS Participants in the Black Women's Health Study, a prospective cohort of 59,000 Black American women established in 1995, reported history of night shift work and chronotype on follow-up questionnaires. Residential position within a time zone was estimated using participant addresses at each questionnaire cycle. Number of colorectal cancer cases and follow-up duration varied by analysis depending on timing of exposure assessment, ranging from 204 over the 2005 to 2018 night shift work study period to 452 over the 1995 to 2018 residential position study period. Cox proportional hazards regression was used to estimate multivariable-adjusted HRs and 95% confidence intervals (CI). RESULTS Compared with never having worked a night shift, working a night shift for ≥10 years was associated with increased colorectal cancer risk (HR = 1.64; 95% CI, 1.01-2.66). However, shorter duration was not. The HR for evening versus morning chronotype was 0.96 (95% CI, 0.73-1.27). Westward position of residence within a time zone was not associated with colorectal cancer risk (HR per 5-degree longitude increase: 0.92; 95% CI, 0.82-1.03). CONCLUSIONS Our findings suggest a possible increased risk of colorectal cancer associated with long duration night shift work; however, results require confirmation in larger studies. IMPACT Circadian disruption from long-term night shift work may contribute to colorectal cancer development in Black women.
Collapse
Affiliation(s)
- Lauren E. Barber
- Department of Epidemiology, Boston University School of Public Health, Boston, MA
- Slone Epidemiology Center at Boston University, Boston, MA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA
| | - Trang VoPham
- Epidemiology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Laura F. White
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Hemant K. Roy
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | | | | |
Collapse
|
27
|
Hashikawa KI, Tsuruta A, Yamakawa W, Yasukochi S, Koyanagi S, Ohdo S. Senescence-induced alteration of circadian phagocytic activity of retinal pigment epithelium cell line ARPE-19. Biochem Biophys Res Commun 2023; 658:88-96. [PMID: 37027909 DOI: 10.1016/j.bbrc.2023.03.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023]
Abstract
Renewal of retinal photoreceptor outer segments is conducted through daily shedding of distal photoreceptor outer segment tips and subsequent their phagocytosis by the adjacent retinal pigment epithelium (RPE) monolayer. Dysregulation of the diurnal clearance of photoreceptor outer segment tips has been implicated in age-related retinal degeneration, but it remains to be clarified how the circadian phagocytic activity of RPE cells is modulated by senescence. In this study, we used the human RPE cell line ARPE-19 to investigate whether hydrogen peroxide (H2O2)-induced senescence in ARPE-19 cells alters the circadian rhythm of their phagocytic activity. After synchronization of the cellular circadian clock by dexamethasone treatment, the phagocytic activity of normal ARPE-19 cells exhibited significant 24-h oscillation, but this oscillation was modulated by senescence. The phagocytic activity of senescent ARPE-19 cells increased constantly throughout the 24-h period, which still exhibited blunted circadian oscillation, accompanied by an alteration in the rhythmic expression of circadian clock genes and clock-controlled phagocytosis-related genes. The expression levels of REV-ERBα, a molecular component of the circadian clock, were constitutively increased in senescent ARPE-19 cells. Furthermore, pharmacological activation of REV-ERBα by its agonist SR9009 enhanced the phagocytic activity of normal ARPE-19 cells and increased the expression of clock-controlled phagocytosis-related genes. Our present findings extend to understand the role of circadian clock in the alteration of phagocytic activity in RPE during aging. Constitutive enhancement of phagocytic activity of senescent RPE may contribute to age-related retinal degeneration.
Collapse
Affiliation(s)
- Ken-Ichi Hashikawa
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Akito Tsuruta
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Wakaba Yamakawa
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sai Yasukochi
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Satoru Koyanagi
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
28
|
Fortin BM, Mahieu AL, Fellows RC, Pannunzio NR, Masri S. Circadian clocks in health and disease: Dissecting the roles of the biological pacemaker in cancer. F1000Res 2023; 12:116. [PMID: 39282509 PMCID: PMC11399774 DOI: 10.12688/f1000research.128716.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/19/2024] Open
Abstract
In modern society, there is a growing population affected by circadian clock disruption through night shift work, artificial light-at-night exposure, and erratic eating patterns. Concurrently, the rate of cancer incidence in individuals under the age of 50 is increasing at an alarming rate, and though the precise risk factors remain undefined, the potential links between circadian clock deregulation and young-onset cancers is compelling. To explore the complex biological functions of the clock, this review will first provide a framework for the mammalian circadian clock in regulating critical cellular processes including cell cycle control, DNA damage response, DNA repair, and immunity under conditions of physiological homeostasis. Additionally, this review will deconvolute the role of the circadian clock in cancer, citing divergent evidence suggesting tissue-specific roles of the biological pacemaker in cancer types such as breast, lung, colorectal, and hepatocellular carcinoma. Recent evidence has emerged regarding the role of the clock in the intestinal epithelium, as well as new insights into how genetic and environmental disruption of the clock is linked with colorectal cancer, and the molecular underpinnings of these findings will be discussed. To place these findings within a context and framework that can be applied towards human health, a focus on how the circadian clock can be leveraged for cancer prevention and chronomedicine-based therapies will be outlined.
Collapse
Affiliation(s)
- Bridget M. Fortin
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| | - Alisa L. Mahieu
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| | - Rachel C. Fellows
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| | - Nicholas R. Pannunzio
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
- Department of Medicine, University of California, Irvine, Irvine, California, 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| |
Collapse
|
29
|
Ortega-Campos SM, Verdugo-Sivianes EM, Amiama-Roig A, Blanco JR, Carnero A. Interactions of circadian clock genes with the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188900. [PMID: 37105413 DOI: 10.1016/j.bbcan.2023.188900] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
The molecular machinery of the circadian clock regulates the expression of many genes and processes in the organism, allowing the adaptation of cellular activities to the daily light-dark cycles. Disruption of the circadian rhythm can lead to various pathologies, including cancer. Thus, disturbance of the normal circadian clock at both genetic and environmental levels has been described as an independent risk factor for cancer. In addition, researchers have proposed that circadian genes may have a tissue-dependent and/or context-dependent role in tumorigenesis and may function both as tumor suppressors and oncogenes. Finally, circadian clock core genes may trigger or at least be involved in different hallmarks of cancer. Hence, expanding the knowledge of the molecular basis of the circadian clock would be helpful to identify new prognostic markers of tumorigenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Sara M Ortega-Campos
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Amiama-Roig
- Hospital Universitario San Pedro, Logroño 26006, Spain; Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño 26006, Spain
| | - José R Blanco
- Hospital Universitario San Pedro, Logroño 26006, Spain; Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño 26006, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
30
|
Gusman E, Standlee J, Reid KJ, Wolfe LF. Work-Related Sleep Disorders: Causes and Impacts. Semin Respir Crit Care Med 2023; 44:385-395. [PMID: 37072022 DOI: 10.1055/s-0043-1767787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Insufficient sleep syndrome, shift work disorder, and obstructive sleep apnea (OSA) not only significantly impact the health of affected individuals, but also pose a threat to public safety. This article describes the clinical manifestations and impact of these sleep disorders, particularly as they pertain to workers' health and those with safety-sensitive positions. Sleep deprivation, circadian rhythm disruptions, and excessive daytime sleepiness-hallmarks of insufficient sleep, shift work disorder, and OSA, respectively-all lead to a series of cognitive deficits and impaired concentration that affect workers in a wide variety of fields. We describe the health consequences of these disorders along with treatment strategies, with a focus on current regulatory standards and the under-recognition of OSA in commercial drivers. Given its large scale, there is a need for improved guidelines and regulations for the screening, diagnosis, treatment, and long-term follow-up of OSA in commercial motor vehicle drivers. Increased recognition of the ways in which these sleep disorders impact workers will pave the way for significant improvements in occupational health and safety.
Collapse
Affiliation(s)
- Elen Gusman
- Department of Pulmonary and Critical Care Medicine, Northwestern Medicine, Chicago, Illinois
| | - Jordan Standlee
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Kathryn J Reid
- Department of Neurology, Division of Sleep Medicine, Northwestern Medicine, Chicago, Illinois
- Center for Circadian and Sleep Medicine, Northwestern Medicine, Chicago, Illinois
| | - Lisa F Wolfe
- Department of Pulmonary and Critical Care Medicine, Northwestern Medicine, Chicago, Illinois
- Department of Neurology, Division of Sleep Medicine, Northwestern Medicine, Chicago, Illinois
- Center for Circadian and Sleep Medicine, Northwestern Medicine, Chicago, Illinois
| |
Collapse
|
31
|
Schwartz PB, Walcheck MT, Nukaya M, Pavelec DM, Matkowskyj KA, Ronnekleiv-Kelly SM. Chronic jetlag accelerates pancreatic neoplasia in conditional Kras-mutant mice. Chronobiol Int 2023; 40:417-437. [PMID: 36912021 PMCID: PMC10337099 DOI: 10.1080/07420528.2023.2186122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/14/2023]
Abstract
Misalignment of the circadian clock compared to environmental cues causes circadian desynchrony, which is pervasive in humans. Clock misalignment can lead to various pathologies including obesity and diabetes, both of which are associated with pancreatic ductal adenocarcinoma - a devastating cancer with an 80% five-year mortality rate. Although circadian desynchrony is associated with an increased risk of several solid-organ cancers, the correlation between clock misalignment and pancreas cancer is unclear. Using a chronic jetlag model, we investigated the impact of clock misalignment on pancreas cancer initiation in mice harboring a pancreas-specific activated Kras mutation. We found that chronic jetlag accelerated the development of pancreatic cancer precursor lesions, with a concomitant increase in precursor lesion grade. Cell-autonomous knock-out of the clock in pancreatic epithelial cells of Kras-mutant mice demonstrated no acceleration of precursor lesion formation, indicating non-cell-autonomous clock dysfunction was responsible for the expedited tumor development. Therefore, we applied single-cell RNA sequencing over time and identified fibroblasts as the cell population manifesting the greatest clock-dependent changes, with enrichment of specific cancer-associated fibroblast pathways due to circadian misalignment.
Collapse
Affiliation(s)
- Patrick B Schwartz
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Morgan T Walcheck
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Manabu Nukaya
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | - Kristina A Matkowskyj
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S Middleton Memorial Veterans Hospital, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sean M Ronnekleiv-Kelly
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
32
|
S SH, G K, Dey H, Sangoji RV, Thirumal Kumar D, Zayed H, Vasudevan K, George Priya Doss C. Identification of potential circadian genes and associated pathways in colorectal cancer progression and prognosis using microarray gene expression analysis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:181-203. [PMID: 37709376 DOI: 10.1016/bs.apcsb.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Colorectal cancer (CRC) is third cancer causing death in the world. CRC is associated with disrupting the circadian rhythm (CR), closely associating the CRC progression and the dysregulation of genes involved in the biological clock. In this study, we aimed to understand the circadian rhythm changes in patients diagnosed with CRC. We used the GEO database with the ID GSE46549 for our analysis, which consists of 32 patients with CRC and one as normal control. Our study has identified five essential genes involved in CRC, HAPLN1, CDH12, IGFBP5, DCHS2, and DOK5, and had different enriched pathways, such as the Wnt-signaling pathway, at different time points of study. As a part of our study, we also identified various related circadian genes, such as CXCL12, C1QTNF2, MRC2, and GLUL, from the Circadian Gene Expression database, that played a role in circadian rhythm and CRC development. As circadian timing can influence the host tissue's ability to tolerate anticancer medications, the genes reported can serve as a potential drug target for treating CRC and become beneficial to translational settings.
Collapse
Affiliation(s)
- Sri Hari S
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Keerthana G
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Hrituraj Dey
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Rahul V Sangoji
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - D Thirumal Kumar
- Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education and Research (MAHER), Chennai, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India.
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
33
|
Kamyab P, Kouchaki H, Motamed M, Boroujeni ST, Akbari H, Tabrizi R. Sleep disturbance and gastrointestinal cancer risk: a literature review. J Investig Med 2023; 71:163-172. [PMID: 36645049 DOI: 10.1177/10815589221140595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sleep, accounting for roughly one-third of a person's life, plays an important role in human health. Despite the close association between sleep patterns and medical diseases proven by several studies, it has been neglected in recent years. Presently, all societies are facing the most challenging health-threatening disease, cancer. Among all cancer types, gastrointestinal (GI) cancers, especially colorectal type, seem to be one of the most relevant to an individual's lifestyle; thus, they can be prevented by modifying behaviors most of the time. Previous studies have shown that disruption of the 24-h sleep-wake cycle increases the chance of colorectal cancer, which can be due to exposure to artificial light at night and some complex genetic and hormone-mediated mechanisms. There has also been some evidence showing the possible associations between other aspects of sleep such as sleep duration or some sleep disorders and GI cancer risk. This review brings some information together and presents a detailed discussion of the possible role of sleep patterns in GI malignancy initiation.
Collapse
Affiliation(s)
- Parnia Kamyab
- Universal Scientific Education and Research Network, Fasa University of Medical Sciences, Fasa, Iran
| | - Hosein Kouchaki
- Universal Scientific Education and Research Network, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahsa Motamed
- Department of Psychiatry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamed Akbari
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Clinical Research Development Unit, Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran.,USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
34
|
Pang L, Dunterman M, Xuan W, Gonzalez A, Lin Y, Hsu WH, Khan F, Hagan RS, Muller WA, Heimberger AB, Chen P. Circadian regulator CLOCK promotes tumor angiogenesis in glioblastoma. Cell Rep 2023; 42:112127. [PMID: 36795563 PMCID: PMC10423747 DOI: 10.1016/j.celrep.2023.112127] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive tumors in the adult central nervous system. We previously revealed that circadian regulation of glioma stem cells (GSCs) affects GBM hallmarks of immunosuppression and GSC maintenance in a paracrine and autocrine manner. Here, we expand the mechanism involved in angiogenesis, another critical GBM hallmark, as a potential basis underlying CLOCK's pro-tumor effect in GBM. Mechanistically, CLOCK-directed olfactomedin like 3 (OLFML3) expression results in hypoxia-inducible factor 1-alpha (HIF1α)-mediated transcriptional upregulation of periostin (POSTN). As a result, secreted POSTN promotes tumor angiogenesis via activation of the TANK-binding kinase 1 (TBK1) signaling in endothelial cells. In GBM mouse and patient-derived xenograft models, blockade of the CLOCK-directed POSTN-TBK1 axis inhibits tumor progression and angiogenesis. Thus, the CLOCK-POSTN-TBK1 circuit coordinates a key tumor-endothelial cell interaction and represents an actionable therapeutic target for GBM.
Collapse
Affiliation(s)
- Lizhi Pang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Madeline Dunterman
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wenjing Xuan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Annette Gonzalez
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yiyun Lin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wen-Hao Hsu
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
35
|
Sleep Fragmentation Accelerates Carcinogenesis in a Chemical-Induced Colon Cancer Model. Int J Mol Sci 2023; 24:ijms24054547. [PMID: 36901981 PMCID: PMC10003038 DOI: 10.3390/ijms24054547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Aims of this study were to test whether sleep fragmentation (SF) increased carcinogenesis and to investigate the possible mechanisms of carcinogenesis in a chemical-induced colon cancer model. In this study, eight-week-old C57BL/6 mice were divided into Home cage (HC) and SF groups. After the azoxymethane (AOM) injection, the mice in the SF group were subjected to SF for 77 days. SF was accomplished in a sleep fragmentation chamber. In the second protocol, mice were divided into 2% dextran sodium sulfate (DSS)-treated, HC, and SF groups and were exposed to the HC or SF procedures. Immunohistochemical and immunofluorescent stainings were conducted to determine the level of 8-OHdG and reactive oxygen species (ROS), respectively. Quantitative real-time polymerase chain reaction was used to assess the relative expression of inflammatory and ROS-generating genes. The number of tumors and average tumor size were significantly higher in the SF group than in the HC group. The intensity (%) of the 8-OHdG stained area was significantly higher in the SF group than in the HC group. The fluorescence intensity of ROS was significantly higher in the SF group than the HC group. SF accelerated cancer development in a murine AOM/DSS-induced model of colon cancer, and the increased carcinogenesis was associated with ROS- and oxidative stress-induced DNA damage.
Collapse
|
36
|
Ring A, Nguyen-Sträuli BD, Wicki A, Aceto N. Biology, vulnerabilities and clinical applications of circulating tumour cells. Nat Rev Cancer 2023; 23:95-111. [PMID: 36494603 PMCID: PMC9734934 DOI: 10.1038/s41568-022-00536-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 12/13/2022]
Abstract
In recent years, exceptional technological advances have enabled the identification and interrogation of rare circulating tumour cells (CTCs) from blood samples of patients, leading to new fields of research and fostering the promise for paradigm-changing, liquid biopsy-based clinical applications. Analysis of CTCs has revealed distinct biological phenotypes, including the presence of CTC clusters and the interaction between CTCs and immune or stromal cells, impacting metastasis formation and providing new insights into cancer vulnerabilities. Here we review the progress made in understanding biological features of CTCs and provide insight into exploiting these developments to design future clinical tools for improving the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Alexander Ring
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Bich Doan Nguyen-Sträuli
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Department of Gynecology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas Wicki
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
37
|
Haghayegh S, Liu Y, Zhang Y, Strohmaier S, Papantoniou K, Markt S, Giovannucci E, Schernhammer E. Rotating Night Shift Work and Bladder Cancer Risk in Women: Results of Two Prospective Cohort Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2202. [PMID: 36767572 PMCID: PMC9915636 DOI: 10.3390/ijerph20032202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Bladder cancer is the sixth most common cancer in the United States. Night shift work has previously been linked with cancer risk. Whether there is an association between rotating night shift work and bladder cancer in women has not been studied previously. Eligible participants in the Nurses' Health Study (NHS, n = 82,147, 1988-2016) and Nurses' Health Study II (NHSII, n = 113,630, 1989-2015) were prospectively followed and a total of 620 and 122 incident bladder cancer cases were documented during the follow-up of NHS and NHSII, respectively. Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (95% CI) for bladder cancer incidence. We observed a significantly increased risk of bladder cancer among women with >5 years of night shift work history compared with women who never worked rotating night shifts in NHS (HR = 1.24; 95%CI = 1.01-1.54, p for trend = 0.06), but not in the pooled NHS and NHS II (HR = 1.18; 95%CI = 0.97-1.43, p for trend = 0.08). Secondary analyses stratified by smoking status showed no significant interaction (p = 0.89) between the duration of rotating night shift work and smoking status. In conclusion, our results did not provide strong evidence for an association between rotating night shift work and bladder cancer risk.
Collapse
Affiliation(s)
- Shahab Haghayegh
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yue Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Yin Zhang
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Susanne Strohmaier
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Kyriaki Papantoniou
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Sarah Markt
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Edward Giovannucci
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Eva Schernhammer
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
38
|
Dauchy RT, Blask DE. Vivarium Lighting as an Important Extrinsic Factor Influencing Animal-based Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:3-25. [PMID: 36755210 PMCID: PMC9936857 DOI: 10.30802/aalas-jaalas-23-000003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 01/22/2023]
Abstract
Light is an extrinsic factor that exerts widespread influence on the regulation of circadian, physiologic, hormonal, metabolic, and behavioral systems of all animals, including those used in research. These wide-ranging biologic effects of light are mediated by distinct photoreceptors, the melanopsin-containing intrinsically photosensitive retinal ganglion cells of the nonvisual system, which interact with the rods and cones of the conventional visual system. Here, we review the nature of light and circadian rhythms, current industry practices and standards, and our present understanding of the neurophysiology of the visual and nonvisual systems. We also consider the implications of this extrinsic factor for vivarium measurement, production, and technological application of light, and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and wellbeing and, ultimately, improving scientific outcomes.
Collapse
Key Words
- blad, blue-enriched led light at daytime
- clock, circadian locomotor output kaput
- cct, correlated color temperature
- cwf, cool white fluorescent
- iprgc, intrinsically photosensitive retinal ganglion cell
- hiomt, hydroxyindole-o-methyltransferase
- lan, light at night
- led, light-emitting diode
- plr, pupillary light reflex
- scn, suprachiasmatic nuclei
- spd, spectral power distribution
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
39
|
Weaver SH, de Cordova PB, Vitale TR, Hargwood P, Salmond S. Experiences and perceptions of nurses working night shift: a qualitative systematic review. JBI Evid Synth 2023; 21:33-97. [PMID: 35975311 DOI: 10.11124/jbies-21-00472] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The objective of this review was to examine the available evidence on the experiences and perceptions of nurses working the night shift within any specialty in the acute care, subacute, or long-term care setting. INTRODUCTION Nurses are required for around-the-clock patient care. Night shift nurses can experience detrimental effects because of their work hours, which disrupt their normal circadian rhythm. Understanding nurses' experiences and perceptions when working night shift will facilitate the development of strategies to minimize the potential negative effects of working at night. In examining nurses' experiences and perceptions of working night shift, there is scope to explore how to improve night shift nurses' practice environment and job satisfaction, which will then translate to improved nurse and patient outcomes. INCLUSION CRITERIA This review included qualitative studies focused on the experiences and perceptions of registered nurses and licensed practical nurses who work the night shift or rotate between day and night shift. METHODS This review followed the JBI methodology for systematic reviews of qualitative evidence. The methodology used was consistent with the a priori protocol. Studies included in this review were those published in full text, English, and between 1983 (when the seminal work on hospitals that attract and retain nurses was published) and February 2021, when the search was completed. The main databases searched for published and unpublished studies included MEDLINE, CINAHL, Embase, PsycINFO, and Web of Science.From the search, two reviewers independently screened the studies against the inclusion criteria, and then papers selected for inclusion were assessed for methodological quality. Qualitative data were extracted from the included papers independently by the four reviewers. Results from each reviewer were discussed and clarified to reach agreement. The extracted findings were pooled and examined for shared meaning, coded, and grouped into categories. Common categories were grouped into meta-synthesis to produce a comprehensive set of synthesized findings. The final synthesized findings were graded using the ConQual approach to determine the level of confidence (trust) users may have in the value of the synthesized findings. RESULTS Thirty-four papers, representing 33 studies, met the criteria for inclusion. The studies were conducted in 11 countries across six continents, with a total of 601 participants. From these, a total of 220 findings were extracted and combined to form 11 categories based on similarity in meaning, and three syntheses were derived: i) The "Other" Shift: the distinctiveness of night nursing; ii) Juggling sleep and all aspects of life when working nights; and iii) Existing in the Twilight Zone: battling the negative impact of sleep deprivation consumes nurses who strive to keep patients, self, and others safe. CONCLUSIONS The major conclusions from this review are the uniqueness of working the night shift and the sleep deprivation of night nurses. Organizational strategies and support are needed for those working this shift, which will enhance nurse and patient safety. SYSTEMATIC REVIEW REGISTRATION NUMBER PROSPERO CRD42019135294.
Collapse
Affiliation(s)
- Susan H Weaver
- Hackensack Meridian Health, Ann May Center for Nursing, Neptune, NJ, USA.,School of Nursing, Rutgers, the State University of New Jersey, Newark, NJ, USA
| | - Pamela B de Cordova
- School of Nursing, Rutgers, the State University of New Jersey, Newark, NJ, USA
| | - Tracy R Vitale
- School of Nursing, Rutgers, the State University of New Jersey, Newark, NJ, USA
| | - Pamela Hargwood
- Robert Wood Johnson Library of the Health Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Susan Salmond
- School of Nursing, Rutgers, the State University of New Jersey, Newark, NJ, USA.,The Northeast Institute for Evidence Synthesis and Translation (NEST): A JBI Centre of Excellence, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
40
|
Ali YF, Hong Z, Liu NA, Zhou G. Clock in radiation oncology clinics: cost-free modality to alleviate treatment-related toxicity. Cancer Biol Ther 2022; 23:201-210. [PMID: 35263235 PMCID: PMC8920191 DOI: 10.1080/15384047.2022.2041953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A large number of studies have reported that tumor cells are often out of sync with the surrounding healthy tissue. Exploiting this misalignment may be a way to obtain a substantial gain in the therapeutic window. Specifically, based on reports to date, we will assess whether radiotherapy outcomes differ depending on the administration time. Collectively, 24 studies met the inclusion criteria, out of which 12 at least reported that radiation therapy is less toxic when administered at a particular time, probably because there is less collateral damage to healthy cells. However, discrepancies exist across studies and urge further investigation. Mechanistic studies elucidating the relationship between radiotherapy, circadian rhythms, and cell cycle, combined with either our “digital” or “biological” chronodata, would help oncologists successfully chronotype individual patients and strategize treatment plans accordingly.
Collapse
Affiliation(s)
- Yasser F Ali
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, China.,Biophysics Lab, Physics Department, Faculty of Science Al-Azhar University Nasr City, 11884, Cairo, Egypt
| | - Zhiqiang Hong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, China
| | - Ning-Ang Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, China
| |
Collapse
|
41
|
Wu J, Zhang L, Kuchi A, Otohinoyi D, Hicks C. CpG Site-Based Signature Predicts Survival of Colorectal Cancer. Biomedicines 2022; 10:biomedicines10123163. [PMID: 36551919 PMCID: PMC9776399 DOI: 10.3390/biomedicines10123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A critical unmet medical need in clinical management of colorectal cancer (CRC) pivots around lack of noninvasive and or minimally invasive techniques for early diagnosis and prognostic prediction of clinical outcomes. Because DNA methylation can capture the regulatory landscape of tumors and can be measured in body fluids, it provides unparalleled opportunities for the discovery of early diagnostic and prognostics markers predictive of clinical outcomes. Here we investigated use of DNA methylation for the discovery of potential clinically actionable diagnostic and prognostic markers for predicting survival in CRC. METHODS We analyzed DNA methylation patterns between tumor and control samples to discover signatures of CpG sites and genes associated with CRC and predictive of survival. We conducted functional analysis to identify molecular networks and signaling pathways driving clinical outcomes. RESULTS We discovered a signature of aberrantly methylated genes associated with CRC and a signature of thirteen (13) CpG sites predictive of survival. We discovered molecular networks and signaling pathways enriched for CpG sites likely to drive clinical outcomes. CONCLUSIONS The investigation revealed that CpG sites can predict survival in CRC and that DNA methylation can capture the regulatory state of tumors through aberrantly methylated molecular networks and signaling pathways.
Collapse
Affiliation(s)
- Jiande Wu
- Department of Genetics and the Bioinformatics and Genomics Program, School of Medicine, Louisiana State University Health Sciences Center, Bolivar 533, New Orleans, LA 70112, USA
| | - Lu Zhang
- Department of Public Health Sciences, Clemson University, Clemson, SC 29634, USA
| | - Aditi Kuchi
- Department of Genetics and the Bioinformatics and Genomics Program, School of Medicine, Louisiana State University Health Sciences Center, Bolivar 533, New Orleans, LA 70112, USA
| | - David Otohinoyi
- Department of Genetics and the Bioinformatics and Genomics Program, School of Medicine, Louisiana State University Health Sciences Center, Bolivar 533, New Orleans, LA 70112, USA
| | - Chindo Hicks
- Department of Genetics and the Bioinformatics and Genomics Program, School of Medicine, Louisiana State University Health Sciences Center, Bolivar 533, New Orleans, LA 70112, USA
- Correspondence:
| |
Collapse
|
42
|
Gao J, Sun X, Zhou Q, Jiang S, Zhang Y, Ge H, Qin X. Circadian clock disruption aggravates alcohol liver disease in an acute mouse model. Chronobiol Int 2022; 39:1554-1566. [PMID: 36354126 DOI: 10.1080/07420528.2022.2132865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are important for organisms to adapt to the environment and maintain homeostasis. Disruptions of circadian rhythms contribute to the occurrence, progression, and exacerbation of diseases, such as cancer, psychiatric disorders, and metabolic disorders. Alcohol-induced liver disease (ALD) is one of the most prevalent liver diseases. Disruptions of the circadian clock enhance the ALD symptoms using chronic mice models or genetic manipulated mice. However, chronic models are time consuming and clock gene deletions interfere with metabolisms. Here, we report that constant light (LL) condition significantly disrupted the circadian clock in an acute ALD model, resulting in aggravated ALD phenotypes in wild type mice. Comparative transcriptome analysis revealed that the alcohol feeding affected the circadian pathway, as well as metabolic pathways. The acute alcohol feeding plus the LL condition further interfered with metabolic pathways and dysregulated canonical circadian gene expressions. These findings support the idea that disrupting the circadian clock could provide an improved ALD mouse model for further applications, such as facilitating identification of potential therapeutic targets for the prevention and treatment of ALD.Abbreviations: ALD, alcohol-induced liver disease; LD, 12 h light _ 12 h dark; LL, constant light; HF, high-fat liquid control diet; ETH, ethanol-containing diet; NIAAA, National Institute on Alcohol Abuse and Alcoholism; TTFLs, transcription-translation feedback loops; FDA, US Foods and Drug Administration; NAFLD, non-alcoholic fatty liver disease; RER, respiratory exchange rate; DEGs, differentially expressed genes; H&E, haematoxylin and eosin; ALT, alanine transaminase; AST, aspartate transaminase; TG, triglycerides.
Collapse
Affiliation(s)
- Jiajia Gao
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Xianpu Sun
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Qin Zhou
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Shuo Jiang
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunfei Zhang
- Modern Experiment Technology Center, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Honghua Ge
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ximing Qin
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| |
Collapse
|
43
|
Galinde AAS, Al-Mughales F, Oster H, Heyde I. Different levels of circadian (de)synchrony -- where does it hurt? F1000Res 2022; 11:1323. [PMID: 37125019 PMCID: PMC10130703 DOI: 10.12688/f1000research.127234.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shiftwork. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.
Collapse
Affiliation(s)
- Ankita AS. Galinde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Faheem Al-Mughales
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
- Biochemistry Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| |
Collapse
|
44
|
Galinde AAS, Al-Mughales F, Oster H, Heyde I. Different levels of circadian (de)synchrony -- where does it hurt? F1000Res 2022; 11:1323. [PMID: 37125019 PMCID: PMC10130703 DOI: 10.12688/f1000research.127234.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shift work. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.
Collapse
Affiliation(s)
- Ankita AS. Galinde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Faheem Al-Mughales
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
- Biochemistry Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| |
Collapse
|
45
|
Protogerou C, Gladwell V, Martin C. Development of a self-report measure to assess sleep satisfaction: Protocol for the Suffolk Sleep Index (SuSI). Front Psychol 2022; 13:1016229. [DOI: 10.3389/fpsyg.2022.1016229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Good sleep is essential for health but there is no consensus on how to define and measure people’s understanding of good sleep. To date, people’s perceptions of a good night’s sleep have been, almost exclusively, conceptualized under the lens of sleep quality, which refers to objective characteristics of good sleep, such as such as ease and time needed to fall asleep, hours of sleep, and physical symptoms during sleep and upon awakening. A related, yet different construct, sleep satisfaction, refers to perceived positive affect about one’s sleep experience and has, to date, received little attention. This research focuses on sleep satisfaction, rather than sleep quality, and aims to develop a self-report measure to assess sleep satisfaction in an English adult population. As the measure will be developed in Suffolk, England, and its primary intended users are Suffolk community members, it is labelled the Suffolk Sleep Index (SuSI). The SuSI will draw from principles of community-based participatory research, following a seven-phase developmental process comprising literature review, interviews with Suffolk community members, synthesis of literature review and interview findings, pre-testing, pilot-testing, scale evaluation, and refinement. The present research will also investigate indices related to sleep satisfaction, including the community’s general health status, lifestyle factors and socio-economic status. The research will add to the limited, yet emerging body of research on perceived sleep satisfaction and its measurement. To our knowledge, a valid and reliable sleep satisfaction self-report measure has not been developed in the United Kingdom previously.
Collapse
|
46
|
Fan J, Wang L, Yang X, Zhang X, Song Z, Wu S, Zou L, Li X, Zhao X, Li C, Pan Y, Tie Y, Wang Y, Luo Z, Sun X. Night shifts in interns: Effects of daytime napping on autonomic activity and cognitive function. Front Public Health 2022; 10:922716. [PMID: 36299766 PMCID: PMC9589154 DOI: 10.3389/fpubh.2022.922716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/29/2022] [Indexed: 01/22/2023] Open
Abstract
Objective Night shifts have adverse cognitive outcomes that might be attenuated by daytime napping. The neurovisceral integration model suggests that resting vagally mediated heart rate variability (vmHRV) is linked with cognitive function. This study investigated the relationship between resting vmHRV and cognitive function after different nap durations in interns after shift work. Methods A total of 105 interns were randomly allocated to one of three groups (non-nap, n = 35; 15-min nap, n = 35; 45-min nap, n = 35) to perform cognitive tests and resting vmHRV at 12:00, 15:00 and 18:00. Information processing (digit symbol substitution test; DSST), motor speed (finger tapping test; FTT), response selection (choice reaction time; CRT), and attention shifts (shifting attention test; SAT) were assessed. Resting vmHRV was assessed at baseline and during each cognitive task across groups. Results Compared with the non-nap control, the 15-min and 45-min naps improved all outcome measures (including subjective sleepiness and cognitive performance) at 15:00, with some benefits maintained at 18:00. The 15-min nap produced significantly greater benefits on the FTT at 15:00 after napping than did the 45-min nap. Resting vmHRV was significantly correlated with DSST and SAT performance. In addition, FTT performance was the only significant predictor of DSST performance across different nap durations. Conclusion Our results demonstrate links between daytime napping (in particular, a 15-min nap) and improved cognitive control in relation to autonomic activity after shift work in interns. These results indicated that autonomic activity when awake plays a crucial role in DSST and SAT performance and facilitated the understanding of differences in neurocognitive mechanisms underlying information processing after different nap durations.
Collapse
Affiliation(s)
- Jieyi Fan
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Liang Wang
- Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi'an, China
| | - Xiaotian Yang
- Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi'an, China
| | - Xiangbo Zhang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Ziyao Song
- Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi'an, China
| | - Sifan Wu
- Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi'an, China
| | - Linru Zou
- Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi'an, China
| | - Xi Li
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Xingcheng Zhao
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Chenfei Li
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Yikai Pan
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Yateng Tie
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Yongchun Wang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China,Yongchun Wang
| | - Zhengxue Luo
- General Hospital of PLA Air Force, Beijing, China,Zhengxue Luo
| | - Xiqing Sun
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China,*Correspondence: Xiqing Sun
| |
Collapse
|
47
|
Abstract
The pineal gland is a interface between light-dark cycle and shows neuro-endocrine functions. Melatonin is the primary hormone of pineal gland, secreted at night. The night-time melatonin peak regulates the physiological functions at dark. Melatonin has several unique features as it synchronises internal rhythm with daily and seasonal variations, regulates circadian rhythm and sleep-wake cycle. Physiologically melatonin involves in detoxification of free radicals, immune functions, neuro-protection, oncostatic effects, cardiovascular functions, reproduction, and foetal development. The precise functions of melatonin are exhibited by specific receptors. In relation to pathophysiology, impaired melatonin secretion promotes sleep disorder, cancer progression, type-2 diabetes, and neurodegenerative diseases. Several reports have highlighted the therapeutic benefits of melatonin specially related to cancer protection, sleep disorder, psychiatric disorders, and jet lag problems. This review will touch the most of the area of melatonin-oriented health impacts and its therapeutic aspects.
Collapse
|
48
|
Jibril AT, Mirzababaei A, Shiraseb F, Barekzai AM, Jalilpiran Y, Mirzaei K. Association of healthy beverage index with circadian rhythm and quality of sleep among overweight and obese women: a cross-sectional study. Eat Weight Disord 2022; 27:2541-2550. [PMID: 35389150 DOI: 10.1007/s40519-022-01391-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Circadian rhythm is a behavioral, physiological, and molecular change with a cycle length of approximately 24 h. Changes to the circadian rhythm can result in sleep difficulty. The healthy beverage index (HBI) is a holistic concept for evaluating the quality of overall beverage intake and its association with health-related outcomes in nutritional epidemiological studies. This study aimed to assess the relationship of HBI with circadian rhythm and sleep quality among overweight/obese women. METHODS The current study was conducted among 208 overweight and obese women between 18-48 years in Tehran, Iran. We evaluated potential HBI with a valid food frequency questionnaire. Following standard procedures, trained personnel assessed anthropometric measures, blood samples, and other baseline characteristics. The Pittsburgh Sleep Quality Index and the morning-eveningness questionnaire were applied to evaluate sleep quality and circadian rhythm respectively. RESULTS The mean (SD) BMI for this study was 30.8 (4.2) kg/m2. We observed that subjects in the least tertile had significantly high levels of triglyceride (p = 0.04) and low-density lipoprotein (p = 0.009). High-density lipoprotein was significantly different across the tertiles (p = 0.003). After adjusting for potential covariates, subjects in the second tertile of HBI had 5.07 odds of having the worst quality of sleep as compared to those in the third tertile, p < 0.05. We also observed a significant inverse association between the HBI and the "moderately evening type" participants (OR 0.86; 95% CI 0.68-0.99; p: 0.02) after adjusting for potential confounders. CONCLUSION Healthy beverage consumption may have the potential of improving sleep quality among overweight and obese subjects. LEVEL OF EVIDENCE Level IV, evidence obtained from a descriptive study.
Collapse
Affiliation(s)
- Aliyu Tijani Jibril
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box: 14155-6117, Tehran, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box: 14155-6117, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box: 14155-6117, Tehran, Iran
| | - Ahmad Mujtaba Barekzai
- Department of Community Nutrition, Ministry of Public Health, Ghazanfar Institute of Health Science, Kabul, Afghanistan
| | - Yahya Jalilpiran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box: 14155-6117, Tehran, Iran.
| |
Collapse
|
49
|
Liao CW, Wei CF, Chen MH, Hsieh WS, Lin CC, Chen PC. Association between maternal shift work during pregnancy child overweight and metabolic outcomes in early childhood. Front Public Health 2022; 10:1006332. [PMID: 36249262 PMCID: PMC9565036 DOI: 10.3389/fpubh.2022.1006332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 01/27/2023] Open
Abstract
Background Previous studies found that maternal shift work during pregnancy was associated with many reproductive hazards, including small for gestational age, preterm birth, stillbirth, and neurodevelopmental impairment. Some studies also showed that these children are more likely to become overweight in early childhood. However, the association with metabolic factors, such as insulin resistance and dyslipidemia, was less studied. Hence, we aimed to understand better the relationship between maternal shift work during pregnancy and the risk of childhood overweight and metabolic outcomes. Confounding factors were also discussed, including diet, exercise, and demographical factors. Methods We enrolled pregnant women before delivery in the Taiwan Birth Panel Study (TBPS) II conducted between 2010 and 2012, and followed the children of these participants in 2018. The objective of this study is to investigate the influence of prenatal and postnatal factors on infant and early childhood health. During the follow-up in 2018, we checked children's demographic data, obtained blood specimens, and checked their blood sugar, blood insulin, and lipid profiles. Structured questionnaires were used to evaluate demographic data. Multiple linear and logistic regressions were used to examine the associations between maternal shift work during pregnancy and child overweight, metabolic disorders, such as HOMA-IR, and lipid profiles. Results In this study, we included 407 mother-children pairs with different work shifts (350 day workers and 57 shift workers), and a sub-population without underweight children was also created (290 day workers and 47 shift workers). Shift work during pregnancy was associated with a higher Homeostasis Model Assessment-Insulin Resistance index (HOMA-IR) and a higher odds ratio for overweight in children born from mothers doing shift work during pregnancy after adjustment. The findings were attenuated when we investigated the effect of shift work before pregnancy. Conclusion Our study suggested that maternal shift work during pregnancy was associated with child overweight and insulin resistance in early childhood.
Collapse
Affiliation(s)
- Che-Wei Liao
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan,Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Chih-Fu Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Mei-Huei Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan,Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Wu-Shiun Hsieh
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan,Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan,*Correspondence: Ching-Chun Lin
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan,Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan,Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan,Pau-Chung Chen
| |
Collapse
|
50
|
Hamieh N, Airagnes G, Descatha A, Goldberg M, Limosin F, Roquelaure Y, Lemogne C, Zins M, Matta J. Atypical working hours are associated with tobacco, cannabis and alcohol use: longitudinal analyses from the CONSTANCES cohort. BMC Public Health 2022; 22:1834. [PMID: 36175874 PMCID: PMC9523930 DOI: 10.1186/s12889-022-14246-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/19/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND This study examined prospective associations between atypical working hours with subsequent tobacco, cannabis and alcohol use as well as sugar and fat consumption. METHODS In the French population-based CONSTANCES cohort, 47,288 men and 53,324 women currently employed included between 2012 and 2017 were annually followed for tobacco and cannabis use. Among them, 35,647 men and 39,767 women included between 2012 and 2016 were also followed for alcohol and sugar and fat consumption. Three indicators of atypical working hours were self-reported at baseline: working at night, weekend work and non-fixed working hours. Generalized linear models computed odds of substance use and sugar and fat consumption at follow-up according to atypical working hours at baseline while adjusting for sociodemographic factors, depression and baseline substance use when appropriate. RESULTS Working at night was associated with decreased smoking cessation and increased relapse in women [odds ratios (ORs) of 0.81 and 1.25], increased cannabis use in men [ORs from 1.46 to 1.54] and increased alcohol use [ORs from 1.12 to 1.14] in both men and women. Weekend work was associated with decreased smoking cessation in women [ORs from 0.89 to 0.90] and increased alcohol use in both men and women [ORs from 1.09 to 1.14]. Non-fixed hours were associated with decreased smoking cessation in women and increased relapse in men [ORs of 0.89 and 1.13] and increased alcohol use in both men and women [ORs from 1.12 to 1.19]. Overall, atypical working hours were associated with decreased sugar and fat consumption. CONCLUSIONS The potential role of atypical working hours on substance use should be considered by public health policy makers and clinicians in information and prevention strategies.
Collapse
Affiliation(s)
- Nadine Hamieh
- INSERM, Population-based Epidemiological Cohorts Unit, UMS 011, Villejuif, France
| | - Guillaume Airagnes
- INSERM, Population-based Epidemiological Cohorts Unit, UMS 011, Villejuif, France.
- Université Paris Cité, Faculty of Health, School of Medicine, Université Paris Cité, F-75006, Paris, France.
- AP-HP.Centre-Université de Paris, DMU Psychiatrie et Addictologie, Centre Ambulatoire d'Addictologie, Hôpital européen Georges-Pompidou, F-75015, Paris, France.
| | - Alexis Descatha
- Poison Control Center, Academic Hospital CHU Angers, F-49000, Angers, France
- Univ Angers, Centre Hospitalier Universitaire CHU Angers, Université de Rennes, INSERM, École des hautes études en santé publique, Institut de recherche en santé, environnement et travail Irset UMR_S 1085, F-49000, Angers, France
- Department of Occupational Medicine, Epidemiology and Prevention, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, USA
| | - Marcel Goldberg
- INSERM, Population-based Epidemiological Cohorts Unit, UMS 011, Villejuif, France
- Université Paris Cité, Faculty of Health, School of Medicine, Université Paris Cité, F-75006, Paris, France
| | - Frédéric Limosin
- Université Paris Cité, INSERM U1266, Institut de Psychiatrie et Neuroscience de Paris, F-75014, Paris, France
- AP-HP.Centre-Université de Paris, DMU Psychiatrie et Addictologie, Service de psychiatrie et d'addictologie de l'adulte et du sujet âgé, Hôpital Corentin-Celton, F-912130, Issy-les-Moulineaux, France
| | - Yves Roquelaure
- Univ Angers, Centre Hospitalier Universitaire CHU Angers, Université de Rennes, INSERM, École des hautes études en santé publique, Institut de recherche en santé, environnement et travail Irset UMR_S 1085, F-49000, Angers, France
- University of Angers, Centre Hospitalier Universitaire d'Angers, Université de Rennes, Centre de consultations de pathologie professionnelle et santé au travail, F-49000, Angers, France
| | - Cédric Lemogne
- Université Paris Cité, INSERM U1266, Institut de Psychiatrie et Neuroscience de Paris, F-75014, Paris, France
- AP-HP.Centre-Université de Paris, DMU Psychiatrie et Addictologie, Service de Psychiatrie de l'adulte, Hôpital Hôtel-Dieu, F-75004, Paris, France
| | - Marie Zins
- INSERM, Population-based Epidemiological Cohorts Unit, UMS 011, Villejuif, France
- Université Paris Cité, Faculty of Health, School of Medicine, Université Paris Cité, F-75006, Paris, France
| | - Joane Matta
- INSERM, Population-based Epidemiological Cohorts Unit, UMS 011, Villejuif, France
| |
Collapse
|