1
|
Kitajima S, Maruyama Y, Ishiwatari Y, Kuroda M, Meyerhof W, Behrens M. Involvement of GPR91 in the perception of the umami-like shellfish taste of succinate. Food Chem 2025; 477:143549. [PMID: 40043606 DOI: 10.1016/j.foodchem.2025.143549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025]
Abstract
Succinate is a key component of the characteristic umami-like taste of shellfish, which is similar to the umami taste elicited by glutamate, but is slightly more persistent and astringent. The taste receptors involved in the perception of succinate currently remain unknown. Therefore, we herein attempted to identify the taste receptors for succinate. We investigated whether cells heterologously expressing receptors associated with umami taste or succinate were activated by succinate and selected GPR91 as a candidate receptor. To verify the contribution of GPR91 to taste perception, the relationship between GPR91 activation and sensory activity was assessed using receptor assays and sensory evaluations. Our results suggest that the taste of succinate depends on the activation of GPR91. We propose that GPR91 functions as a gustatory receptor involved in the perception of the umami-like shellfish taste of succinate.
Collapse
Affiliation(s)
- Seiji Kitajima
- Institute of Food Sciences & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan; German Institute of Human Nutrition Potsdam-Rehbruecke, Dept. Molecular Genetics, 14558 Nuthetal, Germany.
| | - Yutaka Maruyama
- Institute of Food Sciences & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Yutaka Ishiwatari
- Institute of Food Sciences & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Motonaka Kuroda
- Institute of Food Sciences & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Wolfgang Meyerhof
- German Institute of Human Nutrition Potsdam-Rehbruecke, Dept. Molecular Genetics, 14558 Nuthetal, Germany
| | - Maik Behrens
- German Institute of Human Nutrition Potsdam-Rehbruecke, Dept. Molecular Genetics, 14558 Nuthetal, Germany; Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
2
|
Pålsson-McDermott EM, O'Neill LAJ. Gang of 3: How the Krebs cycle-linked metabolites itaconate, succinate, and fumarate regulate macrophages and inflammation. Cell Metab 2025; 37:1049-1059. [PMID: 40169002 DOI: 10.1016/j.cmet.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
The reprogramming of metabolic pathways and processes in immune cells has emerged as an important aspect of the immune response. Metabolic intermediates accumulate as a result of metabolic adaptations and mediate functions outside of metabolism in the regulation of immunity and inflammation. In macrophages, there has been a major focus on 3 metabolites linked to the Krebs cycle, itaconate, succinate, and fumarate, which have been shown to regulate multiple processes. Here, we discuss recent progress on these 3 metabolites with regard to their effect on macrophages in host defense and inflammatory diseases. We also consider the therapeutic opportunities presented from the mimicry of these metabolites or by targeting the enzymes that make or metabolize them in order to leverage the body's own anti-inflammatory response.
Collapse
Affiliation(s)
- Eva M Pålsson-McDermott
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
3
|
Dar MI, Hussain Y, Pan X. Roles of circadian clocks in macrophage metabolism: implications in inflammation and metabolism of lipids, glucose, and amino acids. Am J Physiol Endocrinol Metab 2025; 328:E723-E741. [PMID: 40193204 DOI: 10.1152/ajpendo.00009.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/20/2025] [Accepted: 04/01/2025] [Indexed: 05/06/2025]
Abstract
Macrophages are essential immune cells that play crucial roles in inflammation and tissue homeostasis and are important regulators of metabolic processes, such as the metabolism of glucose, lipids, and amino acids. The regulation of macrophage metabolism by circadian clock genes has been emphasized in many studies. Changes in metabolic profiles occurring after the perturbation of macrophage circadian cycles may underlie the etiology of several diseases. Specifically, chronic inflammatory disorders, such as atherosclerosis, diabetes, cardiovascular diseases, and liver dysfunction, are associated with poor macrophage metabolism. Developing treatment approaches that target metabolic and immunological ailments requires an understanding of the complex relationships among clock genes, disease etiology, and macrophage metabolism. This review explores the molecular mechanisms through which clock genes regulate lipid, amino acid, and glucose metabolism in macrophages and discusses their potential roles in the development and progression of metabolic disorders. The findings underscore the importance of maintaining circadian homeostasis in macrophage function as a promising avenue for therapeutic intervention in diseases involving metabolic dysregulation, given its key roles in inflammation and tissue homeostasis. Moreover, reviewing the therapeutic implications of circadian rhythm in macrophages can help minimize the side effects of treatment. Novel strategies may be beneficial in treating immune-related diseases caused by shifted and blunted circadian rhythms via light exposure, jet lag, seasonal changes, and shift work or disruption to the internal clock (such as stress or disease).
Collapse
Affiliation(s)
- Mohammad Irfan Dar
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| | - Yusuf Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| |
Collapse
|
4
|
Ramanathan C, Thomas E, Henschen AE, Adelman JS, Zhang Y. Mycoplasma gallisepticum (MG) infection inhibits mitochondrial respiratory function in a wild songbird. J Exp Biol 2025; 228:jeb249705. [PMID: 40181769 DOI: 10.1242/jeb.249705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
An animal's immune function is vital for survival but is potentially metabolically expensive. Some pathogens can manipulate their hosts' immune and metabolic responses. One example is Mycoplasma gallisepticum (MG), which infects both the respiratory system and conjunctiva of the eye in house finches (Haemorhous mexicanus). MG has been shown to exhibit immune- and metabolic-suppressive properties, but the physiological mechanisms are still unknown. Recent studies demonstrated that mitochondria could serve as powerhouses for both ATP production and immunity, notably inflammatory processes, by regulating complex II and its metabolites. Consequently, in this study, we investigate the short-term (3 days post-inoculation) and long-term (34 days post-inoculation) effects of MG infection on the hepatic mitochondrial respiration of house finches from two populations infected with two different MG isolates. After short-term infection, MG-infected birds had significantly lower state 2 and state 4 respiration, but only when using complex II substrates. After long-term infection, MG-infected birds exhibited lower state 3 respiration with both complex I and II substrates, resulting in a lower respiratory control ratio compared with uninfected controls, which aligned with the hypothesized metabolic-suppressive properties of MG. Interestingly, there were limited differences in mitochondrial respiration regardless of house finch population of origin, MG isolate and whether birds recovered from infection or not. We propose that MG targets mitochondrial complex II for its immune-suppressive properties during the early stages of infection and inhibits mitochondrial respiration for its metabolic-suppressive properties at a later stage of infection, both of which should delay recovery of the host and extend infectious periods.
Collapse
Affiliation(s)
| | - Elina Thomas
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Amberleigh E Henschen
- Department of Biological Science, University of Memphis, Memphis, TN 38152, USA
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL 61920, USA
| | - James S Adelman
- Department of Biological Science, University of Memphis, Memphis, TN 38152, USA
| | - Yufeng Zhang
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
5
|
Henry ÓC, O'Neill LAJ. Metabolic Reprogramming in Stromal and Immune Cells in Rheumatoid Arthritis and Osteoarthritis: Therapeutic Possibilities. Eur J Immunol 2025; 55:e202451381. [PMID: 40170391 PMCID: PMC11962241 DOI: 10.1002/eji.202451381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/03/2025]
Abstract
Metabolic reprogramming of stromal cells, including fibroblast-like synoviocytes (FLS) and chondrocytes, as well as osteoclasts (OCs), are involved in the inflammatory and degenerative processes underlying rheumatoid arthritis (RA) and osteoarthritis (OA). In RA, FLS exhibit mTOR activation, enhanced glycolysis and reduced oxidative phosphorylation, fuelling inflammation, angiogenesis, and cartilage degradation. In OA, chondrocytes undergo metabolic rewiring, characterised by mTOR and NF-κB activation, mitochondrial dysfunction, and increased glycolysis, which promotes matrix metalloproteinase production, extracellular matrix (ECM) degradation, and angiogenesis. Macrophage-derived immunometabolites, including succinate and itaconate further modulate stromal cell function, acting as signalling molecules that modulate inflammatory and catabolic processes. Succinate promotes inflammation whilst itaconate is anti-inflammatory, suppressing inflammatory joint disease in models. Itaconate deficiency also correlates inversely with disease severity in RA in humans. Emerging evidence highlights the potential of targeting metabolic processes as promising therapeutic strategies for connective tissue disorders.
Collapse
Affiliation(s)
- Órlaith C. Henry
- Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | | |
Collapse
|
6
|
Fernández-Veledo S, Grau-Bové C, Notararigo S, Huber-Ruano I. The role of microbial succinate in the pathophysiology of inflammatory bowel disease: mechanisms and therapeutic potential. Curr Opin Microbiol 2025; 85:102599. [PMID: 40132355 DOI: 10.1016/j.mib.2025.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025]
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated condition linked to gut microbiota dysbiosis and altered production of bacterial metabolites, including succinate, which is also a key intermediate in human mitochondrial energy metabolism in human cells. Succinate levels in the gut are influenced by microbial community dynamics and cross-feeding interactions, highlighting its dual metabolic and ecological importance. Extracellular succinate acts as a key signaling metabolite linking microbial metabolism to host physiology, with transient rises supporting metabolic regulation but chronic elevations contributing to metabolic disorders and disease progression. Succinate signals through its cognate receptor SUCNR1, which mediates adaptive metabolic responses under normal conditions but drives inflammation and fibrosis when dysregulated. IBD patients display a dysbiotic gut microbiota characterized by an increased prevalence of succinate-producing bacteria, contributing to elevated succinate levels in the gut and circulation. This imbalance drives inflammation, worsens IBD severity, and contributes to complications like Clostridioides difficile infection and fibrosis. Emerging evidence highlights the potential of intestinal and systemic succinate levels as indicators of microbial dysbiosis, with a bidirectional relationship between microbial composition and succinate metabolism. Understanding the factors influencing succinate levels and their interaction with dysbiosis shows promise in the development of therapeutic strategies to restore microbial balance. Approaches such as dietary fiber enrichment, prebiotics, and probiotics to enhance succinate-consuming bacteria, combined with targeted modulation of succinate pathways (e.g. SDH inhibitors, SUCNR1 antagonists), hold promise for mitigating inflammation and improving gut health in IBD.
Collapse
Affiliation(s)
- Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Department de Ciències Mèdiques Bàsiques, University Rovira i Virgili, Tarragona, Spain.
| | - Carme Grau-Bové
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; SucciPro, S.L, Barcelona, Spain
| | - Sara Notararigo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; SucciPro, S.L, Barcelona, Spain
| | - Isabel Huber-Ruano
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; SucciPro, S.L, Barcelona, Spain.
| |
Collapse
|
7
|
Yang H, Wei A, Zhou X, Chen Z, Wang Y. SUCNR1 Deficiency Alleviates Liver Ischemia-Reperfusion Injury by Regulating Kupffer Cell Activation and Polarization Through the ERK/NF-κB Pathway in Mice. Inflammation 2025:10.1007/s10753-025-02290-9. [PMID: 40106070 DOI: 10.1007/s10753-025-02290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Succinate regulates inflammation through its receptor, succinate receptor 1 (SUCNR1). However, the effects of this interaction on Kupffer cell (KC)-driven inflammation during liver ischemia-reperfusion injury (IRI) remain unclear. Herein, we investigated the succinate/SUCNR1 axis in the progression of liver IRI. In this study, succinate levels and SUCNR1 expression were analyzed in mice underwent segmental liver IRI. Sucnr1 deficiency (Sucnr1-/-) and Wild-type mice were treated with or without clodronate before liver IRI modeling, and a co-culture system was established to assess the impact of Sucnr1 deficiency in KCs on hepatocyte viability and apoptosis. KC activation status and polarization were determined, in vivo and in vitro. Furthermore, the downstream pathways in regulating KC polarization were investigated. We observed a significant increase in succinate levels in the serum and liver, and SUCNR1 expression in KCs after IRI. Sucnr1 deletion alleviated liver IRI and hepatocyte apoptosis either in vivo or in vitro. However, the aforementioned hepatoprotective effects were abolished by the depletion of KCs with clodronate. Sucnr1 deletion inhibited KC activation and M1 polarization, and dampened proinflammatory cytokine release after liver IRI. In addition, Sucnr1 knockout reversed the increasing phosphorylation of ERK and NF-κB p65 in KCs following liver IRI. The phosphorylation of ERK/NF-κB p65 and M1 polarization in KCs were also inhibited by the SUCNR1 antagonist Compound 4C or ERK inhibitor SCH772984. Together, these findings suggest that SUCNR1 deficiency protects against liver IRI by modulating KC activation and polarization probably through the ERK/NF-κB pathway.
Collapse
Affiliation(s)
- Huan Yang
- Department of Anesthesiology, the First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Shigu District, Hengyang, 421001, Hunan Province, China
| | - An Wei
- Department of Anesthesiology, the First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Shigu District, Hengyang, 421001, Hunan Province, China
| | - Xinting Zhou
- Department of Anesthesiology, the First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Shigu District, Hengyang, 421001, Hunan Province, China
| | - Zhiwei Chen
- Department of Anesthesiology, the First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Shigu District, Hengyang, 421001, Hunan Province, China
| | - Yiheng Wang
- Department of Anesthesiology, the First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Shigu District, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
8
|
Dalal R, Sadhu S, Batra A, Goswami S, Dandotiya J, K V V, Yadav R, Singh V, Chaturvedi K, Kannan R, Kumar S, Kumar Y, Rathore DK, Salunke DB, Ahuja V, Awasthi A. Gut commensals-derived succinate impels colonic inflammation in ulcerative colitis. NPJ Biofilms Microbiomes 2025; 11:44. [PMID: 40082467 PMCID: PMC11906746 DOI: 10.1038/s41522-025-00672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
Gut microbiota-derived metabolites play a crucial role in modulating the inflammatory response in inflammatory bowel disease (IBD). In this study, we identify gut microbiota-derived succinate as a driver of inflammation in ulcerative colitis (UC) by activating succinate-responsive, colitogenic helper T (Th) cells that secrete interleukin (IL)-9. We demonstrate that colitis is associated with an increase in succinate-producing gut bacteria and decrease in succinate-metabolizing gut bacteria. Similarly, UC patients exhibit elevated levels of succinate-producing gut bacteria and luminal succinate. Intestinal colonization by succinate-producing gut bacteria or increased succinate availability, exacerbates colonic inflammation by activating colitogenic Th9 cells. In contrast, intestinal colonization by succinate-metabolizing gut bacteria, blocking succinate receptor signaling with an antagonist, or neutralizing IL-9 with an anti-IL-9 antibody alleviates inflammation by reducing colitogenic Th9 cells. Our findings underscore the role of gut microbiota-derived succinate in driving colitogenic Th9 cells and suggesting its potential as a therapeutic target for treating IBD.
Collapse
Affiliation(s)
- Rajdeep Dalal
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Jawaharlal Nehru University, New Delhi, India
| | - Srikanth Sadhu
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Aashima Batra
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Sandeep Goswami
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Jyotsna Dandotiya
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Vinayakadas K V
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Rahul Yadav
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Virendra Singh
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Kartikey Chaturvedi
- Non-communicable disease centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Rahul Kannan
- Non-communicable disease centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Shakti Kumar
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Yashwant Kumar
- Non-communicable disease centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Deepak Kumar Rathore
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Deepak B Salunke
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, India
| | - Amit Awasthi
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
| |
Collapse
|
9
|
Kim D, Shah M, Kim JH, Kim J, Baek YH, Jeong JS, Han SY, Lee YS, Park G, Cho JH, Roh YH, Lee SW, Choi GB, Park JH, Yoo KH, Seong RH, Lee YS, Woo HG. Integrative transcriptomic and genomic analyses unveil the IFI16 variants and expression as MASLD progression markers. Hepatology 2025; 81:962-975. [PMID: 38385945 DOI: 10.1097/hep.0000000000000805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a broad and continuous spectrum of liver diseases ranging from fatty liver to steatohepatitis. The intricate interactions of genetic, epigenetic, and environmental factors in the development and progression of MASLD remain elusive. Here, we aimed to achieve an integrative understanding of the genomic and transcriptomic alterations throughout the progression of MASLD. APPROACH AND RESULTS RNA-Seq profiling (n = 146) and whole-exome sequencing (n = 132) of MASLD liver tissue samples identified 3 transcriptomic subtypes (G1-G3) of MASLD, which were characterized by stepwise pathological and molecular progression of the disease. Macrophage-driven inflammatory activities were identified as a key feature for differentiating these subtypes. This subtype-discriminating macrophage interplay was significantly associated with both the expression and genetic variation of the dsDNA sensor IFI16 (rs6940, A>T, T779S), establishing it as a fundamental molecular factor in MASLD progression. The in vitro dsDNA-IFI16 binding experiments and structural modeling revealed that the IFI16 variant exhibited increased stability and stronger dsDNA binding affinity compared to the wild-type. Further downstream investigation suggested that the IFI16 variant exacerbated DNA sensing-mediated inflammatory signals through mitochondrial dysfunction-related signaling of the IFI16-PYCARD-CASP1 pathway. CONCLUSIONS This study unveils a comprehensive understanding of MASLD progression through transcriptomic classification, highlighting the crucial roles of IFI16 variants. Targeting the IFI16-PYCARD-CASP1 pathway may pave the way for the development of novel diagnostics and therapeutics for MASLD.
Collapse
Affiliation(s)
- Doyoon Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Masaud Shah
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jang Hyun Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| | - JungMo Kim
- Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Yang-Hyun Baek
- Department of Internal Medicine, Liver Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jin-Sook Jeong
- Pathology and Laboratory Medicine, St Mary's Hospital, Busan, Republic of Korea
| | | | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Gaeul Park
- Division of Rare Cancer, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jin-Han Cho
- Department of Diagnostic Radiology, Dong-A University Medical Center, Busan, Republic of Korea
| | - Young-Hoon Roh
- Department of Surgery, Dong-A University Medical Center, Busan, Republic of Korea
| | - Sung-Wook Lee
- Department of Internal Medicine, Liver Center, Dong-A University Medical Center, Busan, Republic of Korea
| | - Gi-Bok Choi
- Department of Radiology, On Hospital, Busan, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Rho Hyun Seong
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Yeon-Su Lee
- Division of Rare Cancer, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
- Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| |
Collapse
|
10
|
Liu L, Li M, Zhang C, Zhong Y, Liao B, Feng J, Deng L. Macrophage metabolic reprogramming: A trigger for cardiac damage in autoimmune diseases. Autoimmun Rev 2025; 24:103733. [PMID: 39716498 DOI: 10.1016/j.autrev.2024.103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Macrophage metabolic reprogramming has a central role in the progression of autoimmune and auto-inflammatory diseases. The heart is a major target organ in many autoimmune conditions and can sustain functional and structural impairments, potentially leading to irreversible cardiac damage. There is mounting clinical evidence pointing to a link between autoimmune disease and cardiac damage. However, this association remains poorly understood, and numerous patients do not receive appropriate preventive measures, which poses serious cardiovascular risks and significantly impacts their quality of life. This review discusses the relationship between macrophage metabolic reprogramming and cardiac damage in patients with autoimmune diseases and the role of adaptive immunity in macrophage reprogramming. It also provides an overview of the immunosuppressive therapies used at present. Exploiting the properties of macrophage reprogramming could lead to development of novel treatments for patients with autoimmune-related cardiac damage.
Collapse
Affiliation(s)
- Lin Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, China
| | - Minghao Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, China
| | - Chunyu Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, China.
| | - Li Deng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, China; Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
11
|
Rai P, Fessler MB. Mechanisms and effects of activation of innate immunity by mitochondrial nucleic acids. Int Immunol 2025; 37:133-142. [PMID: 39213393 DOI: 10.1093/intimm/dxae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
In recent years, a growing number of roles have been identified for mitochondria in innate immunity. One principal mechanism is that the translocation of mitochondrial nucleic acid species from the mitochondrial matrix to the cytosol and endolysosomal lumen in response to an array of microbial and non-microbial environmental stressors has been found to serve as a second messenger event in the cell signaling of the innate immune response. Thus, mitochondrial DNA and RNA have been shown to access the cytosol through several regulated mechanisms involving remodeling of the mitochondrial inner and outer membranes and to access lysosomes via vesicular transport, thereby activating cytosolic [e.g. cyclic GMP-AMP synthase (cGAS), retinoic acid-inducible gene I (RIG-I)-like receptors], and endolysosomal (Toll-like receptor 7, 9) nucleic acid receptors that induce type I interferons and pro-inflammatory cytokines. In this mini-review, we discuss these molecular mechanisms of mitochondrial nucleic acid mislocalization and their roles in host defense, autoimmunity, and auto-inflammatory disorders. The emergent paradigm is one in which host-derived DNA interestingly serves as a signal amplifier in the innate immune response and also as an alarm signal for disturbances in organellar homeostasis. The apparent vast excess of mitochondria and mitochondrial DNA nucleoids per cell may thus serve to sensitize the cell response to stressors while ensuring an underlying reserve of intact mitochondria to sustain cellular metabolism. An improved understanding of these molecular mechanisms will hopefully afford future opportunities for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Prashant Rai
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
12
|
Steadman T, O'Reilly S. Aberrant fumarate metabolism links interferon release in diffuse systemic sclerosis. J Dermatol Sci 2025; 117:30-35. [PMID: 39827047 DOI: 10.1016/j.jdermsci.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Systemic Sclerosis (SSc) is an idiopathic rheumatic inflammatory disease that is characterised by inflammation and skin fibrosis. Type I interferon is significantly elevated in the disease. OBJECTIVE The objective of this study is to determine the role of the TCA cycle metabolite fumarate in SSc. METHODS CD14 + cells were isolated from 12 SSc patients and healthy controls. Fumarate hydratase and Interferon dependant genes were quantified by qPCR. In vitro inhibition of STING using a small molecule STING inhibitor and enforced mitophagy was induced in vitro and IFN-β release was quantified. VDAC1 inhibitor was used to determine the role of mt DNA release in IFN-β induction. In whole skin biopsies fumarate and succinate was quantified. RESULTS Fumarate Hydratase is significantly reduced in SSc monocytes. Type I interferon is also elevated in monocytes from SSc donors compared to controls. The mitochondrial-specific stress marker GDF-15 was significantly elevated in SSc monocytes. Blockade of the cGAS-STING pathway chemically reduced interferon-β release and induced mitophagy also retarded release of the cytokine in response to LPS stimulation. Inhibition of VDAC1 mitigated IFN-β, as did the depletion of mitochondria in cells. Furthermore, the itaconate derivative 4-octyl itaconate reduced IFN-β induction in SSc monocytes, that was downstream of mitochondrial nucleic acid release. Fumarate, but not succinate was elevated in whole skin biopsies. CONCLUSION Fumarate metabolism links interferon release in SSc and may underlie the aberrant expression of interferon in SSc via cytosolic DNA released from mitochondria.
Collapse
Affiliation(s)
- Thomas Steadman
- Biosciences Department, Durham University, Durham, United Kingdom
| | - Steven O'Reilly
- Biosciences Department, Durham University, Durham, United Kingdom.
| |
Collapse
|
13
|
Qiu M, Geng H, Zou C, Zhao X, Zhao C, Xie J, Wang J, Zhang N, Hu Y, Fu Y, Wang J, Hu X. Intestinal inflammation exacerbates endometritis through succinate production by gut microbiota and SUCNR1-mediated proinflammatory response. Int Immunopharmacol 2025; 146:113919. [PMID: 39736240 DOI: 10.1016/j.intimp.2024.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/01/2025]
Abstract
Endometritis poses higher health risks to women. Clinical practice has found that gastrointestinal dysfunction is more likely to lead to the occurrence of endometritis. However, the mechanism is unclear. This study explored the influence and mechanism of DSS-induced intestinal inflammation on endometritis. Our findings demonstrate that DSS-induced intestinal inflammation can worsen LPS-induced endometritis in mice, and this effect is dependent on the gut microbiota, as depleting the gut microbiota eliminates this protective effect. Similarly, FMT from DSS-treated mice to recipient mice exacerbates LPS-induced endometritis. In addition, treatment of DSS disrupted an imbalance of succinate-producing and succinate-consuming bacteria and increased the levels of succinate in the gut and uterine tissues. Furthermore, treatment with succinate aggravates LPS-induced endometritis by activating the succinate receptor 1 (SUCNR1), evidenced by inhibition of the activation of SUCNR1 reversed the inflammatory response in uterine tissues induced by succinate during endometritis induced by LPS. Collectively, the results suggested that dysbiosis of the gut microbiota exacerbates LPS-induced endometritis by production and migration of succinate from gut to uterine tissues via the gut-uterus axis, then activates the SUCNR1. This identifies gut-derived succinate as a novel target for treating endometritis, and it indicates that targeting the gut microbiota and its metabolism could be a potential strategy for intervention in endometritis.
Collapse
Affiliation(s)
- Min Qiu
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Huafeng Geng
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Chenyu Zou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Xiaotong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Jiaxin Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Jinnan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yubo Hu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Junrong Wang
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| |
Collapse
|
14
|
Ren J, Liu Z, Qi X, Meng X, Guo L, Yu Y, Dong T, Li Q. Active Ingredients and Potential Mechanism of Additive Sishen Decoction in Treating Rheumatoid Arthritis with Network Pharmacology and Molecular Dynamics Simulation and Experimental Verification. Drug Des Devel Ther 2025; 19:405-424. [PMID: 39867868 PMCID: PMC11762093 DOI: 10.2147/dddt.s489323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease in which macrophages produce cytokines that enhance inflammation and contribute to the destruction of cartilage and bone. Additive Sishen decoction (ASSD) is a widely used traditional Chinese medicine for the treatment of RA; however, its active ingredients and the mechanism of its therapeutic effects remain unclear. Methods To predict the ingredients and key targets of ASSD, we constructed "drug-ingredient-target-disease" and protein-protein interaction networks. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to explore the potential mechanism. The activity of the predicted key ingredients was verified in lipopolysaccharide-stimulated macrophages. The binding mode between the key ingredients and key targets was elucidated using molecular docking and molecular dynamics simulation. Results In all, 75 ASSD active ingredients and 1258 RA targets were analyzed, of which kaempferol, luteolin, and quercetin were considered key components that mainly act through inflammation-related pathways, such as the PI3K-AKT, TNF, and IL-17 signaling pathways, to ameliorate RA. Transcriptome sequencing suggested that kaempferol-, luteolin-, and quercetin-mediated inhibition of glycolysis reduced the lipopolysaccharide-induced production of proinflammatory factors. In vitro experiments indicated that kaempferol, luteolin, and quercetin decreased Glut1 and LDHA expression by diminishing PI3K-AKT signaling to inhibit glycolysis. Molecular dynamic simulation revealed that kaempferol, luteolin, and quercetin stably occupied the hydrophobic pocket of PI3Kδ. Conclusion Our results show that the PI3Kδ-mediated anti-inflammatory responses elicited by kaempferol, luteolin, and quercetin are crucial for the therapeutic efficacy of ASSD against RA.
Collapse
Affiliation(s)
- Jinhong Ren
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Ze Liu
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Xiaoming Qi
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Xiangda Meng
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Linglin Guo
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Yating Yu
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Tao Dong
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Qingshan Li
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| |
Collapse
|
15
|
Pușcașu C, Andrei C, Olaru OT, Zanfirescu A. Metabolite-Sensing Receptors: Emerging Targets for Modulating Chronic Pain Pathways. Curr Issues Mol Biol 2025; 47:63. [PMID: 39852178 PMCID: PMC11763455 DOI: 10.3390/cimb47010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Chronic pain is a debilitating condition affecting millions worldwide, often resulting from complex interactions between the nervous and immune systems. Recent advances highlight the critical role of metabolite-sensing G protein-coupled receptors (GPCRs) in various chronic pain types. These receptors link metabolic changes with cellular responses, influencing inflammatory and degenerative processes. Receptors such as free fatty acid receptor 1 (FFAR1/GPR40), free fatty acid receptor 4 (FFAR4/GPR120), free fatty acid receptor 2 (FFAR2/GPR43), and Takeda G protein-coupled receptor 5 (TGR5/GPR131/GPBAR1) are key modulators of nociceptive signaling. GPR40, activated by long-chain fatty acids, exhibits strong anti-inflammatory effects by reducing cytokine expression. Butyrate-activated GPR43 inhibits inflammatory mediators like nitric oxide synthase-2 and cyclooxygenase-2, mitigating inflammation. TGR5, activated by bile acids, regulates inflammation and cellular senescence through pathways like NF-κB and p38. These receptors are promising therapeutic targets in chronic pain, addressing the metabolic and inflammatory factors underlying nociceptive sensitization and tissue degeneration. This review explores the molecular mechanisms of metabolite-sensing receptors in chronic pain, their therapeutic potential, and challenges in clinical application. By uncovering these mechanisms, metabolite-sensing receptors could lead to safer, more effective pain management strategies.
Collapse
Affiliation(s)
| | - Corina Andrei
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (O.T.O.); (A.Z.)
| | | | | |
Collapse
|
16
|
Clay R, Li K, Jin L. Metabolic Signaling in the Tumor Microenvironment. Cancers (Basel) 2025; 17:155. [PMID: 39796781 PMCID: PMC11719658 DOI: 10.3390/cancers17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation. In recent years, the focus of cancer metabolic research has shifted from the regulation and utilization of cancer cell-intrinsic pathways to studying how the metabolic landscape of the tumor affects the anti-tumor immune response. Recent discoveries point to the role that secreted metabolites within the TME play in crosstalk between tumor cell types to promote tumorigenesis and hinder the anti-tumor immune response. In this review, we will explore how crosstalk between metabolites of cancer cells, immune cells, and stromal cells drives tumorigenesis and what effects the competition for resources and metabolic crosstalk has on immune cell function.
Collapse
Affiliation(s)
| | | | - Lingtao Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (R.C.); (K.L.)
| |
Collapse
|
17
|
Colombo G, Monsorno K, Paolicelli RC. Metabolic control of microglia in health and disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:143-159. [PMID: 40122622 DOI: 10.1016/b978-0-443-19104-6.00009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Metabolic states within cells are tightly linked to functional outcomes and finely regulated by nutrient availability. A growing body of the literature supports the idea that various metabolites can influence cellular functions, such as cell differentiation, migration, and proliferation in different contexts, with ample evidence coming from the immune system. Additionally, certain functional programs can trigger significant metabolic changes within cells, which are crucial not only to meet high energy demands, but also to produce intermediate metabolites necessary to support specific tasks. Microglia, the resident innate immune cells of the central nervous system, are constantly active, surveying the brain parenchyma and providing support to neighboring cells in the brain. They exhibit high metabolic flexibility, capable of quickly undergoing metabolic reprogramming based on nutrient availability and functional requirements. In this chapter, we will discuss the major metabolic pathways within cells and provide examples of how relevant enzymes and metabolites can impact microglial function in physiologic and pathologic contexts.
Collapse
Affiliation(s)
- Gloria Colombo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Katia Monsorno
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Rosa C Paolicelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Atallah R, Gindlhuber J, Platzer W, Rajesh R, Heinemann A. Succinate Regulates Endothelial Mitochondrial Function and Barrier Integrity. Antioxidants (Basel) 2024; 13:1579. [PMID: 39765906 PMCID: PMC11673088 DOI: 10.3390/antiox13121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Endothelial dysfunction is a hallmark of several pathological conditions, including cancer, cardiovascular disease and inflammatory disorders. In these conditions, perturbed TCA cycle and subsequent succinate accumulation have been reported. The role of succinate as a regulator of immunological responses and inflammation is increasingly being recognized. Nevertheless, how endothelial cell function and phenotype are altered by elevated intracellular succinate has not been addressed yet. Thus, we employed numerous in vitro functional assays using primary HUVECs and diethyl succinate (DES), a cell membrane-permeable succinate analogue. An MTS assay 1 h post stimulation with DES suggested reduced metabolic activity in HUVECs. Concurrently, elevated production of ROS, including mitochondrial superoxide, and a reduction in mitochondrial membrane potential were observed. These findings were corroborated by Seahorse mito-stress testing, which revealed that DES acutely lowered the OCR, maximal respiration and ATP production. Given the link between mitochondrial stress and apoptosis, we examined important survival signalling pathways. DES transiently reduced ERK1/2 phosphorylation, a response that was followed by a skewed pro-apoptotic shift in the BAX to BCL2L1 gene expression ratio, which coincided with upregulating VEGF gene expression. This indicated an induction of mixed pro-apoptotic and pro-survival signals in the cell. However, the BAX/BCL-XL protein ratio was unchanged, suggesting that the cells did not commit themselves to apoptosis. An MTS assay, caspase 3/7 activity assay and annexin V/propidium iodide staining confirmed this finding. By contrast, stimulation with DES induced acute endothelial barrier permeability, forming intercellular gaps, altering cell size and associated actin filaments without affecting cell count. Notably, during overnight DES exposure gradual recovery of the endothelial barrier and cell sprouting was observed, alongside mitochondrial membrane potential restoration, albeit with sustained ROS production. COX-2 inhibition and EP4 receptor blockade hindered barrier restoration, implicating a role of COX-2/PGE2/EP4 signalling in this process. Interestingly, ascorbic acid pre-treatment prevented DES-induced acute barrier disruption independently from ROS modulation. In conclusion, succinate acts as a significant regulator of endothelial mitochondrial function and barrier integrity, a response that is counterbalanced by upregulated VEGF and prostaglandin production by the endothelial cells.
Collapse
Affiliation(s)
- Reham Atallah
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Juergen Gindlhuber
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Physiology & Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Wolfgang Platzer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Rishi Rajesh
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
19
|
Rawal S, Randhawa V, Rizvi SHM, Sachan M, Wara AK, Pérez-Cremades D, Weisbrod RM, Hamburg NM, Feinberg MW. miR-369-3p ameliorates diabetes-associated atherosclerosis by regulating macrophage succinate-GPR91 signalling. Cardiovasc Res 2024; 120:1693-1712. [PMID: 38703377 PMCID: PMC11587565 DOI: 10.1093/cvr/cvae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/04/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
AIMS Diabetes leads to dysregulated macrophage immunometabolism, contributing to accelerated atherosclerosis progression. Identifying critical factors to restore metabolic alterations and promote resolution of inflammation remains an unmet goal. MicroRNAs orchestrate multiple signalling events in macrophages, yet their therapeutic potential in diabetes-associated atherosclerosis remains unclear. METHODS AND RESULTS miRNA profiling revealed significantly lower miR-369-3p expression in aortic intimal lesions from Ldlr-/- mice on a high-fat sucrose-containing (HFSC) diet for 12 weeks. miR-369-3p was also reduced in peripheral blood mononuclear cells from diabetic patients with coronary artery disease (CAD). Cell-type expression profiling showed miR-369-3p enrichment in aortic macrophages. In vitro, oxLDL treatment reduced miR-369-3p expression in mouse bone marrow-derived macrophages (BMDMs). Metabolic profiling in BMDMs revealed that miR-369-3p overexpression blocked the oxidized low density lipoprotein (oxLDL)-mediated increase in the cellular metabolite succinate and reduced mitochondrial respiration (OXPHOS) and inflammation [Interleukin (lL)-1β, TNF-α, and IL-6]. Mechanistically, miR-369-3p targeted the succinate receptor (GPR91) and alleviated the oxLDL-induced activation of inflammasome signalling pathways. Therapeutic administration of miR-369-3p mimics in HFSC-fed Ldlr-/- mice reduced GPR91 expression in lesional macrophages and diabetes-accelerated atherosclerosis, evident by a decrease in plaque size and pro-inflammatory Ly6Chi monocytes. RNA-Seq analyses showed more pro-resolving pathways in plaque macrophages from miR-369-3p-treated mice, consistent with an increase in macrophage efferocytosis in lesions. Finally, a GPR91 antagonist attenuated oxLDL-induced inflammation in primary monocytes from human subjects with diabetes. CONCLUSION These findings establish a therapeutic role for miR-369-3p in halting diabetes-associated atherosclerosis by regulating GPR91 and macrophage succinate metabolism.
Collapse
MESH Headings
- Animals
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Macrophages/metabolism
- Macrophages/pathology
- Signal Transduction
- Humans
- Mice, Knockout
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Male
- Mice, Inbred C57BL
- Disease Models, Animal
- Lipoproteins, LDL/metabolism
- Succinic Acid/metabolism
- Plaque, Atherosclerotic
- Mice
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Receptors, LDL/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Aortic Diseases/prevention & control
- Aortic Diseases/immunology
- Cells, Cultured
- Gene Expression Regulation
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/prevention & control
- Female
- Middle Aged
Collapse
Affiliation(s)
- Shruti Rawal
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Vinay Randhawa
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Syed Husain Mustafa Rizvi
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Madhur Sachan
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Akm Khyrul Wara
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Daniel Pérez-Cremades
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Department of Physiology, University of Valencia, INCLIVA Biomedical Research Institute, Valencia 46010, Spain
| | - Robert M Weisbrod
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Naomi M Hamburg
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
20
|
Qiu M, Ye C, Zhao X, Zou C, Tang R, Xie J, Liu Y, Hu Y, Hu X, Zhang N, Fu Y, Wang J, Zhao C. Succinate exacerbates mastitis in mice via extracellular vesicles derived from the gut microbiota: a potential new mechanism for mastitis. J Nanobiotechnology 2024; 22:712. [PMID: 39543623 PMCID: PMC11566393 DOI: 10.1186/s12951-024-02997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND A high grain diet causes an ecological imbalance in the gut microbiota and serves as an important endogenous trigger of mastitis in dairy cows, but the underlying mechanisms are unclear. Our previous study revealed that subacute rumen acidosis (SARA)-associated mastitis has distinct metabolic profiles in the rumen, especially a significant increase in succinate, but the role of succinate in the pathogenesis of mastitis remains unclear. RESULTS Succinate treatment exacerbates low-grade endotoxemia-induced mastitis in mice. Specifically, succinate increased the production of gut microbiota-extracellular vehicles (mEVs) containing lipopolysaccharides, which can diffuse across the damaged intestinal barrier into the mammary glands. Administration of mEVs promotes mammary inflammation via activation of the TLR4/NF-κB pathway. CONCLUSIONS Our findings suggest that succinate promotes mastitis through the proliferation of enteric pathogens and mEVs production, suggesting a potential strategy for mastitis intervention on the basis of intestinal metabolic regulation and pathogen inhibition. The role of mEVs in interspecific communication has also been elucidated.
Collapse
Affiliation(s)
- Min Qiu
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Cong Ye
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Xiaotong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Chenyu Zou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Ruibo Tang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Jiaxin Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yiheng Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yubo Hu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province, 130033, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| | - Jun Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China.
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
21
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
22
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
23
|
Yang H, Ran S, Zhou Y, Shi Q, Yu J, Wang W, Sun C, Li D, Hu Y, Pan C, Yuan Q, Zhen Y, Liu Q, Song L. Exposure to Succinate Leads to Steatosis in Non-Obese Non-Alcoholic Fatty Liver Disease by Inhibiting AMPK/PPARα/FGF21-Dependent Fatty Acid Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21052-21064. [PMID: 39268842 DOI: 10.1021/acs.jafc.4c05671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Succinate is an important metabolite and a critical chemical with diverse applications in the food, pharmaceutical, and agriculture industries. Recent studies have demonstrated several protective or detrimental functions of succinate in diseases; however, the effect of succinate on lipid metabolism is still unclear. Here, we identified a role of succinate in nonobese nonalcoholic fatty liver disease (NAFLD). Specifically, the level of succinate is increased in the livers and serum of mice with hepatic steatosis. The administration of succinate promotes triglyceride (TG) deposition and hepatic steatosis by suppressing fatty acid oxidation (FAO) in nonobese NAFLD mouse models. RNA-Seq revealed that succinate suppressed fibroblast growth factor 21 (FGF21) expression. Then, the restoration of FGF21 was sufficient to alleviate hepatic steatosis and FAO inhibition induced by succinate treatment in vitro and in vivo. Furthermore, the inhibition of FGF21 expression and FAO mediated by succinate was dependent on the AMPK/PPARα axis. This study provides evidence linking succinate exposure to abnormal hepatic lipid metabolism and the progression of nonobese NAFLD.
Collapse
Affiliation(s)
- Hong Yang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Suye Ran
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Qing Shi
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jiangnan Yu
- Department of Gastroenterology, Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou 550000, China
| | - Wenjuan Wang
- Department of Gastroenterology, Xingyi People's Hospital, Xingyi, Guizhou 562400, China
| | - Chengqin Sun
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Dengke Li
- Luoyang Vocational and Technical College, Luoyang, Henan 471000, China
| | - Yue Hu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Chen Pan
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qi Yuan
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yunhuan Zhen
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qi Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lingyu Song
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
24
|
Kalykaki M, Rubio-Tomás T, Tavernarakis N. The role of mitochondria in cytokine and chemokine signalling during ageing. Mech Ageing Dev 2024; 222:111993. [PMID: 39307464 DOI: 10.1016/j.mad.2024.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Ageing is accompanied by a persistent, low-level inflammation, termed "inflammageing", which contributes to the pathogenesis of age-related diseases. Mitochondria fulfil multiple roles in host immune responses, while mitochondrial dysfunction, a hallmark of ageing, has been shown to promote chronic inflammatory states by regulating the production of cytokines and chemokines. In this review, we aim to disentangle the molecular mechanisms underlying this process. We describe the role of mitochondrial signalling components such as mitochondrial DNA, mitochondrial RNA, N-formylated peptides, ROS, cardiolipin, cytochrome c, mitochondrial metabolites, potassium efflux and mitochondrial calcium in the age-related immune system activation. Furthermore, we discuss the effect of age-related decline in mitochondrial quality control mechanisms, including mitochondrial biogenesis, dynamics, mitophagy and UPRmt, in inflammatory states upon ageing. In addition, we focus on the dynamic relationship between mitochondrial dysfunction and cellular senescence and its role in regulating the secretion of pro-inflammatory molecules by senescent cells. Finally, we review the existing literature regarding mitochondrial dysfunction and inflammation in specific age-related pathological conditions, including neurodegenerative diseases (Alzheimer's and Parkinson's disease, and amyotrophic lateral sclerosis), osteoarthritis and sarcopenia.
Collapse
Affiliation(s)
- Maria Kalykaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete GR-71003, Greece.
| |
Collapse
|
25
|
Cheung KC, Ma J, Wang L, Chen X, Fanti S, Li M, Azevedo LR, Gosselet F, Shen H, Zheng X, Lu A, Jia W. CD31 orchestrates metabolic regulation in autophagy pathways of rheumatoid arthritis. Pharmacol Res 2024; 207:107346. [PMID: 39127263 DOI: 10.1016/j.phrs.2024.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Synovitis is characterized by a distinctmetabolic profile featuring the accumulation of lactate, a byproduct of cellular metabolism within inflamed joints. This study reveals that the activation of the CD31 signal by lactate instigates a metabolic shift, specifically initiating endothelial cell autophagy. This adaptive process plays a pivotal role in fulfilling the augmented energy and biomolecule demands associated with the formation of new blood vessels in the synovium of Rheumatoid Arthritis (RA). Additionally, the amino acid substitutions in the CD31 cytoplasmic tail at the Y663F and Y686F sites of the immunoreceptor tyrosine-based inhibitory motifs (ITIM) alleviate RA. Mechanistically, this results in the downregulation of glycolysis and autophagy pathways. These findings significantly advance our understanding of potential therapeutic strategies for modulating these processes in synovitis and, potentially, other autoimmune diseases.
Collapse
Affiliation(s)
- Kenneth Cp Cheung
- Phenome Research Center, Hong Kong Baptist University School of Chinese Medicine, Hong Kong, China.
| | - Jiao Ma
- Phenome Research Center, Hong Kong Baptist University School of Chinese Medicine, Hong Kong, China
| | - Lu Wang
- Phenome Research Center, Hong Kong Baptist University School of Chinese Medicine, Hong Kong, China
| | - Xingxuan Chen
- Phenome Research Center, Hong Kong Baptist University School of Chinese Medicine, Hong Kong, China
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Mingzhang Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Loiola Rodrigo Azevedo
- Faculté de Sciences Jean Perrin, Blood-brain barrier laboratory, Université d'Artois, France
| | - Fabien Gosselet
- Faculté de Sciences Jean Perrin, Blood-brain barrier laboratory, Université d'Artois, France
| | - Hao Shen
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Aiping Lu
- Phenome Research Center, Hong Kong Baptist University School of Chinese Medicine, Hong Kong, China
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Huang J, Liu M, Zhang H, Sun G, Furey A, Rahman P, Zhai G. Multi-Omics Integrative Analyses Identified Two Endotypes of Hip Osteoarthritis. Metabolites 2024; 14:480. [PMID: 39330487 PMCID: PMC11434176 DOI: 10.3390/metabo14090480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
(1) Background: Osteoarthritis (OA) is a heterogeneous disorder, and subgroup classification of OA remains elusive. The aim of our study was to identify endotypes of hip OA and investigate the altered pathways in the different endotypes. (2) Methods: Metabolomic profiling and genome-wide genotyping were performed on fasting blood. Transcriptomic profiling was performed on RNA extracted from cartilage samples. Machine learning methods were used to identify endotypes of hip OA. Pathway analysis was used to identify the altered pathways between hip endotypes and controls. GWAS was performed on each of the identified metabolites. Transcriptomic data was used to examine the expression levels of identified genes in cartilage. (3) Results: 180 hip OA patients and 120 OA-free controls were classified into three clusters based on metabolomic data. The combination of arginine, ornithine, and the average value of 7 lysophosphatidylcholines had an area under the curve (AUC) of 0.97 (95% CI: 0.96-0.99) to discriminate hip OA from controls, and the combination of γ-aminobutyric acid, spermine, aconitic acid, and succinic acid had an AUC of 0.96 (95% CI: 0.94-0.99) to distinguish two hip OA endotypes. GWAS identified 236 SNPs to be associated with identified metabolites at GWAS significance level. Pro-inflammatory cytokine levels were significantly different between two endotypes (all p < 0.05). (4) Conclusions: Hip OA could be classified into two distinct molecular endotypes. The primary differences between the two endotypes involve changes in pro-inflammatory factors and energy metabolism.
Collapse
Affiliation(s)
- Jingyi Huang
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Ming Liu
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Hongwei Zhang
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Guang Sun
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Andrew Furey
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
- Office of the Premier, Government of Newfoundland & Labrador, St. John's, NL A1B 4J6, Canada
| | - Proton Rahman
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Guangju Zhai
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
27
|
Li M, Fu X, Zhou T, Han H. Biomarkers related to m6A and succinic acid metabolism in papillary thyroid carcinoma. BMC Med Genomics 2024; 17:199. [PMID: 39113023 PMCID: PMC11304613 DOI: 10.1186/s12920-024-01975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/30/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Studies have shown that m6A modification is related to the occurrence and development of papillary thyroid carcinoma (PTC). The disorder of succinic acid metabolism is associated with the occurrence and development of various tumors. However, there are few studies based on m6A and succinate metabolism-related genes (SMRGs) in PTC. METHODS The TCGA-Thyroid carcinoma (THCA), GSE33630, 1159 SMRGs, and 23 m6A regulatory factors were collected from the online databases. Subsequently, the differentially expressed genes (DEGs) were selected between PTC (Tumor) and Normal samples. The overlapping genes among the DEGs, m6A, and SMRGs were applied to screen the biomarkers. Using the 3 machine-learning algorithms, the biomarkers were determined based on the overlapping genes. Next, the biomarkers were evaluated by the ROC curve and expression analysis in TCGA-THCA and GSE33630. Then, the overall survival (OS) differences were compared between the high-and low-expression biomarkers. Finally, immune infiltration analysis, molecular regulatory network, and drug prediction were performed based on the biomarkers. RESULTS In TCGA-THCA, there were 2800 DEGs between and Normal samples, and then 7 overlapping genes were obtained. Importantly, ADK, TNFRSF10B, CYP7B1, FGFR2, and CPQ were determined as biomarkers with excellent diagnostic efficiency (AUC > 0.7). In PTC samples, ADK and TNFRSF10B were high-expressed while CYP7B1, FGFR2, and CPQ were low-expressed. Especially, the high-expression groups of ADK had a better prognosis, while the high-expression groups of CYP7B1, FGFR2, and CPQ had a worse prognosis. Afterward, immune infiltration analysis found that 16 immune cells had infiltration differences between the Tumor and Normal samples. Finally, transcription factor SP1 could regulate CYP7B1 and TNFRSF10B. Moreover, Navitoclax was a potential drug for PTC patients. CONCLUSION Overall, we described 5 biomarkers associated with adverse prognosis of PTC, including ADK, TNFRSF10B, CYP7B1, FGFR2, and CPQ. All these biomarkers were involved in succinate metabolism and m6A modification of RNA. This set of biomarkers should be explored further for their diagnostic value in PTC. Investigations into the mechanistic role of alteration of succinate metabolism and m6A modification of RNA pathways in the pathophysiology of PTC are warranted.
Collapse
Affiliation(s)
- Minyu Li
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaodan Fu
- Department of Endocrinology, Affiliated Hangzhou First People's Hospital, School of medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Tianhan Zhou
- The Department of General Surgery, Hangzhou Hospital of Traditional Chinese Medicine Hangzhou TCM Hospital, Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hui Han
- Department of Endocrinology, Affiliated Hangzhou First People's Hospital, School of medicine, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
28
|
Su W, Wang Y, Zu C, Lei L, Li H. G protein-coupled receptor 91 promotes the inflammatory response to Porphyromonas gingivalis in bone marrow-derived macrophages. Heliyon 2024; 10:e34509. [PMID: 39568659 PMCID: PMC11577564 DOI: 10.1016/j.heliyon.2024.e34509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 11/22/2024] Open
Abstract
Macrophages are important for maintaining tissue homeostasis and defending against pathogens in periodontal tissues. However, these tissues are often vulnerable to damage due to local inflammatory responses within the host tissues. This study aimed to investigate the role of G protein-coupled receptor 91(GPR91) during the inflammatory response to Porphyromonas gingivalis (P. gingivalis) in bone marrow-derived macrophages (BMDMs). To this end, we examined expression levels of GPR91 genes in human periodontal tissues affected by periodontitis. Utilizing primary mouse BMDMs from wild-type (WT) and GPR91 knockout (GPR91-/-) mice infected with P. gingivalis, we demonstrated that GPR91 accumulates in inflamed gingival tissues. Additionally, P. gingivalis can induce intercellular succinate accumulation, inflammatory mediator generation, reactive oxygen species (ROS) production, lipid peroxidation, and superoxide dismutase activity in WT-BMDMs. Moreover, inhibition of GPR91 by the specific inhibitor 4C as well as knockdown of GPR91 reduced inflammation and oxidative stress in P. gingivalis-infected BMDMs. Furthermore, we discovered that GPR91-mediated inflammation in P. gingivalis-infected BMDMs is activated via the Erk/Nuclear Factor-κB pathway. These findings provide new insights into the metabolic pathogenesis of periodontal inflammation.
Collapse
Affiliation(s)
- Wenqi Su
- Department of Periodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yujia Wang
- Department of Periodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Cancan Zu
- Department of Periodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Lang Lei
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Houxuan Li
- Department of Periodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
29
|
Ge Z, Chen Y, Ma L, Hu F, Xie L. Macrophage polarization and its impact on idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1444964. [PMID: 39131154 PMCID: PMC11310026 DOI: 10.3389/fimmu.2024.1444964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lung disease that worsens over time, causing fibrosis in the lungs and ultimately resulting in respiratory failure and a high risk of death. Macrophages play a crucial role in the immune system, showing flexibility by transforming into either pro-inflammatory (M1) or anti-inflammatory (M2) macrophages when exposed to different stimuli, ultimately impacting the development of IPF. Recent research has indicated that the polarization of macrophages is crucial in the onset and progression of IPF. M1 macrophages secrete inflammatory cytokines and agents causing early lung damage and fibrosis, while M2 macrophages support tissue healing and fibrosis by releasing anti-inflammatory cytokines. Developing novel treatments for IPF relies on a thorough comprehension of the processes involved in macrophage polarization in IPF. The review outlines the regulation of macrophage polarization and its impact on the development of IPF, with the goal of investigating the possible therapeutic benefits of macrophage polarization in the advancement of IPF.
Collapse
Affiliation(s)
- Zhouling Ge
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| | - Yong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Leikai Ma
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangjun Hu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| | - Lubin Xie
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
Liu A, Liu Y, Zhang W, Ye RD. Structural insights into ligand recognition and activation of the succinate receptor SUCNR1. Cell Rep 2024; 43:114381. [PMID: 38923454 DOI: 10.1016/j.celrep.2024.114381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Succinate, a citric acid cycle intermediate, serves important functions in energy homeostasis and metabolic regulation. Extracellular succinate acts as a stress signal through succinate receptor (SUCNR1), a class A G protein-coupled receptor. Research on succinate signaling is hampered by the lack of high-resolution structures of the agonist-bound receptor. We present cryoelectron microscopy (cryo-EM) structures of SUCNR1-Gi complexes bound to succinate and its non-metabolite derivative cis-epoxysuccinate. Key determinants for the recognition of succinate in cis conformation include R2817.39 and Y832.64, while Y301.39 and R993.29 participate in the binding of both succinate and cis-epoxysuccinate. Extracellular loop 2, through F175ECL2 in its β-hairpin, forms a hydrogen bond with succinate and caps the binding pocket. At the receptor-Gi interface, agonist binding induces the rearrangement of a hydrophobic network on transmembrane (TM)5 and TM6, leading to TM signaling through TM3 and TM7. These findings extend our understanding of succinate recognition by SUCNR1, aiding the development of therapeutics for the succinate receptor.
Collapse
Affiliation(s)
- Aijun Liu
- Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong 523326, China; Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518000, China.
| | - Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518000, China
| | - Weijia Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
31
|
Hu S, Lin Y, Tang Y, Zhang J, He Y, Li G, Li L, Cai X. Targeting dysregulated intracellular immunometabolism within synovial microenvironment in rheumatoid arthritis with natural products. Front Pharmacol 2024; 15:1403823. [PMID: 39104392 PMCID: PMC11298361 DOI: 10.3389/fphar.2024.1403823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Immunometabolism has been an emerging hotspot in the fields of tumors, obesity, and atherosclerosis in recent decades, yet few studies have investigated its connection with rheumatoid arthritis (RA). In principle, intracellular metabolic pathways upstream regulated by nutrients and growth factors control the effector functions of immune cells. Dynamic communication and hypermetabolic lesions of immune cells within the inflammatory synovial microenvironment contributes to the development and progression of RA. Hence, targeting metabolic pathways within immune subpopulations and pathological cells may represent novel therapeutic strategies for RA. Natural products constitute a great potential treasury for the research and development of novel drugs targeting RA. Here, we aimed to delineate an atlas of glycolysis, lipid metabolism, amino acid biosynthesis, and nucleotide metabolism in the synovial microenvironment of RA that affect the pathological processes of synovial cells. Meanwhile, therapeutic potentials and pharmacological mechanisms of natural products that are demonstrated to inhibit related key enzymes in the metabolic pathways or reverse the metabolic microenvironment and communication signals were discussed and highlighted.
Collapse
Affiliation(s)
- Shengtao Hu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuanyuan Tang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junlan Zhang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yini He
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gejing Li
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liqing Li
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| |
Collapse
|
32
|
Mu G, Cao X, Shao L, Shen H, Guo X, Gao Y, Su C, Fan H, Yu Y, Shen Z. Progress and perspectives of metabolic biomarkers in human aortic dissection. Metabolomics 2024; 20:76. [PMID: 39002042 DOI: 10.1007/s11306-024-02140-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/06/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Aortic dissection (AD) significantly threated human cardiovascular health, extensive clinical-scientific research programs have been executed to uncover the pathogenesis and prevention. Unfortunately, no specific biomarker was identified for the causality or development of human AD. AIM OF REVIEW Metabolomics, a high-throughput technique capable of quantitatively detecting metabolites, holds considerable promise in discovering specific biomarkers and unraveling the underlying pathways involved. Aiming to provide a metabolite prediction in human AD, we collected the metabolomics data from 2003 to 2023, and diligently scrutinized with the online system MetaboAnalyst 6.0. KEY SCIENTIFIC CONCEPTS OF REVIEW Based on the data obtained, we have concluded the metabolic dynamics were highly correlated with human AD. Such metabolites (choline, serine and uridine) were frequently involved in the AD. Besides, the pathways, including amino acids metabolism and lipids metabolism, were also dysregulated in the disease. Due to the current limitation of metabolism analysis, the integrative omics data including genomics, transcriptomics, and proteomics were required for developing the specific biomarker for AD.
Collapse
Affiliation(s)
- Gaohang Mu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xiangyu Cao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Han Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xingyou Guo
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
- Department of Vascular Surgery, Suqian First Hospital, Suqian, 223800, Jiangsu, China
| | - Yamei Gao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chengkai Su
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hongyou Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - You Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
33
|
Wang Y, Xiu Z, Qu K, Wang L, Wang H, Yu Y. Trailblazing in adjuvant research: succinate's uncharted territory with neutrophils. Am J Physiol Cell Physiol 2024; 327:C1-C10. [PMID: 38708521 DOI: 10.1152/ajpcell.00129.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
The purpose of this study is to investigate the previously unknown connection that succinate has with neutrophils in the setting of adjuvant-mediated immunological enhancement. It has been discovered that succinates stimulate the recruitment of neutrophils in immunization sites, which in turn induces the expression of what is known as neutrophil-derived B cell-activating factor (BAFF). Further amplification of vaccine-induced antibody responses is provided via the succinate receptor 1-interferon regulatory factor 5 (SUCNR1-IRF5)-BAFF signaling pathway, which provides insights into a unique mechanism for immunological enhancement.NEW & NOTEWORTHY This study explores the role of succinate as a vaccine adjuvant, revealing its capacity to enhance neutrophil recruitment at immunization sites, which boosts B cell activation through the succinate receptor 1-interferon regulatory factor 5-B cell-activating factor (SUCNR1-IRF5-BAFF) signaling pathway. Results demonstrate succinate's potential to amplify vaccine-induced antibody responses, highlighting its significance in immunological enhancement and offering new insights into the adjuvant mechanisms of action, particularly in neutrophil-mediated immune responses.
Collapse
Affiliation(s)
- Yangyang Wang
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, People's Republic of China
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, People's Republic of China
| | - Zhiming Xiu
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, People's Republic of China
| | - Kuo Qu
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, People's Republic of China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, People's Republic of China
| | - Huiyan Wang
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, People's Republic of China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
34
|
Ye D, Wang P, Chen LL, Guan KL, Xiong Y. Itaconate in host inflammation and defense. Trends Endocrinol Metab 2024; 35:586-606. [PMID: 38448252 DOI: 10.1016/j.tem.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Immune cells undergo rapid and extensive metabolic changes during inflammation. In addition to contributing to energetic and biosynthetic demands, metabolites can also function as signaling molecules. Itaconate (ITA) rapidly accumulates to high levels in myeloid cells under infectious and sterile inflammatory conditions. This metabolite binds to and regulates the function of diverse proteins intracellularly to influence metabolism, oxidative response, epigenetic modification, and gene expression and to signal extracellularly through binding the G protein-coupled receptor (GPCR). Administration of ITA protects against inflammatory diseases and blockade of ITA production enhances antitumor immunity in preclinical models. In this article, we review ITA metabolism and its regulation, discuss its target proteins and mechanisms, and conjecture a rationale for developing ITA-based therapeutics to treat inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Dan Ye
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Pu Wang
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei-Lei Chen
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Xiong
- Cullgen Inc., 12730 High Bluff Drive, San Diego, CA 92130, USA.
| |
Collapse
|
35
|
Guo Z, Liu J, Liang G, Liang H, Zhong M, Tomlinson S, He S, Ouyang G, Yuan G. Identification and validation of cuproptosis-related genes in acetaminophen-induced liver injury using bioinformatics analysis and machine learning. Front Immunol 2024; 15:1371446. [PMID: 38994365 PMCID: PMC11236684 DOI: 10.3389/fimmu.2024.1371446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Acetaminophen (APAP) is commonly used as an antipyretic analgesic. However, acetaminophen overdose may contribute to liver injury and even liver failure. Acetaminophen-induced liver injury (AILI) is closely related to mitochondrial oxidative stress and dysfunction, which play critical roles in cuproptosis. Here, we explored the potential role of cuproptosis-related genes (CRGs) in AILI. METHODS The gene expression profiles were obtained from the Gene Expression Omnibus database. The differential expression of CRGs was determined between the AILI and control samples. Protein protein interaction, correlation, and functional enrichment analyses were performed. Machine learning was used to identify hub genes. Immune infiltration was evaluated. The AILI mouse model was established by intraperitoneal injection of APAP solution. Quantitative real-time PCR and western blotting were used to validate hub gene expression in the AILI mouse model. The copper content in the mouse liver samples and AML12 cells were quantified using a colorimetric assay kit. Ammonium tetrathiomolybdate (ATTM), was administered to mouse models and AML12 cells in order to investigate the effects of copper chelator on AILI. RESULTS The analysis identified 7,809 differentially expressed genes, 4,245 of which were downregulated and 3,564 of which were upregulated. Four optimal feature genes (OFGs; SDHB, PDHA1, NDUFB2, and NDUFB6) were identified through the intersection of two machine learning algorithms. Further nomogram, decision curve, and calibration curve analyses confirmed the diagnostic predictive efficacy of the four OFGs. Enrichment analysis indicated that the OFGs were involved in multiple pathways, such as IL-17 pathway and chemokine signaling pathway, that are related to AILI progression. Immune infiltration analysis revealed that macrophages were more abundant in AILI than in control samples, whereas eosinophils and endothelial cells were less abundant. Subsequently, the AILI mouse model was successfully established, and histopathological analysis using hematoxylin-eosin staining along with liver function tests revealed a significant induction of liver injury in the APAP group. Consistent with expectations, both mRNA and protein levels of the four OFGs exhibited a substantial decrease. The administration of ATTAM effectively mitigates copper elevation induced by APAP in both mouse model and AML12 cells. However, systemic administration of ATTM did not significantly alleviate AILI in the mouse model. CONCLUSION This study first revealed the potential role of CRGs in the pathological process of AILI and offered novel insights into its underlying pathogenesis.
Collapse
Affiliation(s)
- Zhenya Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases (Guangxi Medical University), Nanning, Guangxi, China
| | - Jiaping Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases (Guangxi Medical University), Nanning, Guangxi, China
| | - Guozhi Liang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases (Guangxi Medical University), Nanning, Guangxi, China
| | - Haifeng Liang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases (Guangxi Medical University), Nanning, Guangxi, China
| | - Mingbei Zhong
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases (Guangxi Medical University), Nanning, Guangxi, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases (Guangxi Medical University), Nanning, Guangxi, China
| | - Guoqing Ouyang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases (Guangxi Medical University), Nanning, Guangxi, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases (Guangxi Medical University), Nanning, Guangxi, China
| |
Collapse
|
36
|
Huang H, Li G, He Y, Chen J, Yan J, Zhang Q, Li L, Cai X. Cellular succinate metabolism and signaling in inflammation: implications for therapeutic intervention. Front Immunol 2024; 15:1404441. [PMID: 38933270 PMCID: PMC11200920 DOI: 10.3389/fimmu.2024.1404441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Succinate, traditionally viewed as a mere intermediate of the tricarboxylic acid (TCA) cycle, has emerged as a critical mediator in inflammation. Disruptions within the TCA cycle lead to an accumulation of succinate in the mitochondrial matrix. This excess succinate subsequently diffuses into the cytosol and is released into the extracellular space. Elevated cytosolic succinate levels stabilize hypoxia-inducible factor-1α by inhibiting prolyl hydroxylases, which enhances inflammatory responses. Notably, succinate also acts extracellularly as a signaling molecule by engaging succinate receptor 1 on immune cells, thus modulating their pro-inflammatory or anti-inflammatory activities. Alterations in succinate levels have been associated with various inflammatory disorders, including rheumatoid arthritis, inflammatory bowel disease, obesity, and atherosclerosis. These associations are primarily due to exaggerated immune cell responses. Given its central role in inflammation, targeting succinate pathways offers promising therapeutic avenues for these diseases. This paper provides an extensive review of succinate's involvement in inflammatory processes and highlights potential targets for future research and therapeutic possibilities development.
Collapse
Affiliation(s)
- Hong Huang
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gejing Li
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yini He
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Chen
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianye Yan
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qin Zhang
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liqing Li
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Xiong Cai
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
37
|
Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, Basharat Z, Hong W. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother 2024; 175:116690. [PMID: 38718519 DOI: 10.1016/j.biopha.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinglu Jin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peter C Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20-24, Bensberg 51429, Germany
| | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
38
|
Zuo Q, Lyu J, Shen X, Wang F, Xing L, Zhou M, Zhou Z, Li L, Huang Y. A Less-is-More Strategy for Mitochondria-Targeted Photodynamic Therapy of Rheumatoid Arthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307261. [PMID: 38225702 DOI: 10.1002/smll.202307261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/25/2023] [Indexed: 01/17/2024]
Abstract
Conventional photodynamic therapy (PDT) of rheumatoid arthritis (RA) faces a dilemma: low-power is insufficient to kill pro-inflammatory cells while high-power exacerbates inflammation. Herein, mitochondrial targeting is introduced in PDT of RA to implement a "less-is-more" strategy, where higher apoptosis in pro-inflammatory cells are achieved with lower laser power. In arthritic rats, chlorine 6-loaded and mitochondria-targeting liposomes (Ce6@M-Lip) passively accumulated in inflamed joints, entered pro-inflammatory macrophages, and actively localized to mitochondria, leading to enhanced mitochondrial dysfunction under laser irradiation. By effectively disrupting mitochondria, pro-inflammatory macrophages are more susceptible to PDT, resulting in increased apoptosis initiation. Additionally, it identifies that high-power irradiation caused cell rupture and release of endogenous danger signals that recruited and activated additional macrophages. In contrast, under low-power irradiation, mitochondria-targeting Ce6@M-Lip not only prevented inflammation but also reduced pro-inflammatory macrophage infiltration and pro-inflammatory cytokine secretion. Overall, targeting mitochondria reconciled therapeutic efficacy and inflammation, thus enabling efficacious yet inflammation-sparing PDT for RA. This highlights the promise of mitochondrial targeting to resolve the dilemma between anti-inflammatory efficacy and inflammatory exacerbation in PDT by implementing a "less-is-more" strategy.
Collapse
Affiliation(s)
- Qingting Zuo
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| | - Jiayan Lyu
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| | - Xinran Shen
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| | - Fengju Wang
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| | - Liyun Xing
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| | - Minglu Zhou
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| | - Zhou Zhou
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| | - Lian Li
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| | - Yuan Huang
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P.R. China
| |
Collapse
|
39
|
Peace CG, O'Carroll SM, O'Neill LAJ. Fumarate hydratase as a metabolic regulator of immunity. Trends Cell Biol 2024; 34:442-450. [PMID: 37940417 DOI: 10.1016/j.tcb.2023.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023]
Abstract
Tricarboxylic acid (TCA) cycle metabolites have been implicated in modulating signalling pathways in immune cells. Notable examples include succinate and itaconate, which have pro- and anti-inflammatory roles, respectively. Recently, fumarate has emerged as having specific roles in macrophage activation, regulating the production of such cytokines as interleukin (IL)-10 and type I interferons (IFNs). Fumarate hydratase (FH) has been identified as a control point. Notably, FH loss in different models and cell types has been found to lead to DNA and RNA release from mitochondria which are sensed by cytosolic nucleic acid sensors including retinoic acid-inducible gene (RIG)-I, melanoma differentiation-associated protein (MDA)5, and cyclic GMP-AMP synthase (cGAS) to upregulate IFN-β production. These findings may have relevance in the pathogenesis and treatment of diseases associated with decreased FH levels such as systemic lupus erythematosus (SLE) or FH-deficient kidney cancer.
Collapse
Affiliation(s)
- Christian G Peace
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Shane M O'Carroll
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
40
|
Liu L, Tang W, Wu S, Ma J, Wei K. Pulmonary succinate receptor 1 elevation in high-fat diet mice exacerbates lipopolysaccharides-induced acute lung injury via sensing succinate. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167119. [PMID: 38479484 DOI: 10.1016/j.bbadis.2024.167119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Individuals with obesity have higher level of circulating succinate, which acts as a signaling factor that initiates inflammation. It is obscure whether succinate and succinate receptor 1 (SUCNR1) are involved in the process of obesity aggravating acute lung injury (ALI). METHODS The lung tissue and blood samples from patients with obesity who underwent lung wedgectomy or segmental resection were collected. Six-week-old male C57BL/6J mice were fed a high-fat diet for 12 weeks to induce obesity and lipopolysaccharides (LPS) were injected intratracheally (100 μg, 1 mg/ml) for 24 h to establish an ALI model. The pulmonary SUCNR1 expression and succinate level were measured. Exogenous succinate was supplemented to assess whether succinate exacerbated the LPS-induced lung injury. We next examined the cellular localization of pulmonary SUCNR1. Furthermore, the role of the succinate-SUCNR1 pathway in LPS-induced inflammatory responses in MH-s macrophages and obese mice was investigated. RESULT The pulmonary SUCNR1 expression and serum succinate level were significantly increased in patients with obesity and in HFD mice. Exogenous succinate supplementation significantly increased the severity of ALI and inflammatory response. SUCNR1 was mainly expressed on lung macrophages. In LPS-stimulated MH-s cells, knockdown of SUCNR1 expression significantly inhibited pro-inflammatory cytokines' expression, the increase of hypoxia-inducible factor-1α (HIF-1α) expression, inhibitory κB-α (IκB-α) phosphorylation, p65 phosphorylation and p65 translocation to nucleus. In obese mice, SUCNR1 inhibition significantly alleviated LPS-induced lung injury and decreased the HIF-1α expression and IκB-α phosphorylation. CONCLUSION The high expression of pulmonary SUCNR1 and serum succinate accumulation at least partly participate in the process of obesity aggravating LPS-induced lung injury.
Collapse
Affiliation(s)
- Ling Liu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenjing Tang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siqi Wu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingyue Ma
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ke Wei
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
41
|
Kumar V, Stewart Iv JH. Pattern-Recognition Receptors and Immunometabolic Reprogramming: What We Know and What to Explore. J Innate Immun 2024; 16:295-323. [PMID: 38740018 PMCID: PMC11250681 DOI: 10.1159/000539278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Evolutionarily, immune response is a complex mechanism that protects the host from internal and external threats. Pattern-recognition receptors (PRRs) recognize MAMPs, PAMPs, and DAMPs to initiate a protective pro-inflammatory immune response. PRRs are expressed on the cell membranes by TLR1, 2, 4, and 6 and in the cytosolic organelles by TLR3, 7, 8, and 9, NLRs, ALRs, and cGLRs. We know their downstream signaling pathways controlling immunoregulatory and pro-inflammatory immune response. However, the impact of PRRs on metabolic control of immune cells to control their pro- and anti-inflammatory activity has not been discussed extensively. SUMMARY Immune cell metabolism or immunometabolism critically determines immune cells' pro-inflammatory phenotype and function. The current article discusses immunometabolic reprogramming (IR) upon activation of different PRRs, such as TLRs, NLRs, cGLRs, and RLRs. The duration and type of PRR activated, species studied, and location of immune cells to specific organ are critical factors to determine the IR-induced immune response. KEY MESSAGE The work herein describes IR upon TLR, NLR, cGLR, and RLR activation. Understanding IR upon activating different PRRs is critical for designing better immune cell-specific immunotherapeutics and immunomodulators targeting inflammation and inflammatory diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
42
|
Sabadell-Basallote J, Astiarraga B, Castaño C, Ejarque M, Repollés-de-Dalmau M, Quesada I, Blanco J, Núñez-Roa C, Rodríguez-Peña MM, Martínez L, De Jesus DF, Marroquí L, Bosch R, Montanya E, Sureda FX, Tura A, Mari A, Kulkarni RN, Vendrell J, Fernández-Veledo S. SUCNR1 regulates insulin secretion and glucose elevates the succinate response in people with prediabetes. J Clin Invest 2024; 134:e173214. [PMID: 38713514 PMCID: PMC11178533 DOI: 10.1172/jci173214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/26/2024] [Indexed: 05/09/2024] Open
Abstract
Pancreatic β cell dysfunction is a key feature of type 2 diabetes, and novel regulators of insulin secretion are desirable. Here, we report that succinate receptor 1 (SUCNR1) is expressed in β cells and is upregulated in hyperglycemic states in mice and humans. We found that succinate acted as a hormone-like metabolite and stimulated insulin secretion via a SUCNR1-Gq-PKC-dependent mechanism in human β cells. Mice with β cell-specific Sucnr1 deficiency exhibited impaired glucose tolerance and insulin secretion on a high-fat diet, indicating that SUCNR1 is essential for preserving insulin secretion in diet-induced insulin resistance. Patients with impaired glucose tolerance showed an enhanced nutrition-related succinate response, which correlates with the potentiation of insulin secretion during intravenous glucose administration. These data demonstrate that the succinate/SUCNR1 axis is activated by high glucose and identify a GPCR-mediated amplifying pathway for insulin secretion relevant to the hyperinsulinemia of prediabetic states.
Collapse
Affiliation(s)
- Joan Sabadell-Basallote
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Tarragona, Spain
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Brenno Astiarraga
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Castaño
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Miriam Ejarque
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Repollés-de-Dalmau
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Tarragona, Spain
| | - Ivan Quesada
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Alicante, Spain
| | | | - Catalina Núñez-Roa
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - M-Mar Rodríguez-Peña
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laia Martínez
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Dario F. De Jesus
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Marroquí
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Ramon Bosch
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- Universitat Rovira i Virgili, Tarragona, Spain
- Histological, Cytological and Digitization Studies Platform, Pathology Department, Hospital Verge de la Cinta, Tortosa, Spain
| | - Eduard Montanya
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), and Universitat de Barcelona, Barcelona, Spain
| | | | - Andrea Tura
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Rohit N. Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Joan Vendrell
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Tarragona, Spain
| | - Sonia Fernández-Veledo
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
43
|
Yurakova TR, Gorshkova EA, Nosenko MA, Drutskaya MS. Metabolic Adaptations and Functional Activity of Macrophages in Homeostasis and Inflammation. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:817-838. [PMID: 38880644 DOI: 10.1134/s0006297924050043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 06/18/2024]
Abstract
In recent years, the role of cellular metabolism in immunity has come into the focus of many studies. These processes form a basis for the maintenance of tissue integrity and homeostasis, as well as represent an integral part of the immune response, in particular, inflammation. Metabolic adaptations not only ensure energy supply for immune response, but also affect the functions of immune cells by controlling transcriptional and post-transcriptional programs. Studying the immune cell metabolism facilitates the search for new treatment approaches, especially for metabolic disorders. Macrophages, innate immune cells, are characterized by a high functional plasticity and play a key role in homeostasis and inflammation. Depending on the phenotype and origin, they can either perform various regulatory functions or promote inflammation state, thus exacerbating the pathological condition. Furthermore, their adaptations to the tissue-specific microenvironment influence the intensity and type of immune response. The review examines the effect of metabolic reprogramming in macrophages on the functional activity of these cells and their polarization. The role of immunometabolic adaptations of myeloid cells in tissue homeostasis and in various pathological processes in the context of inflammatory and metabolic diseases is specifically discussed. Finally, modulation of the macrophage metabolism-related mechanisms reviewed as a potential therapeutic approach.
Collapse
Affiliation(s)
- Taisiya R Yurakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ekaterina A Gorshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Maxim A Nosenko
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02F306, Ireland
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
| |
Collapse
|
44
|
Dash SP, Gupta S, Sarangi PP. Monocytes and macrophages: Origin, homing, differentiation, and functionality during inflammation. Heliyon 2024; 10:e29686. [PMID: 38681642 PMCID: PMC11046129 DOI: 10.1016/j.heliyon.2024.e29686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Monocytes and macrophages are essential components of innate immune system and have versatile roles in homeostasis and immunity. These phenotypically distinguishable mononuclear phagocytes play distinct roles in different stages, contributing to the pathophysiology in various forms making them a potentially attractive therapeutic target in inflammatory conditions. Several pieces of evidence have supported the role of different cell surface receptors expressed on these cells and their downstream signaling molecules in initiating and perpetuating the inflammatory response. In this review, we discuss the current understanding of the monocyte and macrophage biology in inflammation, highlighting the role of chemoattractants, inflammasomes, and integrins in the function of monocytes and macrophages during events of inflammation. This review also covers the recent therapeutic interventions targeting these mononuclear phagocytes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Shiba Prasad Dash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P. Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
45
|
Liu X, Xiang R, Fang X, Wang G, Zhou Y. Advances in Metabolic Regulation of Macrophage Polarization State. Immunol Invest 2024; 53:416-436. [PMID: 38206296 DOI: 10.1080/08820139.2024.2302828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Macrophages are significant immune-related cells that are essential for tissue growth, homeostasis maintenance, pathogen resistance, and damage healing. The studies on the metabolic control of macrophage polarization state in recent years and the influence of polarization status on the development and incidence of associated disorders are expounded upon in this article. Firstly, we reviewed the origin and classification of macrophages, with particular attention paid to how the tricarboxylic acid cycle and the three primary metabolites affect macrophage polarization. The primary metabolic hub that controls macrophage polarization is the tricarboxylic acid cycle. Finally, we reviewed the polarization state of macrophages influences the onset and progression of cancers, inflammatory disorders, and other illnesses.
Collapse
Affiliation(s)
- Xin Liu
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Ruoxuan Xiang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Xue Fang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Guodong Wang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Yuyan Zhou
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| |
Collapse
|
46
|
Mirzaei S, DeVon HA, Cantor RM, Cupido AJ, Pan C, Ha SM, Silva LF, Hilser JR, Hartiala J, Allayee H, Rey FE, Laakso M, Lusis AJ. Relationships and Mendelian Randomization of Gut Microbe-Derived Metabolites with Metabolic Syndrome Traits in the METSIM Cohort. Metabolites 2024; 14:174. [PMID: 38535334 PMCID: PMC10972019 DOI: 10.3390/metabo14030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 07/17/2024] Open
Abstract
The role of gut microbe-derived metabolites in the development of metabolic syndrome (MetS) remains unclear. This study aimed to evaluate the associations of gut microbe-derived metabolites and MetS traits in the cross-sectional Metabolic Syndrome In Men (METSIM) study. The sample included 10,194 randomly related men (age 57.65 ± 7.12 years) from Eastern Finland. Levels of 35 metabolites were tested for associations with 13 MetS traits using lasso and stepwise regression. Significant associations were observed between multiple MetS traits and 32 metabolites, three of which exhibited particularly robust associations. N-acetyltryptophan was positively associated with Homeostatic Model Assessment for Insulin Resistant (HOMA-IR) (β = 0.02, p = 0.033), body mass index (BMI) (β = 0.025, p = 1.3 × 10-16), low-density lipoprotein cholesterol (LDL-C) (β = 0.034, p = 5.8 × 10-10), triglyceride (0.087, p = 1.3 × 10-16), systolic (β = 0.012, p = 2.5 × 10-6) and diastolic blood pressure (β = 0.011, p = 3.4 × 10-6). In addition, 3-(4-hydroxyphenyl) lactate yielded the strongest positive associations among all metabolites, for example, with HOMA-IR (β = 0.23, p = 4.4 × 10-33), and BMI (β = 0.097, p = 5.1 × 10-52). By comparison, 3-aminoisobutyrate was inversely associated with HOMA-IR (β = -0.19, p = 3.8 × 10-51) and triglycerides (β = -0.12, p = 5.9 × 10-36). Mendelian randomization analyses did not provide evidence that the observed associations with these three metabolites represented causal relationships. We identified significant associations between several gut microbiota-derived metabolites and MetS traits, consistent with the notion that gut microbes influence metabolic homeostasis, beyond traditional risk factors.
Collapse
Affiliation(s)
- Sahereh Mirzaei
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Holli A. DeVon
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Rita M. Cantor
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Arjen J. Cupido
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, 1007 AZ Amsterdam, The Netherlands
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Lilian Fernandes Silva
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- Department of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - James R. Hilser
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jaana Hartiala
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Hooman Allayee
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Markku Laakso
- Department of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- Department of Human Genetics and Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
47
|
Yang Y, Cui BB, Li J, Shan JJ, Xu J, Zhang CY, Wei XT, Zhu RR, Wang JY. Tricarboxylic acid cycle metabolites: new players in macrophage. Inflamm Res 2024:10.1007/s00011-024-01853-0. [PMID: 38498178 DOI: 10.1007/s00011-024-01853-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 03/20/2024] Open
Abstract
Metabolic remodeling is a key feature of macrophage activation and polarization. Recent studies have demonstrated the role of tricarboxylic acid (TCA) cycle metabolites in the innate immune system. In the current review, we summarize recent advances in the metabolic reprogramming of the TCA cycle during macrophage activation and polarization and address the effects of these metabolites in modulating macrophage function. Deciphering the crosstalk between the TCA cycle and the immune response might provide novel potential targets for the intervention of immune reactions and favor the development of new strategies for the treatment of infection, inflammation, and cancer.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Bing-Bing Cui
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jian Li
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jiao-Jiao Shan
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jun Xu
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Cheng-Yong Zhang
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xiao-Tong Wei
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ri-Ran Zhu
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Jing-Yi Wang
- Department of Hematology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan, 250014, China.
| |
Collapse
|
48
|
Yu J, Yang H, Zhang L, Ran S, Shi Q, Peng P, Liu Q, Song L. Effect and potential mechanism of oncometabolite succinate promotes distant metastasis of colorectal cancer by activating STAT3. BMC Gastroenterol 2024; 24:106. [PMID: 38486162 PMCID: PMC10938789 DOI: 10.1186/s12876-024-03195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
To investigate the effect of Oncometabolite succinate on colorectal cancer migration and invasion and to initially explore the underlying mechanism.Succinate acid detection kit detected the succinate content in tissues. The growth of colorectal cancer cells was measured by cck-8 assay, wound-healing migration assay and transwell migration and invasion assays, and then explored the level of epithelial-mesenchymal transition (EMT) and STAT3/ p-STAT3 expression by western blot analysis and quantitative real-time PCR for mRNA expression. We found that succinate levels were significantly higher in carcinoma tissues than paracancerous tissues. After succinate treatment, the colorectal cancer cell lines SW480 and HCT116 had enhanced migration and invasion, the expression of biomarkers of EMT was promoted, and significantly increased phosphorylation of STAT3. In vivo experiments also showed that succinate can increase p-STAT3 expression, promote the EMT process, and promote the distant metastasis of colorectal cancer in mice.Succinate promotes EMT through the activation of the transcription factor STAT3, thus promoting the migration and invasion of colorectal cancer.
Collapse
Affiliation(s)
- Jiangnan Yu
- Department of Gastroenterology, Gui Zhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, China
| | - Hong Yang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Lin Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Suye Ran
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Qing Shi
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Pailan Peng
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Qi Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Lingyu Song
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
49
|
Senthil Kumar S, Gunda V, Reinartz DM, Pond KW, Thorne CA, Santiago Raj PV, Johnson MDL, Wilson JE. Oral streptococci S. anginosus and S. mitis induce distinct morphological, inflammatory, and metabolic signatures in macrophages. Infect Immun 2024; 92:e0053623. [PMID: 38289109 PMCID: PMC10929413 DOI: 10.1128/iai.00536-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 03/13/2024] Open
Abstract
Oral streptococci, key players in oral biofilm formation, are implicated in oral dysbiosis and various clinical conditions, including dental caries, gingivitis, periodontal disease, and oral cancer. Specifically, Streptococcus anginosus is associated with esophageal, gastric, and pharyngeal cancers, while Streptococcus mitis is linked to oral cancer. However, no study has investigated the mechanistic links between these Streptococcus species and cancer-related inflammatory responses. As an initial step, we probed the innate immune response triggered by S. anginosus and S. mitis in RAW264.7 macrophages. These bacteria exerted time- and dose-dependent effects on macrophage morphology without affecting cell viability. Compared with untreated macrophages, macrophages infected with S. anginosus exhibited a robust proinflammatory response characterized by significantly increased levels of inflammatory cytokines and mediators, including TNF, IL-6, IL-1β, NOS2, and COX2, accompanied by enhanced NF-κB activation. In contrast, S. mitis-infected macrophages failed to elicit a robust inflammatory response. Seahorse Xfe96 analysis revealed an increased extracellular acidification rate in macrophages infected with S. anginosus compared with S. mitis. At the 24-h time point, the presence of S. anginosus led to reduced extracellular itaconate, while S. mitis triggered increased itaconate levels, highlighting distinct metabolic profiles in macrophages during infection in contrast to aconitate decarboxylase expression observed at the 6-h time point. This initial investigation highlights how S. anginosus and S. mitis, two Gram-positive bacteria from the same genus, can prompt distinct immune responses and metabolic shifts in macrophages during infection.IMPORTANCEThe surge in head and neck cancer cases among individuals devoid of typical risk factors such as Human Papilloma Virus (HPV) infection and tobacco and alcohol use sparks an argumentative discussion around the emerging role of oral microbiota as a novel risk factor in oral squamous cell carcinoma (OSCC). While substantial research has dissected the gut microbiome's influence on physiology, the oral microbiome, notably oral streptococci, has been underappreciated during mucosal immunopathogenesis. Streptococcus anginosus, a viridans streptococci group, has been linked to abscess formation and an elevated presence in esophageal cancer and OSCC. The current study aims to probe the innate immune response to S. anginosus compared with the early colonizer Streptococcus mitis as an important first step toward understanding the impact of distinct oral Streptococcus species on the host immune response, which is an understudied determinant of OSCC development and progression.
Collapse
Affiliation(s)
- Sangeetha Senthil Kumar
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
- The University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Venugopal Gunda
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Dakota M. Reinartz
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
- The University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Kelvin W. Pond
- The University of Arizona Cancer Center, Tucson, Arizona, USA
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Curtis A. Thorne
- The University of Arizona Cancer Center, Tucson, Arizona, USA
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA
| | | | - Michael D. L. Johnson
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
- Valley Fever Center for Excellence, The University of Arizona Health Sciences, Tucson, Arizona, USA
- BIO5 Institute, The University of Arizona, Tucson, Arizona, USA
- Asthma and Airway Disease Research Center, The University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Justin E. Wilson
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
- The University of Arizona Cancer Center, Tucson, Arizona, USA
| |
Collapse
|
50
|
Reddy A, Winther S, Tran N, Xiao H, Jakob J, Garrity R, Smith A, Ordonez M, Laznik-Bogoslavski D, Rothstein JD, Mills EL, Chouchani ET. Monocarboxylate transporters facilitate succinate uptake into brown adipocytes. Nat Metab 2024; 6:567-577. [PMID: 38378996 DOI: 10.1038/s42255-024-00981-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Uptake of circulating succinate by brown adipose tissue (BAT) and beige fat elevates whole-body energy expenditure, counteracts obesity and antagonizes systemic tissue inflammation in mice. The plasma membrane transporters that facilitate succinate uptake in these adipocytes remain undefined. Here we elucidate a mechanism underlying succinate import into BAT via monocarboxylate transporters (MCTs). We show that succinate transport is strongly dependent on the proportion that is present in the monocarboxylate form. MCTs facilitate monocarboxylate succinate uptake, which is promoted by alkalinization of the cytosol driven by adrenoreceptor stimulation. In brown adipocytes, we show that MCT1 primarily facilitates succinate import. In male mice, we show that both acute pharmacological inhibition of MCT1 and congenital depletion of MCT1 decrease succinate uptake into BAT and consequent catabolism. In sum, we define a mechanism of succinate uptake in BAT that underlies its protective activity in mouse models of metabolic disease.
Collapse
Affiliation(s)
- Anita Reddy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Sally Winther
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Nhien Tran
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Josefine Jakob
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Arianne Smith
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martha Ordonez
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Jeffrey D Rothstein
- Brain Science Institute, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Evanna L Mills
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|