1
|
Singin Ö, Astapenka A, Costina V, Kühl S, Bonekamp N, Drews O, Islinger M. Analysis of the Mouse Hepatic Peroxisome Proteome-Identification of Novel Protein Constituents Using a Semi-Quantitative SWATH-MS Approach. Cells 2024; 13:176. [PMID: 38247867 PMCID: PMC10814758 DOI: 10.3390/cells13020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Ongoing technical and bioinformatics improvements in mass spectrometry (MS) allow for the identifying and quantifying of the enrichment of increasingly less-abundant proteins in individual fractions. Accordingly, this study reassessed the proteome of mouse liver peroxisomes by the parallel isolation of peroxisomes from a mitochondria- and a microsome-enriched prefraction, combining density-gradient centrifugation with a semi-quantitative SWATH-MS proteomics approach to unveil novel peroxisomal or peroxisome-associated proteins. In total, 1071 proteins were identified using MS and assessed in terms of their distribution in either high-density peroxisomal or low-density gradient fractions, containing the bulk of organelle material. Combining the data from both fractionation approaches allowed for the identification of specific protein profiles characteristic of mitochondria, the ER and peroxisomes. Among the proteins significantly enriched in the peroxisomal cluster were several novel peroxisomal candidates. Five of those were validated by colocalization in peroxisomes, using confocal microscopy. The peroxisomal import of HTATIP2 and PAFAH2, which contain a peroxisome-targeting sequence 1 (PTS1), could be confirmed by overexpression in HepG2 cells. The candidates SAR1B and PDCD6, which are known ER-exit-site proteins, did not directly colocalize with peroxisomes, but resided at ER sites, which frequently surrounded peroxisomes. Hence, both proteins might concentrate at presumably co-purified peroxisome-ER membrane contacts. Intriguingly, the fifth candidate, OCIA domain-containing protein 1, was previously described as decreasing mitochondrial network formation. In this work, we confirmed its peroxisomal localization and further observed a reduction in peroxisome numbers in response to OCIAD1 overexpression. Hence, OCIAD1 appears to be a novel protein, which has an impact on both mitochondrial and peroxisomal maintenance.
Collapse
Affiliation(s)
- Öznur Singin
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| | - Artur Astapenka
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| | - Victor Costina
- Institute of Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (V.C.); (O.D.)
| | - Sandra Kühl
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| | - Nina Bonekamp
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| | - Oliver Drews
- Institute of Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (V.C.); (O.D.)
- Biomedical Mass Spectrometry, Center for Medical Research, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Markus Islinger
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| |
Collapse
|
2
|
Cardinale CJ, Chang X, Wei Z, Qu HQ, Bradfield JP, Polychronakos C, Hakonarson H. Genome-wide association study of the age of onset of type 1 diabetes reveals HTATIP2 as a novel T cell regulator. Front Immunol 2023; 14:1101488. [PMID: 36817429 PMCID: PMC9930890 DOI: 10.3389/fimmu.2023.1101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Type 1 diabetes, a disorder caused by autoimmune destruction of pancreatic insulin-producing cells, is more difficult to manage when it presents at a younger age. We sought to identify genetic correlates of the age of onset by conducting the first genome-wide association study (GWAS) treating the age of first diagnosis as a quantitative trait. Methods We performed GWAS with a discovery cohort of 4,014 cases and a replication cohort of 493 independent cases. Genome-wide significant SNPs were mapped to a causal variant by Bayesian conditional analysis and gel shift assay. The causal protein-coding gene was identified and characterized by RNA interference treatment of primary human pan-CD4+ T cells with RNA-seq of the transcriptome. The candidate gene was evaluated functionally in primary cells by CD69 staining and proliferation assays. Results Our GWAS replicated the known association of the age of diagnosis with the human leukocyte antigen complex (HLA-DQB1). The second signal identified was in an intron of the NELL1 gene on chromosome 11 and fine-mapped to variant rs10833518 (P < 1.54 × 10-9). Homozygosity for the risk allele leads to average age of onset one year earlier. Knock-down of HIV TAT-interacting protein 2 (HTATIP2), but not other genes in the locus, resulted in alterations to gene expression in signal transduction pathways including MAP kinases and PI3-kinase. Higher levels of HTATIP2 expression are associated with increased viability, proliferation, and activation of T cells in the presence of signals from antigen and cytokine receptors. Discussion This study implicates HTATIP2 as a new type 1 diabetes gene acting via T cell regulation. Larger population sample sizes are expected to reveal additional loci.
Collapse
Affiliation(s)
- Christopher J Cardinale
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Xiao Chang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,College of Artificial Intelligence and Big Data For Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Hui-Qi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | | | | | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
METİN MS, BİLEN H, ELMAS ÖF, AKDENİZ N. The potential role of human HIV-1 TAT-Interactive Protein 2 levels in the pathogenesis of contact dermatitis. Turk J Med Sci 2021; 51:3017-3021. [PMID: 34688245 PMCID: PMC10734859 DOI: 10.3906/sag-2106-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/13/2021] [Accepted: 10/23/2021] [Indexed: 11/03/2022] Open
Abstract
Background/aim Human HIV-1 TAT interactive protein 2 (HTATIP2/TIP30) is a gene that is extensively expressed in human tissues as well as in tumor tissues. This study aimed to explore the potential role of HTATIP2/TIP30 in contact dermatitis (CD), which is one of the most common inflammatory cutaneous conditions. Materials and methods This cross-sectional study involved adult patients with acute contact dermatitis who were admitted to the outpatient dermatology clinic of a tertiary hospital and healthy adult volunteers without any cutaneous or systemic diseases. The blood concentration of HTATIP2/TIP30 was measured using ELISA kits. Results The research sample consisted of 31 patients with CD (18 males, 13 females) and 20 healthy control subjects (14 males, 6 females). The mean ages of the patients with CD and healthy volunteers were 37 and 30 years, respectively (p > 0.05). The mean value of serum HTATIP2/TIP30 levels in patients with CD was 1.65 ng ml–1, which is 0.60 ng ml–1 in the control group (p = 0.02) Conclusion In this study, serum levels of HTATIP2/TIP30 were statistically significantly higher in patients with CD when compared to healthy controls. This outcome may indicate possible role of HTATIP2/TIP30 in the pathogenesis of CD.
Collapse
Affiliation(s)
- Mahmut Sami METİN
- Department of Dermatology, Faculty of Medicine, Kırşehir Ahi Evran University, Kırşehir,
Turkey
| | - Handan BİLEN
- Department of Dermatology, Faculty of Medicine, Ataturk University, Erzurum,
Turkey
| | - Ömer Faruk ELMAS
- Department of Dermatology, Faculty of Medicine, Kırıkkale University, Kırıkkale,
Turkey
| | - Necmettin AKDENİZ
- Department of Dermatology, Memorial Ataşehir Hospital, İstanbul,
Turkey
| |
Collapse
|
4
|
He Z, Deng F, Ma Z, Zhang Q, He J, Ye L, Chen H, Yang D, He L, Luo J, Yan T. Molecular characterization, expression, and apoptosis regulation of siva1 in protogynous hermaphrodite fish ricefield eel (Monopterus albus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1585-1596. [PMID: 34414556 DOI: 10.1007/s10695-021-00997-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Siva1, which induces extensive apoptosis, has been well characterized. To elucidate the molecular function of Siva1 in ricefield eel, molecular characterization and phylogenetic analysis were performed, and the mRNA expression in the ovary at different developmental stages and ovary tissues exposed to H2O2 and Z-VAD-FMK in vitro were also evaluated. The results indicated that ricefield eel Siva1 was highly conserved and contains three conserved motifs, despite 83 amino acid differences upstream of the initiation codon. Phylogenetic analysis demonstrated that ricefield eel Siva1 clusters together with the Siva1 protein of the other fish, with high sequence homology with that of Lates calcarifer. Quantitative real-time polymerase chain reaction analysis showed high siva1 expression levels in the ovary and low expression levels in the liver. The higher mRNA levels of siva1 were detected in the IE and IM, and the lower siva1 mRNA levels were found in the OM, IL, and TE during gonadal development. Additionally, siva1 expression levels in the ovarian tissues were significantly increased at 1 h post incubation (hpi) with H2O2 and then significantly decreased at 2 hpi; however, siva1 expression was upregulated significantly at 4 and 8 hpi, similar to the patterns observed with caspase3, which was used as a molecular marker of apoptosis. Moreover, the siva1 mRNAs were elevated significantly than that in control groups at 1 hpi, but the expression of siva1 was down-regulated dramatically at 2, 4, and 8 hpi, which were similar with that of caspase3 expression profiles after Z-VAD-FMK incubation. What's more, Pearson's correlation coefficients showed strongly positive relationships between siva1 and caspase3. These findings suggest that Siva1 plays an important apoptosis role in gonadal development of ricefield eel.
Collapse
Affiliation(s)
- Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Faqiang Deng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhijun Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiayang He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijuan Ye
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongjun Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liang He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Yu L, Wang X, Zhang W, Khan E, Lin C, Guo C. The multiple regulation of metastasis suppressor NM23-H1 in cancer. Life Sci 2021; 268:118995. [PMID: 33421524 DOI: 10.1016/j.lfs.2020.118995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
Metastasis is one of the leading causes of mortality in cancer patients. As the firstly identified metastasis suppressor, NM23-H1 has been endowed with expectation as a potent target in metastatic cancer therapy during the past decades. However, many challenges impede its clinical use. Accumulating evidence shows that NM23-H1 has a dichotomous role in tumor metastasis as a suppressor and promoter. It has potentially attributed to its versatile biochemical characteristics such as nucleoside diphosphate kinase (NDPK) activity, histidine kinase activity (HPK), exonuclease activity, and protein scaffold, which further augment the complexity and uncertainty of its physiological function. Simultaneously, tumor cells have evolved multiple ways to regulate the expression and function of NM23-H1 during tumorigenesis and metastasis. This review summarized and discussed the regulatory mechanisms of NM23-H1 in cancer including transcriptional activation, subcellular location, enzymatic activity, and protein degradation, which significantly modulate its anti-metastatic function.
Collapse
Affiliation(s)
- Liting Yu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Xindong Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Wanheng Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China; School of Engineering, China Pharmaceutical University, Nanjing, PR China
| | - Eshan Khan
- Department of Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Chenyu Lin
- Department of Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
6
|
Wang XT, Li L, Kong FB, Zhong XG, Mai W. Lentivirus-Mediated Overexpression of SIVA-1 Reverses Cisplatin Resistance in Gastric Cancer in vitro. Cell Biochem Biophys 2020; 78:455-463. [PMID: 32648086 DOI: 10.1007/s12013-020-00929-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/24/2020] [Indexed: 11/26/2022]
Abstract
SIVA-1 plays a critical role in the induction of apoptosis in a number of different cell lines and participates in the mechanism of cisplatin (DDP)-mediated antitumor effects. However, the involvement of SIVA-1 in cisplatin resistance in gastric carcinoma has not been revealed. To explore the effect of SIVA-1 on DDP resistance, a recombinant pGV358-GFP-SIVA-1 lentiviral vector was constructed and transfected into human cisplatin-resistant MKN45/DDP gastric cancer cells. Subsequently, stable SIVA-1 overexpression was established in MKN45/DDP cells, which resulted in increased DDP sensitivity in MKN45/DDP cells in vitro. Flow cytometry demonstrated that SIVA-1 overexpression increased the percentage of apoptotic cells compared to that in the control. The colony formation assay clearly revealed that cell growth and proliferation were significantly suppressed following SIVA-1 overexpression. In addition, overexpression of SIVA-1 inhibited the migratory and invasive potential of MKN45/DDP cells in vitro. Western blot analysis indicated that SIVA-1 increased the expression levels of p53, p73, and p14ARF, whereas it reduced Bcl-2, MDM2, and Bcl-xL expression. In short, SIVA-1 upregulated the protein expression of p53, p73, and p14ARF and decreased that of Bcl-2, MDM2, and Bcl-xL in vitro and subsequently reversed cisplatin resistance in gastric cancer cells, suggesting that SIVA-1 serves as a valuable potential target for attenuating chemotherapy resistance.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Li
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fan-Biao Kong
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| | - Xiao-Gang Zhong
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| | - Wei Mai
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
7
|
Li M, Li J, Guo X, Pan H, Zhou Q. Absence of HTATIP2 Expression in A549 Lung Adenocarcinoma Cells Promotes Tumor Plasticity in Response to Hypoxic Stress. Cancers (Basel) 2020; 12:cancers12061538. [PMID: 32545251 PMCID: PMC7352940 DOI: 10.3390/cancers12061538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
HIV-1 Tat Interactive Protein 2 (HTATIP2) is a tumor suppressor, of which reduced or absent expression is associated with increased susceptibility to tumorigenesis and enhanced tumor invasion and metastasis. However, whether the absent expression of HTATIP2 is a tumor-promoting factor that acts through improving tumor adaptation to hypoxia is unclear. Here, we established a stable HTATIP2-knockdown A549 human lung adenocarcinoma cell line (A549shHTATIP2) using lentiviral-delivered HTATIP2-targeting short hairpin RNA (shRNA), employed a double subcutaneous xenograft model and incorporated photoacoustic imaging and metabolomics approaches to elucidate the impact of the absent HTATIP2 expression on tumor response to hypoxic stress. Results from the in vivo study showed that A549shHTATIP2 tumors exhibited accelerated growth but decreased intratumoral oxygenation and angiogenesis and reduced sensitivity to sorafenib treatment as compared with their parental counterparts. Moreover, results of the immunoblot and real-time PCR analyses revealed that the HIF2α protein and mRNA levels in vehicle-treated A549shHTATIP2 tumors were significantly increased (p < 0.01 compared with the parental control tumors). Despite the strong HIF2α-c-Myc protein interaction indicated by our co-immunoprecipitation data, the increase in the c-Myc protein and mRNA levels was not significant in the A549shHTATIP2 tumors. Nonetheless, MCL-1 and β-catenin protein levels in A549shHTATIP2 tumors were significantly increased (p < 0.05 compared with the parental control tumors), suggesting an enhanced β-catenin/c-Myc/MCL-1 pathway in the absence of HTATIP2 expression. The finding of significantly decreased E-cadherin (p < 0.01 compared with vehicle-treated A549shHTATIP2 tumors) and increased vimentin (p < 0.05 compared with sorafenib-treated A549 tumors) protein levels in A549shHTATIP2 tumors implicates that the absence of HTATIP2 expression increases the susceptibility of A549 tumors to sorafenib-activated epithelial-mesenchymal transition (EMT) process. Comparison of the metabolomic profiles between A549 and A549shHTATIP2 tumors demonstrated that the absence of HTATIP2 expression resulted in increased tumor metabolic plasticity that enabled tumor cells to exploit alternative metabolic pathways for survival and proliferation rather than relying on glutamine and fatty acids as a carbon source to replenish TCA cycle intermediates. Our data suggest a mechanism by which the absent HTATIP2 expression modulates tumor adaptation to hypoxia and promotes an aggressive tumor phenotype by enhancing the HIF2α-regulated β-catenin/c-Myc/MCL-1 signaling, increasing the susceptibility of tumors to sorafenib treatment-activated EMT process, and improving tumor metabolic plasticity.
Collapse
Affiliation(s)
- Minghua Li
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (M.L.); (X.G.)
| | - Jing Li
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Xiaofang Guo
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (M.L.); (X.G.)
| | - Hua Pan
- Division of Cardiovascular Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Qingyu Zhou
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (M.L.); (X.G.)
- Correspondence: ; Tel.: +1-813-974-7081
| |
Collapse
|
8
|
Grund A, Szaroszyk M, Korf-Klingebiel M, Malek Mohammadi M, Trogisch FA, Schrameck U, Gigina A, Tiedje C, Gaestel M, Kraft T, Hegermann J, Batkai S, Thum T, Perrot A, Remedios CD, Riechert E, Völkers M, Doroudgar S, Jungmann A, Bauer R, Yin X, Mayr M, Wollert KC, Pich A, Xiao H, Katus HA, Bauersachs J, Müller OJ, Heineke J. TIP30 counteracts cardiac hypertrophy and failure by inhibiting translational elongation. EMBO Mol Med 2019; 11:e10018. [PMID: 31468715 PMCID: PMC6783653 DOI: 10.15252/emmm.201810018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Pathological cardiac overload induces myocardial protein synthesis and hypertrophy, which predisposes to heart failure. To inhibit hypertrophy therapeutically, the identification of negative regulators of cardiomyocyte protein synthesis is needed. Here, we identified the tumor suppressor protein TIP30 as novel inhibitor of cardiac hypertrophy and dysfunction. Reduced TIP30 levels in mice entailed exaggerated cardiac growth during experimental pressure overload, which was associated with cardiomyocyte cellular hypertrophy, increased myocardial protein synthesis, reduced capillary density, and left ventricular dysfunction. Pharmacological inhibition of protein synthesis improved these defects. Our results are relevant for human disease, since we found diminished cardiac TIP30 levels in samples from patients suffering from end‐stage heart failure or hypertrophic cardiomyopathy. Importantly, therapeutic overexpression of TIP30 in mouse hearts inhibited cardiac hypertrophy and improved left ventricular function during pressure overload and in cardiomyopathic mdx mice. Mechanistically, we identified a previously unknown anti‐hypertrophic mechanism, whereby TIP30 binds the eukaryotic elongation factor 1A (eEF1A) to prevent the interaction with its essential co‐factor eEF1B2 and translational elongation. Therefore, TIP30 could be a therapeutic target to counteract cardiac hypertrophy.
Collapse
Affiliation(s)
- Andrea Grund
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Malgorzata Szaroszyk
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | | - Mona Malek Mohammadi
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Felix A Trogisch
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ulrike Schrameck
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Anna Gigina
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Christopher Tiedje
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute for Molecular and Cellphysiology, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Sandor Batkai
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Andreas Perrot
- Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Eva Riechert
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Shirin Doroudgar
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Andreas Jungmann
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bauer
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Xiaoke Yin
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Kai C Wollert
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Core Unit Proteomics, Hannover Medical School, Hannover, Germany
| | - Hua Xiao
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johann Bauersachs
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Oliver J Müller
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Joerg Heineke
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
9
|
Lin X, Tang X, Zheng T, Qiu J, Hua K. Long Non-Coding RNA NONHSAT076754 Promotes Invasion and Metastasis in Epithelial Ovarian Cancer. J Cancer 2019; 10:1930-1940. [PMID: 31205552 PMCID: PMC6547989 DOI: 10.7150/jca.29057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/23/2019] [Indexed: 12/22/2022] Open
Abstract
Although accumulating evidence suggests that long non-coding RNAs (lncRNAs) are critical determinants of ovarian cancer development and progression, reports of metastasis-associated lncRNAs are limited. Here, we focused on NONHSAT076754 and explored its expression level, clinical value, biological behavior and molecular basis in epithelial ovarian cancer (EOC) metastasis. The results showed that NONHSAT076754 expression was increased in EOC tissues and cell lines and that this expression was closely related with FIGO stage, high tumor grade and lymph node metastasis. Furthermore, NONHSAT076754 knockdown markedly inhibited EOC cell migration and invasion in vitro. Consistently, the in vivo data from both the bioluminescence imaging and tumor dissection revealed that depletion of NONHSAT076754 reduced EOC metastasis. Mechanically, the pro-metastatic activities of NONHSAT076754 were partially regulated by PTEN and HTATIP2. Further rescue assays validated that knockdown of HTATIP2 remarkably reversed NONHSAT076754 silencer-induced inhibition of EOC cell metastasis. These data indicate that NONHSAT076754 is a vital regulator of EOC metastasis, laying the foundation for lncRNA-based clinical management of EOC aggressiveness and metastasis.
Collapse
Affiliation(s)
- Xiaojing Lin
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China.,Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, P.R. China
| | - Xiaoyan Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China.,Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, P.R. China
| | - Tingting Zheng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China.,Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, P.R. China
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China.,Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, P.R. China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China.,Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
10
|
Chen CJ, Chou PA, Huang MS, Liu YP. Low TIP30 Protein Expression is Associated with a High Risk of Metastasis and Poor Prognosis for Non-Small-Cell Lung Cancer. J Clin Med 2019; 8:jcm8010083. [PMID: 30642057 PMCID: PMC6352086 DOI: 10.3390/jcm8010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 01/10/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a deadly malignancy with a high prevalence worldwide. A reliable biomarker that can predict the prognosis is required to determine the therapeutic strategy. TIP30 was first identified as a tumor suppressor. A number of mechanistic studies indicated that the downregulation of TIP30 enhances the stemness, migration and survival of NSCLC cells. However, the clinical relevance of TIP30 for the prognosis of NSCLC is unknown. From a meta-analysis of public microarray datasets, we showed the upregulation of TIP30 mRNA expression was associated with worse overall survival of NSCLC patients, which contradicted the tumor suppressive role of TIP30. It is worth noting that the TIP30 mRNA expression was not correlated with its protein expression in 15 NSCLC cell lines. The results from the immunohistochemistry of a tissue microarray showed the downregulation of the TIP30 protein expression was associated with a higher risk of metastasis. In addition, the decrease in TIP30 protein was correlated with worse overall and progression-free survival of the NSCLC patients. Multivariate analysis suggested the loss of TIP30 protein was an independent factor to predict the poor prognosis of NSCLC. Our data indicated that TIP30 protein, not mRNA, would be a potential prognostic biomarker of NSCLC.
Collapse
Affiliation(s)
- Chao-Ju Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Po-An Chou
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, E-DA Cancer Hospital, Kaohsiung 807, Taiwan.
| | - Ming-Shyan Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, E-DA Cancer Hospital, Kaohsiung 807, Taiwan.
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 807, Taiwan.
| | - Yu-Peng Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
11
|
Vachtenheim J, Lischke R, Vachtenheim J. Siva-1 emerges as a tissue-specific oncogene beyond its classic role of a proapoptotic gene. Onco Targets Ther 2018; 11:6361-6367. [PMID: 30319276 PMCID: PMC6171514 DOI: 10.2147/ott.s173001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Siva-1 is a typical apoptotic protein commonly activated by the p53 tumor suppressor protein and should therefore participate in a barrier against the development of cancer. It has proapoptotic activities in various cell systems. Recent findings suggest that Siva-1 possesses several other apoptosis-independent functions and interacts with many other proteins not directly involved in apoptosis. It harbors the ARF E3 ubiquitin protein ligase activity, a property that is clearly prooncogenic and leads to p53 degradation through the upregulation of the Hdm2 protein level. Surprisingly, recent evidence shows that Siva-1 absence prevents the development of non-small cell lung carcinomas in a mouse model and reveals the oncogenic roles in the same types of human cells, indicating its unique function as an oncogene in the cell context-dependent manner. Herein, we review reported activities of Siva-1 in various experimental settings and comment on its ambiguous function in tumor biology.
Collapse
Affiliation(s)
- Jiri Vachtenheim
- Third Department of Surgery, First Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Robert Lischke
- Third Department of Surgery, First Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Jiri Vachtenheim
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, Czech Republic,
| |
Collapse
|
12
|
Liu YP, Chen CH, Yen CH, Tung CW, Chen CJ, Chen YMA, Huang MS. Human immunodeficiency virus Tat-TIP30 interaction promotes metastasis by enhancing the nuclear translocation of Snail in lung cancer cell lines. Cancer Sci 2018; 109:3105-3114. [PMID: 30099830 PMCID: PMC6172071 DOI: 10.1111/cas.13768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/02/2023] Open
Abstract
Lung cancer patients with human immunodeficiency virus (HIV) have a poorer prognosis than do patients without HIV infection. HIV1 Tat is a secreted viral protein that penetrates the plasma membrane and interacts with a number of proteins in non‐HIV‐infected cells. The loss of function of Tat‐interacting protein 30 (TIP30) has been linked to metastasis in non‐small cell lung cancer (NSCLC). However, it is unknown how the interaction of HIV1 Tat with TIP30 regulates the metastasis of NSCLC cells. In this study, the overexpression of TIP30 decreased tumor growth factor‐β‐induced epithelial‐to‐mesenchymal transition (EMT) and invasion of NSCLC cells, whereas the knockdown of TIP30 promoted EMT, invasion and stemness. Exposure to recombinant HIV1 Tat proteins promoted EMT and invasion. A mechanistic study showed that the interaction of HIV1 Tat with TIP30 blocked the binding of TIP30 to importin‐β, which is required for the nuclear translocation of Snail. Indeed, the loss of TIP30 promoted the nuclear translocation of Snail. In vivo studies demonstrated that the overexpression of TIP30 inhibited the metastasis of NSCLC cells. In contrast, the coexpression of HIV1 Tat and TIP30 diminished the inhibitory effect of TIP30 on metastasis. Immunohistochemistry confirmed that TIP30 overexpression reduced the nuclear localization of Snail, whereas the coexpression of HIV1 Tat and TIP30 increased nuclear Snail in metastatic tumors. In conclusion, the binding of HIV1 Tat to TIP30 enhanced EMT and metastasis by regulating the nuclear translocation of Snail. Targeting Tat‐interacting proteins may be a potential therapeutic strategy to prevent metastasis in NSCLC patients with HIV infection.
Collapse
Affiliation(s)
- Yu-Peng Liu
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Hsiung Chen
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Wei Tung
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Ju Chen
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ming A Chen
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, E-DA Cancer Hospital, Kaohsiung, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Li YP, Zhu JF, Huang KT, Wang RR, Cai B, Xie H, Chen HD. Reduction of Tat-interacting Protein 30 Expression Could be a Prognostic Marker in Bladder Urothelial Cancer. Chin Med J (Engl) 2018; 131:188-193. [PMID: 29336367 PMCID: PMC5776849 DOI: 10.4103/0366-6999.222325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: Tat-interacting protein 30 (TIP30) has been reported to be a tumor suppressor, with reduced or absent expression in various tumors. However, its role in bladder urothelial cancer (BUC) has not been investigated. Therefore, herein, we investigated the expression of TIP30 protein in BUC and normal bladder mucosa and the clinical significance of TIP30 expression in the prognosis of BUC. Methods: We reviewed data from 79 cases of BUC and 15 adjacent tissue samples from 79 patients treated at our institution between 2004 and 2007. TIP30 expression was examined by immunohistochemistry. The relationship between TIP30 expression and tumor stage, histological grade, and survival was analyzed. Differences between groups were evaluated using the t-test or matched-pairs test, and differences in the survival rates were analyzed with the log-rank test. Results: TIP30 protein expression was significantly reduced in BUC tissue (t = −6.91, P < 0.05) compared with normal tissue samples, and in invasive bladder cancer (t = 10.89, P < 0.05) compared with superficial bladder cancer. TIP30 protein expression differed significantly among different differentiated groups classified either according to the World Health Organization (2004, F = 17.48, P < 0.01) or World Health Organization (1973, F = 10.68, P < 0.01). TIP30 protein expression was significantly reduced in high-grade papillary urothelial carcinoma compared with papillary urothelial neoplasm of low malignant potential (P < 0.05) and low-grade papillary urothelial carcinoma (P < 0.05). Meanwhile, TIP30 protein expression was significantly reduced in Grade III BUC, compared with Grade I (P < 0.05) and Grade II (P < 0.05). Patients with low TIP30 expression showed a higher incidence of disease progression than those with high TIP30 expression (t = 2.63, P < 0.05). Kaplan-Meier survival analysis showed a strong positive relationship between TIP30 expression and overall survival (OS) (χ2 = 17.29, P < 0.05). Conclusions: TIP30 expression was associated with clinical tumor stage in BUC, suggesting that it might play an important role in disease progression. Furthermore, TIP30 might predict postoperative OS. Thus, its evaluation might be useful for predicting prognosis.
Collapse
Affiliation(s)
- Ye-Ping Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jian-Fang Zhu
- Department of Vascular Surgery, The Second Hospital of Shaoxing City, Shaoxing, Zhejiang 312000, China
| | - Ka-Te Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Rong-Rong Wang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bing Cai
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hui Xie
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hong-De Chen
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
14
|
Fan SS, Liao CS, Cao YD, Xiao PL, Deng T, Luo RC, Duan HX. A low serum Tat-interacting protein 30 level is a diagnostic and prognostic biomarker for hepatocellular carcinoma. Oncol Lett 2017; 13:4208-4214. [PMID: 28599422 PMCID: PMC5453031 DOI: 10.3892/ol.2017.6024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to evaluate the diagnostic and prognostic value of Tat-interacting protein 30 (HTATIP2/TIP30) levels alone and in combination with α-fetoprotein (AFP) for the evaluation of hepatocellular carcinoma (HCC) patients. ELISA and immunohistochemical measurements on the serum and tissue of HTATIP2/TIP30 protein from HCC patients and normal controls were made. Receiver operating characteristic (ROC) curve analyses of AFP and HTATIP2/TIP30 were performed, as well as logistic regression analysis of APF combined with HTATIP2/TIP30. Log-rank analysis was used to correlate the prognosis with various levels of HTATIP2/TIP30. HTATIP2/TIP30 levels were significantly lower in the HCC group compared with the control group (4.50±2.63 vs. 9.50±2.04 ng/ml, P<0.001). ROC analysis revealed an optimal cut-off point at 7.27 ng/ml HTATIP2/TIP30 for separating the HCC from the control groups. The sensitivity and specificity were 84.6 and 93.7% (P<0.001), respectively. ROC areas of HTATIP2/TIP30 (0.928, P<0.001) were significantly higher than those for AFP (P<0.001). The area under the curve of the HTATIP2/TIP30 and AFP combination was 0.950 (P<0.001). Log-rank tests revealed that the recurrence-free survival time of the group with HTATIP2/TIP30>5.71 ng/ml was significantly higher than that of the control group (P<0.001). This is the first study to demonstrate that HTATIP2/TIP30 levels in serum may be an effective biomarker for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Sha-Sha Fan
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China.,Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Chu-Shu Liao
- Blood Disease Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - You-De Cao
- Medical Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Pei-Ling Xiao
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Tan Deng
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Rong-Cheng Luo
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Hua-Xin Duan
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
15
|
Faridi U, Dhawan SS, Pal S, Gupta S, Shukla AK, Darokar MP, Sharma A, Shasany AK. Repurposing L-Menthol for Systems Medicine and Cancer Therapeutics? L-Menthol Induces Apoptosis through Caspase 10 and by Suppressing HSP90. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:53-64. [PMID: 26760959 DOI: 10.1089/omi.2015.0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The objective of the present study was to repurpose L-menthol, which is frequently used in oral health and topical formulations, for cancer therapeutics. In this article, we argue that monoterpenes such as L-menthol might offer veritable potentials in systems medicine, for example, as cheaper anti-cancer compounds. Other monoterpenes such as limonene, perillyl alcohol, and geraniol have been shown to induce apoptosis in various cancer cell lines, but their mechanisms of action are yet to be completely elucidated. Earlier, we showed that L-menthol modulates tubulin polymerization and apoptosis to inhibit cancer cell proliferation. In the present report, we used an apoptosis-related gene microarray in conjunction with proteomics analyses, as well as in silico interpretations, to study gene expression modulation in human adenocarcinoma Caco-2 cell line in response to L-menthol treatment. The microarray analysis identified caspase 10 as the important initiator caspase, instead of caspase 8. The proteomics analyses showed downregulation of HSP90 protein (also corroborated by its low transcript abundance), which in turn indicated inhibition of AKT-mediated survival pathway, release of pro-apoptotic factor BAD from BAD and BCLxL complex, besides regulation of other factors related to apoptosis. Based on the combined microarray, proteomics, and in silico data, a signaling pathway for L-menthol-induced apoptosis is being presented for the first time here. These data and literature analysis have significant implications for "repurposing" L-menthol beyond oral medicine, and in understanding the mode of action of plant-derived monoterpenes towards development of cheaper anticancer drugs in future.
Collapse
Affiliation(s)
- Uzma Faridi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Sunita S Dhawan
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Shaifali Pal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Sanchita Gupta
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Ashutosh K Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Mahendra P Darokar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Ajit K Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| |
Collapse
|
16
|
Liu Z, Yang Z, Jiang S, Zou Q, Yuan Y, Li J, Li D, Liang L, Chen M, Chen S. MCM2 and TIP30 are prognostic markers in squamous cell/adenosquamous carcinoma and adenocarcinoma of the gallbladder. Mol Med Rep 2016; 14:4581-4592. [PMID: 27748889 PMCID: PMC5102005 DOI: 10.3892/mmr.2016.5851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/30/2016] [Indexed: 12/29/2022] Open
Abstract
The clinicopathological and biological characteristics of squamous cell/adenosquamous carcinoma (SC/ASC) of the gallbladder remain to be fully elucidated, due to the fact that it is a rare gallbladder cancer subtype. In the current study, the expression of minichromosome maintenance complex component 2 (MCM2) and HIV‑1 tat interactive protein 2 (TIP30) was measured in 46 cases of SC/ASC and 80 adenocarcinomas (AC) using immunohistochemistry. Positive MCM2 and negative TIP30 expression were significantly associated with large tumor size, high TNM stage, invasion, lymph node metastasis and lack of surgical curability in SC/ASC and AC. Positive MCM2 and negative TIP30 expression were significantly associated with poor differentiation in AC, whereas only MCM2 was correlated with differentiation in SC/ASC. Univariate Kaplan‑Meier analysis demonstrated that positive MCM2 and negative TIP30 expression, the degree of differentiation, tumor size, TNM stage, invasion, lymph node metastasis and surgical curability were significantly associated with post‑operative survival in patients with SC/ASC and AC. Multivariate Cox regression analysis demonstrated that positive MCM2 and negative TIP30 expression, the degree of differentiation, tumor size, TNM stage, invasion, lymph node metastasis and lack of surgical curability were also independent predictors of poor prognosis in patients with SC/ASC and AC. These data suggest that positive MCM2 and negative TIP30 expression are closely correlated with the clinical, pathological and biological parameters, in addition to poor prognosis in patients with gallbladder cancer.
Collapse
Affiliation(s)
- Ziru Liu
- Department of Minimal Invasive Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhulin Yang
- Research Laboratory of Hepatobiliary Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Song Jiang
- Research Laboratory of Hepatobiliary Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Qiong Zou
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yuan Yuan
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jinghe Li
- Department of Pathology, Basic School of Medicine, Changsha, Hunan 410078, P.R. China
| | - Daiqiang Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lufeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, Hunan Provincial People's Hospital, Changsha, Hunan 410007, P.R. China
| | - Meigui Chen
- Department of Pathology, Loudi Central Hospital, Loudi, Hunan 417011, P.R. China
| | - Senlin Chen
- Department of Pathology, Hunan Provincial Tumor Hospital, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
17
|
Abstract
TIP30/CC3 was first identified and characterized as a "candidate" tumor-suppressor gene in 1997. Recently, the TIP30 tumor-suppressor status has been fully established since several studies have described that TIP30 protein expression is frequently downregulated in diverse types of human tumors, and the downregulation is often associated with tumor progression. TIP30 is involved in the control of cell apoptosis, growth, metastasis, angiogenesis, DNA repair, and tumor cell metabolism. Moreover, TIP30(-/-) mice spontaneously develop hepatocellular carcinoma and other tumors at a higher incidence than that of wild-type mice. In this review, we provide an overview of current knowledge concerning the role of TIP30 in tumor development and progression. To our knowledge, this is the first review about the role of novel tumor-suppressor gene TIP30 in tumor development and progression.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | |
Collapse
|
18
|
Zhang X, Lv L, Ouyang X, Zhang S, Fang J, Cai L, Li D. Association of TIP30 expression and prognosis of hepatocellular carcinoma in patients with HBV infection. Cancer Med 2016; 5:2180-9. [PMID: 27418384 PMCID: PMC5055146 DOI: 10.1002/cam4.728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 12/30/2022] Open
Abstract
Altered expression of TIP30, a tumor suppressor, has been observed in many cancers. In this study, we have evaluated the expression of TIP30 in the tissues of 209 hepatocellular carcinomas (HCC) and their adjacent tissues by using a high‐density tissue microarray, and analyzed its correlation with the clinical pathological parameters of the patients. The results revealed negative or weak expression of TIP30 in 43.5% (91/209) of the HCC tissues, and in only 27% (56/209) of the adjacent tissues. The expression level of TIP30 in HCC was inversely correlated with serum alpha‐fetoprotein (AFP) levels, HBV infection, and tumor differentiation. Multivariate analysis for survival indicated that serum HBV infection was the most significant predictor of poor prognosis in HCC (P = 0.0023), and TIP30 expression and tumor differentiation were also independent indicators in this respect (P = 0.0364 and P = 0.0397, respectively). Patients with medium or high expression levels of TIP30 (TIP30++/+++) had a better 5‐year overall survival rate than those with low/negative (TIP30+/−) expression (P < 0.001). TIP30+/−/HBV+ patients had the worst 5‐year overall survival rate, whereas TIP30++/+++/HBV− patients had the best. To further explore the correlation between TIP30 and HBV infection in HCC, HBV+ hepatoblastoma cell‐line HepG2 2.2.15 and HCC cell‐line Hep3B were used. Upon silencing of HBV, we observed an upregulation of TIP30 and decreased cell proliferation. In the in vivo studies, we found that the mice inoculated with HepG2 2.2.15 cells with HBV silencing had a prolonged tumor latency and a longer life span, as compared to the control mice inoculated with untreated control cells. In conclusion, the results suggest that downregulation of TIP30 may result from HBV infection, and subsequently promotes the progression of HCC.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Hepatology, Fuzhou General Hospital, Nanjing Command, Fuzhou 350025, China
| | - Lizhi Lv
- Department of Hepatobiliary Surgery, Fuzhou General Hospital, Nanjing Command, Fuzhou 350025, China
| | - Xuenong Ouyang
- Department of Oncology, Fuzhou General Hospital, Nanjing Command, Fuzhou 350025, China
| | - Shi'an Zhang
- Department of Hepatology, Fuzhou General Hospital, Nanjing Command, Fuzhou 350025, China
| | - Jian Fang
- Department of Hepatology, Fuzhou General Hospital, Nanjing Command, Fuzhou 350025, China
| | - Lirong Cai
- Department of Hepatology, Fuzhou General Hospital, Nanjing Command, Fuzhou 350025, China
| | - Dongliang Li
- Department of Hepatology, Fuzhou General Hospital, Nanjing Command, Fuzhou 350025, China.
| |
Collapse
|
19
|
Guo Z, Cao M, You A, Gao J, Zhou H, Li H, Cui Y, Fang F, Zhang W, Song T, Li Q, Zhu X, Sun H, Zhang T. Metformin inhibits the prometastatic effect of sorafenib in hepatocellular carcinoma by upregulating the expression of TIP30. Cancer Sci 2016; 107:507-13. [PMID: 26752068 PMCID: PMC4832852 DOI: 10.1111/cas.12885] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 12/16/2022] Open
Abstract
We previously found that a low dose of sorafenib had a prometastatic effect on hepatocellular carcinoma (HCC), which was caused by downregulation of TIP30 expression. More recently, metformin has been shown to have potential as a preventive and therapeutic agent for different cancers, including HCC. This study evaluated whether the combination of sorafenib and metformin is sufficient to revert the expression of TIP30, thereby simultaneously reducing lung metastasis and improving survival. Our data show that the combination of sorafenib and metformin inhibits proliferation and invasion in vitro, prolongs median survival, and reduces lung metastasis of HCC in vivo. This effect is closely associated with the upregulation of TIP30, partly through activating AMP‐activated protein kinase. Thioredoxin, a prometastasis factor, is negatively regulated by TIP30 and plays an essential role during the process of HCC metastasis. Overall, our results suggest that metformin might be a potent enhancer for the treatment of HCC by using sorafenib.
Collapse
Affiliation(s)
- Zhigui Guo
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Manqing Cao
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Abin You
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Junrong Gao
- Academy of Medical Image, Tianjin Medical University, Tianjin, China
| | - Hongyuan Zhou
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Huikai Li
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yunlong Cui
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feng Fang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wei Zhang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianqiang Song
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiang Li
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiaolin Zhu
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Huichuan Sun
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Ti Zhang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
20
|
Hu Y, Chen F, Liu F, Liu X, Huang N, Cai X, Sun Y, Li A, Luo R. Overexpression of TIP30 inhibits the growth and invasion of glioma cells. Mol Med Rep 2015; 13:605-12. [PMID: 26718891 PMCID: PMC4686083 DOI: 10.3892/mmr.2015.4619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/04/2015] [Indexed: 12/15/2022] Open
Abstract
Glioma is an aggressive malignancy with limited effective treatment and poor prognosis. Therefore, the identification of novel prognostic markers and effective therapeutic targets is important for the treatment of human glioma. TIP30 is a tumor suppressor involved in the regulation of numerous cellular processes, including tumor cell growth, metastasis, and angiogenesis in various human cancers. The present study investigated whether Tat-interacting protein (TIP)30 was able to regulate tumorigenesis and predict the clinical outcome of patients with glioma. A total of 92 human glioma tissue samples and 10 normal brain tissue samples were examined by immunostaining. The results indicated that the expression levels of TIP30 significantly decreased in glioma tissue samples. as compared with normal brain tissue samples. Furthermore, TIP30 expression was inversely correlated with tumor histological classification, pathological grade, tumor size, and epidermal growth factor receptor (EGFR) expression; however, no association was detected between TIP30 expression and patient age and gender. In addition, patients with positive TIP30 expression exhibited significantly longer median overall survival rates, as compared with those with negative TIP30 expression. In vitro experiments revealed that upregulation of TIP30 expression by lentiviral vector transfection inhibited cell growth and induced cell apoptosis, as determined by MTT assay and Annexin V-fluorescein isothiocyanate staining, respectively. In addition, TIP30 expression markedly attenuated cell migration and invasion, as determined by wound healing and transwell assays. Upregulation of TIP30 expression in glioma cells decreased the expression levels of EGFR and its associated downstream molecules phosphorylated extracellular signal-regulated kinases (ERK) and phosphorylated AKT, as determined by western blot analysis. The results of the present study indicated that TIP30 may suppress oncogenesis and glioma progression, thereby improving the prognosis of patients with glioma. Therefore, TIP30 may prove useful as a prognostic biomarker, and as a potential target for glioma therapy.
Collapse
Affiliation(s)
- Yingying Hu
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Fengsheng Chen
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Feiye Liu
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Xinhui Liu
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Na Huang
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Xiaoli Cai
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Yi Sun
- Cancer Center, 3rd People's Hospital, Dongguan, Guangdong 523326, P.R. China
| | - Aimin Li
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Rongcheng Luo
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| |
Collapse
|
21
|
Chen J, Zhu C, Zhu M, Geng M, Tian Y, Li G, Zheng H. Clinicopathologic significance and survival of TIP30 expression in laryngeal squamous cell carcinoma. Int J Clin Exp Med 2015; 8:6024-6031. [PMID: 26131199 PMCID: PMC4484035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/24/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The expression and clinical significance of TIP30 and p53 in laryngeal squamous cell carcinoma (LSCC) have not been investigated. METHOD We determined immunohistochemically the expression of TIP30 and p53 in surgical specimens from 105 patients with LSCC. Survivals were estimated using the Kaplan-Meier method. RESULTS TIP30 protein expression in LSCC patients was significantly less in tumor tissues than that of adjacent normal tissues (46.7% vs. 79.0%), while p53 protein expression was significantly increased in LSCC (15.2% vs. 63.8%) compared with adjacent normal tissues. The TIP30 expression levels were also significantly correlated with tumor stage, differentiation, and the presence of lymph nodes. The expression of TIP30 was significantly negatively correlated with that of p53 (r = -0.249, P = 0.010). LSCC patients with lower expression level of TIP30 had a significantly higher recurrence and worse overall survival than those with elevated TIP30 expression (P = 0.014 and P = 0.040, respectively). Furthermore, multivariable analysis found that patients with high expression of TIP30 had a greater than approximately 2.2-fold increased risk for death overall or recurrence than those with low expression of TIP30, supporting that down-regulation of TIP30 expression in tumors may involve in development and progression and predict poor prognosis of patients with LSCC. CONCLUSION Our results may suggest that down-expression of TIP30 is closely related to carcinogenesis, progression, biological behavior, and prognosis of LSCC.
Collapse
Affiliation(s)
- Jianqiu Chen
- Department of Otolaryngology Head and Neck Surgery, Jinan General Hospital of PLAJinan 250031, Shandong Province, China
| | - Chunsheng Zhu
- Department of Otolaryngology Head and Neck Surgery, Jinan General Hospital of PLAJinan 250031, Shandong Province, China
| | - Minhui Zhu
- Department of Otolaryngology Head and Neck Surgery, Changhai Hospital of The Second Military Medical UniversityShanghai 200433, China
| | - Ming Geng
- Department of Pathology, Jinan General Hospital of PLAJinan 250031, Shandong Province, China
| | - Yongsheng Tian
- Department of Otolaryngology Head and Neck Surgery, Aerospace Center Hospital of Beijing UniversityBeijing 100049, China
| | - Guojun Li
- Department of Head and Neck Surgery, U.T. M.D. Anderson Cancer CenterHouston, TX 77030, USA
| | - Hongliang Zheng
- Department of Otolaryngology Head and Neck Surgery, Changhai Hospital of The Second Military Medical UniversityShanghai 200433, China
| |
Collapse
|
22
|
Dong W, Shen R, Cheng S. Reduction of TIP30 in esophageal squamous cell carcinoma cells involves promoter methylation and microRNA-10b. Biochem Biophys Res Commun 2014; 453:772-7. [PMID: 25312779 DOI: 10.1016/j.bbrc.2014.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
TIP30 is a putative tumor suppressor that can promote apoptosis and inhibit angiogenesis. However, the role of TIP30 in esophageal squamous cell carcinoma (ESCC) biology has not been investigated. Immunohistochemistry was used to investigate the expression of TIP30 in 70 ESCC. Hypermethylation of TIP30 was evaluated by the methylation specific PCR (MSP) method in ESCC (tumor and paired adjacent non-tumor tissues). Lost expression of TIP30 was observed in 50 of 70 (71.4%) ESCC. 61.4% (43 of 70) of primary tumors analyzed displayed TIP30 hypermethylation, indicating that this aberrant characteristic is common in ESCC. Moreover, a statistically significant inverse association was found between TIP30 methylation status and expression of the TIP30 protein in tumor tissues (p=0.001). We also found that microRNA-10b (miR-10b) targets a homologous DNA region in the 3'untranslated region of the TIP30 gene and represses its expression at the transcriptional level. Reporter assay with 3'UTR of TIP30 cloned downstream of the luciferase gene showed reduced luciferase activity in the presence of miR-10b, providing strong evidence that miR-10b is a direct regulator of TIP30. These results suggest that TIP30 expression is regulated by promoter methylation and miR-10b in ESCC.
Collapse
Affiliation(s)
- Wenjie Dong
- Department of Internal Medicine-Oncology, The First Affiliated Hospital, Zhengzhou University, China.
| | - Ruizhe Shen
- Department of Gastroenterology, Rui-jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shidan Cheng
- Department of Gastroenterology, Rui-jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Zins K, Pomyje J, Hofer E, Abraham D, Lucas T, Aharinejad S. Egr-1 upregulates Siva-1 expression and induces cardiac fibroblast apoptosis. Int J Mol Sci 2014; 15:1538-53. [PMID: 24451137 PMCID: PMC3907885 DOI: 10.3390/ijms15011538] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 12/21/2013] [Accepted: 01/13/2014] [Indexed: 12/24/2022] Open
Abstract
The early growth response transcription factor Egr-1 controls cell specific responses to proliferation, differentiation and apoptosis. Expression of Egr-1 and downstream transcription is closely controlled and cell specific upregulation induced by processes such as hypoxia and ischemia has been previously linked to multiple aspects of cardiovascular injury. In this study, we showed constitutive expression of Egr-1 in cultured human ventricular cardiac fibroblasts, used adenoviral mediated gene transfer to study the effects of continuous Egr-1 overexpression and studied downstream transcription by Western blotting, immunohistochemistry and siRNA transfection. Apoptosis was assessed by fluorescence microscopy and flow cytometry in the presence of caspase inhibitors. Overexpression of Egr-1 directly induced apoptosis associated with caspase activation in human cardiac fibroblast cultures in vitro assessed by fluorescence microscopy and flow cytometry. Apoptotic induction was associated with a caspase activation associated loss of mitochondrial membrane potential and transient downstream transcriptional up-regulation of the pro-apoptotic gene product Siva-1. Suppression of Siva-1 induction by siRNA partially reversed Egr-1 mediated loss of cell viability. These findings suggest a previously unknown role for Egr-1 and transcriptional regulation of Siva-1 in the control of cardiac accessory cell death.
Collapse
Affiliation(s)
- Karin Zins
- Laboratory for Molecular Cellular Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna A-1090, Austria.
| | - Jiri Pomyje
- Molecular Vascular Biology, Department of Vascular Biology and Thrombosis Research, Vienna Competence Center, Vienna Medical University, Vienna A-1090, Austria.
| | - Erhard Hofer
- Molecular Vascular Biology, Department of Vascular Biology and Thrombosis Research, Vienna Competence Center, Vienna Medical University, Vienna A-1090, Austria.
| | - Dietmar Abraham
- Laboratory for Molecular Cellular Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna A-1090, Austria.
| | - Trevor Lucas
- Laboratory for Molecular Cellular Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna A-1090, Austria.
| | - Seyedhossein Aharinejad
- Laboratory for Molecular Cellular Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna A-1090, Austria.
| |
Collapse
|
24
|
Kumtepe Y, Halici Z, Sengul O, Kunak CS, Bayir Y, Kilic N, Cadirci E, Pulur A, Bayraktutan Z. High serum HTATIP2/TIP30 level in serous ovarian cancer as prognostic or diagnostic marker. Eur J Med Res 2013; 18:18. [PMID: 23800048 PMCID: PMC3695774 DOI: 10.1186/2047-783x-18-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 05/31/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Human HIV-1 TAT interactive protein 2 (HTATIP2/TIP30) is an evolutionarily conserved gene that is expressed ubiquitously in human tissues and some tumor tissues. This protein has been found to be associated with some gynecological cancers; as such, this study aimed to investigate blood HTATIP2/TIP30 levels in patients with ovarian cancer. METHODS Twenty-three women with ovarian cancer and 18 patients with various non-cancerous gynecological complaints (for example, dysfunctional uterine bleeding, fibroids, and urinary incontinence) were included in the study. The pathological diagnosis of ovarian cancer was adenocarcinoma. HTATIP2/TIP30 concentration in the patients' blood samples was determined using ELISA kits. RESULTS The HTATIP2/TIP30 level was significantly higher in the cancer group than in the control group (1.84 ± 0.82 versus 0.57 ± 0.13 ng/ml, mean ± SD). CONCLUSIONS We demonstrated the potential role of HTATIP2/TIP30 in ovarian cancer for the first time, thereby enlightening future studies targeting HTATIP2/TIP30 in ovarian cancer treatment, diagnosis, and prevention.
Collapse
Affiliation(s)
- Yakup Kumtepe
- Department of Obstetrics and Gynecology, Ataturk University, Faculty of Medicine, Erzurum 25240, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee SH, Ju SK, Lee TY, Huh SH, Han KH. TIP30 directly binds p53 tumor suppressor protein in vitro. Mol Cells 2012; 34:495-500. [PMID: 23178973 PMCID: PMC3887794 DOI: 10.1007/s10059-012-0232-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 01/03/2023] Open
Abstract
TIP30 (30 kDa HIV-1 TAT-interacting protein), also called HTATIP2 or CC3, is a tumor suppressor protein that acts as an angiogenesis inhibitor. TIP30 blocks nuclear import of the mRNA-binding protein HuR, and thereby promotes the cytoplasmic accumulation of HuR by binding to importin-β, which is known to facilitate the cytoplasm-tonuclear transport of HuR. Accumulation of HuR in the cytoplasm, in turn, enhances the expression of the transcription factor p53, a tumor suppressor that plays an essential role in preserving genome stability and inhibiting cancer growth. In addition to such a post-transcriptional mechanism via which TIP30 increases the p53 level, it has been proposed that TIP30 may regulate p53 protein at the protein level by directly binding to it. In order to investigate the possibility of direct interaction between p53 and TIP30, we have used on three functional regions in p53 and examined their interactions with TIP30 using GST pull-down assay and surface plasmon resonance technique. The results show that that TIP30 binds to the DNA-binding domain and the C-terminal domain of p53.
Collapse
Affiliation(s)
- Si-Hyung Lee
- Biomedical Translational Research Center, Division of Convergent Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
- Department of Biochemistry, Graduate School, Chungnam National University, Daejeon 305-764,
Korea
| | - Sung-Kyu Ju
- Department of Bioscience and Biotechnology, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Tae-Young Lee
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Sung-Ho Huh
- Department of Biochemistry, Graduate School, Chungnam National University, Daejeon 305-764,
Korea
| | - Kyou-Hoon Han
- Biomedical Translational Research Center, Division of Convergent Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
- Department of Bioinformatics, University of Science and Technology, Daejeon 305-333,
Korea
| |
Collapse
|
26
|
Transcriptional activation of prostate specific homeobox gene NKX3-1 in subsets of T-cell lymphoblastic leukemia (T-ALL). PLoS One 2012; 7:e40747. [PMID: 22848398 PMCID: PMC3407137 DOI: 10.1371/journal.pone.0040747] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/12/2012] [Indexed: 01/26/2023] Open
Abstract
Homeobox genes encode transcription factors impacting key developmental processes including embryogenesis, organogenesis, and cell differentiation. Reflecting their tight transcriptional control, homeobox genes are often embedded in large non-coding, cis-regulatory regions, containing tissue specific elements. In T-cell acute lymphoblastic leukemia (T-ALL) homeobox genes are frequently deregulated by chromosomal aberrations, notably translocations adding T-cell specific activatory elements. NKX3-1 is a prostate specific homeobox gene activated in T-ALL patients expressing oncogenic TAL1 or displaying immature T-cell characteristics. After investigating regulation of NKX3-1 in primary cells and cell lines, we report its ectopic expression in T-ALL cells independent of chromosomal rearrangements. Using siRNAs and expression profiling, we exploited NKX3-1 positive T-ALL cell lines as tools to investigate aberrant activatory mechanisms. Our data confirmed NKX3-1 activation by TAL1/GATA3/LMO and identified LYL1 as an alternative activator in immature T-ALL cells devoid of GATA3. Moreover, we showed that NKX3-1 is directly activated by early T-cell homeodomain factor MSX2. These activators were regulated by MLL and/or by IL7-, BMP4- and IGF2-signalling. Finally, we demonstrated homeobox gene SIX6 as a direct leukemic target of NKX3-1 in T-ALL. In conclusion, we identified three major mechanisms of NKX3-1 regulation in T-ALL cell lines which are represented by activators TAL1, LYL1 and MSX2, corresponding to particular T-ALL subtypes described in patients. These results may contribute to the understanding of leukemic transcriptional networks underlying disturbed T-cell differentiation in T-ALL.
Collapse
|
27
|
TIP30 loss enhances cytoplasmic and nuclear EGFR signaling and promotes lung adenocarcinogenesis in mice. Oncogene 2012; 32:2273-81, 2281e.1-12. [PMID: 22733137 PMCID: PMC3460142 DOI: 10.1038/onc.2012.253] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lung adenocarcinoma, the most common type of human non-small cell lung cancer (NSCLC), frequently overexpresses EGFR. However, the mechanisms underlying EGFR overexpression are not completely understood. Recent studies have identified that decreased expression of TIP30 is associated with the metastasis of human NSCLCs, but a causative relationship between TIP30 deficiency and NSCLC development remains unclear. We show here that Tip30 deletion leads to spontaneous development of lung adenomas and adenocarcinomas in mice. Lung tumor development was preceded by aberrant expansion of bronchioalveolar stem/progenitor and alveolar type II cells, as well as increased expression of EGFR and its downstream signaling factors in the lung of Tip30−/− mice. Moreover, TIP30 knockdown in human lung adenocarcinoma cells resulted in prolonged EGFR activity in early endosomes, delayed EGFR degradation, increased EGFR nuclear localization, leading to up-regulated pAKT and pERK1/2 expression. Importantly, in human lung adenocarcinomas, low TIP30 expression correlates with prolonged patient overall and post-progression survival times. Together, these results suggest that TIP30 functions as a tumor suppressor to inhibit EGFR cytoplasmic and nuclear signaling and suppress adenocarcinogenesis in the lung and highlight the potential of therapeutic strategies aiming at inhibiting EGFR signaling for patients with low TIP30 expression lung adenocarcinoma.
Collapse
|
28
|
Multifaceted functions of Siva-1: more than an Indian God of Destruction. Protein Cell 2012; 3:117-22. [PMID: 22426980 DOI: 10.1007/s13238-012-2018-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/04/2012] [Indexed: 10/28/2022] Open
Abstract
Siva-1, as a p53-inducible gene, has been shown to induce extensive apoptosis in a number of different cell lines. Recent evidence suggests that Siva-1 functions as a part of the auto-regulatory feedback loop that restrains p53 through facilitating Mdm2-mediated p53 degradation. Also, Siva-1 plays an important role in suppressing tumor metastasis. Here we review the current understanding of Siva-1-mediated apoptotic signaling pathway. We also add comments on the p53-Siva-1 feedback loop, the novel function of Siva-1 in suppressing tumor metastasis, and their potential implications.
Collapse
|
29
|
Liu DC, Yang ZL. Clinicopathologic significance of minichromosome maintenance protein 2 and Tat-interacting protein 30 expression in benign and malignant lesions of the gallbladder. Hum Pathol 2011; 42:1676-83. [DOI: 10.1016/j.humpath.2010.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 11/29/2010] [Accepted: 12/03/2010] [Indexed: 12/29/2022]
|
30
|
Zhang C, Li A, Gao S, Zhang X, Xiao H. The TIP30 protein complex, arachidonic acid and coenzyme A are required for vesicle membrane fusion. PLoS One 2011; 6:e21233. [PMID: 21731680 PMCID: PMC3123320 DOI: 10.1371/journal.pone.0021233] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/24/2011] [Indexed: 01/20/2023] Open
Abstract
Efficient membrane fusion has been successfully mimicked in vitro using artificial membranes and a number of cellular proteins that are currently known to participate in membrane fusion. However, these proteins are not sufficient to promote efficient fusion between biological membranes, indicating that critical fusogenic factors remain unidentified. We have recently identified a TIP30 protein complex containing TIP30, acyl-CoA synthetase long-chain family member 4 (ACSL4) and Endophilin B1 (Endo B1) that promotes the fusion of endocytic vesicles with Rab5a vesicles, which transport endosomal acidification enzymes vacuolar (H+)-ATPases (V-ATPases) to the early endosomes in vivo. Here, we demonstrate that the TIP30 protein complex facilitates the fusion of endocytic vesicles with Rab5a vesicles in vitro. Fusion of the two vesicles also depends on arachidonic acid, coenzyme A and the synthesis of arachidonyl-CoA by ACSL4. Moreover, the TIP30 complex is able to transfer arachidonyl groups onto phosphatidic acid (PA), producing a new lipid species that is capable of inducing close contact between membranes. Together, our data suggest that the TIP30 complex facilitates biological membrane fusion through modification of PA on membranes.
Collapse
Affiliation(s)
- Chengliang Zhang
- Department of Biomedical and Integrative Physiology, Michigan State University, East Lansing, Michigan, United States of America
- Genetics Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Aimin Li
- Department of Biomedical and Integrative Physiology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Shenglan Gao
- Department of Biomedical and Integrative Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Xinchun Zhang
- Genetics Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Hua Xiao
- Department of Biomedical and Integrative Physiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
31
|
Thakur RK, Yadav VK, Kumar P, Chowdhury S. Mechanisms of non-metastatic 2 (NME2)-mediated control of metastasis across tumor types. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:397-406. [PMID: 21556888 DOI: 10.1007/s00210-011-0631-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 03/25/2011] [Indexed: 12/18/2022]
Abstract
Non-metastatic 23 [NM23/nucleoside diphosphate kinases (NDPK)] genes are the first discovered metastasis suppressor genes. More than two decades of research has demonstrated their roles in a variety of biological processes with NME1 and NME2 being most studied in the context of metastasis suppression. Although NME1 and NME2 share >85% homology at amino acid level, they show redundant as well as unique molecular functions. Phenotypic analyses of knockout (KO) mice for NM23 members (NDPK-A, B) and compound KO (A as well as B) showed requirement of both proteins in hematopoiesis suggesting shared functions in development disease. Several reviews have discussed NME1, however the role of NME2 appears to be relatively less understood in the context of metastasis suppression. Here, we focus on NME2 and by meta-analysis of gene expression from multiple tumor types, and survey of in vivo and vitro studies, suggest the possibility that NME2 may be one of the key factors in metastasis. This along with the relevance of normal physiological functions of NME2 in the context of metastasis is discussed. We further examined the genetic and epigenetic features of NME2 and NME1 gene promoters and found aspects of transcription control that could be unique to NME2/NME1. Findings on signaling pathways and small molecules which regulate the expression of NME2 that could be therapeutically important are also discussed.
Collapse
Affiliation(s)
- Ram Krishna Thakur
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi, 110 007, India
| | | | | | | |
Collapse
|
32
|
Zhang C, Li A, Zhang X, Xiao H. A novel TIP30 protein complex regulates EGF receptor signaling and endocytic degradation. J Biol Chem 2011; 286:9373-81. [PMID: 21252234 PMCID: PMC3058969 DOI: 10.1074/jbc.m110.207720] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/18/2011] [Indexed: 01/07/2023] Open
Abstract
Activated epidermal growth factor receptor (EGFR) continues to signal in the early endosome, but how this signaling process is regulated is less well understood. Here we describe a protein complex consisting of TIP30, endophilin B1, and acyl-CoA synthetase long chain family member 4 (ACSL4) that interacts with Rab5a and regulates EGFR endocytosis and signaling. These proteins are required for the proper endocytic trafficking of EGF-EGFR. Knockdown of TIP30, ACSL4, endophilin B1, or Rab5a in human liver cancer cells or genetic knock-out of Tip30 in mouse primary hepatocytes results in the trapping of EGF-EGFR complexes in early endosomes, leading to delayed EGFR degradation and prolonged EGFR signaling. Furthermore, we show that Rab5a colocalizes with vacuolar (H(+))-ATPases (V-ATPases) on transport vesicles. The TIP30 complex facilitates trafficking of Rab5a and V-ATPases to EEA1-positive endosomes in response to EGF. Together, these results suggest that this TIP30 complex regulates EGFR endocytosis by facilitating the transport of V-ATPases from trans-Golgi network to early endosomes.
Collapse
Affiliation(s)
- Chengliang Zhang
- From the Department of Biomedical and Integrative Physiology and
- Genetics Program, Michigan State University, East Lansing, Michigan 48824 and
| | - Aimin Li
- From the Department of Biomedical and Integrative Physiology and
- the Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinchun Zhang
- Genetics Program, Michigan State University, East Lansing, Michigan 48824 and
| | - Hua Xiao
- From the Department of Biomedical and Integrative Physiology and
| |
Collapse
|
33
|
Chen V, Shtivelman E. CC3/TIP30 regulates metabolic adaptation of tumor cells to glucose limitation. Cell Cycle 2010; 9:4941-53. [PMID: 21150275 DOI: 10.4161/cc.9.24.14230] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CC3/TIP30 is a metastasis and tumor suppressor, with reduced or absent expression in a variety of aggressive tumors. Overexpression of CC3 in tumor cells predisposes them to apoptosis in response to different death signals. We found that silencing of CC3 expression does not increase apoptotic resistance of cells. However, it strongly improves survival of tumor cells in response to glucose limitation. HeLa cells with silenced CC3 survive long-term in low glucose, and, in comparison to control HeLa cells, show superior metabolic adaptation to glucose limitation. First, unlike the parental HeLa cells, HeLa with silenced CC3 activate and maintain high levels of mitochondrial respiration that is critical for their ability to thrive in low glucose. Second, silencing of CC3 leads to higher expression levels of mitochondrial proteins in respiration complexes when cells are continuously cultured in limiting glucose. Third, HeLa cells with silenced CC3 maintain higher levels of c-MYC and the M2 isoform of pyruvate kinase in low glucose, contributing to more efficient glycolysis. Fourth, HeLa cells with silenced CC3 fail to fully activate AMPK in response to glucose limitation. Inhibition of AMPK, either pharmacologic or via siRNA, protects control HeLa cells from death in low glucose. The metabolic flexibility acquired by cells after silencing of CC3 could be directly relevant to the development of metastatic and aggressive human tumors that frequently have low or absent expression of CC3.
Collapse
|
34
|
Chen X, Cao X, Dong W, Luo S, Suo Z, Jin Y. Expression of TIP30 tumor suppressor gene is down-regulated in human colorectal carcinoma. Dig Dis Sci 2010; 55:2219-26. [PMID: 19798571 DOI: 10.1007/s10620-009-0992-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 09/14/2009] [Indexed: 12/09/2022]
Abstract
PURPOSE Human TIP30 was initially identified as a candidate metastasis suppressor gene whose expression was down-regulated in human liver, lung, breast, and prostate cancers, and recently the role of this gene was examined in colorectal cancer. The aim of this study was to determine the level of TIP30 expression in colorectal carcinoma (CRC). RESULTS TIP30 protein levels were lower in colorectal carcinomas compared to normal tissue from the control group (P < 0.001). The frequencies of hypermethylation of TIP30 in tumor were 36%, while there was no aberrant methylation in paired adjacent non-tumor tissue. A statistically significant inverse association was found between TIP30 methylation status and expression of the TIP30 protein in tumor tissues (P = 0.006). Somatic missense mutations in the TIP30 gene were identified in human CRC tissue specimens. CONCLUSIONS Our results demonstrate that promoter methylation is involved in the decreased expression of TIP30 tumor suppressor gene in human colorectal carcinoma.
Collapse
Affiliation(s)
- Xiaobing Chen
- Department of Internal Medicine-Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | |
Collapse
|
35
|
Gene systems network inferred from expression profiles in hepatocellular carcinogenesis by graphical Gaussian model. EURASIP JOURNAL ON BIOINFORMATICS & SYSTEMS BIOLOGY 2010:47214. [PMID: 18060013 DOI: 10.1155/2007/47214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 02/27/2007] [Accepted: 05/01/2007] [Indexed: 11/18/2022]
Abstract
Hepatocellular carcinoma (HCC) in a liver with advanced-stage chronic hepatitis C (CHC) is induced by hepatitis C virus, which chronically infects about 170 million people worldwide. To elucidate the associations between gene groups in hepatocellular carcinogenesis, we analyzed the profiles of the genes characteristically expressed in the CHC and HCC cell stages by a statistical method for inferring the network between gene systems based on the graphical Gaussian model. A systematic evaluation of the inferred network in terms of the biological knowledge revealed that the inferred network was strongly involved in the known gene-gene interactions with high significance (P < 10(-4)), and that the clusters characterized by different cancer-related responses were associated with those of the gene groups related to metabolic pathways and morphological events. Although some relationships in the network remain to be interpreted, the analyses revealed a snapshot of the orchestrated expression of cancer-related groups and some pathways related with metabolisms and morphological events in hepatocellular carcinogenesis, and thus provide possible clues on the disease mechanism and insights that address the gap between molecular and clinical assessments.
Collapse
|
36
|
Fong S, King F, Shtivelman E. CC3/TIP30 affects DNA damage repair. BMC Cell Biol 2010; 11:23. [PMID: 20374651 PMCID: PMC2867790 DOI: 10.1186/1471-2121-11-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/07/2010] [Indexed: 12/22/2022] Open
Abstract
Background The pro-apoptotic protein CC3/TIP30 has an unusual cellular function as an inhibitor of nucleocytoplasmic transport. This function is likely to be activated under conditions of stress. A number of studies support the notion that CC3 acts as a tumor and metastasis suppressor in various types of cancer. The yeast homolog of CC3 is likely to be involved in responses to DNA damage. Here we examined the potential role of CC3 in regulation of cellular responses to genotoxic stress. Results We found that forced expression of CC3 in CC3-negative cells strongly delays the repair of UV-induced DNA damage. Exogenously introduced CC3 negatively affects expression levels of DDB2/XPE and p21CIP1, and inhibits induction of c-FOS after UV exposure. In addition, exogenous CC3 prevents the nuclear accumulation of P21CIP in response to UV. These changes in the levels/localization of relevant proteins resulting from the enforced expression of CC3 are likely to contribute to the observed delay in DNA damage repair. Silencing of CC3 in CC3-positive cells has a modest delaying effect on repair of the UV induced damage, but has a much more significant negative affect on the translesion DNA synthesis after UV exposure. This could be related to the higher expression levels and increased nuclear localization of p21CIP1 in cells where expression of CC3 is silenced. Expression of CC3 also inhibits repair of oxidative DNA damage and leads to a decrease in levels of nucleoredoxin, that could contribute to the reduced viability of CC3 expressing cells after oxidative insult. Conclusions Manipulation of the cellular levels of CC3 alters expression levels and/or subcellular localization of proteins that exhibit nucleocytoplasmic shuttling. This results in altered responses to genotoxic stress and adversely affects DNA damage repair by affecting the recruitment of adequate amounts of required proteins to proper cellular compartments. Excess of cellular CC3 has a significant negative effect on DNA repair after UV and oxidant exposure, while silencing of endogenous CC3 slightly delays repair of UV-induced damage.
Collapse
Affiliation(s)
- Sylvia Fong
- BioNovo Inc, 5858 Horton Street, Emeryville 94608, CA, USA
| | | | | |
Collapse
|
37
|
Nakahara J, Aiso S, Suzuki N. Factors that retard remyelination in multiple sclerosis with a focus on TIP30: a novel therapeutic target. Expert Opin Ther Targets 2009; 13:1375-86. [DOI: 10.1517/14728220903307491] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
38
|
Sarkar S, Mandal M. Growth factor receptors and apoptosis regulators: signaling pathways, prognosis, chemosensitivity and treatment outcomes of breast cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2009; 3:47-60. [PMID: 21556249 PMCID: PMC3086304 DOI: 10.4137/bcbcr.s2492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomarkers of breast cancer are necessary for prognosis and prediction to chemotherapy. Prognostic biomarkers provide information regarding outcome irrespective of therapy, while predictive biomarkers provide information regarding response to therapy. Candidate prognostic biomarkers for breast cancers are growth factor receptors, steroid receptors, Ki-67, cyclins, urokinase plasminogen activator, p53, p21, pro- and anti-apoptotic factors, BRCA1 and BRCA2. But currently, the predictive markers are Estrogen and Progesterone receptors responding to endocrine therapy, and HER-2 responding to herceptin. But there are numerous breast cancer cases, where tamoxifen is ineffective even after estrogen receptor positivity. This lead to search of new prognostic and predictive markers and the number of potential markers is constantly increasing due to proteomics and genomics studies. However, most biomarkers individually have poor sensitivity or specificity, or other clinical value. It can be resolved by studying various biomarkers simultaneously, which will help in better prognosis and increasing sensitivity for chemotherapeutic agents. This review is focusing on growth factor receptors, apoptosis markers, signaling cascades, and their correlation with other associated biomarkers in breast cancers. As our knowledge regarding molecular biomarkers for breast cancer increases, prognostic indices will be developed that combine the predictive power of individual molecular biomarkers with specific clinical and pathologic factors. Rigorous comparison of these existing as well as emerging markers with current treatment selection is likely to see an escalation in an era of personalized medicines to ensure the breast cancer patients receive optimal treatment. This will also solve the treatment modalities and complications related to chemotherapeutic regimens.
Collapse
Affiliation(s)
- Siddik Sarkar
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | | |
Collapse
|
39
|
Tong X, Li K, Luo Z, Lu B, Liu X, Wang T, Pang M, Liang B, Tan M, Wu M, Zhao J, Guo Y. Decreased TIP30 expression promotes tumor metastasis in lung cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1931-9. [PMID: 19349353 DOI: 10.2353/ajpath.2009.080846] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The HIV Tat-interacting protein (TIP30), also called CC3 or HTIP2, is encoded by Tip30, a putative tumor-suppressor gene located on human chromosome 11p15.1. In this study, we investigated the role of TIP30 in the progression and metastasis of lung cancer. TIP30 expression was analyzed in 206 paired lung cancers and adjacent non-tumor tissues, as well as in 70 matched lymph node metastases using a high-density tissue microarray. Results were compared with the clinicopathologic features of the patients from whom the tissues were taken. Low TIP30 expression levels were found in all 9 cases of small cell lung cancer and in 36.5% (72/197) of non-small cell lung cancer, which were correlated with lymph node metastasis in non-small cell lung cancer and with poor differentiation and advanced stage of tumor cells in squamous cell carcinoma. The immunostaining scores were significantly lower in the metastatic lesions than in the primary lesions. Down-regulation of TIP30 by a short hairpin RNA enhanced cell survival, migration, and invasion through Matrigel in vitro, and promoted lung metastasis and vascularization in nude mice. Further studies revealed that the down-regulation of TIP30 enhanced the expression of osteopontin, as well as matrix metalloproteinase-2 and vascular endothelial growth factor. Our results suggest that the down-regulation of TIP30 promotes metastatic progression of lung cancer, hence it could serve as a potential target for the development of lung cancer therapies.
Collapse
Affiliation(s)
- Xin Tong
- International Cancer Institute and Eastern Hospital of Hepatobilliary Surgery, The Second Military Medical University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li X, Zhang Y, Cao S, Chen X, Lu Y, Jin H, Sun S, Chen B, Liu J, Ding J, Wu K, Fan D. Reduction of TIP30 correlates with poor prognosis of gastric cancer patients and its restoration drastically inhibits tumor growth and metastasis. Int J Cancer 2009; 124:713-21. [DOI: 10.1002/ijc.23967] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
41
|
Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 2009; 65:3895-906. [PMID: 19011750 PMCID: PMC2792337 DOI: 10.1007/s00018-008-8588-y] [Citation(s) in RCA: 653] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Short-chain dehydrogenases/reductases (SDRs) constitute a large family of NAD(P)(H)-dependent oxidoreductases, sharing sequence motifs and displaying similar mechanisms. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, cofactor, hormone and xenobiotic metabolism as well as in redox sensor mechanisms. Sequence identities are low, and the most conserved feature is an α/β folding pattern with a central beta sheet flanked by 2–3 α-helices from each side, thus a classical Rossmannfold motif for nucleotide binding. The conservation of this element and an active site, often with an Asn-Ser-Tyr-Lys tetrad, provides a platform for enzymatic activities encompassing several EC classes, including oxidoreductases, epimerases and lyases. The common mechanism is an underlying hydride and proton transfer involving the nicotinamide and typically an active site tyrosine residue, whereas substrate specificity is determined by a variable C-terminal segment. Relationships exist with bacterial haloalcohol dehalogenases, which lack cofactor binding but have the active site architecture, emphasizing the versatility of the basic fold in also generating hydride transfer-independent lyases. The conserved fold and nucleotide binding emphasize the role of SDRs as scaffolds for an NAD(P)(H) redox sensor system, of importance to control metabolic routes, transcription and signalling.
Collapse
|
42
|
Lu B, Ma Y, Wu G, Tong X, Guo H, Liang A, Cong W, Liu C, Wang H, Wu M, Zhao J, Guo Y. Methylation of Tip30 promoter is associated with poor prognosis in human hepatocellular carcinoma. Clin Cancer Res 2009; 14:7405-12. [PMID: 19010857 DOI: 10.1158/1078-0432.ccr-08-0409] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE To investigate Tip30 promoter methylation status in human hepatocellular carcinoma (HCC) and the correlation with clinicopathologic features and prognosis. EXPERIMENTAL DESIGN The methylation status of CpG islands in Tip30 promoter was examined in 15 HCC cell lines as well as 59 paired HCC and adjacent nontumor tissues. The associations between Tip30 methylation status and the survival of patients were analyzed. RESULTS Tip30 promoter was hypermethylated in 6 of 10 HCC cell lines with reduced Tip30 mRNA. DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine, greatly enhanced TIP30 expression and sensitized HCC cells to cytotoxic drug-induced cell death. The promoter region of Tip30 was identified and the main promoter activity was located in the -135 to -45 region sited within a CpG island. The minimal promoter element contained four Sp1 binding sites, which were hypermethylated in HCC cell-derived promoters. Moreover, analyses of Tip30 promoter methylation status in 59 paired HCC tissues showed that 47% of the cases were hypermethylated. Recurrence rate (95% versus 67%; P = 0.011) and mortality (82% versus 53%; P = 0.033) were significantly higher in patients with methylated Tip30. Disease-free survival was significantly higher in patients with unmethylated Tip30 (33.3% versus 4.5%; P = 0.036). CONCLUSIONS Our results show that epigenetic silencing of Tip30 gene expression by CpG island DNA hypermethylation is associated with poor prognosis in patients with HCC.
Collapse
Affiliation(s)
- Bin Lu
- International Cancer Institute and Eastern Hospital of Hepatobiliary Surgery, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhao J, Chen J, Lu B, Dong L, Wang H, Bi C, Wu G, Guo H, Wu M, Guo Y. TIP30 induces apoptosis under oxidative stress through stabilization of p53 messenger RNA in human hepatocellular carcinoma. Cancer Res 2008; 68:4133-41. [PMID: 18519672 DOI: 10.1158/0008-5472.can-08-0432] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species (ROS) and cellular oxidant stress have long been associated with cancer. Here, we show that TIP30, also called CC3, regulates p53 mRNA stability and induces apoptosis by sensing of intracellular oxidative stress in human hepatocellular carcinoma (HCC) cells. Introduction of TIP30 induced more cell death in HepG2 cells with a high level of intracellular ROS than that in normal liver cell line, HL7702, which had low level of intracellular ROS. Treatment with an antioxidant agent attenuated TIP30-induced cell death in HepG2 cells, whereas oxidant H(2)O(2) augmented TIP30-induced cell death in HL7702 cells. The conformation of TIP30 was altered with the formation of an intermolecular disulfide bridge under oxidative stress. TIP30 greatly enhanced p53 expression and its transcriptional activity under oxidative stress, which was probably through stabilization of p53 mRNA. TIP30 induced apoptosis and mitochondrial dysfunction were blocked by silencing of p53 expression. The nuclear import of mRNA-binding protein HuR was blocked upon TIP30 introduction, which might be due to the interruption of the association of HuR with importin beta2. The elevated cytoplasmic HuR bound to p53 mRNA 3'-untranslated region, resulting in prolonged half-life of p53 mRNA. Our results suggest that TIP30 is involved in cellular oxidative stress surveillance and induces apoptosis through stabilization of p53 mRNA in HCC cells.
Collapse
Affiliation(s)
- Jian Zhao
- International Joint Cancer Institute and Eastern Hospital of Hepatobiliary Surgery, The Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang H, Zhang Y, Duan HO, Kirley SD, Lin SX, McDougal WS, Xiao H, Wu CL. TIP30 is associated with progression and metastasis of prostate cancer. Int J Cancer 2008; 123:810-6. [PMID: 18528861 DOI: 10.1002/ijc.23638] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tat-interacting protein 30 (TIP30), a transcriptional repressor for ERalpha-mediated transcription, possesses several characteristics of a tumor suppressor in certain human and mouse cells. It is reported that deletion of TIP30 gene preferentially increases tumorigenesis in the female knockout mice. Here, we analyzed TIP30 gene expression in the databases of several DNA microarray studies of human prostate cancer and show that TIP30 is specifically overexpressed in metastatic prostate cancers. We demonstrate that TIP30 nuclear expression is associated with prostate cancer progression and metastasis by immunohistochemical analysis in primary and metastatic prostate cancers. Consistent with these data, we also show that knockdown of TIP30 expression, through use of a short hairpin RNA-expressing plasmid, suppresses the cellular growth of PC3 and LNCaP prostate cancer cells. Ectopic overexpression of TIP30 stimulates metastatic potential of prostate cancer cells in an in vitro invasion assay, whereas knockdown of TIP30 inhibits the prostate cancer cells invasion. Finally, we demonstrate that ectopic overexpression of TIP30 enhances androgen receptor mediated transcription, whereas knockdown of TIP30 results in a decreased transcription activity. These data provide evidence that TIP30 plays a role in prostate cancer progression and that TIP30 overexpression may promote prostate cancer cell growth and metastasis.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhao J, Lu B, Xu H, Tong X, Wu G, Zhang X, Liang A, Cong W, Dai J, Wang H, Wu M, Guo Y. Thirty-kilodalton Tat-interacting protein suppresses tumor metastasis by inhibition of osteopontin transcription in human hepatocellular carcinoma. Hepatology 2008; 48:265-75. [PMID: 18537194 DOI: 10.1002/hep.22280] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED It has been previously demonstrated that the 30-kDa Tat-interacting protein (TIP30) plays an important role in the suppression of hepatocarcinogenesis by acting as a tumor suppressor. Here we report that TIP30 suppresses metastasis of hepatocellular carcinoma (HCC) through inhibiting the transcription of osteopontin (OPN), a key molecule in the development of tumor metastasis. The expression of TIP30 messenger RNA was reverse to that of OPN messenger RNA in HCC cell lines. Ectopic expression of TIP30 greatly suppressed OPN expression, inhibited invasion of HCC cells through extracellular matrix (ECM) and adhesion with fibronectin in vitro, whereas down-regulation of TIP30 by RNA-mediated interference enhanced OPN expression and promoted metastatic abilities of HCC cells in vitro. Moreover, overexpression of TIP30 significantly inhibited the growth and lung metastases of HCC cells in nude mice. In contrast, down-regulation of TIP30 greatly promoted tumor cell growth and metastases in vivo. TIP30 repressed OPN transcription through interaction with Ets-1 and suppressed the transcriptional activity of Ets-1 and synergistic actions of Ets-1 and alkaline phosphatase-1. Thus, TIP30 may act as an Ets-1 modulator and inhibit tumor metastasis through abrogating Ets-1-dependent transcription. Moreover, expression of TIP30 was inversely associated with OPN expression in HCC tissue samples as detected by immunohistochemistry assay. CONCLUSION Our results reveal a novel pathway by which OPN and possibly other Ets-1 target genes involved in tumor metastasis are regulated by TIP30 and elucidate a mechanism for metastasis promoted by TIP30 deficiency.
Collapse
Affiliation(s)
- Jian Zhao
- International Joint Cancer Institute and Eastern Hospital of Hepatobiliary Surgery, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Py B, Bouchet J, Jacquot G, Sol-Foulon N, Basmaciogullari S, Schwartz O, Biard-Piechaczyk M, Benichou S. The Siva protein is a novel intracellular ligand of the CD4 receptor that promotes HIV-1 envelope-induced apoptosis in T-lymphoid cells. Apoptosis 2008; 12:1879-92. [PMID: 17653867 DOI: 10.1007/s10495-007-0106-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In addition to its positive signaling function in the antigen presentation process, CD4 acts as the primary receptor for HIV-1. Contact between CD4 and the viral envelope leads to virus entry, but can also trigger apoptosis of uninfected CD4+ T-cells through a mechanism that is poorly understood. We show that Siva-1, a death domain-containing proapoptotic protein, associates with the cytoplasmic domain of CD4. This interaction is mediated by the cysteine-rich region found in the C-terminal part of the Siva-1 protein. Expression of Siva-1 specifically increases the susceptibility of both T-cell lines and unstimulated human primary CD4+ T-lymphocytes to CD4-mediated apoptosis triggered by the HIV-1 envelope, and results in activation of a caspase-dependent mitochondrial pathway. The same susceptibility is observed in T-cells expressing a truncated form of CD4 that is able to recruit Siva-1 but fails to associate with p56Lck, indicating that Siva-1 participates in a pathway independent of the p56Lck kinase activity. Altogether, these results suggest that Siva-1 might participate in the CD4-initiated signaling apoptotic pathway induced by the HIV-1 envelope in T-lymphoid cells.
Collapse
Affiliation(s)
- Bénédicte Py
- Institut Cochin, CNRS (UMR 8104), Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Tip30-induced apoptosis requires translocation of Bax and involves mitochondrial release of cytochrome c and Smac/DIABLO in hepatocellular carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:263-74. [DOI: 10.1016/j.bbamcr.2007.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 10/05/2007] [Accepted: 10/10/2007] [Indexed: 11/22/2022]
|
48
|
|
49
|
Singh AP, Bafna S, Chaudhary K, Venkatraman G, Smith L, Eudy JD, Johansson SL, Lin MF, Batra SK. Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells. Cancer Lett 2007; 259:28-38. [PMID: 17977648 DOI: 10.1016/j.canlet.2007.09.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/17/2007] [Accepted: 09/18/2007] [Indexed: 01/23/2023]
Abstract
Previously, we have developed a unique in vitro LNCaP cell model, which includes androgen-dependent (LNCaP-C33), androgen-independent (LNCaP-C81) and an intermediate phenotype (LNCaP-C51) cell lines resembling the stages of prostate cancer progression to hormone independence. This model is advantageous in overcoming the heterogeneity associated with the prostate cancer up to a certain extent. We characterized and compared the gene expression profiles in LNCaP-C33 (androgen-dependent) and LNCaP-C81 (androgen-independent) cells using Affymetrix GeneChip array analyses. Multiple genes were identified exhibiting differential expression during androgen-independent progression. Among the important genes upregulated in androgen-independent cells were PCDH7, TPTE, TSPY, EPHA3, HGF, MET, EGF, TEM8, etc., whereas many candidate tumor suppressor genes (HTATIP2, CDKN2A, CDKN2B, CDKN1C, TP53, TP73, ICAM1, SOCS1/2, SPRY2, PPP2CA, PPP3CA, etc.) were decreased. Pathway prediction analysis identified important gene networks associated with growth-promoting and apoptotic signaling that were perturbed during androgen-independent progression. Further investigation of one of the genes, PPP2CA, which encodes the catalytic subunit of a serine phosphatase PP2A, a potent tumor suppressor, revealed that its expression was decreased in prostate cancer compared to adjacent normal/benign tissue. Furthermore, the downregulated expression of PPP2CA was significantly correlated with tumor stage and Gleason grade. Future studies on the identified differentially expressed genes and signaling pathways may be helpful in understanding the biology of prostate cancer progression and prove useful in developing novel prognostic biomarkers and therapy for androgen-refractory prostate cancer.
Collapse
Affiliation(s)
- Ajay P Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lin FT, Lai YJ, Makarova N, Tigyi G, Lin WC. The lysophosphatidic acid 2 receptor mediates down-regulation of Siva-1 to promote cell survival. J Biol Chem 2007; 282:37759-69. [PMID: 17965021 DOI: 10.1074/jbc.m705025200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lysophosphatidic acid (LPA) promotes cell survival through the activation of G protein-coupled LPA receptors. However, whether different LPA receptors activate distinct anti-apoptotic signaling pathways is not yet clear. Here we report a novel mechanism by which the LPA(2) receptor targets the proapoptotic Siva-1 protein for LPA-dependent degradation, thereby attenuating Siva-1 function in DNA damage response. The carboxyl-terminal tail of the LPA(2) receptor, but not LPA(1) or LPA(3) receptor, specifically associates with the carboxyl cysteine-rich domain of Siva-1. Prolonged LPA stimulation promotes the association of Siva-1 with the LPA(2) receptor and targets both proteins for ubiquitination and degradation. As a result, adriamycin-induced Siva-1 protein stabilization is attenuated by LPA in an LPA(2)-dependent manner, and the function of Siva-1 in promoting DNA damage-induced apoptosis is inhibited by LPA pretreatment. Consistent with this result, inhibition of the LPA(2) receptor expression increases Siva-1 protein levels and augments adriamycin-induced caspase-3 cleavage and apoptosis. Together, these findings reveal a critical and specific role for the LPA(2) receptor through which LPA directly inactivates a critical component of the death machinery to promote cell survival.
Collapse
Affiliation(s)
- Fang-Tsyr Lin
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|