1
|
Javadi MM, Soleimani N, Zandi A. Enhancing breast Cancer immunotherapy using gold nanoparticles carrying tumor antigens. Sci Rep 2025; 15:16747. [PMID: 40369128 DOI: 10.1038/s41598-025-97343-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/03/2025] [Indexed: 05/16/2025] Open
Abstract
Cancer immunotherapy combined with standard treatments could provide an effective approach to enhancing anti-tumor responses. Activating antigen-presenting cells, such as dendritic cells (DCs), plays a central role in generating robust anti-tumor immune responses. Freund's adjuvant together with nanoparticles (NPs) and tumor antigens, promotes significant immune responses and shift antigen-specific T-cell activity from a Th2 to a Th1 response. Herein, Freund's adjuvant was combined with gold nanoparticles and tumor cell lysate (TCL). The AuNPs exhibited a spherical morphology. The in vitro release studies demonstrated a continuous and gradual release of AuNPs and TCL from Freund's adjuvant. The immunogenicity studies revealed high levels of cytokine secretion for IFN-γ, IL- 1, IL- 18, and TCD8+, along with reduced levels of IL- 4 cytokine in immunized mouse models in various treatment groups. In the prophylactic group, tumor growth was delayed, while in the therapeutic group, mouse models had more than 85% reduction within 31 days compared to the control group. The tumor size in the combination strategies, shrank to ~ 86% of its first size in just 17 days after treatment, while the control group tumor size increased by approximately 52%. These data suggest that the proposed drug system is an effective anti-tumor vaccine and also potentiate innate or adaptive immune responses for cancer therapy.
Collapse
Affiliation(s)
- Mahtab Moshref Javadi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Ashkan Zandi
- Nano-bioelectronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Eng, College of Engineering, Nano Electronic Center of Excellence, University of Tehran, P.O. Box: 14395 - 515, Tehran, Iran.
| |
Collapse
|
2
|
Zhang H, Liu Z, Li Y, Tao Z, Shen L, Shang Y, Huang X, Liu Q. Adjuvants for Helicobacter pylori vaccines: Outer membrane vesicles provide an alternative strategy. Virulence 2024; 15:2425773. [PMID: 39501551 PMCID: PMC11583678 DOI: 10.1080/21505594.2024.2425773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/12/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that colonizes the human stomach, leading to various gastric diseases. The efficacy of traditional treatments, such as bismuth-based triple and quadruple therapies, has been reduced due to increasing antibiotic resistance and drug toxicity. As a result, the development of effective vaccines was proposed to control H. pylori-induced infections; however, one of the primary challenges is the lack of potent adjuvants. Although various adjuvants, both toxic (e.g. cholera toxin and Escherichia coli heat-labile toxin) and non-toxic (e.g. aluminum and propolis), have been tested for vaccine development, no clinically favorable adjuvants have been identified due to high toxicity, weak immunostimulatory effects, inability to elicit specific immune responses, or latent side effects. Outer membrane vesicles (OMVs), mainly secreted by gram-negative bacteria, have emerged as promising candidates for H. pylori vaccine adjuvants due to their potential applications. OMVs enhance mucosal immunity and Th1 and Th17 cell responses, which have been recognized to have protective effects and guarantee safety and efficacy. The development of an effective vaccine against H. pylori infection is ongoing, with clinical trials expected in the future.
Collapse
Affiliation(s)
- Hanchi Zhang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Zhili Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yi Li
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Ziwei Tao
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lu Shen
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yinpan Shang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Mabrouk MT, Zhang H, Zidan AA, Kilian HI, Huang WC, Jahagirdar D, Ortega J, Xia J, Lovell JF. Cross-linked Histone as a Nanocarrier for Gut Delivery of Hydrophobic Cargos. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26712-26720. [PMID: 34082523 DOI: 10.1021/acsami.1c04134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Delivering hydrophobic molecules through the intestine can be challenging due to limited cargo solubility and the harsh biochemical environment of the stomach. Here, we show that a protein-based nanocarrier system based on the abundant protein histone and the natural cross-linker genipin can deliver hydrophobic cargos, such as dyes and therapeutic molecules, through the gastrointestinal tract. Using hydrophobic near-infrared dyes as model cargos, a panel of potential protein carriers was screened, and histone was identified as the one with the best loading capability. The resulting nanoparticles had a positive ζ potential and were mucoadhesive. Cross-linking of the amine-rich nanocarrier with genipin was particularly effective relative to other proteins and increased the stability of the system during incubation with pepsin. Cross-linking was required for successful delivery of a hydrophobic dye to the colon of mice after oral gavage. To assess the platform for therapeutic delivery, another hydrophobic model compound, curcumin, was delivered using cross-linked histone nanoparticles in a murine colitis model and significantly alleviated the disease. Taken together, these results demonstrate that histone is a cationic, mucoadhesive, and cross-linkable protein nanocarrier that can be considered for oral delivery.
Collapse
Affiliation(s)
- Moustafa T Mabrouk
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Huijuan Zhang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Asmaa A Zidan
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria 21561, Egypt
| | - Hailey I Kilian
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
4
|
Peng X, Zhang R, Wang C, Yu F, Yu M, Chen S, Fan Q, Xi Y, Duan G. E. coli Enterotoxin LtB Enhances Vaccine-Induced Anti- H. pylori Protection by Promoting Leukocyte Migration into Gastric Mucus via Inflammatory Lesions. Cells 2019; 8:982. [PMID: 31461854 PMCID: PMC6770474 DOI: 10.3390/cells8090982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Current studies indicate that the anti-H. pylori protective efficacy of oral vaccines to a large extent depends on using mucosal adjuvants like E. coli heat-lable enterotoxin B unit (LtB). However, the mechanism by which Th17/Th1-driven cellular immunity kills H. pylori and the role of LtB remains unclear. Here, two L.lactis strains, expressing H. pylori NapA and LtB, respectively, were orally administrated to mice. As observed, the administration of LtB significantly enhanced the fecal SIgA level and decreased gastric H. pylori colonization, but also markedly aggravated gastric inflammatory injury. Both NapA group and NapA+LtB group had elevated splenocyte production of IL-8, IL-10, IL-12, IL-17, IL-23 and INF-γ. Notably, gastric leukocytes' migration or leakage into the mucus was observed more frequently in NapA+LtB group than in NapA group. This report is the first that discusses how LtB enhances vaccine-induced anti-H. pylori efficacy by aggravating gastric injury and leukocytes' movement into the mucus layer. Significantly, it brings up a novel explanation for the mechanism underlying mucosal cellular immunity destroying the non-invasive pathogens. More importantly, the findings suggest the necessity to further evaluate LtB's potential hazards to humans before extending its applications. Thus, this report can provide considerable impact on the fields of mucosal immunology and vaccinology.
Collapse
Affiliation(s)
- Xiaoyan Peng
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong 675005, China
| | - Rongguang Zhang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Chen Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Feiyan Yu
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Mingyang Yu
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Qingtang Fan
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanlin Xi
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Sun H, Yuan H, Tan R, Li B, Guo G, Zhang J, Jing H, Qin Y, Zhao Z, Zou Q, Wu C. Immunodominant antigens that induce Th1 and Th17 responses protect mice against Helicobacter pylori infection. Oncotarget 2018; 9:12050-12063. [PMID: 29552292 PMCID: PMC5844728 DOI: 10.18632/oncotarget.23927] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori has infected more than half of the world's population, causing gastritis, gastric ulcers, gastric mucosa-associated lymphoid tissue lymphoma and gastric cancer. The oral recombinant Helicobacter pylori vaccine currently used has made great progress in addressing this problem, however, its efficacy and longevity still need to be improved. Th1 and Th17 cells play essential roles in local protection against Helicobacter pylori in the stomach mucosa. Additionally, protective immunodominant antigens are the preferred for a vaccine. In this work, Helicobacter pylori whole cell lysate was separated into 30 groups based on molecular weight by molecular sieve chromatography. The group best promoting CD4 T cells proliferation was selected and evaluated by immunization. The detail proteins were then analyzed by LC-MS/MS and expressed in Escherichia coli. Eleven proteins were selected and the dominant ones were demonstrated. As a result, three protective immunodominant antigens, inosine 5'-monophosphate dehydrogenase, type II citrate synthase, and urease subunit beta, were selected from Helicobacter pylori whole cell. Two of them (inosine 5'-monophosphate dehydrogenase and type II citrate synthase) were newly identified, and one (urease subunit beta) was confirmed as previously reported. The mixture of the three antigens showed satisfactory protective efficiency, with significant lower H. pylori colonization level (P < 0.001) and stronger Th1 (P < 0.001) and Th17 (P < 0.001) responses than PBS control group. Thus, inosine 5'-monophosphate dehydrogenase, type II citrate synthase, and urease subunit beta are three protective antigens inducing dominant Th1 and Th17 responses to defend against Helicobacter pylori infection.
Collapse
Affiliation(s)
- Heqiang Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Hanmei Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Ranjing Tan
- Department of Dermatology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Bin Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Gang Guo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Yi Qin
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Chao Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
6
|
Liu W, Tan Z, Liu H, Zeng Z, Luo S, Yang H, Zheng L, Xi T, Xing Y. Nongenetically modified Lactococcus lactis-adjuvanted vaccination enhanced innate immunity against Helicobacter pylori. Helicobacter 2017; 22. [PMID: 28805287 DOI: 10.1111/hel.12426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Gram-positive enhancer matrix particles (GEM) produced by Lactococcus lactis can enhance vaccine-induced immune response. However, the mechanism under which this adjuvant mounts the efficacy of orally administered vaccines remains unexplored. MATERIALS AND METHODS We used a prophylactic mice model to investigate the mechanism of GEM-adjuvanted vaccination. Helicobacter pylori urease-specific antibody response was monitored and detected in murine serum by ELISA. Urease-specific splenic cytokine profile was examined. Gastric inflammatory responses were measured on day 43 or 71 by quantitative real-time PCR, flow cytometry and histology. RESULTS We found that GEM enhanced the efficiency of oral H. pylori vaccine by promoting innate immunity. The vaccine CUE-GEM composed of GEM particles and recombinant antigen CTB-UE provided protection of immunized mice against H. pylori insult. The protective response was associated with induction of postimmunization gastritis and local Th1/Th17 cell-medicated immune response. We showed that innate inflammatory responses including neutrophil chemokines CXCL1-2, neutrophils, and antimicrobial proteins S100A8 and MUC1 were significantly elevated. Within all infected mice, S100A8 and MUC1 levels were negatively correlated with H. pylori burden. Strikingly, mice receiving GEM also show reduction of colonization, possibly through natural host response pathways to recruit CD4+ T cells and promote S100A8 expression. CONCLUSIONS These findings suggest that GEM-based vaccine may impact Th1/Th17 immunity to orchestrate innate immune response against H. pylori infection.
Collapse
Affiliation(s)
- Wei Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Zhoulin Tan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Hai Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Zhiqin Zeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Shuanghui Luo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Huimin Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Suganya K, Prem Kumar A, Sekar B, Sundaran B. Protection of mice against gastric colonization of Helicobacter pylori by therapeutic immunization with systemic whole cell inactivated vaccines. Biologicals 2017; 45:39-46. [DOI: 10.1016/j.biologicals.2016.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022] Open
|
8
|
Aluminum induces inflammatory and proteolytic alterations in human monocytic cell line. J Inorg Biochem 2015; 152:190-8. [DOI: 10.1016/j.jinorgbio.2015.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022]
|
9
|
Immunodominant epitope-specific Th1 but not Th17 responses mediate protection against Helicobacter pylori infection following UreB vaccination of BALB/c mice. Sci Rep 2015; 5:14793. [PMID: 26434384 PMCID: PMC4593181 DOI: 10.1038/srep14793] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) infects more than half of the world’s population, causing chronic gastritis, peptic ulcers and gastric cancer. Urease B subunit (UreB), a conserved protein of H. pylori, is capable of inducing specific CD4+ T-cell responses and provides protection against this infection. Previous studies have confirmed the effectiveness of rUreB subunit vaccines in generating CD4+ T-cell-mediated protection, but less is known regarding the roles of different subtypes of T-cell immunity, such as Th1, Th2 and Th17, particularly the immunodominant epitopes inducing specific CD4+ T-cell responses, in vaccine-mediated protection. In this study, we demonstrated that the vaccination of BALB/c mice with rUreB resulted in significant antigen-specific Th1 and Th17 immune responses. Importantly, two novel Th epitopes, UreB317–329 and UreB409–421, which are recognized by a major population of CD4+ T cells, were identified in immunized mice. Our results demonstrated that two novel epitopes can simultaneously induce Th1 and Th17 immune responses; however, only the epitope vaccine-induced CD4+ T-cells secreting IFN-γ mediated the protection against H. pylori; cells secreting IL-17A did not. Taken together, our results suggest that two novel immunodominant epitopes can induce Th1 and Th17 immune responses, but only the induced Th1 lymphocytes mediate protection against H. pylori.
Collapse
|
10
|
Blanchard TG, Czinn SJ. Current Status and Prospects for a Helicobacter pylori Vaccine. Gastroenterol Clin North Am 2015; 44:677-89. [PMID: 26314677 DOI: 10.1016/j.gtc.2015.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Helicobacter pylori infection contributes to a variety of gastric diseases. H pylori-associated gastric cancer is diagnosed in advanced stages, and a vaccine against H pylori is desirable in parts of the world where gastric cancer remains a common form of cancer. Some of the strategies of vaccine development used in animals have been tested in several phase 3 clinical trials; these trials have been largely unsuccessful, although H pylori-specific immune responses have been induced. New insights into promoting immunity and overcoming the immunosuppressive nature of H pylori infection are required to improve the efficacy of an H pylori vaccine.
Collapse
Affiliation(s)
- Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Moyat M, Velin D. Immune responses to Helicobacter pylori infection. World J Gastroenterol 2014; 20:5583-5593. [PMID: 24914318 PMCID: PMC4024767 DOI: 10.3748/wjg.v20.i19.5583] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/13/2013] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is one of the most common infections in human beings worldwide. H. pylori express lipopolysaccharides and flagellin that do not activate efficiently Toll-like receptors and express dedicated effectors, such as γ-glutamyl transpeptidase, vacuolating cytotoxin (vacA), arginase, that actively induce tolerogenic signals. In this perspective, H. pylori can be considered as a commensal bacteria belonging to the stomach microbiota. However, when present in the stomach, H. pylori reduce the overall diversity of the gastric microbiota and promote gastric inflammation by inducing Nod1-dependent pro-inflammatory program and by activating neutrophils through the production of a neutrophil activating protein. The maintenance of a chronic inflammation in the gastric mucosa and the direct action of virulence factors (vacA and cytotoxin-associated gene A) confer pro-carcinogenic activities to H. pylori. Hence, H. pylori cannot be considered as symbiotic bacteria but rather as part of the pathobiont. The development of a H. pylori vaccine will bring health benefits for individuals infected with antibiotic resistant H. pylori strains and population of underdeveloped countries.
Collapse
|
12
|
Ginsenoside Re as an adjuvant to enhance the immune response to the inactivated rabies virus vaccine in mice. Int Immunopharmacol 2014; 20:283-9. [PMID: 24680943 DOI: 10.1016/j.intimp.2014.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/25/2014] [Accepted: 03/10/2014] [Indexed: 11/22/2022]
Abstract
The inactivated rabies virus vaccine (RV) is a relatively expensive vaccine, prone to failure in some cases. Ginsenoside Re (Re) is a saponin isolated from Panax ginseng, and has an adjuvant property. Here the adjuvant effect of Re to improve the immune response to the RV is evaluated in mice. ICR mice were immunized with saline, 2.50mg/kg Re, 20μl RV, 100μl RV, or 20μl of RV adjuvanted with Re (1.25, 2.50 or 5.00mg/kg). Different time points after boosting, we measured serum antibodies in blood samples and separated splenocytes to detect lymphocyte proliferation and the production of IL-4, IL-10, IL-12, and IFN-γ in vitro. We also compared immunizations containing 20μl RV and 20μl RV adjuvanted with Re (5.00mg/kg) for the expression of CD4(+) and CD8(+) T-cell subsets at different time points. Results indicated that co-administration of Re significantly enhanced serum antibody titers, increased the CD4(+):CD8(+) ratio, and enhanced both proliferation responses and IL-4, IL-10, IL-12 and IFN-γ secretions. Both Th1 and Th2 immune responses were activated. The supplementation of the Re (5.00mg/kg) to 20μl of RV significantly amplified serum antibody responses and Th1/Th2 responses inducing similar protection as did 100μl of RV. This suggests that Re could be used to reduce the dose, and therefore the cost, of the RV to achieve the same effective protection. Re merits further studies for use with vaccines of mixed Th1/Th2 immune responses.
Collapse
|
13
|
Sun P, Wang JQ, Zhang YT, Zhao SG. Evaluating the immune responses of mice to subcutaneous immunization with Helicobacter pylori urease B subunit. J Anim Sci Biotechnol 2014; 5:14. [PMID: 24558967 PMCID: PMC3976096 DOI: 10.1186/2049-1891-5-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 02/03/2014] [Indexed: 01/06/2023] Open
Abstract
Background Helicobacter pylori, a gram-negative bacterial pathogen that expresses a strong urease activity, is associated with the development of gastroduodenal disease. Urease B subunit, one of the two structural subunits of urease, was expressed in E. coli BL21 (DE3) strain. The objective of this study was to evaluate the effects of Helicobacter pylori urease B subunit on the immune responses in mice by subcutaneous immunization. Methods The mice were immunized and boosted with Helicobacter pylori urease B subunit antigen subcutaneously three times with 2-wk intervals between the immunizations and boosters. The mice in the control group were immunized with PBS. The adjuvant group received PBS containing complete/incomplete freund’s adjuvant identical to antigen group without Helicobacter pylori urease B subunit antigen. Four weeks after the final booster, all the mice were sacrificed. Blood was collected on d 0, 14, 28 and 56 before immunization, booster and sacrifice, respectively. Immediately after sacrifice, gastric liquid and spleen were collected for antibody and cytokine analyses. Results Urease B subunit increased the concentrations of serum and gastric anti-urease B antigen specific IgG, and the levels of interleukin-4 and interferon-γ in splenocytes of the mice (P < 0.05). Conclusions This study demonstrated that recombinant urease B subunit can induce systemic and local immune responses in mice by subcutaneous immunization, which might be used as the effective component of vaccine against Helicobacter pylori.
Collapse
Affiliation(s)
| | - Jia-Qi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No,2 Yuanmingyuan West Road, Beijing 100193, P, R, China.
| | | | | |
Collapse
|
14
|
Zawahir S, Czinn SJ, Nedrud JG, Blanchard TG. Vaccinating against Helicobacter pylori in the developing world. Gut Microbes 2013; 4:568-76. [PMID: 24253617 PMCID: PMC3928166 DOI: 10.4161/gmic.27093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Helicobacter pylori infects more than half the world's population and in developing nations the incidence can be over 90%. The morbidity and mortality associated with H. pylori-associated diseases including ulcers and gastric cancer therefore, disproportionately impact the developing world. Mice have been used extensively to demonstrate the feasibility of developing a vaccine for H. pylori infection, and for testing antigens, routes of immunization, dose, and adjuvants. These successes however, have not translated well in clinical trials. Although there are examples where immune responses have been activated, there are few instances of achieving a reduced bacterial load. In vivo and in vitro analyses in both mice and humans demonstrates that the host responds to H. pylori infection through the activation of immunoregulatory mechanisms designed to suppress the anti-H. pylori response. Improved vaccine efficacy therefore, will require the inclusion of factors that over-ride or re-program these immunoregulatory rersponse mechanisms.
Collapse
Affiliation(s)
- Shamila Zawahir
- Department of Pediatrics; University of Maryland School of Medicine; Baltimore, MD USA
| | - Steven J Czinn
- Department of Pediatrics; University of Maryland School of Medicine; Baltimore, MD USA
| | - John G Nedrud
- Department of Pathology; Case Western Reserve University School of Medicine; Cleveland, OH USA
| | - Thomas G Blanchard
- Department of Pediatrics; University of Maryland School of Medicine; Baltimore, MD USA,Correspondence to: Thomas G Blanchard,
| |
Collapse
|
15
|
Choudhari SP, Pendleton KP, Ramsey JD, Blanchard TG, Picking WD. A systematic approach toward stabilization of CagL, a protein antigen from Helicobacter pylori that is a candidate subunit vaccine. J Pharm Sci 2013; 102:2508-19. [PMID: 23794457 PMCID: PMC3903303 DOI: 10.1002/jps.23643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 12/14/2022]
Abstract
An important consideration in the development of subunit vaccines is the loss of activity caused by physical instability of the protein. Such instability often results from suboptimal solution conditions related to pH and temperature. Excipients can help to stabilize vaccines, but it is important to screen and identify excipients that adequately contribute to stabilization of a given formulation. CagL is a protein present in strains of Helicobacter pylori (H. pylori) that possess type IV secretion systems. It contributes to bacterial adherence via α5β1 integrin, thereby making it an attractive subunit vaccine candidate. We characterized the stability of CagL in different pH and temperature conditions using a variety of spectroscopic techniques. Stability was assessed in terms of transition temperature with the accumulated data, and then incorporated into an empirical phase diagram (EPD) that provided an overview of CagL physical stability. These analyses indicated maximum CagL stability at pH 4-6 up to 40°C in the absence of excipient. Using this EPD analysis, aggregation assays were developed to screen a panel of excipients with some found to inhibit CagL aggregation. Candidate stabilizers were selected to confirm their enhanced stabilizing effect. These analyses will help in the formulation of a stable vaccine against H. pylori.
Collapse
Affiliation(s)
- Shyamal P. Choudhari
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK
| | - Kirk P. Pendleton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK
| | - Joshua D. Ramsey
- Department of Chemical Engineering, Oklahoma State University, Stillwater, OK
| | - Thomas G. Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD
| | - William D. Picking
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK
| |
Collapse
|
16
|
Li Y, Jiang Y, Xi Y, Zhang L, Luo J, He D, Zeng S, Ning Y. Identification and characterization of H-2d restricted CD4+ T cell epitopes on Lpp20 of Helicobacter pylori. BMC Immunol 2012; 13:68. [PMID: 23234363 PMCID: PMC3534527 DOI: 10.1186/1471-2172-13-68] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 11/30/2012] [Indexed: 12/12/2022] Open
Abstract
Background Previous investigation has demonstrated that CD4+ T cells play a crucial role in effective immunity against Helicobacter pylori (H.pylori) infection. It has been well proved that Lpp20 is one of major protective antigens that induce immune responses after H.pylori invades host. Therefore it is valuable to identify CD4+ T cell epitopes on Lpp20, which is uncharacterized. Methods Putative epitopes of H-2d restricted CD4+ T cell on Lpp20 of H.pylori were predicted by the SYFPEITHI algorithm and then eight hypothetical epitope peptides were synthesized. After BALB/c mice were primed with recombinant Lpp20, splenic CD4+ T cells were isolated and stimulated with synthesized peptides to measure T cell proliferation and MHC restriction. Cytokine profile was determined by ELISA and real-time PCR. Two identified epitopes were used to immunize mice to investigate CD4+ T cell response by flow cytometry. Results Two of eight peptides were able to stimulate CD4+ T cell proliferation and were mapped to residues 83-97aa and 58-72aa on Lpp20 respectively. These two peptides additively stimulated Th1 cells to secrete IFN-γ. The percentage of CD4+ T cell from mice immunized with two identified epitopes respectively was higher than the control group. Conclusion The identification and characterization of two CD4+ T cell epitopes of Lpp20 helps understand the protective immunity of Lpp20 in H.pylori infection and design effective epitope vaccines against H.pylori.
Collapse
Affiliation(s)
- Yan Li
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, North1838 Guangzhou Road, Guangzhou 510515, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Cain DW, Sanders SE, Cunningham MM, Kelsoe G. Disparate adjuvant properties among three formulations of "alum". Vaccine 2012. [PMID: 23200935 DOI: 10.1016/j.vaccine.2012.11.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aluminum adjuvants, commonly referred to as "alum," are the most widespread immunostimulants in human vaccines. Although the mechanisms that promote humoral responses to alum-adsorbed antigens are still enigmatic, alum is thought to form antigen depots and induce inflammatory signals that, in turn, promote antibody production. It was recently noted that Imject(®) alum, a commercial aluminum-containing adjuvant commonly used in animal studies, is not the physicochemical equivalent of aluminum adjuvant present in human vaccines. This difference raises concerns about the use of Imject(®) alum in animal research as a model for approved aluminum adjuvants. Here, we compared the capacity of Imject(®) alum, Alhydrogel(®), and a traditional alum-antigen precipitate to induce humoral responses in mice to the hapten-carrier antigen, NP-CGG [(4-hydroxy-3-nitrophenyl)acetyl-chicken γ-globulin]. The magnitude of humoral responses elicited by Alhydrogel(®) and precipitated alum was significantly greater than that induced by Imject(®) alum. The strength of the humoral responses elicited by different alum formulations was correlated with the quantity of pro-inflammatory cytokines induced and the numbers of inflammatory cells at the site of immunization. Moreover, Imject(®) exhibited a severely reduced capacity to adsorb protein antigens compared to Alhydrogel(®) and precipitated alum. These findings reveal substantial differences in the immunostimulatory properties of distinct alum preparations, an important point of consideration for the evaluation of novel adjuvants, the assessment of new alum-based vaccines, and in mechanistic studies of adjuvanticity.
Collapse
Affiliation(s)
- Derek W Cain
- Department of Immunology, Duke University, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
18
|
Chen J, Lin L, Li N, She F. Enhancement of Helicobacter pylori outer inflammatory protein DNA vaccine efficacy by co-delivery of interleukin-2 and B subunit heat-labile toxin gene encoded plasmids. Microbiol Immunol 2012; 56:85-92. [PMID: 22150716 DOI: 10.1111/j.1348-0421.2011.00409.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Development of an effective vaccine for controlling H. pylori-associated infection, which is present in about half the people in the world, is a priority. The H. pylori outer inflammatory protein (oipA) has been demonstrated to be a potential antigen for a vaccine. In the present study, use of oipA gene encoded construct (poipA) for C57BL/6 mice vaccination was investigated. Whether co-delivery of IL-2 gene encoded construct (pIL-2) and B subunit heat-labile toxin of Escherichia coli gene encoded construct (pLTB) can modulate the immune response and enhance DNA vaccine efficacy was also explored. Our results demonstrated that poipA administered intradermally ('gene gun' immunization) promoted a strong Th2 immune response, whereas co-delivery of either pIL-2 or pLTB adjuvant elicited a Th1-biased immune response. PoipA administered with both pIL-2 and pLTB adjuvants promoted a strong Th1 immune response. Regardless of the different immune responses promoted by the various vaccination regimes, all immunized mice had smaller bacterial loads after H. pylori challenge than did PBS negative and pVAX1 mock controls. Co-delivery of adjuvant(s) enhances poipA DNA vaccine efficacy by shifting the immune response from being Th2 to being Th1-biased, which results in a greater reduction in bacterial load after H. pylori challenge. Both prophylactic and therapeutic vaccination can achieve sterile immunity in some subjects.
Collapse
Affiliation(s)
- Jiansen Chen
- Clinical Laboratory Department, Fujian Medical University Affiliated Union Hospital, Fuzhou 350001, Fujian, China
| | | | | | | |
Collapse
|
19
|
Chen J, Lin M, Li N, Lin L, She F. Therapeutic vaccination with Salmonella-delivered codon-optimized outer inflammatory protein DNA vaccine enhances protection in Helicobacter pylori infected mice. Vaccine 2012; 30:5310-5. [PMID: 22749593 DOI: 10.1016/j.vaccine.2012.06.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/31/2012] [Accepted: 06/16/2012] [Indexed: 02/07/2023]
Abstract
Vaccination had demonstrated as an alternative way to combat Helicobacter pylori challenge. In the present study, codon-optimized outer inflammatory protein gene (oipA) for Mus species codon usage, the inclusion of optimal Kozak sequence, and modified of GC content was applied to construct a novel DNA construct. The Salmonella-delivered wild type oipA construct (SL7207/poipA) and the Salmonella-delivered codon-optimized oipA construct (SL7207/poipA-opt) were prepared and their therapeutic efficacy was evaluated in H. pylori-infected mice. The codon-optimized oipA construct (poipA-opt) expressed almost six-fold higher protein than that of wild type construct (poipA) as normalized to the β-actin expression in AGS cells. Oral therapeutic immunization with SL7207/poipA-opt significantly eliminated H. pylori colonization in the stomach; and protection was related to a robust Th1/Th2 immune response. Therefore, our results suggested that fine therapeutic efficacy was related to sufficient expression of the antigen. It is supposed that codon-optimized oipA gene improves protein expression and consequently enhances the immunogenicity of DNA vaccine, which resulted in a significant reduction of bacterial loads in H. pylori infected mice. The Salmonella-delivered codon-optimized DNA construct could be a candidate vaccine against H. pylori for the clinical application.
Collapse
Affiliation(s)
- Jiansen Chen
- Department of Hospital Infection Control, Union Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China
| | | | | | | | | |
Collapse
|
20
|
Alkyl hydroperoxide reductase: a candidate Helicobacter pylori vaccine. Vaccine 2012; 30:3876-84. [PMID: 22512976 DOI: 10.1016/j.vaccine.2012.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/20/2012] [Accepted: 04/01/2012] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori (H. pylori) is the most important etiological agent of chronic active gastritis, peptic ulcer disease and gastric cancer. The aim of this study was to evaluate the efficacy of alkyl hydroperoxide reductase (AhpC) and mannosylated AhpC (mAhpC) as candidate vaccines in the C57BL/6J mouse model of H. pylori infection. Recombinant AhpC was cloned, over-expressed and purified in an unmodified form and was also engineered to incorporate N and C-terminal mannose residues when expressed in the yeast Pichia pastoris. Mice were immunized systemically and mucosally with AhpC and systemically with mAhpC prior to challenge with H. pylori. Serum IgG responses to AhpC were determined and quantitative culture was used to determine the efficacy of vaccination strategies. Systemic prophylactic immunization with AhpC/alum and mAhpC/alum conferred protection against infection in 55% and 77.3% of mice, respectively. Mucosal immunization with AhpC/cholera toxin did not protect against infection and elicited low levels of serum IgG in comparison with systemic immunization. These data support the use of AhpC as a potential vaccine candidate against H. pylori infection.
Collapse
|
21
|
Hitzler I, Oertli M, Becher B, Agger EM, Müller A. Dendritic cells prevent rather than promote immunity conferred by a helicobacter vaccine using a mycobacterial adjuvant. Gastroenterology 2011; 141:186-96, 196.e1. [PMID: 21569773 DOI: 10.1053/j.gastro.2011.04.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/27/2011] [Accepted: 04/08/2011] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Immunization against the gastric bacterium Helicobacter pylori could prevent many gastric cancers and other disorders. Most vaccination protocols used in preclinical models are not suitable for humans. New adjuvants and a better understanding of the correlates and requirements for vaccine-induced protection are needed to accelerate development of vaccines for H pylori. METHODS Vaccine-induced protection against H pylori infection and its local and systemic immunological correlates were assessed in animal models, using cholera toxin or CAF01 as adjuvants. The contribution of B cells, T-helper (Th)-cell subsets, and dendritic cells to H pylori-specific protection were analyzed in mice. RESULTS Parenteral administration of a whole-cell sonicate, combined with the mycobacterial cell-wall-derived adjuvant CAF01, protected against infection with H pylori and required cell-mediated, but not humoral, immunity. The vaccine-induced control of H pylori was accompanied by Th1 and Th17 responses in the gastric mucosa and in the gut-draining mesenteric lymph nodes; both Th subsets were required for protective immunity against H pylori. The numbers of memory CD4+ T cells and neutrophils in gastric tissue were identified as the best correlates of protection. Systemic depletion of dendritic cells or regulatory T cells during challenge infection significantly increased protection by overriding immunological tolerance mechanisms activated by live H pylori. CONCLUSIONS Parenteral immunization with a Helicobacter vaccine using a novel mycobacterial adjuvant induces protective immunity against H pylori that is mediated by Th1 and Th17 cells. Tolerance mechanisms mediated by dendritic cells and regulatory T cells impair H pylori clearance and must be overcome to improve immunity.
Collapse
Affiliation(s)
- Iris Hitzler
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Avasthi TS, Ahmed N. Helicobacter pylori and type 1 diabetes mellitus: possibility of modifying chronic disease susceptibility with vaccinomics at the anvil. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:589-96. [PMID: 21688972 DOI: 10.1089/omi.2010.0138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The human gastric pathogen, Helicobacter pylori, colonizes more than 50% of the world population and is a well-known cause of peptic ulcer disease. H. pylori has been epidemiologically linked to various other diseases, among which its putative link with certain complex diseases such as type 1 diabetes mellitus (T1DM) is of interest. Although antibiotic resistance is a significant clinical problem in H. pylori infection control, the exact cause and much of the underlying mechanisms of T1DM are not clearly understood. In addition, commensal microflora, gut-adapted microbial communities, and plausible roles of some of the chronic human pathogens add an important dimension to the control of T1DM. Given this, the present review attempts to analyze and examine the confounding association of H. pylori and T1DM and the approaches to tackle them, and how the emerging field of vaccinomics might help in this pursuit.
Collapse
Affiliation(s)
- Tiruvayipati Suma Avasthi
- Pathogen Biology Laboratory, Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
23
|
Abstract
Helicobacter pylori infection of the gastric mucosa remains a cause of significant morbidity and mortality almost 30 years after its discovery. H. pylori infection can lead to several gastric maladies, including gastric cancer, and although antimicrobial therapies for the infection exist, the cost of treatment for gastric cancer and the prognosis of individuals who present with this disease make vaccine development a cost effective alternative to bacterial eradication. Experimental mucosal and systemic H. pylori vaccines in mice significantly reduce bacterial load and sometimes provide sterilizing immunity. Clinical trials of oral vaccines consisting of H. pylori proteins with bacterial exotoxin adjuvants or live attenuated bacterial vectors expressing H. pylori proteins induce adaptive immune mechanisms but fail to consistently reduce bacterial load. Clinical trials and murine studies demonstrate that where H. pylori is killed, either spontaneously or following vaccination, the host demonstrated cellular immunity. Improved efficacy of vaccines may be achieved in new trials of vaccine formulations that include multiple antigens and use methods to optimize cellular immunity. Unfortunately, the industrial sponsors that served as the primary engine for much of the previous animal and human research have withdrawn their support. A renewed or expanded commitment from the biotechnology or pharmaceutical industry that could exploit recent advances in our understanding of the host immune response to H. pylori is necessary for the advancement of an H. pylori vaccine.
Collapse
|
24
|
Cytotoxic T cells in H. pylori-related gastric autoimmunity and gastric lymphoma. J Biomed Biotechnol 2010; 2010:104918. [PMID: 20617132 PMCID: PMC2896618 DOI: 10.1155/2010/104918] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/28/2010] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori infection is the major cause of gastroduodenal pathologies, but only a minority of infected patients develop gastric B-cell lymphoma, gastric autoimmunity, or other life threatening diseases, as gastric cancer or peptic ulcer. The type of host immune response against H. pylori, particularly the cytolytic effector functions of T cells, is crucial for the outcome of the infection. T cells are potentially able to kill a target via different mechanisms, such as perforins or Fas-Fas ligand interaction. In H. pylori-infected patients with gastric autoimmunity cytolytic T cells, that cross-recognize different epitopes of H. pylori proteins and H(+)K(+)-ATPase autoantigen, infiltrate the gastric mucosa and lead to gastric atrophy via long-lasting activation of Fas ligand-mediated appotosis and perforin-induced cytotoxicity. On the other hand, gastric T cells from MALT lymphoma exhibit defective perforin- and Fas-Fas ligand-mediated killing of B cells, with consequent abnormal help for B-cell proliferation, suggesting that deregulated and exhaustive H. pylori-induced T cell-dependent B-cell activation can support both the onset and the promotion of low-grade B-cell lymphoma.
Collapse
|
25
|
Yuan L, Wu L, Chen J, Wu Q, Hu S. Paclitaxel acts as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Vaccine 2010; 28:4402-10. [PMID: 20434553 DOI: 10.1016/j.vaccine.2010.04.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/09/2010] [Accepted: 04/15/2010] [Indexed: 11/17/2022]
Abstract
Paclitaxel, a diterpenoid isolated from the bark of the Taxus cuspidate cv. Nana, was evaluated for its adjuvant effect on the immune responses in a mouse model. Fifty-six mice were randomly distributed into seven groups with 8 mice in each. Animals were subcutaneously immunized on days 1 and 21 with 100microg of paclitaxel, 10microg of ovalbumin (OVA), OVA with paclitaxel (50, 100 or 200microg) or with aluminum hydroxide (alum). Two weeks after the primary and boost immunizations, blood samples were collected for measurement of serum antibodies. Splenocytes were separated for detection of lymphocyte proliferation in responses to concanavalin A (Con A), lipopolysaccharide (LPS) and OVA, and mRNA expression of Th1 cytokines (IFN-gamma and IL-12), Th2 cytokines (IL-10 and IL-5) and transcription factors T-bet/GATA-3 (Th1/Th2 switcher). Results showed that coadministration of OVA with paclitaxel induced significantly higher IgG, IgG1, IgG2a, IgG2b, IgG3 and IgM responses than when OVA was used alone. In addition, up-regulated T-bet/GATA-3 together with significantly increased mRNA expression of IL-4, IL-10, IFN-gamma and IL-12 by splenocytes, as well as the proliferative responses of splenocytes to Con A, LPS and OVA were observed in paclitaxel-adjuvanted groups. Incubation of a murine macrophage-like cell line with paclitaxel significantly increased TNF-alpha and -10 released from the cells and expression of microRNAs such as miR-155, miR-147, miR-146a and miR-132. Therefore, paclitaxel activated both Th1 and Th2 responses. Considering its unique adjuvant effect demonstrated in this study and a safe record clinically used as an antineoplastic agent, paclitaxel could be an ideal adjuvant candidate when mixed Th1/Th2 immune responses are needed.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | | | | | | | | |
Collapse
|
26
|
Guang W, Ding H, Czinn SJ, Kim KC, Blanchard TG, Lillehoj EP. Muc1 cell surface mucin attenuates epithelial inflammation in response to a common mucosal pathogen. J Biol Chem 2010; 285:20547-57. [PMID: 20430889 DOI: 10.1074/jbc.m110.121319] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori infection of the gastric mucosa causes an active-chronic inflammation that is strongly linked to the development of duodenal and gastric ulcers and stomach cancer. However, greater than 80% of individuals infected with H. pylori are asymptomatic beyond histologic inflammation, and it is unknown what factors influence the incidence and character of bacterial-associated gastritis and related disorders. Because previous studies demonstrated that the Muc1 epithelial glycoprotein inhibited inflammation during acute lung infection by Pseudomonas aeruginosa, we asked whether Muc1 might also counter-regulate gastric inflammation in response to H. pylori infection. Muc1(-/-) mice displayed increased bacterial colonization of the stomach and greater TNF-alpha and keratinocyte chemoattractant transcript levels compared with Muc1(+/+) mice after experimental H. pylori infection. Knockdown of Muc1 expression in AGS human gastric epithelial cells by RNA interference was associated with increased phosphorylation of IkappaBalpha, augmented activation and nuclear translocation of NF-kappaB, and enhanced production of interleulin-8 compared with Muc1-expressing cells. Conversely, Muc1 overexpression was correlated with decreased NF-kappaB activation, reduced interleulin-8 production, and diminished IkappaB kinase beta (IKKbeta)/IKKgamma coimmunoprecipitation compared with cells expressing Muc1 endogenously. Cotransfection of AGS cells with Muc1 plus IKKbeta, but not a catalytically inactive IKKbeta mutant, reversed the Muc1 inhibitory effect. Finally, Muc1 formed a coimmunoprecipitation complex with IKKgamma but not with IKKbeta. These results are consistent with the hypothesis that Muc1 binds to IKKgamma, thereby inhibiting formation of the catalytically active IKK complex and blocking the ability of H. pylori to stimulate IkappaBalpha phosphorylation, NF-kappaB activation, and downstream inflammatory responses.
Collapse
Affiliation(s)
- Wei Guang
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
A vaccination against Helicobacter pylori may represent both prophylactic and therapeutic approaches to the control of H. pylori infection. Different protective H. pylori-derived antigens, such as urease, vacuolating cytotoxin A, cytotoxin-associated antigen, neutrophil-activating protein and others can be produced at low cost in prokaryote expression systems and most of these antigens have already been administered to humans and shown to be safe. The recent development by Graham et al. of the model of H. pylori challenge in humans, the recent published clinical trials and the last insight generated in animal models of H. pylori infection regarding the immune mechanisms leading to vaccine-induced Helicobacter clearance will facilitate the evaluation of immunogenicity and efficacy of H. pylori vaccine candidates in Phase II and III clinical trials.
Collapse
Affiliation(s)
- Dominique Velin
- Service de Gastro-entérologie et d'Hépatologie, Centre Hospitalier Universitaire Vaudois and University of Lausanne, BH18-521, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| | | |
Collapse
|
28
|
Romero-Adrián TB, Leal-Montiel J, Monsalve-Castillo F, Mengual-Moreno E, McGregor EG, Perini L, Antúnez A. Helicobacter pylori: Bacterial Factors and the Role of Cytokines in the Immune Response. Curr Microbiol 2009; 60:143-55. [DOI: 10.1007/s00284-009-9518-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 09/25/2009] [Indexed: 12/26/2022]
|
29
|
Partial protection against Helicobacter pylori in the absence of mast cells in mice. Infect Immun 2009; 77:5543-50. [PMID: 19822650 DOI: 10.1128/iai.00532-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The goal of this study is to evaluate the contribution of mast cells to Helicobacter pylori immunity in a model of vaccine-induced protection. Mast cell-deficient Kitl(Sl)/Kitl(Sl-d) and control mice were immunized with H. pylori sonicate plus cholera toxin and challenged with H. pylori, and the bacterial loads, inflammatory infiltrates, and cytokine responses were evaluated and compared at 1, 2, and 4 weeks postchallenge. In vitro stimulation assays were performed using bone marrow-derived mast cells, and recall assays were performed with spleen cells of immunized mast cell-deficient and wild-type mice. Bacterial clearance was observed by 2 weeks postchallenge in mast cell-deficient mice. The bacterial load was reduced by 4.0 log CFU in wild-type mice and by 1.5 log CFU in mast cell-deficient mice. Neutrophil numbers in the gastric mucosa of immune Kitl(Sl)/Kitl(Sl-d) mice were lower than those for immune wild-type mice (P < 0.05). Levels of gastric interleukin-17 (IL-17) and tumor necrosis factor alpha (TNF-alpha) were also significantly lower in immune Kitl(Sl)/Kitl(Sl-d) mice than in wild-type mice (P < 0.001). Immunized mast cell-deficient and wild-type mouse spleen cells produced IFN-gamma and IL-17 in response to H. pylori antigen stimulation. TNF-alpha and CXC chemokines were detected in mast cell supernatants after 24 h of stimulation with H. pylori antigen. The results indicate that mast cells are not essential for but do contribute to vaccine-induced immunity and that mast cells contribute to neutrophil recruitment and inflammation in response to H. pylori.
Collapse
|
30
|
Del Giudice G, Malfertheiner P, Rappuoli R. Development of vaccines against Helicobacter pylori. Expert Rev Vaccines 2009; 8:1037-49. [PMID: 19627186 DOI: 10.1586/erv.09.62] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori is a Gram-negative, microaerophilic bacterium adapted to survive in the stomach of humans where it can cause peptide ulcers and gastric cancer. Although effective antibiotic treatment exists, there is a consensus that vaccines are necessary to limit the severity of this infection. Great progress has been made since its discovery 25 years ago in understanding the virulence factors and several aspects of the pathogenesis of the H. pylori gastric diseases. Several key bacterial factors have been identified: urease, vacuolating cytotoxin, cytotoxin-associated antigen, the pathogenicity island, neutrophil-activating protein, and among others. These proteins, in their native or recombinant forms, have been shown to confer protection against infectious challenge with H. pylori in experimental animal models. It is not known, however, through which effector mechanisms this protection is achieved. Nevertheless, a number of clinical trials in healthy volunteers have been conducted using urease given orally as a soluble protein or expressed in bacterial vectors with limited results. Recently, a mixture of H. pylori antigens was reported to be highly immunogenic in H. pylori-negative volunteers following intramuscular administration of the vaccine with aluminium hydroxide as an adjuvant. These data show that vaccination against this pathogen is feasible. More research is required to understand the immunological mechanisms underlying immune-mediate protection.
Collapse
|
31
|
Bégué RE, Moll A. Immunogenicity of Recombinant Helicobacter pylori Urease B Administered by Various Routes and with Different Adjuvants. ACTA ACUST UNITED AC 2009; 2:28-32. [PMID: 20640237 DOI: 10.2174/1875035400902010028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Because of the high prevalence of Helicobacter pylori infection and the morbidity and mortality associated to the disease, development of a preventive vaccine has become a priority. To this goal, we produced recombinant H. pylori urease B (rUreB) and tested its immunogenicity in BALB/c mice when administered as 3 doses (week 0, 4 and 6) by either parenteral (intramuscular) or mucosal routes (intragastric, intranasal, intrarectal) and with the use of various adjuvants (none, CpG, alum or Freund's). The intramuscular route was more immunogenic than any mucosal route; of the mucosas, only intranasal induced modest levels of serum IgG. All adjuvants improved the seroresponse to plain rUreB and, of them, Freund's and alum were equally good and better than CpG ODN 1826. Stool IgA was barely detected by any immunization strategy.
Collapse
Affiliation(s)
- Rodolfo E Bégué
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | |
Collapse
|
32
|
Stuller KA, Ding H, Redline RW, Czinn SJ, Blanchard TG. CD25+ T cells induce Helicobacter pylori-specific CD25- T-cell anergy but are not required to maintain persistent hyporesponsiveness. Eur J Immunol 2009. [PMID: 19003932 DOI: 10.1002/eji.00838428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastric pathogen Helicobacter pylori infects over half the world's population. The lifelong infection induces gastric inflammation but the host fails to generate protective immunity. To study the lack of protective H. pylori immunity, CD4(+)CD25(+) T(reg) cells were investigated for their ability to down-regulate H. pylori-specific CD4(+)CD25(-) cells in a murine model. CD25(-) lymphocytes from infected mice were hyporesponsive to antigenic stimulation in vitro even in the absence of CD25(+) T(reg) cells unless treated with high-dose IL-2. Transfer of CD45RB(hi) naïve CD25(-) cells from infected mice into rag1(-/-) mice challenged with H. pylori resulted in severe gastritis and reduced bacterial loads, whereas transfer of CD45RB(lo) memory CD25(-) cells from H. pylori-infected mice resulted in only mild gastritis and persistent infection. CD25(-) cells stimulated in the absence of CD25(+) cells in rag1(-/-) mice promoted bacterial clearance, but lost this ability when subsequently transferred to WT mice harboring CD25(+) cells. These results demonstrate that CD25(+) cells induce anergy in CD25(-) cells in response to H. pylori infection but are not required to maintain hyporesponsiveness. In addition, CD25(+) cells are able to suppress previously activated CD25(-) cells when responding to H. pylori challenge in vivo.
Collapse
|
33
|
DeLyria ES, Redline RW, Blanchard TG. Vaccination of mice against H pylori induces a strong Th-17 response and immunity that is neutrophil dependent. Gastroenterology 2009; 136:247-56. [PMID: 18948106 PMCID: PMC4960660 DOI: 10.1053/j.gastro.2008.09.017] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 08/07/2008] [Accepted: 09/11/2008] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Vaccine efficacy against gastric Helicobacter pylori infection has been shown in mice, but little is known about the mechanisms of bacterial clearance. Our aim was to investigate a possible T-cell/neutrophil pathway of vaccine-induced protection. METHODS Nonimmune and immunized mice were compared for their response to H pylori challenge. T-cell responses were assessed by recall assays. Interleukin (IL)-17-induced chemokine production was evaluated by cytokine enzyme-linked immunosorbent assay. In a kinetic study, biopsy specimens were collected at multiple time points postchallenge and assessed for bacterial load and inflammation. Relative levels of T cells, IL-17, interferon gamma, MIP-2, KC, and LIX were determined by quantitative polymerase chain reaction. The role of neutrophils was evaluated by antibody-mediated depletion of neutrophils following challenge. RESULTS Immunization induced strong interferon gamma- and IL-17-producing T-cell responses, and IL-17 was capable of inducing significant amounts of KC and MIP-2 from dendritic cells, macrophages, fibroblasts, and gastric epithelial cells. Challenge of immunized mice induced significantly greater gastritis than that of infected mice, preceding significantly lower bacterial loads by day 7. In immune mice, T-cell recruitment to the gastric mucosa correlated with a continuous rise in IL-17 and interferon gamma levels, followed by KC, MIP-2, and LIX production and the recruitment of significant numbers of neutrophils by day 5. Antibody-mediated depletion of neutrophils abrogated vaccine efficacy. CONCLUSIONS Vaccination of mice against H pylori results in a significant Th-17 cell recall response associated with increases in chemokines that attract neutrophils to the stomach, which are important for eradication of H pylori.
Collapse
Affiliation(s)
- Elizabeth S. DeLyria
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Raymond W. Redline
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Thomas G. Blanchard
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland,Corresponding author: Thomas Blanchard, Ph.D., Department of Pediatrics, University of Maryland School of Medicine, Bressler Research Building, 13-043, 655 West Baltimore Street, Baltimore, MD 21201, Voice: (410) 706-1772, Fax: (410) 328-1072,
| |
Collapse
|
34
|
Harbour SN, Every AL, Edwards S, Sutton P. Systemic immunization with unadjuvanted whole Helicobacter pylori protects mice against heterologous challenge. Helicobacter 2008; 13:494-9. [PMID: 19166414 DOI: 10.1111/j.1523-5378.2008.00640.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Adjuvant-free vaccines have many benefits, including decreased cost and toxicity. We examined the protective effect of systemic vaccination with adjuvant-free formalin-fixed Helicobacter pylori or bacterial lysate and the ability of this vaccine to induce protection against heterologous challenge. MATERIALS AND METHODS Mice were vaccinated subcutaneously with H. pylori 11637 lysate or formalin-fixed bacteria, with or without ISCOMATRIX adjuvant, then orally challenged with H. pylori SS1. Serum was taken prior to challenge to examine specific antibody levels induced by the vaccinations, and protection was assessed by colony-forming assay. RESULTS Vaccination with H. pylori 11637 lysate or formalin-fixed bacteria delivered systemically induced significantly higher levels of Helicobacter-specific serum IgG than the control, unvaccinated group and orally vaccinated group. After heterologous challenge with H. pylori SS1, all vaccinated groups had significantly lower levels of colonization compared with unvaccinated, control mice, regardless of the addition of adjuvant or route of delivery. Protection induced by systemic vaccination with whole bacterial preparations, without the addition of adjuvants, was only associated with a mild cellular infiltration into the gastric mucosa, with no evidence of atrophy. CONCLUSIONS Subcutaneous vaccination using unadjuvanted formalin-fixed H. pylori has the potential to be a simple, cost-effective approach to the development of a Helicobacter vaccine. Importantly, this vaccine was able to induce protection against heterologous challenge, a factor that would be crucial in any human Helicobacter vaccine. Further studies are required to determine mechanisms of protection and to improve protective ability.
Collapse
Affiliation(s)
- Stacey N Harbour
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
35
|
Stuller KA, Ding H, Redline RW, Czinn SJ, Blanchard TG. CD25+ T cells induce Helicobacter pylori-specific CD25- T-cell anergy but are not required to maintain persistent hyporesponsiveness. Eur J Immunol 2008; 38:3426-35. [PMID: 19003932 PMCID: PMC2753502 DOI: 10.1002/eji.200838428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gastric pathogen Helicobacter pylori infects over half the world's population. The lifelong infection induces gastric inflammation but the host fails to generate protective immunity. To study the lack of protective H. pylori immunity, CD4(+)CD25(+) T(reg) cells were investigated for their ability to down-regulate H. pylori-specific CD4(+)CD25(-) cells in a murine model. CD25(-) lymphocytes from infected mice were hyporesponsive to antigenic stimulation in vitro even in the absence of CD25(+) T(reg) cells unless treated with high-dose IL-2. Transfer of CD45RB(hi) naïve CD25(-) cells from infected mice into rag1(-/-) mice challenged with H. pylori resulted in severe gastritis and reduced bacterial loads, whereas transfer of CD45RB(lo) memory CD25(-) cells from H. pylori-infected mice resulted in only mild gastritis and persistent infection. CD25(-) cells stimulated in the absence of CD25(+) cells in rag1(-/-) mice promoted bacterial clearance, but lost this ability when subsequently transferred to WT mice harboring CD25(+) cells. These results demonstrate that CD25(+) cells induce anergy in CD25(-) cells in response to H. pylori infection but are not required to maintain hyporesponsiveness. In addition, CD25(+) cells are able to suppress previously activated CD25(-) cells when responding to H. pylori challenge in vivo.
Collapse
|
36
|
Ding H, Czinn SJ, Blanchard TG. Recent advances that favor development of a vaccine for Helicobacter pylori infection. PEDIATRIC HEALTH 2008; 2:539. [PMID: 20151035 PMCID: PMC2819429 DOI: 10.2217/17455111.2.5.539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Hua Ding
- Tel.: +1 410 706 8778
- University of Maryland School of Medicine, Department of Pediatrics, 655 W. Baltimore Street, Bressler Research Building, 13-043, Baltimore, MD 21201, USA, Tel.: +1 410 706 1772; Fax: +1 410 328 1072
| | - Steven J Czinn
- Department of Pediatrics, 22 South Greene Street, Room N5E17, Baltimore, MD 21201-1595, USA, Tel.: +1 410 328 6777; Fax: +1 410 328 8742
- University of Maryland School of Medicine, Department of Pediatrics, 655 W. Baltimore Street, Bressler Research Building, 13-043, Baltimore, MD 21201, USA, Tel.: +1 410 706 1772; Fax: +1 410 328 1072
| | - Thomas G Blanchard
- University of Maryland School of Medicine, Department of Pediatrics, 655 W. Baltimore Street, Bressler Research Building, 13-043, Baltimore, MD 21201, USA, Tel.: +1 410 706 1772; Fax: +1 410 328 1072
| |
Collapse
|
37
|
Malfertheiner P, Schultze V, Rosenkranz B, Kaufmann SHE, Ulrichs T, Novicki D, Norelli F, Contorni M, Peppoloni S, Berti D, Tornese D, Ganju J, Palla E, Rappuoli R, Scharschmidt BF, Del Giudice G. Safety and immunogenicity of an intramuscular Helicobacter pylori vaccine in noninfected volunteers: a phase I study. Gastroenterology 2008; 135:787-95. [PMID: 18619971 DOI: 10.1053/j.gastro.2008.05.054] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 05/12/2008] [Accepted: 05/21/2008] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Helicobacter pylori infection is among the most common human infections and the major risk factor for peptic disease and gastric cancer. Immunization with vaccines containing the H pylori vacuolating cytotoxin A (VacA), cytotoxin-associated antigen (CagA), and neutrophil-activating protein (NAP), alone or in combination, have been shown to prevent experimental infection in animals. AIM We sought to study the safety and immunogenicity of a vaccine consisting of recombinant VacA, CagA, and NAP given intramuscularly with aluminium hydroxide as an adjuvant to noninfected healthy subjects. METHODS This controlled, single-blind Phase I study randomized 57 H pylori-negative volunteers into 7 study arms exploring 2 dosages (10 and 25 microg) of each antigen and 3 schedules (0, 1, 2 weeks; 0, 1, 2 months; and 0, 1, 4 months) versus alum controls. All participants were followed for 5 months. Thirty-six subjects received a booster vaccination 18-24 months after the completion of the primary vaccination. RESULTS Local and systemic adverse reactions were mild and similar in placebo and vaccine recipients on the monthly schedules. All subjects responded to 1 or 2 of the antigens and 86% of all vaccines mounted immunoglobulin G antibody responses to all 3 antigens. Vaccinees exhibited an antigen-specific cellular response. Vaccination 18-24 months later elicited anamnestic antibody and cellular responses. CONCLUSIONS This intramuscular H pylori vaccine demonstrated satisfactory safety and immunogenicity, produced antigen-specific T-cell memory, and, therefore, warrants further clinical study.
Collapse
Affiliation(s)
- Peter Malfertheiner
- Otto-von-Guericke Universitaet, Department of Gastroenterology, Hepatology and Infectious Diseases, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Morihara F, Hifumi E, Yamada M, Nishizono A, Uda T. Therapeutic effects of molecularly designed antigen UREB138 for mice infected withHelicobacter pylori. Biotechnol Bioeng 2008; 100:634-43. [DOI: 10.1002/bit.21804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Wu C, Shi Y, Guo H, Zou WY, Guo G, Xie QH, Mao XH, Tong WD, Zou QM. Protection against Helicobacter pylori infection in mongolian gerbil by intragastric or intramuscular administration of H. pylori multicomponent vaccine. Helicobacter 2008; 13:191-9. [PMID: 18466394 DOI: 10.1111/j.1523-5378.2008.00609.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Development of Helicobacter pylori vaccine would be a new effective strategy for prevention and treatment of H. pylori infection. Recombinant H. pylori vaccine comprising a single subunit antigen can only induce immune response with limited protection efficiency. In this study, the protective effect of H. pylori multicomponent vaccines consisting of three recombinant subunit antigens was investigated using the Mongolian gerbil model. MATERIALS AND METHODS Mongolian gerbils were immunized with different formulations of three recombinant H. pylori antigens (UreB, HspA, and HpaA) with two different adjuvants (Al(OH)3, LT(R72DITH)) by intragastric (i.g.) or intramuscular (i.m.) routes. The protective effects of multicomponent vaccines were assessed after H. pylori challenge in different studies. The specific IgG antibodies in serum were monitored by ELISA, and the mRNA expressions of IL-4 and IFN-gamma in spleen tissue were detected by reverse transcribed polymerase chain reaction (RT-PCR). RESULTS The protective effect against H. pylori challenge in gerbils immunized with three recombinant antigens and LT(R72DITH) or Al(OH)3 was significantly higher than that in single- or double-antigen vaccine-immunized and control gerbils. Furthermore, the protective effect of the triple-antigen vaccine combined with the LT(R72DITH) adjuvant (average 86.3%) was significantly greater than that of vaccine combined with the Al(OH)3 adjuvant (average 53.4%). After the first immunization, the anti-UreB/HspA/HpaA serum IgG level in gerbils immunized with triple-antigen vaccine combined with Al(OH)3 was higher than that in gerbils immunized with the vaccine combined with LT(R72DITH). Splenic interferon (IFN)-gamma and interleukin (IL)-4 transcript levels were significantly increased in LT(R72DITH) vaccine-immunized gerbils as compared to the Al(OH)3 vaccine group. Moreover, splenic IL-4 mRNA levels were higher than IFN-gamma in gerbils immunized with triple-antigen vaccine with either LT(R72DITH) or Al(OH)3. CONCLUSIONS This study indicated that the recombinant multicomponent vaccine provided effective protection against H. pylori infection as compared to the single-antigen vaccine. This protective immunity would be closely associated with a predominant Th2-type response.
Collapse
Affiliation(s)
- Chao Wu
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Abstract
Helicobacter pylori infection is highly prevalent worldwide and is an important cause of gastritis, peptic ulcer disease, gastric mucosa-associated lymphoid tissue lymphoma (MALToma), and gastric adenocarcinoma. Infection is usually acquired during childhood and tends to persist unless treated. Because eradication requires treatment with multidrug regimens, prevention of initial infection by a suitable vaccine is attractive. Although immunization with H pylori protein subunits has been encouraging in animals, similar vaccine trials in humans have shown adjuvant-related adverse effects and only moderate effectiveness. Newer immunization approaches (use of DNA, live vectors, bacterial ghosts, and microspheres) are being developed. Several questions about when and whom to vaccinate will need to be appropriately answered, and a cost-effective vaccine production and delivery strategy will have to be useful for developing countries. For this review, we searched MEDLINE using the Medical Subject Heading (MeSH) terms Helicobacter pylori and vaccines for articles in English from 1990 to 2007.
Collapse
Affiliation(s)
- Kanishtha Agarwal
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
42
|
Wilson KT, Crabtree JE. Immunology of Helicobacter pylori: insights into the failure of the immune response and perspectives on vaccine studies. Gastroenterology 2007; 133:288-308. [PMID: 17631150 DOI: 10.1053/j.gastro.2007.05.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 05/02/2007] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori infects the stomach of half of the human population worldwide and causes chronic active gastritis, which can lead to peptic ulcer disease, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. The host immune response to the infection is ineffective, because the bacterium persists and the inflammation continues for decades. Bacterial activation of epithelial cells, dendritic cells, monocytes, macrophages, and neutrophils leads to a T helper cell 1 type of adaptive response, but this remains inadequate. The host inflammatory response has a key functional role in disrupting acid homeostasis, which impacts directly on the colonization patterns of H pylori and thus the extent of gastritis. Many potential mechanisms for the failure of the host response have been postulated, and these include apoptosis of epithelial cells and macrophages, inadequate effector functions of macrophages and dendritic cells, VacA inhibition of T-cell function, and suppressive effects of regulatory T cells. Because of the extent of the disease burden, many strategies for prophylactic or therapeutic vaccines have been investigated. The goal of enhancing the host's ability to generate protective immunity has met with some success in animal models, but the efficacy of potential vaccines in humans remains to be demonstrated. Aspects of H pylori immunopathogenesis are reviewed and perspectives on the failure of the host immune response are discussed. Understanding the mechanisms of immune evasion could lead to new opportunities for enhancing eradication and prevention of infection and associated disease.
Collapse
Affiliation(s)
- Keith T Wilson
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0252, USA
| | | |
Collapse
|
43
|
Pot RGJ, Stoof J, Nuijten PJM, de Haan LAM, Loeffen P, Kuipers EJ, van Vliet AHM, Kusters JG. UreA2B2: a second urease system in the gastric pathogenHelicobacter felis. ACTA ACUST UNITED AC 2007; 50:273-9. [PMID: 17298583 DOI: 10.1111/j.1574-695x.2007.00212.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Urease activity is vital for gastric colonization by Helicobacter species, such as the animal pathogen Helicobacter felis. Here it is demonstrated that H. felis expresses two independent, and distinct urease systems. H. felis isolate CS1 expressed two proteins of 67 and 70 kDa reacting with antibodies to H. pylori urease. The 67-kDa protein was identified as the UreB urease subunit, whereas the N-terminal amino acid sequence of the 70-kDa protein displayed 58% identity with the UreB protein and was tentatively named UreB2. The gene encoding the UreB2 protein was identified and located in a gene cluster named ureA2B2. Inactivation of ureB led to complete absence of urease activity, whereas inactivation of ureB2 resulted in decreased urease activity. Although the exact function of the UreA2B2 system is still unknown, it is conceivable that UreA2B2 may contribute to pathogenesis of H. felis infection through a yet unknown mechanism.
Collapse
Affiliation(s)
- Raymond G J Pot
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Rosenplänter C, Sommer F, Kleemann P, Belkovets A, Schmidt A, Lohoff M. Helicobacter pylori polyclonally activates murine CD4+ T cells in the absence of antigen-presenting cells. Eur J Immunol 2007; 37:1905-15. [PMID: 17549800 DOI: 10.1002/eji.200636676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Helicobacter pylori is a Gram-negative bacterium that causes a variety of gastrointestinal diseases, such as duodenal ulcer and gastric carcinoma. The T cell response against H. pylori is thought to contribute to the pathogenesis of these diseases. Here, we show that mouse-adapted H. pylori is able to polyclonally activate murine CD4(+) T lymphocytes, irrespective of their antigen specificity. Murine T helper cell clones as well as short-term cultured, polyclonal Th1 and Th2 cell lines and a human T cell clone, but not naive CD4(+) T cells, could be activated in this manner. The effect was independent of antigen-presenting cells and required direct contact between H. pylori and T cells. Only whole cells of H. pylori, but not lysates or sonicates were able to activate T cells. The activity was lost after long-term culture of H. pylori on agar-plates. Degradation of H. pylori proteins with specific peptidases dramatically reduced the stimulating ability, implicating that the responsible molecule is likely to be a protein. This unexpected polyclonal T cell stimulatory mechanism may contribute to the T cell-mediated pathogenicity characteristic for H. pylori-mediated diseases.
Collapse
Affiliation(s)
- Christine Rosenplänter
- Institut für Medizinische Mikrobiologie und Hygiene der Universität Marburg, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Hem SL, Johnston CT, HogenEsch H. Imject Alum is not aluminum hydroxide adjuvant or aluminum phosphate adjuvant. Vaccine 2007; 25:4985-6. [PMID: 17543429 DOI: 10.1016/j.vaccine.2007.04.078] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 04/17/2007] [Accepted: 04/19/2007] [Indexed: 11/21/2022]
|
46
|
Abstract
Helicobacter pylori, a Gram-negative flagellate bacterium that infects the stomach of more than half of the global population, is regarded as the leading cause of chronic gastritis, peptic ulcer disease, and even gastric adenocarcinoma in some individuals. Although the bacterium induces strong humoral and cellular immune responses, it can persist in the host for decades. It has several virulence factors, some of them having vaccine potential as judged by immunoproteomic analysis. A few vaccination studies involving a small number of infected or uninfected humans with various H. pylori formulations such as the recombinant urease, killed whole cells, and live Salmonella vectors presenting the subunit antigens have not provided satisfactory results. One trial that used the recombinant H. pylori urease coadministered with native Escherichia coli enterotoxin (LT) demonstrated a reduction of H. pylori load in infected participants. Although extensive studies in the mouse model have demonstrated the feasibility of both therapeutic and prophylactic immunizations, the mechanism of vaccine-induced protection is poorly understood as several factors such as immunoglobulin and various cytokines do not contribute to protection. Transcriptome analyses in mice have indicated the role of nonclassical immune factors in vaccine-induced protection. The role of regulatory T cells in the persistence of H. pylori infection has also been suggested. A recently developed experimental H. pylori infection model in humans may be used for testing several new adjuvants and vaccine delivery systems that have been currently obtained. The use of vaccines with appropriate immunogens, routes of immunization, and adjuvants along with a better understanding of the mechanism of immune protection may provide more favorable results.
Collapse
Affiliation(s)
- Shahjahan Kabir
- Academic Research and Information Management, Uppsala, Sweden.
| |
Collapse
|
47
|
Xie Y, Zhou NJ, Gong YF, Zhou XJ, Chen J, Hu SJ, Lu NH, Hou XH. Th immune response induced by H pylori vaccine with chitosan as adjuvant and its relation to immune protection. World J Gastroenterol 2007; 13:1547-1553. [PMID: 17461447 PMCID: PMC4146897 DOI: 10.3748/wjg.v13.i10.1547] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2006] [Revised: 12/28/2006] [Accepted: 02/27/2007] [Indexed: 02/06/2023] Open
Abstract
AIM To study the immunological protective effect of H pylori vaccine with chitosan as an adjuvant and its mechanism. METHODS Female BALB/c mice were randomly divided into seven groups and orally immunized respectively with PBS, chitosan solution, chitosan particles, H pylori antigen, H pylori antigen plus cholera toxin (CT), H pylori antigen plus chitosan solution, H pylori antigen plus chitosan particles once a week for four weeks. Four weeks after the last immunization, the mice were challenged twice by alive H pylori (1 x 10(9) CFU/mL) and sacrificed. Part of the gastric mucosa was embedded in paraffin, cut into sections and assayed with Giemsa staining. Part of the gastric mucosa was used to quantitatively culture H pylori. ELISA was used to detect cytokine level in gastric mucosa and anti- H pylori IgG1, IgG2a levels in serum. RESULTS In the groups with chitosan as an adjuvant, immunological protection was achieved in 60% mice, which was significantly higher than in groups with H pylori antigen alone and without H pylori antigen (P < 0.05 or 0.001). Before challenge, the level of IFN and IL-12 in gastric mucosa was significantly higher in the groups with chitosan as an adjuvant than in the control group and the group without adjuvant (P < 0.05 or 0.005). After challenge, the level of IFN and IL-12 was significantly higher in the groups with adjuvant than in the groups without adjuvant and antigen (P < 0.05 or 0.001). Before challenge, the level of IL-2 in gastric mucosa was not different among different groups. After challenge the level of IL-2 was significantly higher in the groups with adjuvant than in the control group (P < 0.05 or 0.001). Before challenge, the level of IL-10 in gastric mucosa was significantly higher in the groups with chitosan as an adjuvant than in other groups without adjuvant (P < 0.05 or 0.01). After challenge, the level of IL-10 was not different among different groups. Before challenge, the level of IL-4 in gastric mucosa was significantly higher in the groups with chitosan as an adjuvant than in other groups without adjuvant (P < 0.05). After challenge, the level of IL-4 was significantly higher in the groups with chitosan particles as an adjuvant than in the group with CT as an adjuvant (P < 0.05), and in the group with chitosan solution as an adjuvant, the level of IL-4 was significantly higher than that in control group, non-adjuvant group and the groups with CT (P < 0.05 or 0.001). The ratio of anti- H pylori IgG2a/IgG1 in serum was significantly lower in the groups with chitosan as an adjuvant than in the groups with CT as an adjuvant or without adjuvant (P < 0.01). CONCLUSION H pylori vaccine with chitosan as an adjuvant can protect against H pylori infection and induce both Th1 and Th2 type immune response.
Collapse
Affiliation(s)
- Yong Xie
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Shi Y, Wu C, Zhou WY, Mao XH, Guo G, Zou QM. Identification of H-2d restricted Th epitopes in Urease B subunit of Helicobacter pylori. Vaccine 2007; 25:2583-90. [PMID: 17240487 DOI: 10.1016/j.vaccine.2006.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/03/2006] [Accepted: 12/12/2006] [Indexed: 12/28/2022]
Abstract
CD4+ T cells play important roles in protection against Helicobacter pylori (H. pylori) infection. In order to better understand the immune responses of H. pylori infection and improve immune interventions against this pathogen, we identified the Th epitopes in UreB of H. pylori, an excellent vaccine candidate antigen. By using the RANKPEP prediction algorithm, we have identified and characterized three Th epitopes within the UreB antigen, which can be recognized by CD4+ T cells from BALB/c (H-2d) mice. They were U(546-561), U(229-244), and U(237-251). These epitopes have important value for studying the immune response of H. pylori infection and for designing effective vaccine against H. pylori.
Collapse
Affiliation(s)
- Yun Shi
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, The Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
Algood HMS, Cover TL. Helicobacter pylori persistence: an overview of interactions between H. pylori and host immune defenses. Clin Microbiol Rev 2006; 19:597-613. [PMID: 17041136 PMCID: PMC1592695 DOI: 10.1128/cmr.00006-06] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is a gram-negative bacterium that persistently colonizes more than half of the global human population. In order to successfully colonize the human stomach, H. pylori must initially overcome multiple innate host defenses. Remarkably, H. pylori can persistently colonize the stomach for decades or an entire lifetime despite development of an acquired immune response. This review focuses on the immune response to H. pylori and the mechanisms by which H. pylori resists immune clearance. Three main sections of the review are devoted to (i) analysis of the immune response to H. pylori in humans, (ii) analysis of interactions of H. pylori with host immune defenses in animal models, and (iii) interactions of H. pylori with immune cells in vitro. The topics addressed in this review are important for understanding how H. pylori resists immune clearance and also are relevant for understanding the pathogenesis of diseases caused by H. pylori (peptic ulcer disease, gastric adenocarcinoma, and gastric lymphoma).
Collapse
Affiliation(s)
- Holly M Scott Algood
- Division of Infectious Diseases, A2200 Medical Center North, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
50
|
Pathogenesis of
Helicobacter pylori
Infection. Clin Microbiol Rev 2006. [DOI: 10.1128/cmr.00054-05 and 1=1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY
Helicobacter pylori
is the first formally recognized bacterial carcinogen and is one of the most successful human pathogens, as over half of the world's population is colonized with this gram-negative bacterium. Unless treated, colonization usually persists lifelong.
H. pylori
infection represents a key factor in the etiology of various gastrointestinal diseases, ranging from chronic active gastritis without clinical symptoms to peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Disease outcome is the result of the complex interplay between the host and the bacterium. Host immune gene polymorphisms and gastric acid secretion largely determine the bacterium's ability to colonize a specific gastric niche. Bacterial virulence factors such as the cytotoxin-associated gene pathogenicity island-encoded protein CagA and the vacuolating cytotoxin VacA aid in this colonization of the gastric mucosa and subsequently seem to modulate the host's immune system. This review focuses on the microbiological, clinical, immunological, and biochemical aspects of the pathogenesis of
H. pylori
.
Collapse
|