1
|
Yoshizawa S, Konishi K, Koiwai K, Hirono I, Kondo H. Organ-specific repertoires of IgNAR gene in a cartilaginous fish. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110299. [PMID: 40139289 DOI: 10.1016/j.fsi.2025.110299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Cartilaginous fish possess one of the most ancient adaptive immune systems, and they uniquely produce the heavy chain-only antibody, immunoglobulin novel antigen receptor (IgNAR). In this study, we explored the mRNA transcription of genes related to antibody production and IgNAR diversity in various organs in banded houndsharks. IgNAR and antibody production-related genes exhibited similar relative transcription levels, with the highest expression detected in the spleen. Subsequently, we examined the diversity of IgNAR using next-generation sequencing. The most frequent clones were dominant (25 %-40 %) in the epigonal organ and liver but less common in the spleen. Large individual variation was noted in the kidney and pancreas. The length of complementarity-determining region 3 ranged 2-39 amino acids. The region tended to have a narrow length distribution of approximately 13 amino acids in the epigonal organ and liver, whereas wider length variation was noted in the kidney, pancreas, and spleen. Type II IgNAR variable regions (VNARs) were predominant (60 %-96 %) in all organs, whereas Type IV and "other" not conventionally defined VNARs were present at low frequencies and in different proportion between organs. Type I VNARs were present in multiple organs. The VNAR sequences were commonly shared among the epigonal organ, liver, and/or pancreas, but few were shared in the kidney or spleen.
Collapse
Affiliation(s)
- Soichiro Yoshizawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Kayo Konishi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Keiichiro Koiwai
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Ikuo Hirono
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Hidehiro Kondo
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan.
| |
Collapse
|
2
|
Kotagiri P, Rae WM, Bergamaschi L, Pombal D, Lee JY, Noor NM, Sojwal RS, Rubin SJS, Unger LW, Tolmeijer SH, Manferrari G, Bashford-Rogers RJM, Bingham DB, Stift A, Rogalla S, Gubatan J, Lee JC, Smith KGC, McKinney EF, Boyd SD, Lyons PA. Disease-specific B cell clones are shared between patients with Crohn's disease. Nat Commun 2025; 16:3689. [PMID: 40246842 PMCID: PMC12006383 DOI: 10.1038/s41467-025-58977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
B cells have important functions in gut homeostasis, and dysregulated B cell populations are frequently observed in patients with inflammatory bowel diseases, including both ulcerative colitis (UC) and Crohn's disease (CD). How these B cell perturbations contribute to disease remains largely unknown. Here, we perform deep sequencing of the B cell receptor (BCR) repertoire in four cohorts of patients with CD, together with healthy controls and patients with UC. We identify BCR clones that are shared between patients with CD but not found in healthy individuals nor in patients with UC, indicating CD-associated B cell immune responses. Shared clones are present in the inflamed gut mucosa, draining intestinal lymph nodes and blood, suggesting the presence of common CD-associated antigens that drive B cell responses in CD patients.
Collapse
Affiliation(s)
- Prasanti Kotagiri
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA.
| | - William M Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Discovery Sciences, AstraZeneca, Cambridge Biomedical Campus, Cambridge, UK
| | - Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Diana Pombal
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Ji-Yeun Lee
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Nurulamin M Noor
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Raoul S Sojwal
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA
| | - Samuel J S Rubin
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA
| | - Lukas W Unger
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Sofie H Tolmeijer
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Giulia Manferrari
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Rachael J M Bashford-Rogers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
| | - David B Bingham
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Anton Stift
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Stephan Rogalla
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA
| | - John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA
| | - James C Lee
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- The Francis Crick Institute and UCL Institute of Liver and Digestive Health, Division of Medicine, Royal Free Campus, London, UK
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Eoin F McKinney
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| |
Collapse
|
3
|
França RKADO, Barros PHA, Silva JM, Fontinele HGC, Maranhão AQ, Brigido MDM. Naive and Memory B Cell BCR Repertoires in Individuals Immunized with an Inactivated SARS-CoV-2 Vaccine. Vaccines (Basel) 2025; 13:393. [PMID: 40333337 PMCID: PMC12031002 DOI: 10.3390/vaccines13040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic has spurred a global race for a preventive vaccine, with a few becoming available just one year after describing this novel coronavirus disease. Among these are inactivated virus vaccines like CoronaVac (Sinovac Biotech), which are used in several countries to reduce the pandemic's effects. However, its use was associated with low protection, particularly against novel virus variants that quickly appeared in the following months. Vaccines play a crucial role in activating the immune system to combat infections, with Memory B-cells being a key part of this mechanism, eliciting protective neutralizing antibodies. This work focused on studying B-cell memory repertoire after two consecutive doses of CoronaVac. METHODOLOGY Memory B-cells were isolated from five CoronaVac vaccinated and five pre-pandemic individuals and subsequently stimulated in vitro before high-throughput Illumina sequencing of the Heavy Chain Variable repertoire. RESULTS We observed a shift in the VH repertoire with increased HCDR3 length and enrichment of IGVH 3-23, 3-30, 3-7, 3-72, and 3-74 for IgA BCRs and IGHV 4-39 and 4-59 for IgG BCRs. A high expansion of IgA-specific clonal populations was observed in vaccinated individuals relative to pre-pandemic controls, accompanied by shared IgA variable heavy chain (VH) sequences among memory B cells across different vaccine recipients of IgA clones was also observed in vaccinated individuals compared to pre-pandemic controls, with several IgA VH sharing between memory B cells from different vaccines. Moreover, a high convergence was observed among vaccinees and SARS-CoV-2 neutralizing antibody sequences found in the CoV-abDab database. CONCLUSION These data show the ability of CoronaVac to elicit antibodies with characteristics similar to those previously identified as neutralizing antibodies, supporting its protective efficacy. Furthermore, this analysis of the immunological repertoire in the context of viral infections reinforces the importance of immunization in generating convergent antibodies for the antiviral response.
Collapse
Affiliation(s)
- Renato Kaylan Alves de Oliveira França
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasilia 70910-900, DF, Brazil; (R.K.A.d.O.F.); (P.H.A.B.); (H.G.C.F.); (A.Q.M.)
- Molecular Pathology Post-Graduation Program, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Pedro Henrique Aragão Barros
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasilia 70910-900, DF, Brazil; (R.K.A.d.O.F.); (P.H.A.B.); (H.G.C.F.); (A.Q.M.)
- Molecular Biology Post-Graduation Program, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Jacyelle Medeiros Silva
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasilia 70910-900, DF, Brazil; (R.K.A.d.O.F.); (P.H.A.B.); (H.G.C.F.); (A.Q.M.)
| | - Hitallo Guilherme Costa Fontinele
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasilia 70910-900, DF, Brazil; (R.K.A.d.O.F.); (P.H.A.B.); (H.G.C.F.); (A.Q.M.)
- Molecular Pathology Post-Graduation Program, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Andrea Queiroz Maranhão
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasilia 70910-900, DF, Brazil; (R.K.A.d.O.F.); (P.H.A.B.); (H.G.C.F.); (A.Q.M.)
- Molecular Pathology Post-Graduation Program, University of Brasília, Brasilia 70910-900, DF, Brazil
- Molecular Biology Post-Graduation Program, University of Brasília, Brasilia 70910-900, DF, Brazil
- III-Immunology Investigation Institute, National Institute of Science and Technology (iii-INCT), Brasilia 70067-900, DF, Brazil
| | - Marcelo de Macedo Brigido
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasilia 70910-900, DF, Brazil; (R.K.A.d.O.F.); (P.H.A.B.); (H.G.C.F.); (A.Q.M.)
- Molecular Pathology Post-Graduation Program, University of Brasília, Brasilia 70910-900, DF, Brazil
- Molecular Biology Post-Graduation Program, University of Brasília, Brasilia 70910-900, DF, Brazil
- III-Immunology Investigation Institute, National Institute of Science and Technology (iii-INCT), Brasilia 70067-900, DF, Brazil
| |
Collapse
|
4
|
Madden PJ, Marina-Zárate E, Rodrigues KA, Steichen JM, Shil M, Ni K, Michaels KK, Maiorino L, Upadhyay AA, Saha S, Pradhan A, Kalyuzhiny O, Liguori A, Lopez PG, Phung I, Flynn C, Zhou A, Melo MB, Lemnios A, Phelps N, Georgeson E, Alavi N, Kubitz M, Lu D, Eskandarzadeh S, Metz A, Rodriguez OL, Shields K, Schultze S, Smith ML, Healy BS, Lim D, Lewis VR, Ben-Akiva E, Pinney W, Gregory J, Xiao S, Carnathan DG, Pai Kasturi S, Watson CT, Bosinger SE, Silvestri G, Schief WR, Irvine DJ, Crotty S. Diverse priming outcomes under conditions of very rare precursor B cells. Immunity 2025; 58:997-1014.e11. [PMID: 40168992 PMCID: PMC12060733 DOI: 10.1016/j.immuni.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 04/03/2025]
Abstract
Rare naive B cells have special pathogen-recognition features that enable outsized contributions to protective immunity but infrequently participate in immune responses. We investigatee how germline-targeting vaccine delivery and adjuvant selection affect priming of exceptionally rare BG18-like HIV broadly neutralizing antibody-precursor B cells (<1-in-50 million) in non-human primates. Only escalating dose (ED) priming immunization using the saponin adjuvant SMNP elicited detectable BG18-like cells in germinal centers (GCs) compared with other conditions. All groups had strong GC responses, but only ED+SMNP and bolus+SMNP induced BG18-like memory B cells in >50% of animals. One group had vaccine-specific GC responses equivalent to ED+SMNP but scarce BG18-like B cells. Following homologous boosting, BG18-like memory B cells were present in a bolus priming group but with lower somatic hypermutation and affinities than ED+SMNP. This outcome inversely associated with post-prime antibody titers, suggesting antibody feedback significantly influences rare precursor B cell responses. Thus, antigen and inflammatory stimuli extensively impact priming and affinity maturation of rare B cells.
Collapse
Affiliation(s)
- Patrick J Madden
- La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Ester Marina-Zárate
- La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jon M Steichen
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Monolina Shil
- La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Kaiyuan Ni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amit A Upadhyay
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Swati Saha
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Arpan Pradhan
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Oleksandr Kalyuzhiny
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Alessia Liguori
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Paul G Lopez
- La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Ivy Phung
- La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Claudia Flynn
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Amelia Zhou
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Mariane B Melo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashley Lemnios
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicole Phelps
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Erik Georgeson
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nushin Alavi
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael Kubitz
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Danny Lu
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Saman Eskandarzadeh
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Amanda Metz
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kaitlyn Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Steven Schultze
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Brandon S Healy
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Deuk Lim
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Vanessa R Lewis
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Elana Ben-Akiva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William Pinney
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Justin Gregory
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shuhao Xiao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diane G Carnathan
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Sudhir Pai Kasturi
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Steven E Bosinger
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Guido Silvestri
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - William R Schief
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA; Moderna, Inc., Cambridge, MA, USA
| | - Darrell J Irvine
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Shane Crotty
- La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Lee AYS, Qi Z, Jackson KJL, Reed JH. Self-reactive B cells are increased in all major stages of peripheral development in Sjögren's disease. Immunol Cell Biol 2025; 103:401-410. [PMID: 39957579 PMCID: PMC11964785 DOI: 10.1111/imcb.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Sjögren's disease (SjD) is a chronic autoimmune disorder characterized by increased circulating self-reactive B cells. While many of these self-reactive B cells emerge from the bone marrow, it is not known whether they are excluded from or enriched in specific developmental stages in the periphery. The aim of this study was to determine the immunophenotype of circulating self-reactive B cells in SjD to inform more precise therapeutic targeting. Five major B cell populations: transitional, mature naïve, switched memory, double negative and plasmablasts were single-cell sorted and cultured to produce IgG. Self-reactive IgG was identified by ELISA, flow cytometry of permeabilized HEK293 cells and HEp-2 indirect immunofluorescence. Immunoglobulin heavy chains were sequenced by Sanger and next-generation sequencing. Compared with healthy donor controls (HCs), SjD patients had higher frequencies of naïve and CD21low atypical memory B cell subsets, while antigen-experienced B cells expressed more Ki67 and CD86. B cells recognizing intracellular self-antigens were identified in all stages of peripheral B cell development for SjD and HCs, but frequencies of autoreactive B cells were up to 10-fold higher in SjD. Self-reactive transitional B cells expressed higher surface CD38 and lower surface IgM. An increase in self-reactive B cells throughout peripheral development in SjD compared with HCs suggests that counterselection of autoantibody-bearing B cells during central and peripheral tolerance checkpoints are reduced in SjD. Therapeutic strategies focused on depleting B cells based on B cell receptor specificity rather than the developmental stage would be more efficient to target self-reactive B cells in SjD.
Collapse
Affiliation(s)
- Adrian YS Lee
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research and Faculty of Medicine and HealthUniversity of SydneyWestmeadNSWAustralia
- Department of ImmunologyWestmead Hospital and Institute of Clinical Pathology and Medical Research, NSW Health PathologyWestmeadNSWAustralia
| | - Zhankun Qi
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research and Faculty of Medicine and HealthUniversity of SydneyWestmeadNSWAustralia
| | | | - Joanne H Reed
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research and Faculty of Medicine and HealthUniversity of SydneyWestmeadNSWAustralia
| |
Collapse
|
6
|
Okoye GD, Kumar A, Ghanbari F, Chowdhury NU, Wu L, Newcomb DC, Van Kaer L, Algood HMS, Joyce S. Single-cell map of innate-like lymphocyte response to Francisella tularensis infection reveals interleukin-17-dependent protection by MAIT cells. iScience 2025; 28:111810. [PMID: 40160424 PMCID: PMC11951026 DOI: 10.1016/j.isci.2025.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/07/2024] [Accepted: 01/10/2025] [Indexed: 04/02/2025] Open
Abstract
Early immune dynamics during the initiation of fatal tularemia caused by Francisella tularensis infection remain unknown. Unto that end, we generated a transcriptomic map at single-cell resolution of the innate-like lymphocyte responses to F. tularensis live vaccine strain (LVS) infection of mice. We found that both interferon-γ (IFN-γ)-producing type 1 and interleukin-17 (IL-17)-producing type 3 innate-like lymphocytes expanded in the infected lungs. Natural killer (NK) and NKT cells drove the type 1 response, whereas mucosal-associated invariant T (MAIT) and γδ T cells drove the type 3 response. Furthermore, tularemia-like disease resistant NKT cell-deficient, Cd1d -/- mice accumulated more MAIT1 cells, MAIT17 cells, and cells with a hybrid phenotype between MAIT1 and MAIT17 cells than wild-type mice. Critically, adoptive transfer of LVS-activated MAIT cells from Cd1d -/- mice, which were enriched in MAIT17 cells, was sufficient to protect LVS-susceptible, immunodeficient RAG2 -/- mice from severe LVS infection-inflicted pathology. Collectively, our findings position MAIT cells as potential mediators of IL-17-dependent protection from pulmonary tularemia-like disease.
Collapse
Affiliation(s)
- G. Donald Okoye
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
| | - Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
| | - Farshad Ghanbari
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Nowrin U. Chowdhury
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
| | - Lan Wu
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
| | - Dawn C. Newcomb
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
| | - Luc Van Kaer
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
| | - Holly M. Scott Algood
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Peres A, Upadhyay AA, Klein VH, Saha S, Rodriguez OL, Vanwinkle ZM, Karunakaran K, Metz A, Lauer W, Lin MC, Melton T, Granholm L, Polak P, Peterson SM, Peterson EJ, Raju N, Shields K, Schultze S, Ton T, Ericsen A, Lapp SA, Villinger FJ, Ohlin M, Cottrell C, Amara RR, Derdeyn CA, Crotty S, Schief W, Karlsson Hedestam GB, Smith M, Lees W, Watson CT, Yaari G, Bosinger SE. A Broad Survey and Functional Analysis of Immunoglobulin Loci Variation in Rhesus Macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631319. [PMID: 39829807 PMCID: PMC11741282 DOI: 10.1101/2025.01.07.631319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Rhesus macaques (RMs) are a vital model for studying human disease and invaluable to pre-clinical vaccine research, particularly for the study of broadly neutralizing antibody responses. Such studies require robust genetic resources for antibody-encoding genes within the immunoglobulin (IG) loci. The complexity of the IG loci has historically made them challenging to characterize accurately. To address this, we developed novel experimental and computational methodologies to generate the largest collection to date of integrated antibody repertoire and long-read genomic sequencing data in 106 Indian origin RMs. We created a comprehensive resource of IG heavy and light chain variable (V), diversity (D), and joining (J) alleles, as well as leader, intronic, and recombination signal sequences (RSSs), including the curation of 1474 novel alleles, unveiling tremendous diversity, and expanding existing IG allele sets by 60%. This publicly available, continually updated resource (https://vdjbase.org/reference_book/Rhesus_Macaque) provides the foundation for advancing RM immunogenomics, vaccine discovery, and translational research.
Collapse
|
8
|
Ryback AA, Cowan GJM. Deep sequencing of BCR heavy chain repertoires in myalgic encephalomyelitis/chronic fatigue syndrome. Front Immunol 2025; 16:1489312. [PMID: 40034707 PMCID: PMC11872726 DOI: 10.3389/fimmu.2025.1489312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a common and debilitating chronic illness of unknown aetiology. Chronic infection and autoimmune responses have been proposed as two mechanisms that potentially underlie the pathogenesis of ME/CFS. To explore these disease hypotheses, we characterised the antigen-specific receptors of B cells using adaptive immune receptor repertoire sequencing. We compared the B-cell receptor (BCR) repertoires of 25 patients with mild/moderate ME/CFS, 36 patients with severe ME/CFS, 21 healthy controls, and 28 patients with multiple sclerosis (MS) to identify signatures of infection or autoimmune responses. ME/CFS patients did not display increased clonality or differential somatic hypermutation compared to healthy controls and patients with MS. One of two immunoglobulin heavy variable (IGHV) genes, IGHV3-30, reported to be increased in ME/CFS patients in a previous study, was replicated in patients with mild/moderate disease in our cohort. However, there was no evidence of ongoing adaptive responses in IGHV3-30 repertoires from mild/moderate ME/CFS patients with increased IGHV3-30 usage. There were no detectable repertoire signatures associated with infection or autoimmunity in repertoires from ME/CFS patients, but we observed skewing of the ratio of IgM to IgG BCRs in patients with mild/moderate ME/CFS, a preliminary finding that presents an opportunity for follow-up work.
Collapse
Affiliation(s)
- Audrey A. Ryback
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
9
|
Chancellor A, Constantin D, Berloffa G, Yang Q, Nosi V, Loureiro JP, Colombo R, Jakob RP, Joss D, Pfeffer M, De Simone G, Morabito A, Schaefer V, Vacchini A, Brunelli L, Montagna D, Heim M, Zippelius A, Davoli E, Häussinger D, Maier T, Mori L, De Libero G. The carbonyl nucleobase adduct M 3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells. Immunity 2025; 58:431-447.e10. [PMID: 39701104 DOI: 10.1016/j.immuni.2024.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/04/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
The major histocompatibility complex (MHC) class I-related molecule MHC-class-I-related protein 1 (MR1) presents metabolites to distinct MR1-restricted T cell subsets, including mucosal-associated invariant T (MAIT) and MR1T cells. However, self-reactive MR1T cells and the nature of recognized antigens remain underexplored. Here, we report a cell endogenous carbonyl adduct of adenine (8-(9H-purin-6-yl)-2-oxa-8-azabicyclo[3.3.1]nona-3,6-diene-4,6-dicarbaldehyde [M3Ade]) sequestered in the A' pocket of MR1. M3Ade induced in vitro MR1-mediated stimulation of MR1T cell clones that bound MR1-M3Ade tetramers. MR1-M3Ade tetramers identified heterogeneous MR1-reactive T cells ex vivo in healthy donors, individuals with acute myeloid leukemia, and tumor-infiltrating lymphocytes from non-small cell lung adenocarcinoma and hepatocarcinoma. These cells displayed phenotypic, transcriptional, and functional diversity at distinct differentiation stages, indicating their adaptive nature. They were also polyclonal, with some preferential T cell receptor (TCRαβ) pair usage. Thus, M3Ade is an MR1-presented self-metabolite that enables stimulation and tracking of human-MR1T cells from blood and tissue, aiding our understanding of their roles in health and disease.
Collapse
Affiliation(s)
- Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland.
| | - Daniel Constantin
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Qinmei Yang
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - José Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Michael Pfeffer
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Giulia De Simone
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Aurelia Morabito
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Laura Brunelli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Daniela Montagna
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia and Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Markus Heim
- Hepatology Laboratory, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Enrico Davoli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
10
|
Wilbrink R, van der Weele L, Spoorenberg AJPL, de Vries N, Niewold ITG, Verstappen GM, Kroese FGM. B Cell Receptor Repertoire Analysis of the CD21 lo B Cell Compartment in Healthy Individuals, Patients With Sjögren's Disease, and Patients With Radiographic Axial Spondyloarthritis. Eur J Immunol 2025; 55:e202451398. [PMID: 39707660 PMCID: PMC11830390 DOI: 10.1002/eji.202451398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024]
Abstract
B cells with low or absent expression of CD21 (CD21lo B cells) gained attention due to their expansion in the peripheral blood of patients with immune-mediated, rheumatic diseases. This is not only observed in typical autoimmune diseases like systemic lupus erythematosus and Sjögren's disease (SjD) but also in radiographic axial spondyloarthritis (r-axSpA), which is considered an autoinflammatory disease. To gain more insight into the origins of the heterogeneous CD21lo B-cell population, and its relation to the plasmablast (PB) compartment, we profiled the B-cell-receptor (BCR) repertoire in CD27- and CD27+ fractions of CD21lo B cells and early PBs using next-generation sequencing. Populations were sorted from peripheral blood of healthy individuals, SjD patients, and r-axSpA patients (n = 10 for each group). In healthy individuals and both patient groups, our findings indicate that CD27-CD21lo B cells, which exhibit few mutations in their BCR, may develop into CD27+CD21lo B cells and PBs, both marked by considerably more mutations. Given the known expansion of circulating CD27-CD21lo B cells in SjD and r-axSpA patients and clonal relationships with both CD27+CD21lo B cells and early PBs, these cells might actively contribute to (pathological) immune responses in rheumatic diseases with autoimmune and/or autoinflammatory characteristics.
Collapse
MESH Headings
- Humans
- Sjogren's Syndrome/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Female
- Adult
- Male
- Middle Aged
- Receptors, Complement 3d/metabolism
- Receptors, Complement 3d/immunology
- Receptors, Complement 3d/genetics
- B-Lymphocytes/immunology
- Axial Spondyloarthritis/immunology
- Axial Spondyloarthritis/diagnostic imaging
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
- Aged
Collapse
Affiliation(s)
- Rick Wilbrink
- Department of Rheumatology and Clinical ImmunologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Linda van der Weele
- Department of Rheumatology & Clinical ImmunologyAmsterdam Rheumatology and Immunology Center (ARC)Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Anneke J. P. L. Spoorenberg
- Department of Rheumatology and Clinical ImmunologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Niek de Vries
- Department of Rheumatology & Clinical ImmunologyAmsterdam Rheumatology and Immunology Center (ARC)Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Ilse T. G. Niewold
- Department of Rheumatology & Clinical ImmunologyAmsterdam Rheumatology and Immunology Center (ARC)Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Gwenny M. Verstappen
- Department of Rheumatology and Clinical ImmunologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Frans G. M. Kroese
- Department of Rheumatology and Clinical ImmunologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
11
|
Lim CC, Lim TS. Profiling the broad antibody diversity of lymphatic filariasis immune antibody repertoire by deep sequencing. Int J Biol Macromol 2025; 290:140037. [PMID: 39828167 DOI: 10.1016/j.ijbiomac.2025.140037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Lymphatic filariasis is caused by infections of thread-like filarial worms, namely Wuchereria bancrofti, Brugia Malayi and Brugia timori. However, in-depth analysis of the antibody repertoire against Lymphatic filariasis is lacking. Using high-throughput sequencing of antibody repertoires, immunome analysis of IgG (LG) and IgM (LM) repertoires were studied. Despite significant differences between LG and LM in V(D)J gene usage, IGHV4-34, IGHV6-1, IGHD3-10 and IGHJ4 were preferred in both repertoires. The CDR3 in the LG repertoire showed a longer length than LM. Higher SHM level were observed in LG sequences and presence of oligoclonal sequences indicates the extent of clonal expansion. The prevalence of rare clonotypes in LM repertoire depicts the high clonal diversity when compared to LG repertoire. Monoclonal antibodies against closely related parasitic infections were present within the LG repertoire suggesting that immune repertoires may not be as exclusive and biased against the target infection as initially thought. The characterization of the immune repertoire can provide critical insight into the antibody response patterns in disease state, antibody generation process during infections and future antibody designs.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
12
|
Zuckerbrot-Schuldenfrei M, Zilberberg A, Efroni S. The compositional behavior of the human T cell receptor repertoire in ovarian cancer compared to healthy donors. Sci Data 2025; 12:175. [PMID: 39880820 PMCID: PMC11779844 DOI: 10.1038/s41597-024-04335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
The distinctive characteristics of an individual's T cell receptor repertoire are crucial in recognizing and responding to a diverse array of antigens, contributing to immune specificity and adaptability. The repertoire, famously vast due to a series of cellular mechanisms, can be quantified using repertoire sequencing. In this study, we sampled the repertoire of 85 women: ovarian cancer patients (OC) and healthy donors (HD), generating a dataset of T cell clones and their abundance. For the alpha chain we obtained 6.4·106 reads, with an average of 75936 clones per sample, and an average of 30607 clonotypes per sample. For the beta chain we obtained 13.6·106 reads, with an average of 160400 clones per sample, and an average of 70071 clonotypes per sample. The changes in dynamics of the repertoire can be observed in response to disease, with specific clones undergoing clonal expansion and contraction. The data provided here offers a unique view of immune system behavior in health and disease and can be used to stratify OC and HD.
Collapse
Affiliation(s)
| | - Alona Zilberberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sol Efroni
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
13
|
Holmes AB, Corinaldesi C, Basso K. Single-Cell Transcriptomic Analysis of Normal and Malignant B Cells. Methods Mol Biol 2025; 2865:347-374. [PMID: 39424732 DOI: 10.1007/978-1-0716-4188-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
In the past decade, single-cell (sc) transcriptomics has overcome the limitations of bulk analysis by measuring gene expression in individual cells, not just a population average. This can identify diverse cell types and states within a sample with high resolution, even without prior purification. Various technologies exist, each with its own capture, barcoding, and library preparation methods. This chapter focuses on the analysis of normal and malignant mature B cells using the 10× Genomics 5' sc-gene expression in parallel with B cell immune repertoire profiling. By integrating the gene expression data from similar cells, the complete transcriptome for each population can be reconstructed, while the identification of the expressed immunoglobulin genes allows investigating clonotype evolution and the detection of tumor clones that share the same clonally rearranged B cell receptor sequence. Researchers are guided through both the experimental protocols and data analysis with a comprehensive, step-by-step walkthrough of how to use some of the more popular single-cell software tools.
Collapse
Affiliation(s)
- Antony B Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | | | - Katia Basso
- Institute for Cancer Genetics and Department of Pathology & Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Mikelov A, Nefediev G, Tashkeev A, Rodriguez OL, Aguilar Ortmans D, Skatova V, Izraelson M, Davydov AN, Poslavsky S, Rahmouni S, Watson CT, Chudakov D, Boyd SD, Bolotin D. Ultrasensitive allele inference from immune repertoire sequencing data with MiXCR. Genome Res 2024; 34:2293-2303. [PMID: 39433438 PMCID: PMC11694755 DOI: 10.1101/gr.278775.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Allelic variability in the adaptive immune receptor loci, which harbor the gene segments that encode B cell and T cell receptors (BCR/TCR), is of critical importance for immune responses to pathogens and vaccines. Adaptive immune receptor repertoire sequencing (AIRR-seq) has become widespread in immunology research making it the most readily available source of information about allelic diversity in immunoglobulin (IG) and T cell receptor (TR) loci. Here, we present a novel algorithm for extrasensitive and specific variable (V) and joining (J) gene allele inference, allowing the reconstruction of individual high-quality gene segment libraries. The approach can be applied for inferring allelic variants from peripheral blood lymphocyte BCR and TCR repertoire sequencing data, including hypermutated isotype-switched BCR sequences, thus allowing high-throughput novel allele discovery from a wide variety of existing data sets. The developed algorithm is a part of the MiXCR software. We demonstrate the accuracy of this approach using AIRR-seq paired with long-read genomic sequencing data, comparing it to a widely used algorithm, TIgGER. We applied the algorithm to a large set of IG heavy chain (IGH) AIRR-seq data from 450 donors of ancestrally diverse population groups, and to the largest reported full-length TCR alpha and beta chain (TRA and TRB) AIRR-seq data set, representing 134 individuals. This allowed us to assess the genetic diversity within the IGH, TRA, and TRB loci in different populations and to establish a database of alleles of V and J genes inferred from AIRR-seq data and their population frequencies with free public access through VDJ.online database.
Collapse
Affiliation(s)
- Artem Mikelov
- Department of Pathology, Stanford University, Stanford, California 94305, USA;
| | - George Nefediev
- MiLaboratories Incorporated, San Francisco, California 94114, USA
| | - Alexander Tashkeev
- Unit of Animal Genomics, WELBIO, GIGA-R and Faculty of Veterinary Medicine, University of Liège (B34), 4000 Liège, Belgium
| | - Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Diego Aguilar Ortmans
- Unit of Animal Genomics, WELBIO, GIGA-R and Faculty of Veterinary Medicine, University of Liège (B34), 4000 Liège, Belgium
| | - Valeriia Skatova
- MiLaboratories Incorporated, San Francisco, California 94114, USA
| | - Mark Izraelson
- MiLaboratories Incorporated, San Francisco, California 94114, USA
| | - Alexey N Davydov
- MiLaboratories Incorporated, San Francisco, California 94114, USA
- Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic
| | | | - Souad Rahmouni
- Unit of Animal Genomics, WELBIO, GIGA-R and Faculty of Veterinary Medicine, University of Liège (B34), 4000 Liège, Belgium
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Dmitriy Chudakov
- MiLaboratories Incorporated, San Francisco, California 94114, USA
- Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - Dmitry Bolotin
- MiLaboratories Incorporated, San Francisco, California 94114, USA;
| |
Collapse
|
15
|
Csepregi L, Hoehn K, Neumeier D, Taft JM, Friedensohn S, Weber CR, Kummer A, Sesterhenn F, Correia BE, Reddy ST. The physiological landscape and specificity of antibody repertoires are consolidated by multiple immunizations. eLife 2024; 13:e92718. [PMID: 39693231 DOI: 10.7554/elife.92718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/30/2024] [Indexed: 12/20/2024] Open
Abstract
Diverse antibody repertoires spanning multiple lymphoid organs (i.e., bone marrow, spleen, lymph nodes) form the foundation of protective humoral immunity. Changes in their composition across lymphoid organs are a consequence of B-cell selection and migration events leading to a highly dynamic and unique physiological landscape of antibody repertoires upon antigenic challenge (e.g., vaccination). However, to what extent B cells encoding identical or similar antibody sequences (clones) are distributed across multiple lymphoid organs and how this is shaped by the strength of a humoral response remains largely unexplored. Here, we performed an in-depth systems analysis of antibody repertoires across multiple distinct lymphoid organs of immunized mice and discovered that organ-specific antibody repertoire features (i.e., germline V-gene usage and clonal expansion profiles) equilibrated upon a strong humoral response (multiple immunizations and high serum titers). This resulted in a surprisingly high degree of repertoire consolidation, characterized by highly connected and overlapping B-cell clones across multiple lymphoid organs. Finally, we revealed distinct physiological axes indicating clonal migrations and showed that antibody repertoire consolidation directly correlated with antigen specificity. Our study uncovered how a strong humoral response resulted in a more uniform but redundant physiological landscape of antibody repertoires, indicating that increases in antibody serum titers were a result of synergistic contributions from antigen-specific B-cell clones distributed across multiple lymphoid organs. Our findings provide valuable insights for the assessment and design of vaccine strategies.
Collapse
Affiliation(s)
- Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Kenneth Hoehn
- Department of Pathology, Yale University School of Medicine, New Haven, United States
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Joseph M Taft
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Alloy Therapeutics AG, Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Alloy Therapeutics AG, Basel, Switzerland
| | - Arkadij Kummer
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Fabian Sesterhenn
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
16
|
Malladi SK, Jaiswal D, Ying B, Alsoussi WB, Darling TL, Dadonaite B, Civljak A, Horvath SC, Zhou JQ, Kim W, Turner JS, Schmitz AJ, Han F, Scheaffer SM, Farnsworth CW, Nachbagauer R, Nestorova B, Chalkias S, Klebert MK, Edwards DK, Paris R, Strnad BS, Middleton WD, O’Halloran JA, Presti RM, Bloom JD, Boon ACM, Diamond MS, Bajic G, Ellebedy AH. Defining a highly conserved B cell epitope in the receptor binding motif of SARS-CoV-2 spike glycoprotein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.625234. [PMID: 39713327 PMCID: PMC11661108 DOI: 10.1101/2024.12.06.625234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
SARS-CoV-2 mRNA vaccines induce robust and persistent germinal centre (GC) B cell responses in humans. It remains unclear how the continuous evolution of the virus impacts the breadth of the induced GC B cell response. Using ultrasound-guided fine needle aspiration, we examined draining lymph nodes of nine healthy adults following bivalent booster immunization. We show that 77.8% of the B cell clones in the GC expressed as representative monoclonal antibodies recognized the spike protein, with a third (37.8%) of these targeting the receptor binding domain (RBD). Strikingly, only one RBD-targeting mAb, mAb-52, neutralized all tested SARS-CoV-2 strains, including the recent KP.2 variant. mAb-52 utilizes the IGHV3-66 public clonotype, protects hamsters challenged against the EG.5.1 variant and targets the class I/II RBD epitope, closely mimicking the binding footprint of ACE2. Finally, we show that the remarkable breadth of mAb-52 is due to the somatic hypermutations accumulated within vaccine-induced GC reaction.
Collapse
Affiliation(s)
- Sameer Kumar Malladi
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Deepika Jaiswal
- Department of Microbiology, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Wafaa B. Alsoussi
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center; Seattle, WA, USA
| | - Alesandro Civljak
- Department of Microbiology, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Stephen C. Horvath
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Julian Q. Zhou
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Microbiology, Korea University College of Medicine; Seoul, Korea
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Aaron J. Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Fangjie Han
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Suzanne M. Scheaffer
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Christopher W. Farnsworth
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | | | | | | | - Michael K. Klebert
- Clinical Trials Unit, Washington University School of Medicine; St. Louis, MO, USA
| | | | | | - Benjamin S. Strnad
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St. Louis, MO, USA
| | - William D. Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Jane A. O’Halloran
- Division of Infectious Diseases, Washington University School of Medicine; St. Louis, MO, USA
| | - Rachel M. Presti
- Division of Infectious Diseases, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center; Seattle, WA, USA
- Howard Hughes Medical Institute; Seattle, WA, USA
| | - Adrianus C. M. Boon
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO, USA
| |
Collapse
|
17
|
Tejedor Vaquero S, Neuman H, Comerma L, Marcos-Fa X, Corral-Vazquez C, Uzzan M, Pybus M, Segura-Garzón D, Guerra J, Perruzza L, Tachó-Piñot R, Sintes J, Rosenstein A, Grasset EK, Iglesias M, Gonzalez Farré M, Lop J, Patriaca-Amiano ME, Larrubia-Loring M, Santiago-Diaz P, Perera-Bel J, Berenguer-Molins P, Martinez Gallo M, Martin-Nalda A, Varela E, Garrido-Pontnou M, Grassi F, Guarner F, Mehandru S, Márquez-Mosquera L, Mehr R, Cerutti A, Magri G. Immunomolecular and reactivity landscapes of gut IgA subclasses in homeostasis and inflammatory bowel disease. J Exp Med 2024; 221:e20230079. [PMID: 39560666 PMCID: PMC11577441 DOI: 10.1084/jem.20230079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
The human gut includes plasma cells (PCs) expressing immunoglobulin A1 (IgA1) or IgA2, two structurally distinct IgA subclasses with elusive regulation, function, and reactivity. We show here that intestinal IgA1+ and IgA2+ PCs co-emerged early in life, comparably accumulated somatic mutations, and were enriched within short-lived CD19+ and long-lived CD19- PC subsets, respectively. IgA2+ PCs were extensively clonally related to IgA1+ PCs and a subset of them presumably emerged from IgA1+ precursors. Of note, secretory IgA1 (SIgA1) and SIgA2 dually coated a large fraction of mucus-embedded bacteria, including Akkermansia muciniphila. Disruption of homeostasis by inflammatory bowel disease (IBD) was associated with an increase in actively proliferating IgA1+ plasmablasts, a depletion in long-lived IgA2+ PCs, and increased SIgA1+SIgA2+ gut microbiota. Such increase featured enhanced IgA1 reactivity to pathobionts, including Escherichia coli, combined with depletion of beneficial A. muciniphila. Thus, gut IgA1 and IgA2 emerge from clonally related PCs and show unique changes in both frequency and reactivity in IBD.
Collapse
Affiliation(s)
- Sonia Tejedor Vaquero
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Hadas Neuman
- Computational Immunology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Laura Comerma
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Xavi Marcos-Fa
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Celia Corral-Vazquez
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Mathieu Uzzan
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Marc Pybus
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Daniel Segura-Garzón
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Joana Guerra
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Lisa Perruzza
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Roser Tachó-Piñot
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Jordi Sintes
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Adam Rosenstein
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Emilie K. Grasset
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Mar Iglesias
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | - Joan Lop
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | | | | | - Júlia Perera-Bel
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Pau Berenguer-Molins
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Monica Martinez Gallo
- Immunology Division, Vall d’Hebron University Hospital and Translational Immunology Research Group, Vall d’Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Andrea Martin-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Encarna Varela
- Department of Gastroenterology, Vall d’Hebron Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto Carlos III, Madrid, Spain
| | | | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Francisco Guarner
- Department of Gastroenterology, Vall d’Hebron Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto Carlos III, Madrid, Spain
| | - Saurabh Mehandru
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Lucia Márquez-Mosquera
- Department of Gastroenterology, Hospital del Mar Medical Research Institute Barcelona, Barcelona, Spain
| | - Ramit Mehr
- Computational Immunology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Andrea Cerutti
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
- Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Giuliana Magri
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
18
|
Sung K, Johnson MM, Dumm W, Simon N, Haddox H, Fukuyama J, Matsen FA. Thrifty wide-context models of B cell receptor somatic hypermutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625407. [PMID: 39651125 PMCID: PMC11623647 DOI: 10.1101/2024.11.26.625407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Somatic hypermutation (SHM) is the diversity-generating process in antibody affinity maturation. Probabilistic models of SHM are needed for analyzing rare mutations, for understanding the selective forces guiding affinity maturation, and for understanding the underlying biochemical process. High throughput data offers the potential to develop and fit models of SHM on relevant data sets. In this paper we model SHM using modern frameworks. We are motivated by recent work suggesting the importance of a wider context for SHM, however, assigning an independent rate to each k-mer leads to an exponential proliferation of parameters. Thus, using convolutions on 3-mer embeddings, we develop "thrifty" models of SHM that have fewer free parameters than a 5-mer model and yet have a significantly wider context. These offer a slight performance improvement over a 5-mer model. We also find that a per-site effect is not necessary to explain SHM patterns given nucleotide context. Also, the two current methods for fitting an SHM model - on out-of-frame sequence data and on synonymous mutations - produce significantly different results, and augmenting out-of-frame data with synonymous mutations does not aid out-of-sample performance.
Collapse
|
19
|
Sakakibara S, Liu YC, Ishikawa M, Edahiro R, Shirai Y, Haruna S, El Hussien MA, Xu Z, Li S, Yamaguchi Y, Murakami T, Morita T, Kato Y, Hirata H, Takeda Y, Sugihara F, Naito Y, Motooka D, Tsai CY, Ono C, Matsuura Y, Wing JB, Matsumoto H, Ogura H, Okada M, Kumanogoh A, Okada Y, Standley DM, Kikutani H, Okuzaki D. Clonal landscape of autoantibody-secreting plasmablasts in COVID-19 patients. Life Sci Alliance 2024; 7:e202402774. [PMID: 39288992 PMCID: PMC11408605 DOI: 10.26508/lsa.202402774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Whereas severe COVID-19 is often associated with elevated autoantibody titers, the underlying mechanism behind their generation has remained unclear. Here we report clonal composition and diversity of autoantibodies in humoral response to SARS-CoV-2. Immunoglobulin repertoire analysis and characterization of plasmablast-derived monoclonal antibodies uncovered clonal expansion of plasmablasts producing cardiolipin (CL)-reactive autoantibodies. Half of the expanded CL-reactive clones exhibited strong binding to SARS-CoV-2 antigens. One such clone, CoV1804, was reactive to both CL and viral nucleocapsid (N), and further showed anti-nucleolar activity in human cells. Notably, antibodies sharing genetic features with CoV1804 were identified in COVID-19 patient-derived immunoglobulins, thereby constituting a novel public antibody. These public autoantibodies had numerous mutations that unambiguously enhanced anti-N reactivity, when causing fluctuations in anti-CL reactivity along with the acquisition of additional self-reactivities, such as anti-nucleolar activity, in the progeny. Thus, potentially CL-reactive precursors may have developed multiple self-reactivities through clonal selection, expansion, and somatic hypermutation driven by viral antigens. Our results revealed the nature of autoantibody production during COVID-19 and provided novel insights into the origin of virus-induced autoantibodies.
Collapse
Affiliation(s)
- Shuhei Sakakibara
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yu-Chen Liu
- Laboratory of Human Immunology (Single Cell Genomics), Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masakazu Ishikawa
- Laboratory of Human Immunology (Single Cell Genomics), Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Ryuya Edahiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yuya Shirai
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Soichiro Haruna
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Marwa Ali El Hussien
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Zichang Xu
- Laboratory of Systems Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Songling Li
- Laboratory of Systems Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yuta Yamaguchi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Teruaki Murakami
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoko Naito
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Laboratory of Human Immunology (Single Cell Genomics), Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Chao-Yuan Tsai
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Chikako Ono
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - James B Wing
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Human Single Cell Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Hisatake Matsumoto
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Ogura
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masato Okada
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan
| | - Yukinari Okada
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Wakō, japan
| | - Daron M Standley
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Systems Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Hitoshi Kikutani
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan
| |
Collapse
|
20
|
Mahdy AKH, Lokes E, Schöpfel V, Kriukova V, Britanova OV, Steiert TA, Franke A, ElAbd H. Bulk T cell repertoire sequencing (TCR-Seq) is a powerful technology for understanding inflammation-mediated diseases. J Autoimmun 2024; 149:103337. [PMID: 39571301 DOI: 10.1016/j.jaut.2024.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/12/2024] [Accepted: 11/09/2024] [Indexed: 12/15/2024]
Abstract
Multiple alterations in the T cell repertoire were identified in many chronic inflammatory diseases such as inflammatory bowel disease, multiple sclerosis, and rheumatoid arthritis, suggesting that T cells might, directly or indirectly, be implicated in these pathologies. This has sparked a deep interest in characterizing disease-associated T cell clonotypes as well as in identifying and quantifying their contribution to the pathophysiology of different autoimmune and inflammation-mediated diseases. Bulk T cell repertoire sequencing (TCR-Seq) has emerged as a powerful method to profile the T cell repertoire of a sample in a high throughput fashion. Given the increasing utilization of TCR-Seq, we aimed here to provide a comprehensive, up-to-date review of the method, its extensions, and its ability to investigate chronic and autoimmune diseases. Specifically, we started by introducing the immunological basis of TCR repertoire generation and features, followed by discussing different experimental approach to perform TCR-Seq, then we describe different methods and frameworks for analyzing the generated datasets. Subsequently, different experimental techniques for investigating the antigenicity of T cell clonotypes are described. Lastly, we discuss recent studies that utilized TCR-Seq to understand different inflammation-mediated diseases, discuss fallbacks of the technology and potential future directions to overcome current limitations.
Collapse
Affiliation(s)
- Aya K H Mahdy
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Evgeniya Lokes
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Valentina Schöpfel
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Valeriia Kriukova
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Olga V Britanova
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Tim A Steiert
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany.
| | - Hesham ElAbd
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany.
| |
Collapse
|
21
|
Sanchez GM, Hirsch ES, VanValkenburg A, Mayer DP, Gbedande K, Francis RL, Song W, Antao OQ, Brimmer KE, Lemenze A, Stephens R, Johnson WE, Weinstein JS. Aberrant zonal recycling of germinal center B cells impairs appropriate selection in lupus. Cell Rep 2024; 43:114978. [PMID: 39527476 PMCID: PMC11682828 DOI: 10.1016/j.celrep.2024.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/28/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Autoimmune diseases such as lupus are characterized by polyclonal B cell activation, leading to the production of autoantibodies. The mechanism leading to B cell dysregulation is unclear; however, the defect may lie in selection within germinal centers (GCs). GC B cells cycle between proliferation and mutation in the dark zone and selection in the light zone (LZ). Temporal assessment of GCs from mice with either persistent infection or lupus showed an accumulation of LZ B cells. Yet, only in lupus, GC B cells exhibited reduced proliferation and progressive loss of MYC and FOXO1, which regulate zonal recycling and differentiation. As lupus progressed, decreased mutational frequency and repertoire diversity were associated with reduced responsiveness to CD40 signaling, despite accumulation of plasma cells. Collectively, these findings suggest that lupus disease progression coincides with an intrinsic defect in LZ B cell signaling, altering the zonal recycling, selection, and differentiation of autoreactive B cells.
Collapse
Affiliation(s)
- Gina M Sanchez
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Eden S Hirsch
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Arthur VanValkenburg
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Daniel P Mayer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Komi Gbedande
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Rebecca L Francis
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Olivia Q Antao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Kyleigh E Brimmer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Robin Stephens
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - W Evan Johnson
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jason S Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
22
|
Licht P, Mailänder V. Multi-Omic Data Integration Suggests Putative Microbial Drivers of Aetiopathogenesis in Mycosis Fungoides. Cancers (Basel) 2024; 16:3947. [PMID: 39682136 DOI: 10.3390/cancers16233947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Mycosis fungoides (MF) represents the most prevalent entity of cutaneous T cell lymphoma (CTCL). The MF aetiopathogenesis is incompletely understood, due to significant transcriptomic heterogeneity and conflicting views on whether oncologic transformation originates in early thymocytes or mature effector memory T cells. Recently, using clinical specimens, our group showed that the skin microbiome aggravates disease course, mainly driven by an outgrowing, pathogenic S. aureus strain carrying the virulence factor spa, which was shown by others to activate the T cell signalling pathway NF-κB. METHODS To explore the role of the skin microbiome in MF aetiopathogenesis, we here performed RNA sequencing, multi-omic data integration of the skin microbiome and skin transcriptome using Multi-Omic Factor Analysis (MOFA), virome profiling, and T cell receptor (TCR) sequencing in 10 MF patients from our previous study group. RESULTS We observed that inter-patient transcriptional heterogeneity may be largely attributed to differential activation of T cell signalling pathways. Notably, the MOFA model resolved the heterogenous activation pattern of T cell signalling after denoising the transcriptome from microbial influence. The MOFA model suggested that the outgrowing S. aureus strain evoked signalling by non-canonical NF-κB and IL-1B, which in turn may have fuelled the aggravated disease course. Further, the MOFA model indicated aberrant pathways of early thymopoiesis alongside enrichment of antiviral innate immunity. In line with this, viral prevalence, particularly of Epstein-Barr virus (EBV), trended higher in both lesional skin and the blood compared to nonlesional skin. Additionally, TCRs in both MF skin lesions and the blood were significantly more likely to recognize EBV peptides involved in latent infection. CONCLUSIONS First, our findings suggest that S. aureus with its virulence factor spa fuels MF progression through non-canonical NF-κB and IL-1B signalling. Second, our data provide insights into the potential role of viruses in MF aetiology. Last, we propose a model of microbiome-driven MF aetiopathogenesis: Thymocytes undergo initial oncologic transformation, potentially caused by viruses. After maturation and skin infiltration, an outgrowing, pathogenic S. aureus strain evokes activation and maturation into effector memory T cells, resulting in aggressive disease. Further studies are warranted to verify and extend our data, which are based on computational analyses.
Collapse
Affiliation(s)
- Philipp Licht
- Department of Dermatology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Centre Mainz, 55131 Mainz, Germany
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
23
|
Madden PJ, Marina-Zárate E, Rodrigues KA, Steichen JM, Shil M, Ni K, Michaels KK, Maiorino L, Upadhyay AA, Saha S, Pradhan A, Kalyuzhiny O, Liguori A, Lopez PG, Phung I, Phelps N, Georgeson E, Alavi N, Kubitz M, Lu D, Eskandarzadeh S, Metz A, Rodriguez OL, Shields K, Schultze S, Smith ML, Healy BS, Lim D, Lewis VR, Ben-Akiva E, Pinney W, Gregory J, Xiao S, Carnathan DG, Kasturi SP, Watson CT, Bosinger SE, Silvestri G, Schief WR, Irvine DJ, Crotty S. Diverse priming outcomes under conditions of very rare precursor B cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624746. [PMID: 39651117 PMCID: PMC11623517 DOI: 10.1101/2024.11.21.624746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Rare B cells can have special pathogen-recognition features giving them the potential to make outsized contributions to protective immunity. However, rare naive B cells infrequently participate in immune responses. We investigated how germline-targeting vaccine antigen delivery and adjuvant selection affect priming of exceptionally rare BG18-like HIV broadly neutralizing antibody-precursor B cells (~1 in 50 million) in non-human primates. Only escalating dose (ED) priming immunization using the saponin adjuvant SMNP elicited detectable BG18-like cells in germinal centers (GCs). All groups had strong GC responses, but only ED+SMNP and bolus+SMNP induced BG18-like memory B cells in >50% of animals. One group had vaccine-specific GC responses equivalent to ED+SMNP, but BG18-like memory B cells were rarely detected. Following homologous boosting, BG18-like memory B cells were more frequent in a bolus priming group, but had lower somatic hypermutation and affinities. This outcome was inversely associated with post-prime antibody titers, suggesting antibody feedback can significantly influence rare precursor B cell responses.
Collapse
|
24
|
Dieudonné Y, Lorenzetti R, Rottura J, Janowska I, Frenger Q, Jacquel L, Vollmer O, Carbone F, Chengsong Z, Luka M, Depauw S, Wadier N, Giorgiutti S, Nespola B, Herb A, Voll RE, Guffroy A, Poindron V, Ménager M, Martin T, Soulas-Sprauel P, Rizzi M, Korganow AS, Gies V. Defective germinal center selection results in persistence of self-reactive B cells from the primary to the secondary repertoire in Primary Antiphospholipid Syndrome. Nat Commun 2024; 15:9921. [PMID: 39548093 PMCID: PMC11568317 DOI: 10.1038/s41467-024-54228-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Primary antiphospholipid syndrome (PAPS) is a life-threatening clotting disorder mediated by pathogenic autoantibodies. Here we dissect the origin of self-reactive B cells in human PAPS using peripheral blood and bone marrow of patients with triple-positive PAPS via combined single-cell RNA sequencing, B cell receptors (BCR) repertoire profiling, CITEseq analysis and single cell immortalization. We find that antiphospholipid (aPL)-specific B cells are present in the naive compartment, polyreactive, and derived from the natural repertoire. Furthermore, B cells with aPL specificities are not eliminated in patients with PAPS, persist until the memory and long-lived plasma cell stages, likely after defective germinal center selection, while becoming less polyreactive. Lastly, compared with the non-PAPS cells, PAPS B cells exhibit distinct IFN and APRIL signature as well as dysregulated mTORC1 and MYC pathways. Our findings may thus elucidate the survival mechanisms of these autoreactive B cells and suggest potential therapeutic targets for the treatment of PAPS.
Collapse
Affiliation(s)
- Yannick Dieudonné
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France.
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France.
| | - Raquel Lorenzetti
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University of Graz, Graz, Austria
| | - Julien Rottura
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Life Sciences, Strasbourg, France
| | - Iga Janowska
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Quentin Frenger
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Life Sciences, Strasbourg, France
| | - Léa Jacquel
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Olivier Vollmer
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Francesco Carbone
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Paris, France
| | - Zhu Chengsong
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marine Luka
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Paris, France
| | - Sabine Depauw
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nadège Wadier
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Stéphane Giorgiutti
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Benoît Nespola
- Laboratoire d'Immunologie, Plateau technique de Biologie, Strasbourg University Hospital, Strasbourg, France
| | - Agathe Herb
- Hematology laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Reinhard Edmund Voll
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aurélien Guffroy
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Vincent Poindron
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
| | - Mickaël Ménager
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Paris, France
| | - Thierry Martin
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Pauline Soulas-Sprauel
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Pharmacy, Illkirch, France
| | - Marta Rizzi
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Vincent Gies
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France.
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Université de Strasbourg, Faculty of Pharmacy, Illkirch, France.
| |
Collapse
|
25
|
Morgan DM, Zhang YJ, Kim JH, Murillo M, Singh S, Loschko J, Surendran N, Sekulovic O, Feng E, Shi S, Irvine DJ, Patil SU, Kanevsky I, Chorro L, Christopher Love J. Full-length single-cell BCR sequencing paired with RNA sequencing reveals convergent responses to pneumococcal vaccination. Commun Biol 2024; 7:1208. [PMID: 39341987 PMCID: PMC11438910 DOI: 10.1038/s42003-024-06823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) can resolve transcriptional features from individual cells, but scRNA-seq techniques capable of resolving the variable regions of B cell receptors (BCRs) remain limited, especially from widely-used 3'-barcoded libraries. Here, we report a method that can recover paired, full-length variable region sequences of BCRs from 3'-barcoded scRNA-seq libraries. We first verify this method (B3E-seq) can produce accurate, full-length BCR sequences. We then apply this method to profile B cell responses elicited against the capsular polysaccharide of Streptococcus pneumoniae serotype 3 (ST3) by glycoconjugate vaccines in five infant rhesus macaques. We identify BCR features associated with specificity for the ST3 antigen which are present in multiple vaccinated monkeys, indicating a convergent response to vaccination. These results demonstrate the utility of our method to resolve key features of the B cell repertoire and profile antigen-specific responses elicited by vaccination.
Collapse
Affiliation(s)
- Duncan M Morgan
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
| | - Yiming J Zhang
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Jin-Hwan Kim
- Vaccine Research and Development Pfizer Inc. Pearl River, New York, NY, USA
| | - MaryAnn Murillo
- Vaccine Research and Development Pfizer Inc. Pearl River, New York, NY, USA
| | - Suddham Singh
- Vaccine Research and Development Pfizer Inc. Pearl River, New York, NY, USA
| | - Jakob Loschko
- Vaccine Research and Development Pfizer Inc. Pearl River, New York, NY, USA
- Deerfield Management, New York, NY, USA
| | - Naveen Surendran
- Vaccine Research and Development Pfizer Inc. Pearl River, New York, NY, USA
| | - Ognjen Sekulovic
- Vaccine Research and Development Pfizer Inc. Pearl River, New York, NY, USA
| | - Ellie Feng
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Shuting Shi
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Materials Science and Engineering, MIT, Cambridge, MA, USA
| | - Sarita U Patil
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Isis Kanevsky
- Vaccine Research and Development Pfizer Inc. Pearl River, New York, NY, USA
| | - Laurent Chorro
- Vaccine Research and Development Pfizer Inc. Pearl River, New York, NY, USA
- Regeneron, Tarrytown, NY, USA
| | - J Christopher Love
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA.
- Department of Chemical Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|
26
|
Morgan DM, Horton BL, Bhandarkar V, Van R, Dinter T, Zagorulya M, Love JC, Spranger S. Expansion of tumor-reactive CD8 + T cell clonotypes occurs in the spleen in response to immune checkpoint blockade. Sci Immunol 2024; 9:eadi3487. [PMID: 39270006 PMCID: PMC11580689 DOI: 10.1126/sciimmunol.adi3487] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Immune checkpoint blockade (ICB) enhances T cell responses against cancer, leading to long-term survival in a fraction of patients. CD8+ T cell differentiation in response to chronic antigen stimulation is highly complex, and it remains unclear precisely which T cell differentiation states at which anatomic sites are critical for the response to ICB. We identified an intermediate-exhausted population in the white pulp of the spleen that underwent substantial expansion in response to ICB and gave rise to tumor-infiltrating clonotypes. Increased systemic antigen redirected differentiation of this population toward a more circulatory exhausted KLR state, whereas a lack of cross-presented tumor antigen reduced its differentiation in the spleen. An analogous population of exhausted KLR CD8+ T cells in human blood samples exhibited diminished tumor-trafficking ability. Collectively, our data demonstrate the critical role of antigen density within the spleen for the differentiation and expansion of T cell clonotypes in response to ICB.
Collapse
Affiliation(s)
| | | | | | - Richard Van
- Koch Institute at MIT
- Department of Biology, MIT
| | | | | | | | | |
Collapse
|
27
|
Crowley DE, Falvo CA, Benson E, Hedges J, Jutila M, Ezzatpour S, Aguilar HC, Ruiz-Aravena M, Ma W, Schountz T, Rynda-Apple A, Plowright RK. Bats generate lower affinity but higher diversity antibody responses than those of mice, but pathogen-binding capacity increases if protein is restricted in their diet. PLoS Biol 2024; 22:e3002800. [PMID: 39316608 PMCID: PMC11421821 DOI: 10.1371/journal.pbio.3002800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/13/2024] [Indexed: 09/26/2024] Open
Abstract
Bats are reservoirs of many zoonotic viruses that are fatal in humans but do not cause disease in bats. Moreover, bats generate low neutralizing antibody titers in response to experimental viral infection, although more robust antibody responses have been observed in wild-caught bats during times of food stress. Here, we compared the antibody titers and B cell receptor (BCR) diversity of Jamaican fruit bats (Artibeus jamaicensis; JFBs) and BALB/c mice generated in response to T-dependent and T-independent antigens. We then manipulated the diet of JFBs and challenged them with H18N11 influenza A-like virus or a replication incompetent Nipah virus VSV (Nipah-riVSV). Under standard housing conditions, JFBs generated a lower avidity antibody response and possessed more BCR mRNA diversity compared to BALB/c mice. However, withholding protein from JFBs improved serum neutralization in response to Nipah-riVSV and improved serum antibody titers specific to H18 but reduced BCR mRNA diversity.
Collapse
Affiliation(s)
- Daniel E. Crowley
- Department of Public and Ecosystem Health, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Caylee A. Falvo
- Department of Public and Ecosystem Health, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Evelyn Benson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Jodi Hedges
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Mark Jutila
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Manuel Ruiz-Aravena
- Department of Public and Ecosystem Health, Cornell University, Ithaca, New York, United States of America
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Tony Schountz
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology Colorado State University, Fort Collins, Colorado, United States of America
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Raina K. Plowright
- Department of Public and Ecosystem Health, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
28
|
Deng DZQ, Verhage J, Neudorf C, Corbett-Detig R, Mekonen H, Castaldi PJ, Vollmers C. R2C2 + UMI: Combining concatemeric and unique molecular identifier-based consensus sequencing enables ultra-accurate sequencing of amplicons on Oxford Nanopore Technologies sequencers. PNAS NEXUS 2024; 3:pgae336. [PMID: 39238604 PMCID: PMC11376274 DOI: 10.1093/pnasnexus/pgae336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
The sequencing of PCR amplicons is a core application of high-throughput sequencing technology. Using unique molecular identifiers (UMIs), individual amplified molecules can be sequenced to very high accuracy on an Illumina sequencer. However, Illumina sequencers have limited read length and are therefore restricted to sequencing amplicons shorter than 600 bp unless using inefficient synthetic long-read approaches. Native long-read sequencers from Pacific Biosciences and Oxford Nanopore Technologies can, using consensus read approaches, match or exceed Illumina quality while achieving much longer read lengths. Using a circularization-based concatemeric consensus sequencing approach (R2C2) paired with UMIs (R2C2 + UMI), we show that we can sequence an ∼550-nt antibody heavy chain (Immunoglobulin heavy chain - IGH) and an ∼1,500-nt 16S amplicons at accuracies up to and exceeding Q50 (<1 error in 100,000 sequenced bases), which exceeds accuracies of UMI-supported Illumina-paired sequencing as well as synthetic long-read approaches.
Collapse
Affiliation(s)
- Dori Z Q Deng
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jack Verhage
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Celine Neudorf
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Honey Mekonen
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
29
|
Licht P, Dominelli N, Kleemann J, Pastore S, Müller ES, Haist M, Hartmann KS, Stege H, Bros M, Meissner M, Grabbe S, Heermann R, Mailänder V. The skin microbiome stratifies patients with cutaneous T cell lymphoma and determines event-free survival. NPJ Biofilms Microbiomes 2024; 10:74. [PMID: 39198450 PMCID: PMC11358159 DOI: 10.1038/s41522-024-00542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Mycosis fungoides (MF) is the most common entity of Cutaneous T cell lymphomas (CTCL) and is characterized by the presence of clonal malignant T cells in the skin. The role of the skin microbiome for MF development and progression are currently poorly understood. Using shotgun metagenomic profiling, real-time qPCR, and T cell receptor sequencing, we compared lesional and nonlesional skin of 20 MF patients with early and advanced MF. Additionally, we isolated Staphylococcus aureus and other bacteria from MF skin for functional profiling and to study the S. aureus virulence factor spa. We identified a subgroup of MF patients with substantial dysbiosis on MF lesions and concomitant outgrowth of S. aureus on plaque-staged lesions, while the other MF patients had a balanced microbiome on lesional skin. Dysbiosis and S. aureus outgrowth were accompanied by ectopic levels of cutaneous antimicrobial peptides (AMPs), including adaptation of the plaque-derived S. aureus strain. Furthermore, the plaque-derived S. aureus strain showed a reduced susceptibility towards antibiotics and an upregulation of the virulence factor spa, which may activate the NF-κB pathway. Remarkably, patients with dysbiosis on MF lesions had a restricted T cell receptor repertoire and significantly lower event-free survival. Our study highlights the potential for microbiome-modulating treatments targeting S. aureus to prevent MF progression.
Collapse
Affiliation(s)
- Philipp Licht
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany.
| | - Nazzareno Dominelli
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Johannes Kleemann
- University Hospital Frankfurt, Department of Dermatology, Venerology and Allergology, Frankfurt am Main, Germany
| | - Stefan Pastore
- University Medical Centre Mainz, Institute of Human Genetics, Mainz, Germany
- Johannes Gutenberg-University, Institute of Pharmaceutical and Biomedical Sciences, Mainz, Germany
| | - Elena-Sophia Müller
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Maximilian Haist
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | | | - Henner Stege
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Matthias Bros
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Markus Meissner
- University Hospital Frankfurt, Department of Dermatology, Venerology and Allergology, Frankfurt am Main, Germany
| | - Stephan Grabbe
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Ralf Heermann
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Volker Mailänder
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany.
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|
30
|
Spisak N, Athènes G, Dupic T, Mora T, Walczak AM. Combining mutation and recombination statistics to infer clonal families in antibody repertoires. eLife 2024; 13:e86181. [PMID: 39120133 PMCID: PMC11441979 DOI: 10.7554/elife.86181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B-cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution, and dynamics. We present HILARy (high-precision inference of lineages in antibody repertoires), an efficient, fast, and precise method to identify clonal families from single- or paired-chain repertoire sequencing datasets. HILARy combines probabilistic models that capture the receptor generation and selection statistics with adapted clustering methods to achieve consistently high inference accuracy. It automatically leverages the phylogenetic signal of shared mutations in difficult repertoire subsets. Exploiting the high sensitivity of the method, we find the statistics of evolutionary properties such as the site frequency spectrum and dN/dS ratio do not depend on the junction length. We also identify a broad range of selection pressures spanning two orders of magnitude.
Collapse
Affiliation(s)
- Natanael Spisak
- Laboratoire de physique de l’École normale supérieure, CNRS, PSL University, Sorbonne Université and Université de ParisParisFrance
| | - Gabriel Athènes
- Laboratoire de physique de l’École normale supérieure, CNRS, PSL University, Sorbonne Université and Université de ParisParisFrance
- Saber Bio SAS, Institut du Cerveau, iPEPS The Healthtech HubParisFrance
| | - Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Thierry Mora
- Laboratoire de physique de l’École normale supérieure, CNRS, PSL University, Sorbonne Université and Université de ParisParisFrance
| | - Aleksandra M Walczak
- Laboratoire de physique de l’École normale supérieure, CNRS, PSL University, Sorbonne Université and Université de ParisParisFrance
| |
Collapse
|
31
|
McIntire KM, Meng H, Lin TH, Kim W, Moore NE, Han J, McMahon M, Wang M, Malladi SK, Mohammed BM, Zhou JQ, Schmitz AJ, Hoehn KB, Carreño JM, Yellin T, Suessen T, Middleton WD, Teefey SA, Presti RM, Krammer F, Turner JS, Ward AB, Wilson IA, Kleinstein SH, Ellebedy AH. Maturation of germinal center B cells after influenza virus vaccination in humans. J Exp Med 2024; 221:e20240668. [PMID: 38935072 PMCID: PMC11211068 DOI: 10.1084/jem.20240668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Germinal centers (GC) are microanatomical lymphoid structures where affinity-matured memory B cells and long-lived bone marrow plasma cells are primarily generated. It is unclear how the maturation of B cells within the GC impacts the breadth and durability of B cell responses to influenza vaccination in humans. We used fine needle aspiration of draining lymph nodes to longitudinally track antigen-specific GC B cell responses to seasonal influenza vaccination. Antigen-specific GC B cells persisted for at least 13 wk after vaccination in two out of seven individuals. Monoclonal antibodies (mAbs) derived from persisting GC B cell clones exhibit enhanced binding affinity and breadth to influenza hemagglutinin (HA) antigens compared with related GC clonotypes isolated earlier in the response. Structural studies of early and late GC-derived mAbs from one clonal lineage in complex with H1 and H5 HAs revealed an altered binding footprint. Our study shows that inducing sustained GC reactions after influenza vaccination in humans supports the maturation of responding B cells.
Collapse
Affiliation(s)
- Katherine M. McIntire
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Ting-Hui Lin
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Microbiology, Korea University College of Medicine, Seoul, Korea
| | - Nina E. Moore
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng Wang
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Sameer Kumar Malladi
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Bassem M. Mohammed
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Julian Q. Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Aaron J. Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Temima Yellin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teresa Suessen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - William D. Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sharlene A. Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M. Presti
- Department of Internal Medicine-Infectious Diseases, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
32
|
Ramirez SI, Faraji F, Hills LB, Lopez PG, Goodwin B, Stacey HD, Sutton HJ, Hastie KM, Saphire EO, Kim HJ, Mashoof S, Yan CH, DeConde AS, Levi G, Crotty S. Immunological memory diversity in the human upper airway. Nature 2024; 632:630-636. [PMID: 39085605 PMCID: PMC11895801 DOI: 10.1038/s41586-024-07748-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
The upper airway is an important site of infection, but immune memory in the human upper airway is poorly understood, with implications for COVID-19 and many other human diseases1-4. Here we demonstrate that nasal and nasopharyngeal swabs can be used to obtain insights into these challenging problems, and define distinct immune cell populations, including antigen-specific memory B cells and T cells, in two adjacent anatomical sites in the upper airway. Upper airway immune cell populations seemed stable over time in healthy adults undergoing monthly swabs for more than 1 year, and prominent tissue resident memory T (TRM) cell and B (BRM) cell populations were defined. Unexpectedly, germinal centre cells were identified consistently in many nasopharyngeal swabs. In subjects with SARS-CoV-2 breakthrough infections, local virus-specific BRM cells, plasma cells and germinal centre B cells were identified, with evidence of local priming and an enrichment of IgA+ memory B cells in upper airway compartments compared with blood. Local plasma cell populations were identified with transcriptional profiles of longevity. Local virus-specific memory CD4+ TRM cells and CD8+ TRM cells were identified, with diverse additional virus-specific T cells. Age-dependent upper airway immunological shifts were observed. These findings provide new understanding of immune memory at a principal mucosal barrier tissue in humans.
Collapse
Affiliation(s)
- Sydney I Ramirez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, USA
| | - Farhoud Faraji
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA, USA
| | - L Benjamin Hills
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Paul G Lopez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Benjamin Goodwin
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Hannah D Stacey
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Henry J Sutton
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, USA
| | - Hyun Jik Kim
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Otorhinolaryngology, College of Medicine, Seoul National University, Seoul, Korea
| | - Sara Mashoof
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Carol H Yan
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA, USA
| | - Adam S DeConde
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA, USA
| | - Gina Levi
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Shane Crotty
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Richardson E, Bibi S, McLean F, Schimanski L, Rijal P, Ghraichy M, von Niederhäusern V, Trück J, Clutterbuck EA, O’Connor D, Luhn K, Townsend A, Peters B, Pollard AJ, Deane CM, Kelly DF. Computational mining of B cell receptor repertoires reveals antigen-specific and convergent responses to Ebola vaccination. Front Immunol 2024; 15:1383753. [PMID: 39040106 PMCID: PMC11260629 DOI: 10.3389/fimmu.2024.1383753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
Outbreaks of Ebolaviruses, such as Sudanvirus (SUDV) in Uganda in 2022, demonstrate that species other than the Zaire ebolavirus (EBOV), which is currently the sole virus represented in current licensed vaccines, remain a major threat to global health. There is a pressing need to develop effective pan-species vaccines and novel monoclonal antibody-based therapeutics for Ebolavirus disease. In response to recent outbreaks, the two dose, heterologous Ad26.ZEBOV/MVA-BN-Filo vaccine regimen was developed and was tested in a large phase II clinical trial (EBL2001) as part of the EBOVAC2 consortium. Here, we perform bulk sequencing of the variable heavy chain (VH) of B cell receptors (BCR) in forty participants from the EBL2001 trial in order to characterize the BCR repertoire in response to vaccination with Ad26.ZEBOV/MVA-BN-Filo. We develop a comprehensive database, EBOV-AbDab, of publicly available Ebolavirus-specific antibody sequences. We then use our database to predict the antigen-specific component of the vaccinee repertoires. Our results show striking convergence in VH germline gene usage across participants following the MVA-BN-Filo dose, and provide further evidence of the role of IGHV3-15 and IGHV3-13 antibodies in the B cell response to Ebolavirus glycoprotein. Furthermore, we found that previously described Ebola-specific mAb sequences present in EBOV-AbDab were sufficient to describe at least one of the ten most expanded BCR clonotypes in more than two thirds of our cohort of vaccinees following the boost, providing proof of principle for the utility of computational mining of immune repertoires.
Collapse
Affiliation(s)
- Eve Richardson
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, United Kingdom
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | - Florence McLean
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | - Lisa Schimanski
- Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Pramila Rijal
- Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Marie Ghraichy
- Divisions of Allergy and Immunology, University Children’s Hospital and Children’s Research Center, University of Zurich (UZH), Zurich, Switzerland
| | - Valentin von Niederhäusern
- Divisions of Allergy and Immunology, University Children’s Hospital and Children’s Research Center, University of Zurich (UZH), Zurich, Switzerland
| | - Johannes Trück
- Divisions of Allergy and Immunology, University Children’s Hospital and Children’s Research Center, University of Zurich (UZH), Zurich, Switzerland
| | | | - Daniel O’Connor
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | - Kerstin Luhn
- Janssen Vaccines and Prevention, Leiden, Netherlands
| | - Alain Townsend
- Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Dominic F. Kelly
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
34
|
Gabernet G, Marquez S, Bjornson R, Peltzer A, Meng H, Aron E, Lee NY, Jensen CG, Ladd D, Polster M, Hanssen F, Heumos S, nf-core community, Yaari G, Kowarik MC, Nahnsen S, Kleinstein SH. nf-core/airrflow: An adaptive immune receptor repertoire analysis workflow employing the Immcantation framework. PLoS Comput Biol 2024; 20:e1012265. [PMID: 39058741 PMCID: PMC11305553 DOI: 10.1371/journal.pcbi.1012265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/07/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) is a valuable experimental tool to study the immune state in health and following immune challenges such as infectious diseases, (auto)immune diseases, and cancer. Several tools have been developed to reconstruct B cell and T cell receptor sequences from AIRR-seq data and infer B and T cell clonal relationships. However, currently available tools offer limited parallelization across samples, scalability or portability to high-performance computing infrastructures. To address this need, we developed nf-core/airrflow, an end-to-end bulk and single-cell AIRR-seq processing workflow which integrates the Immcantation Framework following BCR and TCR sequencing data analysis best practices. The Immcantation Framework is a comprehensive toolset, which allows the processing of bulk and single-cell AIRR-seq data from raw read processing to clonal inference. nf-core/airrflow is written in Nextflow and is part of the nf-core project, which collects community contributed and curated Nextflow workflows for a wide variety of analysis tasks. We assessed the performance of nf-core/airrflow on simulated sequencing data with sequencing errors and show example results with real datasets. To demonstrate the applicability of nf-core/airrflow to the high-throughput processing of large AIRR-seq datasets, we validated and extended previously reported findings of convergent antibody responses to SARS-CoV-2 by analyzing 97 COVID-19 infected individuals and 99 healthy controls, including a mixture of bulk and single-cell sequencing datasets. Using this dataset, we extended the convergence findings to 20 additional subjects, highlighting the applicability of nf-core/airrflow to validate findings in small in-house cohorts with reanalysis of large publicly available AIRR datasets.
Collapse
Affiliation(s)
- Gisela Gabernet
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Susanna Marquez
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Robert Bjornson
- Yale Center for Research Computing, New Haven, Connecticut, United States of America
| | | | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Edel Aron
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Noah Y. Lee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Cole G. Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - David Ladd
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia
| | - Mark Polster
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Germany
| | - Friederike Hanssen
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Germany
| | - Simon Heumos
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Germany
| | | | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Markus C. Kowarik
- Department of Neurology and Stroke, Center for Neurology, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
35
|
Fu J, Hsiao T, Waffarn E, Meng W, Long KD, Frangaj K, Jones R, Gorur A, Shtewe A, Li M, Muntnich CB, Rogers K, Jiao W, Velasco M, Matsumoto R, Kubota M, Wells S, Danzl N, Ravella S, Iuga A, Vasilescu ER, Griesemer A, Weiner J, Farber DL, Luning Prak ET, Martinez M, Kato T, Hershberg U, Sykes M. Dynamic establishment and maintenance of the human intestinal B cell population and repertoire following transplantation in a pediatric-dominated cohort. Front Immunol 2024; 15:1375486. [PMID: 39007142 PMCID: PMC11239347 DOI: 10.3389/fimmu.2024.1375486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction It is unknown how intestinal B cell populations and B cell receptor (BCR) repertoires are established and maintained over time in humans. Following intestinal transplantation (ITx), surveillance ileal mucosal biopsies provide a unique opportunity to map the dynamic establishment of recipient gut lymphocyte populations in immunosuppressed conditions. Methods Using polychromatic flow cytometry that includes HLA allele group-specific antibodies distinguishing donor from recipient cells along with high throughput BCR sequencing, we tracked the establishment of recipient B cell populations and BCR repertoire in the allograft mucosa of ITx recipients. Results We confirm the early presence of naïve donor B cells in the circulation (donor age range: 1-14 years, median: 3 years) and, for the first time, document the establishment of recipient B cell populations, including B resident memory cells, in the intestinal allograft mucosa (recipient age range at the time of transplant: 1-44 years, median: 3 years). Recipient B cell repopulation of the allograft was most rapid in infant (<1 year old)-derived allografts and, unlike T cell repopulation, did not correlate with rejection rates. While recipient memory B cell populations were increased in graft mucosa compared to circulation, naïve recipient B cells remained detectable in the graft mucosa for years. Comparisons of peripheral and intra-mucosal B cell repertoires in the absence of rejection (recipient age range at the time of transplant: 1-9 years, median: 2 years) revealed increased BCR mutation rates and clonal expansion in graft mucosa compared to circulating B cells, but these parameters did not increase markedly after the first year post-transplant. Furthermore, clonal mixing between the allograft mucosa and the circulation was significantly greater in ITx recipients, even years after transplantation, than in deceased adult donors. In available pan-scope biopsies from pediatric recipients, we observed higher percentages of naïve recipient B cells in colon allograft compared to small bowel allograft and increased BCR overlap between native colon vs colon allograft compared to that between native colon vs ileum allograft in most cases, suggesting differential clonal distribution in large intestine vs small intestine. Discussion Collectively, our data demonstrate intestinal mucosal B cell repertoire establishment from a circulating pool, a process that continues for years without evidence of stabilization of the mucosal B cell repertoire in pediatric ITx patients.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Thomas Hsiao
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Elizabeth Waffarn
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katherine D. Long
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Kristjana Frangaj
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Rebecca Jones
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Alaka Gorur
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Areen Shtewe
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Muyang Li
- Department of Pathology, Columbia University, New York, NY, United States
| | - Constanza Bay Muntnich
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Kortney Rogers
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Wenyu Jiao
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Monica Velasco
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Rei Matsumoto
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| | - Masaru Kubota
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| | - Steven Wells
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| | - Nichole Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Shilpa Ravella
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, United States
| | - Alina Iuga
- Department of Pathology, Columbia University, New York, NY, United States
| | | | - Adam Griesemer
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
| | - Joshua Weiner
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mercedes Martinez
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Tomoaki Kato
- Department of Surgery, Columbia University, New York, NY, United States
| | - Uri Hershberg
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
36
|
Skinner OP, Asad S, Haque A. Advances and challenges in investigating B-cells via single-cell transcriptomics. Curr Opin Immunol 2024; 88:102443. [PMID: 38968762 DOI: 10.1016/j.coi.2024.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Single-cell RNA sequencing (scRNAseq) and Variable, Diversity, Joining (VDJ) profiling have improved our understanding of B-cells. Recent scRNAseq-based approaches have led to the discovery of intermediate B-cell states, including preplasma cells and pregerminal centre B-cells, as well as unveiling protective roles for B-cells within tertiary lymphoid structures in respiratory infections and cancers. These studies have improved our understanding of transcriptional and epigenetic control of B-cell development and of atypical and memory B-cell differentiation. Advancements in temporal profiling in parallel with transcriptomic and VDJ sequencing have consolidated our understanding of the trajectory of B-cell clones over the course of infection and vaccination. Challenges remain in studying B-cell states across tissues in humans, in relating spatial location with B-cell phenotype and function, in examining antibody isotype switching events, and in unequivocal determination of clonal relationships. Nevertheless, ongoing multiomic assessments and studies of cellular interactions within tissues promise new avenues for improving humoral immunity and combatting autoimmune conditions.
Collapse
Affiliation(s)
- Oliver P Skinner
- Department of Microbiology & Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Parkville, Melbourne, VIC 3000, Australia.
| | - Saba Asad
- Department of Microbiology & Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Parkville, Melbourne, VIC 3000, Australia
| | - Ashraful Haque
- Department of Microbiology & Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Parkville, Melbourne, VIC 3000, Australia.
| |
Collapse
|
37
|
Leighton PA, Ching K, Reynolds K, Vuong CN, Zeng B, Zhang Y, Gupta A, Morales J, Rivera GS, Srivastava DB, Cotter R, Pedersen D, Collarini E, Izquierdo S, van de Lavoir MC, Harriman W. Chickens with a Truncated Light Chain Transgene Express Single-Domain H Chain-Only Antibodies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1744-1753. [PMID: 38629917 PMCID: PMC11102025 DOI: 10.4049/jimmunol.2300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/22/2024] [Indexed: 05/20/2024]
Abstract
H chain-only Igs are naturally produced in camelids and sharks. Because these Abs lack the L chain, the Ag-binding domain is half the size of a traditional Ab, allowing this type of Ig to bind to targets in novel ways. Consequently, the H chain-only single-domain Ab (sdAb) structure has the potential to increase the repertoire and functional range of an active humoral immune system. The majority of vertebrates use the standard heterodimeric (both H and L chains) structure and do not produce sdAb format Igs. To investigate if other animals are able to support sdAb development and function, transgenic chickens (Gallus gallus) were designed to produce H chain-only Abs by omitting the L chain V region and maintaining only the LC region to serve as a chaperone for Ab secretion from the cell. These birds produced 30-50% normal B cell populations within PBMCs and readily expressed chicken sequence sdAbs. Interestingly, the H chains contained a spontaneous CH1 deletion. Although no isotype switching to IgY or IgA occurred, the IgM repertoire was diverse, and immunization with a variety of protein immunogens rapidly produced high and specific serum titers. mAbs of high affinity were efficiently recovered by single B cell screening. In in vitro functional assays, the sdAbs produced by birds immunized against SARS-CoV-2 were also able to strongly neutralize and prevent viral replication. These data suggest that the truncated L chain design successfully supported sdAb development and expression in chickens.
Collapse
|
38
|
Steichen JM, Phung I, Salcedo E, Ozorowski G, Willis JR, Baboo S, Liguori A, Cottrell CA, Torres JL, Madden PJ, Ma KM, Sutton HJ, Lee JH, Kalyuzhniy O, Allen JD, Rodriguez OL, Adachi Y, Mullen TM, Georgeson E, Kubitz M, Burns A, Barman S, Mopuri R, Metz A, Altheide TK, Diedrich JK, Saha S, Shields K, Schultze SE, Smith ML, Schiffner T, Burton DR, Watson CT, Bosinger SE, Crispin M, Yates JR, Paulson JC, Ward AB, Sok D, Crotty S, Schief WR. Vaccine priming of rare HIV broadly neutralizing antibody precursors in nonhuman primates. Science 2024; 384:eadj8321. [PMID: 38753769 PMCID: PMC11309785 DOI: 10.1126/science.adj8321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Germline-targeting immunogens hold promise for initiating the induction of broadly neutralizing antibodies (bnAbs) to HIV and other pathogens. However, antibody-antigen recognition is typically dominated by heavy chain complementarity determining region 3 (HCDR3) interactions, and vaccine priming of HCDR3-dominant bnAbs by germline-targeting immunogens has not been demonstrated in humans or outbred animals. In this work, immunization with N332-GT5, an HIV envelope trimer designed to target precursors of the HCDR3-dominant bnAb BG18, primed bnAb-precursor B cells in eight of eight rhesus macaques to substantial frequencies and with diverse lineages in germinal center and memory B cells. We confirmed bnAb-mimicking, HCDR3-dominant, trimer-binding interactions with cryo-electron microscopy. Our results demonstrate proof of principle for HCDR3-dominant bnAb-precursor priming in outbred animals and suggest that N332-GT5 holds promise for the induction of similar responses in humans.
Collapse
Affiliation(s)
- Jon M Steichen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Ivy Phung
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology; La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego; La Jolla, CA 92037, USA
| | - Eugenia Salcedo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Jordan R. Willis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Sabyasachi Baboo
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alessia Liguori
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Christopher A. Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Jonathan L. Torres
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Patrick J. Madden
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology; La Jolla, CA 92037, USA
| | - Krystal M. Ma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Henry J. Sutton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology; La Jolla, CA 92037, USA
| | - Jeong Hyun Lee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Joel D. Allen
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Oscar L. Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Tina-Marie Mullen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Alison Burns
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Shawn Barman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Rohini Mopuri
- Division of Microbiology and Immunology, Emory National Primate Research Center; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Amanda Metz
- Division of Microbiology and Immunology, Emory National Primate Research Center; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Tasha K. Altheide
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology; La Jolla, CA 92037, USA
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Swati Saha
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kaitlyn Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Steven E. Schultze
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Melissa L. Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA 02139, USA
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Max Crispin
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - John R. Yates
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James C. Paulson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology; La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego; La Jolla, CA 92037, USA
| | - William R. Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA 02139, USA
- Moderna, Inc., Cambridge, MA 02139, USA
| |
Collapse
|
39
|
Dzanibe S, Wilk AJ, Canny S, Ranganath T, Alinde B, Rubelt F, Huang H, Davis MM, Holmes SP, Jaspan HB, Blish CA, Gray CM. Premature skewing of T cell receptor clonality and delayed memory expansion in HIV-exposed infants. Nat Commun 2024; 15:4080. [PMID: 38744812 PMCID: PMC11093981 DOI: 10.1038/s41467-024-47955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
While preventing vertical HIV transmission has been very successful, HIV-exposed uninfected infants (iHEU) experience an elevated risk to infections compared to HIV-unexposed and uninfected infants (iHUU). Here we present a longitudinal multimodal analysis of infant immune ontogeny that highlights the impact of HIV/ARV exposure. Using mass cytometry, we show alterations in T cell memory differentiation between iHEU and iHUU being significant from week 15 of life. The altered memory T cell differentiation in iHEU was preceded by lower TCR Vβ clonotypic diversity and linked to TCR clonal depletion within the naïve T cell compartment. Compared to iHUU, iHEU had elevated CD56loCD16loPerforin+CD38+CD45RA+FcεRIγ+ NK cells at 1 month postpartum and whose abundance pre-vaccination were predictive of vaccine-induced pertussis and rotavirus antibody responses post 3 months of life. Collectively, HIV/ARV exposure disrupted the trajectory of innate and adaptive immunity from birth which may underlie relative vulnerability to infections in iHEU.
Collapse
Affiliation(s)
- Sonwabile Dzanibe
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Aaron J Wilk
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Susan Canny
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Rheumatology, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Thanmayi Ranganath
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Berenice Alinde
- Division of Immunology, Department of Biomedical Sciences, Biomedical Research Institute, Stellenbosch University, Cape Town, South Africa
| | - Florian Rubelt
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Huang Huang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Heather B Jaspan
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Seattle Children's Research Institute and Department of Paediatrics and Global Health, University of Washington, Seattle, WA, USA.
| | - Catherine A Blish
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Clive M Gray
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Division of Immunology, Department of Biomedical Sciences, Biomedical Research Institute, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
40
|
Sammut SJ, Galson JD, Minter R, Sun B, Chin SF, De Mattos-Arruda L, Finch DK, Schätzle S, Dias J, Rueda OM, Seoane J, Osbourn J, Caldas C, Bashford-Rogers RJM. Predictability of B cell clonal persistence and immunosurveillance in breast cancer. Nat Immunol 2024; 25:916-924. [PMID: 38698238 PMCID: PMC11065701 DOI: 10.1038/s41590-024-01821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024]
Abstract
B cells and T cells are important components of the adaptive immune system and mediate anticancer immunity. The T cell landscape in cancer is well characterized, but the contribution of B cells to anticancer immunosurveillance is less well explored. Here we show an integrative analysis of the B cell and T cell receptor repertoire from individuals with metastatic breast cancer and individuals with early breast cancer during neoadjuvant therapy. Using immune receptor, RNA and whole-exome sequencing, we show that both B cell and T cell responses seem to coevolve with the metastatic cancer genomes and mirror tumor mutational and neoantigen architecture. B cell clones associated with metastatic immunosurveillance and temporal persistence were more expanded and distinct from site-specific clones. B cell clonal immunosurveillance and temporal persistence are predictable from the clonal structure, with higher-centrality B cell antigen receptors more likely to be detected across multiple metastases or across time. This predictability was generalizable across other immune-mediated disorders. This work lays a foundation for prioritizing antibody sequences for therapeutic targeting in cancer.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/immunology
- B-Lymphocytes/immunology
- Immunologic Surveillance
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- T-Lymphocytes/immunology
- Monitoring, Immunologic
- Exome Sequencing
- Antigens, Neoplasm/immunology
- Neoplasm Metastasis
- Clone Cells
Collapse
Affiliation(s)
- Stephen-John Sammut
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
- The Royal Marsden Hospital NHS Foundation Trust, London, UK.
| | | | | | - Bo Sun
- Wellcome Centre for Human Genetics, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Leticia De Mattos-Arruda
- IrsiCaixa, Germans Trias i Pujol University Hospital, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | | | | | | | - Oscar M Rueda
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Institució Catalana de Recerca i Estudis Avançats (ICREA), Universitat Autònoma de Barcelona (UAB), CIBERONC, Barcelona, Spain
| | | | - Carlos Caldas
- School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| | - Rachael J M Bashford-Rogers
- Wellcome Centre for Human Genetics, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
- Oxford Cancer Centre, Oxford, UK.
| |
Collapse
|
41
|
Irac SE, Soon MSF, Borcherding N, Tuong ZK. Single-cell immune repertoire analysis. Nat Methods 2024; 21:777-792. [PMID: 38637691 DOI: 10.1038/s41592-024-02243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024]
Abstract
Single-cell T cell and B cell antigen receptor-sequencing data analysis can potentially perform in-depth assessments of adaptive immune cells that inform on understanding immune cell development to tracking clonal expansion in disease and therapy. However, it has been extremely challenging to analyze and interpret T cells and B cells and their adaptive immune receptor repertoires at the single-cell level due to not only the complexity of the data but also the underlying biology. In this Review, we delve into the computational breakthroughs that have transformed the analysis of single-cell T cell and B cell antigen receptor-sequencing data.
Collapse
Affiliation(s)
- Sergio E Irac
- Cancer Immunoregulation and Immunotherapy, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Megan Sioe Fei Soon
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Omniscope, Palo Alto, CA, USA
| | - Zewen Kelvin Tuong
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
42
|
Hu J, Luo S, Tian M, Ye AY. TrieDedup: a fast trie-based deduplication algorithm to handle ambiguous bases in high-throughput sequencing. BMC Bioinformatics 2024; 25:154. [PMID: 38637756 PMCID: PMC11025179 DOI: 10.1186/s12859-024-05775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND High-throughput sequencing is a powerful tool that is extensively applied in biological studies. However, sequencers may produce low-quality bases, leading to ambiguous bases, 'N's. PCR duplicates introduced in library preparation are conventionally removed in genomics studies, and several deduplication tools have been developed for this purpose. Two identical reads may appear different due to ambiguous bases and the existing tools cannot address 'N's correctly or efficiently. RESULTS Here we proposed and implemented TrieDedup, which uses the trie (prefix tree) data structure to compare and store sequences. TrieDedup can handle ambiguous base 'N's, and efficiently deduplicate at the level of raw sequences. We also reduced its memory usage by approximately 20% by implementing restrictedDict in Python. We benchmarked the performance of the algorithm and showed that TrieDedup can deduplicate reads up to 270-fold faster than pairwise comparison at a cost of 32-fold higher memory usage. CONCLUSIONS The TrieDedup algorithm may facilitate PCR deduplication, barcode or UMI assignment, and repertoire diversity analysis of large-scale high-throughput sequencing datasets with its ultra-fast algorithm that can account for ambiguous bases due to sequencing errors.
Collapse
Affiliation(s)
- Jianqiao Hu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Sai Luo
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- School of Basic Medical Science, Tsinghua University, Beijing, China
| | - Ming Tian
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Adam Yongxin Ye
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
43
|
Shehata L, Thouvenel CD, Hondowicz BD, Pew LA, Pritchard GH, Rawlings DJ, Choi J, Pepper M. Interleukin-4 downregulates transcription factor BCL6 to promote memory B cell selection in germinal centers. Immunity 2024; 57:843-858.e5. [PMID: 38513666 PMCID: PMC11104266 DOI: 10.1016/j.immuni.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/04/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Germinal center (GC)-derived memory B cells (MBCs) are critical for humoral immunity as they differentiate into protective antibody-secreting cells during re-infection. GC formation and cellular interactions within the GC have been studied in detail, yet the exact signals that allow for the selection and exit of MBCs are not understood. Here, we showed that IL-4 cytokine signaling in GC B cells directly downregulated the transcription factor BCL6 via negative autoregulation to release cells from the GC program and to promote MBC formation. This selection event required additional survival cues and could therefore result in either GC exit or death. We demonstrate that both increasing IL-4 bioavailability or limiting IL-4 signaling disrupted MBC selection stringency. In this way, IL-4 control of BCL6 expression serves as a tunable switch within the GC to tightly regulate MBC selection and affinity maturation.
Collapse
Affiliation(s)
- Laila Shehata
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Christopher D Thouvenel
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Brian D Hondowicz
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Lucia A Pew
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | - David J Rawlings
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Jinyong Choi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
44
|
Peres A, Klein V, Frankel B, Lees W, Polak P, Meehan M, Rocha A, Correia Lopes J, Yaari G. Guidelines for reproducible analysis of adaptive immune receptor repertoire sequencing data. Brief Bioinform 2024; 25:bbae221. [PMID: 38752856 PMCID: PMC11097599 DOI: 10.1093/bib/bbae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/06/2024] [Accepted: 04/18/2024] [Indexed: 05/19/2024] Open
Abstract
Enhancing the reproducibility and comprehension of adaptive immune receptor repertoire sequencing (AIRR-seq) data analysis is critical for scientific progress. This study presents guidelines for reproducible AIRR-seq data analysis, and a collection of ready-to-use pipelines with comprehensive documentation. To this end, ten common pipelines were implemented using ViaFoundry, a user-friendly interface for pipeline management and automation. This is accompanied by versioned containers, documentation and archiving capabilities. The automation of pre-processing analysis steps and the ability to modify pipeline parameters according to specific research needs are emphasized. AIRR-seq data analysis is highly sensitive to varying parameters and setups; using the guidelines presented here, the ability to reproduce previously published results is demonstrated. This work promotes transparency, reproducibility, and collaboration in AIRR-seq data analysis, serving as a model for handling and documenting bioinformatics pipelines in other research domains.
Collapse
Affiliation(s)
- Ayelet Peres
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
- Bar Ilan institute of nanotechnology and advanced materials, Bar Ilan university, 5290002 Ramat Gan, Israel
| | - Vered Klein
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
- Bar Ilan institute of nanotechnology and advanced materials, Bar Ilan university, 5290002 Ramat Gan, Israel
| | - Boaz Frankel
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
- Bar Ilan institute of nanotechnology and advanced materials, Bar Ilan university, 5290002 Ramat Gan, Israel
| | - William Lees
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- INESC TEC – Institute for Systems and Computer Engineering, Technology and Science Porto, Portugal
| | - Pazit Polak
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
- Bar Ilan institute of nanotechnology and advanced materials, Bar Ilan university, 5290002 Ramat Gan, Israel
| | - Mark Meehan
- INESC TEC – Institute for Systems and Computer Engineering, Technology and Science Porto, Portugal
| | - Artur Rocha
- INESC TEC – Institute for Systems and Computer Engineering, Technology and Science Porto, Portugal
| | - João Correia Lopes
- INESC TEC – Institute for Systems and Computer Engineering, Technology and Science Porto, Portugal
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
- Bar Ilan institute of nanotechnology and advanced materials, Bar Ilan university, 5290002 Ramat Gan, Israel
| |
Collapse
|
45
|
Pollastro S, Musters A, Balzaretti G, Niewold I, van Schaik B, Hässler S, Verhoef CM, Pallardy M, van Kampen A, Mariette X, de Vries N. Sensitive B-cell receptor repertoire analysis shows repopulation correlates with clinical response to rituximab in rheumatoid arthritis. Arthritis Res Ther 2024; 26:70. [PMID: 38493208 PMCID: PMC10943808 DOI: 10.1186/s13075-024-03297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Although B-cell depleting therapy in rheumatoid arthritis (RA) is clearly effective, response is variable and does not correlate with B cell depletion itself. METHODS The B-cell receptor (BCR) repertoire was prospectively analyzed in peripheral blood samples of twenty-eight RA patients undergoing rituximab therapy. Timepoints of achieved BCR-depletion and -repopulation were defined based on the percentage of unmutated BCRs in the repertoire. The predictive value of early BCR-depletion (within one-month post-treatment) and early BCR-repopulation (within 6 months post-treatment) on clinical response was assessed. RESULTS We observed changes in the peripheral blood BCR repertoire after rituximab treatment, i.e., increased clonal expansion, decreased clonal diversification and increased mutation load which persisted up to 12 months after treatment, but started to revert at month 6. Early BCR depletion was not associated with early clinical response but late depleters did show early response. Patients with early repopulation with unmutated BCRs showed a significant decrease in disease activity in the interval 6 to 12 months. Development of anti-drug antibodies non-significantly correlated with more BCR repopulation. CONCLUSION Our findings indicate that rather than BCR-depletion it is repopulation with unmutated BCRs, possibly from naïve B cells, which induces remission. This suggests that (pre-existing) differences in B-cell turnover between patients explain the interindividual differences in early clinical effect.
Collapse
Affiliation(s)
- Sabrina Pollastro
- Department of Clinical Immunology & Rheumatology | Amsterdam Rheumatology & Immunology Centre (ARC), Amsterdam UMC location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute | Program Inflammatory Diseases, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne Musters
- Department of Clinical Immunology & Rheumatology | Amsterdam Rheumatology & Immunology Centre (ARC), Amsterdam UMC location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Giulia Balzaretti
- Department of Clinical Immunology & Rheumatology | Amsterdam Rheumatology & Immunology Centre (ARC), Amsterdam UMC location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute | Program Inflammatory Diseases, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ilse Niewold
- Department of Clinical Immunology & Rheumatology | Amsterdam Rheumatology & Immunology Centre (ARC), Amsterdam UMC location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Barbera van Schaik
- Epidemiology and Data Science, Amsterdam Public Health research institute, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Signe Hässler
- Université Paris Saclay, INSERM U1018, CESP, Villejuif, France
- INSERM UMR 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Publique Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Biotherapy (CIC-BTi), Paris, France
| | | | - Marc Pallardy
- Université Paris-Saclay, INSERM, Inflammation, Microbiome, Immunosurveillance, Châtenay-Malabry, France
| | - Antoine van Kampen
- Epidemiology and Data Science, Amsterdam Public Health research institute, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Xavier Mariette
- Université Paris-Saclay, INSERM UMR1184: Center for immunology of viral infections and autoimmune diseases, Le Kremlin Bicêtre, France
- Department of Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Niek de Vries
- Department of Clinical Immunology & Rheumatology | Amsterdam Rheumatology & Immunology Centre (ARC), Amsterdam UMC location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute | Program Inflammatory Diseases, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Beilinson HA, Erickson SA, Golovkina T. The endogenous Mtv8 locus and the immunoglobulin repertoire. Front Immunol 2024; 15:1345467. [PMID: 38504980 PMCID: PMC10948529 DOI: 10.3389/fimmu.2024.1345467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
The vast diversity of mammalian adaptive antigen receptors allows for robust and efficient immune responses against a wide number of pathogens. The antigen receptor repertoire is built during the recombination of B and T cell receptor (BCR, TCR) loci and hypermutation of BCR loci. V(D)J recombination rearranges these antigen receptor loci, which are organized as an array of separate V, (D), and J gene segments. Transcription activation at the recombining locus leads to changes in the local three-dimensional architecture, which subsequently contributes to which gene segments are utilized for recombination. The endogenous retrovirus (ERV) mouse mammary tumor provirus 8 (Mtv8) resides on mouse chromosome 6 interposed within the large array of light chain kappa V gene segments. As ERVs contribute to changes in genomic architecture by driving high levels of transcription of neighboring genes, it was suggested that Mtv8 could influence the BCR repertoire. We generated Mtv8-deficient mice to determine if the ERV influences V(D)J recombination to test this possibility. We find that Mtv8 does not influence the BCR repertoire.
Collapse
Affiliation(s)
- Helen A. Beilinson
- Department of Microbiology, University of Chicago, Chicago, IL, United States
| | - Steven A. Erickson
- Department of Immunobiology, Yale University, New Haven, CT, United States
| | - Tatyana Golovkina
- Department of Microbiology, University of Chicago, Chicago, IL, United States
- Committee on Microbiology, University of Chicago, Chicago, IL, United States
- Committee on Immunology, University of Chicago, Chicago, IL, United States
- Committee on Genetics, Genomics and System Biology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
47
|
Kumar S, Bajpai P, Joyce C, Kabra SK, Lodha R, Burton DR, Briney B, Luthra K. B cell repertoire sequencing of HIV-1 pediatric elite-neutralizers identifies multiple broadly neutralizing antibody clonotypes. Front Immunol 2024; 15:1272493. [PMID: 38433846 PMCID: PMC10905035 DOI: 10.3389/fimmu.2024.1272493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction A limited subset of HIV-1 infected adult individuals typically after at least 2-3 years of chronic infection, develop broadly neutralizing antibodies (bnAbs), suggesting that highly conserved neutralizing epitopes on the HIV-1 envelope glycoprotein are difficult for B cell receptors to effectively target, during natural infection. Recent studies have shown the evolution of bnAbs in HIV-1 infected infants. Methods We used bulk BCR sequencing (BCR-seq) to profile the B cell receptors from longitudinal samples (3 time points) collected from a rare pair of antiretroviralnaïve, HIV-1 infected pediatric monozygotic twins (AIIMS_329 and AIIMS_330) who displayed elite plasma neutralizing activity against HIV-1. Results BCR-seq of both twins revealed convergent antibody characteristics including V-gene use, CDRH3 lengths and somatic hypermutation (SHM). Further, antibody clonotypes with genetic features similar to highly potent bnAbs isolated from adults showed ongoing development in donor AIIMS_330 but not in AIIMS_329, corroborating our earlier findings based on plasma bnAbs responses. An increase in SHM was observed in sequences of the IgA isotype from AIIMS_330. Discussion This study suggests that children living with chronic HIV-1 can develop clonotypes of HIV-1 bnAbs against multiple envelope epitopes similar to those isolated from adults, highlighting that such B cells could be steered to elicit bnAbs responses through vaccines aimed to induce bnAbs against HIV-1 in a broad range of people including children.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, United States
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Prashant Bajpai
- International Centre for Genetic Engineering and Biotechnology (ICGEB)-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Collin Joyce
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, United States
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, United States
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, United States
- Multi-omics Vaccine Evaluation Consortium, The Scripps Research Institute, La Jolla, CA, United States
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
48
|
Della Mina E, Jackson KJL, Crawford AJI, Faulks ML, Pathmanandavel K, Acquarola N, O'Sullivan M, Kerre T, Naesens L, Claes K, Goodnow CC, Haerynck F, Kracker S, Meyts I, D'Orsogna LJ, Ma CS, Tangye SG. A Novel Heterozygous Variant in AICDA Impairs Ig Class Switching and Somatic Hypermutation in Human B Cells and is Associated with Autosomal Dominant HIGM2 Syndrome. J Clin Immunol 2024; 44:66. [PMID: 38363477 PMCID: PMC10873450 DOI: 10.1007/s10875-024-01665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
B cells and their secreted antibodies are fundamental for host-defense against pathogens. The generation of high-affinity class switched antibodies results from both somatic hypermutation (SHM) of the immunoglobulin (Ig) variable region genes of the B-cell receptor and class switch recombination (CSR) which alters the Ig heavy chain constant region. Both of these processes are initiated by the enzyme activation-induced cytidine deaminase (AID), encoded by AICDA. Deleterious variants in AICDA are causal of hyper-IgM syndrome type 2 (HIGM2), a B-cell intrinsic primary immunodeficiency characterised by recurrent infections and low serum IgG and IgA levels. Biallelic variants affecting exons 2, 3 or 4 of AICDA have been identified that impair both CSR and SHM in patients with autosomal recessive HIGM2. Interestingly, B cells from patients with autosomal dominant HIGM2, caused by heterozygous variants (V186X, R190X) located in AICDA exon 5 encoding the nuclear export signal (NES) domain, show abolished CSR but variable SHM. We herein report the immunological and functional phenotype of two related patients presenting with common variable immunodeficiency who were found to have a novel heterozygous variant in AICDA (L189X). This variant led to a truncated AID protein lacking the last 10 amino acids of the NES at the C-terminal domain. Interestingly, patients' B cells carrying the L189X variant exhibited not only greatly impaired CSR but also SHM in vivo, as well as CSR and production of IgG and IgA in vitro. Our findings demonstrate that the NES domain of AID can be essential for SHM, as well as for CSR, thereby refining the correlation between AICDA genotype and SHM phenotype as well as broadening our understanding of the pathophysiology of HIGM disorders.
Collapse
Affiliation(s)
- Erika Della Mina
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Katherine J L Jackson
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Alexander J I Crawford
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Megan L Faulks
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Nicolino Acquarola
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Michael O'Sullivan
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia
- Department of Immunology, Perth Children's Hospital, Perth, WA, Australia
| | - Tessa Kerre
- Department of Hematology, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
| | - Leslie Naesens
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karlien Claes
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Filomeen Haerynck
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sven Kracker
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, 75015, Paris, France
- Université Paris Cité, 75015, Paris, France
| | - Isabelle Meyts
- Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium
- Pediatric Immunodeficiency, Department of Pediatrics, University Hospitals Leuven, Louvain, Belgium
| | - Lloyd J D'Orsogna
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia
- School of Medicine, University of Western Australia, Nedlands, WA, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
49
|
Ota M, Hoehn KB, Fernandes-Braga W, Ota T, Aranda CJ, Friedman S, Miranda-Waldetario MG, Redes J, Suprun M, Grishina G, Sampson HA, Malbari A, Kleinstein SH, Sicherer SH, de Lafaille MAC. CD23 +IgG1 + memory B cells are poised to switch to pathogenic IgE production in food allergy. Sci Transl Med 2024; 16:eadi0673. [PMID: 38324641 PMCID: PMC11008013 DOI: 10.1126/scitranslmed.adi0673] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/15/2023] [Indexed: 02/09/2024]
Abstract
Food allergy is caused by allergen-specific immunoglobulin E (IgE) antibodies, but little is known about the B cell memory of persistent IgE responses. Here, we describe, in human pediatric peanut allergy, a population of CD23+IgG1+ memory B cells arising in type 2 immune responses that contain high-affinity peanut-specific clones and generate IgE-producing cells upon activation. The frequency of CD23+IgG1+ memory B cells correlated with circulating concentrations of IgE in children with peanut allergy. A corresponding population of "type 2-marked" IgG1+ memory B cells was identified in single-cell RNA sequencing experiments. These cells differentially expressed interleukin-4 (IL-4)- and IL-13-regulated genes, such as FCER2/CD23+, IL4R, and germline IGHE, and carried highly mutated B cell receptors (BCRs). In children with high concentrations of serum peanut-specific IgE, high-affinity B cells that bind the main peanut allergen Ara h 2 mapped to the population of "type 2-marked" IgG1+ memory B cells and included clones with convergent BCRs across different individuals. Our findings indicate that CD23+IgG1+ memory B cells transcribing germline IGHE are a unique memory population containing precursors of high-affinity pathogenic IgE-producing cells that are likely to be involved in the long-term persistence of peanut allergy.
Collapse
Affiliation(s)
- Miyo Ota
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine; New Haven, CT 06520, USA
| | - Weslley Fernandes-Braga
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| | - Takayuki Ota
- Department of Dermatology, Janssen Research & Development LLC; San Diego, CA 92121, USA
| | - Carlos J. Aranda
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| | - Sara Friedman
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| | - Mariana G.C. Miranda-Waldetario
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| | - Jamie Redes
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
- Graduate School of Biomedical Sciences, ISMMS; New York, NY 10029, USA
| | - Maria Suprun
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
| | - Galina Grishina
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
| | - Hugh A. Sampson
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
| | - Alefiyah Malbari
- Kravis Children’s Hospital, Department of Pediatrics, ISMMS; New York, NY 10029, USA
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine; New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine; New Haven, CT 06520, USA
- Program in Computational Biology & Bioinformatics, Yale University; New Haven, CT 06511, USA
| | - Scott H. Sicherer
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
| | - Maria A. Curotto de Lafaille
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| |
Collapse
|
50
|
Shimizu T, Sun L, Ohnishi K. Influence of pre-B cell receptor deficiency on the immunoglobulin repertoires in peripheral blood B cells before and after immunization. Mol Immunol 2024; 166:87-100. [PMID: 38271880 DOI: 10.1016/j.molimm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
During B cell development, pre-B cell receptor (pre-BCR), comprising the immunoglobulin heavy chain (HC) and surrogate light chain (SLC), plays a crucial role. The expression of pre-BCR serves as a certification of HC quality, confirming its ability to associate with the SLC and light chain (LC). In mice lacking SLC, the absence of this quality control mechanism leads to a distorted repertoire of HCs in the spleen and bone marrow. In this study, we conducted a comparative analysis of the immunoglobulin gene repertoire in peripheral blood cells of both wild-type mice and pre-BCR-deficient mice. Our findings reveal differences not only in the μ HC repertoire but also in the α HC and κ LC repertoires of the pre-BCR-deficient mice. These results suggest that the pre-BCR-mediated quality check of HC influences the selection of class-switched HC and LC repertoires. To further explore the impact of pre-BCR deficiency, we immunized these mice with thymus-dependent antigens and compared the antigen-responding repertoires. Our observations indicate that the affinity maturation pathways remain consistent between wild-type mice and pre-BCR-deficient mice, albeit with variations in the degree of maturation.
Collapse
Affiliation(s)
- Takeyuki Shimizu
- Department of Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan.
| | - Lin Sun
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Kazuo Ohnishi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| |
Collapse
|