1
|
Ma MM, Zhao J, Liu L, Wu CY. Identification of cuproptosis-related genes in Alzheimer's disease based on bioinformatic analysis. Eur J Med Res 2024; 29:495. [PMID: 39396083 PMCID: PMC11470641 DOI: 10.1186/s40001-024-02093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024] Open
Abstract
OBJECTIVE To explore the role of cuproptosis in Alzheimer's disease (AD). METHODS An AD-related microarray dataset was downloaded from the Gene Expression Omnibus (GEO) database (GSE140830). Weighted gene co-expression network analysis was used to identify AD-related modular genes. The Venn analysis was performed to obtain module genes associated with apoptosis and cuproptosis. Besides, we conducted an enrichment analysis of overlapped genes and constructed the protein-protein interaction (PPI) network, followed by screening hub genes and those significantly associated with AD were used to construct models of apoptosis and cuproptosis, respectively. Further, receiver operating characteristic (ROC) curve analysis, decision curve analysis (DCA), and subgroup analysis were used to compare the AD prediction performance of two models. Finally, the accuracy and reliability of AD prediction models were verified by GSE26927. RESULTS We obtained 42 module genes related to apoptosis and 9 module genes related to cuproptosis. The enrichment analysis results revealed MAPK signaling pathway as the common signaling pathway of apoptosis- and cuproptosis-related genes. Next, the hub genes associated with apoptosis (TRADD, FADD, BIRC2, and CASP2) and cuproptosis (MAP2K1, SLC31A1, and PDHB) in AD were identified, which were used to construct apoptosis and cuproptosis models to distinguish AD patients from the control group (P < 0.05). The ROC, DCA, and subgroup analysis results showed that apoptosis-related models and cuproptosis-related models had comparable ability in predicting AD. GSE26927 further confirmed that the two models have comparable predictive effects for AD. CONCLUSIONS The cuproptosis model had a certain performance in predicting AD. Three hub genes (MAP2K1, SLC31A1, and PDHB) closely related to cuproptosis in AD might serve as biomarkers for AD diagnosis and treatment.
Collapse
Affiliation(s)
- Ming-Ming Ma
- Neurology, Hangzhou Red Cross Hospital, No. 208, East Huan Cheng Road, Gongshu District, Hangzhou, 310003, Zhejiang, China
| | - Jing Zhao
- Neurology, Hangzhou Red Cross Hospital, No. 208, East Huan Cheng Road, Gongshu District, Hangzhou, 310003, Zhejiang, China
| | - Ling Liu
- Gastroenterology, The Second Affiliated Hospital Zhejiang University School of Medicine (City East Campus), Hangzhou, 310021, Zhejiang, China
| | - Cai-Ying Wu
- Neurology, Hangzhou Red Cross Hospital, No. 208, East Huan Cheng Road, Gongshu District, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
2
|
Wang Q, Chen S, Wang G, Zhang T, Gao Y. Integrated mendelian randomization analyses highlight AFF3 as a novel eQTL-mediated susceptibility gene in renal cancer and its potential mechanisms. BMC Cancer 2024; 24:739. [PMID: 38886730 PMCID: PMC11181572 DOI: 10.1186/s12885-024-12513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUNDS A growing number of expression quantitative trait loci (eQTLs) have been found to be linked with tumorigenesis. In this article, we employed integrated Mendelian randomization (MR) analyses to identify novel susceptibility genes in renal cancer (RC) and reveal their potential mechanisms. METHODS Two-sample MR analyses were performed to infer causal relationships between eQTLs, metabolites, and RC risks through the "TwoSampleMR" R package. Sensitivity analyses, such as heterogeneity, pleiotropy, and leave-one-out analysis, were used to assess the stability of our outcomes. Summary-data-based MR (SMR) analyses were used to verify the causal relationships among cis-eQTLs and RC risks via the SMR 1.3.1 software. RESULTS Our results provided the first evidence for AFF3 eQTL elevating RC risks, suggesting its oncogenic roles (IVW method; odds ratio (OR) = 1.0005; 95% confidence interval (CI) = 1.0001-1.0010; P = 0.0285; heterogeneity = 0.9588; pleiotropy = 0.8397). Further SMR analysis validated the causal relationships among AFF3 cis-eQTLs and RC risks (P < 0.05). Moreover, the TCGA-KIRC, the ICGC-RC, and the GSE159115 datasets verified that the AFF3 gene was more highly expressed in RC tumors than normal control via scRNA-sequencing and bulk RNA-sequencing (P < 0.05). Gene set enrichment analysis (GSEA) analysis identified six potential biological pathways of AFF3 involved in RC. As for the potential mechanism of AFF3 in RC, we concluded in this article that AFF3 eQTL could negatively modulate the levels of the X-11,315 metabolite (IVW method; OR = 0.9127; 95% CI = 0.8530-0.9765; P = 0.0081; heterogeneity = 0.4150; pleiotropy = 0.8852), exhibiting preventive effects against RC risks (IVW method; OR = 0.9987; 95% CI = 0.9975-0.9999; P = 0.0380; heterogeneity = 0.5362; pleiotropy = 0.9808). CONCLUSIONS We concluded that AFF3 could serve as a novel eQTL-mediated susceptibility gene in RC and reveal its potential mechanism of elevating RC risks via negatively regulating the X-11,315 metabolite levels.
Collapse
Affiliation(s)
- Qiming Wang
- Department of Urology, Jianhu Clinical Medical College of Yangzhou University, No. 666 South Ring Road, Yancheng, Jiangsu Province, 224700, China
| | - Shaopeng Chen
- Department of Urology, Jianhu Clinical Medical College of Yangzhou University, No. 666 South Ring Road, Yancheng, Jiangsu Province, 224700, China
| | - Gang Wang
- Department of Urology, Jianhu Clinical Medical College of Yangzhou University, No. 666 South Ring Road, Yancheng, Jiangsu Province, 224700, China
| | - Tielong Zhang
- Department of Urology, Jianhu Clinical Medical College of Yangzhou University, No. 666 South Ring Road, Yancheng, Jiangsu Province, 224700, China
| | - Yulong Gao
- Department of Urology, Jianhu Clinical Medical College of Yangzhou University, No. 666 South Ring Road, Yancheng, Jiangsu Province, 224700, China.
| |
Collapse
|
3
|
Wang H, Ma X, Li S, Ni X. SEL1L3 as a link molecular between renal cell carcinoma and atherosclerosis based on bioinformatics analysis and experimental verification. Aging (Albany NY) 2023; 15:13150-13162. [PMID: 37993256 DOI: 10.18632/aging.205227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Renal cancer, the most common type of kidney cancer, develops in the renal tubular epithelium. Atherosclerosis of the aorta is the primary cause of atherosclerosis. However, the underlying mechanisms remain unclear. METHODS The renal clear cell carcinoma RNA sequence profile was obtained from The Cancer Genome Atlas (TCGA) database, and the atherosclerosis datasets GSE28829 and GSE43292 based on GPL570 and GPL6244 was obtained from the Gene Expression Omnibus (GEO) database. The difference and hub genes were identified by the Limma protein-protein interaction (PPI) network in R software. Functional enrichment, survival, and immunoinfiltration analyses were performed. The role of SEL1L3 in the ErbB/PI3K/mTOR signaling pathway, apoptosis, invasion, cell cycle, and inflammation was analyzed using western blotting. RESULTS 764 DEGs were identified from TCGA Kidney Renal Clear Cell Carcinoma (KIRC) dataset. A total of 344 and 117 DEGs were screened from the GSE14762 and GSE53757 datasets, respectively. Functional enrichment analysis results primarily indicated enrichment in the transporter complex, DNA-binding transcription activator activity, morphogenesis of the embryonic epithelium, stem cell proliferation, adrenal overactivity and so on. Fifteen common DEGs overlapped among the three datasets. The PPI network revealed that SEL1L3 was the core gene. Survival analysis showed that lower SEL1L3 expression levels led to a worse prognosis. Immune cell infiltration analysis showed that SEL1L3 expression was significantly correlated with antibody-drug conjugates (aDC), B cells, eosinophils, interstitial dendritic cells (iDC), macrophages, and more. CONCLUSIONS SEL1L3 plays an important role in renal clear cell carcinoma and atherosclerosis and may be a potential link between them.
Collapse
Affiliation(s)
- Haoyuan Wang
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Xiaopeng Ma
- Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Sijie Li
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Xiaochen Ni
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| |
Collapse
|
4
|
MicroRNA-34c-5p exhibits anticancer properties in gastric cancer by targeting MAP2K1 to inhibit cell proliferation, migration, and invasion. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7375661. [PMID: 36203485 PMCID: PMC9532111 DOI: 10.1155/2022/7375661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/27/2022] [Indexed: 12/02/2022]
Abstract
Purpose Gastric cancer(GC)is one of the deadliest digestive tract tumors worldwide,existing studies suggest that dysregulated expression of microRNAs (miRNAs) plays an important role in the pathogenesis and progression of GC. This study aimed to investigate the expression, biological function, and downstream mechanism of miR-34c-5p in GC, provide new targets for gastric cancer diagnosis and treatment. Methods The expression of miR-34c-5p in GC tissues and cell lines was examined by RT-qPCR. Cell wound healing, transwell and cell cloning assays were used to detect the effect of miR-34c-5p on the migration and invasion abilities, respectively, of GC cells. Western blot was performed to detect the expression of related proteins. Bioinformatics analysis was used to predict the binding of MAP2K1 to miR-34c-5p and the targeting relationship was confirmed by dual luciferase reporter assay. Results The expression level of miR-34c-5p was significantly decreased in GC tissues and cell lines. miR-34c-5p overexpression inhibited migration, invasion, and colony formation of gastric cancer cells, the related protein E-cadherin expression was significantly increased and N-cadherin, vimentin, and PCNA expression were significantly decreased, while miR-34c-5p knockdown exerted the opposite effects. In addition, the targeting relationship between miR-34c-5p and MAP2K1 was predicted and confirmed, and further confirmed by rescue experiments that MAP2K1 alleviated the inhibitory effect of miR-34c-5p in GC. Conclusion MiR-34c-5p is lowly expressed in GC, and it can target MAP2K1 to exert inhibitory effects on GC proliferation, invasion, and migration. These findings provide a promising biomarker and a potential therapeutic target for gastric cancer.
Collapse
|
5
|
Diagnostic Strategies for Urologic Cancer Using Expression Analysis of Various Oncogenic Surveillance Molecules—From Non-Coding Small RNAs to Cancer-Specific Proteins. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Urinary-tract-related tumors are prone to simultaneous or heterogeneous multiple tumor development within the primary organ. Urologic tumors have a very high risk of recurrence in the long and short term. This may be related to the disruption of homeostasis on the genetic level, such as the induction of genetic mutations due to exposure to various carcinogenic factors and the disruption of cancer suppressor gene functions. It is essential to detect the cancer progression signals caused by genetic abnormalities and find treatment therapies. In this review, we discuss the usefulness of tumor-expressing clinical biomarkers for predicting cancer progression. Furthermore, we discuss various factors associated with disturbed intracellular signals and those targeted by microRNAs, which are representative of non-coding small RNAs.
Collapse
|
6
|
Zhong W, Li Y, Yuan Y, Zhong H, Huang C, Huang J, Lin Y, Huang J. Characterization of Molecular Heterogeneity Associated With Tumor Microenvironment in Clear Cell Renal Cell Carcinoma to Aid Immunotherapy. Front Cell Dev Biol 2021; 9:736540. [PMID: 34631713 PMCID: PMC8495029 DOI: 10.3389/fcell.2021.736540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer and has strong immunogenicity. A systematically investigation of the tumor microenvironment (TME) in ccRCC could contribute to help clinicians develop personalized treatment and facilitate clinical decision-making. In this study, we analyzed the immune-related subtype of ccRCC on the basis of immune-related gene expression data in The Cancer Genome Atlas (TCGA, N = 512) and E-MTAB-1980 (N = 101) dataset, respectively. As a result, two subtypes (C1 and C2) were identified by performing non-negative matrix factorization clustering. Subtype C1 was characterized by increased advance ccRCC cases and immune-related pathways. A higher immune score, stromal score, TMB value, Tumor Immune Dysfunction and Exclusion (TIDE) prediction score, and immune checkpoint genes expression level were also observed in C1. In addition, the C1 subtype might benefit from chemotherapy and immunotherapy. The patients in subtype C2 had more metabolism-related pathways, higher tumor purity, and a better prognosis. Moreover, some small molecular compounds for the treatment of ccRCC were identified between the two subtypes by using the Connectivity Map (CMap) database. Finally, we constructed and validated an immune-related (IR) score to evaluate immune modification individually. A high IR score corresponded to a favorable prognosis compared to a low IR score, while more advanced tumor stage and grade cases were enriched in the low IR score group. The two IR score groups also showed a distinct divergence among immune status, TME, and chemotherapy. The external validation dataset (E-MTAB-1980) and another immunotherapy cohort (IMvigor 210) demonstrated that patients in the high IR score group had a significantly prolonged survival time and clinical benefits compared to the low IR score group. Together, characterization of molecular heterogeneity and IR signature may help develop new insights into the TME of ccRCC and provide new strategies for personalized treatment.
Collapse
Affiliation(s)
| | - Yinan Li
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Yichu Yuan
- Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongbin Zhong
- The Fifth Hospital of Xiamen, Xiamen, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | | | - Jiwei Huang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiyi Huang
- The Fifth Hospital of Xiamen, Xiamen, China
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Liu Y, Liu J, Han X, Mou L. Prognostic Value of miR-1826 in Prostate Cancer and Its Regulatory Effect on Tumor Progression. Onco Targets Ther 2021; 14:4467-4475. [PMID: 34413652 PMCID: PMC8370600 DOI: 10.2147/ott.s295125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose miRNAs can act as oncogenes or tumor suppressors and participate in the development and progression of tumors, thus affecting the prognosis and survival of cancer patients. In this paper, we mainly studied the role of miR-1826 in prostate cancer. Patients and Methods The expression of miR-1826 was studied by quantitative real-time PCR (qRT-PCR). Kaplan–Meier curves were used to analyze the relationship between the expression of miR-1826 and the survival rate of PC patients. Cox regression analysis was used to study the risk factors affecting the prognosis of PC patients. PC cells were transfected with miR-1826 mimic, mimic negative control (mimic NC), miR-1826 inhibitor, or inhibitor NC. The effect of miR-1826 on the proliferation of PC cells was studied by the CCK-8 method and colony formation assay. Transwell assays were used to detect the effect of miR-1826 on the migratory and invasive abilities of tumor cells. Results The expression of miR-1826 in PC tissues was lower than that in adjacent normal tissues, and that the expression levels of miR-1826 in four PC cell lines were all lower than normal human prostate epithelial cell lines. Patients with low expression of miR-1826 had shorter overall survival compared with those with high expression. The downregulation of miR-1826 promoted PC cell proliferation, migration, and invasion. Conclusion In summary, the low expression of miR-1826 may promote the progression of PC, and the low expression of miR-1826 is also associated with a poor prognosis in PC patients.
Collapse
Affiliation(s)
- Yongguo Liu
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, Shandong, People's Republic of China
| | - Jing Liu
- Department of Pathology, Weifang Traditional Chinese Hospital, Weifang, 261041, Shandong, People's Republic of China
| | - Xiancheng Han
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, Shandong, People's Republic of China
| | - Linkai Mou
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, Shandong, People's Republic of China
| |
Collapse
|
8
|
Chen S, Lao J, Geng Q, Zhang J, Wu A, Xu D. A 3-MicroRNA Signature Identified From Serum Predicts Clinical Outcome of the Locally Advanced Gastric Cancer. Front Oncol 2020; 10:565. [PMID: 32656071 PMCID: PMC7323914 DOI: 10.3389/fonc.2020.00565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/30/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Current staging systems are inadequate for evaluating the prognosis of patients with locally advanced gastric cancer (LAGC, stages II–III). Therefore, we developed a serum microRNA (miRNA) signature to facilitate individualized management of these patients. Methods: Using microarray analysis, we analyzed 12 serum specimens based on different prognoses (good survival group, n = 7; poor survival group, n = 5). We identified and confirmed differential expression of these miRNAs using quantitative reverse transcription PCR (qRT-PCR) of serum from 51 patients with LAGC. A three miRNA-based classifier was established as a training set by Cox proportional hazard regression and risk-score analysis. We validated the prognostic accuracy of this model in an internal validation cohort (Sun Yat-Sen University Cancer Center, SYSUCC validation cohort, n = 50) and an external independent cohort (Beijing Cancer Hospital, BJCH cohort, n = 67). Results: Three miRNAs were found to be associated with survival of LAGC (P < 0.001 for miR-132, P = 0.011 for miR-548a-3p, and P < 0.001 for miR-1826). A three-miRNA signature was developed for the training set, and a significant difference was found between the survival of low- and high-risk score patients (P < 0.01). The combination of the miRNA signature and tumor–node–metastasis (TNM) stage exhibited superior discrimination. Consistent results were obtained by further validation of the internal set and the BJCH set, which confirmed the predictive value of the model. Conclusions: We built an easy-to-use prognostic signature using three serum miRNAs as markers. Our miRNA signature may improve postoperative risk stratification and serve as a complement to the TNM staging system.
Collapse
Affiliation(s)
- Shangxiang Chen
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiawen Lao
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qirong Geng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Hematology Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ji Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Neurosurgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Aiwen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Dazhi Xu
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
9
|
Deng ZF, Zheng HL, Chen JG, Luo Y, Xu JF, Zhao G, Lu JJ, Li HH, Gao SQ, Zhang DZ, Zhu LQ, Zhang YH, Wang F. miR-214-3p Targets β-Catenin to Regulate Depressive-like Behaviors Induced by Chronic Social Defeat Stress in Mice. Cereb Cortex 2020. [PMID: 29522177 DOI: 10.1093/cercor/bhy047] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
β-Catenin has been implicated in major depressive disorder (MDD), which is associated with synaptic plasticity and dendritic arborization. MicroRNAs (miRNA) are small noncoding RNAs containing about 22 nucleotides and involved in a variety of physiological and pathophysiological process, but their roles in MDD remain largely unknown. Here, we investigated the expression and function of miRNAs in the mouse model of chronic social defeat stress (CSDS). The regulation of β-catenin by selected miRNA was validated by silico prediction, target gene luciferase reporter assay, and transfection experiment in neurons. We demonstrated that the levels of miR-214-3p, which targets β-catenin transcripts were significantly increased in the medial prefrontal cortex (mPFC) of CSDS mice. Antagomir-214-3p, a neutralizing inhibitor of miR-214-3p, increased the levels of β-catenin and reversed the depressive-like behavior in CSDS mice. Meanwhile, antagomir-214-3p increased the amplitude of miniature excitatory postsynaptic current (mEPSC) and the number of dendritic spines in mPFC of CSDS mice, which may be related to the elevated expression of cldn1. Furthermore, intranasal administered antagomir-214-3p also significantly increased the level of β-catenin and reversed the depressive-like behaviors in CSDS mice. These results may represent a new therapeutic target for MDD.
Collapse
Affiliation(s)
- Zhi-Fang Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Ling Zheng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,The Collaborative-Innovation Center for Brain Science, Wuhan, China
| | - Yi Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Feng Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Zhao
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Jing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou-Hong Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang-Qi Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deng-Zheng Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Qiang Zhu
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| | - Yong-Hui Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,The Collaborative-Innovation Center for Brain Science, Wuhan, China
| |
Collapse
|
10
|
Zhou C, Wang P, Tu M, Huang Y, Xiong F, Wu Y. Long Non-Coding RNA PART1 Promotes Proliferation, Migration and Invasion of Hepatocellular Carcinoma Cells via miR-149-5p/MAP2K1 Axis. Cancer Manag Res 2020; 12:3771-3782. [PMID: 32547213 PMCID: PMC7248804 DOI: 10.2147/cmar.s246311] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/11/2020] [Indexed: 01/04/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common primary hepatic malignancy worldwide. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been identified as effective markers for the detection of multiple cancers. This study aimed to illuminate the mechanism of prostate androgen regulated transcript 1 (PART1) in HCC. Materials and Methods The levels of PART1, miR-149-5p and mitogen-activated protein kinase 1 (MAP2K1) mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Cell proliferation was assessed by Cell Counting Kit-8 (CCK-8) assay, and cell migration and invasion were evaluated by transwell assay. Dual-luciferase reporter assay was carried out to examine the relationship among PART1, miR-149-5p and MAP2K1. Western blot assay was conducted to measure the protein expression of MAP2K1. Results PART1 and MAP2K1 expression were greatly increased and miR-149-5p level was decreased in HCC tissues. Functional analysis revealed that the si-PART1 inhibited proliferation, migration and invasion of HCC cells. PART1 directly bound to miR-149-5p and miR-149-5p level was down-regulated by PART1. Moreover, restoration experiment demonstrated that the effect of PART1 knockdown on HCC cell progression could be partially rescued by miR-149-5p depletion. MiR-149-5p was predicted to target MAP2K1 and MAP2K1 expression was negatively modulated by miR-149-5p. Also, MAP2K1 rescued the inhibitory effects of miR-149-5p overexpression on proliferation, migration and invasion in HCC cells. Besides, the inhibition of miR-149-5p weakened the impact on MAP2K1 expression mediated by PART1 repression. Conclusion PART1 promoted proliferation, migration and invasion of HCC cells by regulating miR-149-5p/MAP2K1 axis.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Gastroenterology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, People's Republic of China
| | - Pu Wang
- Department of Gastroenterology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, People's Republic of China
| | - Mengtian Tu
- Department of Gastroenterology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, People's Republic of China
| | - Yi Huang
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Sichuan 610072, People's Republic of China
| | - Fei Xiong
- Department of Gastroenterology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, People's Republic of China
| | - Yue Wu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Sichuan 610072, People's Republic of China
| |
Collapse
|
11
|
Wei PJ, Wu FX, Xia J, Su Y, Wang J, Zheng CH. Prioritizing Cancer Genes Based on an Improved Random Walk Method. Front Genet 2020; 11:377. [PMID: 32411180 PMCID: PMC7198854 DOI: 10.3389/fgene.2020.00377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Identifying driver genes that contribute to cancer progression from numerous passenger genes, although a central goal, is a major challenge. The protein-protein interaction network provides convenient and reasonable assistance for driver gene discovery. Random walk-based methods have been widely used to prioritize nodes in social or biological networks. However, most studies select the next arriving node uniformly from the random walker's neighbors. Few consider transiting preference according to the degree of random walker's neighbors. In this study, based on the random walk method, we propose a novel approach named Driver_IRW (Driver genes discovery with Improved Random Walk method), to prioritize cancer genes in cancer-related network. The key idea of Driver_IRW is to assign different transition probabilities for different edges of a constructed cancer-related network in accordance with the degree of the nodes' neighbors. Furthermore, the global centrality (here is betweenness centrality) and Katz feedback centrality are incorporated into the framework to evaluate the probability to walk to the seed nodes. Experimental results on four cancer types indicate that Driver_IRW performs more efficiently than some previously published methods for uncovering known cancer-related genes. In conclusion, our method can aid in prioritizing cancer-related genes and complement traditional frequency and network-based methods.
Collapse
Affiliation(s)
- Pi-Jing Wei
- Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, College of Computer Science and Technology, Anhui University, Hefei, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Computer Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Junfeng Xia
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yansen Su
- Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, College of Computer Science and Technology, Anhui University, Hefei, China
| | - Jing Wang
- Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, College of Computer Science and Technology, Anhui University, Hefei, China
- College of Computer and Information Engineering, Fuyang Normal University, Fuyang, China
| | - Chun-Hou Zheng
- Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, College of Computer Science and Technology, Anhui University, Hefei, China
| |
Collapse
|
12
|
Downregulation of miR-1826 Indicates a Poor Prognosis for Osteosarcoma Patients and Regulates Tumor Cell Proliferation, Migration, and Invasion. Int J Genomics 2020; 2020:7968407. [PMID: 32104674 PMCID: PMC7036115 DOI: 10.1155/2020/7968407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background Osteosarcoma (OS) is the most frequent bone tumor with high metastasis. This study is aimed at assessing the expression and prognostic significance of microRNA-1826 (miR-1826) in OS patients, as well as its biological function in tumor progression. Methods Quantitative Real-Time PCR was employed to measure the expression of miR-1826 in OS tissues and cell lines. Kaplan-Meier survival analysis and Cox regression model were used to evaluate the prognostic value of miR-1826. CCK-8 and Transwell assay were conducted to investigate the effect of miR-1826 on OS cell proliferation, migration, and invasion. Results miR-1826 expression was downregulated in OS tissues and cell lines and associated with OS patients' clinical stage and distant metastasis. Low levels of miR-1826 were related with shorter survival time and determined as an independent prognostic indicator for the overall survival of OS patients. The overexpression of miR-1826 in OS cells led to inhibited cell proliferation, migration, and invasion. Conclusion The decreased expression of miR-1826 predicts a poor prognosis in OS patients, and its overexpression inhibits OS cell proliferation, migration, and invasion. This newly identified miR-1826 provides a novel sight into the pathogenesis of OS and offers a candidate prognostic biomarker and therapeutic target for OS treatment.
Collapse
|
13
|
Ju L, Shan L, Yin B, Song Y. δ-Catenin regulates proliferation and apoptosis in renal cell carcinoma via promoting β-catenin nuclear localization and activating its downstream target genes. Cancer Med 2020; 9:2201-2212. [PMID: 31991069 PMCID: PMC7064116 DOI: 10.1002/cam4.2857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
δ‐Catenin is a unique member of the catenin family and is proved to be overexpressed in diverse human cancer types. However, the clinical significance and underling mechanism of δ‐catenin expression in renal cell carcinoma (RCC) remain elusive. Herein, we detected the protein expression of δ‐catenin in 28 clinical specimens of paired renal cancer tissues and normal renal tissues by Western blot analysis. δ‐Catenin expression in 58 cases of renal cell carcinoma was also examined by immunohistochemistry, and its association with clinicopathological factors was analyzed by statistical analysis. In vitro and in vivo assays were employed to further explore the biological role of δ‐catenin in RCC. The results showed that δ‐catenin was highly expressed in both clinical samples and cell lines of RCC. RCC patients with higher δ‐catenin expression had a more advanced pTNM stage and tumor stage as well as lymph nodes metastasis than those with lower expression. By regulating the nuclear translocation of β‐catenin and β‐catenin‐mediated oncogenic signals, δ‐catenin promoted proliferation and inhibited apoptosis in RCC. In vivo assay indicated δ‐catenin facilitated tumor growth in ACHN cell xenograft mouse model. Taken together, our study suggests that δ‐catenin might be considered as a novel prognostic indicator and actionable target for gene therapy in renal cell carcinoma.
Collapse
Affiliation(s)
- Lincheng Ju
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liping Shan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bo Yin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Jiang L, Liu Y, Ma C, Li B. MicroRNA-30a suppresses the proliferation, migration and invasion of human renal cell carcinoma cells by directly targeting ADAM9. Oncol Lett 2018; 16:3038-3044. [PMID: 30127894 PMCID: PMC6096089 DOI: 10.3892/ol.2018.8999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/30/2018] [Indexed: 12/30/2022] Open
Abstract
An increasing number of studies reported that microRNA (miR)-30a was dysregulated in several types of human cancer and may contribute to cancer carcinogenesis and progression. However, its expression and roles in renal cell carcinoma (RCC) remain unknown. In the present study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to quantify miR-30a expression in RCC tissues and cell lines. The cell counting kit-8 assay, migration and invasion assays were used to evaluate the roles of miR-30a on the proliferation, migration and invasion of RCC cells. The target gene of miR-30a was identified by luciferase reporter assays, RT-qPCR and western blotting. The results indicated that miR-30a was downregulated in RCC tissues and cell lines compared with corresponding noncancerous tissues and normal renal cell line, respectively. Re-expression of miR-30a inhibited the proliferation, migration and invasion of RCC cells. Additionally, ADAM metallopeptidase domain 9 (ADAM9) was validated as a direct target of miR-30a. Furthermore, the knockdown of ADAM9 by small interfering RNAs was able to mimic the effects of miR-30a overexpression in RCC cells. These results highlight the important role for miR-30a in the occurrence and development of RCC, and the restoration of miR-30a might be investigated as a potential strategy for treating RCC.
Collapse
Affiliation(s)
- Lining Jiang
- Department of Urology, Cangzhou Central Hospital, Cangzhou, Hebei 061110, P.R. China
| | - Yabin Liu
- Department of Urology, Hebei Medical University Fourth Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Can Ma
- Department of Oncology, Shijiazhuang City No. 1 People's Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Binghui Li
- Department of Urology, Hebei Medical University Fourth Hospital, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
15
|
MicroRNAs as Urinary Biomarker for Oncocytoma. DISEASE MARKERS 2018; 2018:6979073. [PMID: 30116406 PMCID: PMC6079495 DOI: 10.1155/2018/6979073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/22/2018] [Accepted: 06/05/2018] [Indexed: 12/28/2022]
Abstract
The identification of benign renal oncocytoma, its differentiation from malignant renal tumors, and their eosinophilic variants are a continuous challenge, influencing preoperative planning and being an unnecessary stress factor for patients. Regressive changes enhance the diagnostic dilemma, making evaluations by frozen sections or by immunohistology (on biopsies) unreliable. MicroRNAs (miRs) have been proposed as novel biomarkers to differentiate renal tumor subtypes. However, their value as a diagnostic biomarker of oncocytoma in urines based on mechanisms known in oncocytomas has not been exploited. We used urines from patients with renal tumors (oncocytoma, renal cell carcinoma: clear cell, papillary, chromophobe) and with other urogenital lesions. miRs were extracted and detected via qRT-PCR, the respective tumors analyzed by immunohistology. We found isocitrate dehydrogenase 2 upregulated in oncocytoma and oncocytic chromophobe carcinoma, indicating an increased Krebs cycle metabolism. Since we had shown that all renal tumors are stimulated by endothelin-1, we analyzed miRs preidentified by microarray after endothelin-1 stimulation of renal epithelial cells. Four miRs are proposed as presurgical urinary biomarkers due to their known regulatory mechanism in oncocytoma: miR-498 (formation of the oncocytoma-specific slice-form of vimentin, Vim3), miR-183 (associated with increased CO2 levels), miR-205, and miR-31 (signaling through downregulation of PKC epsilon, shown previously).
Collapse
|
16
|
Liu F, Liu Y, Shen J, Zhang G, Han J. MicroRNA-224 inhibits proliferation and migration of breast cancer cells by down-regulating Fizzled 5 expression. Oncotarget 2018; 7:49130-49142. [PMID: 27323393 PMCID: PMC5226496 DOI: 10.18632/oncotarget.9734] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 04/25/2016] [Indexed: 12/22/2022] Open
Abstract
The Wnt/β-catenin signaling is crucial for the proliferation and migration of breast cancer cells. However, the expression of microRNA-224 (miR-224) in the different types of breast cancers and its role in the Wnt/β-catenin signaling and the proliferation and migration of breast cancer cells are poorly understood. In this study, the levels of miR-224 in different types of breast cancer tissues and cell lines were examined by quantitative RT-PCR and the potential targets of miR-224 in the Wnt/β-catenin signaling were investigated. The effects of altered miR-224 expression on the frequency of CD44+CD24− cancer stem-like cells (CSC), proliferation and migration of MCF-7 and MDA-MB-231 cells were examined by flow cytometry, MTT and transwell migration. We found that the levels of miR-224 expression in different types of breast cancer tissues and cell lines were associated inversely with aggressiveness of breast cancers. Enhanced miR-224 expression significantly reduced the fizzled 5-regulated luciferase activity in 293T cells, fizzled 5 expression in MCF-7 and MDA-MB-231 cells, the β-dependent luciferase activity in MCF-7 cells, and the nuclear translocation of β-catenin in MDA-MB-231 cells. miR-224 inhibition significantly increased the percentages of CSC in MCF-7 cells and enhanced proliferation and migration of MCF-7 cells. Enhanced miR-224 expression inhibited proliferation and migration of MDA-MB-231 cells, and the growth of implanted breast cancers in vivo. Induction of frizzled 5 over-expression mitigated the miR-224-mediated inhibition of breast cancer cell proliferation. Collectively, these data indicated that miR-224 down-regulated the Wnt/β-catenin signaling possibly by binding to frizzled 5 and inhibited proliferation and migration of breast cancer cells.
Collapse
Affiliation(s)
- Feng Liu
- Department of Breast Surgery, Cancer Hospital of Harbin Medical University, Harbin 150081, China
| | - Yang Liu
- Department of Breast Surgery, Cancer Hospital of Harbin Medical University, Harbin 150081, China
| | - Jingling Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Guoqiang Zhang
- Department of Breast Surgery, Cancer Hospital of Harbin Medical University, Harbin 150081, China
| | - Jiguang Han
- Department of Breast Surgery, Cancer Hospital of Harbin Medical University, Harbin 150081, China
| |
Collapse
|
17
|
Peng Y, Zhang X, Feng X, Fan X, Jin Z. The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget 2017; 8:14089-14106. [PMID: 27793042 PMCID: PMC5355165 DOI: 10.18632/oncotarget.12923] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
Mounting evidence has indicated microRNA (miR) dysregulation and the Wnt/β-catenin signaling pathway jointly drive carcinogenesis, cancer metastasis, and drug-resistance. The current review will focus on the role of the crosstalk between miRs and the Wnt/β-catenin signaling pathway in cancer development. MiRs were found to activate or inhibit the canonical Wnt pathway at various steps. On the other hand, Wnt activation increases expression of miR by directly binding to its promoter and activating transcription. Moreover, there are mutual feedback loops between some miRs and the Wnt/β-catenin signaling pathway. Clinical trials of miR-based therapeutic agents are investigated for solid and hematological tumors, however, challenges concerning low bioavailability and possible side effects must be overcome before the final clinical application. This review will describe current understanding of miR crosstalk with the Wnt/β-catenin signaling cascade. Better understanding of the regulatory network will provide insight into miR-based therapeutic development.
Collapse
Affiliation(s)
- Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Department of Pathology, Wuhan University School of Basic Medical Sciences, Hubei, People's Republic of China
| | - Xiaojing Zhang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xianling Feng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xinmim Fan
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Zhe Jin
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
18
|
Abstract
Human cancers are characterized by a number of hallmarks, including sustained proliferative signaling, evasion of growth suppressors, activated invasion and metastasis, replicative immortality, angiogenesis, resistance to cell death, and evasion of immune destruction. As microRNAs (miRNAs) are deregulated in virtually all human cancers, they show involvement in each of the cancer hallmarks as well. In this chapter, we describe the involvement of miRNAs in cancer from a cancer hallmarks and targeted therapeutics point of view. As no miRNA-based cancer therapeutics are available to date, and the only clinical trial on miRNA-based cancer therapeutics (MRX34) was terminated prematurely due to serious adverse events, we are focusing on protein-coding miRNA targets for which targeted therapeutics in oncology are already approved by the FDA. For each of the cancer hallmarks, we selected major protein-coding players and describe the miRNAs that target them.
Collapse
Affiliation(s)
| | - George A Calin
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
19
|
Chen C, Xue S, Zhang J, Chen W, Gong D, Zheng J, Ma J, Xue W, Chen Y, Zhai W, Zheng J. DNA-methylation-mediated repression of miR-766-3p promotes cell proliferation via targeting SF2 expression in renal cell carcinoma. Int J Cancer 2017; 141:1867-1878. [PMID: 28657135 DOI: 10.1002/ijc.30853] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/15/2017] [Accepted: 06/14/2017] [Indexed: 01/10/2023]
Abstract
Aberrant expression of microRNA (miRNA) emerges as an important role in a wide range of human malignances, and further identification as well as validation of the change of these endogenous non-protein-coding transcripts is warranted. Here, we identify a novel epigenetic regulation of miR-766-3p and investigate its biological function as well as clinical significance in renal cell carcinoma (RCC). Bisulfate analysis elucidates that the promoter of miR-766-3p is highly methylated in RCC tissues compared to non-tumorous tissues. Notably, the downregulation of miR-766-3p is obviously associated with clinical stage and worse prognosis in RCC patients. Upregulated miR-766-3p attenuates cell-cycle progression via targeting SF2 expression and additional SF2/P-AKT/P-ERK signaling pathway. Moreover, high level of SF2, as a novel oncoprotein in RCC, was significantly associated with poor survival in a large cohort of RCC specimens. Taken together, our study presents a road map for the prediction and validation of miR-766-3p/SF2 axis and thus imparts a therapeutic way for further RCC progression.
Collapse
Affiliation(s)
- Chen Chen
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Sheng Xue
- Department of Urology, Shanghai Tenth People's Hospital, Nanjing Medical University, Nanjing, China.,Department of Urology, The First Affliated Hospital of Bengbu Medical College Bengbu, Anhui, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, 160 Pujian Road, Pudong District, Shanghai, 200127, China
| | - Wei Chen
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, 160 Pujian Road, Pudong District, Shanghai, 200127, China
| | - Dongkui Gong
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Jiayi Zheng
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Junjie Ma
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, 160 Pujian Road, Pudong District, Shanghai, 200127, China
| | - Yonghui Chen
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, 160 Pujian Road, Pudong District, Shanghai, 200127, China
| | - Wei Zhai
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China.,Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, 160 Pujian Road, Pudong District, Shanghai, 200127, China
| | - Junhua Zheng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China.,Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Shi BM, Lu W, Ji K, Wang YF, Xiao S, Wang XY. Study on the value of serum miR-106b for the early diagnosis of hepatocellular carcinoma. World J Gastroenterol 2017; 23:3713-3720. [PMID: 28611524 PMCID: PMC5449428 DOI: 10.3748/wjg.v23.i20.3713] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/07/2017] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To analyze the incidence of hepatocellular carcinoma (HCC) in a population that underwent health checkups and had high serum miR-106b levels. METHODS A total of 335 subjects who underwent checkups in the Digestive and Liver Disease Department of our hospital were randomly selected. RT-PCR was used to detect the level of miR-106b in serum samples. Laboratory and imaging examinations were carried out to confirm the HCC diagnosis in patients who had a > 2-fold change in miR-106b levels. Ultrasound-guided biopsy was also used for HCC diagnosis when necessary. On this basis, the clinical data of these subjects, including history of hepatitis virus infection, obesity, long-term history of alcohol use and stage of HCC, were collected. Then, the impact of these factors on the level of miR-106b in serum was analyzed. Furthermore, receiver operating characteristic (ROC) curve was drawn to evaluate the diagnostic efficacy of miR-106b for HCC. RESULTS A total of 35 subjects had abnormal serum miR-106b levels, of which 20 subjects were diagnosed with HCC. t-test revealed that the difference in serum miR-106b level in terms of sex, age, history of hepatitis virus infection, obesity and long-term history of alcohol use was not statistically significant. However, serum miR-106b levels in patients with advanced HCC (stage III/IV) was higher than in patients with early HCC (stage I/II), and the difference was statistically significant (P = 0.000). Moreover, the ROC curve revealed that the area under the curve value for miR-106b was 0.885, which shows that serum miR-106b level has a certain clinical value for HCC diagnosis. CONCLUSION The random sampling survey shows that serum miR-106b level is a valuable diagnostic marker for HCC. However, the diagnostic threshold value needs to be further researched.
Collapse
|
21
|
Lu C, Liao Z, Cai M, Zhang G. MicroRNA-320a downregulation mediates human liver cancer cell proliferation through the Wnt/β-catenin signaling pathway. Oncol Lett 2016; 13:573-578. [PMID: 28356931 PMCID: PMC5351300 DOI: 10.3892/ol.2016.5479] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/10/2016] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRs) have emerged as key epigenetic regulators involved in cancer progression. miR-320a has been demonstrated to be a novel tumor suppressive microRNA in several types of cancers. In the present study, the role of miR-320a in human hepatocellular carcinoma (HCC) was investigated. The expression levels of miR-320a and messenger RNA were determined by reverse transcription-quantitative polymerase chain reaction, while cell cycle and cell apoptosis were analyzed by flow cytometry. The cell proliferative ability was determined by Cell Counting Kit-8 assay and colony formation assay. The downstream target of miR-320a was confirmed by luciferase reporter assay, while the protein levels were measured by western blotting. The results revealed that miR-320a was inversely associated with HCC proliferation in HCC cell lines. Functional studies demonstrated that miR-320a significantly decreased the capability of cell proliferation and induced G0/G1 growth arrest in vitro. In addition, β-catenin was identified as one of the direct targets of miR-320a, downregulating the expression level of β-catenin, c-myc, cyclin D1 and dickkopf-1. In conclusion, miR-320a may act as a tumor-suppressive microRNA through targeting β-catenin in HCC.
Collapse
Affiliation(s)
- Caicheng Lu
- Department of Medical Technology, The Second Hospital of Longyan, Longyan, Fujian 364000, P.R. China
| | - Zengwei Liao
- Department of Medical Technology, The Second Hospital of Longyan, Longyan, Fujian 364000, P.R. China
| | - Minxian Cai
- Department of Medical Technology, The Second Hospital of Longyan, Longyan, Fujian 364000, P.R. China
| | - Guirong Zhang
- Department of Medical Technology, The Second Hospital of Longyan, Longyan, Fujian 364000, P.R. China
| |
Collapse
|
22
|
MicroRNA Regulation of Endothelial Junction Proteins and Clinical Consequence. Mediators Inflamm 2016; 2016:5078627. [PMID: 27999452 PMCID: PMC5143735 DOI: 10.1155/2016/5078627] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
Cellular junctions play a critical role in structural connection and signal communication between cells in various tissues. Although there are structural and functional varieties, cellular junctions include tight junctions, adherens junctions, focal adhesion junctions, and tissue specific junctions such as PECAM-1 junctions in endothelial cells (EC), desmosomes in epithelial cells, and hemidesmosomes in EC. Cellular junction dysfunction and deterioration are indicative of clinical diseases. MicroRNAs (miRNA) are ~20 nucleotide, noncoding RNAs that play an important role in posttranscriptional regulation for almost all genes. Unsurprisingly, miRNAs regulate junction protein gene expression and control junction structure integrity. In contrast, abnormal miRNA regulation of junction protein gene expression results in abnormal junction structure, causing related diseases. The major components of tight junctions include zonula occluden-1 (ZO-1), claudin-1, claudin-5, and occludin. The miRNA regulation of ZO-1 has been intensively investigated. ZO-1 and other tight junction proteins such as claudin-5 and occludin were positively regulated by miR-126, miR-107, and miR21 in different models. In contrast, ZO-1, claudin-5, and occludin were negatively regulated by miR-181a, miR-98, and miR150. Abnormal tight junction miRNA regulation accompanies cerebral middle artery ischemia, brain trauma, glioma metastasis, and so forth. The major components of adherens junctions include VE-cadherin, β-catenin, plakoglobin, P120, and vinculin. VE-cadherin and β-catenin were regulated by miR-9, miR-99b, miR-181a, and so forth. These regulations directly affect VE-cadherin-β-catenin complex stability and further affect embryo and tumor angiogenesis, vascular development, and so forth. miR-155 and miR-126 have been shown to regulate PECAM-1 and affect neutrophil rolling and EC junction integrity. In focal adhesion junctions, the major components are integrin β4, paxillin, and focal adhesion kinase (FAK). Integrin β4 has been regulated by miR-184, miR-205, and miR-9. Paxillin has been regulated by miR-137, miR-145, and miR-218 in different models. FAK has been regulated by miR-7, miR-138, and miR-135. Deregulation of miRNAs is caused by viral infections, tumorigenesis, and so forth. By regulation of posttranscription, miRNAs manipulate junction protein expression in all cellular processes and further determine cellular fate and development. Elucidation of these regulatory mechanisms will become a new alternative therapy for many diseases, such as cancers and inflammatory diseases.
Collapse
|
23
|
Liu T, Hu K, Zhao Z, Chen G, Ou X, Zhang H, Zhang X, Wei X, Wang D, Cui M, Liu C. MicroRNA-1 down-regulates proliferation and migration of breast cancer stem cells by inhibiting the Wnt/β-catenin pathway. Oncotarget 2016; 6:41638-49. [PMID: 26497855 PMCID: PMC4747178 DOI: 10.18632/oncotarget.5873] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/09/2015] [Indexed: 01/15/2023] Open
Abstract
We investigated the miRNA profiles of breast cancer stem cells (CSCs) and non-CSC tumor cells by miRNA microarray and determined the effect of altered miR-1 expression on proliferation and migration of breast CSCs. The potential targets of miR-1 in the Wnt/β-catenin signaling were characterized by bioinformatics analysis and luciferase assay. We found that 14 miRNAs were up-regulated and 13 were down-regulated in the ESA+CD44+CD24−lineage− CSCs, related to ESA+CD44−CD24+lineage− non-CSC tumor cells. The miR-1 expression was associated inversely with aggressiveness of breast cancers. Furthermore, enhanced miR-1 expression decreased the percentages of SKBR3/CSCs and miR-1 inhibition increased the percentages of MCF-7/CSCs. Enhanced miR-1 expression significantly reduced the Frizzled 7 and Tankyrase-2 (TNKS2)-regulated luciferase activity in 293T cells and decreased Frizzled 7, TNKS2, c-Myc, octamer-binding transcription factor 4 (Oct4) and Nanog expression and the ratios of nuclear to cytoplasmic β-catenin as well as β-catenin-dependent luciferase activity in breast CSCs in vitro. miR-1 inhibited proliferation, migration and wound healing of breast CSCs in vitro. Enhanced miR-1 expression inhibited the growth of implanted MCF-7/CSCs while miR-1 inhibition promoted the growth of implanted MCF-7/CSCs in vivo. Our data indicate that miR-1 down-regulates breast CSC stemness, proliferation and migration by targeting the Frizzled 7 and TNKS2 to inhibit the Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Tong Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China 150000
| | - Kebang Hu
- Department of Urology, First Hospital of Jilin University, Changchun, China 130021
| | - Zuowei Zhao
- Department of Breast Cancer, Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, China 114006
| | - Guanglei Chen
- Department of Breast Cancer, Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, China 114006
| | - Xunyan Ou
- Department of Breast Cancer, Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, China 114006
| | - Hao Zhang
- Department of Breast Cancer, Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, China 114006
| | - Xin Zhang
- Department of Breast Cancer, Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, China 114006
| | - Xiaofei Wei
- Department of Breast Cancer, Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, China 114006
| | - Dan Wang
- Department of Breast Cancer, Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, China 114006
| | - Meizi Cui
- Cancer Center, the First Hospital of Jilin University, Changchun, China 130021
| | - Caigang Liu
- Department of Breast Cancer, Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, China 114006
| |
Collapse
|
24
|
Gu L, Li H, Chen L, Ma X, Gao Y, Li X, Zhang Y, Fan Y, Zhang X. MicroRNAs as prognostic molecular signatures in renal cell carcinoma: a systematic review and meta-analysis. Oncotarget 2016; 6:32545-60. [PMID: 26416448 PMCID: PMC4741711 DOI: 10.18632/oncotarget.5324] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/11/2015] [Indexed: 01/12/2023] Open
Abstract
This is a systematic review of studies investigating the prognostic value of different microRNAs (miRs) in renal cell carcinoma (RCC). Twenty-seven relevant studies were identified, with a total of 2578 subjects. We found that elevated expression of miR-21, miR-1260b, miR-210, miR-100, miR-125b, miR-221, miR-630, and miR-497 was associated with a poor prognosis in RCC patients. Conversely, decreased expression of miR-106b, miR-99a, miR-1826, miR-215, miR-217, miR-187, miR-129–3p, miR-23b, miR-27b, and miR-126 was associated with a worse prognosis. We performed meta-analyses on studies to address the prognostic value of miR-21, miR-126, miR-210, and miR-221. This revealed that elevated miR-21 expression was associated with shorter overall survival (OS; hazard ratio [HR], 2.29; 95% confidence interval [CI], 1.28–4.08), cancer specific survival (CSS; HR, 4.16; 95% CI, 2.49–6.95), and disease free survival (DFS; HR, 2.15; 95% CI, 1.16–3.98). The decreased expression of miR-126 was associated with shorter CSS (HR, 0.35; 95% CI, 0.15–0.85), OS (HR, 0.45; 95% CI, 0.30–0.69), and DFS (HR 0.30; 95% CI, 0.18–0.50). Our comprehensive systematic review reveals that miRs, especially miR-21 and miR-126, could be promising prognostic markers and useful therapeutic targets in RCC.
Collapse
Affiliation(s)
- Liangyou Gu
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Hongzhao Li
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Luyao Chen
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Xin Ma
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Yu Gao
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Xintao Li
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Yu Zhang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Yang Fan
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Xu Zhang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| |
Collapse
|
25
|
Peng Z, Wu T, Li Y, Xu Z, Zhang S, Liu B, Chen Q, Tian D. MicroRNA-370-3p inhibits human glioma cell proliferation and induces cell cycle arrest by directly targeting β-catenin. Brain Res 2016; 1644:53-61. [PMID: 27138069 DOI: 10.1016/j.brainres.2016.04.066] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The aim of this study was to explore the expression and biological role of miR-370-3p in human gliomas. METHODS Clinical specimens from the brains of 20 glioma patients and 10 healthy controls were obtained to quantify the expression level of miR-370-3p using quantitative real-time PCR. Oligonucleotide mimics of miR-370-3p were transfected into U251 and U87-MG cells for a gain of function assay. The CCK-8 assay, colony formation assay, EdU assay and flow cytometry were used to evaluate the roles of miR-370-3p in cell proliferation and the cell cycle regulation. Western blot and luciferase activity assays were used to investigate the reciprocal relationship between miR-370-3p and its predicted target, β-catenin. RESULTS miR-370-3p expression was frequently found to be decreased in glioma tissues, and its expression level was negatively correlated with the malignant degree of the glioma. Overexpression of miR-370-3p showed a significant inhibitory effect on cell proliferation and accompanied cell cycle G0/G1 arrest in U251 and U87-MG cells. Furthermore, miR-370-3p inhibited the expression of the canonical Wnt pathway downstream targets cyclin D1 and c-myc via direct binding interaction with the 3'-untranslated region of β-catenin mRNA. Reintroduction of β-catenin could partially reverse the anti-proliferation effect of miR-370-3p. Finally, in 20 glioma tissues the expression of miR-370-3p was negatively correlated with both protein and mRNA levels of β-catenin. CONCLUSION miR-370-3p suppresses glioma cell growth by directly targeting β-catenin, suggesting that the miR-370-3p/β-catenin axis may be a target for glioma therapy.
Collapse
Affiliation(s)
- Zesheng Peng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Tingfeng Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Zhou Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Daofeng Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
26
|
Xing T, He H. Epigenomics of clear cell renal cell carcinoma: mechanisms and potential use in molecular pathology. Chin J Cancer Res 2016; 28:80-91. [PMID: 27041930 DOI: 10.3978/j.issn.1000-9604.2016.02.09] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one frequent form of urologic malignancy with numerous genetic and epigenetic alterations. This review summarizes the recent major findings of epigenetic alterations including DNA methylation, histone modifications, microRNAs and recently identified long noncoding RNAs in the development and progression of ccRCC. These epigenetic profilings can provide a promising means of prognostication and early diagnosis for patients with ccRCCs. With the developed high-throughput technologies nowadays, the epigenetic analyses will have possible clinical applications in the molecular pathology of ccRCC.
Collapse
Affiliation(s)
- Tianying Xing
- 1 Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 2 Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Huiying He
- 1 Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 2 Department of Urology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
27
|
MicroRNAs in the Pathogenesis of Renal Cell Carcinoma and Their Diagnostic and Prognostic Utility as Cancer Biomarkers. Int J Biol Markers 2016; 31:e26-37. [DOI: 10.5301/jbm.5000174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2015] [Indexed: 12/18/2022]
Abstract
Purpose To provide information about the role of microRNAs in the pathogenesis of renal cell carcinoma (RCC) and their diagnostic and prognostic utility as cancer biomarkers. Methods A literature search was performed in the PubMed and Web of Science databases using the keywords “renal cancer/renal cell carcinoma/kidney cancer” and “miR*/miRNA*/microRNA*”. Articles dealing with the role of miRNAs in the pathogenesis of RCC, diagnostic miRNAs and prognostic miRNAs were separated. Results MiRNAs act both as oncogenes and tumor suppressors. They regulate apoptosis, cell growth, migration, invasion, proliferation, colony formation and angiogenesis through target proteins involved in several signaling pathways, and they are involved in key pathogenetic mechanisms such as hypoxia (HIF/VHL dependent) and epithelial-to-mesenchymal transition. Differentially expressed miRNAs can discriminate either tumor tissue from healthy renal tissue or different RCC subtypes. Circulating miRNAs are promissing as diagnostic biomarkers of RCC. Information about urinary miRNAs associated with RCC is sparse. Detection of a relapse is another implication of diagnostic miRNAs. The expression profiles of several miRNAs correlate with the prognosis of RCC patients. Comparison between primary tumor tissue and metastasis may help identify high-risk primary tumors. Finally, response to target therapy can be estimated thanks to differences in miRNA expression in tissue and serum of therapy-resistant versus therapy-sensitive patients. Conclusions Our understanding of the role of microRNAs in RCC pathogenesis has been increasing dramatically. Identification and validation of their gene targets may have direct impact on developing microRNA-based anticancer therapy. Several microRNAs can serve as diagnostic and prognostic biomarkers.
Collapse
|
28
|
Xiong F, Liu K, Zhang F, Sha K, Wang X, Guo X, Huang N. MiR-204 inhibits the proliferation and invasion of renal cell carcinoma by inhibiting RAB22A expression. Oncol Rep 2016; 35:3000-8. [PMID: 26883716 DOI: 10.3892/or.2016.4624] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/07/2016] [Indexed: 11/06/2022] Open
Abstract
While miR-204 expression may be linked to renal cell carcinoma (RCC) progression, the detailed mechanisms remain unclear. In the present study, we demonstrated that miR-204 was differentially expressed in RCC tissues when compared with surrounding normal kidney tissues. Ectopic overexpression of miR-204 in human RCC cells suppressed cell proliferation and invasion in vitro and in vivo. Mechanism dissection revealed that miR-204 may function through RAB22A signals to inhibit RCC proliferation and invasion. Overexpression of RAB22A by oe-RAB22A was able to partially reverse the miR-204-mediated suppression of RCC tumor progression. Together, these results revealed that miR-204 suppressed RCC proliferation and invasion by directly targeting the RAB22A gene. Targeting newly identified RAB22A with miR-204 may aid in the suppression of RCC proliferation and invasion.
Collapse
Affiliation(s)
- Feng Xiong
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Keyun Liu
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fumei Zhang
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Kaihui Sha
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xinyuan Wang
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaojuan Guo
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ning Huang
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
29
|
Epigenetic Regulation of Epidermal Stem Cell Biomarkers and Their Role in Wound Healing. Int J Mol Sci 2015; 17:ijms17010016. [PMID: 26712738 PMCID: PMC4730263 DOI: 10.3390/ijms17010016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022] Open
Abstract
As an actively renewable tissue, changes in skin architecture are subjected to the regulation of stem cells that maintain the population of cells responsible for the formation of epidermal layers. Stems cells retain their self-renewal property and express biomarkers that are unique to this population. However, differential regulation of the biomarkers can initiate the pathway of terminal cell differentiation. Although, pockets of non-clarity in stem cell maintenance and differentiation in skin still exist, the influence of epigenetics in epidermal stem cell functions and differentiation in skin homeostasis and wound healing is clearly evident. The focus of this review is to discuss the epigenetic regulation of confirmed and probable epidermal stem cell biomarkers in epidermal stratification of normal skin and in diseased states. The role of epigenetics in wound healing, especially in diseased states of diabetes and cancer, will also be conveyed.
Collapse
|
30
|
MicroRNAs in clear cell renal cell carcinoma: biological functions and applications. J Kidney Cancer VHL 2015; 2:140-152. [PMID: 28326269 PMCID: PMC5345517 DOI: 10.15586/jkcvhl.2015.40] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/18/2015] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) are small noncoding RNAs that govern many biological processes. They frequently acquire a gain or a loss of function in cancer and hence play a causative role in the development and progression of neoplasms. They could be used as biomarkers to improve our knowledge on diagnosis, prognosis and drug resistance, and to attempt therapeutic approaches in several types of cancer including clear cell renal cell carcinoma (ccRCC). ccRCC is the most predominant subtype of RCC that accounts for about 90% of all renal cancers. Since ccRCC is generally asymptomatic until very late, it is difficult to diagnose early. Moreover, in the absence of preventive treatments for metastatic ccRCC after surgical resection of the primary cancer, predictive prognostic biomarkers are needed in order to achieve appropriate therapies. Herein the role of miRs in the biology of ccRCC and the potential applications of these molecules are discussed. Moreover, future applications in the diagnostic and prognostic field, as well as their impact on drug response and therapeutic targets are also explored. Their use in clinical practice as molecular biomarkers alone, or in combination with other biological markers could accelerate progress, help design personalized therapies, limit side effects, and improve quality of life of ccRCC patients.
Collapse
|
31
|
You J, Zhang Y, Li Y, Fang N, Liu B, Zu L, Zhou Q. MiR-449a suppresses cell invasion by inhibiting MAP2K1 in non-small cell lung cancer. Am J Cancer Res 2015; 5:2730-2744. [PMID: 26609480 PMCID: PMC4633902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/22/2015] [Indexed: 06/05/2023] Open
Abstract
Increasing evidence reveals that deregulation of miRNAs contributes to carcinogenesis of the human non-small cell lung cancer (NSCLC). Our study discovered that the expression of miR-449a was markedly decreased in NSCLC cells with high metastatic capacity and tissues of positive lymph node metastasis. Moreover, our results showed that miR-449a could act as a tumor suppressor by inhibiting the invasion of NSCLC cells in vitro and in vivo. Mechanistically, miR-449a inhibited the expression of MAP2K1 by direct targeting its 3'UTR, and regulated the activity of MEK1/ERK1/2/c-Jun pathway through an auto-regulatory feedback loop. Furthermore, the histone methylation mediated the decreased expression of miR-449a through SUZ12. Taken together, the novel connection between miR-449a and MAP2K1 demonstrated here provided a new, potential therapeutic target for the treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Jiacong You
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| | - Yalong Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| | - Yang Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| | - Nianzhen Fang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| | - Bin Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| |
Collapse
|
32
|
Song JL, Nigam P, Tektas SS, Selva E. microRNA regulation of Wnt signaling pathways in development and disease. Cell Signal 2015; 27:1380-91. [PMID: 25843779 PMCID: PMC4437805 DOI: 10.1016/j.cellsig.2015.03.018] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 12/19/2022]
Abstract
Wnt signaling pathways and microRNAs (miRNAs) are critical regulators of development. Aberrant Wnt signaling pathways and miRNA levels lead to developmental defects and diverse human pathologies including but not limited to cancer. Wnt signaling pathways regulate a plethora of cellular processes during embryonic development and maintain homeostasis of adult tissues. A majority of Wnt signaling components are regulated by miRNAs which are small noncoding RNAs that are expressed in both animals and plants. In animal cells, miRNAs fine tune gene expression by pairing primarily to the 3'untranslated region of protein coding mRNAs to repress target mRNA translation and/or induce target degradation. miRNA-mediated regulation of signaling transduction pathways is important in modulating dose-sensitive response of cells to signaling molecules. This review discusses components of the Wnt signaling pathways that are regulated by miRNAs in the context of development and diseases. A fundamental understanding of miRNA functions in Wnt signaling transduction pathways may yield new insight into crosstalks of regulatory mechanisms essential for development and disease pathophysiology leading to novel therapeutics.
Collapse
Affiliation(s)
- Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Priya Nigam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Senel S Tektas
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erica Selva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
33
|
Abstract
Cancer stem cells (CSCs) are rare, tumour-initiating cells that exhibit stem cell properties: capacity of self-renewal, pluripotency, highly tumorigenic potential, and resistance to therapy. Cancer stem cells have been characterised and isolated from many cancers, including breast cancer. Developmental pathways, such as the Wnt/β-catenin, Notch/γ-secretase/Jagged, Shh (sonic hedgehog), and BMP signalling pathways, which direct proliferation and differentiation of normal stem cells, have emerged as major signalling pathways that contribute to the self-renewal of stem and/or progenitor cells in a variety of organs and cancers. Deregulation of these signalling pathways is frequently linked to an epithelial-mesenchymal transition (EMT), and breast CSCs often possess properties of cells that have undergone the EMT process. Signalling networks mediated by microRNAs and EMT-inducing transcription factors tie the EMT process to regulatory networks that maintain "stemness". Recent studies have elucidated epigenetic mechanisms that control pluripotency and stemness, which allows an assessment on how embryonic and normal tissue stem cells are deregulated during cancerogenesis to give rise to CSCs. Epigenetic-based mechanisms are reversible, and the possibility of "resetting" the abnormal cancer epigenome by applying pharmacological compounds targeting epigenetic enzymes is a promising new therapeutic strategy. Chemoresistance of CSCs is frequently driven by various mechanisms, including aberrant expression/activity of ABC transporters, aldehyde dehydrogenase and anti-oncogenic proteins (i.e. BCL2, B-cell lymphoma-2), enhanced DNA damage response, activation of pro-survival signalling pathways, and epigenetic deregulations. Despite controversy surrounding the CSC hypothesis, there is substantial evidence for their role in cancer, and a number of drugs intended to specifically target CSCs have entered clinical trials.
Collapse
|
34
|
Ma X, Shen D, Li H, Zhang Y, Lv X, Huang Q, Gao Y, Li X, Gu L, Xiu S, Bao X, Duan J, Zhang X. MicroRNA-185 inhibits cell proliferation and induces cell apoptosis by targeting VEGFA directly in von Hippel-Lindau-inactivated clear cell renal cell carcinoma. Urol Oncol 2015; 33:169.e1-11. [PMID: 25700976 DOI: 10.1016/j.urolonc.2015.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/15/2014] [Accepted: 01/06/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The von Hippel-Lindau (VHL) gene acts as a tumor suppressor in most clear cell renal cell carcinomas (ccRCCs). Tumor growth in ccRCCs relies on many factors that result from the loss of VHL. This study aims to identify new microRNAs with therapeutic potential for VHL-inactivated ccRCCs. MATERIALS AND METHODS We used 786O, A498 (VHL inactivated), and Caki-1 (VHL intact) ccRCC cell lines and 40 ccRCC samples and their adjacent nontumor tissues to measure the expression of microRNA-185 (miR-185) by real-time quantitative polymerase chain reaction. Overexpression or knockdown of VEGFA expression in renal cancer cells was fulfilled by transfecting expression plasmids or small interfering RNAs. Overexpression of miR-185 in ccRCC cell lines was fulfilled by transfecting chemically synthesized miR-185 mimics. The effects of miR-185 on ccRCC cell lines were detected by MTS assay, colony formation assay, and flow cytometric analysis. RESULTS Compared with adjacent nontumor renal tissues, miR-185 expression levels decreased significantly in ccRCC tissues. The expression of miR-185 had a negative correlation with tumor size, Fuhrman grade, and TNM staging. Luciferase assay showed that VEGFA was a direct target gene of miR-185. The overexpression of miR-185 significantly inhibited cell proliferation and induced cell apoptosis by down-regulating VEGFA expression in VHL-inactivated ccRCC cells. CONCLUSIONS Our results suggest that the miR-185, as a tumor suppressor, plays a pivotal role by inhibiting VEGFA in VHL-inactivated ccRCC.
Collapse
Affiliation(s)
- Xin Ma
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, P.R. China
| | - Donglai Shen
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, P.R. China
| | - Hongzhao Li
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, P.R. China
| | - Yu Zhang
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, P.R. China
| | - Xiangjun Lv
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, P.R. China
| | - Qingbo Huang
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, P.R. China
| | - Yu Gao
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, P.R. China
| | - Xintao Li
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, P.R. China
| | - Liangyou Gu
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, P.R. China
| | - Shaoxi Xiu
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, P.R. China
| | - Xu Bao
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, P.R. China; Medical School, Nankai University, Tianjin, P.R. China
| | - Junyao Duan
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, P.R. China; Medical School, Nankai University, Tianjin, P.R. China
| | - Xu Zhang
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, P.R. China.
| |
Collapse
|
35
|
Li M, Wang Y, Song Y, Bu R, Yin B, Fei X, Guo Q, Wu B. MicroRNAs in renal cell carcinoma: a systematic review of clinical implications (Review). Oncol Rep 2015; 33:1571-8. [PMID: 25682771 PMCID: PMC4358077 DOI: 10.3892/or.2015.3799] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/18/2014] [Indexed: 01/13/2023] Open
Abstract
Despite recent advances in the understanding of the biology of renal cell carcinoma (RCC), successful surgical treatment and implementation of novel-targeted therapies, the prognosis for RCC patients remains poor. Late presentation, tumor heterogeneity and in particular the lack of molecular biomarkers for early detection, classification and the surveillance of RCC treatments are major obstacles. The increasing knowledge regarding the functional role of microRNAs (miRNAs) in pathophysiological processes may provide an important link to the identification of suitable therapeutic targets and diagnostic/prognostic biomarkers for RCC. The aim of this review was to provide new insight into the function of miRNAs in the pathogenesis of RCC and to emphasize their potential as diagnostic and prognostic markers, as well as therapeutic targets.
Collapse
Affiliation(s)
- Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Renge Bu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bo Yin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qizhen Guo
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
36
|
Katoh M. Cardio-miRNAs and onco-miRNAs: circulating miRNA-based diagnostics for non-cancerous and cancerous diseases. Front Cell Dev Biol 2014; 2:61. [PMID: 25364765 PMCID: PMC4207049 DOI: 10.3389/fcell.2014.00061] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/29/2014] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases and cancers are the leading causes of morbidity and mortality in the world. MicroRNAs (miRNAs) are short non-coding RNAs that primarily repress target mRNAs. Here, miR-24, miR-125b, miR-195, and miR-214 were selected as representative cardio-miRs that are upregulated in human heart failure. To bridge the gap between miRNA studies in cardiology and oncology, the targets and functions of these miRNAs in cardiovascular diseases and cancers will be reviewed. ACVR1B, BCL2, BIM, eNOS, FGFR3, JPH2, MEN1, MYC, p16, and ST7L are miR-24 targets that have been experimentally validated in human cells. ARID3B, BAK1, BCL2, BMPR1B, ERBB2, FGFR2, IL6R, MUC1, SITR7, Smoothened, STAT3, TET2, and TP53 are representative miR-125b targets. ACVR2A, BCL2, CCND1, E2F3, GLUT3, MYB, RAF1, VEGF, WEE1, and WNT7A are representative miR-195 targets. BCL2L2, ß-catenin, BIM, CADM1, EZH2, FGFR1, NRAS, PTEN, TP53, and TWIST1 are representative miR-214 targets. miR-125b is a good cardio-miR that protects cardiomyocytes; miR-195 is a bad cardio-miR that elicits cardiomyopathy and heart failure; miR-24 and miR-214 are bi-functional cardio-miRs. By contrast, miR-24, miR-125b, miR-195, and miR-214 function as oncogenic or tumor suppressor miRNAs in a cancer (sub)type-dependent manner. Circulating miR-24 is elevated in diabetes, breast cancer and lung cancer. Circulating miR-195 is elevated in acute myocardial infarction, breast cancer, prostate cancer and colorectal adenoma. Circulating miR-125b and miR-214 are elevated in some cancers. Cardio-miRs and onco-miRs bear some similarities in functions and circulation profiles. miRNAs regulate WNT, FGF, Hedgehog and other signaling cascades that are involved in orchestration of embryogenesis and homeostasis as well as pathogenesis of human diseases. Because circulating miRNA profiles are modulated by genetic and environmental factors and are dysregulated by genetic and epigenetic alterations in somatic cells, circulating miRNA association studies (CMASs) within several thousands of cases each for common non-cancerous diseases and major cancers are necessary for miRNA-based diagnostics.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center Tokyo, Japan
| |
Collapse
|
37
|
Dietrich D, Meller S, Uhl B, Ralla B, Stephan C, Jung K, Ellinger J, Kristiansen G. Nucleic acid-based tissue biomarkers of urologic malignancies. Crit Rev Clin Lab Sci 2014; 51:173-99. [DOI: 10.3109/10408363.2014.906130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Xu X, Wu J, Li S, Hu Z, Xu X, Zhu Y, Liang Z, Wang X, Lin Y, Mao Y, Chen H, Luo J, Liu B, Zheng X, Xie L. Downregulation of microRNA-182-5p contributes to renal cell carcinoma proliferation via activating the AKT/FOXO3a signaling pathway. Mol Cancer 2014; 13:109. [PMID: 24886554 PMCID: PMC4040501 DOI: 10.1186/1476-4598-13-109] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 05/12/2014] [Indexed: 01/30/2023] Open
Abstract
Background Emerging evidence has suggested that dysregulation of miR-182-5p may contribute to tumor development and progression in several types of human cancers. However, its role in renal cell carcinoma (RCC) is still unknown. Methods Quantitative RT-PCR was used to quantify miR-182-5p expression in RCC clinical tissues. Bisulfite sequencing PCR was used for DNA methylation analysis. The CCK-8, colony formation, flow cytometry, and a xenograft model were performed. Immunohistochemistry was conducted using the peroxidase and DAB methods. A miR-182-5p target was determined by luciferase reporter assays, quantitative RT-PCR, and Western blotting. Results miR-182-5p is frequently down-regulated in human RCC tissues. Epigenetic modulation may be involved in the regulation of miR-182-5p expression. Enforced expression of miR-182-5p in RCC cells significantly inhibited the proliferation and tumorigenicity in vitro and in vivo. Additionally, overexpression of miR-182-5p induced G1-phase arrest via inhibition of AKT/FOXO3a signaling. Moreover, FLOT1 was confirmed as a target of miR-182-5p. Silencing FLOT1 by small interfering RNAs phenocopied the effects of miR-182-5p overexpression, whereas restoration of FLOT1 in miR-182-5p -overexpressed RCC cells partly reversed the suppressive effects of miR-182-5p. Conclusions These findings highlight an important role for miR-182-5p in the pathogenesis of RCC, and restoration of miR-182-5p could be considered as a potential therapeutic strategy for RCC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xiangyi Zheng
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou 310003, Zhejiang Province, China.
| | | |
Collapse
|
39
|
Chen X, Wang X, Ruan A, Han W, Zhao Y, Lu X, Xiao P, Shi H, Wang R, Chen L, Chen S, Du Q, Yang H, Zhang X. miR-141 is a key regulator of renal cell carcinoma proliferation and metastasis by controlling EphA2 expression. Clin Cancer Res 2014; 20:2617-30. [PMID: 24647573 DOI: 10.1158/1078-0432.ccr-13-3224] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Although microRNAs (miRNA) have been revealed as crucial modulators of tumorigenesis, our understanding of their roles in renal cell carcinoma (RCC) is limited. Here we sought to identify human miRNAs that act as key regulators of renal carcinogenesis. EXPERIMENTAL DESIGN We performed microarray-based miRNA profiling of clear cell RCC (ccRCC) and adjacent normal tissues and then explored the roles of miR-141 both in vitro and in vivo, which was the most significantly downregulated in ccRCC tissues. RESULTS A total of 74 miRNAs were dysregulated in ccRCC compared with normal tissues. miR-141 was remarkably downregulated in 92.6% (63/68) ccRCC tissues and would serve as a promising biomarker for discriminating ccRCC from normal tissues with an area under the receiver operating characteristics curve of 0.93. Overexpression of miR-141 robustly impaired ccRCC cell migratory and invasive properties and suppressed cell proliferation by arresting cells at G0-G1 phase in vitro and in human RCC orthotopic xenografts. Significantly, the antitumor activities of miR-141 were mediated by its reversal regulation of erythropoietin-producing hepatocellular (Eph) A2 (EphA2), which then relayed a signaling transduction cascade to attenuate the functions of focal adhesion kinase (FAK), AKT, and MMP2/9. In addition, a specific and inverse correlation between miR-141 and EphA2 expression was obtained in human ccRCC samples. Finally, miR-141 could be secreted from the ccRCC donor cells, and be taken up and function moderately in the ccRCC recipient cells. CONCLUSION miR-141 serves as a potential biomarker for discriminating ccRCC from normal tissues and a crucial suppressor of ccRCC cell proliferation and metastasis by modulating the EphA2/p-FAK/p-AKT/MMPs signaling cascade.
Collapse
Affiliation(s)
- Xuanyu Chen
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Xuegang Wang
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Anming Ruan
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Weiwei Han
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Yan Zhao
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Xing Lu
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Pei Xiao
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Hangchuan Shi
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Rong Wang
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Li Chen
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Shaoyong Chen
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Quansheng Du
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Hongmei Yang
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Xiaoping Zhang
- Authors' Affiliations: Department of Urology, Union Hospital; Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
40
|
Zhai W, Hu GH, Zheng JH, Peng B, Liu M, Huang JH, Wang GC, Yao XD, Xu YF. High expression of the secreted protein dickkopf homolog 4: roles in invasion and metastasis of renal cell carcinoma and its association with Von Hippel-Lindau gene. Int J Mol Med 2014; 33:1319-26. [PMID: 24573574 DOI: 10.3892/ijmm.2014.1673] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/23/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the effects of the dickkopf homolog 4 (DKK4)/Wnt/β-catenin signaling pathway on tumorigenesis and metastasis in clear cell renal cell carcinoma (ccRCC), as well as to elucidate the underlying mechanisms. We examined the expression of DKK4 in 30 cases of ccRCC and matched adjacent normal tissues, and investigated its correlation with clinicopathological characteristics. Stable DKK4-transfected cells were established, and DKK4 functional analyses were performed, including a T-cell factor/lymphoid enhancer factor (TCF/LEF) reporter assay, and experiments on cell viability, apoptosis, invasive capability and tumor growth in vivo. Finally, western blot analysis was performed to detect Von Hippel-Lindau (VHL) expression in 50 clinical specimens. The expression levels of the DKK4, β-catenin and β-catenin downstream target genes, cyclin D1 and c-myc, were determined in the these specimens, as well as in RCC4(-), T3-14(+) cell lines by qRT-PCR and western blot analysis. The same tests were also performed in human embryonic kidney (HEK)293 cells which were transfected with the pCDH-DKK4 plasmid. After 6 weeks the tumor weight significantly increased in the mice transfected with the tumor cells. DKK4 mRNA and protein expression levels were significantly upregulated (p<0.001). DKK4 was distinctly overexpressed (68.0%) in all patient tissues. VHL(-) samples accounted for 60.0% of all samples, while DKK4 expression was significantly upregulated in 50% of these samples, indicating a correlation with VHL(-) expression (r=0.403, p<0.05). We also observed reduced expression levels of cyclin D1, c-myc and β-catenin (to a greater extent) in the VHL(-), RCC4(-) and T3-14(+) cells, as well as in the stably transfected HEK293 cells. DKK4 may be an oncogene, and its upregulated expression may be involved in the pathogenesis of ccRCC as a downstream gene of VHL. By activating other pathways apart from the Wnt/β-catenin pathway, DKK4 may play an important role in ccRCC tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Wei Zhai
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Guang-Hui Hu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jun-Hua Zheng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Min Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jian-Hua Huang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Guang-Chun Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xu-Dong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yun-Fei Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
41
|
Wei Q, Mi QS, Dong Z. The regulation and function of microRNAs in kidney diseases. IUBMB Life 2014; 65:602-14. [PMID: 23794512 DOI: 10.1002/iub.1174] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/26/2013] [Accepted: 03/26/2013] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNA) are endogenous short noncoding RNAs, which regulate virtually all major cellular processes by inhibiting target gene expression. In kidneys, miRNAs have been implicated in renal development, homeostasis, and physiological functions. In addition, miRNAs play important roles in the pathogenesis of various renal diseases, including renal carcinoma, diabetic nephropathy, acute kidney injury, hypertensive nephropathy, polycystic kidney disease, and others. Furthermore, miRNAs may have great values as biomarkers in different kidney diseases.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | | | | |
Collapse
|
42
|
Autophagy and Cell Death to Target Cancer Cells: Exploiting Synthetic Lethality as Cancer Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 772:167-88. [DOI: 10.1007/978-1-4614-5915-6_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Sun X, He Y, Huang C, Ma TT, Li J. Distinctive microRNA signature associated of neoplasms with the Wnt/β-catenin signaling pathway. Cell Signal 2013; 25:2805-11. [PMID: 24041653 DOI: 10.1016/j.cellsig.2013.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/06/2013] [Indexed: 12/29/2022]
Abstract
As the crucial biological regulators, microRNAs that act by suppressing their target genes are involved in a variety of pathophysiological processes. It is generally accepted that microRNAs are often dysregulated in many types of neoplasm and other human diseases. In neoplasm, microRNAs may function as oncogenes or tumor suppressors. As constitutive activation of the Wnt signaling pathway is a common feature of neoplasm and contributes to its development, progression and metastasis in various cancers, numerous studies have revealed that microRNA-mediated gene regulation are interconnected with the Wnt/β-catenin signaling pathway, forming a Wnt/β-catenin-microRNA regulatory network, which is critical to successful targeting of the Wnt/β-catenin pathway for oncotherapy. In this review, we aim to accumulate recent advances on microRNAs that work in tandem with Wnt/β-catenin signaling in tumorigenesis, with particular focus on how microRNAs affect Wnt/β-catenin activity as well as how microRNAs are regulated through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xu Sun
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, China
| | | | | | | | | |
Collapse
|
44
|
Fayyaz S, Farooqi AA. miRNA and TMPRSS2-ERG do not mind their own business in prostate cancer cells. Immunogenetics 2013; 65:315-32. [DOI: 10.1007/s00251-012-0677-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 12/25/2012] [Indexed: 12/19/2022]
|
45
|
Xia L, Huang W, Tian D, Zhu H, Qi X, Chen Z, Zhang Y, Hu H, Fan D, Nie Y, Wu K. Overexpression of forkhead box C1 promotes tumor metastasis and indicates poor prognosis in hepatocellular carcinoma. Hepatology 2013; 57:610-624. [PMID: 22911555 DOI: 10.1002/hep.26029] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/09/2012] [Indexed: 02/05/2023]
Abstract
UNLABELLED Recurrence and metastasis remain the most common causes of lethal outcomes in hepatocellular carcinoma (HCC) after curative resection. Thus, it is critical to discover the mechanisms underlying HCC metastasis. Forkhead box C1 (FoxC1), a member of the Fox family of transcription factors, induces epithelial-mesenchymal transition (EMT) and promotes epithelial cell migration. However, the role of FoxC1 in the progression of HCC remains unknown. Here, we report that FoxC1 plays a critical role in HCC metastasis. FoxC1 expression was markedly higher in HCC tissues than in adjacent noncancerous tissues. HCC patients with positive FoxC1 expression had shorter overall survival times and higher recurrence rates than those with negative FoxC1 expression. FoxC1 expression was an independent, significant risk factor for recurrence and survival after curative resection. FoxC1 overexpression induced changes characteristic of EMT and an increase in HCC cell invasion and lung metastasis. However, FoxC1 knockdown inhibited these processes. FoxC1 transactivated Snai1 expression by directly binding to the Snai1 promoter, thereby leading to the inhibition of E-cadherin transcription. Knockdown of Snai1 expression significantly attenuated FoxC1-enhanced invasion and lung metastasis. FoxC1 expression was positively correlated with Snai1 expression, but inversely correlated with E-cadherin expression in human HCC tissues. Additionally, a complementary DNA microarray, serial deletion, site-directed mutagenesis, and a chromatin immunoprecipitation assay confirmed that neural precursor cell expressed, developmentally down-regulated 9 (NEDD9), which promotes the metastasis of HCC cells, is a direct transcriptional target of FoxC1 and is involved in FoxC1-mediated HCC invasion and metastasis. CONCLUSIONS FoxC1 may promote HCC metastasis through the induction of EMT and the up-regulation of NEDD9 expression. Thus, FoxC1 may be a candidate prognostic biomarker and a target for new therapies.
Collapse
Affiliation(s)
- Limin Xia
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Muñoz P, Iliou MS, Esteller M. Epigenetic alterations involved in cancer stem cell reprogramming. Mol Oncol 2012; 6:620-36. [PMID: 23141800 PMCID: PMC5528346 DOI: 10.1016/j.molonc.2012.10.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 02/07/2023] Open
Abstract
Current hypotheses suggest that tumors originate from cells that carry out a process of "malignant reprogramming" driven by genetic and epigenetic alterations. Multiples studies reported the existence of stem-cell-like cells that acquire the ability to self-renew and are able to generate the bulk of more differentiated cells that form the tumor. This population of cancer cells, called cancer stem cells (CSC), is responsible for sustaining the tumor growth and, under determined conditions, can disseminate and migrate to give rise to secondary tumors or metastases to distant organs. Furthermore, CSCs have shown to be more resistant to anti-tumor treatments than the non-stem cancer cells, suggesting that surviving CSCs could be responsible for tumor relapse after therapy. These important properties have raised the interest in understanding the mechanisms that govern the generation and maintenance of this special population of cells, considered to lie behind the on/off switches of gene expression patterns. In this review, we summarize the most relevant epigenetic alterations, from DNA methylation and histone modifications to the recently discovered miRNAs that contribute to the regulation of cancer stem cell features in tumor progression, metastasis and response to chemotherapy.
Collapse
Affiliation(s)
- Purificación Muñoz
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | | | | |
Collapse
|
47
|
Wang K, Li N, Yeung C, Li J, Wang H, Cooper T. Oncogenic Wnt/β-catenin signalling pathways in the cancer-resistant epididymis have implications for cancer research. ACTA ACUST UNITED AC 2012; 19:57-71. [DOI: 10.1093/molehr/gas051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
48
|
Zheng D, Radziszewska A, Woo P. MicroRNA 497 modulates interleukin 1 signalling via the MAPK/ERK pathway. FEBS Lett 2012; 586:4165-72. [PMID: 23092882 DOI: 10.1016/j.febslet.2012.10.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
The MAPK/ERK signalling pathway has been described to mediate IL-1 induction of target genes and is known to be regulated by microRNAs (miRNA). We describe a novel miRNA regulating the expression of the MEK1 gene and how it impacts IL-1 induced IL-6 transcription. miR-497 was predicted to target MEK1 3'UTR using bioinformatic tools. Transfection of miR-497 into HeLa cells inhibited MEK1 protein expression by 50%. In transient transfection experiments, the luciferase activity of a MEK1 3'UTR luciferase reporter construct was reduced in the presence of miR-497, and mutation of the predicted miR-497 binding site restored activity. miR-497 also decreased protein levels of RAF1 and ERK1 but not ERK2. Addition of miR-497 was further shown to inhibit IL-1 induced IL-6 gene transcription.
Collapse
Affiliation(s)
- Dongling Zheng
- Division of Infection and Immunity, University College London, 5 University Street, London WC1E 6JF, UK
| | | | | |
Collapse
|
49
|
Cho WCS. MicroRNAs as therapeutic targets and their potential applications in cancer therapy. Expert Opin Ther Targets 2012; 16:747-759. [PMID: 22690697 DOI: 10.1517/14728222.2012.696102] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The results of cancer-associated miRNA research have yielded surprising insights into the pathogenesis of a range of different cancers. Many of the dysregulated miRNAs are involved in the regulation of genes that are essential for carcinogenesis. AREAS COVERED This review discusses the latest discovery of miRNAs acting as oncogenes and tumor suppressor genes, as well as the potential applications of miRNA regulations in cancer therapy. Several translational studies have demonstrated the feasibility of targeting oncogenic miRNAs and restoring tumor-suppressive miRNAs for cancer therapy using in vivo model systems. EXPERT OPINION miRNAs are extensive regulators of cancer progression. With increasing understanding of the miRNA target genes and the cellular behaviors influenced by them, modulating the miRNA activities may provide exciting opportunities for cancer therapy. Despite the hurdles incurred in acquiring effective systemic drug delivery systems, in vivo delivery of miRNAs for therapeutic purposes in preclinical animal models is rapidly developing. Accumulating evidences indicate that using miRNA expression alterations to influence molecular pathways has the potential of being translated into clinical applications.
Collapse
Affiliation(s)
- William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Room 1305, 13/F, Block R, 30 Gascoigne Road, Kowloon, Hong Kong.
| |
Collapse
|
50
|
Sun JY, Huang Y, Li JP, Zhang X, Wang L, Meng YL, Yan B, Bian YQ, Zhao J, Wang WZ, Yang AG, Zhang R. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting β-catenin. Biochem Biophys Res Commun 2012; 420:787-92. [PMID: 22459450 DOI: 10.1016/j.bbrc.2012.03.075] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 02/06/2023]
Abstract
Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colon cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and β-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and β-catenin's downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting β-catenin, suggesting its application in prognosis prediction and cancer treatment.
Collapse
Affiliation(s)
- Jian-Yong Sun
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|