1
|
The Old and the New in Subacute Thyroiditis: An Integrative Review. ENDOCRINES 2022. [DOI: 10.3390/endocrines3030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Subacute thyroiditis (SAT) is the most common cause of neck pain and thyrotoxicosis. Although this disease was recognized already by the end of the 18th century, new concepts regarding pathogenesis have emerged in recent years. Moreover, in the last two years, literature on SAT has increased significantly due to articles describing the possible connection with coronavirus disease 2019 (COVID-19). This integrative review depicts old and new concepts of this disease, proposing a detailed overview of pathogenesis, a practical approach to diagnosis and treatment, and a thorough description of the latest discoveries regarding the association of SAT with COVID-19.
Collapse
|
2
|
Abstract
Fibrosis is a medical condition characterized by an excessive deposition of extracellular matrix compounds such as collagen in tissues. Fibrotic lesions are present in many diseases and can affect all organs. The excessive extracellular matrix accumulation in these conditions can often have serious consequences and in many cases be life-threatening. A typical event seen in many fibrotic conditions is a profound accumulation of mast cells (MCs), suggesting that these cells can contribute to the pathology. Indeed, there is now substantialv evidence pointing to an important role of MCs in fibrotic disease. However, investigations from various clinical settings and different animal models have arrived at partly contradictory conclusions as to how MCs affect fibrosis, with many studies suggesting a detrimental role of MCs whereas others suggest that MCs can be protective. Here, we review the current knowledge of how MCs can affect fibrosis.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
3
|
Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev 2019; 282:121-150. [PMID: 29431212 DOI: 10.1111/imr.12634] [Citation(s) in RCA: 486] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mast cells are hematopoietic cells that reside in virtually all vascularized tissues and that represent potential sources of a wide variety of biologically active secreted products, including diverse cytokines and growth factors. There is strong evidence for important non-redundant roles of mast cells in many types of innate or adaptive immune responses, including making important contributions to immediate and chronic IgE-associated allergic disorders and enhancing host resistance to certain venoms and parasites. However, mast cells have been proposed to influence many other biological processes, including responses to bacteria and virus, angiogenesis, wound healing, fibrosis, autoimmune and metabolic disorders, and cancer. The potential functions of mast cells in many of these settings is thought to reflect their ability to secrete, upon appropriate activation by a range of immune or non-immune stimuli, a broad spectrum of cytokines (including many chemokines) and growth factors, with potential autocrine, paracrine, local, and systemic effects. In this review, we summarize the evidence indicating which cytokines and growth factors can be produced by various populations of rodent and human mast cells in response to particular immune or non-immune stimuli, and comment on the proven or potential roles of such mast cell products in health and disease.
Collapse
Affiliation(s)
- Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health & Development, Tokyo, Japan
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, Martin MT, Seed TM, Shay JW, Story MD, Suzuki K, Yamashita S. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. Ann ICRP 2016; 44:7-357. [PMID: 26637346 DOI: 10.1177/0146645315595585] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells; (c) retention of the DNA parental template strand during divisions in some tissue systems, so that mutations are passed to the daughter differentiating cells and not retained in the parental cell; and (d) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the niche. DNA repair mainly occurs within a few days of irradiation, while stem cell competition requires weeks or many months depending on the tissue type. The aforementioned processes may contribute to the differences in carcinogenic radiation risk values between tissues, and may help to explain why a rapidly replicating tissue such as small intestine is less prone to such risk. The processes also provide a mechanistic insight relevant to the LNT model, and the relative and absolute risk models. The radiobiological knowledge also provides a scientific insight into discussions of the dose and dose-rate effectiveness factor currently used in radiological protection guidelines. In addition, the biological information contributes potential reasons for the age-dependent sensitivity to radiation carcinogenesis, including the effects of in-utero exposure.
Collapse
|
5
|
Daëron M. Innate myeloid cells under the control of adaptive immunity: the example of mast cells and basophils. Curr Opin Immunol 2015; 38:101-8. [PMID: 26745401 DOI: 10.1016/j.coi.2015.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 01/13/2023]
Abstract
Mast cells and basophils are mostly known as the initiators of IgE-dependent allergic reactions. They, however, contribute to innate immunity against pathogens and venoms. Like other myeloid cells, they also express receptors for the Fc portion of IgG antibodies. These include activating receptors and inhibitory receptors. Because IgG antibodies are produced in exceedingly higher amounts than IgE antibodies, IgG receptors are co-engaged with IgE receptors under physiological conditions. Mast cells and basophils are examples of the many innate myeloid cells whose effector functions are used and finely tuned by antibodies. They can be thus enrolled in a variety of adaptive immune responses, their activation can be regulated, positively and negatively and their biological responses can be modulated qualitatively by antibodies.
Collapse
Affiliation(s)
- Marc Daëron
- Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France; Centre d'immunologie de Marseille-Luminy, Université Aix Marseille UM2, Inserm U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
6
|
Yasuji I. Subacute thyroiditis in a patient with juvenile idiopathic arthritis undergoing etanercept treatment: a case report and review of the literature. Mod Rheumatol 2014. [DOI: 10.3109/s10165-012-0670-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Yasuji I. Subacute thyroiditis in a patient with juvenile idiopathic arthritis undergoing etanercept treatment: a case report and review of the literature. Mod Rheumatol 2012; 23:397-400. [PMID: 22669598 DOI: 10.1007/s10165-012-0670-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/08/2012] [Indexed: 11/25/2022]
Abstract
We report on a 24-year-old woman with juvenile idiopathic arthritis (JIA) who developed subacute thyroiditis (SAT) while being treated with etanercept. She had suffered from JIA for 12 years, and her arthritis proved refractory to treatment with ibuprofen, prednisolone, and methotrexate. For the past 5 years, the patient had been treated successfully with etanercept at 25 mg/week. The patient more recently complained of high fever and lassitude, and presented with anterior neck swelling and tenderness. Palpation of the thyroid gland revealed it to be warm, erythematous, tender, and diffusely swollen. Laboratory tests revealed an increased erythrocyte sedimentation rate and C-reactive protein level. Thyroid function tests revealed decreased levels of thyrotropin-stimulating hormone, increased levels of free triiodothyronine, free thyroxine, and thyroglobulin, and an absence of thyroid autoantibodies. Sonography showed a diffusely reduced predominantly hypoechoic thyroid gland. Unenhanced computed tomography of the neck showed a homogeneously and mildly reduced thyroid gland. Serum titers of several viruses were not significant and so were considered unlikely to be the pathogens. On the basis of these presented findings, we diagnosed SAT, and etanercept therapy was withdrawn. The patient was treated with antibiotics and an increased prednisolone dose was initiated. She became symptom free and showed improved laboratory test results within 2 weeks, and was euthyroid by 3 months. Three months later, the patient developed hypothyroidism, although 6 months further on, the patient was asymptomatic on prednisolone, methotrexate, and levothyroxine therapy. In conclusion, whether SAT is a specific adverse event in this case in response to etanercept remains unclear. Nevertheless, the possibility of SAT should be considered in such patients on etanercept treatment.
Collapse
Affiliation(s)
- Inamo Yasuji
- Department of General Pediatrics, Nihon University Nerima-Hikarigaoka Hospital, Nihon University of School Medicine, 2-11-1, Hikarigaoka, Nerima-ku, Tokyo, Japan 179-0072.
| |
Collapse
|
8
|
Abstract
Classically, allergy depends on IgE antibodies and on high-affinity IgE receptors expressed by mast cells and basophils. This long accepted IgE/FcεRI/mast cell paradigm, on which the definition of immediate hypersensitivity was based in the Gell and Coomb's classification, appears too reductionist. Recently accumulated evidence indeed requires that not only IgE but also IgG antibodies, that not only FcεRI but also FcγR of the different types, that not only mast cells and basophils but also neutrophils, monocytes, macrophages, eosinophils, and other myeloid cells be considered as important players in allergy. This view markedly changes our understanding of allergic diseases and, possibly, their treatment.
Collapse
Affiliation(s)
- Friederike Jönsson
- Institut Pasteur, Département d’Immunologie, Unité d’Allergologie Moléculaire et CellulaireParis, France
- Inserm, Unité 760Paris, France
| | - Marc Daëron
- Institut Pasteur, Département d’Immunologie, Unité d’Allergologie Moléculaire et CellulaireParis, France
- Inserm, Unité 760Paris, France
| |
Collapse
|
9
|
Gerber HP, Olazoglu E, Grewal IS. Targeting inflammatory cells to improve anti-VEGF therapies in oncology. Recent Results Cancer Res 2010; 180:185-200. [PMID: 20033384 DOI: 10.1007/978-3-540-78281-0_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vascular endothelial growth factor A (VEGF-A) is a well-characterized regulator of physiological and pathological angiogenesis. Multiple therapeutic compounds interfering with VEGF-A-regulated signal transduction pathways are currently being developed for the treatment of neoplasias and other malignancies associated with pathological angiogenesis. A major challenge in developing anti-VEGF therapies are tumor intrinsic refractoriness and the emergence of treatment-induced resistance. A variety of molecular and cellular mechanisms contribute to tumor angiogenesis, including the recruitment of bone marrow (BM)-derived endothelial cell progenitors (EPCs) and inflammatory cells to the tumor mass. Among the latter, two types of tumor infiltrating, inflammatory cells were recently identified to mediate refractoriness to anti-VEGF treatment: CD11b + Gr1+ myeloid derived suppressor cells (MDSC) and tumor-associated macrophages (TAMs). In this chapter, we review some of the inflammatory components regulating tumor angiogenesis and their roles in mediating refractoriness toward anti-VEGF treatment. In addition, we discuss potential therapeutic strategies targeting angiogenic pathways regulated by inflammatory cells. A better understanding of the biological and molecular events involved in mediating refractoriness to anti-VEGF treatment may help to further improve therapeutic strategies targeting tumor angiogenesis.
Collapse
Affiliation(s)
- Hans-Peter Gerber
- Sr Dir Discovery Tumor Prog, Pharma, Research & Development, Pearl River, NY, USA.
| | | | | |
Collapse
|
10
|
Nishihara E, Hirokawa M, Ohye H, Ito M, Kubota S, Fukata S, Amino N, Miyauchi A. Papillary carcinoma obscured by complication with subacute thyroiditis: sequential ultrasonographic and histopathological findings in five cases. Thyroid 2008; 18:1221-5. [PMID: 18925839 DOI: 10.1089/thy.2008.0096] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Subacute thyroiditis (SAT) has been rarely reported to coexist with thyroid carcinomas. The objective of the study was to assess sequential ultrasonographic and histopathological findings of SAT in the context of complicating thyroid carcinomas. METHODS Of 1152 patients with SAT who visited our thyroid clinic at Kuma Hospital from 1996 through 2006, 5 cases complicated by papillary carcinoma underwent surgical resection 3-16 months after SAT onset. Ultrasonographic examinations and thyroid function tests were performed in all patients at onset of SAT and just before surgery. Sequential histopathological features of regenerated thyroid and carcinoma involvement were evaluated. RESULTS Heterogenous areas with microcalcifications in the thyroid or lymphadenopathy in three patients were clues for the nodular involvement with papillary carcinoma on the initial ultrasonographic examination. In contrast, diffuse hypoechoic change in the thyroid in two patients made it impossible to differentiate nodular involvement from inflammatory lesion. Histopathological examination of surgical specimens showed granulomatous and fibrotic changes. These were present about 3 months from SAT onset, and residual fibrosis remained several additional months, in the condition of no inflammatory hypoechoic lesions. In the areas of papillary carcinoma overlapping with transient inflammatory involvement, some lymphocytes and fibrotic changes were present in the stroma of papillary foci, but no granulomatous formation was present in any sections. Continuity with fibrosis around regenerated follicular cells was absent. The degree of lymphoid infiltrate and fibrotic change in the papillary carcinoma was not dependent on periods between SAT onset and the resection. CONCLUSIONS SAT may produce ultrasound changes that obscure the coexistence of papillary carcinoma, but affects no lymphoid infiltrate and fibrotic changes involved in carcinoma throughout the clinical course. We recommend that patients with SAT have ultrasonography after they recover. Further workup, including cytological examination of hypoechoic regions, should be performed if they are present as measuring 1 cm or larger.
Collapse
Affiliation(s)
- Eijun Nishihara
- Kuma Hospital, Center for Excellence in Thyroid Care, Kobe, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Cannabinoids reduce granuloma-associated angiogenesis in rats by controlling transcription and expression of mast cell protease-5. Br J Pharmacol 2008; 154:1672-9. [PMID: 18552882 DOI: 10.1038/bjp.2008.211] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic inflammatory conditions, such as granulomas, are associated with angiogenesis. Mast cells represent the main cell type orchestrating angiogenesis, through the release of their granule content. Therefore, compounds able to modulate mast cell behaviour may be considered as a new pharmacological approach to treat angiogenesis-dependent events. Here, we tested the effect of selective cannabinoid (CB) receptor agonists in a model of angiogenesis-dependent granuloma formation induced by lambda-carrageenin in rats. EXPERIMENTAL APPROACH Granulomas were induced by lambda-carrageenin-soaked sponges implanted subcutaneously on the back of male Wistar rats. After 96 h, implants were removed and granuloma formation was measured (wet weight); angiogenesis was evaluated by histological analysis and by the measurement of haemoglobin content. Mast cells in the granulomas were evaluated histologically and by RT-PCR and immunoblotting analysis for mast cell-derived proteins (rat mast cell protease-5 (rMCP-5) and nerve growth factor). Selective CB1 and CB2 receptor agonists(,) ACEA and JWH-015 (0.001-0.1 mg mL(-1)), were given locally only once, at the time of implantation. KEY RESULTS The CB1 and CB2 receptor agonists decreased the weight and vascularization of granulomas after 96 h. This treatment also reduced mast cell number and activation in granulomatous tissue. Specifically, these compounds prevented the transcription and expression of rMCP-5, a protein involved in sprouting and advance of new blood vessels. CONCLUSION AND IMPLICATIONS Modulation of mast cell function by cannabinoids reduced granuloma formation and associated angiogenesis. Therefore cannabinoid-related drugs may be useful in the management of granulomatous diseases accompanied by angiogenesis.
Collapse
|
12
|
Abstract
Vascular endothelial growth factor (VEGF) is an essential peptide in new vessel growth in physiology (endometrial growth, embryonic development); pathological conditions (diabetic retinopathy, rheumatoid arthritis); as well as in tumor cell growth, particularly distant metastases. This study focused on VEGF structure, receptors, and angiogensis in tumors, especially their roles in thyroid cancer. The VEGF mRNA undergoes alternative splicing events that generate four homodimeric isoforms, including VEGF121, VEGF165, VEGF189, or VEGF206. Using VEGF purified from a culture medium conditioned by A-431 human epidermoid carcinoma cells, VEGF-binding site complexes of 230, 170, and 125 kDa were detected on human umbilical vein endothelial cells. The VEGF specifically induced the tyrosine phosphorylation of a 190-kDa polypeptide, which had similar mass to the largest binding site detected through affinity cross-linking. A transmembrane receptor belongs to the tyrosine kinase family, fms-like tyrosine kinase (FLT). These receptor tyrosine kinases encoded by the FLT gene family have distinct functions in regulating blood vessel growth and differentiation. Regulation of VEGF is a complex, multistep mechanism in various kinds of cells and tissues. Hypoxia-dependent and -independent mechanisms are illustrated in different cancer tissues. Hypoxic tumor cells may switch to a proangiogenic phenotype, which increases VEGF transcription. Clinical applications of VEGF in cancer have included diagnosis, prediction of prognosis, and treatment in different solid tumors, including thyroid tumors. Studies involving thyroid cancer cell lines, serum level determination, immunohistocytochemical staining, molecular biological studies, and gene therapy to the in vivo clinical trials, have shown that antiangiogensis therapy can provide another treatment modality for thyroid cancer. Future studies focused on recombinant human anti-VEGF research involving patients with advanced thyroid cancer, and investigation of the protection of high-risk patients by using novel antiangiogenic vaccines, are warranted.
Collapse
Affiliation(s)
- Jen-Der Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung University, Taiwan, Republic of China.
| | | |
Collapse
|
13
|
Rajkovic V, Matavulj M, Lazetic B. Stereological analysis of thyroid mast cells in rats after exposure to extremely low frequency electromagnetic field and the following "off" field period. ACTA BIOLOGICA HUNGARICA 2005; 56:43-51. [PMID: 15813213 DOI: 10.1556/abiol.56.2005.1-2.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Influence of extremely low frequency electromagnetic field (ELF-EMF) on thyroid gland mast cells was investigated on male Mill Hill rats. Animals were exposed to EMF (50 Hz, 50 microT to 500 microT, 10 V/m) from 24 hours after birth, 7 hours/day, 5 days/week for three months when a part of animals (group I) was sacrificed, while the rest of them were subjected to recovery evaluation and sacrificed after one (group II), two (group II) and three (group IV) weeks following the exposure. Stereological analysis on toluidine blue-stained paraffin sections showed increased volume density of degranulated mast cells in all groups and, except in group III, and numerical density as well, implicating the sensitivity of thyroidal mast cells to power frequency EMFs. Since in our previous investigations, morphofunctional alterations of thyroid gland in rats exposed to ELF-EMF were found the contribution of released mast cell mediators to these changes could be presumed.
Collapse
Affiliation(s)
- Vesna Rajkovic
- Department of Biology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia and Montenegro.
| | | | | |
Collapse
|
14
|
Abstract
Historically, mast cells were known as a key cell type involved in type I hypersensitivity. Until last two decades, this cell type was recognized to be widely involved in a number of non-allergic diseases including inflammatory bowel disease (IBD). Markedly increased numbers of mast cells were observed in the mucosa of the ileum and colon of patients with IBD, which was accompanied by great changes of the content in mast cells such as dramatically increased expression of TNF-α, IL-16 and substance P. The evidence of mast cell degranulation was found in the wall of intestine from patients with IBD with immunohistochemistry technique. The highly elevated histamine and tryptase levels were detected in mucosa of patients with IBD, strongly suggesting that mast cell degranulation is involved in the pathogenesis of IBD. However, little is known of the actions of histamine, tryptase, chymase and carboxypeptidase in IBD. Over the last decade, heparin has been used to treat IBD in clinical practice. The low molecular weight heparin (LMWH) was effective as adjuvant therapy, and the patients showed good clinical and laboratory response with no serious adverse effects. The roles of PGD2, LTC4, PAF and mast cell cytokines in IBD were also discussed. Recently, a series of experiments with dispersed colon mast cells suggested there should be at least two pathways in man for mast cells to amplify their own activation-degranulation signals in an autocrine or paracrine manner. The hypothesis is that mast cell secretogogues induce mast cell degranulation, release histamine, then stimulate the adjacent mast cells or positively feedback to further stimulate its host mast cells through H1 receptor. Whereas released tryptase acts similarly to histamine, but activates mast cells through its receptor PAR-2. The connections between current anti-IBD therapies or potential therapies for IBD with mast cells were discussed, implicating further that mast cell is a key cell type that is involved in the pathogenesis of IBD. In conclusion, while pathogenesis of IBD remains unclear, the key role of mast cells in this group of diseases demonstrated in the current review implicates strongly that IBD is a mast cell associated disease. Therefore, close attentions should be paid to the role of mast cells in IBD.
Collapse
Affiliation(s)
- Shao-Heng He
- Allergy and Inflammation Research Institute, Medical College, Shantou University, Shantou 515031, Guangdong Province, China.
| |
Collapse
|
15
|
Eggo MC, Quiney VM, Campbell S. Local factors regulating growth and function of human thyroid cells in vitro and in vivo. Mol Cell Endocrinol 2003; 213:47-58. [PMID: 15062573 DOI: 10.1016/j.mce.2003.10.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 07/03/2003] [Indexed: 10/26/2022]
Abstract
In vitro culture of thyroid follicles is often employed to study thyroid cell biology and the control of thyroid follicular cell growth. For acceptance as a valid model, cultures should maintain differentiated function, which can be measured as the organification of [Formula: see text] and/or the de novo synthesis of thyroid hormones. In this article, the properties and merits of the various in vitro cultures of thyroid follicular cells and the potential effects of thyroid-specific, secreted products (thyroid hormones, thyroglobulin) and autocrine factors (proteases, growth factors and inhibitors) on thyroid growth and function, are explored. The regulation of the secretion of autocrine/paracrine factors by thyroid follicular cells is reviewed and methods by which cells may defend themselves from the effects of bioactive growth factors are discussed with particular reference to FGF signalling. The role and regulation of plasminogen activator activity, which may be central to the release and/or activation of growth factors and their receptors, and the secretion of angiogenic factors are described.
Collapse
Affiliation(s)
- Margaret C Eggo
- Division of Medical Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
16
|
Abstract
Growth of collateral vessels is potentially able to preserve structure and a variable degree of function in subtended tissues in the presence of arterial occlusions. The process of transformation of a small arteriole into much larger conductance artery is called arteriogenesis. Small arterioles that interconnect side branches proximal from the arterial occlusion with distal ones experience increased fluid shear stress because of the increased blood flow velocity attributable to the pressure gradient along the bridging collaterals. This activates the endothelium and leads to monocyte adhesion and infiltration with the subsequent production of growth factors and proteases. Preexistent arterioles are essential. Their presence is genetically determined. Arteriogenesis is not organ- or species-specific; coronary or peripheral collateral vessels develop following the same design principles in mice, rats, rabbits, or dogs. In contrast to angiogenesis, arteriogenesis is not dependent on the presence of hypoxia/ischemia.
Collapse
Affiliation(s)
- Wolfgang Schaper
- Department of Experimental Cardiology, Max-Planck-Institute, Benekestr. 2D-61231, Bad Nauheim, Germany.
| | | |
Collapse
|
17
|
Abstract
Angiogenesis is tightly regulated by pro- and anti-angiogenic factors. Secreting mast cells are able to induce and enhance angiogenesis via multiple in part interacting pathways. They include mast cell-derived (i) potent pro-angiogenic factors such as VEGF, bFGF, TGF-beta, TNF-alpha and IL-8, (ii) proteinases and heparin, that release heparin-binding pro-angiogenic factors lodged on cell surfaces and in the extracellular matrix (ECM), (iii) histamine, VEGF, and certain lipid-derived mediators that induce microvascular hyperpermeability having pro-angiogenic effects, (iv) chemotactic recruitment of monocytes/macrophages and lymphocytes that are able to contribute with angiogenesis-modulating molecules, (v) activation of platelets that release pro-angiogenic factors, (vi) activation of neighboring stationary non-mast cells, which secrete pro-angiogenic factors, ECM-degrading proteinases and stem cell factor which attracts, mitogenically stimulates and activates mast cells, (vii) auto- and paracrine stimulation of mast cells by stem cell factor, (viii) recruitment of mast cells by pro-angiogenic factors such as VEGF, bFGF and TGF-beta. As a result of ECM-degradation and changes in the microenvironment following initial mast cell secretion, the mast cell populations may change significantly in number, phenotype and function. In tumor models, mast cells have been shown to play a decisive role in inducing the angiogenic switch which precedes malignant transformation. There is, moreover, strong evidence that mast cells significantly influence angiogenesis and thus growth and progression in human cancers.
Collapse
Affiliation(s)
- Klas Norrby
- Department of Pathology, Sahlgrenska University Hospital, Göteborg, Sweden
| |
Collapse
|
18
|
Toda S, Koike N, Sugihara H. Thyrocyte integration, and thyroid folliculogenesis and tissue regeneration: perspective for thyroid tissue engineering. Pathol Int 2001; 51:403-17. [PMID: 11422801 DOI: 10.1046/j.1440-1827.2001.01218.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The thyroid gland is composed of many ball-like structures called thyroid follicles, which are supported by the interfollicular extracellular matrix (ECM) and a capillary network. The component thyrocytes are highly integrated in their specific structural and functional polarization. In conventional monolayer and floating culture systems, thyrocytes cannot organize themselves into follicles with normal polarity. In contrast, in 3-D collagen gel culture, thyrocytes easily form stable follicles with physiological polarity. Integration of thyrocyte growth and differentiation results ultimately in thyroid folliculogenesis. This culture method and subacute thyroiditis are two promising models for addressing mechanisms of folliculogenesis, because thyroid-follicle formation actively occurs both in the culture system and at the regenerative phase of the disorder. The understanding of the mechanistic basis of folliculogenesis is prerequisite for generation of artificial thyroid tissue, which would enable a more physiological strategy to the treatment of hypothyroidism caused by various diseases and surgical processes than conventional hormone replacement therapy. We review here thyrocyte integration, and thyroid folliculogenesis and tissue regeneration. We also briefly discuss a perspective for thyroid tissue regeneration and engineering.
Collapse
Affiliation(s)
- S Toda
- Department of Pathology, Saga Medical School and; Koike Thyroid Hospital, Saga, Japan.
| | | | | |
Collapse
|