1
|
Zhou X, Xu S, Zhang Z, Tang M, Meng Z, Peng Z, Liao Y, Yang X, Nüssler AK, Liu L, Yang W. Gouqi-derived nanovesicles (GqDNVs) inhibited dexamethasone-induced muscle atrophy associating with AMPK/SIRT1/PGC1α signaling pathway. J Nanobiotechnology 2024; 22:276. [PMID: 38778385 PMCID: PMC11112783 DOI: 10.1186/s12951-024-02563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
With the increasing trend of global aging, sarcopenia has become a significant public health issue. Goji berry, also known as "Gou qi zi" in China, is a traditional Chinese herb that can enhance the structure and function of muscles and bones. Otherwise, previous excellent publications illustrated that plant-derived exosome-like nanoparticles can exert good bioactive functions in different aging or disease models. Thus, we issued the hypothesis that Gouqi-derived nanovesicles (GqDNVs) may also have the ability to improve skeletal muscle health, though the effect and its mechanism need to be explored. Hence, we have extracted GqDNVs from fresh berries of Lycium barbarum L. (goji) and found that the contents of GqDNVs are rich in saccharides and lipids. Based on the pathway annotations and predictions in non-targeted metabolome analysis, GqDNVs are tightly associated with the pathways in metabolism. In muscle atrophy model mice, intramuscular injection of GqDNVs improves the cross-sectional area of the quadriceps muscle, grip strength and the AMPK/SIRT1/PGC1α pathway expression. After separately inhibiting AMPK or PGC1α in C2C12 cells with dexamethasone administration, we have found that the activated AMPK plays the chief role in improving cell proliferation induced by GqDNVs. Furthermore, the energy-targeted metabolome analysis in the quadriceps muscle demonstrates that the GqDNVs up-regulate the metabolism of amino sugar and nucleotide sugar, autophagy and oxidative phosphorylation process, which indicates the activation of muscle regeneration. Besides, the Spearman rank analysis shows close associations between the quality and function of skeletal muscle, metabolites and expression levels of AMPK and SIRT1. In this study, we provide a new founding that GqDNVs can improve the quality and function of skeletal muscle accompanying the activated AMPK/SIRT1/PGC1α signaling pathway. Therefore, GqDNVs have the effect of anti-aging skeletal muscle as a potential adjuvant or complementary method or idea in future therapy and research.
Collapse
Affiliation(s)
- Xiaolei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zixuan Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Mingmeng Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zitong Meng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
| |
Collapse
|
2
|
Vidović BB, Milinčić DD, Marčetić MD, Djuriš JD, Ilić TD, Kostić AŽ, Pešić MB. Health Benefits and Applications of Goji Berries in Functional Food Products Development: A Review. Antioxidants (Basel) 2022; 11:248. [PMID: 35204130 PMCID: PMC8868247 DOI: 10.3390/antiox11020248] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
Goji berries have long been used for their nutritional value and medicinal purposes in Asian countries. In the last two decades, goji berries have become popular around the world and are consumed as a functional food due to wide-range bioactive compounds with health-promoting properties. In addition, they are gaining increased research attention as a source of functional ingredients with potential industrial applications. This review focuses on the antioxidant properties of goji berries, scientific evidence on their health effects based on human interventional studies, safety concerns, goji berry processing technologies, and applications of goji berry-based ingredients in developing functional food products.
Collapse
Affiliation(s)
- Bojana B. Vidović
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Danijel D. Milinčić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (M.B.P.)
| | - Mirjana D. Marčetić
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Jelena D. Djuriš
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Tijana D. Ilić
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Aleksandar Ž. Kostić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (M.B.P.)
| | - Mirjana B. Pešić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (M.B.P.)
| |
Collapse
|
3
|
Vahapoglu B, Erskine E, Gultekin Subasi B, Capanoglu E. Recent Studies on Berry Bioactives and Their Health-Promoting Roles. Molecules 2021; 27:108. [PMID: 35011338 PMCID: PMC8747047 DOI: 10.3390/molecules27010108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Along with the increased knowledge about the positive health effects of food bioactives, the eating habits of many individuals have changed to obtain higher nutritional benefits from foods. Fruits are among the most preferred food materials in this regard. In particular, berry fruits are important sources in the diet in terms of their high nutritional content including vitamins, minerals, and phenolic compounds. Berry fruits have remedial effects on several diseases and these health-promoting impacts are associated with their phenolic compounds which may vary depending on the type and variety of the fruit coupled with other factors including climate, agricultural conditions, etc. Most of the berries have outstanding beneficial roles in many body systems of humans such as gastrointestinal, cardiovascular, immune, and nervous systems. Furthermore, they are effective on some metabolic disorders and several types of cancer. In this review, the health-promoting effects of bioactive compounds in berry fruits are presented and the most recent in vivo, in vitro, and clinical studies are discussed from a food science and nutrition point of view.
Collapse
Affiliation(s)
- Beyza Vahapoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (B.V.); (E.E.); (B.G.S.)
| | - Ezgi Erskine
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (B.V.); (E.E.); (B.G.S.)
| | - Busra Gultekin Subasi
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (B.V.); (E.E.); (B.G.S.)
- Hafik Kamer Ornek Vocational School, Cumhuriyet University, Sivas 58140, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (B.V.); (E.E.); (B.G.S.)
| |
Collapse
|
4
|
Toh DWK, Low JHM, Kim JE. Cardiovascular disease risk reduction with wolfberry consumption: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr 2021; 61:1177-1186. [PMID: 34839399 DOI: 10.1007/s00394-021-02750-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Wolfberry is rich in bioactive compounds which may lower cardiovascular disease risk. This meta-analysis aimed to systematically evaluate the effects of wolfberry-based randomized controlled trials (RCTs) on overall cardiovascular health. METHODS Four online databases (PubMed, CINAHL Plus, Medline and Cochrane Library) were searched to shortlist relevant RCTs. Outcomes of interests included blood lipids and lipoproteins, blood pressure, biomarkers of oxidative stress, inflammation and other cardiovascular health-related indicators. Random-effects models were used to provide a weighted mean difference (WMD) and/or Hedges' g for quantitative synthesis. This was coupled with subcategory analyses which stratified RCTs according to the form in which wolfberry was administered (whole wolfberry versus wolfberry extract). RESULTS From the 785 articles identified, 10 were selected for meta-analysis. Compared to the control, groups which consumed wolfberry showed a reduction in blood triglycerides [WMDpooled (95% confidence interval): - 0.14 (- 0.19, - 0.09) mmol/L] and increased blood high-density lipoprotein cholesterol [WMDpooled: 0.06 (0.02, 0.09) mmol/L]. Notably, effects for both triglycerides [WMDwhole: - 0.14 (- 0.19, - 0.09) mmol/L; WMDextract: - 0.07 (- 0.30, 0.16) mmol/L] and high-density lipoprotein cholesterol [WMDwhole: 0.06 (0.02, 0.09) mmol/L; WMDextract: 0.05 (- 0.02, 0.13) mmol/L] were more prominent after whole wolfberry interventions. Additionally, blood malondialdehyde equivalents were also significantly decreased in wolfberry consuming groups [Hedges' gpooled: - 1.45 (- 2.75, - 0.16)]. No changes were observed for the other lipids and lipoproteins as well as blood pressure. CONCLUSIONS Wolfberry consumption is effective in improving blood lipids and lipoproteins profile and lowering oxidative stress. This supports the incorporation of wolfberry, particularly as whole fruits, into dietary patterns targeted at improving cardiovascular health.
Collapse
Affiliation(s)
- Darel Wee Kiat Toh
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jasmine Hui Min Low
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Xiao Z, Deng Q, Zhou W, Zhang Y. Immune activities of polysaccharides isolated from Lycium barbarum L. What do we know so far? Pharmacol Ther 2021; 229:107921. [PMID: 34174277 DOI: 10.1016/j.pharmthera.2021.107921] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Lycium barbarum is widely used as a functional food and medicinal herb to promote health and longevity in China and in some other Asian countries. In modern pharmacological and chemical studies, the most valuable and well-researched component of L. barbarum is a group of unique water-soluble glycoconjugates that are collectively termed Lycium barbarum polysaccharides (LBPs). Numerous modern pharmacological studies have revealed that LBPs possess antiaging, antidiabetic, antifibrotic, neuroprotective, and immunomodulation properties, while the immunomodulatory effect is primary and is involved in other activities. However, due to their structural heterogeneity and lack of chromophores, it has long been unclear how LBPs work on the immune system. A few studies have recently provided some insights into the proposed mode of action of LBPs, such as structure-activity relationships, receptor recognition, and gut microbiota modulation of LBPs. This review provides a comprehensive overview of the immunoregulating properties of LBPs and their related mechanisms of action.
Collapse
Affiliation(s)
- Zhiyong Xiao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Deng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| |
Collapse
|
6
|
Santos JAR, Fernandes RJ, Zacca R. Multi-Micronutrient Supplementation and Immunoglobulin Response in Well-Fed Firefighters. Sports Med Int Open 2020; 5:E1-E7. [PMID: 33376770 PMCID: PMC7758155 DOI: 10.1055/a-1296-1486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Intensive physical training programs can affect the immune system. This study aims to verify the multi-micronutrient supplementation effects on serum immunoglobulins levels prior to and after a five-week physical training program. Twenty-four male recruit firefighters were randomly allocated into supplemented (with Prisfar Ever-Fit Plus over 35 consecutive days) and placebo groups (n=12 each). Serum immunoglobulins G, A, and M were assessed. Supplementation effect was detected for immunoglobulin G (eta-squared, η 2 : 0.09; p =0.035; power: 0.56), A (η 2 : 0.24; p =0.001; power: 0.95), and M (η 2 : 0.09; p =0.036; power: 0.56). Although immunoglobulin A was different between groups at baseline (mean difference: 42.58; 95%CI: 7.00 to 78.16 mg/dL; p =0.021; d =2.48), within-group (before vs . after five weeks) showed no differences for both supplemented and control groups. In addition, even if immunoglobulin G and M were similar at baseline, immunoglobulin G decreased (mean diff.: 46.4; 95%CI: 6.7 to 86.1 mg/dL; p =0.03; d =0.74) and immunoglobulin M increased (mean diff.: -10.7; 95%CI: -15.8 to -5.5 mg/dL; p =0.001; d =-1.33) in the control group. Although mean values remained within the reference values, changes observed for immunoglobulin G and M may reflect some immune protection for firefighters engaged in recruit training.
Collapse
Affiliation(s)
- José Augusto Rodrigues Santos
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal
| | - Ricardo J Fernandes
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal.,Porto Biomechanics Laboratory (LABIOMEP‑UP), University of Porto, Porto, Portugal
| | - Rodrigo Zacca
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal.,Porto Biomechanics Laboratory (LABIOMEP‑UP), University of Porto, Porto, Portugal.,Ministry of Education, CAPES Foundation, Brazilia, Brazil
| |
Collapse
|
7
|
Vedhara K, Royal S, Sunger K, Caldwell DM, Halliday V, Taylor CM, Fairclough L, Avery A, Welton NJ. Effects of non-pharmacological interventions as vaccine adjuvants in humans: a systematic review and network meta-analysis. Health Psychol Rev 2020; 15:245-271. [PMID: 33222621 DOI: 10.1080/17437199.2020.1854050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Psychological and behavioural may enhance vaccine effectiveness. We conducted a systematic review and network meta-analysis (NMA) to examine the effects of non-pharmacological adjuvants on vaccine effectiveness, as measured by antibody responses to vaccination. AREAS COVERED Electronic databases (EMBASE, Medline, PsychINFO, CINAHL) were searched from inception to 6th February 2018. This yielded 100 eligible papers, reporting 106 trials: 79 interventions associated with diet and/or nutrition; 12 physical activity interventions and 9 psychological interventions.Over half (58/106) of trials reported evidence of an enhanced antibody response to vaccination across one or more outcomes. The NMA considered the comparative effects between all intervention types, control and placebo for antibody titres (48 studies), seroconversion (25 studies) and seroprotection (23 studies) separately. The NMA provided weak evidence in support of nutritional formulae and probiotics in increasing antibody titres. EXPERT OPINION This review offers a comprehensive summary of the literature on non-pharmacological interventions as vaccine adjuvants. The evidence is characterised by considerable heterogeneity but provides early evidence in support of nutritional formulae and probiotic interventions. Psychological and exercise-based interventions were characterised by limited and unreliable evidence. Large, well-designed studies including consistent core outcomes and measures of intervention adherence and fidelity are required.
Collapse
Affiliation(s)
- Kavita Vedhara
- Division of Primary Care, University of Nottingham, Nottingham, UK
| | - Simon Royal
- University of Nottingham Health Service, Cripps Health Centre, Nottingham, UK
| | - Kanchan Sunger
- Division of Primary Care, University of Nottingham, Nottingham, UK
| | - Deborah M Caldwell
- School of Social & Community Medicine, University of Bristol, Bristol, UK.,NIHR Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, UK
| | - Vanessa Halliday
- School of Health & Related Research, University of Sheffield, Sheffield, UK
| | - Caroline M Taylor
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lucy Fairclough
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Anthony Avery
- Division of Primary Care, University of Nottingham, Nottingham, UK
| | - Nicky J Welton
- School of Social & Community Medicine, University of Bristol, Bristol, UK.,NIHR Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, UK
| |
Collapse
|
8
|
Evidence map on the contributions of traditional, complementary and integrative medicines for health care in times of COVID-19. Integr Med Res 2020; 9:100473. [PMID: 32766112 PMCID: PMC7362868 DOI: 10.1016/j.imr.2020.100473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/20/2022] Open
Abstract
Background Due to the pandemic, there is a significant interest in the therapeutic resources linked to TCIM to support potentially therapeutic research and intervention in the management of Coronavirus - 19 (COVID-19). At the date of this evidence map´s publication, there is no evidence of specific treatments for COVID-19. This map organizes information about symptoms management (especially on dimensions related to mental health and mild viral respiratory infections, as well as immune system strengthening and antiviral activity). Method This evidence map applies methodology developed by Latin American and Caribbean Center on Health Sciences Information based on the 3iE evidence gap map. A search was performed in the Traditional, Complementary and Integrative Medicine Virtual Health Library and PubMed, using the MeSH and DeCS terms for respiratory viral diseases associated with epidemics, COVID-19 symptoms, relevant mental health topics, pharmacological and non-pharmacological interventions related to TCIM. Results For the map, 126 systematic reviews and controlled clinical studies were characterized, distributed in a matrix with 62 interventions (18 phytotherapy, 9 mind-body therapies, 11 traditional Chinese medicine, 7 homeopathic and anthroposophic dynamized medicines and 17 supplements), and 67 outcomes (14 immunological response, 23 mental health, 25 complementary clinical management of the infection and 5 other). Conclusion The map presents an overview of possible TCIM contributions to various dimensions of the COVID-19 pandemic, especially in the field of mental health, and it is directed to researchers and health professionals specialized in TCIM. Most of the antiviral activity outcomes described in this map refers to respiratory viruses in general, and not specifically to SARS-CoV-2 (Severe Acute Respiratory Syndrome CoronaVirus 2). This information may be useful to guide new research, but not necessarily to support a therapeutic recommendation. Finally, any suspicion of COVID-19 infection should follow the protocols recommended by the health authorities of each country/region.
Collapse
|
9
|
Govers C, Berkel Kasikci M, van der Sluis AA, Mes JJ. Review of the health effects of berries and their phytochemicals on the digestive and immune systems. Nutr Rev 2019; 76:29-46. [PMID: 29087531 DOI: 10.1093/nutrit/nux039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Berries are generally considered beneficial to health. This health-promoting potential has mainly been ascribed to berries' phytochemical and vitamin content, and little attention has been paid to the potential benefits of berries for the digestive tract, despite this being the first point of contact. In vivo studies that described the health effects of berries on individual parts of the digestive tract (ie, the mouth, esophagus, stomach, small and large intestine, microbiome, and immune system) were reviewed. Immune effects were included because a large part of the immune system is located in the intestine. Beneficial health effects were mainly observed for whole berry extracts, not individual berry components. These effects ranged from support of the immune system and beneficial microbiota to reduction in the number and size of premalignant and malignant lesions. These results demonstrate the potency of berries and suggest berries can serve as a strong adjuvant to established treatments or therapies for a variety of gastrointestinal and immune-related illnesses.
Collapse
Affiliation(s)
- Coen Govers
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Muzeyyen Berkel Kasikci
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands.,Department of Food Engineering, Faculty of Engineering, Celal Bayar University, Manisa, Turkey
| | - Addie A van der Sluis
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Jurriaan J Mes
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| |
Collapse
|
10
|
A Single Dose of Goji Berries Does Not Affect Postprandial Energy Expenditure and Substrate Oxidation in Healthy, Overweight Men. J Nutr Metab 2019; 2019:4057143. [PMID: 30918723 PMCID: PMC6408998 DOI: 10.1155/2019/4057143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/06/2018] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
Background and Aim Increasing energy expenditure is an effective strategy for the prevention of obesity. In this respect, Lycium barbarum (goji berry) is of interest, as it has been shown to increase postprandial oxygen consumption. Although this suggests that energy expenditure was also increased, energy expenditure and substrate oxidation can only be assessed accurately when both oxygen consumption and carbon dioxide production are measured. We therefore investigated the effects of a single dose of Lycium barbarum fruit on postprandial energy expenditure and substrate oxidation in a randomized, double-blind crossover trial. In addition, markers of lipid and glucose metabolism were measured. Methods Seventeen healthy, overweight men received in a random order a meal containing 25 grams of dried Lycium barbarum fruit or a control meal matched for caloric content and macronutrient composition. Energy expenditure and the respiratory quotient were determined using indirect calorimetry before and up to 4 hours after meal intake. Blood was sampled before and after meal intake at regular intervals for analyses of plasma glucose, serum triacylglycerol, and free fatty acid concentrations. Results Energy expenditure significantly increased after the Lycium barbarum and control meal, but no differences were found between the meals (p=0.217). Postprandial changes in respiratory quotient (p=0.719) and concentrations of glucose (p=0.663), triacylglycerol (p=0.391), and free fatty acids (p=0.287) were also not affected by Lycium barbarum intake. Conclusions A single dose of Lycium barbarum does not affect postprandial energy expenditure, substrate oxidation, and markers for lipid and glucose metabolism in healthy, overweight men.
Collapse
|
11
|
Yang J, Wei YQ, Ding JB, Li YL, Ma JL, Liu JL. Research and application of Lycii Fructus in medicinal field. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
12
|
Xia H, Tang H, Wang F, Yang X, Wang Z, Liu H, Pan D, Wang S, Sun G. Metabolic effects of dietary supplementation of Lycium barbarum polysaccharides on serum and urine metabolomics in a young healthy male population. J Funct Foods 2018; 46:440-448. [DOI: 10.1016/j.jff.2018.04.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
13
|
Hosseini B, Berthon BS, Saedisomeolia A, Starkey MR, Collison A, Wark PAB, Wood LG. Effects of fruit and vegetable consumption on inflammatory biomarkers and immune cell populations: a systematic literature review and meta-analysis. Am J Clin Nutr 2018; 108:136-155. [PMID: 29931038 DOI: 10.1093/ajcn/nqy082] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammation is associated with an increased risk of a range of chronic diseases. A diet high in fruit and vegetables may help to reduce inflammation, as fruit and vegetables are rich sources of antioxidants and other biologically active substances, which may improve immune function. OBJECTIVE To summarize the evidence, we executed a systematic review and meta-analysis examining the effects of fruit and/or vegetable intake on inflammatory biomarkers and immune cells in humans with different diseases and conditions. Design Electronic databases including PubMed, Cochrane, CINAHL, and EMBASE were systematically searched up to March 2018. RESULTS Eighty-three studies were included. Of these, 71 (86%) were clinical trials, and 12 were observational studies (n = 10 cross-sectional and n = 2 cohort). Amongst the observational research, n = 10 studies found an inverse association between intakes of fruit or vegetables and inflammatory biomarkers. Similarly, the majority of the intervention studies (68%, n = 48) reported beneficial effects of fruit or vegetable intake on ≥1 biomarker of systemic or airway inflammation. A meta-analysis of included studies showed that fruit or vegetable intake decreased circulating levels of C-reactive protein and tumor necrosis factor-α (P < 0.05) and increased the γδ-T cell population (P < 0.05). Conclusions In conclusion, this review suggests that higher intakes of fruit and vegetables lead to both a reduction in proinflammatory mediators and an enhanced immune cell profile.
Collapse
Affiliation(s)
- Banafshe Hosseini
- Grow Up Well Priority Research Centre and Priority Research Centre for Healthy Lungs and, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Bronwyn S Berthon
- Grow Up Well Priority Research Centre and Priority Research Centre for Healthy Lungs and, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Ahmad Saedisomeolia
- School of Medicine, Western Sydney University, Sydney, Australia.,School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Malcolm R Starkey
- Grow Up Well Priority Research Centre and Priority Research Centre for Healthy Lungs and, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Adam Collison
- Grow Up Well Priority Research Centre and Priority Research Centre for Healthy Lungs and, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Grow Up Well Priority Research Centre and Priority Research Centre for Healthy Lungs and, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Lisa G Wood
- Grow Up Well Priority Research Centre and Priority Research Centre for Healthy Lungs and, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| |
Collapse
|
14
|
Marsman D, Belsky DW, Gregori D, Johnson MA, Low Dog T, Meydani S, Pigat S, Sadana R, Shao A, Griffiths JC. Healthy ageing: the natural consequences of good nutrition-a conference report. Eur J Nutr 2018; 57:15-34. [PMID: 29799073 PMCID: PMC5984649 DOI: 10.1007/s00394-018-1723-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many countries are witnessing a marked increase in longevity and with this increased lifespan and the desire for healthy ageing, many, however, suffer from the opposite including mental and physical deterioration, lost productivity and quality of life, and increased medical costs. While adequate nutrition is fundamental for good health, it remains unclear what impact various dietary interventions may have on prolonging good quality of life. Studies which span age, geography and income all suggest that access to quality foods, host immunity and response to inflammation/infections, impaired senses (i.e., sight, taste, smell) or mobility are all factors which can limit intake or increase the body's need for specific micronutrients. New clinical studies of healthy ageing are needed and quantitative biomarkers are an essential component, particularly tools which can measure improvements in physiological integrity throughout life, thought to be a primary contributor to a long and productive life (a healthy "lifespan"). A framework for progress has recently been proposed in a WHO report which takes a broad, person-centered focus on healthy ageing, emphasizing the need to better understand an individual's intrinsic capacity, their functional abilities at various life stages, and the impact by mental, and physical health, and the environments they inhabit.
Collapse
Affiliation(s)
- D Marsman
- Procter & Gamble, Cincinnati, OH, USA
| | - D W Belsky
- Duke University, Raleigh-Durham, NC, USA
| | | | | | - T Low Dog
- Integrative Medicine Concepts, Tucson, AZ, USA
| | | | - S Pigat
- Creme Global, Dublin, Ireland
| | - R Sadana
- World Health Organization, Geneva, Switzerland
| | - A Shao
- Amway/Nutrilite, Buena Park, CA, USA
| | - J C Griffiths
- Council for Responsible Nutrition-International, Washington, DC, USA.
| |
Collapse
|
15
|
Aspinall R, Lang PO. Interventions to restore appropriate immune function in the elderly. IMMUNITY & AGEING 2018; 15:5. [PMID: 29416551 PMCID: PMC5785902 DOI: 10.1186/s12979-017-0111-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/28/2017] [Indexed: 01/03/2023]
Abstract
Advanced age is one indicator of likely immune dysfunction. As worldwide, the global population contains progressively more and more older individuals there is likelihood of an increased prevalence and incidence of infectious diseases due to common and emergent pathogens. The resultant increase in mortality and morbidity would be matched by the risk of functional decline and disability. Maintaining immune function at a plateau throughout life may therefore be associated with considerable cost savings. The aim of improving immune function in older individuals may be achieved through considering a therapeutic approach to rejuvenate, stimulate or support the indigenous immune system to perform in a more optimal manner. In terms of cost effectiveness a therapeutic approach may prove difficult because of issues associated with; identifying those who would benefit the most from this treatment, identifying the type of treatment which would suit them and identifying whether the treatment was successful. The alternative of supporting or providing a stronger stimulus through vaccination, whilst more cost effective, may be a more valuable option in the short term. Both approaches will be addressed in this review.
Collapse
Affiliation(s)
- Richard Aspinall
- Rivock Ltd, Bury St Edmunds, UK.,3Anglia Ruskin University, Cambridge, UK
| | - Pierre Olivier Lang
- 2Geriatric and Geriatric Rehabilitation Division, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland.,3Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
16
|
Chang SK, Alasalvar C, Shahidi F. Superfruits: Phytochemicals, antioxidant efficacies, and health effects - A comprehensive review. Crit Rev Food Sci Nutr 2018; 59:1580-1604. [PMID: 29360387 DOI: 10.1080/10408398.2017.1422111] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The term "superfruit" has gained increasing usage and attention recently with the marketing strategy to promote the extraordinary health benefits of some exotic fruits, which may not have worldwide popularity. This has led to many studies with the identification and quantification of various groups of phytochemicals. This contribution discusses phytochemical compositions, antioxidant efficacies, and potential health benefits of the main superfruits such as açai, acerola, camu-camu, goji berry, jaboticaba, jambolão, maqui, noni, and pitanga. Novel product formulations, safety aspects, and future perspectives of these superfruits have also been covered. Research findings from the existing literature published within the last 10 years have been compiled and summarized. These superfruits having numerous phytochemicals (phenolic acids, flavonoids, proanthocyanidins, iridoids, coumarins, hydrolysable tannins, carotenoids, and anthocyanins) together with their corresponding antioxidant activities, have increasingly been utilized. Hence, these superfruits can be considered as a valuable source of functional foods due to the phytochemical compositions and their corresponding antioxidant activities. The phytochemicals from superfruits are bioaccessible and bioavailable in humans with promising health benefits. More well-designed human explorative studies are needed to validate the health benefits of these superfruits.
Collapse
Affiliation(s)
- Sui Kiat Chang
- a Department of Nutrition and Dietetics , School of Health Sciences, International Medical University , Kuala Lumpur , Malaysia
| | | | - Fereidoon Shahidi
- c Department of Biochemistry , Memorial University of Newfoundland , St. John's , NL , Canada
| |
Collapse
|
17
|
Guo XF, Li ZH, Cai H, Li D. The effects of Lycium barbarum L. (L. barbarum) on cardiometabolic risk factors: a meta-analysis of randomized controlled trials. Food Funct 2017; 8:1741-1748. [PMID: 28401234 DOI: 10.1039/c7fo00183e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effects of Lycium barbarum L. (L. barbarum) on the cardiometabolic risk factors from randomized controlled trials (RCTs) have shown inconsistent results. The present meta-analysis aimed to investigate the effects of L. barbarum supplementation on the cardiometabolic risk factors. A systematic literature search was performed in Chinese National Knowledge Infrastructure (CNKI), PubMed, Scopus, and Wanfang databases updated to March 2017. The mean changes in cardiometabolic risk factors were calculated as the weighted mean difference (WMD) using a random-effects model. Seven RCTs with a total of 548 subjects were included. The pooled estimate showed that L. barbarum intervention significantly reduced the fasting glucose concentrations (-0.36 mmol L-1/-6.5 mg dL-1; 95% confident interval (CI): -0.62, -0.10 mmol L-1/-11.3, -1.8 mg dL-1). In addition, L. barbarum supplementation marginally reduced the concentrations of total cholesterol (TC) (-0.30 mmol L-1/-11.6 mg dL-1; 95% CI: -0.75, 0.15 mmol L-1/-29.0, 5.8 mg dL-1; P = 0.189) and triglyceride (TG) (-0.20 mmol L-1/-17.7 mg dL-1; 95% CI: -0.46, 0.05 mmol L-1/-40.7, 4.4 mg dL-1; P = 0.122), but the summary estimates did not reach statistical significance. No benefit was found in relation to bodyweight and blood pressure. The present meta-analysis provides some evidence that supplemental L. barbarum might have favourable effect on glucose control.
Collapse
Affiliation(s)
- Xiao-Fei Guo
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.
| | | | | | | |
Collapse
|
18
|
Rémond D, Shahar DR, Gille D, Pinto P, Kachal J, Peyron MA, Dos Santos CN, Walther B, Bordoni A, Dupont D, Tomás-Cobos L, Vergères G. Understanding the gastrointestinal tract of the elderly to develop dietary solutions that prevent malnutrition. Oncotarget 2015; 6:13858-98. [PMID: 26091351 PMCID: PMC4546438 DOI: 10.18632/oncotarget.4030] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022] Open
Abstract
Although the prevalence of malnutrition in the old age is increasing worldwide a synthetic understanding of the impact of aging on the intake, digestion, and absorption of nutrients is still lacking. This review article aims at filling the gap in knowledge between the functional decline of the aging gastrointestinal tract (GIT) and the consequences of malnutrition on the health status of elderly. Changes in the aging GIT include the mechanical disintegration of food, gastrointestinal motor function, food transit, chemical food digestion, and functionality of the intestinal wall. These alterations progressively decrease the ability of the GIT to provide the aging organism with adequate levels of nutrients, what contributes to the development of malnutrition. Malnutrition, in turn, increases the risks for the development of a range of pathologies associated with most organ systems, in particular the nervous-, muscoskeletal-, cardiovascular-, immune-, and skin systems. In addition to psychological, economics, and societal factors, dietary solutions preventing malnutrition should thus propose dietary guidelines and food products that integrate knowledge on the functionality of the aging GIT and the nutritional status of the elderly. Achieving this goal will request the identification, validation, and correlative analysis of biomarkers of food intake, nutrient bioavailability, and malnutrition.
Collapse
Affiliation(s)
- Didier Rémond
- UMR 1019, UNH, CRNH Auvergne, INRA, 63000 Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, 63000 Clermont-Ferrand, France
| | - Danit R. Shahar
- Department of Public Health, The S. Daniel Abraham International Center for Health and Nutrition, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Doreen Gille
- Institute for Food Sciences IFS, Agroscope, Federal Department of Economic Affairs, Education and Research EAER, 3003 Berne, Switzerland
| | - Paula Pinto
- Escola Superior Agrária, Insituto Politécnico de Santarém, 2001-904 Santarem, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | | | - Marie-Agnès Peyron
- UMR 1019, UNH, CRNH Auvergne, INRA, 63000 Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, 63000 Clermont-Ferrand, France
| | - Claudia Nunes Dos Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - Barbara Walther
- Institute for Food Sciences IFS, Agroscope, Federal Department of Economic Affairs, Education and Research EAER, 3003 Berne, Switzerland
| | - Alessandra Bordoni
- Department of Agri-Food Sciences and Technologies, University of Bologna, 47521 Cesena, Italy
| | - Didier Dupont
- UMR 1253, Science et Technologie du Lait & de l'Œuf, INRA, 35000 Rennes, France
| | | | - Guy Vergères
- Institute for Food Sciences IFS, Agroscope, Federal Department of Economic Affairs, Education and Research EAER, 3003 Berne, Switzerland
| |
Collapse
|
19
|
Li HY, Ruan YW, Kau PWF, Chiu K, Chang RCC, Chan HHL, So KF. Effect of Lycium barbarum (Wolfberry) on alleviating axonal degeneration after partial optic nerve transection. Cell Transplant 2015; 24:403-17. [PMID: 25622224 DOI: 10.3727/096368915x686896] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Our previous results showed that the polysaccharides extracted from Lycium barbarum (LBP) could delay secondary degeneration of retinal ganglion cell bodies and improve the function of the retinas after partial optic nerve transection (PONT). Although the common degeneration mechanisms were believed to be shared by both neuronal bodies and axons, recently published data from slow Wallerian degeneration mutant (Wld(s)) mice supported the divergence in the mechanisms of them. Therefore, we want to determine if LBP could also delay the degeneration of axons after PONT. Microglia/macrophages were thought to be a source of reactive oxygen species after central nervous system (CNS) injury. After PONT, however, oxidative stress was believed to occur prior to the activation of microglia/macrophages in the areas vulnerable to secondary degeneration both in the optic nerves (ONs) and the retinas. But the results did not take into account the morphological changes of microglia/macrophages after their activation. So we examined the morphology in addition to the response magnitude of microglia/macrophages to determine their time point of activation. In addition, the effects of LBP on the activation of microglia/macrophages were investigated. The results showed that (1) LBP reduced the loss of axons in the central ONs and preserved the g-ratio (axon diameter/fiber diameter) in the ventral ONs although no significant effect was detected in the dorsal ONs; (2) microglia/macrophages were activated in the ONs by 12 h after PONT; (3) LBP decreased the response magnitude of microglia/macrophages 4 weeks after PONT. In conclusion, our results showed that LBP could delay secondary degeneration of the axons, and LBP could also inhibit the activation of microglia/macrophages. Therefore, LBP could be a promising herbal medicine to delay secondary degeneration in the CNS via modulating the function of microglia/macrophages.
Collapse
Affiliation(s)
- Hong-Ying Li
- GHM Institute of CNS Regeneration and Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Cheng J, Zhou ZW, Sheng HP, He LJ, Fan XW, He ZX, Sun T, Zhang X, Zhao RJ, Gu L, Cao C, Zhou SF. An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 9:33-78. [PMID: 25552899 PMCID: PMC4277126 DOI: 10.2147/dddt.s72892] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lycium barbarum berries, also named wolfberry, Fructus lycii, and Goji berries, have been used in the People’s Republic of China and other Asian countries for more than 2,000 years as a traditional medicinal herb and food supplement. L. barbarum polysaccharides (LBPs) are the primary active components of L. barbarum berries and have been reported to possess a wide array of pharmacological activities. Herein, we update our knowledge on the main pharmacological activities and possible molecular targets of LBPs. Several clinical studies in healthy subjects show that consumption of wolfberry juice improves general wellbeing and immune functions. LBPs are reported to have antioxidative and antiaging properties in different models. LBPs show antitumor activities against various types of cancer cells and inhibit tumor growth in nude mice through induction of apoptosis and cell cycle arrest. LBPs may potentiate the efficacy of lymphokine activated killer/interleukin-2 combination therapy in cancer patients. LBPs exhibit significant hypoglycemic effects and insulin-sensitizing activity by increasing glucose metabolism and insulin secretion and promoting pancreatic β-cell proliferation. They protect retinal ganglion cells in experimental models of glaucoma. LBPs protect the liver from injuries due to exposure to toxic chemicals or other insults. They also show potent immunoenhancing activities in vitro and in vivo. Furthermore, LBPs protect against neuronal injury and loss induced by β-amyloid peptide, glutamate excitotoxicity, ischemic/reperfusion, and other neurotoxic insults. LBPs ameliorate the symptoms of mice with Alzheimer’s disease and enhance neurogenesis in the hippocampus and subventricular zone, improving learning and memory abilities. They reduce irradiation- or chemotherapy-induced organ toxicities. LBPs are beneficial to male reproduction by increasing the quality, quantity, and motility of sperm, improving sexual performance, and protecting the testis against toxic insults. Moreover, LBPs exhibit hypolipidemic, cardioprotective, antiviral, and antiinflammatory activities. There is increasing evidence from preclinical and clinical studies supporting the therapeutic and health-promoting effects of LBPs, but further mechanistic and clinical studies are warranted to establish the dose–response relationships and safety profiles of LBPs.
Collapse
Affiliation(s)
- Jiang Cheng
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China ; Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Hui-Ping Sheng
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Lan-Jie He
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Xue-Wen Fan
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Tao Sun
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Ruan Jin Zhao
- Center for Traditional Chinese Medicine, Sarasota, FL, USA
| | - Ling Gu
- School of Biology and Chemistry, University of Pu'er, Pu'er, Yunnan, People's Republic of China
| | - Chuanhai Cao
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Shu-Feng Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
21
|
Ulbricht C, Bryan JK, Costa D, Culwell S, Giese N, Isaac R, Nummy K, Pham T, Rapp C, Rusie E, Weissner W, Windsor RC, Woods J, Zhou S. An Evidence-Based Systematic Review of Goji (Lycium spp.) by the Natural Standard Research Collaboration. J Diet Suppl 2014; 12:184-240. [PMID: 24806435 DOI: 10.3109/19390211.2014.904128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An evidence-based systematic review of goji (Lycium spp.) by the Natural Standard Research Collaboration consolidates the safety and efficacy data available in the scientific literature using a validated, reproducible grading rationale. This article includes written and statistical analysis of clinical trials, plus a compilation of expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing.
Collapse
|
22
|
Du X, Wang J, Niu X, Smith D, Wu D, Meydani SN. Dietary wolfberry supplementation enhances the protective effect of flu vaccine against influenza challenge in aged mice. J Nutr 2014; 144:224-9. [PMID: 24336457 DOI: 10.3945/jn.113.183566] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Current vaccines for influenza do not fully protect the aged against influenza infection. Although wolfberry (goji berry) has been shown to improve immune response, including enhanced antibody production, after vaccination in the aged, it is not known if this effect would translate to better protection after influenza infection, nor is its underlying mechanism well understood. To address these issues, we conducted a study using a 2 × 2 design in which aged male mice (20-22 mo) were fed a control or a 5% wolfberry diet for 30 d, then immunized with an influenza vaccine or saline (control) on days 31 and 52 of the dietary intervention, and finally challenged with influenza A/Puerto Rico/8/34 virus. Mice fed wolfberry had higher influenza antibody titers and improved symptoms (less postinfection weight loss) compared with the mice treated by vaccine alone. Furthermore, an in vitro mechanistic study showed that wolfberry supplementation enhanced maturation and activity of antigen-presenting dendritic cells (DCs) in aged mice, as indicated by phenotypic change in expression of DC activation markers major histocompatibility complex class II, cluster of differentiation (CD) 40, CD80, and CD86, and functional change in DC production of cytokines interleukin-12 and tumor necrosis factor-α as well as DC endocytosis. Also, adoptive transfer of wolfberry-treated bone marrow DCs (loaded with ovalbumin(323-339)-peptide) promoted antigen-specific T cell proliferation as well as interleukin-4 and interferon-γ production in CD4(+) T cells. In summary, our data indicate that dietary wolfberry enhances the efficacy of influenza vaccination, resulting in better host protection to prevent subsequent influenza infection; this effect may be partly attributed to improved DC function.
Collapse
|
23
|
Zhang Q, DU X, Xu Y, Dang L, Xiang L, Zhang J. The effects of Gouqi extracts on Morris maze learning in the APP/PS1 double transgenic mouse model of Alzheimer's disease. Exp Ther Med 2013; 5:1528-1530. [PMID: 23737913 PMCID: PMC3671880 DOI: 10.3892/etm.2013.1006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/08/2013] [Indexed: 11/23/2022] Open
Abstract
The present study examined the effects of Gouqi (Lycium barbarum) on the learning and memory abilities of an APP/PS1 double transgenic mouse model of Alzheimer’s disease. We employed a Morris water maze to examine the spatial memory in this mice line with or without Gouqi extracts treatment. We identified that 2 weeks of oral administration of Gouqi extracts at 10 mg/kg improved the performance of the APP/PS1 mice in the learning and the memory retrieval phases of the Morris maze. In correlation with this, the levels of Aβ(1–42) in hippocampal tissue were reduced by the Gouqi treatment. We conclude that pharmacological treatment with Gouqi extracts is beneficial at the later stages of Alzheimer’s disease.
Collapse
Affiliation(s)
- Qianlin Zhang
- Department of Neurology, Renmin's Hospital, Zhengzhou, Henan 450006
| | | | | | | | | | | |
Collapse
|
24
|
Offord EA, Karagounis LG, Vidal K, Fielding R, Meydani S, Penninger JM. Nutrition and the biology of human ageing: bone health and osteoporosis / sarcopenia / immune deficiency. J Nutr Health Aging 2013; 17:712-6. [PMID: 24097029 DOI: 10.1007/s12603-013-0374-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E A Offord
- J.M. Penninger, IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria. E-mail:
| | | | | | | | | | | |
Collapse
|
25
|
Philippe D, Brahmbhatt V, Foata F, Saudan Y, Serrant P, Blum S, Benyacoub J, Vidal K. Anti-inflammatory effects of Lacto-Wolfberry in a mouse model of experimental colitis. World J Gastroenterol 2012; 18:5351-9. [PMID: 23082051 PMCID: PMC3471103 DOI: 10.3748/wjg.v18.i38.5351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/10/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the anti-inflammatory properties of Lacto-Wolfberry (LWB), both in vitro and using a mouse model of experimental colitis.
METHODS: The effects of LWB on lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) and interleukin (IL)-6 secretion were assessed in a murine macrophage cell line. in vitro assessment also included characterizing the effects of LWB on the activation of NF-E2 related 2 pathway and inhibition of tumor necrosis factor-α (TNF-α)-induced nuclear factor-κB (NF-κB) activation, utilizing reporter cell lines. Following the in vitro assessment, the anti-inflammatory efficacy of an oral intervention with LWB was tested in vivo using a preclinical model of intestinal inflammation. Multiple outcomes including body weight, intestinal histology, colonic cytokine levels and anti-oxidative measures were investigated.
RESULTS: LWB reduced the LPS-mediated induction of ROS production [+LPS vs 1% LWB + LPS, 1590 ± 188.5 relative luminescence units (RLU) vs 389 ± 5.9 RLU, P < 0.001]. LWB was more effective than wolfberry alone in reducing LPS-induced IL-6 secretion in vitro (wolfberry vs 0.5% LWB, 15% ± 7.8% vs 64% ± 5%, P < 0.001). In addition, LWB increased reporter gene expression via the anti-oxidant response element activation (wolfberry vs LWB, 73% ± 6.9% vs 148% ± 28.3%, P < 0.001) and inhibited the TNF-α-induced activation of the NF-κB pathway (milk vs LWB, 10% ± 6.7% vs 35% ± 3.3%, P < 0.05). Furthermore, oral supplementation with LWB resulted in a reduction of macroscopic (-LWB vs +LWB, 5.39 ± 0.61 vs 3.66 ± 0.59, P = 0.0445) and histological scores (-LWB vs +LWB, 5.44 ± 0.32 vs 3.66 ± 0.59, P = 0.0087) in colitic mice. These effects were associated with a significant decrease in levels of inflammatory cytokines such as IL-1β (-LWB vs +LWB, 570 ± 245 μg/L vs 89 ± 38 μg/L, P = 0.0106), keratinocyte-derived chemokine/growth regulated protein-α (-LWB vs +LWB, 184 ± 49 μg/L vs 75 ± 20 μg/L, P = 0.0244), IL-6 (-LWB vs +LWB, 318 ± 99 μg/L vs 117 ± 18 μg/L, P = 0.0315) and other pro-inflammatory proteins such as cyclooxygenase-2 (-LWB vs +LWB, 0.95 ± 0.12 AU vs 0.36 ± 0.11 AU, P = 0.0036) and phosphorylated signal transducer and activator of transcription-3 (-LWB vs +LWB, 0.51 ± 0.15 AU vs 0.1 ± 0.04 AU, P = 0.057). Moreover, antioxidant biomarkers, including expression of gene encoding for the glutathione peroxidase, in the colon and the plasma anti-oxidant capacity were significantly increased by supplementation with LWB (-LWB vs +LWB, 1.2 ± 0.21 mmol/L vs 2.1 ± 0.19 mmol/L, P = 0.0095).
CONCLUSION: These results demonstrate the anti-inflammatory properties of LWB and suggest that the underlying mechanism is at least in part due to NF-κB inhibition and improved anti-oxidative capacity.
Collapse
|
26
|
Bodeker G. Integrative oncology meets immunotherapy: new prospects for combination therapy grounded in Eastern medical knowledge. Chin J Integr Med 2012; 18:652-62. [PMID: 22936318 DOI: 10.1007/s11655-012-1201-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Indexed: 12/21/2022]
Abstract
As cancer rates rise globally, standard care is being questioned; new approaches involving immune therapies are emerging. With this shift comes a corresponding shift in the use and potential of herbal medicines and extracts. The focus of this article, which has evolved from a presentation at the Second Beijing International Symposium on Integrative Medicine (BISIM May 19-20, 2012), is particularly on Chinese medicine, but is generalizable to Eastern medicine more broadly and to other herbal traditions. Until recently, herbal and related treatments have been used as adjuvants to conventional care - for reducing side-effects, enhancing cytotoxicity, and sometimes, undesirably counteracting the efficacy of chemotherapy and radiation. Now, in the context of a new class of immune-based cancer therapies, herbal and other complementary modalities are looked at as enhancers of the body's immunity.
Collapse
Affiliation(s)
- Gerard Bodeker
- Global Initiative for Traditional Systems (GIFTS) of Health, Oxford, UK.
| |
Collapse
|
27
|
Ren Z, Na L, Xu Y, Rozati M, Wang J, Xu J, Sun C, Vidal K, Wu D, Meydani SN. Dietary supplementation with lacto-wolfberry enhances the immune response and reduces pathogenesis to influenza infection in mice. J Nutr 2012; 142:1596-602. [PMID: 22739381 DOI: 10.3945/jn.112.159467] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite the availability of vaccines, influenza is a considerable public health problem, which emphasizes the need for development of additional strategies to enhance host defense against influenza. Wolfberry, or goji berry, long used as a medicinal food in China, has recently been shown to improve immune response in mice. Because immune response plays a key role in the body's defense against pathogens, we hypothesized that wolfberry may increase host resistance to influenza infection by enhancing immune response. To test this hypothesis, we fed adult mice (4 mo old) a milk-based preparation of wolfberry called Lacto-Wolfberry (LWB) for 4 wk and then infected them with influenza A/Puerto Rico/8/34 (H1N1) while continuing the same experimental diets. Viral titer, lung pathology, and immune response were determined at different time points postinfection. LWB supplementation prevented infection-induced weight loss and reduced lung pathology on days 6 and 9 postinfection (P < 0.05). LWB-fed mice showed overall, significantly higher concanavalin A-induced IL-2 production (P < 0.05). Furthermore, we found positive correlations between weight loss and lung viral titer, pathology score, TNFα, and IL-6 production as well as negative correlations with T cell proliferation and IL-2 production (all P ≤ 0.05). These results indicate that LWB supplementation can attenuate symptoms and pathology of influenza infection by decreasing inflammatory cytokines in lungs while enhancing systemic T cell-mediated function as measured by their ability to produce IL-2.
Collapse
Affiliation(s)
- Zhihong Ren
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|