1
|
Cosenza G, Fulgione A, Albarella S, Ciotola F, Peretti V, Gallo D, Pauciullo A. Identification and Validation of Genus/Species-Specific Short InDels in Dairy Ruminants. BMC Vet Res 2025; 21:215. [PMID: 40155939 PMCID: PMC11951546 DOI: 10.1186/s12917-025-04694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Over the past thirty years, the identification of species-specific molecular markers has significantly advanced our understanding of genetic diversity in both plants and animals. Among these, short InDels have emerged as vital genomic features, contributing more to sequence divergence than single nucleotide polymorphisms do in closely related species. This study aimed to identify specific InDels for Bos taurus, Bubalus bubalis, Capra hircus, and Ovis aries via an in silico approach and validated them in 400 individuals (100 for each species). RESULTS We identified and characterized short, specific InDels in the sequences of the CSN1S1, CSN1S2, MSTN, and PRLR genes, which can be used for species identification of Capra hircus, Ovis aries, Bos taurus, and Bubalus bubalis, respectively. We developed a Tetraplex Specific PCR assay to enable efficient discrimination among these species. CONCLUSIONS This study highlights the utility of InDels as biallelic, codominant markers that are cost-effective and easy to analyse, providing valuable tools for genetic diversity analysis and species identification.
Collapse
Affiliation(s)
- Gianfranco Cosenza
- Department of Agricultural Science, University of Naples Federico II, Piazza Carlo Di Borbone 1, Portici, 80055, Italy
| | - Andrea Fulgione
- Department of Agricultural Science, University of Naples Federico II, Piazza Carlo Di Borbone 1, Portici, 80055, Italy
| | - Sara Albarella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, Naples, 80137, Italy.
| | - Francesca Ciotola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, Naples, 80137, Italy
| | - Vincenzo Peretti
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, Naples, 80137, Italy
| | - Daniela Gallo
- Department of Agricultural Science, University of Naples Federico II, Piazza Carlo Di Borbone 1, Portici, 80055, Italy
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, 10095, Italy
| |
Collapse
|
2
|
Kobayashi F, Shiraishi JI, Takahashi K, Ohta Y, Odake S. Oxidative Damage and Mutation of DNA in Saccharomyces pastorianus Cells Treated with Pressurized Carbon Dioxide Microbubbles. Curr Microbiol 2025; 82:203. [PMID: 40126659 DOI: 10.1007/s00284-025-04189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
The effect of pressurized carbon dioxide microbubbles (CO2MB) on DNA in Saccharomyces pastorianus cells was investigated. The DNA concentration extracted from S. pastorianus cells treated with CO2MB by phenol extraction increased and decreased with the heating coil at 35 °C and at 40 and 45 °C, respectively. However, the density of DNA bands on agarose gel electrophoresis increased when using the heating coil at 40 and 45 °C. In addition, DNA fragmentation measured by quantitative PCR decreased with increasing temperature and prolonged exposure time in a heating coil. Furthermore, the generation of apurinic/apyrimidinic sites, an indicator of oxidative DNA damage, increased with increasing temperature or prolonged exposure time in a heating coil. In the phylogenetic tree constructed based on single-nucleotide polymorphisms obtained through DNA sequence analysis, S. pastorianus cells treated with CO2MB exhibited greater divergence from untreated with increasing temperature or prolonged exposure time in a heating coil. Similarly, insertions/deletions, showed genetic variations, of S. pastorianus cells treated with CO2MB increased with increasing temperature or prolonged exposure time in the heating coil. Therefore, these findings indicated that CO2MB induced partial oxidative damage and mutations of DNA in S. pastorianus cells, and the phenomena were suggested to be due to the oxidative stress generated within the cells.
Collapse
Affiliation(s)
- Fumiyuki Kobayashi
- Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan.
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan.
| | - Jun-Ichi Shiraishi
- Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Konomi Takahashi
- Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
- Division of Food Quality and Safety Research, Postharvest and Utilization Research Group, Institute of Food Research, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8642, Japan
| | - Yoshiyuki Ohta
- Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Sachiko Odake
- Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| |
Collapse
|
3
|
Tenthorey JL, Del Banco S, Ramzan I, Klingenberg H, Liu C, Emerman M, Malik HS. Indels allow antiviral proteins to evolve functional novelty inaccessible by missense mutations. CELL GENOMICS 2025:100818. [PMID: 40139185 DOI: 10.1016/j.xgen.2025.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/21/2024] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
Antiviral proteins often evolve rapidly at virus-binding interfaces to defend against new viruses. We investigated whether antiviral adaptation via missense mutations might face limits, which insertion or deletion mutations (indels) could overcome. Using high-throughput saturation missense mutagenesis, we identify one such case of a nearly insurmountable evolutionary challenge: the human anti-retroviral protein TRIM5α requires more than five missense mutations in its specificity-determining v1 loop to restrict a divergent simian immunodeficiency virus (SIV). However, through a novel saturating indel scanning methodology, we find that duplicating just one amino acid in v1 enables human TRIM5α to potently restrict SIV in a single evolutionary step. Moreover, natural primate TRIM5α v1 loops have evolved indels that confer novel antiviral specificities. Thus, indels enable antiviral proteins to overcome viral challenges otherwise inaccessible by missense mutations. Our findings reveal the potential of often-overlooked indel mutations in driving protein innovation.
Collapse
Affiliation(s)
- Jeannette L Tenthorey
- Cellular and Molecular Pharmacology Department, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Serena Del Banco
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ishrak Ramzan
- Cellular and Molecular Pharmacology Department, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hayley Klingenberg
- Cellular and Molecular Pharmacology Department, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chang Liu
- Cellular and Molecular Pharmacology Department, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
4
|
Topolska M, Beltran A, Lehner B. Deep indel mutagenesis reveals the impact of amino acid insertions and deletions on protein stability and function. Nat Commun 2025; 16:2617. [PMID: 40097423 PMCID: PMC11914627 DOI: 10.1038/s41467-025-57510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Amino acid insertions and deletions (indels) are an abundant class of genetic variants. However, compared to substitutions, the effects of indels on protein stability are not well understood. To better understand indels here we analyse new and existing large-scale deep indel mutagenesis (DIM) of structurally diverse proteins. The effects of indels on protein stability vary extensively among and within proteins and are not well predicted by existing computational methods. To address this shortcoming we present INDELi, a series of models that combine experimental or predicted substitution effects and secondary structure information to provide good prediction of the effects of indels on both protein stability and pathogenicity. Moreover, quantifying the effects of indels on protein-protein interactions suggests that insertions can be an important class of gain-of-function variants. Our results provide an overview of the impact of indels on proteins and a method to predict their effects genome-wide.
Collapse
Affiliation(s)
- Magdalena Topolska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- University Pompeu Fabra (UPF), Barcelona, Spain
| | - Antoni Beltran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- University Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i estudis Avançats (ICREA), Barcelona, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
5
|
Luo S, Peng H, Shi Y, Cai J, Zhang S, Shao N, Li J. Integration of proteomics profiling data to facilitate discovery of cancer neoantigens: a survey. Brief Bioinform 2025; 26:bbaf087. [PMID: 40052441 PMCID: PMC11886573 DOI: 10.1093/bib/bbaf087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/29/2024] [Accepted: 02/19/2025] [Indexed: 03/10/2025] Open
Abstract
Cancer neoantigens are peptides that originate from alterations in the genome, transcriptome, or proteome. These peptides can elicit cancer-specific T-cell recognition, making them potential candidates for cancer vaccines. The rapid advancement of proteomics technology holds tremendous potential for identifying these neoantigens. Here, we provided an up-to-date survey about database-based search methods and de novo peptide sequencing approaches in proteomics, and we also compared these methods to recommend reliable analytical tools for neoantigen identification. Unlike previous surveys on mass spectrometry-based neoantigen discovery, this survey summarizes the key advancements in de novo peptide sequencing approaches that utilize artificial intelligence. From a comparative study on a dataset of the HepG2 cell line and nine mixed hepatocellular carcinoma proteomics samples, we demonstrated the potential of proteomics for the identification of cancer neoantigens and conducted comparisons of the existing methods to illustrate their limits. Understanding these limits, we suggested a novel workflow for neoantigen discovery as perspectives.
Collapse
Affiliation(s)
- Shifu Luo
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Hui Peng
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Ying Shi
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Jiaxin Cai
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
| | - Songming Zhang
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
| | - Ningyi Shao
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Jinyan Li
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
| |
Collapse
|
6
|
Perini S, Johannesson K, Butlin RK, Westram AM. Short INDELs and SNPs as markers of evolutionary processes in hybrid zones. J Evol Biol 2025; 38:367-378. [PMID: 39803902 DOI: 10.1093/jeb/voaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/28/2024] [Accepted: 01/11/2025] [Indexed: 03/06/2025]
Abstract
Polymorphic short insertions and deletions (INDELs ≤ 50 bp) are abundant, although less common than single nucleotide polymorphisms (SNPs). Evidence from model organisms shows INDELs to be more strongly influenced by purifying selection than SNPs. Partly for this reason, INDELs are rarely used as markers for demographic processes or to detect divergent selection. Here, we compared INDELs and SNPs in the intertidal snail Littorina saxatilis, focussing on hybrid zones between ecotypes, in order to test the utility of INDELs in the detection of divergent selection. We computed INDEL and SNP site frequency spectra using capture sequencing data. We assessed the impact of divergent selection by analyzing allele frequency clines across habitat boundaries. We also examined the influence of GC-biased gene conversion because it may be confounded with signatures of selection. We show evidence that short INDELs are affected more by purifying selection than SNPs, but part of the observed site frequency spectra difference can be attributed to GC-biased gene conversion. We did not find a difference in the impact of divergent selection between short INDELs and SNPs. Short INDELs and SNPs were similarly distributed across the genome and so are likely to respond to indirect selection in the same way. A few regions likely affected by divergent selection were revealed by INDELs and not by SNPs. Short INDELs can be useful (additional) genetic markers helping to identify genomic regions important for adaptation and population divergence.
Collapse
Affiliation(s)
- Samuel Perini
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, Strömstad, Sweden
| | - Kerstin Johannesson
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, Strömstad, Sweden
| | - Roger K Butlin
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, Strömstad, Sweden
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Anja M Westram
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
7
|
Planas-Iglesias J, Majerova M, Pluskal D, Vasina M, Damborsky J, Prokop Z, Marek M, Bednar D. Automated Engineering Protein Dynamics via Loop Grafting: Improving Renilla Luciferase Catalysis. ACS Catal 2025; 15:3391-3404. [PMID: 40013243 PMCID: PMC11851775 DOI: 10.1021/acscatal.4c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
Engineering protein dynamics is a challenging and unsolved problem in protein design. Loop transplantation or loop grafting has been previously employed to transfer dynamic properties between proteins. We recently released a LoopGrafter Web server to execute the loop grafting task, employing eight computational tools and one database. The LoopGrafter method relies on the prediction of the local dynamic behavior of the elements to be transplanted and has successfully reconstructed previously engineered sequences. However, it was unclear whether catalytically competitive previously uncharacterized designs could be obtained by this method. Here, we address this question, showing how LoopGrafter generates viable loop-grafted chimeras of luciferases, how these chimeras encompass the activity of interest and unique kinetic properties, and how all this process is done fully automatically and agnostic of any previous knowledge. All constructed designs proved to be catalytically active, and the most active one improved the activity of the template enzyme by 4 orders of magnitude. The computational details and parameter optimization of the sequence pairing step of the LoopGrafter workflow are revealed. The optimized and experimentally validated loop grafting workflow available as a fully automated Web server represents a powerful approach for engineering catalytically efficient enzymes by modification of protein dynamics.
Collapse
Affiliation(s)
- Joan Planas-Iglesias
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Marika Majerova
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Daniel Pluskal
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Michal Vasina
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Martin Marek
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| |
Collapse
|
8
|
Larsen-Ledet S, Lindemose S, Panfilova A, Gersing S, Suhr CH, Genzor AV, Lanters H, Nielsen SV, Lindorff-Larsen K, Winther JR, Stein A, Hartmann-Petersen R. Systematic characterization of indel variants using a yeast-based protein folding sensor. Structure 2025; 33:262-273.e6. [PMID: 39706198 DOI: 10.1016/j.str.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Gene variants resulting in insertions or deletions of amino acid residues (indels) have important consequences for evolution and are often linked to disease, yet, compared to missense variants, the effects of indels are poorly understood and predicted. We developed a sensitive protein folding sensor based on the complementation of uracil auxotrophy in yeast by circular permutated orotate phosphoribosyltransferase (CPOP). The sensor reports on the folding of disease-linked missense variants and de-novo-designed proteins. Applying the folding sensor to a saturated library of single-residue indels in human dihydrofolate reductase (DHFR) revealed that most regions that tolerate indels are confined to internal loops, the termini, and a central α helix. Several indels are temperature sensitive, and folding is rescued upon binding to methotrexate. Rosetta and AlphaFold2 predictions correlate with the observed effects, suggesting that most indels destabilize the native fold and that these computational tools are useful for the classification of indels observed in population sequencing.
Collapse
Affiliation(s)
- Sven Larsen-Ledet
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Søren Lindemose
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Aleksandra Panfilova
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Sarah Gersing
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Caroline H Suhr
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Aitana Victoria Genzor
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Heleen Lanters
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Sofie V Nielsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Jakob R Winther
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Amelie Stein
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | | |
Collapse
|
9
|
Boysen G, Alexandrov L, Rahbari R, Nookaew I, Ussery D, Chao MR, Hu CW, Cooke M. Investigating the origins of the mutational signatures in cancer. Nucleic Acids Res 2025; 53:gkae1303. [PMID: 39778866 PMCID: PMC11707540 DOI: 10.1093/nar/gkae1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025] Open
Abstract
Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.e. the DNA adductome) and their diverse positions within the genome. Thus far, this limitation has prevented researchers from precisely linking exposures to DNA adducts and DNA adducts to subsequent mutational outcomes. Indeed, many common mutations observed in human cancers appear to originate from error-prone endogenous processes. Consequently, it remains unclear whether these mutations result from exposure-induced DNA adducts, or arise indirectly from endogenous processes or are a combination of both. In this review, we summarize approaches that aim to bridge our understanding of the mechanism by which exposure leads to DNA damage and then to mutation and highlight some of the remaining challenges and shortcomings to fully supporting this paradigm. We emphasize the need to integrate cellular DNA adductomics, long read-based mapping, single-molecule duplex sequencing of native DNA molecules and advanced computational analysis. This proposed holistic approach aims to unveil the causal connections between key DNA modifications and the mutational landscape, whether they originate from external exposures, internal processes or a combination of both, thereby addressing key questions in cancer biology.
Collapse
Affiliation(s)
- Gunnar Boysen
- Department of Environmental Health Science, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
- The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Raheleh Rahbari
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Intawat Nookaew
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Dave Ussery
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 4202 E. Fowler Avenue, Tampa, FL 33612, USA
| |
Collapse
|
10
|
Zhao L, Teng J, Ning C, Zhang Q. Genome-Wide Association Study of Insertions and Deletions Identified Novel Loci Associated with Milk Production Traits in Dairy Cattle. Animals (Basel) 2024; 14:3556. [PMID: 39765460 PMCID: PMC11672399 DOI: 10.3390/ani14243556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Genome-wide association study (GWAS) have identified a large number of SNPs associated with milk production traits in dairy cattle. Behind SNPs, INDELs are the second most abundant genetic polymorphisms in the genome, which may exhibit an independent association with complex traits in humans and other species. However, there are no reports on GWASs of INDELs for milk production traits in dairy cattle. In this study, using imputed sequence data, we performed INDEL-based and SNP-based GWASs for milk production traits in a Holstein cattle population. We identified 58 unique significant INDELs for one or multiple traits. The majority of these INDELs are in considerable LD with nearby significant SNPs. However, through conditional association analysis, we identified nine INDELs which showed independent associations. Genomic annotations of these INDELs indicated some novel associated genes, i.e., TRNAG-CCC, EPPK1, PPM1K, PTDSS1, and mir-10163, which were not reported in previous SNP-based GWASs. Our findings suggest that INDEL-based GWASs could be valuable complement to SNP-based GWASs for milk production traits.
Collapse
Affiliation(s)
| | | | | | - Qin Zhang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China; (L.Z.); (J.T.); (C.N.)
| |
Collapse
|
11
|
Ji Y, Chen C, Lu P, Wang Z, Chen H, Sun L, Fei S, Ju X, Tan R, Gu M. Nuclear factor of activated T cell cytoplasmic 1 (NFATc1) insertion gene polymorphism as a possible trigger in acute T cell-mediated rejection (aTCMR) after kidney transplantation. Transpl Immunol 2024; 87:102139. [PMID: 39461381 DOI: 10.1016/j.trim.2024.102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/04/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND To investigate the potential regulatory role of gene insertion or deletion (in/del) polymorphism in the occurrence of acute T cell-mediated rejection (aTCMR) after kidney transplantation. METHODS We retrospectively analyzed the 5-year follow-up data of 133 recipients who underwent renal transplantation at the First Affiliated Hospital of Nanjing Medical University between February 1, 2010, and December 1, 2015. With target sequencing based on next-generation sequencing (NGS), tagger in/dels selection involved calculating the Hardy-Weinberg equilibrium (HWE), Minor Allele Frequency (MAF), and the linkage disequilibrium (LD) blocks. Significant in/dels associated with aTCMR were identified by intersecting the results obtained through analysis of covariance (ANCOVA) of clinical cofounders and model analysis in Rstudio using the "SNPassoc" package. Additionally, logistic models were employed to assess the associations between genotypes and the aTCMR occurrence in 5 years after surgery. RESULTS NFATc1 rs55741427 insertion was identified to be significantly associated with the post-surgery aTCMR(OR = 2.66, P < 0.001). We constructed a conclusive model containing the occurrence of delayed graft function (DGF) and the insertion polymorphism of rs55741427, showing a favorable predictive ability (AUC = 0.766) for aTCMR after surgery. Based on the receiver operating characteristic (ROC) curve, all cases were stratified into aTCMR high-risk and low-risk groups. Kaplan-Meier curves for two groups revealed that the aTCMR high-risk group exhibited a more unfavorable graft survival outcome (P = 0.0048). CONCLUSION Insertion mutation of rs55741427 was found to be statistically correlated with the post-surgery aTCMR during 5 years of follow-up. Our model identified DGF and insertion of rs55741427 as two crucial aTCMR-related hazards, and aTCMR high-risk group showed a worse graft prognosis.
Collapse
Affiliation(s)
- Yisheng Ji
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China; The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Congcong Chen
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China; The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Pei Lu
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chen
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Sun
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Fei
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaobing Ju
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Ruoyun Tan
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Min Gu
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Uttam V, Vohra V, Chhotaray S, Santhosh A, Diwakar V, Patel V, Gahlyan RK. Exome-wide comparative analyses revealed differentiating genomic regions for performance traits in Indian native buffaloes. Anim Biotechnol 2024; 35:2277376. [PMID: 37934017 DOI: 10.1080/10495398.2023.2277376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
In India, 20 breeds of buffalo have been identified and registered, yet limited studies have been conducted to explore the performance potential of these breeds, especially in the Indian native breeds. This study is a maiden attempt to delineate the important variants and unique genes through exome sequencing for milk yield, milk composition, fertility, and adaptation traits in Indian local breeds of buffalo. In the present study, whole exome sequencing was performed on Chhattisgarhi (n = 3), Chilika (n = 4), Gojri (n = 3), and Murrah (n = 4) buffalo breeds and after stringent quality control, 4333, 6829, 4130, and 4854 InDels were revealed, respectively. Exome-wide FST along 100-kb sliding windows detected 27, 98, 38, and 35 outlier windows in Chhattisgarhi, Chilika, Gojri, and Murrah, respectively. The comparative exome analysis of InDels and subsequent gene ontology revealed unique breed specific genes for milk yield (CAMSAP3), milk composition (CLCN1, NUDT3), fertility (PTGER3) and adaptation (KCNA3, TH) traits. Study provides insight into mechanism of how these breeds have evolved under natural selection, the impact of these events on their respective genomes, and their importance in maintaining purity of these breeds for the traits under study. Additionally, this result will underwrite to the genetic acquaintance of these breeds for breeding application, and in understanding of evolution of these Indian local breeds.
Collapse
Affiliation(s)
- Vishakha Uttam
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikas Vohra
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Supriya Chhotaray
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Ameya Santhosh
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikas Diwakar
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vaibhav Patel
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rajesh Kumar Gahlyan
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
13
|
Rowan TN. Genetics and Genomics 101. Vet Clin North Am Food Anim Pract 2024; 40:345-355. [PMID: 39181796 DOI: 10.1016/j.cvfa.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Genetic mutations, both favorable and unfavorable, are the raw material for improvement in livestock populations. The random inheritance of these mutations is essential for generating progenies with genetic potential greater than their parents. These mutations can act either in a simple manner, such that a single alteration disrupts phenotype, or in a complex manner where hundreds or thousands of mutations of small effect create a continuous distribution of phenotypes. Selection tools leverage phenotypic records, pedigrees, and genomics to estimate the genetic potential of individual animals. This more accurate accounting of genetic potential has generated enormous gains in livestock populations.
Collapse
Affiliation(s)
- Troy N Rowan
- Department of Animal Science, University of Tennessee, 2506 River Drive, Knoxville, TN 37996, USA; Department Large Animal Clinical Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
14
|
Bayhaghi G, Karim ZA, Silva J. Descriptive analysis of MC4R gene variants associated with obesity listed on ClinVar. Sci Prog 2024; 107:368504241297197. [PMID: 39552559 PMCID: PMC11571248 DOI: 10.1177/00368504241297197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
OBJECTIVES The most recent version of ClinVar was utilized to filter variants of the MC4R gene based on location, condition, and clinical significance with the goal of obtaining benign and disease-associated variants of the MC4R gene. MC4R gene variants can lead to dysregulation of energy expenditure and appetite control, which prompted this study to delineate the distinctive features of MC4R gene variants submitted to the ClinVar repository regarding their association with obesity and related phenotypes. METHOD A thorough search was conducted in the ClinVar repository for clinically significant MC4R variants through the utilization of the gene name MC4R[gene] and MeSH terms "MC4R[gene]" and "single gene"[properties]" in the search box. Leading to the identification of clinically significant genetic variants associated with obesity. RESULTS Utilizing the ClinVar clinical significance ranking system, the MC4R variants were categorized into six groups based on ClinVar/ClinGen's ranking system: pathogenic (P), likely pathogenic (LP), variant of uncertain significance (VUS), benign (B), likely benign (LB), and conflicting classifications (CC). A total of 103 pathogenic variants were observed. These variants have different clinical significance that are associated with monogenic obesity, monogenic diabetes, and body mass index quantitative traits. It was observed that over 80% of the mutations were single nucleotide variants, with nearly half being missense mutations spread throughout the topological and transmembrane domains. Furthermore, TM7 had the highest number of single nucleotide missense mutations. CONCLUSION Further analysis of the relationships between monogenic obesity and diabetes requires additional investigation to discover the underlying causes of these conditions. The study findings imply that mutations in MC4R's topological and transmembrane regions may significantly influence receptor activation and signaling. As more MC4R variants are discovered and their correlation with obesity is established, there is potential to definitively establish a strong connection between MC4R pathogenic variants and the development of obesity.
Collapse
Affiliation(s)
- Giti Bayhaghi
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA, USA
| | - Zubair A. Karim
- Department of Nutrition & Dietetics, College of Allied Health Science, Augusta University, Augusta, GA, USA
| | - Jeane Silva
- Department of Health Management, Economics and Policy, School of Public Health Augusta University, Augusta, GA, USA
| |
Collapse
|
15
|
Qu Z, Sakaguchi N, Kikutake C, Suyama M. Identification and analysis of short indels inducing exon extension/shrinkage events. FEBS Open Bio 2024; 14:1682-1690. [PMID: 39085971 PMCID: PMC11452298 DOI: 10.1002/2211-5463.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
The search for genetic variants that act as causative factors in human diseases by disrupting the normal splicing process has primarily focused on single nucleotide variants (SNVs). It is worth noting that insertions or deletions (indels) have also been sporadically reported as causative disease variants through their potential impact on the splicing process. In this study, to perform identification of indels inducing exon extension/shrinkage events, we used individual-specific genomes and RNA sequencing (RNA-seq) data pertaining to the corresponding individuals and identified 12 exon extension/shrinkage events that were potentially induced by indels that disrupted authentic splice sites or created novel splice sites in 235 normal individuals. By evaluating the impact of these abnormal splicing events on the resulting transcripts, we found that five events led to the generation of premature termination codons (PTCs), including those occurring within genes associated with genetic disorders. Our analysis revealed that the potential functions of indels have been underexamined, and it is worth considering the possibility that indels may affect splice site usage, using RNA-seq data to discover novel potentially disease-associated mutations.
Collapse
Affiliation(s)
- Zhuo Qu
- Division of Bioinformatics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Narumi Sakaguchi
- Division of Bioinformatics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
16
|
Redelings BD, Holmes I, Lunter G, Pupko T, Anisimova M. Insertions and Deletions: Computational Methods, Evolutionary Dynamics, and Biological Applications. Mol Biol Evol 2024; 41:msae177. [PMID: 39172750 PMCID: PMC11385596 DOI: 10.1093/molbev/msae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Insertions and deletions constitute the second most important source of natural genomic variation. Insertions and deletions make up to 25% of genomic variants in humans and are involved in complex evolutionary processes including genomic rearrangements, adaptation, and speciation. Recent advances in long-read sequencing technologies allow detailed inference of insertions and deletion variation in species and populations. Yet, despite their importance, evolutionary studies have traditionally ignored or mishandled insertions and deletions due to a lack of comprehensive methodologies and statistical models of insertions and deletion dynamics. Here, we discuss methods for describing insertions and deletion variation and modeling insertions and deletions over evolutionary time. We provide practical advice for tackling insertions and deletions in genomic sequences and illustrate our discussion with examples of insertions and deletion-induced effects in human and other natural populations and their contribution to evolutionary processes. We outline promising directions for future developments in statistical methodologies that would allow researchers to analyze insertions and deletion variation and their effects in large genomic data sets and to incorporate insertions and deletions in evolutionary inference.
Collapse
Affiliation(s)
| | - Ian Holmes
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Gerton Lunter
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maria Anisimova
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
17
|
Rocha LGDN, Guimarães PAS, Carvalho MGR, Ruiz JC. Tumor Neoepitope-Based Vaccines: A Scoping Review on Current Predictive Computational Strategies. Vaccines (Basel) 2024; 12:836. [PMID: 39203962 PMCID: PMC11360805 DOI: 10.3390/vaccines12080836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 09/03/2024] Open
Abstract
Therapeutic cancer vaccines have been considered in recent decades as important immunotherapeutic strategies capable of leading to tumor regression. In the development of these vaccines, the identification of neoepitopes plays a critical role, and different computational methods have been proposed and employed to direct and accelerate this process. In this context, this review identified and systematically analyzed the most recent studies published in the literature on the computational prediction of epitopes for the development of therapeutic vaccines, outlining critical steps, along with the associated program's strengths and limitations. A scoping review was conducted following the PRISMA extension (PRISMA-ScR). Searches were performed in databases (Scopus, PubMed, Web of Science, Science Direct) using the keywords: neoepitope, epitope, vaccine, prediction, algorithm, cancer, and tumor. Forty-nine articles published from 2012 to 2024 were synthesized and analyzed. Most of the identified studies focus on the prediction of epitopes with an affinity for MHC I molecules in solid tumors, such as lung carcinoma. Predicting epitopes with class II MHC affinity has been relatively underexplored. Besides neoepitope prediction from high-throughput sequencing data, additional steps were identified, such as the prioritization of neoepitopes and validation. Mutect2 is the most used tool for variant calling, while NetMHCpan is favored for neoepitope prediction. Artificial/convolutional neural networks are the preferred methods for neoepitope prediction. For prioritizing immunogenic epitopes, the random forest algorithm is the most used for classification. The performance values related to the computational models for the prediction and prioritization of neoepitopes are high; however, a large part of the studies still use microbiome databases for training. The in vitro/in vivo validations of the predicted neoepitopes were verified in 55% of the analyzed studies. Clinical trials that led to successful tumor remission were identified, highlighting that this immunotherapeutic approach can benefit these patients. Integrating high-throughput sequencing, sophisticated bioinformatics tools, and rigorous validation methods through in vitro/in vivo assays as well as clinical trials, the tumor neoepitope-based vaccine approach holds promise for developing personalized therapeutic vaccines that target specific tumor cancers.
Collapse
Affiliation(s)
- Luiz Gustavo do Nascimento Rocha
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Paul Anderson Souza Guimarães
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Maria Gabriela Reis Carvalho
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Jeronimo Conceição Ruiz
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| |
Collapse
|
18
|
Liljegren MM, Gama JA, Johnsen PJ, Harms K. The recombination initiation functions DprA and RecFOR suppress microindel mutations in Acinetobacter baylyi ADP1. Mol Microbiol 2024; 122:1-10. [PMID: 38760330 DOI: 10.1111/mmi.15277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Short-Patch Double Illegitimate Recombination (SPDIR) has been recently identified as a rare mutation mechanism. During SPDIR, ectopic DNA single-strands anneal with genomic DNA at microhomologies and get integrated during DNA replication, presumably acting as primers for Okazaki fragments. The resulting microindel mutations are highly variable in size and sequence. In the soil bacterium Acinetobacter baylyi, SPDIR is tightly controlled by genome maintenance functions including RecA. It is thought that RecA scavenges DNA single-strands and renders them unable to anneal. To further elucidate the role of RecA in this process, we investigate the roles of the upstream functions DprA, RecFOR, and RecBCD, all of which load DNA single-strands with RecA. Here we show that all three functions suppress SPDIR mutations in the wildtype to levels below the detection limit. While SPDIR mutations are slightly elevated in the absence of DprA, they are strongly increased in the absence of both DprA and RecA. This SPDIR-avoiding function of DprA is not related to its role in natural transformation. These results suggest a function for DprA in combination with RecA to avoid potentially harmful microindel mutations, and offer an explanation for the ubiquity of dprA in the genomes of naturally non-transformable bacteria.
Collapse
Affiliation(s)
- Mikkel M Liljegren
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - João A Gama
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Pål J Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
19
|
Srivastava K, Yin Q, Makuria AT, Rios M, Gebremedhin A, Flegel WA. CD59 gene: 143 haplotypes of 22,718 nucleotides length by computational phasing in 113 individuals from different ethnicities. Transfusion 2024; 64:1296-1305. [PMID: 38817044 PMCID: PMC11251854 DOI: 10.1111/trf.17869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND CD59 deficiency due to rare germline variants in the CD59 gene causes disabilities, ischemic strokes, neuropathy, and hemolysis. CD59 deficiency due to common somatic variants in the PIG-A gene in hematopoietic stem cells causes paroxysmal nocturnal hemoglobinuria. The ISBT database lists one nonsense and three missense germline variants that are associated with the CD59-null phenotype. To analyze the genetic diversity of the CD59 gene, we determined long-range CD59 haplotypes among individuals from different ethnicities. METHODS We determined a 22.7 kb genomic fragment of the CD59 gene in 113 individuals using next-generation sequencing (NGS), which covered the whole NM_203330.2 mRNA transcript of 7796 base pairs. Samples came from an FDA reference repository and our Ethiopia study cohorts. The raw genotype data were computationally phased into individual haplotype sequences. RESULTS Nucleotide sequencing of the CD59 gene of 226 chromosomes identified 216 positions with single nucleotide variants. Only three haplotypes were observed in homozygous form, which allowed us to assign them unambiguously as experimentally verified CD59 haplotypes. They were also the most frequent haplotypes among both cohorts. An additional 140 haplotypes were imputed computationally. DISCUSSION We provided a large set of haplotypes and proposed three verified long-range CD59 reference sequences, based on a population approach, using a generalizable rationale for our choice. Correct long-range haplotypes are useful as template sequences for allele calling in high-throughput NGS and precision medicine approaches, thus enhancing the reliability of clinical diagnostics. Long-range haplotypes can also be used to evaluate the influence of genetic variation on the risk of transfusion reactions or diseases.
Collapse
Affiliation(s)
- Kshitij Srivastava
- Department of Transfusion MedicineNIH Clinical Center, National Institutes of HealthBethesdaMarylandUSA
| | - Qinan Yin
- Department of Transfusion MedicineNIH Clinical Center, National Institutes of HealthBethesdaMarylandUSA
- Present address:
Henan Engineering Research Center of Digital Pathology and Artificial Intelligence DiagnosisThe First Affiliated Hospital of Henan University of Science and TechnologyLuoyangPeople's Republic of China
- Present address:
Precision Medicine Laboratory, School of Medical Technology and EngineeringHenan University of Science and TechnologyLuoyangPeople's Republic of China
| | - Addisalem Taye Makuria
- Department of Transfusion MedicineNIH Clinical Center, National Institutes of HealthBethesdaMarylandUSA
- Department of Pathology and Laboratory ServicesECU Health Medical CenterGreenvilleNorth CarolinaUSA
| | - Maria Rios
- Office of Blood Research and Review, Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Amha Gebremedhin
- School of MedicineCollege of Health Sciences, Addis Ababa UniversityAddis AbabaEthiopia
| | - Willy Albert Flegel
- Department of Transfusion MedicineNIH Clinical Center, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
20
|
Avellaneda LL, Johnson DT, Gutierrez RM, Thompson L, Sturm SA, Sage KA, Houston RM, LaRue BL. Development of a novel five dye insertion/deletion (INDEL) panel for ancestry determination. Int J Legal Med 2024; 138:1233-1244. [PMID: 38369682 DOI: 10.1007/s00414-024-03196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
The use of genetic markers, specifically Short Tandem Repeats (STRs), has been a valuable tool for identifying persons of interest. However, the ability to analyze additional markers including Single Nucleotide Polymorphisms (SNPs) and Insertion/Deletion (INDELs) polymorphisms allows laboratories to explore other investigative leads. INDELs were chosen in this study because large panels can be differentiated by size, allowing them to be genotyped by capillary electrophoresis. Moreover, these markers do not produce stutter and are smaller in size than STRs, facilitating the recovery of genetic information from degraded samples. The INDEL Ancestry Informative Markers (AIMs) in this study were selected from the 1000 Genomes Project based on a fixation index (FST) greater than 0.50, high allele frequency divergence, and genetic distance. A total of 25 INDEL-AIMs were optimized and validated according to SWGDAM guidelines in a five-dye multiplex. To validate the panel, genotyping was performed on 155 unrelated individuals from four ancestral groups (Caucasian, African, Hispanic, and East Asian). Bayesian clustering and principal component analysis (PCA) were performed revealing clear separation among three groups, with some observed overlap within the Hispanic group. Additionally, the PCA results were compared against a training set of 793 samples from the 1000 Genomes Project, demonstrating consistent results. Validation studies showed the assay to be reproducible, tolerant to common inhibitors, robust with challenging casework type samples, and sensitive down to 125 pg. In conclusion, our results demonstrated the robustness and effectiveness of a 25 loci INDEL system for ancestry inference of four ancestries commonly found in the United States.
Collapse
Affiliation(s)
- Lucio L Avellaneda
- Department of Forensic Science, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX, 77340, USA.
| | - Damani T Johnson
- Department of Forensic Science, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX, 77340, USA
| | - Ryan M Gutierrez
- Department of Forensic Science, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX, 77340, USA
| | - Lindsey Thompson
- Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Sarah A Sturm
- Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Kelly A Sage
- Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Rachel M Houston
- Department of Forensic Science, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX, 77340, USA
| | - Bobby L LaRue
- Department of Forensic Science, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX, 77340, USA
- Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| |
Collapse
|
21
|
Tenthorey JL, del Banco S, Ramzan I, Klingenberg H, Liu C, Emerman M, Malik HS. Indels allow antiviral proteins to evolve functional novelty inaccessible by missense mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592993. [PMID: 38765965 PMCID: PMC11100679 DOI: 10.1101/2024.05.07.592993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Antiviral proteins often evolve rapidly at virus-binding interfaces to defend against new viruses. We investigated whether antiviral adaptation via missense mutations might face limits, which insertion or deletion mutations (indels) could overcome. We report one such case of a nearly insurmountable evolutionary challenge: the human anti-retroviral protein TRIM5α requires more than five missense mutations in its specificity-determining v1 loop to restrict a divergent simian immunodeficiency virus (SIV). However, duplicating just one amino acid in v1 enables human TRIM5α to potently restrict SIV in a single evolutionary step. Moreover, natural primate TRIM5α v1 loops have evolved indels that confer novel antiviral specificities. Thus, indels enable antiviral proteins to overcome viral challenges inaccessible by missense mutations, revealing the potential of these often-overlooked mutations in driving protein innovation.
Collapse
Affiliation(s)
- Jeannette L. Tenthorey
- Cellular and Molecular Pharmacology Department, University of California, San Francisco; San Francisco, 94158, USA
| | - Serena del Banco
- Division of Basic Sciences, Fred Hutchinson Cancer Center; Seattle, USA
| | - Ishrak Ramzan
- Cellular and Molecular Pharmacology Department, University of California, San Francisco; San Francisco, 94158, USA
| | - Hayley Klingenberg
- Cellular and Molecular Pharmacology Department, University of California, San Francisco; San Francisco, 94158, USA
| | - Chang Liu
- Cellular and Molecular Pharmacology Department, University of California, San Francisco; San Francisco, 94158, USA
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center; Seattle, USA
- Division of Human Biology, Fred Hutchinson Cancer Center; Seattle, USA
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center; Seattle, USA
- Howard Hughes Medical Investigator, Fred Hutchinson Cancer Center; Seattle, USA
| |
Collapse
|
22
|
Avellaneda LL, Johnson DT, Gutierrez R, Thompson L, Sage KA, Sturm SA, Houston RM, LaRue BL. Development of a novel five-dye panel for human identification insertion/deletion (INDEL) polymorphisms. J Forensic Sci 2024; 69:814-824. [PMID: 38291825 DOI: 10.1111/1556-4029.15475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
DNA analysis of forensic case samples relies on short tandem repeats (STRs), a key component of the combined DNA index system (CODIS) used to identify individuals. However, limitations arise when dealing with challenging samples, prompting the exploration of alternative markers such as single nucleotide polymorphisms (SNPs) and insertion/deletion (INDELs) polymorphisms. Unlike SNPs, INDELs can be differentiated easily by size, making them compatible with electrophoresis methods. It is possible to design small INDEL amplicons (<200 bp) to enhance recovery from degraded samples. To this end, a set of INDEL Human Identification Markers (HID) was curated from the 1000 Genomes Project, employing criteria including a fixation index (FST) ≤ 0.06, minor allele frequency (MAF) >0.2, and high allele frequency divergence. A panel of 33 INDEL-HIDs was optimized and validated following the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines, utilizing a five-dye multiplex electrophoresis system. A small sample set (n = 79 unrelated individuals) was genotyped to assess the assay's performance. The validation studies exhibited reproducibility, inhibition tolerance, ability to detect a two-person mixture from a 4:1 to 1:6 ratio, robustness with challenging samples, and sensitivity down to 125 pg of DNA. In summary, the 33-loci INDEL-HID panel exhibited robust recovery with low-template and degraded samples and proved effective for individualization within a small sample set.
Collapse
Affiliation(s)
- Lucio L Avellaneda
- Department of Forensic Science, Sam Houston State University, Huntsville, Texas, USA
| | - Damani T Johnson
- Department of Forensic Science, Sam Houston State University, Huntsville, Texas, USA
| | - Ryan Gutierrez
- Department of Forensic Science, Sam Houston State University, Huntsville, Texas, USA
| | - Lindsey Thompson
- Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Kelly A Sage
- Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Sarah A Sturm
- Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rachel M Houston
- Department of Forensic Science, Sam Houston State University, Huntsville, Texas, USA
| | - Bobby L LaRue
- Department of Forensic Science, Sam Houston State University, Huntsville, Texas, USA
- Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
23
|
Ramos RM, Petroli RJ, D'Alessandre NDR, Guardia GDA, Afonso ACDF, Nishi MY, Domenice S, Galante PAF, Mendonca BB, Batista RL. Small Indels in the Androgen Receptor Gene: Phenotype Implications and Mechanisms of Mutagenesis. J Clin Endocrinol Metab 2023; 109:68-79. [PMID: 37572362 DOI: 10.1210/clinem/dgad470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
CONTEXT Despite high abundance of small indels in human genomes, their precise roles and underlying mechanisms of mutagenesis in Mendelian disorders require further investigation. OBJECTIVE To profile the distribution, functional implications, and mechanisms of small indels in the androgen receptor (AR) gene in individuals with androgen insensitivity syndrome (AIS). METHODS We conducted a systematic review of previously reported indels within the coding region of the AR gene, including 3 novel indels. Distribution throughout the AR coding region was examined and compared with genomic population data. Additionally, we assessed their impact on the AIS phenotype and investigated potential mechanisms driving their occurrence. RESULTS A total of 82 indels in AIS were included. Notably, all frameshift indels exhibited complete AIS. The distribution of indels across the AR gene showed a predominance in the N-terminal domain, most leading to frameshift mutations. Small deletions accounted for 59.7%. Most indels occurred in nonrepetitive sequences, with 15.8% situated within triplet regions. Gene burden analysis demonstrated significant enrichment of frameshift indels in AIS compared with controls (P < .00001), and deletions were overrepresented in AIS (P < .00001). CONCLUSION Our findings underscore a robust genotype-phenotype relationship regarding small indels in the AR gene in AIS, with a vast majority presenting complete AIS. Triplet regions and homopolymeric runs emerged as prone loci for small indels within the AR. Most were frameshift indels, with polymerase slippage potentially explaining half of AR indel occurrences. Complex frameshift indels exhibited association with palindromic runs. These discoveries advance understanding of the genetic basis of AIS and shed light on potential mechanisms underlying pathogenic small indel events.
Collapse
Affiliation(s)
- Raquel Martinez Ramos
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | - Reginaldo José Petroli
- Faculdade de Medicina da Universidade Federal de Alagoas (UFAL), Programa de Pós-Graduação em Ciências Médicas-UFAL, Maceió, AL, 57072-900, Brazil
| | | | | | - Ana Caroline de Freitas Afonso
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | - Mirian Yumie Nishi
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | - Sorahia Domenice
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | | | - Berenice Bilharinho Mendonca
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | - Rafael Loch Batista
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
- Instituto do Câncer do Estado de São Paulo da Faculdade, de Medicina da Universidade de São Paulo (ICESP), São Paulo, SP, 01246-000, Brazil
| |
Collapse
|
24
|
Wang H, Kang B, Gao Y, Zhang M, Jiang J, Su J, Zhang B, Zhu B, Liao S. Construction and evaluation of a novel set of 90 microhaplotypes for forensic applications using NGS technology. Forensic Sci Int 2023; 353:111848. [PMID: 37890263 DOI: 10.1016/j.forsciint.2023.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/27/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023]
Abstract
Microhaplotypes (MHs), small sets of linked single nucleotide polymorphisms (SNPs), are becoming a valuable tool for paternity testing, personal identification and other different forensic purposes due to their advantages of both short tandem repeats (STRs) and SNPs. However, only a small part of MHs with small segments have been developed and reported so far. And the current population genetic data of MHs are still insufficient. MHs with small segments possess unique advantages in mixture deconvolution, degradation material identification, noninvasive prenatal paternity testing and even medical tumor diagnostic applications. In the present study, a set of 90 autosomal MHs whose PCR amplicon lengths are from 90-150 bp, of which 58 MHs are less than or equal to 100 bp are selected, and assembled into an amplification multiplex system optimized for Ion S5™ System for forensic application. Genetic diversity study of 90 MHs in the populations from different intercontinental regions shows that the polymorphism information content (PIC) values of 83 MHs are greater than 0.4 in populations from East Asia (EAS), and the average PIC value of 90 MHs is greater than 0.5. A total of EAS populations shows the highest cumulative match probability (CMP) and cumulative probability of exclusion (CPE) values in five intercontinental populations. The CMP and CPE values of 90 MHs in EAS are 1.1688 × 10-54 and 0.999999999998954. The informativeness for assignment (In) values of the 90 MHs are calculated based on data from five intercontinental populations, and the In values of 20 MHs have greater than 0.1, indicating that the 20 MHs are high effectiveness in distinguishing different intercontinental populations, which can be used as candidate ancestry informative markers. Further, we have studied the polymorphisms of the 90 MHs based on 224 unrelated individuals of Henan Han population, China, and obtained the frequency data of the 90 MHs. In the Henan Han population, the effective number of alleles (Ae) of the 90 MHs ranges from 1.7649 (MH45) to 3.9792 (MH50), and the Ae values of 10 MHs reach to 3.0; the Ae values of 80 MHs are greater than 2, and the average Ae value for these MHs is 2.422. The average expected heterozygosity, observed heterozygosity, PIC, matching probability, discrimination power and probability of exclusion values of 90 MHs in the Henan Han population are 0.5788, 0.5851, 0.5039, 0.2608, 0.7392 and 0.2806, respectively. The CMP value of 90 MHs in the study population is less than 10-54, and their CPE value reaches 0.999999999999999923. Moreover, the results of the depth of coverage, allele coverage ratio and noise level indicate that the 90 MH amplification system has well sequencing performance, and the sequencing results are reliable. The results indicate the 90 MHs show higher polymorphisms in the study population. The present panel can be well used in paternity testing and individual identification in the study population and even the populations from EAS.
Collapse
Affiliation(s)
- Hongdan Wang
- College of Forensic Science, Xi'an Jiaotong University Health Science Center, Xi'an, China; Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China; National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Bing Kang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Yue Gao
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Mengting Zhang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Jincheng Jiang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Junxiang Su
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Bo Zhang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Bofeng Zhu
- College of Forensic Science, Xi'an Jiaotong University Health Science Center, Xi'an, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| | - Shixiu Liao
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.
| |
Collapse
|
25
|
Ashton M, Czado N, Harrel M, Hughes S. Genotyping strategies for tissues fixed with various embalming fluids for human identification, databasing, and traceability. J Forensic Sci 2023. [PMID: 37904606 DOI: 10.1111/1556-4029.15414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Within anatomical willed body programs and skeletal collections, whole bodies and their disassociated limbs and organs are identified and tracked. However, if these tracking mechanisms fail, DNA recovered from the formalin-fixed tissues/organs could provide an additional layer of quality assurance. Embalming fluids preserve biological tissues; however, they also damage, fragment, and cross-link DNA and protein molecules. This project investigated the success of STR-typing from various soft tissue and bone samples that were fixed with embalming solutions with a range of formaldehyde concentrations. Formalin-fixed samples dissected from five cadavers, including skin, muscle, bone, heart, and kidney were used in Phase 1 of this study. In Phase 2, an additional 57 tissue samples from various embalmed organs and body parts were collected to demonstrate long-term fixation and direct applicability within a body donor program. DNA was extracted from the samples using the QIAamp® FFPE Tissue Kit (QIAGEN), quantified with the Investigator® QuantiPlex® Pro RGQ qPCR Kit (QIAGEN), and amplified using the Investigator® 24plex and 26plex QS Kits and the Investigator® DIPplex Kit (QIAGEN). The results show the DNA was severely damaged, degraded, and often in low amounts (after one year post-embalming). Sampling from skin and muscle tissues embalmed with ~2.5%-5% formaldehyde solutions appears to be the best strategy for identification, while also maintaining the preservation of the tissues. The results of this project can provide informative data when determining which genotyping strategy may be best suited for the identification, re-association, and establishment of a database for the provenance of formalin-fixed human remains.
Collapse
Affiliation(s)
- Madeline Ashton
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Natalia Czado
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, Huntsville, Texas, USA
| | - Michelle Harrel
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, Huntsville, Texas, USA
| | - Sheree Hughes
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, Huntsville, Texas, USA
| |
Collapse
|
26
|
Choate LA, Koleilat A, Harris K, Vidal-Folch N, Guenzel A, Newman J, Peterson BJ, Peterson SE, Rice CS, Train LJ, Hasadsri L, Marcou CA, Moyer AM, Baudhuin LM. Confirmation of Insertion, Deletion, and Deletion-Insertion Variants Detected by Next-Generation Sequencing. Clin Chem 2023; 69:1155-1162. [PMID: 37566393 DOI: 10.1093/clinchem/hvad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Despite clinically demonstrated accuracy in next generation sequencing (NGS) data, many clinical laboratories continue to confirm variants with Sanger sequencing, which increases cost of testing and turnaround time. Several studies have assessed the accuracy of NGS in detecting single nucleotide variants; however, less has been reported about insertion, deletion, and deletion-insertion variants (indels). METHODS We performed a retrospective analysis from 2015-2022 of indel results from a subset of NGS targeted gene panel tests offered through the Mayo Clinic Genomics Laboratories. We compared results from NGS and Sanger sequencing of indels observed in clinical runs and during the intra-assay validation of the tests. RESULTS Results demonstrated 100% concordance between NGS and Sanger sequencing for over 490 indels (217 unique), ranging in size from 1 to 68 basepairs (bp). The majority of indels were deletions (77%) and 1 to 5 bp in length (90%). Variant frequencies ranged from 11.4% to 67.4% and 85.1% to 100% for heterozygous and homozygous variants, respectively, with a median depth of coverage of 2562×. A subset of indels (7%) were located in complex regions of the genome, and these were accurately detected by NGS. We also demonstrated 100% reproducibility of indel detection (n = 179) during intra-assay validation. CONCLUSIONS Together this data demonstrates that reportable indel variants up to 68 bp can be accurately assessed using NGS, even when they occur in complex regions. Depending on the complexity of the region or variant, Sanger sequence confirmation of indels is usually not necessary if the variants meet appropriate coverage and allele frequency thresholds.
Collapse
Affiliation(s)
- Lauren A Choate
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Alaa Koleilat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Kimberley Harris
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Noemi Vidal-Folch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Adam Guenzel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Jessica Newman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Brenda J Peterson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Sandra E Peterson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Christopher S Rice
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Laura J Train
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Cherisse A Marcou
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Linnea M Baudhuin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
27
|
Wolf MM, Rathmell WK, de Cubas AA. Immunogenicity in renal cell carcinoma: shifting focus to alternative sources of tumour-specific antigens. Nat Rev Nephrol 2023; 19:440-450. [PMID: 36973495 PMCID: PMC10801831 DOI: 10.1038/s41581-023-00700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Renal cell carcinoma (RCC) comprises a group of malignancies arising from the kidney with unique tumour-specific antigen (TSA) signatures that can trigger cytotoxic immunity. Two classes of TSAs are now considered potential drivers of immunogenicity in RCC: small-scale insertions and deletions (INDELs) that result in coding frameshift mutations, and activation of human endogenous retroviruses. The presence of neoantigen-specific T cells is a hallmark of solid tumours with a high mutagenic burden, which typically have abundant TSAs owing to non-synonymous single nucleotide variations within the genome. However, RCC exhibits high cytotoxic T cell reactivity despite only having an intermediate non-synonymous single nucleotide variation mutational burden. Instead, RCC tumours have a high pan-cancer proportion of INDEL frameshift mutations, and coding frameshift INDELs are associated with high immunogenicity. Moreover, cytotoxic T cells in RCC subtypes seem to recognize tumour-specific endogenous retrovirus epitopes, whose presence is associated with clinical responses to immune checkpoint blockade therapy. Here, we review the distinct molecular landscapes in RCC that promote immunogenic responses, discuss clinical opportunities for discovery of biomarkers that can inform therapeutic immune checkpoint blockade strategies, and identify gaps in knowledge for future investigations.
Collapse
Affiliation(s)
- Melissa M Wolf
- Department of Medicine, Program in Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Program in Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Aguirre A de Cubas
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
28
|
Banerjee A, Bahar I. Structural Dynamics Predominantly Determine the Adaptability of Proteins to Amino Acid Deletions. Int J Mol Sci 2023; 24:8450. [PMID: 37176156 PMCID: PMC10179678 DOI: 10.3390/ijms24098450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
The insertion or deletion (indel) of amino acids has a variety of effects on protein function, ranging from disease-forming changes to gaining new functions. Despite their importance, indels have not been systematically characterized towards protein engineering or modification goals. In the present work, we focus on deletions composed of multiple contiguous amino acids (mAA-dels) and their effects on the protein (mutant) folding ability. Our analysis reveals that the mutant retains the native fold when the mAA-del obeys well-defined structural dynamics properties: localization in intrinsically flexible regions, showing low resistance to mechanical stress, and separation from allosteric signaling paths. Motivated by the possibility of distinguishing the features that underlie the adaptability of proteins to mAA-dels, and by the rapid evaluation of these features using elastic network models, we developed a positive-unlabeled learning-based classifier that can be adopted for protein design purposes. Trained on a consolidated set of features, including those reflecting the intrinsic dynamics of the regions where the mAA-dels occur, the new classifier yields a high recall of 84.3% for identifying mAA-dels that are stably tolerated by the protein. The comparative examination of the relative contribution of different features to the prediction reveals the dominant role of structural dynamics in enabling the adaptation of the mutant to mAA-del without disrupting the native fold.
Collapse
Affiliation(s)
- Anupam Banerjee
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
29
|
Mei S, Yi S, Cai M, Zhang Y, Cui W, Xu H, Lan Q, Zhu B. Exploring the forensic effectiveness and population genetic differentiation by self-constructed 41 multi-InDel panel in Yunnan Zhuang group. Gene 2023; 860:147180. [PMID: 36669579 DOI: 10.1016/j.gene.2023.147180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
Yunnan is one of the main residences of the Zhuang group which is one of the 55 ethnic minorities in China. At present, there are relatively few researches on population genetics and forensic science of the Yunnan Zhuang group. Therefore, this study used a self-constructed panel containing 41 multi-InDel markers to analyze the genetic polymorphisms of 173 individuals from Yunnan Zhuang group. The results indicated that these 41 multi-InDels in Yunnan Zhuang group were highly polymorphic markers expect for three markers. The cumulative match probability and combined exclusion probability values of the 40 multi-InDels (MI38 marker was excluded) were 8.0671E-26 and 0.9999995959, respectively. In addition, population genetic analyses were performed on genotyping data of 41 multi-InDel markers among the Yunnan Zhuang and 26 reference populations, revealing that the Yunnan Zhuang group was genetically close to the five populations in East Asia. According to the STRUCTURE analysis, the Yunnan Zhuang group presented similar ancestral compositions to the five populations from East Asia, and when the K value was three, the five intercontinental populations showed their different genetic structures. In conclusion, the 41 multi-InDel markers could be used as an effective tool for individual identification and paternity testing of the Zhuang group in Yunnan province, as well as for their ancestry information inference studies.
Collapse
Affiliation(s)
- Shuyan Mei
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou 510515, China
| | - Shaohua Yi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meiming Cai
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou 510515, China
| | - Yunying Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou 510515, China
| | - Wei Cui
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou 510515, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Hui Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou 510515, China
| | - Qiong Lan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou 510515, China.
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
30
|
Cannon S, Williams M, Gunning AC, Wright CF. Evaluation of in silico pathogenicity prediction tools for the classification of small in-frame indels. BMC Med Genomics 2023; 16:36. [PMID: 36855133 PMCID: PMC9972633 DOI: 10.1186/s12920-023-01454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND The use of in silico pathogenicity predictions as evidence when interpreting genetic variants is widely accepted as part of standard variant classification guidelines. Although numerous algorithms have been developed and evaluated for classifying missense variants, in-frame insertions/deletions (indels) have been much less well studied. METHODS We created a dataset of 3964 small (< 100 bp) indels predicted to result in in-frame amino acid insertions or deletions using data from gnomAD v3.1 (minor allele frequency of 1-5%), ClinVar and the Deciphering Developmental Disorders (DDD) study. We used this dataset to evaluate the performance of nine pathogenicity predictor tools: CADD, CAPICE, FATHMM-indel, MutPred-Indel, MutationTaster2021, PROVEAN, SIFT-indel, VEST-indel and VVP. RESULTS Our dataset consisted of 2224 benign/likely benign and 1740 pathogenic/likely pathogenic variants from gnomAD (n = 809), ClinVar (n = 2882) and, DDD (n = 273). We were able to generate scores across all tools for 91% of the variants, with areas under the ROC curve (AUC) of 0.81-0.96 based on the published recommended thresholds. To avoid biases caused by inclusion of our dataset in the tools' training data, we also evaluated just DDD variants not present in either gnomAD or ClinVar (70 pathogenic and 81 benign). Using this subset, the AUC of all tools decreased substantially to 0.64-0.87. Several of the tools performed similarly however, VEST-indel had the highest AUCs of 0.93 (full dataset) and 0.87 (DDD subset). CONCLUSIONS Algorithms designed for predicting the pathogenicity of in-frame indels perform well enough to aid clinical variant classification in a similar manner to missense prediction tools.
Collapse
Affiliation(s)
- S Cannon
- Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Research, Innovation, Learning and Development Building, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - M Williams
- Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Research, Innovation, Learning and Development Building, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - A C Gunning
- Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Research, Innovation, Learning and Development Building, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - C F Wright
- Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Research, Innovation, Learning and Development Building, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
31
|
Li X, Wu Y. Detecting genomic deletions from high-throughput sequence data with unsupervised learning. BMC Bioinformatics 2023; 23:568. [PMID: 36707775 PMCID: PMC9881243 DOI: 10.1186/s12859-023-05139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Structural variation (SV), which ranges from 50 bp to [Formula: see text] 3 Mb in size, is an important type of genetic variations. Deletion is a type of SV in which a part of a chromosome or a sequence of DNA is lost during DNA replication. Three types of signals, including discordant read-pairs, reads depth and split reads, are commonly used for SV detection from high-throughput sequence data. Many tools have been developed for detecting SVs by using one or multiple of these signals. RESULTS In this paper, we develop a new method called EigenDel for detecting the germline submicroscopic genomic deletions. EigenDel first takes advantage of discordant read-pairs and clipped reads to get initial deletion candidates, and then it clusters similar candidates by using unsupervised learning methods. After that, EigenDel uses a carefully designed approach for calling true deletions from each cluster. We conduct various experiments to evaluate the performance of EigenDel on low coverage sequence data. CONCLUSIONS Our results show that EigenDel outperforms other major methods in terms of improving capability of balancing accuracy and sensitivity as well as reducing bias. EigenDel can be downloaded from https://github.com/lxwgcool/EigenDel .
Collapse
Affiliation(s)
- Xin Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892 USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21702 USA
| | - Yufeng Wu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
32
|
Miton CM, Tokuriki N. Insertions and Deletions (Indels): A Missing Piece of the Protein Engineering Jigsaw. Biochemistry 2023; 62:148-157. [PMID: 35830609 DOI: 10.1021/acs.biochem.2c00188] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the years, protein engineers have studied nature and borrowed its tricks to accelerate protein evolution in the test tube. While there have been considerable advances, our ability to generate new proteins in the laboratory is seemingly limited. One explanation for these shortcomings may be that insertions and deletions (indels), which frequently arise in nature, are largely overlooked during protein engineering campaigns. The profound effect of indels on protein structures, by way of drastic backbone alterations, could be perceived as "saltation" events that bring about significant phenotypic changes in a single mutational step. Should we leverage these effects to accelerate protein engineering and gain access to unexplored regions of adaptive landscapes? In this Perspective, we describe the role played by indels in the functional diversification of proteins in nature and discuss their untapped potential for protein engineering, despite their often-destabilizing nature. We hope to spark a renewed interest in indels, emphasizing that their wider study and use may prove insightful and shape the future of protein engineering by unlocking unique functional changes that substitutions alone could never achieve.
Collapse
Affiliation(s)
- Charlotte M Miton
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 BC, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 BC, Canada
| |
Collapse
|
33
|
Liu Z, Xu R, Zhang H, Wang D, Wang J, Wu K. A unique 15-bp InDel in the first intron of BMPR1B regulates its expression in Taihu pigs. BMC Genomics 2022; 23:799. [PMID: 36463109 PMCID: PMC9719134 DOI: 10.1186/s12864-022-08988-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND BMPR1B (Bone morphogenetic protein receptor type-1B) is a receptor in the bone morphogenetic protein (BMP) family and has been identified as a candidate gene for reproductive traits in pigs. Our previous study in Taihu pigs found a specific estrogen response element (ERE) in the first intron of the BMPR1B gene that is associated with the number born alive trait. However, little is known about the mechanism by which the ERE regulates the expression of BMPR1B in the endometrium. RESULTS Here, a 15-bp InDel (insertion/deletion) (AGCCAGAAAGGAGGA) was identified as a unique variation in Taihu pigs, and was shown to be responsible for the binding of the type I receptor of estrogen (ESR1) to the ERE using dual-luciferase assays. Four BMPR1B transcripts (T1, T2, T3, and T4) were identified by 5' RACE in endometrial tissue. Expression of T3 and T4 in the endometrium of Meishan pigs was significantly higher than in Duroc pigs during pregnancy. Luciferase assays showed that three distinct BMPR1B promoters may drive expression of T1, T3, and T4. Interestingly, ERE-mediated enhancement of T4 promoter activity significantly increased expression of Transcript T4 in the endometrium of Taihu pigs (P < 0.05). In contrast, the ERE inhibited activity of the T3 promoter and decreased expression of the T3 transcript in the Duroc background (P < 0.05). In summary, we identified a 15-bp InDel in the Taihu ERE that can be used as a molecular marker for the number born alive trait, characterized the 5' untranslated regions (UTRs) of BMPR1B transcripts in the endometrium, and determined how the transcripts are processed by alternative splicing events. CONCLUSIONS Our results provide a foundation for understanding the transcriptional regulation of BMPR1B and its contributions to the unique breeding prolificacy characteristics of Taihu pigs.
Collapse
Affiliation(s)
- Zhexi Liu
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ran Xu
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Han Zhang
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Depeng Wang
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ji Wang
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Keliang Wu
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Sallah SR, Sergouniotis PI, Hardcastle C, Ramsden S, Lotery AJ, Lench N, Lovell SC, Black GCM. Assessing the Pathogenicity of In-Frame CACNA1F Indel Variants Using Structural Modeling. J Mol Diagn 2022; 24:1232-1239. [PMID: 36191840 DOI: 10.1016/j.jmoldx.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 01/13/2023] Open
Abstract
Small in-frame insertion-deletion (indel) variants are a common form of genomic variation whose impact on rare disease phenotypes has been understudied. The prediction of the pathogenicity of such variants remains challenging. X-linked incomplete congenital stationary night blindness type 2 (CSNB2) is a nonprogressive, inherited retinal disorder caused by variants in CACNA1F, encoding the Cav1.4α1 channel protein. Here, structural analysis was used through homology modeling to interpret 10 disease-correlated and 10 putatively benign CACNA1F in-frame indel variants. CSNB2-correlated changes were found to be more highly conserved compared with putative benign variants. Notably, all 10 disease-correlated variants but none of the benign changes were within modeled regions of the protein. Structural analysis revealed that disease-correlated variants are predicted to destabilize the structure and function of the Cav1.4α1 channel protein. Overall, the use of structural information to interpret the consequences of in-frame indel variants provides an important adjunct that can improve the diagnosis for individuals with CSNB2.
Collapse
Affiliation(s)
- Shalaw R Sallah
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, United Kingdom.
| | - Panagiotis I Sergouniotis
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, United Kingdom
| | - Claire Hardcastle
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, United Kingdom
| | - Simon Ramsden
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, United Kingdom
| | - Andrew J Lotery
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nick Lench
- Congenica Ltd., BioData Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Simon C Lovell
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Graeme C M Black
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, United Kingdom.
| |
Collapse
|
35
|
Research Progress of Genomic Variation in Psoriasis. INTERNATIONAL JOURNAL OF DERMATOLOGY AND VENEREOLOGY 2022. [DOI: 10.1097/jd9.0000000000000276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Khatamifard SK, Chowdhury Z, Pande N, Razaviyayn M, Kim C, Karpuzcu UR. GeNVoM: Read Mapping Near Non-Volatile Memory. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3482-3496. [PMID: 34613917 DOI: 10.1109/tcbb.2021.3118018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
DNA sequencing is the physical/biochemical process of identifying the location of the four bases (Adenine, Guanine, Cytosine, Thymine) in a DNA strand. As semiconductor technology revolutionized computing, modern DNA sequencing technology (termed Next Generation Sequencing, NGS) revolutionized genomic research. As a result, modern NGS platforms can sequence hundreds of millions of short DNA fragments in parallel. The sequenced DNA fragments, representing the output of NGS platforms, are termed reads. Besides genomic variations, NGS imperfections induce noise in reads. Mapping each read to (the most similar portion of) a reference genome of the same species, i.e., read mapping, is a common critical first step in a diverse set of emerging bioinformatics applications. Mapping represents a search-heavy memory-intensive similarity matching problem, therefore, can greatly benefit from near-memory processing. Intuition suggests using fast associative search enabled by Ternary Content Addressable Memory (TCAM) by construction. However, the excessive energy consumption and lack of support for similarity matching (under NGS and genomic variation induced noise) renders direct application of TCAM infeasible, irrespective of volatility, where only non-volatile TCAM can accommodate the large memory footprint in an area-efficient way. This paper introduces GeNVoM, a scalable, energy-efficient and high-throughput solution. Instead of optimizing an algorithm developed for general-purpose computers or GPUs, GeNVoM rethinks the algorithm and non-volatile TCAM-based accelerator design together from the ground up. Thereby GeNVoM can improve the throughput by up to 3.67×; the energy consumption, by up to 1.36×, when compared to an ASIC baseline, which represents one of the highest-throughput implementations known.
Collapse
|
37
|
Katsonis P, Wilhelm K, Williams A, Lichtarge O. Genome interpretation using in silico predictors of variant impact. Hum Genet 2022; 141:1549-1577. [PMID: 35488922 PMCID: PMC9055222 DOI: 10.1007/s00439-022-02457-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/17/2022] [Indexed: 02/06/2023]
Abstract
Estimating the effects of variants found in disease driver genes opens the door to personalized therapeutic opportunities. Clinical associations and laboratory experiments can only characterize a tiny fraction of all the available variants, leaving the majority as variants of unknown significance (VUS). In silico methods bridge this gap by providing instant estimates on a large scale, most often based on the numerous genetic differences between species. Despite concerns that these methods may lack reliability in individual subjects, their numerous practical applications over cohorts suggest they are already helpful and have a role to play in genome interpretation when used at the proper scale and context. In this review, we aim to gain insights into the training and validation of these variant effect predicting methods and illustrate representative types of experimental and clinical applications. Objective performance assessments using various datasets that are not yet published indicate the strengths and limitations of each method. These show that cautious use of in silico variant impact predictors is essential for addressing genome interpretation challenges.
Collapse
Affiliation(s)
- Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Kevin Wilhelm
- Graduate School of Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Williams
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Biochemistry, Human Genetics and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Kim J, Lee C, Ko BJ, Yoo DA, Won S, Phillippy AM, Fedrigo O, Zhang G, Howe K, Wood J, Durbin R, Formenti G, Brown S, Cantin L, Mello CV, Cho S, Rhie A, Kim H, Jarvis ED. False gene and chromosome losses in genome assemblies caused by GC content variation and repeats. Genome Biol 2022; 23:204. [PMID: 36167554 PMCID: PMC9516821 DOI: 10.1186/s13059-022-02765-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many short-read genome assemblies have been found to be incomplete and contain mis-assemblies. The Vertebrate Genomes Project has been producing new reference genome assemblies with an emphasis on being as complete and error-free as possible, which requires utilizing long reads, long-range scaffolding data, new assembly algorithms, and manual curation. A more thorough evaluation of the recent references relative to prior assemblies can provide a detailed overview of the types and magnitude of improvements. RESULTS Here we evaluate new vertebrate genome references relative to the previous assemblies for the same species and, in two cases, the same individuals, including a mammal (platypus), two birds (zebra finch, Anna's hummingbird), and a fish (climbing perch). We find that up to 11% of genomic sequence is entirely missing in the previous assemblies. In the Vertebrate Genomes Project zebra finch assembly, we identify eight new GC- and repeat-rich micro-chromosomes with high gene density. The impact of missing sequences is biased towards GC-rich 5'-proximal promoters and 5' exon regions of protein-coding genes and long non-coding RNAs. Between 26 and 60% of genes include structural or sequence errors that could lead to misunderstanding of their function when using the previous genome assemblies. CONCLUSIONS Our findings reveal novel regulatory landscapes and protein coding sequences that have been greatly underestimated in previous assemblies and are now present in the Vertebrate Genomes Project reference genomes.
Collapse
Affiliation(s)
- Juwan Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Byung June Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dong Ahn Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Sohyoung Won
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York City, USA
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | | | | | - Richard Durbin
- Wellcome Sanger Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Giulio Formenti
- Vertebrate Genome Lab, The Rockefeller University, New York City, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, USA
| | - Samara Brown
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, USA
| | - Lindsey Cantin
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, USA
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Seoae Cho
- eGnome, Inc, Seoul, Republic of Korea
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- eGnome, Inc, Seoul, Republic of Korea.
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York City, USA.
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
39
|
Elisei R, Ciampi R, Matrone A, Prete A, Gambale C, Ramone T, Simeakis G, Materazzi G, Torregrossa L, Ugolini C, Romei C. Somatic RET Indels in Sporadic Medullary Thyroid Cancer: Prevalence and Response to Selpercatinib. J Clin Endocrinol Metab 2022; 107:2195-2202. [PMID: 35616103 DOI: 10.1210/clinem/dgac325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Although the majority of RET alterations are single nucleotide variants (SNV), small deletions and/or insertions have been reported at variable prevalence. No information about the efficacy of RET-specific inhibitors in patients harboring RET indels has been provided. OBJECTIVE We present an update on the prevalence of RET indels in medullary thyroid cancer (MTC) and describe the efficacy of selpercatinib in patients with advanced MTC with RET indels. METHODS The MTC tissues of 287 patients were analyzed using an Ion S5 targeted sequencing. The functional role of the reported indels have been evaluated by MutationTaster. Clinical and pathological data of MTC patients harboring a RET indel were collected and analyzed. Two patients with a RET indel were treated with selpercatinib. RESULTS Among 178 RET-positive cases, 147 (82.6%) harbored a SNV and 31 (17.4%) a RET in-frame indel. Nine indels were not previously reported and were found to be disease causing by MutationTaster. Patients harboring an indel were found to have an aggressive disease and 2 of them were treated with selpercatinib, experiencing a good response to the treatment. CONCLUSION These data show that RET indels are not infrequent and correlate with an aggressive disease. Two RET indel-positive patients showed a partial response to the treatment with a highly selective RET inhibitor; thus, these RET indels can be considered actionable mutations. In order to not miss these alterations, the analysis of the full gene is recommended.
Collapse
Affiliation(s)
- Rossella Elisei
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124 Pisa, Italy
| | - Raffaele Ciampi
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124 Pisa, Italy
| | - Antonio Matrone
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124 Pisa, Italy
| | - Alessandro Prete
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124 Pisa, Italy
| | - Carla Gambale
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124 Pisa, Italy
| | - Teresa Ramone
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124 Pisa, Italy
| | - George Simeakis
- Endocrine Dept., 401 General Military Hospital of Athens, Athens 11525, Greece
| | - Gabriele Materazzi
- Department of Surgical, Medical, Molecular Pathology and Critical Area, Surgery Unit, University Hospital of Pisa, 56124 Pisa, Italy
| | - Liborio Torregrossa
- Department of Surgical, Medical, Molecular Pathology and Critical Area, Pathology Unit, University Hospital of Pisa, 56124 Pisa, Italy
| | - Clara Ugolini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, Pathology Unit, University Hospital of Pisa, 56124 Pisa, Italy
| | - Cristina Romei
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124 Pisa, Italy
| |
Collapse
|
40
|
Ali MZ, Farid A, Ahmad S, Muzammal M, Mohaini MA, Alsalman AJ, Al Hawaj MA, Alhashem YN, Alsaleh AA, Almusalami EM, Maryam M, Khan MA. In Silico Analysis Identified Putative Pathogenic Missense nsSNPs in Human SLITRK1 Gene. Genes (Basel) 2022; 13:672. [PMID: 35456478 PMCID: PMC9030497 DOI: 10.3390/genes13040672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Human DNA contains several variations, which can affect the structure and normal functioning of a protein. These variations could be single nucleotide polymorphisms (SNPs) or insertion-deletions (InDels). SNPs, as opposed to InDels, are more commonly present in DNA and may cause genetic disorders. In the current study, several bioinformatic tools were used to prioritize the pathogenic variants in the SLITRK1 gene. Out of all of the variants, 16 were commonly predicted to be pathogenic by these tools. All the variants had very low frequency, i.e., <0.0001 in the global population. The secondary structure of all filtered variants was predicted, but no structural change was observed at the site of variation in any variant. Protein stability analysis of these variants was then performed, which determined a decrease in protein stability of 10 of the variants. Amino acid conservation analysis revealed that all the amino acids were highly conserved, indicating their structural and functional importance. Protein 3D structure of wildtype SLITRK1 and all of its variants was predicted using I-TASSER, and the effect of variation on 3D structure of the protein was observed using the Missense3D tool, which presented the probable structural loss in three variants, i.e., Asn529Lys, Leu496Pro and Leu94Phe. The wildtype SLITRK1 protein and these three variants were independently docked with their close interactor protein PTPRD, and remarkable differences were observed in the docking sites of normal and variants, which will ultimately affect the functional activity of the SLITRK1 protein. Previous studies have shown that mutations in SLITRK1 are involved in Tourette syndrome. The present study may assist a molecular geneticist in interpreting the variant pathogenicity in research as well as diagnostic setup.
Collapse
Affiliation(s)
- Muhammad Zeeshan Ali
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
| | - Safeer Ahmad
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
| | - Muhammad Muzammal
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Al Ahsa 31982, Saudi Arabia;
- King Abdullah International Medical Research Center, Al Ahsa 31982, Saudi Arabia
| | - Abdulkhaliq J. Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Yousef N. Alhashem
- Clinical Laboratory Sciences Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia; (Y.N.A.); (A.A.A.)
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Sciences Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia; (Y.N.A.); (A.A.A.)
| | | | - Mahpara Maryam
- Department of Zoology, Government College No.1, Dera Ismail Khan 29111, Pakistan;
| | - Muzammil Ahmad Khan
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
- Department of Human Genetics, Sidra Medical and Research Centre, Doha 26999, Qatar
| |
Collapse
|
41
|
Happi Mbakam C, Lamothe G, Tremblay G, Tremblay JP. CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy. Neurotherapeutics 2022; 19:931-941. [PMID: 35165856 PMCID: PMC9294086 DOI: 10.1007/s13311-022-01197-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 12/26/2022] Open
Abstract
Discovery of the CRISPR-Cas (clustered regularly interspaced short palindromic repeat, CRISPR-associated) system a decade ago has opened new possibilities in the field of precision medicine. CRISPR-Cas was initially identified in bacteria and archaea to play a protective role against foreign genetic elements during viral infections. The application of this technique for the correction of different mutations found in the Duchenne muscular dystrophy (DMD) gene led to the development of several potential therapeutic approaches for DMD patients. The mutations responsible for Duchenne muscular dystrophy mainly include exon deletions (70% of patients) and point mutations (about 30% of patients). The CRISPR-Cas 9 technology is becoming increasingly precise and is acquiring diverse functions through novel innovations such as base editing and prime editing. However, questions remain about its translation to the clinic. Current research addressing off-target editing, efficient muscle-specific delivery, immune response to nucleases, and vector challenges may eventually lead to the clinical use of the CRISPR-Cas9 technology. In this review, we present recent CRISPR-Cas9 strategies to restore dystrophin expression in vitro and in animal models of DMD.
Collapse
Affiliation(s)
- Cedric Happi Mbakam
- CHU de Québec Research Center - Laval University, Québec, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, Québec, Canada
| | - Gabriel Lamothe
- CHU de Québec Research Center - Laval University, Québec, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, Québec, Canada
| | - Guillaume Tremblay
- CHU de Québec Research Center - Laval University, Québec, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, Québec, Canada
| | - Jacques P Tremblay
- CHU de Québec Research Center - Laval University, Québec, Canada.
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, Québec, Canada.
| |
Collapse
|
42
|
Wang N, Lysenkov V, Orte K, Kairisto V, Aakko J, Khan S, Elo LL. Tool evaluation for the detection of variably sized indels from next generation whole genome and targeted sequencing data. PLoS Comput Biol 2022; 18:e1009269. [PMID: 35176018 PMCID: PMC8916674 DOI: 10.1371/journal.pcbi.1009269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/11/2022] [Accepted: 01/30/2022] [Indexed: 11/18/2022] Open
Abstract
Insertions and deletions (indels) in human genomes are associated with a wide range of phenotypes, including various clinical disorders. High-throughput, next generation sequencing (NGS) technologies enable the detection of short genetic variants, such as single nucleotide variants (SNVs) and indels. However, the variant calling accuracy for indels remains considerably lower than for SNVs. Here we present a comparative study of the performance of variant calling tools for indel calling, evaluated with a wide repertoire of NGS datasets. While there is no single optimal tool to suit all circumstances, our results demonstrate that the choice of variant calling tool greatly impacts the precision and recall of indel calling. Furthermore, to reliably detect indels, it is essential to choose NGS technologies that offer a long read length and high coverage coupled with specific variant calling tools.
Collapse
Affiliation(s)
- Ning Wang
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Vladislav Lysenkov
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Katri Orte
- Department of Pathology, Laboratory Division, Turku University Hospital, Turku, Finland
- Department of Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| | - Veli Kairisto
- Department of Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| | - Juhani Aakko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sofia Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- * E-mail: (SK); (LLE)
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Finland
- * E-mail: (SK); (LLE)
| |
Collapse
|
43
|
Xu H, Zhao C, Lan Q, Li S, Liu Y, Mei S, Fang Y, Zhu B. Forensic features and genetic structure revealed by 47 Individual Identification InDels in the Shaanxi Han population. Leg Med (Tokyo) 2022; 56:102030. [DOI: 10.1016/j.legalmed.2022.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
44
|
A novel mutation at the AMEL primer binding region on the Y chromosome in AMELY negative male. Int J Legal Med 2022; 136:519-526. [DOI: 10.1007/s00414-022-02781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
|
45
|
Fan H, He Y, Li S, Xie Q, Wang F, Du Z, Fang Y, Qiu P, Zhu B. Systematic Evaluation of a Novel 6-dye Direct and Multiplex PCR-CE-Based InDel Typing System for Forensic Purposes. Front Genet 2022; 12:744645. [PMID: 35082827 PMCID: PMC8784372 DOI: 10.3389/fgene.2021.744645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
Insertion/deletion (InDel) polymorphisms, combined desirable characteristics of both short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs), are considerable potential in the fields of forensic practices and population genetics. However, most commercial InDel kits designed based on non-Asians limited extensive forensic applications in East Asian (EAS) populations. Recently, a novel 6-dye direct and multiplex PCR-CE-based typing system was designed on the basis of genome-wide EAS population data, which could amplify 60 molecular genetic markers, consisting of 57 autosomal InDels (A-InDels), 2 Y-chromosomal InDels (Y-InDels), and Amelogenin in a single PCR reaction and detect by capillary electrophoresis, simultaneously. In the present study, the DNA profiles of 279 unrelated individuals from the Hainan Li group were generated by the novel typing system. In addition, we collected two A-InDel sets to evaluate the forensic performances of the novel system in the 1,000 Genomes Project (1KG) populations and Hainan Li group. For the Universal A-InDel set (UAIS, containing 44 A-InDels) the cumulative power of discrimination (CPD) ranged from 1-1.03 × 10-14 to 1-1.27 × 10-18, and the cumulative power of exclusion (CPE) varied from 0.993634 to 0.999908 in the 1KG populations. For the East Asia-based A-InDel set (EAIS, containing 57 A-InDels) the CPD spanned from 1-1.32 × 10-23 to 1-9.42 × 10-24, and the CPE ranged from 0.999965 to 0.999997. In the Hainan Li group, the average heterozygote (He) was 0.4666 (0.2366-0.5448), and the polymorphism information content (PIC) spanned from 0.2116 to 0.3750 (mean PIC: 0.3563 ± 0.0291). In total, the CPD and CPE of 57 A-InDels were 1-1.32 × 10-23 and 0.999965, respectively. Consequently, the novel 6-dye direct and multiplex PCR-CE-based typing system could be considered as the reliable and robust tool for human identification and intercontinental population differentiation, and supplied additional information for kinship analysis in the 1KG populations and Hainan Li group.
Collapse
Affiliation(s)
- Haoliang Fan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Yitong He
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Shuanglin Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qiqian Xie
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Fenfen Wang
- First Clinical Medical College, Hainan Medical University, Haikou, China
| | - Zhengming Du
- First Clinical Medical College, Hainan Medical University, Haikou, China
| | - Yating Fang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Pingming Qiu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
46
|
Hussain HI, Iqbal Z, Iqbal M, Kuang X, Wang Y, Yang L, Ihsan A, Aqib AI, Kaleem QM, Gu Y, Hao H. Coexistence of virulence and β-lactamase genes in avian pathogenic Escherichia coli. Microb Pathog 2022; 163:105389. [PMID: 34998933 DOI: 10.1016/j.micpath.2022.105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Emergence of multidrug resistance in E. coli and advent of newer strains is becoming serious concern which requires keen observations. This study was designed to find the ciprofloxacin resistant E. coli isolates co-existed with multi-drug resistance along with β-lactamase production from poultry source, and finally the genome sequencing of these strains to explore genetic variations. Study constituted on isolation of n = 225 E. coli from broiler farms of central China which were further subjected to identification of resistance against ciprofloxacin followed by antibiogram of n = 26 antibiotics and identification of β-lactamase production. Whole genome resequencing was performed using Illumina HiSeq 4000 system. PCR results revealed predominant β-lactamase genes i.e.CTX-M, CTX-M-1, CTX-M3, TEM-1 and OXA. Furthermore, the MDR isolates were containing most of the tested virulence genes. The most prevalent virulence genes were pap-C, fim-C, fim-H, iuc-D, irp-2, tra-T, iro-N and iut-A. The single nucleotide polymorphisms (SNPs) loci mentioned in this data give valuable genetic markers to growing high-throughput techniques for fine-determination of genotyping of MDR and virulent isolates. Characterization of SNPs on functional basis shed new bits of knowledge on the evolution, disease transmission and pathogenesis of MDR E. coli isolates. In conclusion, these findings provide evidence that most of poultry E. coli are MDR, β-lactamase producers, and virulent which could be a zoonotic threat to the humans. The whole genome resequencing data provide higher resolution of resistance and virulence characteristics in E. coli which can further be used for the development of prevention and treatment strategies.
Collapse
Affiliation(s)
- Hafiz Iftikhar Hussain
- National Reference Laboratory of Veterinary Drug Residues /MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China; Department of Pathology, Cholistan University of Veterinary & Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Zahid Iqbal
- Department of Pharmacology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary & Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Xiuhua Kuang
- National Reference Laboratory of Veterinary Drug Residues /MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China; Medicinal Engineering Department, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450011, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues /MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingquan Yang
- National Reference Laboratory of Veterinary Drug Residues /MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | | | - Yufeng Gu
- National Reference Laboratory of Veterinary Drug Residues /MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues /MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
47
|
Domogala DD, Gambin T, Zemet R, Wu CW, Schulze KV, Yang Y, Wilson TA, Machol I, Liu P, Stankiewicz P. Detection of low-level parental somatic mosaicism for clinically relevant SNVs and indels identified in a large exome sequencing dataset. Hum Genomics 2021; 15:72. [PMID: 34930489 PMCID: PMC8686574 DOI: 10.1186/s40246-021-00369-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Due to the limitations of the current routine diagnostic methods, low-level somatic mosaicism with variant allele fraction (VAF) < 10% is often undetected in clinical settings. To date, only a few studies have attempted to analyze tissue distribution of low-level parental mosaicism in a large clinical exome sequencing (ES) cohort. METHODS Using a customized bioinformatics pipeline, we analyzed apparent de novo single-nucleotide variants or indels identified in the affected probands in ES trio data at Baylor Genetics clinical laboratories. Clinically relevant variants with VAFs between 30 and 70% in probands and lower than 10% in one parent were studied. DNA samples extracted from saliva, buccal cells, redrawn peripheral blood, urine, hair follicles, and nail, representing all three germ layers, were tested using PCR amplicon next-generation sequencing (amplicon NGS) and droplet digital PCR (ddPCR). RESULTS In a cohort of 592 clinical ES trios, we found 61 trios, each with one parent suspected of low-level mosaicism. In 21 parents, the variants were validated using amplicon NGS and seven of them by ddPCR in peripheral blood DNA samples. The parental VAFs in blood samples varied between 0.08 and 9%. The distribution of VAFs in additional tissues ranged from 0.03% in hair follicles to 9% in re-drawn peripheral blood. CONCLUSIONS Our study illustrates the importance of analyzing ES data using sensitive computational and molecular methods for low-level parental somatic mosaicism for clinically relevant variants previously diagnosed in routine clinical diagnostics as apparent de novo.
Collapse
Affiliation(s)
- Daniel D Domogala
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Graduate Program in Diagnostic Genetics, School of Health Professions, University of Texas at MD Anderson, Houston, TX, USA
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chung Wah Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Baylor Genetics, Houston, TX, USA
| | - Katharina V Schulze
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Baylor Genetics, Houston, TX, USA
| | - Yaping Yang
- AiLife Diagnostics, 1920 Country Place Pkwy Suite 100, Pearland, TX, USA
| | - Theresa A Wilson
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | | | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Baylor Genetics, Houston, TX, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
48
|
Grace CA, Forrester S, Silva VC, Carvalho KSS, Kilford H, Chew YP, James S, Costa DL, Mottram JC, Costa CCHN, Jeffares DC. Candidates for Balancing Selection in Leishmania donovani Complex Parasites. Genome Biol Evol 2021; 13:6448231. [PMID: 34865011 PMCID: PMC8717319 DOI: 10.1093/gbe/evab265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
The Leishmania donovani species complex is the causative agent of visceral leishmaniasis, which cause 20–40,000 fatalities a year. Here, we conduct a screen for balancing selection in this species complex. We used 384 publicly available L. donovani and L. infantum genomes, and sequence 93 isolates of L. infantum from Brazil to describe the global diversity of this species complex. We identify five genetically distinct populations that are sufficiently represented by genomic data to search for signatures of selection. We find that signals of balancing selection are generally not shared between populations, consistent with transient adaptive events, rather than long-term balancing selection. We then apply multiple diversity metrics to identify candidate genes with robust signatures of balancing selection, identifying a curated set of 24 genes with robust signatures. These include zeta toxin, nodulin-like, and flagellum attachment proteins. This study highlights the extent of genetic divergence between L. donovani complex parasites and provides genes for further study.
Collapse
Affiliation(s)
- Cooper Alastair Grace
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Sarah Forrester
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Vladimir Costa Silva
- Instituto de Doenças do Sertão, Instituto de Doenças Tropicais Natan Portella, Centro de Ciências da Saúde da Universidade Federal do Piauí, Teresina-PI, Brazil
| | - Kátia Silene Sousa Carvalho
- Instituto de Doenças do Sertão, Instituto de Doenças Tropicais Natan Portella, Centro de Ciências da Saúde da Universidade Federal do Piauí, Teresina-PI, Brazil
| | - Hannah Kilford
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Yen Peng Chew
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom.,Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sally James
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Dorcas L Costa
- Instituto de Doenças do Sertão, Instituto de Doenças Tropicais Natan Portella, Centro de Ciências da Saúde da Universidade Federal do Piauí, Teresina-PI, Brazil
| | - Jeremy C Mottram
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Carlos C H N Costa
- Instituto de Doenças do Sertão, Instituto de Doenças Tropicais Natan Portella, Centro de Ciências da Saúde da Universidade Federal do Piauí, Teresina-PI, Brazil
| | - Daniel C Jeffares
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
49
|
Wang M, Du W, Tang R, Liu Y, Zou X, Yuan D, Wang Z, Liu J, Guo J, Yang X, Chen J, Yang M, Zhang X, Wei LH, Yuan H, Yeh HY, Wang CC, Liu C, He G. Genomic history and forensic characteristics of Sherpa highlanders on the Tibetan Plateau inferred from high-resolution InDel panel and genome-wide SNPs. Forensic Sci Int Genet 2021; 56:102633. [PMID: 34826721 DOI: 10.1016/j.fsigen.2021.102633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 11/18/2022]
Abstract
Sherpa people, one of the high-altitude hypoxic adaptive populations, mainly reside in Nepal and the southern Tibet Autonomous Region. The genetic origin and detailed evolutionary profiles of Sherpas remain to be further explored and comprehensively characterized. Here we analyzed the newly-generated InDel genotype data from 628 Dingjie Sherpas by merging with 4222 worldwide InDel profiles and collected genome-wide SNP data (approximately 600K SNPs) from 1612 individuals in 191 modern and ancient populations to explore and reconstruct the fine-scale genetic structure of Sherpas and their relationships with nearby modern and ancient East Asians based on the shared alleles and haplotypes. The forensic parameters of 57 autosomal InDels (A-InDels) included in our used new-generation InDel amplification system showed that this focused InDel panel is informative and polymorphic in Dingjie Sherpas, suggesting that it can be used as the supplementary tool for forensic personal identification and parentage testing in Dingjie Sherpas. Descriptive findings from the PCA, ADMIXTURE, and TreeMix-based phylogenies suggested that studied Nepal Sherpas showed excess allele sharing with neighboring Tibeto-Burman Tibetans. Furthermore, patterns of allele sharing in f-statistics demonstrated that Nepal Sherpas had a different evolutionary history compared with their neighbors from Nepal (Newar and Gurung) but showed genetic similarity with 2700-year-old Chokhopani and modern Tibet Tibetans. QpAdm/qpGraph-based admixture sources and models further showed that Sherpas, core Tibetans, and Chokhopani formed one clade, which could be fitted as having the main ancestry from late Neolithic Qijia millet farmers and other deep ancestries from early Asians. Chromosome painting profiles and shared IBD fragments inferred from fineSTRUCTURE and ChromoPainter not only confirmed the abovementioned genomic affinity patterns but also revealed the fine-scale genetic microstructures among Sino-Tibetan speakers. Finally, natural-selection signals revealed via iHS, nSL and iHH12 showed natural selection signatures associated with disease susceptibility in Sherpas. Generally, we provided the comprehensive landscape of admixture and evolutionary history of Sherpa people based on the shared alleles and haplotypes from the InDel-based genotype data and high-density genome-wide SNP data. The more detailed genetic landscape of Sherpa people should be further confirmed and characterized via ancient genomes or single-molecule real-time sequencing technology.
Collapse
Affiliation(s)
- Mengge Wang
- Guangzhou Forensic Science Institute, Guangzhou 510030, PR China; Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road II, Guangzhou 510080, PR China
| | - Weian Du
- AGCU ScienTech Incorporation, Wuxi 214174, PR China; School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan Liu
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, PR China
| | - Xing Zou
- College of Basic Medicine, Chongqing University, Chongqing 400016, PR China; Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu 610000, PR China
| | - Didi Yuan
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu 610000, PR China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu 610000, PR China
| | - Jianxin Guo
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, State Key Laboratory of Marine Environmental Science, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, State Key Laboratory of Marine Environmental Science, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Jing Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, PR China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, PR China
| | - Xianpeng Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Lan-Hai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, State Key Laboratory of Marine Environmental Science, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Haibing Yuan
- National Demonstration Center for Experimental Archaeology Education and Department of Archaeology, Sichuan University, Chengdu 610200, PR China; School of Archaeology and Museology & National Demonstration Center for Experimental Archaeology Education, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Hui-Yuan Yeh
- School of Humanities, Nanyang Technological University, Nanyang 639798, Singapore.
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, State Key Laboratory of Marine Environmental Science, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, PR China.
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou 510030, PR China; Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road II, Guangzhou 510080, PR China; School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Guanglin He
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, State Key Laboratory of Marine Environmental Science, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, PR China; School of Humanities, Nanyang Technological University, Nanyang 639798, Singapore.
| |
Collapse
|
50
|
Characterization of a 7 bp indel in MARCH1 promoter associated with reproductive traits in Malabari and Attappady Black goats of India. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|