1
|
Mahendrarajan V, Easwaran N. Isolation, probiotic characterization and genomic analysis of Enterococcus durans VIT3 from edible curd. Microb Pathog 2025; 205:107649. [PMID: 40334721 DOI: 10.1016/j.micpath.2025.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Enterococcus species are recognized as probiotics with well-documented beneficial effects on human health. We aimed to isolate Enterococcus species from edible curd, a commonly consumed food product. The isolated bacterium is identified to be Enterococcus durans VIT3 by Oxford nanopore sequencing. The isolate is susceptible to commonly used antibiotics with no hemolysis activity. The isolate exhibited probiotic characteristics, like resistance to acid and bile, significant adhesion capability, auto-aggregation, and antimicrobial activity against pathogenic bacteria such as C. violaceum, S. mutans, S. enterica and S. aureus. E. durans VIT3 can efficiently scavenge the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, shows a potential anti-oxidant activity. Whole genome analysis revealed a total length of 3.2 Mb with 37.9 average GC content, which included genes associated with probiotic functions.
Collapse
Affiliation(s)
- Venkatramanan Mahendrarajan
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Tiruvalam Road, Katpadi, Tamil Nadu, India
| | - Nalini Easwaran
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Tiruvalam Road, Katpadi, Tamil Nadu, India.
| |
Collapse
|
2
|
Yang S, Qiao J, Zhang M, Kwok LY, Matijašić BB, Zhang H, Zhang W. Prevention and treatment of antibiotics-associated adverse effects through the use of probiotics: A review. J Adv Res 2025; 71:209-226. [PMID: 38844120 DOI: 10.1016/j.jare.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND The human gut hosts a diverse microbial community, essential for maintaining overall health. However, antibiotics, commonly prescribed for infections, can disrupt this delicate balance, leading to antibiotic-associated diarrhea, inflammatory bowel disease, obesity, and even neurological disorders. Recognizing this, probiotics have emerged as a promising strategy to counteract these adverse effects. AIM OF REVIEW This review aims to offer a comprehensive overview of the latest evidence concerning the utilization of probiotics in managing antibiotic-associated side effects. KEY SCIENTIFIC CONCEPTS OF REVIEW Probiotics play a crucial role in preserving gut homeostasis, regulating intestinal function and metabolism, and modulating the host immune system. These mechanisms serve to effectively alleviate antibiotic-associated adverse effects and enhance overall well-being.
Collapse
Affiliation(s)
- Shuwei Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Jiaqi Qiao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China
| | | | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China.
| |
Collapse
|
3
|
Abdul Manan M. Progress in Probiotic Science: Prospects of Functional Probiotic-Based Foods and Beverages. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:5567567. [PMID: 40259922 PMCID: PMC12011469 DOI: 10.1155/ijfo/5567567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
This comprehensive review explores the evolving role of probiotic-based foods and beverages, highlighting their potential as functional and "future foods" that could significantly enhance nutrition, health, and overall well-being. These products are gaining prominence for their benefits in gut health, immune support, and holistic wellness. However, their future success depends on addressing critical safety concerns and navigating administrative complexities. Ensuring that these products "do more good than harm" involves rigorous evaluations of probiotic strains, particularly those sourced from the human gastrointestinal tract. Lactic acid bacteria (LABs) serve as versatile and effective functional starter cultures for the development of probiotic foods and beverages. The review emphasizes the role of LABs as functional starter cultures and the development of precision probiotics in advancing these products. Establishing standardized guidelines and transparent practices is essential, requiring collaboration among regulatory bodies, industry stakeholders, and the scientific community. The review underscores the importance of innovation in developing "friendly bacteria," "super probiotics," precision fermentation, and effective safety assessments. The prospects of functional probiotic-based foods and beverages rely on refining these elements and adapting to emerging scientific advancements. Ultimately, empowering consumers with accurate information, fostering innovation, and maintaining stringent safety standards will shape the future of these products as trusted and beneficial components of a health-conscious society. Probiotic-based foods and beverages, often infused with LABs, a "friendly bacteria," are emerging as "super probiotics" and "future foods" designed to "do more good than harm" for overall health.
Collapse
Affiliation(s)
- Musaalbakri Abdul Manan
- Food Science and Technology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), MARDI Headquarters, Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Sitdhipol J, Niwasabutra K, Chaiyawan N, Nuankham K, Thanagornyothin T, Tanasupawat S, Chanput WP, Phapugrangkul P, Chaipanya C, Phuengjayaem S, Poothong S, Kingkaew E. Evaluating the safety and efficacy of Lacticaseibacillus paracasei TISTR 2593 as a therapeutic probiotic for obesity prevention. Front Microbiol 2025; 16:1501395. [PMID: 40241731 PMCID: PMC11999940 DOI: 10.3389/fmicb.2025.1501395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/27/2025] [Indexed: 04/18/2025] Open
Abstract
Several recent studies have reported the potential of probiotics in reducing body weight and fat mass and improving glucose and lipid metabolism. Therefore, probiotic administration is considered an alternative approach for treating obesity. The objective of this study was to evaluate the probiotic properties and antiadipogenic potential of the strain TISTR 2593. Through whole-genome sequence analysis, the strain TISTR 2593 was identified as Lacticaseibacillus paracasei. L. paracasei TISTR 2593 exhibited γ-hemolytic activity (nonhemolysis) and demonstrated susceptibility to antibiotics, indicating that it is generally safe for consumption. Additionally, this strain displayed desirable probiotic properties, including tolerance to artificial gastric juice and bile salts, adhesion to Caco-2 cells, and the ability to inhibit pathogens. Furthermore, L. paracasei TISTR 2593 exhibited cholesterol-reducing capability and demonstrated antiadipogenic activity. In 3T3-L1 adipocytes, treatment with 10% (w/v) heated L. paracasei TISTR 2593 cells resulted in an approximately 50% reduction in lipid accumulation, similar to the positive control (quercetin). Moreover, L. paracasei TISTR 2593 heat-killed cells dose-dependently decreased the expression levels of CCAAT/enhancer-binding protein-α and peroxisome proliferator-activated receptor-γ, two vital transcription factors involved in the early stage of adipocyte differentiation. These findings suggest that L. paracasei TISTR 2593 possesses probiotic and functional properties, including antiadipogenic activity, supporting its potential as a therapeutic probiotic supplement for preventing obesity. Overall, the results of this study indicate that L. paracasei TISTR 2593 exhibits promising probiotic characteristics and beneficial effects on adipogenesis modulation, reinforcing its potential as a therapeutic option in obesity prevention.
Collapse
Affiliation(s)
- Jaruwan Sitdhipol
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Kanidta Niwasabutra
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Neungnut Chaiyawan
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Kamonsri Nuankham
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Thanaphol Thanagornyothin
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Somboon Tanasupawat
- Faculty of Pharmaceutical Sciences, Department of Biochemistry and Microbiology, Chulalongkorn University, Bangkok, Thailand
| | | | - Pongsathon Phapugrangkul
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Chaivarakun Chaipanya
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Sukanya Phuengjayaem
- Faculty of Science, Department of Microbiology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Saranporn Poothong
- Faculty of Veterinary Science, Department of Animal Husbandry, Chulalongkorn University, Bangkok, Thailand
| | - Engkarat Kingkaew
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
5
|
Fu Z, Zhang H, Yang Z, Liu Y, Wang P, Zhang J, Chi H. Metagenomic and Metabolomic Analyses Reveal the Role of a Bacteriocin-Producing Strain of Enterococcus faecalis DH9003 in Regulating Gut Microbiota in Mice. Microorganisms 2025; 13:372. [PMID: 40005739 PMCID: PMC11858018 DOI: 10.3390/microorganisms13020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
To investigate the regulatory effect of a bacteriocin-producing strain of Enterococcus faecalis DH9003 on the gut microbiota of mice, 15 healthy C57 male mice were randomly administered an equal volume of sterile normal saline (HD, control group, n = 7) and E. faecalis DH9003 (YD, treatment group, n = 8) via gavage. Metagenomic and metabolomic analyses were performed to determine the composition and metabolic function of the intestinal microbiota in mice. The results showed that the relative abundance of Firmicutes continuously increased over time in YD compared to HD. The number of E. faecalis DH9003 increased slowly and remained steady from days 7 to 28, indicating that E. faecalis DH9003 could colonize a considerable number of mouse guts via intragastric administration. Supplementation with E. faecalis DH9003 demonstrated a regulatory effect on the intestinal microbiota composition of mice, causing a shift in the relative abundance of Bacteroidetes and Firmicutes at the phylum level. In addition, a total of 2426 different metabolites were found in mouse feces, including 1286 and 1140 metabolites in positive and negative modes, respectively. Vitamin B6 and succinate were the most regulated and downregulated metabolites in negative ion mode, and the most upregulated and downregulated metabolites in positive ion mode were N-methyl-glutamic acid and N-octanoyl sphingosine. In conclusion, E. faecalis DH9003 can colonize mice gut, affecting the gut microbiota and metabolic competence. This strain therefore offers considerable potential for application as a probiotic.
Collapse
Affiliation(s)
- Zhiyu Fu
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (Z.F.); (Y.L.)
| | - Haitao Zhang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Z.); (Z.Y.); (P.W.)
- School of Ocean Food and Biology Engineering, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Zhenzhu Yang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Z.); (Z.Y.); (P.W.)
| | - Yujun Liu
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (Z.F.); (Y.L.)
| | - Peng Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Z.); (Z.Y.); (P.W.)
| | - Junjie Zhang
- School of Ocean Food and Biology Engineering, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Hai Chi
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (Z.F.); (Y.L.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Z.); (Z.Y.); (P.W.)
- School of Ocean Food and Biology Engineering, Jiangsu Ocean University, Lianyungang 222005, China;
| |
Collapse
|
6
|
Hua Q, Li D. Lactiplantibacillus plantarum 299V fermented in microcapsules shows enhanced stability and could improve the microbial quality and safety of oysters through bioaccumulation. J Food Sci 2024; 89:8066-8076. [PMID: 39323244 DOI: 10.1111/1750-3841.17406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
In this study, microcapsules of Lactiplantibacillus plantarum 299V were prepared using an emulsification/internal gelation technique. Loads of the probiotics were condensed to 9.86 ± 0.13 log CFU/g after 24 h fermentation of the microcapsules. Physical characterization revealed that L. plantarum 299V cells were uniformly distributed within the core of the microcapsules, with a mean diameter of 109.81 ± 0.39 µm and a span value of 0.36 ± 0.00, which were comparable to those of the unfermented microcapsules (p > 0.05). The viability of L. plantarum 299V in the fermented microcapsules was 2.08 ± 0.15 log higher than that of free cells at the end of 5 h simulated gastrointestinal digestion (p < 0.05). Oysters were able to accumulate the fermented microcapsules through filter feeding, resulting in a load of probiotics exceeding 6.00 log CFU/g. The presence of L. plantarum 299V-carrying microcapsules in oyster tissues significantly suppressed spoilage-causing bacteria during 11 days refrigeration storage, suggested by the tested parameters, including total psychrotrophic bacteria, H2S-producing bacteria, and Pseudomonas spp. (p < 0.05). Pathogenic bacteria, including Vibrio parahaemolyticus and Salmonella enterica artificially introduced into oysters, were also significantly suppressed by over 1.00-log within 4 days compared to control samples (p < 0.05). In summary, oysters bioaccumulated with fermented L. plantarum 299V-carrying microcapsules, justified a novel probiotic-carrying product to exsert the health-promoting effect of probiotics. This solution could also enhance the microbial quality and safety of oysters during storage.
Collapse
Affiliation(s)
- Qian Hua
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Elhalik MA, Mekky AE, Khedr M, Suleiman WB. Antineoplastic with DNA fragmentation assay and anti-oxidant, anti-inflammatory with gene expression activity of Lactobacillus plantarum isolated from local Egyptian milk products. BMC Microbiol 2024; 24:443. [PMID: 39472774 PMCID: PMC11520475 DOI: 10.1186/s12866-024-03576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Many lactic acid bacteria (LAB), known for their human health benefits, are derived from milk and utilized in biotherapeutic applications or for producing valuable nutraceuticals. However, the specific role of milk-associated LAB in biotherapeutics remains underexplored. To address this, eight milk product samples were randomly selected from the Egyptian market, diluted, and then cultured anaerobically on MRS agar. Subsequently, 16 suspected LAB isolates were recovered and underwent rapid preliminary identification. Among these isolates, the Lactobacillus plantarum strain with accession number (OQ547261.1) was identified due to its strong antioxidant activity depending on the DPPH assay, L. plantarum displayed notable antioxidant activities of 71.8% and 93.8% at concentrations of 125-1000 µg/mL, respectively. While ascorbic acid showed lower concentrations of 7.81, 3.9, and 1.95 µg/mL which showed activities of 45.1%, 34.2%, and 27.2%, respectively. The anti-inflammatory efficacy of L. plantarum was evaluated based on its capability to prevent hemolysis induced by hypotonic conditions. At a concentration of 1000 µg/mL, L. plantarum could reduce hemolysis by 97.7%, nearly matching the 99.5% inhibition rate achieved by the standard drug, indomethacin, at an identical concentration. Moreover, L. plantarum exhibited high hemolytic activity at 100 µg/mL (14.3%), which decreased to 1.4% at 1000 µg/mL. The abundance of phenolic acids and flavonoids was determined by high-performance liquid chromatography (HPLC) in L. plantarum. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) demonstrated that L. plantarum increased gene expression of the inflammatory marker TLR2 by 133%, and cellular oxidation markers SOD1 and SOD2 by 65% and 74.2%, respectively, while suppressing CRP expression by 33.3%. These results underscore L. plantarum's exceptional anti-inflammatory and antioxidant activities. Furthermore, L. plantarum induces cancer cell death through necrotic nuclear DNA fragmentation. These findings suggest that L. plantarum is not only suitable for nutraceutical production but also holds potential as a probiotic strain. Future research should focus on enhancing the capacity of this strain across various industries and fostering innovation in multiple fields.
Collapse
Affiliation(s)
- Mohamed A Elhalik
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Alsayed E Mekky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed Khedr
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Waleed B Suleiman
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
8
|
Lee J, Jo J, Wan J, Seo H, Han SW, Shin YJ, Kim DH. In Vitro Evaluation of Probiotic Properties and Anti-Pathogenic Effects of Lactobacillus and Bifidobacterium Strains as Potential Probiotics. Foods 2024; 13:2301. [PMID: 39063385 PMCID: PMC11276478 DOI: 10.3390/foods13142301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Probiotics restore gut microbial balance, thereby providing health-promoting effects to the host. They have long been suggested for managing intestinal disorders caused by pathogens and for improving gut health. This study evaluated the probiotic properties and anti-pathogenic effects of specific probiotic strains against the intestinal pathogens Staphylococcus aureus and Escherichia coli. The tested strains-Lactiplantibacillus plantarum LC27, Limosilactobacillus reuteri NK33, Lacticaseibacillus rhamnosus NK210, Bifidobacterium longum NK46, and Bifidobacterium bifidum NK175-were able to survive harsh conditions simulating gastric and intestinal fluids. These strains exhibited good auto-aggregation abilities (41.8-92.3%) and ideal hydrophobicity (30.9-85.6% and 38.3-96.1% for xylene and chloroform, respectively), along with the ability to co-aggregate with S. aureus (40.6-68.2%) and E. coli (38.6-75.2%), indicating significant adhesion levels to Caco-2 cells. Furthermore, these strains' cell-free supernatants (CFSs) demonstrated antimicrobial and antibiofilm activity against S. aureus and E. coli. Additionally, these strains inhibited gas production by E. coli through fermentative activity. These findings suggest that the strains tested in this study have potential as novel probiotics to enhance gut health.
Collapse
Affiliation(s)
- Jaekoo Lee
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
- Department of Food Regulatory Science, Korea University, Sejong 30019, Republic of Korea
| | - Jaehyun Jo
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Jungho Wan
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Hanseul Seo
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Seung-Won Han
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
9
|
Kumar SAS, Krishnan D, Jothipandiyan S, Durai R, Hari BNV, Nithyanand P. Cell-free supernatants of probiotic consortia impede hyphal formation and disperse biofilms of vulvovaginal candidiasis causing Candida in an ex-vivo model. Antonie Van Leeuwenhoek 2024; 117:37. [PMID: 38367023 DOI: 10.1007/s10482-024-01929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/13/2024] [Indexed: 02/19/2024]
Abstract
Vulvovaginal candidiasis is the second most common vaginal infection caused by drug-resistant Candida species that affects about 70-75% of reproductive age group women across the globe. As current-day antifungal drugs are ineffective against the biofilms formed by the drug-resistant Candida strains, several natural compounds and antagonistic microbes are being explored as alternative antifungal agents. In the present study, we investigated the anti-biofilm activity of Cell-Free Supernatant (CFS) extracted from the commercially available probiotics VSL-3 against the biofilms of Candida species and also evaluated their efficacy in curbing the yeast-to-hyphal transition. Various methodologies like crystal violet staining and scanning electron microscopy were used to study the effect of CFS against the biofilms formed by the species. The ability of CFS to interfere with yeast to hyphal transition in Candida was studied by colony morphology assay and visually confirmed with phase contrast microscopy. The potential of the CFS of the probiotics was also evaluated using goat buccal tissue, a novel ex-vivo model that mimics the vaginal environment. Moreover, the supernatant extracted from VSL-3 had the ability to down-regulate the expression of virulence genes of Candida from the biofilm formed over the ex-vivo model. These results emphasize the anti-fungal and anti-infective properties of the CFS of VSL-3 against drug-resistant Candida strains causing vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Sudaarsan Aruna Senthil Kumar
- Biofilm Biology Laboratory, Centre for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - Dhesiga Krishnan
- Biofilm Biology Laboratory, Centre for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, Centre for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - Ramyadevi Durai
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - B Narayanan Vedha Hari
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India.
| |
Collapse
|
10
|
Dang DX, Zou Q, Xu Y, Cui Y, Li X, Xiao Y, Wang T, Li D. Feeding Broiler Chicks with Bacillus subtilis, Clostridium butyricum, and Enterococcus faecalis Mixture Improves Growth Performance and Regulates Cecal Microbiota. Probiotics Antimicrob Proteins 2024; 16:113-124. [PMID: 36512203 DOI: 10.1007/s12602-022-10029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
A total of 300 day-old Arbor Acres Plus broiler chicks (mixed sex) was used to evaluate the effects of dietary supplementation of Bacillus subtilis, Clostridium butyricum, and Enterococcus faecalis mixture (PB) on growth performance, ileal morphology, and cecal microbiota. All birds were randomly assigned into 3 groups based on the initial body weight. There were 5 replicate cages per group and 20 birds per cage. The experimental period was 42 days. Dietary treatments were based on a basal diet and supplemented with 0, 0.05, or 0.10% PB. The results indicated that broiler chicks fed with the diet supplemented with graded levels of PB have quadratically improved their body weight gain and feed intake; the highest value was presented in 0.05% PB-containing group. In addition, villus to crypt ratio linearly increased with the concentration of PB increased in the diet. The alpha diversity linearly increased by PB supplementation, and the highest value was presented in 0.10% PB-containing group. In terms of growth performance, the suitable dose of PB used in the diet was 0.05%. However, ternary plot showed that the harmful bacteria, Escherichia-Shigella, was enriched in 0.05% PB-containing group. In brief, we considered that dietary supplementation of graded levels of PB improved growth performance and regulated cecal microbiota in broiler chicks.
Collapse
Affiliation(s)
- De Xin Dang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121001, China
- Department of Animal Resource & Science, Dankook University, Cheonan, 31116, South Korea
| | - Qiangqiang Zou
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yunhe Xu
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yan Cui
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Xu Li
- Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou, 121000, China
| | - Yingying Xiao
- Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou, 121000, China
| | - Tieliang Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
11
|
Trivedi A, Teo E, Walker KS. Probiotics for the postoperative management of term neonates after gastrointestinal surgery. Cochrane Database Syst Rev 2024; 1:CD012265. [PMID: 38258877 PMCID: PMC10804440 DOI: 10.1002/14651858.cd012265.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
BACKGROUND The intestinal microflora has an essential role in providing a barrier against colonisation of pathogens, facilitating important metabolic functions, stimulating the development of the immune system, and maintaining intestinal motility. Probiotics are live microorganisms that can be administered to supplement the gut flora. Neonates who have undergone gastrointestinal surgery are particularly susceptible to infectious complications in the postoperative period. This may be partly due to a disruption of the integrity of the gut and its intestinal microflora. There may be a role for probiotics in reducing the incidence of sepsis and improving intestinal motility, thus reducing morbidity and mortality and improving enteral feeding in neonates in the postoperative period. OBJECTIVES To evaluate the efficacy and safety of administering probiotics after gastrointestinal surgery for the postoperative management of neonates born from 35 weeks of gestation. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, and trial registries in August 2023. We checked reference lists of included studies and relevant systematic reviews for additional studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) that investigated the postoperative administration of oral probiotics versus placebo or no treatment in neonates born from 35 weeks of gestation who had one or more gastrointestinal surgical procedures. We applied no restrictions regarding the type or dosage of probiotics or the duration of treatment. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods, and we used GRADE to assess the certainty of evidence. MAIN RESULTS We identified one RCT that recruited 61 neonates with a gestational age of 35 weeks or more. All infants were admitted to a neonatal intensive care unit and had surgery for gastrointestinal pathologies. There may be little or no difference in proven sepsis (positive bacterial culture, local or systemic) between infants who receive probiotics compared with those who receive placebo (odds ratio (OR) 0.64, 95% confidence interval (CI) 0.16 to 2.55; 61 infants; low-certainty evidence). Probiotics compared to placebo may have little or no effect on time to full enteral feeds (mean difference (MD) 0.63 days, 95% CI -4.02 to 5.28; 61 infants; low-certainty evidence). There were no reported deaths prior to discharge from hospital in either study arm. Two weeks after supplementation, the infants who received probiotics had a substantially higher relative abundance of non-pathogenic intestinal microflora (Bifidobacteriaceae) than those who received placebo (MD 38.22, 95% CI 28.40 to 48.04; 39 infants; low-certainty evidence). AUTHORS' CONCLUSIONS This review provides low-certainty evidence from one small RCT that probiotics compared to placebo have little or no effect on the risk of proven sepsis (positive bacterial culture, local or systemic) or time to full-enteral feeds in neonates who have undergone gastrointestinal surgery. Probiotics may substantially increase the abundance of beneficial bacterial in the intestine of these neonates, but the clinical implications of this finding are unknown. There is a need for adequately powered RCTs to assess the role of probiotics in this population. We identified two ongoing studies. As neither reported the gestational age of prospective study participants, we are unsure if they will be eligible for inclusion in this review.
Collapse
Affiliation(s)
- Amit Trivedi
- Grace Centre for Newborn Intensive Care, The Children's Hospital at Westmead, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Edward Teo
- Emergency Department, Concord Repatriation General Hospital, Sydney, Australia
| | - Karen S Walker
- Neonatal intensive Care Unit, Royal Prince Alfred hospital, Sydney, Australia
| |
Collapse
|
12
|
Jang YJ, Min B, Lim JH, Kim BY. In Vitro Evaluation of Probiotic Properties of Two Novel Probiotic Mixtures, Consti-Biome and Sensi-Biome. J Microbiol Biotechnol 2023; 33:1149-1161. [PMID: 37386724 PMCID: PMC10580887 DOI: 10.4014/jmb.2303.03011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Changes in the gut microbiome cause recolonization by pathogens and inflammatory responses, leading to the development of intestinal disorders. Probiotics administration has been proposed for many years to reverse the intestinal dysbiosis and to enhance intestinal health. This study aimed to evaluate the inhibitory effects of two newly designed probiotic mixtures, Consti-Biome and Sensi-Biome, on two enteric pathogens Staphylococcus aureus and Escherichia coli that may cause intestinal disorders. Additionally, the study was designed to evaluate whether Consti-Biome and Sensi-Biome could modulate the immune response, produce short-chain fatty acids (SCFAs), and reduce gas production. Consti-Biome and Sensi-Biome showed superior adhesion ratios to HT-29 cells and competitively suppressed pathogen adhesion. Moreover, the probiotic mixtures decreased the levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-6 and IL-1β. Cell-free supernatants (CFSs) were used to investigate the inhibitory effects of metabolites on growth and biofilms of pathogens. Consti-Biome and Sensi-Biome CFSs exhibited antimicrobial and anti-biofilm activity, where microscopic analysis confirmed an increase in the number of dead cells and the structural disruption of pathogens. Gas chromatographic analysis of the CFSs revealed their ability to produce SCFAs, including acetic, propionic, and butyric acid. SCFA secretion by probiotics may demonstrate their potential activities against pathogens and gut inflammation. In terms of intestinal symptoms regarding abdominal bloating and discomfort, Consti-Biome and Sensi-Biome also inhibited gas production. Thus, these two probiotic mixtures have great potential to be developed as dietary supplements to alleviate the intestinal disorders.
Collapse
Affiliation(s)
- You Jin Jang
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Bonggyu Min
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Jong Hyun Lim
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Byung-Yong Kim
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| |
Collapse
|
13
|
Hati S, Ramanuj K, Basaiawmoit B, Sreeja V, Maurya R, Bishnoi M, Kondepudi KK, Mishra B. Safety aspects, probiotic potentials of yeast and lactobacillus isolated from fermented foods in North-Eastern India, and its anti-inflammatory activity. Braz J Microbiol 2023; 54:2073-2091. [PMID: 37612545 PMCID: PMC10485210 DOI: 10.1007/s42770-023-01093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
Lactobacillus and yeast obtained from fermented foods in North-East India were tested for safety and probiotic properties. All the lactobacilli and yeast tested negative for the catalase, indole, urease, phenylalanine, hemolysis, gelatin hydrolysis, and biogenic amine production tests, indicating that they are safe to use as probiotics in food supplements. Lactiplantibacillus plantarum KGL3A (accession no. MG722814) was capable of resisting the replicated gastric fluid (pH 2) till 2 h of exposure, whereas both KGL3A and Lacticaseibacillus rhamnosus K4E (accession no. KX950834.1) strains were able to resist pH 3 till 2 h of exposure with a reduction in overall viable cell count from 7.48 log CFU/mL to 1.09 log CFU/mL and 7.77 log CFU/mL to 0.83 log CFU/mL, respectively. In vitro gastric juice simulation conditions were tolerated by the yeast Saccharomyces cerevisiae WBS2A. The cell surface hydrophobicity (CSH) towards hydrocarbons (n-hexadecane) was seen highest in L. plantarum KGL3A (77.16± 0.84%) and Limosilactobacillus fermentum KGL4 accession no. MF951099 (72.60 ± 2.33%). The percentage auto-aggregation ranged from 8.70 to 25.53 after 2 h, which significantly increased to 10.50 to 26.94 during the fifth hour for cultures. Also, a higher percentage of co-aggregation was found for the culture L. rhamnosus K4E with S. typhi (34.18 ± 0.03%), E. coli (32.97 ± 0.02 %) and S. aureus (26.33 ± 0.06 %) and for the yeast S. cerevisiae WBS2A, a higher percentage of co-aggregation was found with Listeria monocytogenes (25.77 ± 0.22%). The antioxidant activity and proteolytic activity were found to be higher for Lactobacillus helveticus K14 and L. rhamnosus K4E. The proportion of decreased cholesterol was noticeably higher in KGL4 (29.65 ± 4.30%). β glucosidase activity was significantly higher in the L. fermentum KGL4 strain (0.359 ± 0.002), and α galactosidase activity was significantly higher in the L. rhamnosus K4E strain (0.415 ± 0.016). MTT assays suggested that KGL4 and WBS2A at a lower dose did not exhibit cytotoxicity.
Collapse
Affiliation(s)
- Subrota Hati
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| | - Krupali Ramanuj
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Tura, Meghalaya, India
| | - V Sreeja
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, Haryana, India
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Birendrakumar Mishra
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Tura, Meghalaya, India.
| |
Collapse
|
14
|
Stummer N, Feichtinger RG, Weghuber D, Kofler B, Schneider AM. Role of Hydrogen Sulfide in Inflammatory Bowel Disease. Antioxidants (Basel) 2023; 12:1570. [PMID: 37627565 PMCID: PMC10452036 DOI: 10.3390/antiox12081570] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Hydrogen sulfide (H2S), originally known as toxic gas, has now attracted attention as one of the gasotransmitters involved in many reactions in the human body. H2S has been assumed to play a role in the pathogenesis of many chronic diseases, of which the exact pathogenesis remains unknown. One of them is inflammatory bowel disease (IBD), a chronic intestinal disease subclassified as Crohn's disease (CD) and ulcerative colitis (UC). Any change in the amount of H2S seems to be linked to inflammation in this illness. These changes can be brought about by alterations in the microbiota, in the endogenous metabolism of H2S and in the diet. As both too little and too much H2S drive inflammation, a balanced level is needed for intestinal health. The aim of this review is to summarize the available literature published until June 2023 in order to provide an overview of the current knowledge of the connection between H2S and IBD.
Collapse
Affiliation(s)
- Nathalie Stummer
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (N.S.); (R.G.F.); (D.W.); (B.K.)
| | - René G. Feichtinger
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (N.S.); (R.G.F.); (D.W.); (B.K.)
| | - Daniel Weghuber
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (N.S.); (R.G.F.); (D.W.); (B.K.)
| | - Barbara Kofler
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (N.S.); (R.G.F.); (D.W.); (B.K.)
- Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Anna M. Schneider
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (N.S.); (R.G.F.); (D.W.); (B.K.)
| |
Collapse
|
15
|
Mao H, Ji W, Yun Y, Zhang Y, Li Z, Wang C. Influence of probiotic supplementation on the growth performance, plasma variables, and ruminal bacterial community of growth-retarded lamb. Front Microbiol 2023; 14:1216534. [PMID: 37577421 PMCID: PMC10413120 DOI: 10.3389/fmicb.2023.1216534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Growth-retarded lambs would reduce the economic incomes of sheep farming. Nutritional interventions are supposed to promote gastrointestinal health and the compensatory growth of growth-retarded lambs. This study evaluated the effects of probiotic supplementation on the growth performance, plasma characteristics and ruminal bacterial community of growth-retarded lambs. Methods Twenty-four 50-days old male Hu lambs, including 8 healthy lambs (13.2 ± 1.17 kg) and 16 growth-retarded lambs (9.46 ± 0.81 kg), were used in this study. The 8 healthy lambs were fed the basal diet and considered the positive control (GN), and the other 16 growth-retarded lambs were randomly assigned into 2 groups (basal diet without probiotic [negative control, GR] and basal diet supplementation with 1 g/kg concentrate feed probiotic [GRP]), with each group having 4 replicate pens. The feeding trial lasted for 60 days with 7 days for adaptation. Results The results showed that dietary supplementation with probiotic increased (p < 0.05) the average daily gain and dry matter intake of growth-retarded lambs. For growth-retarded lambs, supplementation with probiotic increased (p < 0.05) the activities of superoxide dismutase and glutathione peroxidase, as well as the concentrations of growth hormone and immunoglobulin G. Furthermore, the highest (p < 0.05) concentrations of interleukin-6, interferon-gamma and tumor necrosis factor alpha were observed in the GR group. The concentrations of total volatile fatty acids and acetate in growth-retarded lambs were increased by probiotic supplementation (p < 0.05). The relative abundances of Ruminococcus, Succiniclasticum and Acidaminococcus were lower (p < 0.05) in growth-retarded lambs. However, probiotic supplementation increased (p < 0.05) the relative abundances of these three genera. Discussion These results indicate that dietary supplementation with probiotic are promising strategies for improving the growth performance of growth-retarded lambs by enhancing immunity and altering the ruminal microbiota.
Collapse
Affiliation(s)
- Huiling Mao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Wenwen Ji
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Yan Yun
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Yanfang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Zhefeng Li
- Hangzhou Kingtechina Feed Co., Ltd, Hangzhou, China
| | - Chong Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| |
Collapse
|
16
|
Li Q, Zheng T, Ding H, Chen J, Li B, Zhang Q, Yang S, Zhang S, Guan W. Exploring the Benefits of Probiotics in Gut Inflammation and Diarrhea-From an Antioxidant Perspective. Antioxidants (Basel) 2023; 12:1342. [PMID: 37507882 PMCID: PMC10376667 DOI: 10.3390/antiox12071342] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammatory bowel disease (IBD), characterized by an abnormal immune response, includes two distinct types: Crohn's disease (CD) and ulcerative colitis (UC). Extensive research has revealed that the pathogeny of IBD encompasses genetic factors, environmental factors, immune dysfunction, dysbiosis, and lifestyle choices. Furthermore, patients with IBD exhibit both local and systemic oxidative damage caused by the excessive presence of reactive oxygen species. This oxidative damage exacerbates immune response imbalances, intestinal mucosal damage, and dysbiosis in IBD patients. Meanwhile, the weaning period represents a crucial phase for pigs, during which they experience pronounced intestinal immune and inflammatory responses, leading to severe diarrhea and increased mortality rates. Pigs are highly similar to humans in terms of physiology and anatomy, making them a potential choice for simulating human IBD. Although the exact mechanism behind IBD and post-weaning diarrhea remains unclear, the oxidative damage, in its progression and pathogenesis, is well acknowledged. Besides conventional anti-inflammatory drugs, certain probiotics, particularly Lactobacillus and Bifidobacteria strains, have been found to possess antioxidant properties. These include the scavenging of reactive oxygen species, chelating metal ions to inhibit the Fenton reaction, and the regulation of host antioxidant enzymes. Consequently, numerous studies in the last two decades have committed to exploring the role of probiotics in alleviating IBD. Here, we sequentially discuss the oxidative damage in IBD and post-weaning diarrhea pathogenesis, the negative consequences of oxidative stress on IBD, the effectiveness of probiotics in IBD treatment, the application of probiotics in weaned piglets, and the potential antioxidant mechanisms of probiotics.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hanting Ding
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Saha S, Fukuyama K, Debnath M, Namai F, Nishiyama K, Kitazawa H. Recent Advances in the Use of Probiotics to Improve Meat Quality of Small Ruminants: A Review. Microorganisms 2023; 11:1652. [PMID: 37512825 PMCID: PMC10385419 DOI: 10.3390/microorganisms11071652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Meat from small ruminants is considered a high quality and delicacy product in many countries. Several benefits have been perceived from probiotics as dietary supplements, such as improved carcass weight, color, tenderness, flavor, muscle fiber structure, water-holding capacity, and healthy fatty acid profile of the meat. Thus, the present review focuses on the effect of probiotics on improving the quality of meat from small ruminants. Though many benefits have been associated with the use of probiotics, the findings of all the considered articles are not always consistent, and the mechanisms behind improving meat quality are not appropriately defined. This variability of findings could be due to the use of different probiotic strains, dosage rates, number of days of experiment, nutrition, breed, age, and health status of the animals. Therefore, future research should emphasize specific strains, optimal dose and days of administration, route, and mechanisms for the specific probiotic strains to host. This review provides a comprehensive overview of the use of probiotics for small ruminants and their impact on meat quality.
Collapse
Affiliation(s)
- Sudeb Saha
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8572, Japan
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8572, Japan
| | - Marina Debnath
- Ministry of Public Administration, Government of the People's Republic of Bangladesh, Dhaka 1000, Bangladesh
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8572, Japan
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8572, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
18
|
Du W, Wang X, Hu M, Hou J, Du Y, Si W, Yang L, Xu L, Xu Q. Modulating gastrointestinal microbiota to alleviate diarrhea in calves. Front Microbiol 2023; 14:1181545. [PMID: 37362944 PMCID: PMC10286795 DOI: 10.3389/fmicb.2023.1181545] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
The calf stage is a critical period for the development of heifers. Newborn calves have low gastrointestinal barrier function and immunity before weaning, making them highly susceptible to infection by various intestinal pathogens. Diarrhea in calves poses a significant threat to the health of young ruminants and may cause serious economic losses to livestock farms. Antibiotics are commonly used to treat diarrhea and promote calf growth, leading to bacterial resistance and increasing antibiotic residues in meat. Therefore, finding new technologies to improve the diarrhea of newborn calves is a challenge for livestock production and public health. The operation of the gut microbiota in the early stages after birth is crucial for optimizing immune function and body growth. Microbiota colonization of newborn animals is crucial for healthy development. Early intervention of the calf gastrointestinal microbiota, such as oral probiotics, fecal microbiota transplantation and rumen microbiota transplantation can effectively relieve calf diarrhea. This review focuses on the role and mechanisms of oral probiotics such as Lactobacillus, Bifidobacterium and Faecalibacterium in relieving calf diarrhea. The aim is to develop appropriate antibiotic alternatives to improve calf health in a sustainable and responsible manner, while addressing public health issues related to the use of antibiotics in livestock.
Collapse
|
19
|
Obianwuna UE, Agbai Kalu N, Wang J, Zhang H, Qi G, Qiu K, Wu S. Recent Trends on Mitigative Effect of Probiotics on Oxidative-Stress-Induced Gut Dysfunction in Broilers under Necrotic Enteritis Challenge: A Review. Antioxidants (Basel) 2023; 12:antiox12040911. [PMID: 37107286 PMCID: PMC10136232 DOI: 10.3390/antiox12040911] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
Gut health includes normal intestinal physiology, complete intestinal epithelial barrier, efficient immune response, sustained inflammatory balance, healthy microbiota, high nutrient absorption efficiency, nutrient metabolism, and energy balance. One of the diseases that causes severe economic losses to farmers is necrotic enteritis, which occurs primarily in the gut and is associated with high mortality rate. Necrotic enteritis (NE) primarily damages the intestinal mucosa, thereby inducing intestinal inflammation and high immune response which diverts nutrients and energy needed for growth to response mediated effects. In the era of antibiotic ban, dietary interventions like microbial therapy (probiotics) to reduce inflammation, paracellular permeability, and promote gut homeostasis may be the best way to reduce broiler production losses. The current review highlights the severity effects of NE; intestinal inflammation, gut lesions, alteration of gut microbiota balance, cell apoptosis, reduced growth performance, and death. These negative effects are consequences of; disrupted intestinal barrier function and villi development, altered expression of tight junction proteins and protein structure, increased translocation of endotoxins and excessive stimulation of proinflammatory cytokines. We further explored the mechanisms by which probiotics mitigate NE challenge and restore the gut integrity of birds under disease stress; synthesis of metabolites and bacteriocins, competitive exclusion of pathogens, upregulation of tight junction proteins and adhesion molecules, increased secretion of intestinal secretory immunoglobulins and enzymes, reduction in pro-inflammatory cytokines and immune response and the increased production of anti-inflammatory cytokines and immune boost via the modulation of the TLR/NF-ĸ pathway. Furthermore, increased beneficial microbes in the gut microbiome improve nutrient utilization, host immunity, and energy metabolism. Probiotics along with biosecurity measures could mitigate the adverse effects of NE in broiler production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nenna Agbai Kalu
- Department of Animal Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
20
|
Çiftci G, Çiftci A, Onuk B, Çenesiz M, Savaşan S, Çenesiz S. Investigation of the effects of atorvastatin and Lactobacillus acidophilus on some hormones and oxidative stress in experimental hypercholesterolemia. Prostaglandins Other Lipid Mediat 2023; 165:106716. [PMID: 36764153 DOI: 10.1016/j.prostaglandins.2023.106716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
AIM The investigation of serum leptin, ghrelin, insulin, seratonin hormones, NO, total oxidant/antioxidant status and brain cannaboid 1 receptor protein and apoptotic cell levels in atorvastatin and Lactobacillus acidophilus administrated experimental hypercholesterolemia was aimed in the project. METHODS In the study, 5 experimental groups were formed. Group 1 was fed with standard rat chow, and Group 2 was fed with 2% cholesterol added standard rat chow for 8 weeks. Group 3 was fed with 2% cholesterol feed and received atorvastatin (20 mg/kg/day) for the last 4 weeks. Group 4 was given L. acidophilus (2 ×108 cfu/kg/day). Group 5 was given atorvastatin and L. acidophilus probiotic in the last 4 weeks of the experiment period. After the experimental period, blood samples were taken from each rat. Rats were sacrificed and brain tissues were taken for analyzes. In sera samples, leptin, ghrelin, insulin, serotonin hormones and NO levels were measured with ELISA. In brain samples, cannabinoid 1 receptor proteins and apoptosis levels were measured by ELISA. Total oxidant and antioxidant levels were investigated with using Rel Assay Kits. RESULTS The addition of cholesterol to feeds increased the levels of serum cholesterol, insulin and leptin levels; on the other hand, reduced the levels of serotonin and ghrelin. In hypercholesterolemia, total oxidant and NO levels were increased, and total antioxidant levels were decreased. CONCLUSION The results showed that administrations of L. acidophilus and atorvastatin might be recommended for treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Gülay Çiftci
- Department of Veterinary Biochemistry, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Samsun, Turkey.
| | - Alper Çiftci
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Samsun, Turkey
| | - Burcu Onuk
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Samsun, Turkey
| | - Metin Çenesiz
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Samsun, Turkey
| | - Sadık Savaşan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Adnan Menderes, Aydın, Turkey
| | - Sena Çenesiz
- Department of Veterinary Biochemistry, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Samsun, Turkey
| |
Collapse
|
21
|
Majeed M, Nagabhushanam K, Paulose S, Arumugam S, Mundkur L. The effects of Bacillus coagulans MTCC 5856 on functional gas and bloating in adults: A randomized, double-blind, placebo-controlled study. Medicine (Baltimore) 2023; 102:e33109. [PMID: 36862903 PMCID: PMC9982755 DOI: 10.1097/md.0000000000033109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Gut microbiome dysbiosis is a major cause of abdominal gas, bloating, and distension. Bacillus coagulans MTCC 5856 (LactoSpore) is a spore-forming, thermostable, lactic acid-producing probiotic that has numerous health benefits. We evaluated the effect of Lacto Spore on improving the clinical symptoms of functional gas and bloating in healthy adults. METHODS Multicenter, randomized, double-blind, placebo-controlled study at hospitals in southern India. Seventy adults with functional gas and bloating with a gastrointestinal symptom rating scale (GSRS) indigestion score ≥ 5 were randomized to receive B coagulans MTCC 5856 (2 billion spores/day, N = 35) or placebo (N = 35) for 4 weeks. Changes in the GSRS-Indigestion subscale score for gas and bloating and global evaluation of patient's scores from screening to the final visit were the primary outcomes. The secondary outcomes were Bristol stool analysis, brain fog questionnaire, changes in other GSRS subscales, and safety. RESULTS Two participants from each group withdrew from the study and 66 participants (n = 33 in each group) completed the study. The GSRS indigestion scores changed significantly (P < .001) in the probiotic group (8.91-3.06; P < .001) compared to the placebo (9.42-8.43; P = .11). The median global evaluation of patient's scores was significantly better (P < .001) in the probiotic group (3.0-9.0) than in the placebo group (3.0-4.0) at the end of the study. The cumulative GSRS score, excluding the indigestion subscale, decreased from 27.82 to 4.42% (P < .001) in the probiotic group and 29.12 to 19.33% (P < .001) in the placebo group. The Bristol stool type improved to normal in both the groups. No adverse events or significant changes were observed in clinical parameters throughout the trial period. CONCLUSIONS Bacillus coagulans MTCC 5856 may be a potential supplement to reduce gastrointestinal symptoms in adults with abdominal gas and distension.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, Karnataka, India
- Sabinsa Corporation, NJ
| | | | | | | | - Lakshmi Mundkur
- Sami-Sabinsa Group Limited, Karnataka, India
- * Correspondence: Lakshmi Mundkur, Sami-Sabinsa Group Limited, 19/1& 19/2, I Main, II Phase, Peenya Industrial Area, Bangalore, Karnataka 560 058, India (e-mail: )
| |
Collapse
|
22
|
de Moura MQ, da Cunha CNDO, de Sousa NFGC, Cruz LAX, Rheingantz MG, Walcher DL, Mattos GT, Martins LHR, de Ávila LFDC, Berne MEA, Scaini CJ. Immunomodulation in the intestinal mucosa of mice supplemented with Lactobacillus rhamnosus (ATCC 7469) and infected with Toxocara canis. Immunobiology 2023; 228:152359. [PMID: 36857908 DOI: 10.1016/j.imbio.2023.152359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/31/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
Toxocariasis is an anthropozoonosis caused by the helminth Toxocara canis that shows different clinical manifestations as visceral, ocular, or neurological toxocariasis forms. Probiotics have been studied as alternatives to prevent and treat this parasitosis. Lactobacillus rhamnosus is a prospect that presents immunomodulatory activity that acts to strengthen the intestinal barrier. In this context, the main objective of this study was to evaluate the protective capacity and immunomodulatory action of the probiotic Lactobacillus rhamnosus at the level of the intestinal mucosa in different stages of T. canis infection (acute and chronic). Mice were supplemented by oral gavage with 1 × 107 UFC/mL L. rhamnosus for 15 days before inoculation with 100 embryonated eggs of T. canis. Euthanasia of mice was conducted at three different time points: 2, 15 and 30 days post-inoculation (PI). The brain, lungs and liver were collected to evaluate the intensity of infection. The small intestines were removed, and mucosal cells of the duodenum were collected to perform gene analysis of IFN-γ, IL-10, IL-4 and IL-13 by real-time polymerase chain reaction (qPCR). Jejunum and ileum segments were analysed by histological techniques. A reduction of 51% in infection intensity was observed in the tissue of supplemented animals evaluated 2 days PI; however, analysis of groups 15 and 30 days PI did not show a protective effect. The intestinal mucosa of supplemented animals presented an inflammatory process that initiated at 2 days PI, persisted at 15 days PI and had regressed at 30 days PI. IL-13 transcription was increased in the probiotic group 2 days after supplementation ended; however, the same increase was not observed in the group that was supplemented and infected. Toxocara canis modulated the local immune system, with suppression of IFN-γ at 2 days PI and increased levels of IL-4 and IL-10 at 15 days PI. These results indicate that, under the studied conditions, the protective effect of Lactobacillus rhamnosus against infection caused by T. canis is not related to IL-4, IL-10 or IFN-γ but could be influenced by IL-13 action at 2 days PI. The probiotic stimulated immune cell recruitment to the intestinal mucosa, which can be involved in the diminished capacity of larval penetration in the mucosa, resulting in the reduced infection intensity observed during acute infection.
Collapse
Affiliation(s)
- Micaele Quintana de Moura
- Post-Graduate Program in Health Sciences - Parasitology Laboratory, Federal Univesity of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil.
| | - Carolina Netto de Oliveira da Cunha
- Post-Graduate Program in Health Sciences - Parasitology Laboratory, Federal Univesity of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | | | - Luis Augusto Xavier Cruz
- Department of Morphology, Institute of Biology, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Maria Gabriela Rheingantz
- Department of Morphology, Institute of Biology, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Débora Liliane Walcher
- Post-Graduate Program in Microbiology and Parasitology, Department of Microbiology and Parasitology, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Gabriela Torres Mattos
- Post-Graduate Program in Health Sciences - Parasitology Laboratory, Federal Univesity of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Lourdes Helena Rodrigues Martins
- Post-Graduate Program in Health Sciences - Parasitology Laboratory, Federal Univesity of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Luciana Farias da Costa de Ávila
- Post-Graduate Program in Health Sciences - Parasitology Laboratory, Federal Univesity of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Maria Elisabeth Aires Berne
- Post-Graduate Program in Microbiology and Parasitology, Department of Microbiology and Parasitology, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Carlos James Scaini
- Post-Graduate Program in Health Sciences - Parasitology Laboratory, Federal Univesity of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
23
|
Okahashi N, Nakata M, Kuwata H, Kawabata S. Oral mitis group streptococci: A silent majority in our oral cavity. Microbiol Immunol 2022; 66:539-551. [PMID: 36114681 DOI: 10.1111/1348-0421.13028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022]
Abstract
Members of the oral mitis group streptococci including Streptococcus oralis, Streptococcus sanguinis, and Streptococcus gordonii are the most abundant inhabitants of human oral cavity and dental plaque, and have been implicated in infectious complications such as bacteremia and infective endocarditis. Oral mitis group streptococci are genetically close to Streptococcus pneumoniae; however, they do not produce cytolysin (pneumolysin), which is a key virulence factor of S. pneumoniae. Similar to S. pneumoniae, oral mitis group streptococci possess several cell surface proteins that bind to the cell surface components of host mammalian cells. S. sanguinis expresses long filamentous pili that bind to the matrix proteins of host cells. The cell wall-anchored nuclease of S. sanguinis contributes to the evasion of the neutrophil extracellular trap by digesting its web-like extracellular DNA. Oral mitis group streptococci produce glucosyltransferases, which synthesize glucan (glucose polymer) from sucrose of dietary origin. Neuraminidase (NA) is a virulent factor in oral mitis group streptococci. Influenza type A virus (IAV) relies on viral NA activity to release progeny viruses from infected cells and spread the infection, and NA-producing oral streptococci elevate the risk of IAV infection. Moreover, oral mitis group streptococci produce hydrogen peroxide (H2 O2 ) as a by-product of sugar metabolism. Although the concentrations of streptococcal H2 O2 are low (1-2 mM), they play important roles in bacterial competition in the oral cavity and evasion of phagocytosis by host macrophages and neutrophils. In this review, we intended to describe the diverse pathogenicity of oral mitis group streptococci.
Collapse
Affiliation(s)
- Nobuo Okahashi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.,Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirotaka Kuwata
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
24
|
Liu Y, Gu W, Liu X, Zou Y, Wu Y, Xu Y, Han D, Wang J, Zhao J. Joint Application of Lactobacillus plantarum and Bacillus subtilis Improves Growth Performance, Immune Function and Intestinal Integrity in Weaned Piglets. Vet Sci 2022; 9:vetsci9120668. [PMID: 36548829 PMCID: PMC9781797 DOI: 10.3390/vetsci9120668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
This study was conducted to explore the effects of the joint application of Lactobacillus plantarum and Bacillus subtilis on growth performance, immune function, antioxidant capacity, intestinal integrity, and gut microbiota composition in weaned piglets. The piglets were allocated randomly into 4 dietary groups, which were a control diet (NC), NC + 150 ppm mucilage sulfate (PC), and 3 additional diets containing 1 kg/t (LT), 1.5 kg/t (MT), or 2 kg/t (HT) mixture of Lactobacillus plantarum and Bacillus subtilis, respectively. Results showed that joint application of Lactobacillus plantarum and Bacillus subtilis increased ADFI and ADG of weaned piglets in d 14~28 and d 28~42 (p < 0.05), and decreased serum concentrations of DAO, IL-1β, TNF-α, and IL-2. The LT group increased jejunal and colonic sIgA contents compared with the PC group (p < 0.05). Groups of MT and HT increased colonic mRNA expression of host defense peptides and tight junction proteins compared with the NC and PC groups. The joint application of Lactobacillus plantarum and Bacillus subtilis increased the abundance of colonic Lactobacillus compared with NC and PC groups (p < 0.10). In conclusion, the joint application of Lactobacillus plantarum and Bacillus subtilis as an antibiotics alternative improved growth performance via promoting immune function and intestinal integrity of weaned piglets.
Collapse
Affiliation(s)
- Yisi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Gu
- Shandong Provincial Key Laboratory of Animal Microecological Agent, Shandong Baolai Leelai Bioengineering Co., Ltd., Tai’an 271000, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Youwei Zou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Youhan Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-156-0091-1358
| |
Collapse
|
25
|
Wang Y, Chen N, Niu F, Li Y, Guo K, Shang X, E F, Yang C, Yang K, Li X. Probiotics therapy for adults with diarrhea-predominant irritable bowel syndrome: a systematic review and meta-analysis of 10 RCTs. Int J Colorectal Dis 2022; 37:2263-2276. [PMID: 36251040 DOI: 10.1007/s00384-022-04261-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Accumulating evidence showed that probiotics therapy might be effective in treating diarrhea-predominant irritable bowel syndrome (IBS-D). This study aimed to evaluate the effectiveness and safety of probiotics therapy for the treatment of IBS-D. METHODS We performed a comprehensive literature search in eight electronic databases, and gray literature from inception to August 4, 2021. Randomized controlled trials (RCTs) of probiotics therapy for the treatment of IBS-D were included and the quality was assessed using the risk of bias tool recommended by the Cochrane Handbook version 5.1.0. RevMan 5.4 software was used to perform the meta-analysis on the outcomes of IBS-D symptoms, abdominal pain, quality of life, and abdominal distension. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach was used to assess the certainty of evidence. RESULTS Ten RCTs evaluating 943 patients were identified. Only one study had unclear risk of bias, while nine studies had a high risk of bias. The meta-analysis results showed that, compared to the placebo, probiotics therapy significantly decreased the score of IBS-D symptoms (SMD = - 0.55, 95% CI: [- 0.83, - 0.27], P < 0.05), abdominal pain (SMD = - 0.43, 95% CI: [- 0.57, - 0.29], P < 0.05), and abdominal distension (SMD = - 0.45, 95%CI: [- 0.81, - 0.09], P < 0.05). There was no statistical difference in the quality of life. However, all the certainty of evidence was very low. CONCLUSION Very low certainty evidence showed that probiotics might be an effective treatment for improving the IBS-D symptoms, abdominal pain, and abdominal distension, in adult IBS-D patients. However, these conclusions should be supported by high-quality evidence.
Collapse
Affiliation(s)
- Yan Wang
- Evidence-Based Social Science Research Center & Health Technology Assessment Center, School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China.,Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Nan Chen
- Research and Education Department, Shaanxi Provincial Rehabilitation Hospital, Xi'an, China
| | - Fangfen Niu
- First Hospital of Lanzhou University, Lanzhou, China
| | - Yanfei Li
- Evidence-Based Social Science Research Center & Health Technology Assessment Center, School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China.,Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Kangle Guo
- Gansu Provincial Hospital, Lanzhou, China
| | - Xue Shang
- Evidence-Based Social Science Research Center & Health Technology Assessment Center, School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China.,Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Fenfen E
- Evidence-Based Social Science Research Center & Health Technology Assessment Center, School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China.,Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Chaoqun Yang
- Evidence-Based Social Science Research Center & Health Technology Assessment Center, School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China.,Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Kehu Yang
- Evidence-Based Social Science Research Center & Health Technology Assessment Center, School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China. .,Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China. .,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.
| | - Xiuxia Li
- Evidence-Based Social Science Research Center & Health Technology Assessment Center, School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China. .,Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China. .,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.
| |
Collapse
|
26
|
Spontaneous Prophage Induction Contributes to the Production of Membrane Vesicles by the Gram-Positive Bacterium Lacticaseibacillus casei BL23. mBio 2022; 13:e0237522. [PMID: 36200778 PMCID: PMC9600169 DOI: 10.1128/mbio.02375-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The formation of membrane vesicles (MVs) by Gram-positive bacteria has gained increasing attention over the last decade. Recently, models of vesicle formation have been proposed and involve the digestion of the cell wall by prophage-encoded or stress-induced peptidoglycan (PG) hydrolases and the inhibition of PG synthesis by β-lactam antibiotics. The impact of these mechanisms on vesicle formation is largely dependent on the strain and growth conditions. To date, no information on the production of vesicles by the lactobacilli family has been reported. Here, we aimed to characterize the MVs released by the Gram-positive bacteria Lacticaseibacillus casei BL23 and also investigated the mechanisms involved in vesicle formation. Using electron microscopy, we established that the size of the majority of L. casei BL23 vesicles ranged from 50 to 100 nm. Furthermore, we showed that the vesicles were released consistently throughout the growth of the bacteria in standard culture conditions. The protein composition of the vesicles released in the supernatant was identified and a significant number of prophage proteins was detected. Moreover, using a mutant strain harboring a defective PLE2 prophage, we were able to show that the spontaneous and mitomycin-triggered induction of the prophage PLE2 contribute to the production of MVs by L. casei BL23. Finally, we also demonstrated the influence of prophages on the membrane integrity of bacteria. Overall, our results suggest a key role of the prophage PLE2 in the production of MVs by L. casei BL23 in the absence or presence of genotoxic stress.
Collapse
|
27
|
Zhang Q, Wang M, Ma X, Li Z, Jiang C, Pan Y, Zeng Q. In vitro investigation on lactic acid bacteria isolatedfrom Yak faeces for potential probiotics. Front Cell Infect Microbiol 2022; 12:984537. [PMID: 36189367 PMCID: PMC9523120 DOI: 10.3389/fcimb.2022.984537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
In order to evaluate the potential and safety of lactic acid bacteria (LAB) isolated from faeces samples of Ganan yak as probiotic for prevention and/or treatment of yak diarrhea, four strains of LAB including Latilactobacillus curvatus (FY1), Weissella cibaria (FY2), Limosilactobacillus mucosae (FY3), and Lactiplantibacillus pentosus (FY4) were isolated and identified in this study. Cell surface characteristics (hydrophobicity and cell aggregation), acid resistance and bile tolerance, compatibility, antibacterial activity and in vitro cell adhesion tests were also carried out to evaluate the probiotic potential of LAB. The results showed that the four isolates had certain acid tolerance, bile salt tolerance, hydrophobicity and cell aggregation, all of which contribute to the survival and colonization of LAB in the gastrointestinal tract. There is no compatibility between the four strains, so they can be combined into a mixed probiotic formula. Antimicrobial tests showed that the four strains were antagonistic to Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium. Moreover, the in vitro safety of the four isolates were determined through hemolytic analysis, gelatinase activity, and antibacterial susceptibility experiments. The results suggest that all the four strains were considered as safe because they had no hemolytic activity, no gelatinase activity and were sensitive to most antibacterial agents. Moreover, the acute oral toxicity test of LAB had no adverse effect on body weight gain, food utilization and organ indices in Kunming mice. In conclusion, the four LAB isolated from yak feces have considerable potential to prevent and/or treat yak bacterial disease-related diarrhea.
Collapse
Affiliation(s)
- Qingli Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xin Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhijie Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chenghui Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
28
|
Idrees M, Imran M, Atiq N, Zahra R, Abid R, Alreshidi M, Roberts T, Abdelgadir A, Tipu MK, Farid A, Olawale OA, Ghazanfar S. Probiotics, their action modality and the use of multi-omics in metamorphosis of commensal microbiota into target-based probiotics. Front Nutr 2022; 9:959941. [PMID: 36185680 PMCID: PMC9523698 DOI: 10.3389/fnut.2022.959941] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
This review article addresses the strategic formulation of human probiotics and allows the reader to walk along the journey that metamorphoses commensal microbiota into target-based probiotics. It recapitulates what are probiotics, their history, and the main mechanisms through which probiotics exert beneficial effects on the host. It articulates how a given probiotic preparation could not be all-encompassing and how each probiotic strain has its unique repertoire of functional genes. It answers what criteria should be met to formulate probiotics intended for human use, and why certain probiotics meet ill-fate in pre-clinical and clinical trials? It communicates the reasons that taint the reputation of probiotics and cause discord between the industry, medical and scientific communities. It revisits the notion of host-adapted strains carrying niche-specific genetic modifications. Lastly, this paper emphasizes the strategic development of target-based probiotics using host-adapted microbial isolates with known molecular effectors that would serve as better candidates for bioprophylactic and biotherapeutic interventions in disease-susceptible individuals.
Collapse
Affiliation(s)
- Maryam Idrees
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naima Atiq
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rabaab Zahra
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rameesha Abid
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
- Department of Biotechnology, University of Sialkot, Sialkot, Pakistan
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | - Tim Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia
| | - Abdelmuhsin Abdelgadir
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | | | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Shakira Ghazanfar
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| |
Collapse
|
29
|
Iribarren C, Maasfeh L, Öhman L, Simrén M. Modulating the gut microenvironment as a treatment strategy for irritable bowel syndrome: a narrative review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 3:e7. [PMID: 39295774 PMCID: PMC11406401 DOI: 10.1017/gmb.2022.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 09/21/2024]
Abstract
Irritable bowel syndrome (IBS) is a disorder of gut-brain interaction with a complex pathophysiology. Growing evidence suggests that alterations of the gut microenvironment, including microbiota composition and function, may be involved in symptom generation. Therefore, attempts to modulate the gut microenvironment have provided promising results as an indirect approach for IBS management. Antibiotics, probiotics, prebiotics, food and faecal microbiota transplantation are the main strategies for alleviating IBS symptom severity by modulating gut microbiota composition and function (eg. metabolism), gut barrier integrity and immune activity, although with varying efficacy. In this narrative review, we aim to provide an overview of the current approaches targeting the gut microenvironment in order to indirectly manage IBS symptoms.
Collapse
Affiliation(s)
- Cristina Iribarren
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lujain Maasfeh
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Functional GI and Motility Disorders, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
30
|
Chelation of Zinc with Biogenic Amino Acids: Description of Properties Using Balaban Index, Assessment of Biological Activity on Spirostomum Ambiguum Cellular Biosensor, Influence on Biofilms and Direct Antibacterial Action. Pharmaceuticals (Basel) 2022; 15:ph15080979. [PMID: 36015127 PMCID: PMC9415815 DOI: 10.3390/ph15080979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
The complexation of biogenic molecules with metals is the widespread strategy in screening for new pharmaceuticals with improved therapeutic and physicochemical properties. This paper demonstrates the possibility of using simple QSAR modeling based on topological descriptors for chelates study. The presence of a relationship between the structure (J) and lipophilic properties (logP) of zinc complexes with amino acids, where two molecules coordinate the central atom through carboxyl oxygen and amino group nitrogen, and thus form a double ring structure, was predicted. Using a cellular biosensor model for Gly, Ala, Met, Val, Phe and their complexes Zn(AA)2, we experimentally confirmed the existence of a direct relationship between logP and biological activity (Ea). The results obtained using topological analysis, Spirotox method and microbiological testing allowed us to assume and prove that the chelate complex of zinc with methionine has the highest activity of inhibiting bacterial biofilms, while in aqueous solutions it does not reveal direct antibacterial effect.
Collapse
|
31
|
Kopacz K, Phadtare S. Probiotics for the Prevention of Antibiotic-Associated Diarrhea. Healthcare (Basel) 2022; 10:1450. [PMID: 36011108 PMCID: PMC9408191 DOI: 10.3390/healthcare10081450] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022] Open
Abstract
Several communities have started using probiotic-rich fermented foods as therapeutic options with presumed medicinal powers. We now know the importance of microbiome balance and how probiotics can restore imbalances in the microbiome. Probiotics have been tested for a number of clinical uses such as the prevention of antibiotic-associated diarrhea (AAD), the treatment of various diseases such as H. pylori infection, irritable bowel disease, vaginitis, the prevention of allergies, and necrotizing enterocolitis in newborns. AAD has been the most indicated therapeutic use for probiotics. AAD is a common side effect of antibiotic usage, which affects up to 30% of patients. The hypothesis behind using probiotics for AAD is that they help normalize an unbalanced flora. There are many potential mechanisms by which probiotics support intestinal health such as (i) boosting immunity, (ii) increasing gut barrier integrity, (iii) producing antimicrobial substances, (iv) modulating the gut microbiome, (v) increasing water absorption, and (vi) decreasing opportunistic pathogens. Many randomized-controlled trials including the strain-specific trials that use Lactobacillus and Saccharomyces and meta-analyses have shown the benefits of probiotics in addressing AAD. Although adverse events have been reported for probiotics, these are broadly considered to be a safe and inexpensive preventative treatment option for AAD and other gastrointestinal disorders.
Collapse
|
32
|
Ke A, Parreira VR, Farber JM, Goodridge L. Inhibition of Cronobacter sakazakii in an infant simulator of the human intestinal microbial ecosystem using a potential synbiotic. Front Microbiol 2022; 13:947624. [PMID: 35910651 PMCID: PMC9335077 DOI: 10.3389/fmicb.2022.947624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Powdered infant formula (PIF) can be contaminated with Cronobacter sakazakii, which can cause severe illnesses in infants. Synbiotics, a combination of probiotics and prebiotics, could act as an alternative control measure for C. sakazakii contamination in PIF and within the infant gut, but synbiotics have not been well studied for their ability to inhibit C. sakazakii. Using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) inoculated with infant fecal matter, we demonstrated that a potential synbiotic, consisting of six lactic acid bacteria (LAB) strains and Vivinal GOS, can inhibit the growth of C. sakazakii in an infant possibly through either the production of antimicrobial metabolites like acetate, increasing species diversity within the SHIME compartments to compete for nutrients or a combination of mechanisms. Using a triple SHIME set-up, i.e., three identical SHIME compartments, the first SHIME (SHIME 1) was designated as the control SHIME in the absence of a treatment, whereas SHIME 2 and 3 were the treated SHIME over 2, 1-week treatment periods. The addition of the potential synbiotic (LAB + VGOS) resulted in a significant decrease in C. sakazakii levels within 1 week (p < 0.05), but in the absence of a treatment the significant decline took 2 weeks (p < 0.05), and the LAB treatment did not decrease C. sakazakii levels (p ≥ 0.05). The principal component analysis showed a distinction between metabolomic profiles for the control and LAB treatment, but similar profiles for the LAB + VGOS treatment. The addition of the potential synbiotic (LAB + VGOS) in the first treatment period slightly increased species diversity (p ≥ 0.05) compared to the control and LAB, which may have had an effect on the survival of C. sakazakii throughout the treatment period. Our results also revealed that the relative abundance of Bifidobacterium was negatively correlated with Cronobacter when no treatments were added (ρ = −0.96; p < 0.05). These findings suggest that C. sakazakii could be inhibited by the native gut microbiota, and inhibition can be accelerated by the potential synbiotic treatment.
Collapse
|
33
|
Wang L, Zhang Y, Guo X, Gong L, Dong B. Beneficial Alteration in Growth Performance, Immune Status, and Intestinal Microbiota by Supplementation of Activated Charcoal-Herb Extractum Complex in Broilers. Front Microbiol 2022; 13:856634. [PMID: 35495714 PMCID: PMC9051449 DOI: 10.3389/fmicb.2022.856634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
This study aimed to examine the effects of activated charcoal-herb extractum complex (CHC) on the growth performance of broilers, inflammatory status, microbiota, and their relationships. A total of 864 1-day-old Arbor Acres male broilers (41.83 ± 0.64 g) were distributed to eight dietary treatments with six replicates (18 birds per replicate), which were a corn-soybean meal-based diet (NCON); basal diets supplemented with 250, 500, 750, or 1,000 mg/kg CHC, and three positive controls; basal diets supplemented with 200 mg/kg antibacterial peptide (AMP), 200 mg/kg calsporin (Probio) or 500 mg/kg montmorillonite. The study period was 42 days including the starter (day 0-21) and grower (day 22-42) phases. Compared with the NCON group, CHC supplementation (optimal dose of 500 mg/kg) increased (p < 0.05) growth performance and tended to increase feed conversion rate in broilers. CHC (optimal dose of 500 mg/kg) decreased the level of the interleukin-1β (IL-1β) and interferon-γ (IFN-γ) in serum and improved the levels of immunoglobulins A (IgA) and immunoglobulins A (IgM) in serum, and secretory immunoglobulin A (SIgA) in the mucosa of duodenum and jejunum (p < 0.05). In the ileum, CHC supplementation decreased community abundance represented by lower Sobs, Chao 1, Ace, and Shannon compared with NCON (p < 0.05). At the phylum level, CHC supplementation increased the abundance of Firmicutes, while decreasing the abundance of Bacteroidetes in ileum and cecum (p < 0.05). At the genus level, compared with the NCON group, CHC markedly reduced (p < 0.05) the abundances of pathogenic bacteria Alistipes in the ileum, which were negatively associated with the levels of SIgA and IL-1β in ileum mucosa. In conclusion, CHC had beneficial effects on growth performance, immune status, and intestinal microbiota composition. CHC had dual functions of absorption like clays and antibacterial like antibacterial peptides.
Collapse
Affiliation(s)
| | | | | | | | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Akarca G, Ozkan M, Ozcan T. The impact of solution plasma processing combine with pulsed electric field on the viability of probiotic bacteria, microbial growth and structure of drinking yoghurt. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Gokhan Akarca
- Afyon Kocatepe University Faculty of Engineering, Department of Food Engineering, Ahmet Necret Sezer Campus Afyonkarahisar Turkey
| | - Mehmet Ozkan
- Afyon Kocatepe University Faculty of Science and Literature, Department of Physics, Ahmet Necret Sezer Campus Afyonkarahisar Turkey
| | - Tulay Ozcan
- Bursa Uludag University Faculty of Agriculture, Department of Food Engineering, Gorukle Campus Bursa Turkey
| |
Collapse
|
35
|
Reuben RC, Elghandour MMMY, Alqaisi O, Cone JW, Márquez O, Salem AZM. Influence of microbial probiotics on ruminant health and nutrition: sources, mode of action and implications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1319-1340. [PMID: 34775613 DOI: 10.1002/jsfa.11643] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/21/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Globally, ruminant production contributes immensely to the supply of the highest quality and quantity of proteins for human consumption, sustenance of livelihoods, and attainment of food security. Nevertheless, the phasing out of antibiotics in animal production has posed a myriad of challenges, including poor growth, performance and nutrient utilization, pathogen colonization, dysbiosis, and food safety issues in ruminants. Probiotics (direct-fed microbials), comprising live microbial strains that confer health and nutritional benefits to the host when administered in appropriate quantities, are emerging as a viable, safe, natural and sustainable alternative to antibiotics. Although the mechanisms of action exerted by probiotics on ruminants are not well elucidated, dietary probiotic dosage to ruminants enhances development and maturation, growth and performance, milk production and composition, nutrient digestibility, feed efficiency, pathogen reduction, and mitigation of gastrointestinal diseases. However, the beneficial response to probiotic supplementation in ruminants is not consistent, being dependent on the microbial strain selected, combination of strains, dose, time and frequency of supplementation, diet, animal breed, physiological stage, husbandry practice, and farm management. Nonetheless, several studies have recently reported beneficial effects of probiotics on ruminant performance, health and production. This review conclusively re-iterates the need for probiotics inclusion for the sustainability of ruminant production. Considering the role that ruminants play in food production and employment, global acceptance of sustainable ruminant production through supplementation with probiotics will undoubtedly ensure food security and food safety for the world. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rine C Reuben
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig University, Leipzig, Germany
| | - Mona M M Y Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Othman Alqaisi
- Animal and Veterinary Sciences Department, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - John W Cone
- Animal Nutrition Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Ofelia Márquez
- Centro Universitario UAEM Amecameca, Universidad Autónoma del Estado de México, Amecameca, Mexico
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
36
|
Lacticaseibacillus rhamnosus: A Suitable Candidate for the Construction of Novel Bioengineered Probiotic Strains for Targeted Pathogen Control. Foods 2022; 11:foods11060785. [PMID: 35327208 PMCID: PMC8947445 DOI: 10.3390/foods11060785] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics, with their associated beneficial effects, have gained popularity for the control of foodborne pathogens. Various sources are explored with the intent to isolate novel robust probiotic strains with a broad range of health benefits due to, among other mechanisms, the production of an array of antimicrobial compounds. One of the shortcomings of these wild-type probiotics is their non-specificity. A pursuit to circumvent this limitation led to the advent of the field of pathobiotechnology. In this discipline, specific pathogen gene(s) are cloned and expressed into a given probiotic to yield a novel pathogen-specific strain. The resultant recombinant probiotic strain will exhibit enhanced species-specific inhibition of the pathogen and its associated infection. Such probiotics are also used as vehicles to deliver therapeutic agents. As fascinating as this approach is, coupled with the availability of numerous probiotics, it brings a challenge with regard to deciding which of the probiotics to use. Nonetheless, it is indisputable that an ideal candidate must fulfil the probiotic selection criteria. This review aims to show how Lacticaseibacillus rhamnosus, a clinically best-studied probiotic, presents as such a candidate. The objective is to spark researchers’ interest to conduct further probiotic-engineering studies using L. rhamnosus, with prospects for the successful development of novel probiotic strains with enhanced beneficial attributes.
Collapse
|
37
|
Effect of Different Polymerized Xylooligosaccharides on the Metabolic Pathway in Bifidobacterium adolescentis. J FOOD QUALITY 2022. [DOI: 10.1155/2022/4412324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metabolic pathway analysis of Bifidobacterium adolescent (B. adolescentis) grown on either xylobiose and xylotriose (X2/X3) or xylopentaose (X5) and identifying key regulatory-related genes and metabolites from RNA-seq and UHPLC system was performed. Compared with X5, X2/X3 highly promoted the growth of B. adolescentis. Also, the transcriptome analysis showed that a total of 268 differentially expressed genes (DEGs) of B. adolescentis cultured with X2/X3 and X5 were screened, including 163 upregulated and 105 downregulated genes (X2/X3 vs. X5), which mainly were ABC transporters. Furthermore, the qRT-PCR results of 16 DGEs validated the accuracy of the RNA-seq data. Meanwhile, metabolomics analysis showed that 192 differential metabolites noted on MS2 included 127 upregulated and 65 downregulated metabolites; mainly, metabolites were amino acids and organic acids. The abundance difference of specific genes and metabolites highlighted regulatory mechanisms involved in utilizing different polymerized xylooligosaccharides by B. adolescentis.
Collapse
|
38
|
Jarosz ŁS, Ciszewski A, Marek A, Hejdysz M, Nowaczewski S, Grądzki Z, Michalak K, Kwiecień M, Rysiak A. The effect of the multi-strain probiotic preparation EM Bokashi® on selected parameters of the cellular immune response in pigs. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2021.2006611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Łukasz S. Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Artur Ciszewski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Agnieszka Marek
- Sub-Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences in Lublin, Lublin, Poland
| | - Marcin Hejdysz
- Department of Animal Breeding And Product Quality Assessment, Poznań University of Life Sciences, Poznań, Poland
| | - Sebastian Nowaczewski
- Department of Animal Breeding And Product Quality Assessment, Poznań University of Life Sciences, Poznań, Poland
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Małgorzata Kwiecień
- Faculty of Biology and Animal Breeding, Institute of Animal Nutrition and Bromatology, Department of Animal Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Anna Rysiak
- Department of Botany, Mycology, and Ecology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
39
|
Rafiq K, Tofazzal Hossain M, Ahmed R, Hasan MM, Islam R, Hossen MI, Shaha SN, Islam MR. Role of Different Growth Enhancers as Alternative to In-feed Antibiotics in Poultry Industry. Front Vet Sci 2022; 8:794588. [PMID: 35224074 PMCID: PMC8873819 DOI: 10.3389/fvets.2021.794588] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
The poultry industry has grown so fast alongside the irrational use of antibiotics to maximize profit and make the production cost-effective during the last few decades. The rising and indiscriminate use of antibiotics might result in the deposition of residues in poultry food products and in the development of resistance to these drugs by microorganisms. Therefore, many diseases are becoming difficult to treat both in humans and animals. In addition, the use of low-dose antibiotics as growth enhancer results in antibiotic residues in food products, which have detrimental effects on human health. On the other hand, many studies have shown that antibiotics administered to poultry and livestock are poorly absorbed through the gut and usually excreted without metabolism. These excreted antibiotics eventually accumulate in the environment and enter the human food chain, resulting in the bioaccumulation of drug residues in the human body. In this regard, to find out alternatives is of paramount importance for the production of safe meat and egg. Therefore, in recent years, much research attention was disarticulated toward the exploration for alternatives to antibiotic as in-feed growth enhancers after its ban by the EU. As a result, probiotics, prebiotics, phytobiotics, spirulina, symbiotic, and their combination are being used more frequently in poultry production. Feed additives therefore gained popularity in poultry production by having many advantages but without any residues in poultry products. In addition, numerous studies demonstrating that such biological supplements compete with antimicrobial resistance have been conducted. Therefore, the purpose of this review article was to highlight the advantages of using biological products instead of antibiotics as poultry in-feed growth enhancers to enhance the production performance, reduce intestinal pathogenic bacteria, and maintain gut health, potentiating the immune response, safety, and wholesomeness of meat and eggs as evidence of consumer protection, as well as to improve the safety of poultry products for human consumption.
Collapse
Affiliation(s)
- Kazi Rafiq
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- *Correspondence: Kazi Rafiq
| | | | - Rokeya Ahmed
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Mehedi Hasan
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rejaul Islam
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Ismail Hossen
- Livestock Division, Bangladesh Agricultural Research Council, Dhaka, Bangladesh
| | | | | |
Collapse
|
40
|
Islam MI, Seo H, Redwan A, Kim S, Lee S, Siddiquee M, Song HY. In Vitro and In Vivo Anti- Clostridioides difficile Effect of a Probiotic Bacillus amyloliquefaciens Strain. J Microbiol Biotechnol 2022; 32:46-55. [PMID: 34675143 PMCID: PMC9628829 DOI: 10.4014/jmb.2107.07057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
Clostridioides difficile infection (CDI) is a significant cause of hospital-acquired and antibiotic-mediated intestinal diseases and is a growing global public health concern. Overuse of antibiotics and their effect on normal intestinal flora has increased the incidence and severity of infections. Thus, the development of new, effective, and safe treatment options is a high priority. Here, we report a new probiotic strain, Bacillus amyloliquefaciens (BA PMC-80), and its in vitro/in vivo anti-C. difficile effect as a prospective novel candidate for replacing conventional antibiotics. BA PMC-80 showed a significant anti-C. difficile effect in coculture assay, and its cell-free supernatant (CFS) also exhibited a considerable anti-C. difficile effect with an 89.06 μg/ml 50% minimal inhibitory concentration (MIC) in broth microdilution assay. The CFS was stable and equally functional under different pHs, heat, and proteinase treatments. It also exhibited a high sensitivity against current antibiotics and no toxicity in subchronic toxicity testing in hamsters. Finally, BA PMC-80 showed a moderate effect in a hamster CDI model with reduced infection severity and delayed death. However, further studies are required to optimize the treatment condition of the hamster CDI model for better efficacy and identify the antimicrobial compound produced by BA PMC-80.
Collapse
Affiliation(s)
- Md Imtiazul Islam
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hoonhee Seo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Asma Redwan
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Sukyung Kim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Saebim Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Mashuk Siddiquee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea,Corresponding author Phone: +82-41-570-2412 Fax: +82-41-577-2415 E-mail:
| |
Collapse
|
41
|
Gueniche A, Liboutet M, Cheilian S, Fagot D, Juchaux F, Breton L. Vitreoscilla filiformis Extract for Topical Skin Care: A Review. Front Cell Infect Microbiol 2022; 11:747663. [PMID: 34976852 PMCID: PMC8717924 DOI: 10.3389/fcimb.2021.747663] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The term probiotic has been defined by experts as live microorganisms, which when administered in adequate amounts, confer a health benefit on the host. Probiotics are, thus, by definition, live microorganisms, and the viability of probiotics is a prerequisite for certain benefits, such as the release of metabolites at the site or adhesion properties, for example. However, some semi-active or non-replicative bacterial preparations may retain a similar activity to the live forms. On cosmetic, lysates or fractions are generally used. Topically applied Vitreoscilla filiformis extract has shown to have some similar biological activity of probiotics in the gut, for example, regulating immunity by optimisation of regulatory cell function, protecting against infection, and helping skin barrier function for better recovery and resistance. Due to their mode of action and efficacy, V. filiformis extract (lysate including membrane and cytosol) may be considered as non-replicative probiotic fractions, and this review article presents all its properties.
Collapse
Affiliation(s)
- Audrey Gueniche
- L'Oreal Research and Innovation, Luxury Division Dept, Chevilly-La-Rue, France
| | - Muriel Liboutet
- L'Oreal Research and Innovation, Luxury Division Dept, Chevilly-La-Rue, France
| | - Stephanie Cheilian
- L'Oreal Research and Innovation, Luxury Division Dept, Chevilly-La-Rue, France
| | - Dominique Fagot
- L'Oreal Research and Innovation, Advanced Research Dept, Aulnay-sous-Bois, France
| | - Franck Juchaux
- L'Oreal Research and Innovation, Advanced Research Dept, Aulnay-sous-Bois, France
| | - Lionel Breton
- L'Oreal Research and Innovation, Advanced Research Dept, Aulnay-sous-Bois, France
| |
Collapse
|
42
|
Mörschbächer AP, Granada CE. MAPPING THE WORLDWIDE KNOWLEDGE OF ANTIMICROBIAL SUBSTANCES PRODUCED BY Lactobacillus spp.: A BIBLIOMETRIC ANALYSIS. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
KENZHEYEVA Z, VELYAMOV M, DYUSKALIEVA G, KUDIYAROVA Z, MUSTAFAEVA A, ALIPBEKOVA A. Biotechnology of yogurt producing with specialized fermentation starters: safety indicators assessment. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.31221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Ashraf SA, Elkhalifa AEO, Ahmad MF, Patel M, Adnan M, Sulieman AME. Probiotic Fermented Foods and Health Promotion. AFRICAN FERMENTED FOOD PRODUCTS- NEW TRENDS 2022:59-88. [DOI: 10.1007/978-3-030-82902-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
45
|
Jarosz Ł, Ciszewski A, Marek A, Grądzki Z, Kaczmarek B, Rysiak A. The Effect of Feed Supplementation with EM Bokashi® Multimicrobial Probiotic Preparation on Selected Parameters of Sow Colostrum and Milk as Indicators of the Specific and Nonspecific Immune Response. Probiotics Antimicrob Proteins 2022; 14:1029-1041. [PMID: 34596883 PMCID: PMC9671987 DOI: 10.1007/s12602-021-09850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 12/25/2022]
Abstract
The aim of the study was to determine the effect of EM Bokashi® on selected parameters of the specific and nonspecific immune response of sows by in colostrum and milk samples. The percentage of cells with expression of CD19+, CD5+CD19+, CD21+, SWC3a (macrophage/monocyte), and CD11b+ molecules on the monocytes and granulocytes as well as the concentrations of lysozyme and acute phase proteins - serum amyloid-A (SAA) and haptoglobin (Hp) were evaluated. The study was carried out on a commercial pig farm, including 150 sows (Polish Large White × Polish Landrace) at the age of 2-4 years. Sixty female sows were divided into two groups: I - control and II - experimental. For the experimental group, a probiotic in the form of the preparation EM Bokashi® in the amount of 10 kg/tonne of feed was added to the basal feed from mating to weaning. The material for the study consisted of colostrum and milk. The samples were collected from all sows at 0, 24, 48, 72, 96, 120, 144, and 168 h after parturition. The study showed that exposure of the pregnant sow to the probiotic microbes contained in EM Bokashi® significantly affects the immunological quality of the colostrum and milk and caused an increase in the percentage of the subpopulations of B cells with CD19+, CD21+, and CD5+CD19+ expression in the colostrum and milk, which demonstrates an increase in the protective potential of colostrum and indicates stimulation of humoral immune mechanisms that protect the sow and the piglets against infections.
Collapse
Affiliation(s)
- Łukasz Jarosz
- grid.411201.70000 0000 8816 7059Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Artur Ciszewski
- grid.411201.70000 0000 8816 7059Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Agnieszka Marek
- grid.411201.70000 0000 8816 7059Sub-Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Zbigniew Grądzki
- grid.411201.70000 0000 8816 7059Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Beata Kaczmarek
- grid.411201.70000 0000 8816 7059Department and Clinic of Animal Internal Diseases, Sub-Department of Internal Diseases of Farm Animals and Horses, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Anna Rysiak
- grid.29328.320000 0004 1937 1303Department of Botany, Mycology, and Ecology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
46
|
Guo H, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Effects of Bacteroides-Based Microecologics against Antibiotic-Associated Diarrhea in Mice. Microorganisms 2021; 9:microorganisms9122492. [PMID: 34946094 PMCID: PMC8705046 DOI: 10.3390/microorganisms9122492] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic-associated diarrhea (AAD) is a self-limiting disease mediated by antibiotic therapy. In clinical practice, several types of probiotics are used in treating AAD, but minimal research has been done on Bacteroides-based microecologics. Our aim was to evaluate the therapeutic effects of Bacteroidetes uniformis FGDLZ48B1, B. intestinalis FJSWX61K18, Bifidobacterium adolescentis FHNFQ48M5, and B. bifidum FGZ30MM3 and their mixture on AAD in mice. The lincomycin hydrochloride-induced AAD models were gavaged with a single strain or a probiotic mixture for a short period to assess the changes in colonic histopathology and cytokine concentrations, intestinal epithelial permeability and integrity, short-chain fatty acids (SCFAs), and the diversity of intestinal microbiota. Our data indicated that both the sole use of Bacteroides and the combination of Bacteroides and Bifidobacterium beneficially weakened systemic inflammation, increased the recovery rate of tissue structures, increased the concentrations of SCFAs, and restored the gut microbiota. Moreover, the probiotic mixture was more effective than the single strain. Specifically, B. uniformis FGDLZ48B1 combined with the B. adolescentis FHNFQ48M5 group was more effective in alleviating the pathological features of the colon, downregulating the concentrations of interleukin (IL)-6, and upregulating the expression of occludin. In summary, our research suggests that administration of a mixture of B. uniformis FGDLZ48B1 and B. adolescentis FHNFQ48M5 is an effective approach for treating AAD.
Collapse
Affiliation(s)
- Hang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.G.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.G.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.G.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.G.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.G.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.G.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.G.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel./Fax: +86-510-8591-2155
| |
Collapse
|
47
|
Fabiano V, Indrio F, Verduci E, Calcaterra V, Pop TL, Mari A, Zuccotti GV, Cullu Cokugras F, Pettoello-Mantovani M, Goulet O. Term Infant Formulas Influencing Gut Microbiota: An Overview. Nutrients 2021; 13:4200. [PMID: 34959752 PMCID: PMC8708119 DOI: 10.3390/nu13124200] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 02/05/2023] Open
Abstract
Intestinal colonization of the neonate is highly dependent on the term of pregnancy, the mode of delivery, the type of feeding [breast feeding or formula feeding]. Postnatal immune maturation is dependent on the intestinal microbiome implementation and composition and type of feeding is a key issue in the human gut development, the diversity of microbiome, and the intestinal function. It is well established that exclusive breastfeeding for 6 months or more has several benefits with respect to formula feeding. The composition of the new generation of infant formulas aims in mimicking HM by reproducing its beneficial effects on intestinal microbiome and on the gut associated immune system (GAIS). Several approaches have been developed currently for designing new infant formulas by the addition of bioactive ingredients such as human milk oligosaccharides (HMOs), probiotics, prebiotics [fructo-oligosaccharides (FOSs) and galacto-oligosaccharides (GOSs)], or by obtaining the so-called post-biotics also known as milk fermentation products. The aim of this article is to guide the practitioner in the understanding of these different types of Microbiota Influencing Formulas by listing and summarizing the main concepts and characteristics of these different models of enriched IFs with bioactive ingredients.
Collapse
Affiliation(s)
- Valentina Fabiano
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università degli Studi di Milano, 20154 Milan, Italy; (V.F.); (E.V.); (V.C.); (A.M.); (G.V.Z.)
| | - Flavia Indrio
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
- European Paediatric Association/Union of National European Paediatric Societies and Associations, 10115 Berlin, Germany; (T.L.P.); (F.C.C.); (M.P.-M.)
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università degli Studi di Milano, 20154 Milan, Italy; (V.F.); (E.V.); (V.C.); (A.M.); (G.V.Z.)
| | - Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università degli Studi di Milano, 20154 Milan, Italy; (V.F.); (E.V.); (V.C.); (A.M.); (G.V.Z.)
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Tudor Lucian Pop
- European Paediatric Association/Union of National European Paediatric Societies and Associations, 10115 Berlin, Germany; (T.L.P.); (F.C.C.); (M.P.-M.)
- Second Paediatric Clinic, Department of Mother and Child, University of Medicine and Pharmacy Iuliu Hatieganu, 400177 Cluj-Napoca, Romania
| | - Alessandra Mari
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università degli Studi di Milano, 20154 Milan, Italy; (V.F.); (E.V.); (V.C.); (A.M.); (G.V.Z.)
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università degli Studi di Milano, 20154 Milan, Italy; (V.F.); (E.V.); (V.C.); (A.M.); (G.V.Z.)
| | - Fugen Cullu Cokugras
- European Paediatric Association/Union of National European Paediatric Societies and Associations, 10115 Berlin, Germany; (T.L.P.); (F.C.C.); (M.P.-M.)
- Paediatric Gastroenterology, Hepatology and Nutrition, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34000, Turkey
| | - Massimo Pettoello-Mantovani
- European Paediatric Association/Union of National European Paediatric Societies and Associations, 10115 Berlin, Germany; (T.L.P.); (F.C.C.); (M.P.-M.)
- Department of Pediatrics, Scientific Institute ‘Casa Sollievo della Sofferenza’, University of Foggia, 71122 Foggia, Italy
- Association pour l’Activité et la Recherche Scìentifiques, EPA-UNEPSA/ARS, 2000 Neuchâtel, Switzerland
| | - Olivier Goulet
- Department of Paediatric Gastroenterology, and Nutrition, Intestinal Failure Rehabilitation Centre, National Reference Centre for Rare Digestive Diseases, Necker-Enfants Malades Hospital, Paris Centre University and Paris-Descartes School of Medicine, 75000 Paris, France;
| |
Collapse
|
48
|
Lambo MT, Chang X, Liu D. The Recent Trend in the Use of Multistrain Probiotics in Livestock Production: An Overview. Animals (Basel) 2021; 11:2805. [PMID: 34679827 PMCID: PMC8532664 DOI: 10.3390/ani11102805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023] Open
Abstract
It has been established that introducing feed additives to livestock, either nutritional or non-nutritional, is beneficial in manipulating the microbial ecosystem to maintain a balance in the gut microbes and thereby improving nutrient utilization, productivity, and health status of animals. Probiotic use has gained popularity in the livestock industry, especially since antimicrobial growth promoter's use has been restricted due to the challenge of antibiotic resistance in both animals and consumers of animal products. Their usage has been linked to intestinal microbial balance and improved performance in administered animals. Even though monostrain probiotics could be beneficial, multistrain probiotics containing two or more species or strains have gained considerable attention. Combining different strains has presumably achieved several health benefits over single strains due to individual isolates' addition and positive synergistic adhesion effects on animal health and performance. However, there has been inconsistency in the effects of the probiotic complexes in literature. This review discusses multistrain probiotics, summarizes selected literature on their effects on ruminants, poultry, and swine productivity and the various modes by which they function.
Collapse
Affiliation(s)
- Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.T.L.); (X.C.)
| | - Xiaofeng Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.T.L.); (X.C.)
| | - Dasen Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.T.L.); (X.C.)
- College of Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
49
|
Çiftci G, Tuna E. Effects of cholesterol and Lactobacillus acidophilus on testicular function. Clin Exp Reprod Med 2021; 48:229-235. [PMID: 34488287 PMCID: PMC8421657 DOI: 10.5653/cerm.2020.04322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
Objective In this study, the effects of Lactobacillus acidophilus on testosterone (TES), follicle-stimulating hormone (FSH), luteinizing hormone (LH), androgen-binding protein (ABP), factor-associated apoptosis (FAS), and total cholesterol (TC), as well as histopathological changes, were investigated in male rats fed a high-cholesterol diet. Methods The study included three groups. The control (C) group was fed standard-diet for 8 weeks. The hypercholesterolemia (HC) group was fed a 2% cholesterol-diet for 8 weeks. The therapeutic group (HCL) was fed a 2% cholesterol-diet for 8 weeks and administered L. acidophilus for the last 4 weeks. FSH, TES, and FAS levels in testicular tissue were determined using an enzyme-linked immunosorbent assay (ELISA), while another sample was examined histopathologically. LH and ABP levels were determined using ELISA, and serum TC levels were assessed via an autoanalyzer. Results In the HC group, the TC levels were significantly higher and the LH levels were lower (p<0.05) than in the C group. The ABP levels were lower (p>0.05). In the HCL group, the LH and ABP levels were higher (p>0.05) and the TC level significantly lower (p<0.05) than in the HC group. The TES and FSH levels were lower, and the FAS levels were higher, in the HC than in the C group (p<0.05). In the HCL group, levels of all three resembled control levels. Histologically, in the testicular tissue of the HC group, the cells in the tubular wall exhibited atrophy, vacuolization, and reduced wall structure integrity. However, in the HCL group, these deteriorations were largely reversed. Conclusion Supplementary dietary administration of an L. acidophilus to hypercholesterolemic male rats positively impacted testicular tissue and male fertility hormone levels.
Collapse
Affiliation(s)
- Gülay Çiftci
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Elif Tuna
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
| |
Collapse
|
50
|
Potential probiotic lactic acid bacteria isolated from fermented gilaburu and shalgam beverages. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|