1
|
Gramatica A, Miller IG, Ward AR, Khan F, Kemmer TJ, Weiler J, Huynh TT, Zumbo P, Kurland AP, Leyre L, Ren Y, Klevorn T, Copertino DC, Chukwukere U, Levinger C, Dilling TR, Linden N, Board NL, Falling Iversen E, Terry S, Mota TM, Bedir S, Clayton KL, Bosque A, MacLaren Ehui L, Kovacs C, Betel D, Johnson JR, Paiardini M, Danesh A, Jones RB. EZH2 inhibition mitigates HIV immune evasion, reduces reservoir formation, and promotes skewing of CD8 + T cells toward less-exhausted phenotypes. Cell Rep 2025; 44:115652. [PMID: 40333189 DOI: 10.1016/j.celrep.2025.115652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/28/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Persistent HIV reservoirs in CD4+ T cells pose a barrier to curing HIV infection. We identify overexpression of enhancer of zeste homolog 2 (EZH2) in HIV-infected CD4+ T cells that survive cytotoxic T lymphocyte (CTL) exposure, suggesting a mechanism of CTL resistance. Inhibition of EZH2 with the US Food and Drug Administration-approved drug tazemetostat increases surface expression of major histocompatibility complex (MHC) class I on CD4+ T cells, counterbalancing HIV Nef-mediated MHC class I downregulation. This improves CTL-mediated elimination of HIV-infected cells and suppresses viral replication in vitro. In a participant-derived xenograft mouse model, tazemetostat elevates MHC class I and the pro-apoptotic protein BIM in CD4+ T cells, facilitating CD8+ T cell-mediated reductions of HIV reservoir seeding. Additionally, tazemetostat promotes sustained skewing of CD8+ T cells toward less-differentiated and exhausted phenotypes. Our findings reveal EZH2 overexpression as a mechanism of CTL resistance and support the clinical evaluation of tazemetostat as a method of enhancing clearance of HIV reservoirs and improving CD8+ T cell function.
Collapse
Affiliation(s)
- Andrea Gramatica
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Itzayana G Miller
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Adam R Ward
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Farzana Khan
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tyler J Kemmer
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jared Weiler
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tan Thinh Huynh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrew P Kurland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Louise Leyre
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Yanqin Ren
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Thais Klevorn
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Dennis C Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Uchenna Chukwukere
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Callie Levinger
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20052, USA
| | - Thomas R Dilling
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Noemi Linden
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Nathan L Board
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Sandra Terry
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Talia M Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Seden Bedir
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kiera L Clayton
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20052, USA
| | | | - Colin Kovacs
- Maple Leaf Medical Clinic and Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jeffry R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, GA 30322 USA; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ali Danesh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
2
|
Chauvet M, Bourges D, Scotet E. From ex vivo to in vitro models: towards a novel approach to investigate the efficacy of immunotherapies on exhausted Vγ9Vδ2 T cells? Front Immunol 2025; 16:1556982. [PMID: 40330479 PMCID: PMC12052970 DOI: 10.3389/fimmu.2025.1556982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
Human γδ T cells demonstrate remarkable and diverse antitumor properties driven by TCR-dependent activation. Their non-alloreactive nature and pivotal role in cancer immunity position them as attractive targets for immunotherapies. However, upon infiltrating tumors, due to mechanisms induced by the tumor microenvironment's immune evasion strategies, these cells frequently become exhausted, greatly weakening the efficacy and antitumor potential of novel immunotherapeutic treatments. While being extensively characterized in CD8+ T cells, research on γδ T cell exhaustion remains scarce. There is a growing need for comprehensive models to investigate the reinvigoration properties of exhausted γδ T cells. This review synthesizes current strategies and models for evaluating novel immunotherapies aimed at rejuvenating exhausted γδ T cells. It explores a progression of approaches, from ex vivo studies and in vivo murine models to emerging in vitro systems. The advantages and limitations of these models are discussed to provide a comprehensive understanding of their potential in advancing therapeutic research. Furthermore, recent findings suggesting in vitro exhaustion phenotypes closely mirror those observed ex vivo highlight opportunities for preclinical innovation. By refining these models, researchers can better optimize the immunotherapies targeting this unique T cell subset.
Collapse
Affiliation(s)
- Morgane Chauvet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’AngersCRCI2NA, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
- Sanofi, Oncology, Vitry-sur-Seine, France
| | | | - Emmanuel Scotet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’AngersCRCI2NA, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| |
Collapse
|
3
|
Mathad JS, Alexander M, Bhosale R, Naik S, Cranmer LM, Kulkarni V, Busch S, Chalem A, Gitlin E, Lei J, Liu A, Liu J, Liu Y, Shivakoti R, Gupta A, Burd I. HIV-related Differences in Placental Immunology: Data From the PRACHITi Cohort in Pune, India. Open Forum Infect Dis 2025; 12:ofaf047. [PMID: 40046890 PMCID: PMC11879550 DOI: 10.1093/ofid/ofaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025] Open
Abstract
Background Maternal HIV infection can affect placental immunology and expression of the neonatal crystallizable fragment receptor (FcRn), which allows transplacental antibody transfer. This study delineated differences in placental FcRn and T-cell expression by HIV status, with or without viral suppression. Methods This observational cohort study in Pune, India, followed pregnant women with and without HIV through 1 year postpartum; 42 had placenta collected, stratified by HIV status. FcRn expression was analyzed by Western blot (normalized by GADPH) and compared using ImageJ. Placental CD4/CD8 abundance was assessed by immunofluorescent counting per high powered field. Results The median gestational age at delivery was 38.3 weeks (interquartile range [IQR] 37.5-39.1). Of 18 women living with HIV, all were on combined antiretroviral therapy with a median CD4 of 455 cells/mm3 (IQR 281-640) at entry and 429 cells/mm3 (IQR 317-686) at delivery. Ten had undetectable virus (≤40 copies/mL); of those with detectable virus, the median viral load was 151 copies/mL (IQR 118.15-539 334). Relative placental FcRn expression was lower in women living with HIV compared to without (median 0.54 vs 0.84, P = .01) and not associated with CD4 or viral load. Women with HIV had significantly higher abundance of placental CD8+ T cells, regardless of viral suppression, compared to women without. Conclusions Maternal HIV, even with viral suppression, is associated with lower placental FcRn expression and increased placental CD8+ T cells. These results suggest that dysregulation may not be completely reversed by antiretroviral therapy and could contribute to poorer infant outcomes, even in the absence of mother-to-child HIV transmission.
Collapse
Affiliation(s)
- Jyoti S Mathad
- Weill Cornell Medicine, Center for Global Health, Department of Medicine, New York, New York, USA
| | - Mallika Alexander
- Center for Infectious Diseases in India, Johns Hopkins India, Pune, India
| | - Ramesh Bhosale
- Department of Obstetrics and Gynecology, BJ Government Medical College, Pune, India
| | - Shilpa Naik
- Department of Obstetrics and Gynecology, BJ Government Medical College, Pune, India
| | | | - Vandana Kulkarni
- Center for Infectious Diseases in India, Johns Hopkins India, Pune, India
| | - Sydney Busch
- Department of Paediatrics, Emory University, Atlanta, Georgia, USA
| | - Andrea Chalem
- University of North Carolina Gillings School of Public Health, Chapel Hill, North Carolina, USA
| | - Emily Gitlin
- Weill Cornell Medicine, Center for Global Health, Department of Medicine, New York, New York, USA
| | - Jun Lei
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anguo Liu
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jin Liu
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yang Liu
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rupak Shivakoti
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Amita Gupta
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Irina Burd
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Serrano-Villar S, Gala A, Bacchetti P, Hoh R, di Germanio C, Cohn LB, Henrich TJ, Hunt PW, Laird GM, Pillai SK, Deeks SG, Peluso MJ. Galectin 9 Levels as a Potential Predictor of Intact HIV Reservoir Decay. J Infect Dis 2025; 231:156-164. [PMID: 39207259 PMCID: PMC11793034 DOI: 10.1093/infdis/jiae426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND During antiretroviral therapy (ART), the HIV reservoir shows variability, with cells carrying intact genomes decaying faster than those with defective genomes, particularly in the first years. The host factors influencing this decay remain unclear. METHODS Observational study of 74 PWH on ART, 70 (94.6%) of whom were male. Intact proviruses were measured using the intact proviral DNA assay, and 32 inflammatory cytokines were quantified using Luminex immunoassay. Linear spline models assessed the impact of baseline cytokine levels and their trajectories on intact HIV kinetics over seven years. RESULTS Baseline Gal-9 was the strongest predictor, with lower levels predicting faster decay. A 10-fold decrease in baseline Gal-9 correlated with a 45% (95% CI, 14%-84%) greater annual decay of intact HIV genomes. Higher baseline interferon-inducible T-cell α chemoattractant (ITAC), interleukin 17 (IL-17), and macrophage inflammatory protein 1α (MIP-1α) levels also predicted faster decay. Longitudinal increases in MIP-3α and decreases in IL-6 were linked to a 9.5% and 10% faster decay, respectively. CONCLUSIONS The association between lower baseline Gal-9 and faster intact HIV decay suggests targeting Gal-9 could enhance reservoir reduction. The involvement of MIP-3α and IL-6 highlights a broader cytokine regulatory network, suggesting potential multi-targeted interventions.
Collapse
Affiliation(s)
- Sergio Serrano-Villar
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, and University of California San Francisco
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, and IRICYS
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Akshay Gala
- Vitalant Research Institute and University of California San Francisco
| | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, and University of California San Francisco
| | - Clara di Germanio
- Vitalant Research Institute and University of California San Francisco
| | - Lillian B. Cohn
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Timothy J. Henrich
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, and University of California San Francisco
| | - Peter W. Hunt
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, and University of California San Francisco
| | | | - Satish K. Pillai
- Vitalant Research Institute and University of California San Francisco
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, and University of California San Francisco
| | - Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, and University of California San Francisco
| |
Collapse
|
5
|
Strati A, Adamopoulos C, Kotsantis I, Psyrri A, Lianidou E, Papavassiliou AG. Targeting the PD-1/PD-L1 Signaling Pathway for Cancer Therapy: Focus on Biomarkers. Int J Mol Sci 2025; 26:1235. [PMID: 39941003 PMCID: PMC11818137 DOI: 10.3390/ijms26031235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
The PD1/PD-L1 axis plays an important immunosuppressive role during the T-cell-mediated immune response, which is essential for the physiological homeostasis of the immune system. The biology of the immunological microenvironment is extremely complex and crucial for the development of treatment strategies for immunotherapy. Characterization of the immunological, genomic or transcriptomic landscape of cancer patients could allow discrimination between responders and non-responders to anti-PD-1/PD-L1 therapy. Immune checkpoint inhibitor (ICI) therapy has shown remarkable efficacy in a variety of malignancies in landmark trials and has fundamentally changed cancer therapy. Current research focuses on strategies to maximize patient selection for therapy, clarify mechanisms of resistance, improve existing biomarkers, including PD-L1 expression and tumor mutational burden (TMB), and discover new biomarkers. In this review, we focus on the function of the PD-1/PD-L1 signaling pathway and discuss the immunological, genomic, epigenetic and transcriptomic landscape in cancer patients receiving anti-PD-1/PD-L1 therapy. Finally, we provide an overview of the clinical trials testing the efficacy of antibodies against PD-1/PD-L1.
Collapse
Affiliation(s)
- Areti Strati
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ioannis Kotsantis
- Department of Medical Oncology, Second Department of Internal Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Amanda Psyrri
- Department of Medical Oncology, Second Department of Internal Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| |
Collapse
|
6
|
Chhabra L, Pandey RK, Kumar R, Sundar S, Mehrotra S. Navigating the Roadblocks: Progress and Challenges in Cell-Based Therapies for Human Immunodeficiency Virus. J Cell Biochem 2025; 126:e30669. [PMID: 39485037 DOI: 10.1002/jcb.30669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Cell-based therapies represent a major advancement in the treatment and management of HIV/AIDS, with a goal to overcome the limitations of traditional antiretroviral therapy (ART). These innovative approaches not only promise a functional cure by reconstructing the immune landscape but also address the persistent viral reservoirs. For example, stem cell therapies have emerged from the foundational success of allogeneic hematopoietic stem cell transplantation in curing HIV infection in a limited number of cases. B cell therapies make use of genetically modified B cells constitutively expressing broadly neutralizing antibodies (bNAbs) against target viral particles and infected cells. Adoptive cell transfer (ACT), including TCR-T therapy, CAR-T cells, NK-CAR cells, and DC-based therapy, is adapted from cancer immunotherapy and repurposed for HIV eradication. In this review, we summarize the mechanisms through which these engineered cells recognize and destroy HIV-infected cells, the modification strategies, and their role in sustaining remission in the absence of ART. The review also addresses the challenges to cell-based therapies against HIV and discusses the recent advancements aimed at overcoming them.
Collapse
Affiliation(s)
- Lakshay Chhabra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
7
|
Wei Y, Ma HK, Wong ME, Papasavvas E, Konnikova L, Tebas P, Morgenstern R, Montaner LJ, Ho YC. BACH2-driven tissue resident memory programs promote HIV-1 persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628794. [PMID: 39763845 PMCID: PMC11702684 DOI: 10.1101/2024.12.16.628794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Transcription repressor BACH2 redirects short-lived terminally differentiated effector into long-lived memory cells. We postulate that BACH2-mediated long-lived memory programs promote HIV-1 persistence in gut CD4+ T cells. We coupled single-cell DOGMA-seq and TREK-seq to capture chromatin accessibility, transcriptome, surface proteins, T cell receptor, HIV-1 DNA and HIV-1 RNA in 100,744 gut T cells from ten aviremic HIV-1+ individuals and five HIV-1- donors. BACH2 was the leading transcription factor that shaped gut tissue resident memory T cells (TRMs) into long-lived memory with restrained interferon-induced effector function. We found that HIV-1-infected cells were enriched in TRMs (80.8%). HIV-1-infected cells had increased BACH2 transcription factor accessibility, TRM (CD49a, CD69, CD103) and survival (IL7R) gene expression, and Th17 polarization (RORC, CCR6). In vitro gut CD4+ T cell infection revealed preferential infection and persistence of HIV-1 in CCR6+ TRMs. Overall, we found BACH2-driven TRM program promotes HIV-1 persistence and BACH2 as a new therapeutic target.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Haocong Katherine Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Michelle E. Wong
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | - Liza Konnikova
- Departments of Pediatrics, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Pablo Tebas
- Presbyterian Hospital-University of Pennsylvania Hospital, Philadelphia, PA 19104, USA
| | - Ricardo Morgenstern
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
8
|
King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunol Rev 2024; 328:350-371. [PMID: 39248154 PMCID: PMC11659942 DOI: 10.1111/imr.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
Collapse
Affiliation(s)
- Hannah A. D. King
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases ServiceRoyal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
9
|
Sacristán C, Youngblood BA, Lu P, Bally APR, Xu JX, McGary K, Hewitt SL, Boss JM, Skok JA, Ahmed R, Dustin ML. Chronic viral infection alters PD-1 locus subnuclear localization in cytotoxic CD8 + T cells. Cell Rep 2024; 43:114547. [PMID: 39083377 PMCID: PMC11522508 DOI: 10.1016/j.celrep.2024.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
During chronic infection, virus-specific CD8+ cytotoxic T lymphocytes (CTLs) progressively lose their ability to mount effective antiviral responses. This "exhaustion" is coupled to persistent upregulation of inhibitory receptor programmed death-1 (PD-1) (Pdcd1)-key in suppressing antiviral CTL responses. Here, we investigate allelic Pdcd1 subnuclear localization and transcription during acute and chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. Pdcd1 alleles dissociate from transcriptionally repressive chromatin domains (lamin B) in virus-specific exhausted CTLs but not in naive or effector CTLs. Relative to naive CTLs, nuclear positioning and Pdcd1-lamina dissociation in exhausted CTLs reflect loss of Pdcd1 promoter methylation and greater PD-1 upregulation, although a direct correlation is not observed in effector cells, 8 days post-infection. Genetic deletion of B lymphocyte-induced maturation protein 1 (Blimp-1) enhances Pdcd1-lamina dissociation in effector CTLs, suggesting that Blimp-1 contributes to maintaining Pdcd1 localization to repressive lamina. Our results identify mechanisms governing Pdcd1 subnuclear localization and the broader role of chromatin dynamics in T cell exhaustion.
Collapse
Affiliation(s)
- Catarina Sacristán
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Ben A Youngblood
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA; Immunology Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Peiyuan Lu
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Alexander P R Bally
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Jean Xiaojin Xu
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Katelyn McGary
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Susannah L Hewitt
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jeremy M Boss
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Rafi Ahmed
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; The Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Abdolmohammadi-Vahid S, Baradaran B, Adcock IM, Mortaz E. Immune checkpoint inhibitors and SARS-CoV2 infection. Int Immunopharmacol 2024; 137:112419. [PMID: 38865755 DOI: 10.1016/j.intimp.2024.112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) triggers coronavirus disease 2019 (COVID-19), which predominantly targets the respiratory tract. SARS-CoV-2 infection, especially severe COVID-19, is associated with dysregulated immune responses against the virus, including exaggerated inflammatory responses known as the cytokine storm, together with lymphocyte and NK cell dysfunction known as immune cell exhaustion. Overexpression of negative immune checkpoints such as PD-1 and CTLA-4 plays a considerable role in the dysfunction of immune cells upon SARS-CoV-2 infection. Blockade of these checkpoints has been suggested to improve the clinical outcome of COVID-19 patients by promoting potent immune responses against the virus. In the current review, we provide an overview of the potential of checkpoint inhibitors to induce potent immune responses against SARS-CoV-2 and improving the clinical outcome of severe COVID-19 patients.
Collapse
Affiliation(s)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ian M Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA; Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Strongin Z, Raymond Marchand L, Deleage C, Pampena MB, Cardenas MA, Beusch CM, Hoang TN, Urban EA, Gourves M, Nguyen K, Tharp GK, Lapp S, Rahmberg AR, Harper J, Del Rio Estrada PM, Gonzalez-Navarro M, Torres-Ruiz F, Luna-Villalobos YA, Avila-Rios S, Reyes-Teran G, Sekaly R, Silvestri G, Kulpa DA, Saez-Cirion A, Brenchley JM, Bosinger SE, Gordon DE, Betts MR, Kissick HT, Paiardini M. Distinct SIV-specific CD8 + T cells in the lymph node exhibit simultaneous effector and stem-like profiles and are associated with limited SIV persistence. Nat Immunol 2024; 25:1245-1256. [PMID: 38886592 PMCID: PMC11969417 DOI: 10.1038/s41590-024-01875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Human immunodeficiency virus (HIV) cure efforts are increasingly focused on harnessing CD8+ T cell functions, which requires a deeper understanding of CD8+ T cells promoting HIV control. Here we identifiy an antigen-responsive TOXhiTCF1+CD39+CD8+ T cell population with high expression of inhibitory receptors and low expression of canonical cytolytic molecules. Transcriptional analysis of simian immunodeficiency virus (SIV)-specific CD8+ T cells and proteomic analysis of purified CD8+ T cell subsets identified TOXhiTCF1+CD39+CD8+ T cells as intermediate effectors that retained stem-like features with a lineage relationship with terminal effector T cells. TOXhiTCF1+CD39+CD8+ T cells were found at higher frequency than TCF1-CD39+CD8+ T cells in follicular microenvironments and were preferentially located in proximity of SIV-RNA+ cells. Their frequency was associated with reduced plasma viremia and lower SIV reservoir size. Highly similar TOXhiTCF1+CD39+CD8+ T cells were detected in lymph nodes from antiretroviral therapy-naive and antiretroviral therapy-suppressed people living with HIV, suggesting this population of CD8+ T cells contributes to limiting SIV and HIV persistence.
Collapse
Affiliation(s)
- Zachary Strongin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Laurence Raymond Marchand
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - M Betina Pampena
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for AIDS Research and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Christian Michel Beusch
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Timothy N Hoang
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elizabeth A Urban
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Mael Gourves
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Gregory K Tharp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Stacey Lapp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Andrew R Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAIDNIH, Bethesda, MD, USA
| | - Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Perla M Del Rio Estrada
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Mauricio Gonzalez-Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Yara Andrea Luna-Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Santiago Avila-Rios
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Comision Coordinadora de los Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Mexico City, Mexico
| | - Rafick Sekaly
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Deanna A Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Asier Saez-Cirion
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAIDNIH, Bethesda, MD, USA
| | - Steven E Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - David Ezra Gordon
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for AIDS Research and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Liu Y, Liu Y, Li Y, Wang T, Li B, Kong X, Li C. High expression of ACTL6A leads to poor prognosis of oral squamous cell carcinoma patients through promoting malignant progression. Head Neck 2024; 46:1450-1467. [PMID: 38523407 DOI: 10.1002/hed.27742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVE The aim was to research ACTL6A's role in oral squamous cell carcinoma (OSCC). METHODS OSCC and normal samples were obtained from patients and public databases. GSEA was performed. CIBERSORT was utilized to analyze immune landscape. Kaplan-Meier survival analysis and multivariate Cox regression analysis were conducted. After knocking down ACTL6A, we performed MTT assay, transwell assays, and flow cytometry to detect the impact of knockdown. RESULTS ACTL6A expressed higher in OSCC samples than normal samples. The CNV and mutation rate of TP53 was higher in ACTL6A high-expression group. TFs E2F7 and TP63 and miRNA hsa-mir-381 were significantly related to ACTL6A. ACTL6A could influence immune microenvironment of OSCC. Knockdown of ACTL6A inhibited OSCC cells' proliferation, migration, and invasion. ACTL6A was able to predict OSCC prognosis independently. CONCLUSION ACTL6A expressed higher in OSCC than normal samples and it could be used as an independent prognostic marker in OSCC patients.
Collapse
Affiliation(s)
- Yi Liu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Yisha Liu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Tong Wang
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Bolong Li
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Xianchen Kong
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Changyi Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M, Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer 2024; 23:108. [PMID: 38762484 PMCID: PMC11102195 DOI: 10.1186/s12943-024-02023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Kuan Kang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- Department of Dermotology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
14
|
Dzanibe S, Wilk AJ, Canny S, Ranganath T, Alinde B, Rubelt F, Huang H, Davis MM, Holmes SP, Jaspan HB, Blish CA, Gray CM. Premature skewing of T cell receptor clonality and delayed memory expansion in HIV-exposed infants. Nat Commun 2024; 15:4080. [PMID: 38744812 PMCID: PMC11093981 DOI: 10.1038/s41467-024-47955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
While preventing vertical HIV transmission has been very successful, HIV-exposed uninfected infants (iHEU) experience an elevated risk to infections compared to HIV-unexposed and uninfected infants (iHUU). Here we present a longitudinal multimodal analysis of infant immune ontogeny that highlights the impact of HIV/ARV exposure. Using mass cytometry, we show alterations in T cell memory differentiation between iHEU and iHUU being significant from week 15 of life. The altered memory T cell differentiation in iHEU was preceded by lower TCR Vβ clonotypic diversity and linked to TCR clonal depletion within the naïve T cell compartment. Compared to iHUU, iHEU had elevated CD56loCD16loPerforin+CD38+CD45RA+FcεRIγ+ NK cells at 1 month postpartum and whose abundance pre-vaccination were predictive of vaccine-induced pertussis and rotavirus antibody responses post 3 months of life. Collectively, HIV/ARV exposure disrupted the trajectory of innate and adaptive immunity from birth which may underlie relative vulnerability to infections in iHEU.
Collapse
Affiliation(s)
- Sonwabile Dzanibe
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Aaron J Wilk
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Susan Canny
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Rheumatology, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Thanmayi Ranganath
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Berenice Alinde
- Division of Immunology, Department of Biomedical Sciences, Biomedical Research Institute, Stellenbosch University, Cape Town, South Africa
| | - Florian Rubelt
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Huang Huang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Heather B Jaspan
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Seattle Children's Research Institute and Department of Paediatrics and Global Health, University of Washington, Seattle, WA, USA.
| | - Catherine A Blish
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Clive M Gray
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Division of Immunology, Department of Biomedical Sciences, Biomedical Research Institute, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
15
|
Lee WWL, Lim JQ, Tang TPL, Tan D, Koh SM, Puan KJ, Wang LW, Lim J, Tan KP, Chng WJ, Lim ST, Ong CK, Rotzschke O. Counterproductive effects of anti-CD38 and checkpoint inhibitor for the treatment of NK/T cell lymphoma. Front Immunol 2024; 15:1346178. [PMID: 38680487 PMCID: PMC11045949 DOI: 10.3389/fimmu.2024.1346178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Natural killer/T cell lymphoma (NKTL) is an aggressive malignancy associated with poor prognosis. This is largely due to limited treatment options, especially for relapsed patients. Immunotherapies like immune checkpoint inhibitors (ICI) and anti-CD38 therapies have shown promising but variable clinical efficacies. Combining these therapies has been suggested to enhance efficacy. Methods We conducted a case study on a relapsed NKTL patient treated sequentially with anti-CD38 followed by ICI (anti-PD1) using cytometry analyses. Results and Discussion Our analysis showed an expected depletion of peripheral CD38+ B cells following anti-CD38 treatment. Further analysis indicated that circulating anti-CD38 retained their function for up to 13 weeks post-administration. Anti-PD1 treatment triggered re-activation and upregulation of CD38 on the T cells. Consequently, these anti-PD1-activated T cells were depleted by residual circulating anti-CD38, rendering the ICI treatment ineffective. Finally, a meta-analysis confirmed this counterproductive effect, showing a reduced efficacy in patients undergoing combination therapy. In conclusion, our findings demonstrate that sequential anti-CD38 followed by anti-PD1 therapy leads to a counterproductive outcome in NKTL patients. This suggests that the treatment sequence is antithetic and warrants re-evaluation for optimizing cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Wendy W. L. Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jing Quan Lim
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Oncology-Academic Clinical Programme (ONCO-ACP), Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Tiffany P. L. Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Daryl Tan
- Clinic for Lymphoma, Myeloma and Blood Disorders, Mount Elizabeth Hospital Novena Specialist Centre, Singapore, Singapore
| | - Ser Mei Koh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Kia Joo Puan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Liang Wei Wang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jackwee Lim
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Kim Peng Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore
| | - Soon Thye Lim
- Director’s Office, National Cancer Centre Singapore, Singapore, Singapore
- Office of Education, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Choon Kiat Ong
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
16
|
Lin CP, Levy PL, Alflen A, Apriamashvili G, Ligtenberg MA, Vredevoogd DW, Bleijerveld OB, Alkan F, Malka Y, Hoekman L, Markovits E, George A, Traets JJH, Krijgsman O, van Vliet A, Poźniak J, Pulido-Vicuña CA, de Bruijn B, van Hal-van Veen SE, Boshuizen J, van der Helm PW, Díaz-Gómez J, Warda H, Behrens LM, Mardesic P, Dehni B, Visser NL, Marine JC, Markel G, Faller WJ, Altelaar M, Agami R, Besser MJ, Peeper DS. Multimodal stimulation screens reveal unique and shared genes limiting T cell fitness. Cancer Cell 2024; 42:623-645.e10. [PMID: 38490212 PMCID: PMC11003465 DOI: 10.1016/j.ccell.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/03/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Genes limiting T cell antitumor activity may serve as therapeutic targets. It has not been systematically studied whether there are regulators that uniquely or broadly contribute to T cell fitness. We perform genome-scale CRISPR-Cas9 knockout screens in primary CD8 T cells to uncover genes negatively impacting fitness upon three modes of stimulation: (1) intense, triggering activation-induced cell death (AICD); (2) acute, triggering expansion; (3) chronic, causing dysfunction. Besides established regulators, we uncover genes controlling T cell fitness either specifically or commonly upon differential stimulation. Dap5 ablation, ranking highly in all three screens, increases translation while enhancing tumor killing. Loss of Icam1-mediated homotypic T cell clustering amplifies cell expansion and effector functions after both acute and intense stimulation. Lastly, Ctbp1 inactivation induces functional T cell persistence exclusively upon chronic stimulation. Our results functionally annotate fitness regulators based on their unique or shared contribution to traits limiting T cell antitumor activity.
Collapse
Affiliation(s)
- Chun-Pu Lin
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Pierre L Levy
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Tumor Immunology and Immunotherapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Astrid Alflen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Georgi Apriamashvili
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten A Ligtenberg
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Yuval Malka
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ettai Markovits
- Ella Lemelbaum Institute for Immuno-oncology and Melanoma, Sheba Medical Center, Ramat Gan 52612, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Austin George
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alex van Vliet
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joanna Poźniak
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Carlos Ariel Pulido-Vicuña
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Beaunelle de Bruijn
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Susan E van Hal-van Veen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Julia Boshuizen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Pim W van der Helm
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Judit Díaz-Gómez
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Hamdy Warda
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Leonie M Behrens
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Paula Mardesic
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bilal Dehni
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Gal Markel
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel; Davidoff Cancer Center and Samueli Integrative Cancer Pioneering Institute, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - William J Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Michal J Besser
- Ella Lemelbaum Institute for Immuno-oncology and Melanoma, Sheba Medical Center, Ramat Gan 52612, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel; Davidoff Cancer Center and Samueli Integrative Cancer Pioneering Institute, Rabin Medical Center, Petach Tikva 4941492, Israel; Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pathology, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Englebert K, Taquin A, Azouz A, Acolty V, Vande Velde S, Vanhollebeke M, Innes H, Boon L, Keler T, Leo O, Goriely S, Moser M, Oldenhove G. The CD27/CD70 pathway negatively regulates visceral adipose tissue-resident Th2 cells and controls metabolic homeostasis. Cell Rep 2024; 43:113824. [PMID: 38386557 DOI: 10.1016/j.celrep.2024.113824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Adipose tissue homeostasis relies on the interplay between several regulatory lineages, such as type 2 innate lymphoid cells (ILC2s), T helper 2 (Th2) cells, regulatory T cells, eosinophils, and type 2 macrophages. Among them, ILC2s are numerically the dominant source of type 2 cytokines and are considered as major regulators of adiposity. Despite the overlap in immune effector molecules and sensitivity to alarmins (thymic stromal lymphopoietin and interleukin-33) between ILC2s and resident memory Th2 lymphocytes, the role of the adaptive axis of type 2 immunity remains unclear. We show that mice deficient in CD27, a member of the tumor necrosis factor receptor superfamily, are more resistant to obesity and associated disorders. A comparative analysis of the CD4 compartment of both strains revealed higher numbers of fat-resident memory Th2 cells in the adipose tissue of CD27 knockout mice, which correlated with decreased programmed cell death protein 1-induced apoptosis. Our data point to a non-redundant role for Th2 lymphocytes in obesogenic conditions.
Collapse
Affiliation(s)
- Kevin Englebert
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Anaelle Taquin
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Abdulkader Azouz
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
| | - Valérie Acolty
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Sylvie Vande Velde
- Interuniversity Institute of Bioinformatics in Brussels (ULB-VUB), Brussels, Belgium; Machine Learning Group, ULB, Brussels, Belgium
| | - Marie Vanhollebeke
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Hadrien Innes
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | | | | | - Oberdan Leo
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Stanislas Goriely
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium; Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
| | - Muriel Moser
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Guillaume Oldenhove
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium.
| |
Collapse
|
18
|
Nehete BP, DeLise A, Nehete PN. Identification of Specific Cell Surface Markers on Immune Cells of Squirrel Monkeys ( Saimiri sciureus). J Immunol Res 2024; 2024:8215195. [PMID: 38566886 PMCID: PMC10985276 DOI: 10.1155/2024/8215195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Nonhuman primates are an important experimental model for the development of targeted biological therapeutics because of their immunological closeness to humans. However, there are very few antibody reagents relevant for delineating the different immune cell subsets based on nonhuman primate antigens directly or with cross-reactivity to those in humans. Here, we report specific expression of HLA-DR, PD-1, and CD123 on different circulating immune cell subsets in the peripheral blood that included T cells (CD3+), T cells subsets (CD4+ and CD8+), B cells (CD20+), natural killer (NK) cells (CD3-CD16+), and natural killer T cells (CD3+CD16+) along with different monocyte subsets in squirrel monkey (Saimiri sciureus). We established cross-reactivity of commercial mouse antihuman monoclonal antibodies (mAbs), with these various immune cell surface markers. These findings should aid further future comprehensive understanding of the immune parameters and identification of new biomarkers to significantly improve SQM as a model for biomedical studies.
Collapse
Affiliation(s)
- Bharti P. Nehete
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Ashley DeLise
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Pramod N. Nehete
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
19
|
Cabral-Piccin MP, Briceño O, Papagno L, Liouville B, White E, Perdomo-Celis F, Autaa G, Volant S, Llewellyn-Lacey S, Fromentin R, Chomont N, Price DA, Sáez-Cirión A, Lambotte O, Katlama C, Appay V. CD8 + T-cell priming is quantitatively but not qualitatively impaired in people with HIV-1 on antiretroviral therapy. AIDS 2024; 38:161-166. [PMID: 37800637 DOI: 10.1097/qad.0000000000003746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
BACKGROUND The induction of de novo CD8 + T-cell responses is essential for protective antiviral immunity, but this process is often impaired in people with HIV-1 (PWH). We investigated the extent to which the immune competence of naive CD8 + T cells, a key determinant of priming efficacy, could be preserved or restored in PWH via long-term antiretroviral therapy (ART). METHODS We used flow cytometry, molecular analyses of gene transcription and telomere length, and a fully validated priming assay to characterize naive CD8 + T cells ex vivo and evaluate the induction of antigen-specific effector/memory CD8 + T cells in vitro , comparing age-matched healthy uninfected donors (HUDs), PWH on ART, and natural HIV-1 controllers (HICs). RESULTS We found that naive CD8 + T cells were numerically reduced and exhibited a trend toward shorter telomere lengths in PWH on ART compared with HUDs and HICs. These features associated with impaired priming efficacy. However, we also found that naive CD8 + T cells were fully equipped proliferatively and transcriptionally in PWH on ART, enabling the generation of antigen-specific effector/memory CD8 + T cells with functional and phenotypic attributes comparable to those primed from HUDs. CONCLUSION Our data suggest that naive CD8 + T cells in PWH on ART are intrinsically capable of generating functionally and phenotypically intact effector/memory CD8 + T cells in response to antigen, despite evidence of senescence and an overall numerical reduction that compromises priming efficacy relative to HUDs and HICs.
Collapse
Affiliation(s)
- Mariela P Cabral-Piccin
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Olivia Briceño
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, Mexico City, Mexico
| | - Laura Papagno
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Benjamin Liouville
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Eoghann White
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | | | - Gaëlle Autaa
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
| | - Stevenn Volant
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Asier Sáez-Cirión
- Institut Pasteur, Université Paris Cité, Unité HIV Inflammation et Persistance
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris
| | - Olivier Lambotte
- Université Paris-Saclay, AP-HP Hôpitaux Universitaires Paris Saclay, Service de Médecine Interne, Bicêtre (UMR 1184), CEA (IDMIT Department, IBFJ), INSERM, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), Le Kremlin Bicêtre
| | - Christine Katlama
- Infectious Diseases Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM 1136, Sorbonne Université, Paris, France
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
20
|
Jin J, Wang X, Li Y, Yang X, Wang H, Han X, Sun J, Ma Z, Duan J, Zhang G, Huang T, Zhang T, Wu H, Zhang X, Su B. Weak SARS-CoV-2-specific responses of TIGIT-expressing CD8 + T cells in people living with HIV after a third dose of a SARS-CoV-2 inactivated vaccine. Chin Med J (Engl) 2023; 136:2938-2947. [PMID: 37963586 PMCID: PMC10752475 DOI: 10.1097/cm9.0000000000002926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domains (TIGIT), an inhibitory receptor expressed on T cells, plays a dysfunctional role in antiviral infection and antitumor activity. However, it is unknown whether TIGIT expression on T cells influences the immunological effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivated vaccines. METHODS Forty-five people living with HIV (PLWH) on antiretroviral therapy (ART) for more than two years and 31 healthy controls (HCs), all received a third dose of a SARS-CoV-2 inactivated vaccine, were enrolled in this study. The amounts, activation, proportion of cell subsets, and magnitude of the SARS-CoV-2-specific immune response of TIGIT + CD4 + and TIGIT + CD8 + T cells were investigated before the third dose but 6 months after the second vaccine dose (0W), 4 weeks (4W) and 12 weeks (12W) after the third dose. RESULTS Compared to that in HCs, the frequency of TIGIT + CD8 + T cells in the peripheral blood of PLWH increased at 12W after the third dose of the inactivated vaccine, and the immune activation of TIGIT + CD8 + T cells also increased. A decrease in the ratio of both T naïve (T N ) and central memory (T CM ) cells among TIGIT + CD8 + T cells and an increase in the ratio of the effector memory (T EM ) subpopulation were observed at 12W in PLWH. Interestingly, particularly at 12W, a higher proportion of TIGIT + CD8 + T cells expressing CD137 and CD69 simultaneously was observed in HCs than in PLWH based on the activation-induced marker assay. Compared with 0W, SARS-CoV-2-specific TIGIT + CD8 + T-cell responses in PLWH were not enhanced at 12W but were enhanced in HCs. Additionally, at all time points, the SARS-CoV-2-specific responses of TIGIT + CD8 + T cells in PLWH were significantly weaker than those of TIGIT - CD8 + T cells. However, in HCs, the difference in the SARS-CoV-2-specific responses induced between TIGIT + CD8 + T cells and TIGIT - CD8 + T cells was insignificant at 4W and 12W, except at 0W. CONCLUSIONS TIGIT expression on CD8 + T cells may hinder the T-cell immune response to a booster dose of an inactivated SARS-CoV-2 vaccine, suggesting weakened resistance to SARS-CoV-2 infection, especially in PLWH. Furthermore, TIGIT may be used as a potential target to increase the production of SARS-CoV-2-specific CD8 + T cells, thereby enhancing the effectiveness of vaccination.
Collapse
Affiliation(s)
- Junyan Jin
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yongzheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaoxu Han
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jin Sun
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhenglai Ma
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Junyi Duan
- Tian Yuan Studio, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Guanghui Zhang
- Tian Yuan Studio, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tao Huang
- Tian Yuan Studio, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
21
|
Ligotti ME, Accardi G, Aiello A, Aprile S, Calabrò A, Caldarella R, Caruso C, Ciaccio M, Corsale AM, Dieli F, Di Simone M, Giammanco GM, Mascarella C, Akbar AN, Meraviglia S, Candore G. Sicilian semi- and supercentenarians: identification of age-related T-cell immunophenotype to define longevity trait. Clin Exp Immunol 2023; 214:61-78. [PMID: 37395602 PMCID: PMC10711357 DOI: 10.1093/cei/uxad074] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023] Open
Abstract
The immunophenotype of oldest centenarians, i.e. semi- and supercentenarians, could provide important information about their ability to adapt to factors associated with immune changes, including ageing per se and chronic Cytomegalovirus infection. We investigated, by flow cytometry, variations in percentages and absolute numbers of immune cell subsets, focusing on T cells, and pro-inflammatory parameters in a cohort of 28 women and 26 men (age range 19-110 years). We observed variability in hallmarks of immunosenescence related to age and Cytomegalovirus serological status. The eight oldest centenarians showed the lowest percentages of naïve T cells, due to their age, and the highest percentages of T-effector memory cells re-expressing CD45RA (TEMRA), according to their cytomegalovirus status, and high levels of serum pro-inflammatory parameters, although their means were lower than that of remaining 90+ donors. Some of them showed CD8 naïve and TEMRA percentages, and exhaustion/pro-inflammatory markers comparable to the younger ones. Our study supports the suggestion that immune ageing, especially of oldest centenarians, exhibits great variability that is not only attributable to a single contributor but should also be the full result of a combination of several factors. Everyone ages differently because he/she is unique in genetics and experience of life and this applies even more to the immune system; everybody has had a different immunological history. Furthermore, our findings on inflammatory markers, TEMRA and CMV seropositivity in centenarians, discussed in the light of the most recent literature, suggest that these changes might be not unfavourable for centenarians, and in particular for the oldest ones.
Collapse
Affiliation(s)
- Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Stefano Aprile
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Unit of Transfusion Medicine, San Giovanni di Dio Hospital, Agrigento, Italy
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rosalia Caldarella
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marcello Ciaccio
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, Palermo, Italy
- Section of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Maria Corsale
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, Palermo, Italy
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, Palermo, Italy
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Giovanni Maurizio Giammanco
- Section of Microbiology, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Chiara Mascarella
- Section of Microbiology, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Arne N Akbar
- Division of Medicine, Experimental and Therapeutic Medicine, University College London, London, UK
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
22
|
Su M, Ye T, Wu W, Shu Z, Xia Q. Possibility of PD-1/PD-L1 Inhibitors for the Treatment of Patients with Chronic Hepatitis B Infection. Dig Dis 2023; 42:53-60. [PMID: 37820605 PMCID: PMC10836741 DOI: 10.1159/000534535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Chronic hepatitis B (CHB) infection is still a major global public health problem, with nearly two billion patients. Although current antiviral drugs can inhibit viral replication and reduce hepatitis B virus (HBV) related complications, it is difficult to achieve clinical endpoints due to drug resistance. SUMMARY Immune checkpoint inhibitors (ICIs) are an important strategy to reverse T-cell exhaustion, and rebuilding an effective functional T-cell response is a promising immunomodulatory approach for CHB patients. However, ICIs may lead to viral reactivation or immune-related adverse effects. There are still many controversies in the application of ICIs in treating patients with CHB. KEY MESSAGES This article reviews the research progress of ICIs in CHB infection and related issues. The goal of this paper was to summarize the possible impact of new therapies for CHB with the aim of reducing potential clinical risks.
Collapse
Affiliation(s)
- Menghan Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,
| | - Ting Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zheyue Shu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China
| | - Qi Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Copertino DC, Holmberg CS, Weiler J, Ward AR, Howard JN, Levinger C, Pang AP, Corley MJ, Dündar F, Zumbo P, Betel D, Gandhi RT, McMahon DK, Bosch RJ, Linden N, Macatangay BJ, Cyktor JC, Eron JJ, Mellors JW, Kovacs C, Benko E, Bosque A, Jones RB. The latency-reversing agent HODHBt synergizes with IL-15 to enhance cytotoxic function of HIV-specific T cells. JCI Insight 2023; 8:e169028. [PMID: 37581929 PMCID: PMC10561764 DOI: 10.1172/jci.insight.169028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
IL-15 is under clinical investigation toward the goal of curing HIV infection because of its abilities to reverse HIV latency and enhance immune effector function. However, increased potency through combination with other agents may be needed. 3-Hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) enhances IL-15-mediated latency reversal and NK cell function by increasing STAT5 activation. We hypothesized that HODHBt would also synergize with IL-15, via STAT5, to directly enhance HIV-specific cytotoxic T cell responses. We showed that ex vivo IL-15 + HODHBt treatment markedly enhanced HIV-specific granzyme B-releasing T cell responses in PBMCs from antiretroviral therapy-suppressed (ART-suppressed) donors. We also observed upregulation of antigen processing and presentation in CD4+ T cells and increased surface MHC-I. In ex vivo PBMCs, IL-15 + HODHBt was sufficient to reduce intact proviruses in 1 of 3 ART-suppressed donors. Our findings reveal the potential for second-generation IL-15 studies incorporating HODHBt-like therapeutics. Iterative studies layering on additional latency reversal or other agents are needed to achieve consistent ex vivo reservoir reductions.
Collapse
Affiliation(s)
- Dennis C. Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Carissa S. Holmberg
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Jared Weiler
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Adam R. Ward
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - J. Natalie Howard
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Callie Levinger
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Alina P.S. Pang
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Michael J. Corley
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Friederike Dündar
- Applied Bioinformatics Core and
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Catenion GmbH, Berlin, Germany
| | | | - Doron Betel
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Applied Bioinformatics Core and
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Rajesh T. Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Deborah K. McMahon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ronald J. Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Noemi Linden
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Bernard J. Macatangay
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joshua C. Cyktor
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - R. Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
24
|
Hu CB, Huang C, Wang J, Hong Y, Fan DD, Chen Y, Lin AF, Xiang LX, Shao JZ. PD-L1/BTLA Checkpoint Axis Exploited for Bacterial Immune Escape by Restraining CD8+ T Cell-Initiated Adaptive Immunity in Zebrafish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:816-835. [PMID: 37486225 DOI: 10.4049/jimmunol.2300217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023]
Abstract
Programmed death-ligand 1/programmed cell death 1 (PD-L1/PD-1) is one of the most important immune checkpoints in humans and other mammalian species. However, the occurrence of the PD-L1/PD-1 checkpoint in evolutionarily ancient vertebrates remains elusive because of the absence of a PD-1 homolog before its appearance in tetrapods. In this article, we identified, to our knowledge, a novel PD-L1/B and T lymphocyte attenuator (BTLA) checkpoint in zebrafish by using an Edwardsiella tarda-induced bacterial infection model. Results showed that zebrafish (Danio rerio) PD-L1 (DrPD-L1) and BTLA (DrBTLA) were differentially upregulated on MHC class II+ macrophages (Mϕs) and CD8+ T cells in response to E. tarda infection. DrPD-L1 has a strong ability to interact with DrBTLA, as shown by the high affinity (KD = 5.68 nM) between DrPD-L1/DrBTLA proteins. Functionally, the breakdown of DrPD-L1/DrBTLA interaction significantly increased the cytotoxicity of CD8+BTLA+ T cells to E. tarda-infected PD-L1+ Mϕ cells and reduced the immune escape of E. tarda from the target Mϕ cells, thereby enhancing the antibacterial immunity of zebrafish against E. tarda infection. Similarly, the engagement of DrPD-L1 by soluble DrBTLA protein diminished the tolerization of CD8+ T cells to E. tarda infection. By contrast, DrBTLA engagement by a soluble DrPD-L1 protein drives aberrant CD8+ T cell responses. These results were finally corroborated in a DrPD-L1-deficient (PD-L1-/-) zebrafish model. This study highlighted a primordial PD-L1/BTLA coinhibitory axis that regulates CD8+ T cell activation in teleost fish and may act as an alternative to the PD-L1/PD-1 axis in mammals. It also revealed a previously unrecognized strategy for E. tarda immune evasion by inducing CD8+ T cell tolerance to target Mϕ cells through eliciting the PD-L1/BTLA checkpoint pathway.
Collapse
Affiliation(s)
- Chong-Bin Hu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Chen Huang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Jie Wang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Yun Hong
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Dong-Dong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Ye Chen
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
25
|
Zwijnenburg AJ, Pokharel J, Varnaitė R, Zheng W, Hoffer E, Shryki I, Comet NR, Ehrström M, Gredmark-Russ S, Eidsmo L, Gerlach C. Graded expression of the chemokine receptor CX3CR1 marks differentiation states of human and murine T cells and enables cross-species interpretation. Immunity 2023; 56:1955-1974.e10. [PMID: 37490909 DOI: 10.1016/j.immuni.2023.06.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
T cells differentiate into functionally distinct states upon antigen encounter. These states are delineated by different cell surface markers for murine and human T cells, which hamper cross-species translation of T cell properties. We aimed to identify surface markers that reflect the graded nature of CD8+ T cell differentiation and delineate functionally comparable states in mice and humans. CITEseq analyses revealed that graded expression of CX3CR1, encoding the chemokine receptor CX3CR1, correlated with the CD8+ T cell differentiation gradient. CX3CR1 expression distinguished human and murine CD8+ and CD4+ T cell states, as defined by migratory and functional properties. Graded CX3CR1 expression, refined with CD62L, accurately captured the high-dimensional T cell differentiation continuum. Furthermore, the CX3CR1 expression gradient delineated states with comparable properties in humans and mice in steady state and on longitudinally tracked virus-specific CD8+ T cells in both species. Thus, graded CX3CR1 expression provides a strategy to translate the behavior of distinct T cell differentiation states across species.
Collapse
Affiliation(s)
- Anthonie Johan Zwijnenburg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Jyoti Pokharel
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Renata Varnaitė
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Wenning Zheng
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Elena Hoffer
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Iman Shryki
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Natalia Ramirez Comet
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Marcus Ehrström
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden; Nordiska Kliniken, 11151 Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; Laboratory for Molecular Infection Medicine Sweden, 90187 Umeå, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Carmen Gerlach
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden.
| |
Collapse
|
26
|
Kochanowicz AM, Osuch S, Berak H, Kumorek A, Caraballo Cortés K. Double Positive CD4 +CD8 + (DP) T-Cells Display Distinct Exhaustion Phenotype in Chronic Hepatitis C. Cells 2023; 12:1446. [PMID: 37408280 DOI: 10.3390/cells12101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
In chronic hepatitis C (CHC), characterized by exhaustion of T-cell function, increased frequencies of double-positive (DP) (CD4+CD8+) cells are present in peripheral blood. We compared the exhaustion phenotype between DP and single positive (SP) T-cells, including HCV-specific cells, and assessed the effect of successful HCV treatment on inhibitory receptors expression. Blood samples from 97 CHC patients were collected before and six months post-treatment. PD-1 (programmed cell death protein 1) and Tim-3 (T-cell immunoglobulin and mucin domain-containing molecule-3) expression was assessed by flow cytometry. DP T-cells displayed significantly higher PD-1 expression, lower Tim-3 expression than CD8+ SP T-cells and lower percentages of PD-1-Tim-3- cells than CD4+ SP T-cells, both before and after treatment. PD-1+Tim-3+ DP T-cells decreased following treatment. HCV-specific cells were more frequent among DP than SP T-cells, both before and after treatment. HCV-specific DP T-cells were characterized by lower PD-1 expression, higher PD-1 and Tim-3 co-expression, and lower percentages of PD-1-Tim-3- cells (both before and after treatment) and higher post-treatment Tim-3 than HCV-specific SP T-cells. Their percentages decreased following treatment, but the exhaustion phenotype remained unchanged. DP T-cells in CHC exhibit a distinct exhaustion phenotype from SP T-cells, and these changes mostly persist following successful treatment.
Collapse
Affiliation(s)
- Anna Maria Kochanowicz
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Sylwia Osuch
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Hanna Berak
- Outpatient Clinic, Warsaw Hospital for Infectious Diseases, 01-201 Warsaw, Poland
| | - Aleksandra Kumorek
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Kamila Caraballo Cortés
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-106 Warsaw, Poland
| |
Collapse
|
27
|
Bergantini L, d'Alessandro M, Cavallaro D, Pordon E, Cassai L, Gangi S, Meloni F, Montagnani F, Paladini P, Refini RM, Luzzi L, Fossi A, Bargagli E, Bennett D. Immune checkpoint analysis of T-cell responses to pp65 and IE-1 antigens in end-stage lung diseases. Scand J Immunol 2023; 97:e13248. [PMID: 36574966 DOI: 10.1111/sji.13248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Lung transplant (LTX) patients are at high risk of cytomegalovirus (CMV) infection, which is often associated with high mortality and morbidity. Reactivation of CMV causes cell injury due to the cytopathic effect of viral replication and triggering of T cell immunity. The aim of this study was to compare expression of immune checkpoints (ICs) (PD-1, CTLA-4, LAG-3 and TIGIT) in CD4, CD8 and CD56 and activation markers CD137, CD154 and CD69 of end-stage patients awaiting lung transplant. Eighteen pre-LTX positive for anti-CMV IgG titres and 18 healthy subjects were enrolled. IC and activation markers have been evaluated through flow cytometric analysis in HC and pre-LTX patients. Reactive (QF+) and unreactive (QF-) patients were stratified according to QuantiFERON-CMV assays. ICs' and activation markers' expression were determined before and after in vitro stimulation with pp-65 and IE-1 antigens. Lower expression of PD-1 was observed in CD4 and CD8 cells of pre-LTX patients than controls, whereas CTLA4 appeared upregulated in CD56 and CD8 cells. TIGIT is increased on the surface of CD4, CD8 and NK cells after peptide stimulation in QF-negative patients and PD-1 is only downregulated after stimulation in the QF-positive patients. This study provides new evidence of immune dysregulation in patients with end-stage lung disorders, particularly in relation to immune checkpoint cell biology. The change in QF+ mostly happens on cytotoxic cells NK and CD8, while the changes in QF- were observed in adaptive immune cells, including CD4 and CD8.
Collapse
Affiliation(s)
- Laura Bergantini
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Miriana d'Alessandro
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Dalila Cavallaro
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Elena Pordon
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Lucia Cassai
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Sara Gangi
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Federica Meloni
- University of Pavia, pavia, Italy
- Department of Haematological, Pneumological and Cardiovascular Sciences, Fondazione IRCCS Policlinico San Matteo, pavia, Italy
| | - Francesca Montagnani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, University Hospital of Siena, Siena, Italy
| | - Piero Paladini
- Thoracic Surgery Unit, Cardio-Thoracic and Vascular Department, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Rosa Metella Refini
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Luca Luzzi
- Thoracic Surgery Unit, Cardio-Thoracic and Vascular Department, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Antonella Fossi
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Elena Bargagli
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - David Bennett
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| |
Collapse
|
28
|
Guzman G, Pellot K, Reed MR, Rodriguez A. CAR T-cells to treat brain tumors. Brain Res Bull 2023; 196:76-98. [PMID: 36841424 DOI: 10.1016/j.brainresbull.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Tremendous success using CAR T therapy in hematological malignancies has garnered significant interest in developing such treatments for solid tumors, including brain tumors. This success, however, has yet to be mirrored in solid organ neoplasms. CAR T function has shown limited efficacy against brain tumors due to several factors including the immunosuppressive tumor microenvironment, blood-brain barrier, and tumor-antigen heterogeneity. Despite these considerations, CAR T-cell therapy has the potential to be implemented as a treatment modality for brain tumors. Here, we review adult and pediatric brain tumors, including glioblastoma, diffuse midline gliomas, and medulloblastomas that continue to portend a grim prognosis. We describe insights gained from different preclinical models using CAR T therapy against various brain tumors and results gathered from ongoing clinical trials. Furthermore, we outline the challenges limiting CAR T therapy success against brain tumors and summarize advancements made to overcome these obstacles.
Collapse
Affiliation(s)
- Grace Guzman
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Megan R Reed
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
29
|
SARS-CoV-2 Vaccine-Induced T-Cell Response after Three Doses in People Living with HIV on Antiretroviral Therapy Compared to Seronegative Controls (CTN 328 COVAXHIV Study). Viruses 2023; 15:v15020575. [PMID: 36851789 PMCID: PMC9959053 DOI: 10.3390/v15020575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
People living with HIV (PLWH) may be at risk for poor immunogenicity to certain vaccines, including the ability to develop immunological memory. Here, we assessed T-cell immunogenicity following three SARS-CoV-2 vaccine doses in PLWH versus uninfected controls. Blood was collected from 38 PLWH on antiretroviral therapy and 24 age-matched HIV-negative controls, pre-vaccination and after 1st/2nd/3rd dose of SARS-CoV-2 vaccines, without prior SARS-CoV-2 infection. Flow cytometry was used to assess ex vivo T-cell immunophenotypes and intracellular Tumor necrosis factor (TNF)-α/interferon(IFN)-γ/interleukin(IL)-2 following SARS-CoV-2-Spike-peptide stimulation. Comparisons were made using Wilcoxon signed-rank test for paired variables and Mann-Whitney for unpaired. In PLWH, Spike-specific CD4 T-cell frequencies plateaued post-2nd dose, with no significant differences in polyfunctional SARS-CoV-2-specific T-cell proportions between PLWH and uninfected controls post-3rd dose. PLWH had higher frequencies of TNFα+CD4 T-cells and lower frequencies of IFNγ+CD8 T-cells than seronegative participants post-3rd dose. Regardless of HIV status, an increase in naive, regulatory, and PD1+ T-cell frequencies was observed post-3rd dose. In summary, two doses of SARS-CoV-2 vaccine induced a robust T-cell immune response in PLWH, which was maintained after the 3rd dose, with no significant differences in polyfunctional SARS-CoV-2-specific T-cell proportions between PLWH and uninfected controls post-3rd dose.
Collapse
|
30
|
Anderko RR, Mailliard RB. Mapping the interplay between NK cells and HIV: therapeutic implications. J Leukoc Biol 2023; 113:109-138. [PMID: 36822173 PMCID: PMC10043732 DOI: 10.1093/jleuko/qiac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 01/18/2023] Open
Abstract
Although highly effective at durably suppressing plasma HIV-1 viremia, combination antiretroviral therapy (ART) treatment regimens do not eradicate the virus, which persists in long-lived CD4+ T cells. This latent viral reservoir serves as a source of plasma viral rebound following treatment interruption, thus requiring lifelong adherence to ART. Additionally, challenges remain related not only to access to therapy but also to a higher prevalence of comorbidities with an inflammatory etiology in treated HIV-1+ individuals, underscoring the need to explore therapeutic alternatives that achieve sustained virologic remission in the absence of ART. Natural killer (NK) cells are uniquely positioned to positively impact antiviral immunity, in part due to the pleiotropic nature of their effector functions, including the acquisition of memory-like features, and, therefore, hold great promise for transforming HIV-1 therapeutic modalities. In addition to defining the ability of NK cells to contribute to HIV-1 control, this review provides a basic immunologic understanding of the impact of HIV-1 infection and ART on the phenotypic and functional character of NK cells. We further delineate the qualities of "memory" NK cell populations, as well as the impact of HCMV on their induction and subsequent expansion in HIV-1 infection. We conclude by highlighting promising avenues for optimizing NK cell responses to improve HIV-1 control and effect a functional cure, including blockade of inhibitory NK receptors, TLR agonists to promote latency reversal and NK cell activation, CAR NK cells, BiKEs/TriKEs, and the role of HIV-1-specific bNAbs in NK cell-mediated ADCC activity against HIV-1-infected cells.
Collapse
Affiliation(s)
- Renee R. Anderko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
31
|
Shin J, Raissi S, Phelan P, Bullock PA. Rational design of a Nivolumab-based ANTI-PD-1 single chain variable fragment that blocks the interaction between PD-1 expressed on T-CELLS and PD-L1 ON CHO cells. Protein Expr Purif 2023; 202:106196. [PMID: 36280166 DOI: 10.1016/j.pep.2022.106196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
Abstract
Antibodies that block the interaction between PD-1 expressing T-cells and cancer cells expressing PD-L1 play a central role in contemporary immunotherapy regimes [1-3]. We previously reported the isolation of a single chain variable fragment (scFv) of the monoclonal anti-PD-1 antibody Nivolumab, that binds to purified PD-1 and blocked its interaction with PD-L1 [4]. This anti-PD-1 scFv did not, however, function in a cell-based assay designed to detect the disruption of the PD-1/PD-L1 interaction, a result likely due to its poor solubility in tissue culture media. Herein we report that following a series of structure-based rational design analyses, including Aggreescan3D, we have isolated a variant of the anti-PD-1 scFv having significantly improved solubility in tissue culture medium. Moreover, this soluble anti-PD-1 scFv variant disrupted the interaction between PD-1 expressed on Jurkat Cells and PD-L1 expressed on CHO cells. These findings are discussed in terms of the related observation that the residues mutated to form the anti-PD-1 variant are conserved in many other scFvs; thus, the properties of a range of scFvs will likely be enhanced by similar mutations of the conserved residues.
Collapse
Affiliation(s)
- Jong Shin
- Department of Pathology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Siavash Raissi
- Department of Developmental, Molecular and Chemical Biology Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Paul Phelan
- Joinn Biologics, 2600 Hilltop Drive, Building L, Richmond, CA, 94806, USA
| | - Peter A Bullock
- Department of Developmental, Molecular and Chemical Biology Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA.
| |
Collapse
|
32
|
Pan H, Yang X, Wang J, Liang H, Jiang Z, Zhao L, Wang Y, Liang Z, Shen X, Lin Q, Liang Y, Yang J, Lu P, Zhu Y, Li M, Wang P, Xu J, Lu H, Zhu H. Allogeneic gene-edited HIV-specific CAR-T cells secreting PD-1 blocking scFv enhance specific cytotoxic activity against HIV Env + cells invivo. Virol Sin 2023; 38:285-295. [PMID: 36657565 PMCID: PMC10176442 DOI: 10.1016/j.virs.2023.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
HIV-specific chimeric antigen receptor (CAR) T-cells have been developed to target HIV-1 infected CD4+ T-cells that express HIV Env proteins. However, T cell exhaustion and the patient-specific autologous paradigm of CAR-T cell hurdled clinical applications. Here, we created HIV-specific CAR-T cells using human peripheral blood mononuclear cells and a 3BNC117-E27 (3BE) CAR construct that enabled the expression of programmed cell death protein (PD-1) -blocking scFv E27 and the single-chain variable fragment of the HIV-1-specific broadly neutralizing antibody 3BNC117 to target native HIV Env. Compared with T cells expressing 3BNC117-CAR alone, 3BE CAR-T cells showed greater cytotoxic activity against HIV Env+ cells with stronger proliferation capability, higher killing efficiency, and enhanced cytokine secretion in the presence of HIV Env-expressing cells. Furthermore, we manufactured TCR-deficient 3BE CAR-T cells through gene editing and demonstrated that these CAR-T cells could effectively kill HIV Env + cells in vivo without the occurrence of severe graft-versus-host disease (GvHD) in NSG mice. These data suggest that we have provided a feasible approach to the generation of "off-the-shelf" anti-HIV CAR-T cells in combination with PD-1 checkpoint blockade immunotherapy, which can be a powerful therapeutic candidate for the functional cure of HIV.
Collapse
Affiliation(s)
- Hanyu Pan
- State Key Laboratory of Genetic Engineering, And Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinyi Yang
- State Key Laboratory of Genetic Engineering, And Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jing Wang
- State Key Laboratory of Genetic Engineering, And Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Huitong Liang
- State Key Laboratory of Genetic Engineering, And Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhengtao Jiang
- State Key Laboratory of Genetic Engineering, And Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lin Zhao
- State Key Laboratory of Genetic Engineering, And Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yanan Wang
- State Key Laboratory of Genetic Engineering, And Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhiming Liang
- State Key Laboratory of Genetic Engineering, And Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaoting Shen
- State Key Laboratory of Genetic Engineering, And Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qinru Lin
- State Key Laboratory of Genetic Engineering, And Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yue Liang
- State Key Laboratory of Genetic Engineering, And Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jinglong Yang
- State Key Laboratory of Genetic Engineering, And Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Panpan Lu
- State Key Laboratory of Genetic Engineering, And Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering, And Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Min Li
- State Key Laboratory of Genetic Engineering, And Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Pengfei Wang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jianqing Xu
- Department of Infectious Disease, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Hongzhou Lu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Department of Infectious Diseases and Nursing Research Institution, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Shenzhen, 518112, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering, And Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
33
|
Brunell AE, Lahesmaa R, Autio A, Thotakura AK. Exhausted T cells hijacking the cancer-immunity cycle: Assets and liabilities. Front Immunol 2023; 14:1151632. [PMID: 37122741 PMCID: PMC10140554 DOI: 10.3389/fimmu.2023.1151632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
T cell exhaustion is an alternative differentiation path of T cells, sometimes described as a dysfunction. During the last decade, insights of T cell exhaustion acting as a bottle neck in the field of cancer immunotherapy have undoubtedly provoked attention. One of the main drivers of T cell exhaustion is prolonged antigen presentation, a prerequisite in the cancer-immunity cycle. The umbrella term "T cell exhaustion" comprises various stages of T cell functionalities, describing the dynamic, one-way exhaustion process. Together these qualities of T cells at the exhaustion continuum can enable tumor clearance, but if the exhaustion acquired timeframe is exceeded, tumor cells have increased possibilities of escaping immune system surveillance. This could be considered a tipping point where exhausted T cells switch from an asset to a liability. In this review, the contrary role of exhausted T cells is discussed.
Collapse
Affiliation(s)
- Anna E. Brunell
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Immuno-Oncology, Oncology Research, Orion Corporation, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anu Autio
- Immuno-Oncology, Oncology Research, Orion Corporation, Turku, Finland
| | - Anil K. Thotakura
- Immuno-Oncology, Oncology Research, Orion Corporation, Turku, Finland
- *Correspondence: Anil K. Thotakura,
| |
Collapse
|
34
|
Chan YT, Cheong HC, Tang TF, Rajasuriar R, Cheng KK, Looi CY, Wong WF, Kamarulzaman A. Immune Checkpoint Molecules and Glucose Metabolism in HIV-Induced T Cell Exhaustion. Biomedicines 2022; 10:0. [PMID: 36359329 PMCID: PMC9687279 DOI: 10.3390/biomedicines10112809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2023] Open
Abstract
The progressive decline of CD8+ cytotoxic T cells in human immunodeficiency virus (HIV)-infected patients due to infection-triggered cell exhaustion and cell death is significantly correlated with disease severity and progression into the life-threatening acquired immunodeficiency syndrome (AIDS) stage. T cell exhaustion is a condition of cell dysfunction despite antigen engagement, characterized by augmented surface expression of immune checkpoint molecules such as programmed cell death protein 1 (PD-1), which suppress T cell receptor (TCR) signaling and negatively impact the proliferative and effector activities of T cells. T cell function is tightly modulated by cellular glucose metabolism, which produces adequate energy to support a robust reaction when battling pathogen infection. The transition of the T cells from an active to an exhausted state following pathogen persistence involves a drastic change in metabolic activity. This review highlights the interplay between immune checkpoint molecules and glucose metabolism that contributes to T cell exhaustion in the context of chronic HIV infection, which could deliver an insight into the rational design of a novel therapeutic strategy.
Collapse
Affiliation(s)
- Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Reena Rajasuriar
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (R.R.); (A.K.)
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kian-Kai Cheng
- Innovation Centre in Agritechnology (ICA), Universiti Teknologi Malaysia, Pagoh 84600, Malaysia;
| | - Chung Yeng Looi
- School of Bioscience, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Adeeba Kamarulzaman
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (R.R.); (A.K.)
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
35
|
Laba S, Mallett G, Amarnath S. The depths of PD-1 function within the tumor microenvironment beyond CD8 + T cells. Semin Cancer Biol 2022; 86:1045-1055. [PMID: 34048897 DOI: 10.1016/j.semcancer.2021.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Programmed cell death-1 (PD-1; CD279) is a cell surface receptor that is expressed in both innate and adaptive immune cells. The role of PD-1 in adaptive immune cells, specifically in CD8+ T cells, has been thoroughly investigated but its significance in other immune cells is yet to be well established. This review will address the role of PD-1 based therapies in enhancing non-CD8+ T cell immune responses within cancer. Specifically, the expression and function of PD-1 in non-CD8+ immune cell compartments such as CD4+ T helper cell subsets, myeloid cells and innate lymphoid cells (ILCs) will be discussed. By understanding the immune cell specific function of PD-1 within tissue resident innate and adaptive immune cells, it will be possible to stratify patients for PD-1 based therapies for both immunogeneic and non-immunogeneic neoplastic disorders. With this knowledge from fundamental and translational studies, PD-1 based therapies can be utilized to enhance T cell independent immune responses in cancers.
Collapse
Affiliation(s)
- Stephanie Laba
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| | - Grace Mallett
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - Shoba Amarnath
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|
36
|
Fardoos R, Nyquist SK, Asowata OE, Kazer SW, Singh A, Ngoepe A, Giandhari J, Mthabela N, Ramjit D, Singh S, Karim F, Buus S, Anderson F, Porterfield JZ, Sibiya AL, Bipath R, Moodley K, Kuhn W, Berger B, Nguyen S, de Oliveira T, Ndung’u T, Goulder P, Shalek AK, Leslie A, Kløverpris HN. HIV specific CD8 + T RM-like cells in tonsils express exhaustive signatures in the absence of natural HIV control. Front Immunol 2022; 13:912038. [PMID: 36330531 PMCID: PMC9623418 DOI: 10.3389/fimmu.2022.912038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Lymphoid tissues are an important HIV reservoir site that persists in the face of antiretroviral therapy and natural immunity. Targeting these reservoirs by harnessing the antiviral activity of local tissue-resident memory (TRM) CD8+ T-cells is of great interest, but limited data exist on TRM-like cells within lymph nodes of people living with HIV (PLWH). Here, we studied tonsil CD8+ T-cells obtained from PLWH and uninfected controls from South Africa. We show that these cells are preferentially located outside the germinal centers (GCs), the main reservoir site for HIV, and display a low cytolytic and a transcriptionally TRM-like profile distinct from blood CD8+ T-cells. In PLWH, CD8+ TRM-like cells are expanded and adopt a more cytolytic, activated, and exhausted phenotype not reversed by antiretroviral therapy (ART). This phenotype was enhanced in HIV-specific CD8+ T-cells from tonsils compared to matched blood suggesting a higher antigen burden in tonsils. Single-cell transcriptional and clonotype resolution showed that these HIV-specific CD8+ T-cells in the tonsils express heterogeneous signatures of T-cell activation, clonal expansion, and exhaustion ex-vivo. Interestingly, this signature was absent in a natural HIV controller, who expressed lower PD-1 and CXCR5 levels and reduced transcriptional evidence of T-cell activation, exhaustion, and cytolytic activity. These data provide important insights into lymphoid tissue-derived HIV-specific CD8+ TRM-like phenotypes in settings of HIV remission and highlight their potential for immunotherapy and targeting of the HIV reservoirs.
Collapse
Affiliation(s)
- Rabiah Fardoos
- Africa Health Research Institute (AHRI), Durban, South Africa
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sarah K. Nyquist
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Samuel W. Kazer
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Alveera Singh
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Abigail Ngoepe
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Dirhona Ramjit
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Samita Singh
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Frank Anderson
- Discipline of General Surgery, Inkosi Albert Luthuli Central Hospital, University of KwaZulu-Natal, Durban, South Africa
| | - J. Zachary Porterfield
- Africa Health Research Institute (AHRI), Durban, South Africa
- Department of Otolaryngology-Head & Neck Surgery, Division of Infectious Diseases, University of Kentucky, Lexington, KY, United States
- Department of Microbiology, Immunology and Molecular Genetics, - Division of Infectious Diseases, University of Kentucky, Lexington, KY, United States
- Department of Internal Medicine - Division of Infectious Diseases, University of Kentucky, Lexington, KY, United States
| | - Andile L. Sibiya
- Department of Otorhinolaryngology & Head & Neck Surgery, Inkosi Albert Luthuli Central Hospital, University of KwaZulu-Natal, Durban, South Africa
| | - Rishan Bipath
- Department of Otorhinolaryngology, King Edward VIII hospital, University of KwaZulu-Natal, Durban, South Africa
| | - Kumeshan Moodley
- Department of Ear Nose and Throat, General Justice Gizenga Mpanza Regional Hospital (Stanger Hospital), University of KwaZulu-Natal, Durban, South Africa
| | - Warren Kuhn
- Department of Otorhinolaryngology & Head & Neck Surgery, Inkosi Albert Luthuli Central Hospital, University of KwaZulu-Natal, Durban, South Africa
- Department of Ear Nose and Throat, General Justice Gizenga Mpanza Regional Hospital (Stanger Hospital), University of KwaZulu-Natal, Durban, South Africa
| | - Bonnie Berger
- Computer Science & Artificial Intelligence Lab and Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Son Nguyen
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung’u
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban, South Africa
- University College London, Division of Infection and Immunity, London, United Kingdom
| | - Philip Goulder
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban, South Africa
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Alex K. Shalek
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
- Ragon Institute of MGH, Harvard, Cambridge, MA, United States
| | - Alasdair Leslie
- Africa Health Research Institute (AHRI), Durban, South Africa
- University College London, Division of Infection and Immunity, London, United Kingdom
| | - Henrik N. Kløverpris
- Africa Health Research Institute (AHRI), Durban, South Africa
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- University College London, Division of Infection and Immunity, London, United Kingdom
| |
Collapse
|
37
|
Tsiakos K, Gavrielatou N, Vathiotis IA, Chatzis L, Chatzis S, Poulakou G, Kotteas E, Syrigos NK. Programmed Cell Death Protein 1 Axis Inhibition in Viral Infections: Clinical Data and Therapeutic Opportunities. Vaccines (Basel) 2022; 10:vaccines10101673. [PMID: 36298538 PMCID: PMC9611078 DOI: 10.3390/vaccines10101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
A vital function of the immune system is the modulation of an evolving immune response. It is responsible for guarding against a wide variety of pathogens as well as the establishment of memory responses to some future hostile encounters. Simultaneously, it maintains self-tolerance and minimizes collateral tissue damage at sites of inflammation. In recent years, the regulation of T-cell responses to foreign or self-protein antigens and maintenance of balance between T-cell subsets have been linked to a distinct class of cell surface and extracellular components, the immune checkpoint molecules. The fact that both cancer and viral infections exploit similar, if not the same, immune checkpoint molecules to escape the host immune response highlights the need to study the impact of immune checkpoint blockade on viral infections. More importantly, the process through which immune checkpoint blockade completely changed the way we approach cancer could be the key to decipher the potential role of immunotherapy in the therapeutic algorithm of viral infections. This review focuses on the effect of programmed cell death protein 1/programmed death-ligand 1 blockade on the outcome of viral infections in cancer patients as well as the potential benefit from the incorporation of immune checkpoint inhibitors (ICIs) in treatment of viral infections.
Collapse
Affiliation(s)
- Konstantinos Tsiakos
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
- Correspondence:
| | - Niki Gavrielatou
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Ioannis A. Vathiotis
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Loukas Chatzis
- Pathophysiology Department, Athens School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Stamatios Chatzis
- Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Hippokration” Hospital, 115 27 Athens, Greece
| | - Garyfallia Poulakou
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Elias Kotteas
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Nikolaos K. Syrigos
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
- Dana-Farber Brigham Cancer Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
38
|
Control of Simian Immunodeficiency Virus Infection in Prophylactically Vaccinated, Antiretroviral Treatment-Naive Macaques Is Required for the Most Efficacious CD8 T Cell Response during Treatment with the Interleukin-15 Superagonist N-803. J Virol 2022; 96:e0118522. [PMID: 36190241 PMCID: PMC9599604 DOI: 10.1128/jvi.01185-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IL-15 superagonist N-803 has been shown to enhance the function of CD8 T cells and NK cells. We previously found that in a subset of vaccinated, ART-naive, SIV+ rhesus macaques, N-803 treatment led to a rapid but transient decline in plasma viremia that positively correlated with an increase in the frequency of CD8 T cells. Here, we tested the hypothesis that prophylactic vaccination was required for the N-803 mediated suppression of SIV plasma viremia. We either vaccinated rhesus macaques with a DNA prime/Ad5 boost regimen using vectors expressing SIVmac239 gag with or without a plasmid expressing IL-12 or left them unvaccinated. The animals were then intravenously infected with SIVmac239M. 6 months after infection, the animals were treated with N-803. We found no differences in the control of plasma viremia during N-803 treatment between vaccinated and unvaccinated macaques. Interestingly, when we divided the SIV+ animals based on their plasma viral load set-points prior to the N-803 treatment, N-803 increased the frequency of SIV-specific T cells expressing ki-67+ and granzyme B+ in animals with low plasma viremia (<104 copies/mL; SIV controllers) compared to animals with high plasma viremia (>104 copies/mL; SIV noncontrollers). In addition, Gag-specific CD8 T cells from the SIV+ controllers had a greater increase in CD8+CD107a+ T cells in ex vivo functional assays than did the SIV+ noncontrollers. Overall, our results indicate that N-803 is most effective in SIV+ animals with a preexisting immunological ability to control SIV replication. IMPORTANCE N-803 is a drug that boosts the immune cells involved in combating HIV/SIV infection. Here, we found that in SIV+ rhesus macaques that were not on antiretroviral therapy, N-803 increased the proliferation and potential capacity for killing of the SIV-specific immune cells to a greater degree in animals that spontaneously controlled SIV than in animals that did not control SIV. Understanding the mechanism of how N-803 might function differently in individuals that control HIV/SIV (for example, individuals on antiretroviral therapy or spontaneous controllers) compared to settings where HIV/SIV are not controlled, could impact the efficacy of N-803 utilization in the field of HIV cure.
Collapse
|
39
|
Nasser H, Takahashi N, Eltalkhawy YM, Reda O, Lotfi S, Nasu K, Sakuragi JI, Suzu S. Inhibitory and Stimulatory Effects of IL-32 on HIV-1 Infection. THE JOURNAL OF IMMUNOLOGY 2022; 209:970-978. [DOI: 10.4049/jimmunol.2200087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023]
Abstract
Abstract
The proinflammatory cytokine IL-32 is elevated in the plasma and tissues of HIV-1–infected individuals. However, its significance in HIV-1 infection remains unclear because IL-32 inhibits and stimulates viral production in monocyte-derived macrophages (MDMs) and CD4+ T cells, respectively. In this study, we initially found that the inhibitory effect on human MDMs depends on SAMHD1, a dNTP triphosphohydrolase that inhibits viral reverse transcription. IL-32 increased the unphosphorylated active form of SAMHD1, which was consistent with the reduced expression of the upstream cyclin-dependent kinases. Indeed, IL-32 lost its anti–HIV-1 activity in MDMs when SAMHD1 was depleted. These results explain why IL-32 inhibits HIV-1 in MDMs but not CD4+ T cells, because SAMHD1 restricts HIV-1 in noncycling MDMs but not in cycling CD4+ T cells. Another unique feature of IL-32 is the induction of the immunosuppressive molecule IDO1, which is beneficial for HIV-1 infection. In this study, we found that IL-32 also upregulates other immunosuppressive molecules, including PD-L1, in MDMs. Moreover, IL-32 promoted the motility of MDMs, which potentially facilitates intercellular HIV-1 transmission. Our findings indicate that IL-32 has both the direct inhibitory effect on HIV-1 production in MDMs and the indirect stimulatory effects through phenotypic modulation of MDMs, and they suggest that the stimulatory effects may outweigh the inhibitory effect because the window for IL-32 to inhibit HIV-1 is relatively confined to SAMHD1-mediated reverse transcription suppression in the viral life cycle.
Collapse
Affiliation(s)
- Hesham Nasser
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Naofumi Takahashi
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Youssef M. Eltalkhawy
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Omnia Reda
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Sameh Lotfi
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Kanako Nasu
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Jun-ichi Sakuragi
- †Division of Microbiology, Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | - Shinya Suzu
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| |
Collapse
|
40
|
Velu V, Titanji K, Ahmed H, Shetty RD, Chennareddi LS, Freeman GJ, Ahmed R, Amara RR. PD-1 blockade following ART interruption enhances control of pathogenic SIV in rhesus macaques. Proc Natl Acad Sci U S A 2022; 119:e2202148119. [PMID: 35939675 PMCID: PMC9388156 DOI: 10.1073/pnas.2202148119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Programmed death-1 (PD-1) blockade during chronic Simian immunodeficiency virus (SIV) infection results in restoration of CD8 T-cell function and enhances viral control. Here, we tested the therapeutic benefits of PD-1 blockade administered soon after anti-retrovial therapy (ART) interruption (ATI) by treating SIV-infected and ART-suppressed macaques with either an anti-PD-1 antibody (n = 7) or saline (n = 4) at 4 wk after ATI. Following ATI, the plasma viremia increased rapidly in all animals, and the frequency of SIV-specific CD8 T cells also increased in some animals. PD-1 blockade post ATI resulted in higher proliferation of total memory CD8 and CD4 T cells and natural killer cells. PD-1 blockade also resulted in higher proliferation of SIV-specific CD8 T cells and promoted their differentiation toward better functional quality. Importantly, four out of the seven anti-PD-1 antibody-treated animals showed a rapid decline in plasma viremia by 100- to 2300-fold and this was observed only in animals that showed measurable SIV-specific CD8 T cells post PD-1 blockade. These results demonstrate that PD-1 blockade following ATI can significantly improve the function of anti-viral CD8 T cells and enhance viral control and strongly suggests its potential synergy with other immunotherapies that induce functional CD8 T-cell response under ART. These results have important implications for HIV cure research.
Collapse
Affiliation(s)
- Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Kehmia Titanji
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Hasan Ahmed
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Ravi Dyavar Shetty
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Lakshmi S. Chennareddi
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Rafi Ahmed
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Rama Rao Amara
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
41
|
Abana CZY, Lamptey H, Bonney EY, Kyei GB. HIV cure strategies: which ones are appropriate for Africa? Cell Mol Life Sci 2022; 79:400. [PMID: 35794316 PMCID: PMC9259540 DOI: 10.1007/s00018-022-04421-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Although combination antiretroviral therapy (ART) has reduced mortality and improved lifespan for people living with HIV, it does not provide a cure. Patients must be on ART for the rest of their lives and contend with side effects, unsustainable costs, and the development of drug resistance. A cure for HIV is, therefore, warranted to avoid the limitations of the current therapy and restore full health. However, this cure is difficult to find due to the persistence of latently infected HIV cellular reservoirs during suppressive ART. Approaches to HIV cure being investigated include boosting the host immune system, genetic approaches to disable co-receptors and the viral genome, purging cells harboring latent HIV with latency-reversing latency agents (LRAs) (shock and kill), intensifying ART as a cure, preventing replication of latent proviruses (block and lock) and boosting T cell turnover to reduce HIV-1 reservoirs (rinse and replace). Since most people living with HIV are in Africa, methods being developed for a cure must be amenable to clinical trials and deployment on the continent. This review discusses the current approaches to HIV cure and comments on their appropriateness for Africa.
Collapse
Affiliation(s)
- Christopher Zaab-Yen Abana
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Helena Lamptey
- Department of Immunology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Y Bonney
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - George B Kyei
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- Departments of Medicine and Molecular Microbiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, USA.
- Medical and Scientific Research Center, University of Ghana Medical Centre, Accra, Ghana.
| |
Collapse
|
42
|
Active PD-L1 incorporation within HIV virions functionally impairs T follicular helper cells. PLoS Pathog 2022; 18:e1010673. [PMID: 35788752 PMCID: PMC9286290 DOI: 10.1371/journal.ppat.1010673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/15/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
The limited development of broadly neutralizing antibodies (BnAbs) during HIV infection is classically attributed to an inadequate B-cell help brought by functionally impaired T follicular helper (Tfh) cells. However, the determinants of Tfh-cell functional impairment and the signals contributing to this condition remain elusive. In the present study, we showed that PD-L1 is incorporated within HIV virions through an active mechanism involving p17 HIV matrix protein. We subsequently showed that in vitro produced PD-L1high but not PD-L1low HIV virions, significantly reduced Tfh-cell proliferation and IL-21 production, ultimately leading to a decreased of IgG1 secretion from GC B cells. Interestingly, Tfh-cell functions were fully restored in presence of anti-PD-L1/2 blocking mAbs treatment, demonstrating that the incorporated PD-L1 proteins were functionally active. Taken together, the present study unveils an immunovirological mechanism by which HIV specifically exploits the regulatory potential of PD-L1 to suppress the immune system during the course of HIV infection. During HIV infection, the development of effective BnAbs remains a rare phenomenon, occurring in only 15–20% of HIV-infected individuals after years of infection. Although multiple mechanisms may be involved, recent studies have suggested that functional impairment of Tfh cells, through immune checkpoint (IC)/IC-Ligand (IC-L) interactions, may lead to a decrease in B-cell help leading to low BnAbs production. Our laboratory recently showed that PD-L1 was predominantly expressed on lymph node (LN) migratory dendritic cells located predominantly in extra-follicular areas, implying that the source of IC-L contributing to Tfh-cell functional impairment may be independent of cellular expression of IC-L. These observations prompted us to investigate the potential contribution of IC-L incorporated within HIV virion envelope to Tfh-cell functional impairment. We subsequently demonstrated that PD-L1 was incorporated into a large fraction of HIV virions in the plasma of viremic HIV-infected individuals. Interestingly, PD-L1 remains active when incorporated into HIV virions envelope and could impaired Tfh-cell proliferation, resulting in decreased IgG1 production by B cells in vitro. These findings demonstrate an unsuspected mechanism contributing to the regulation of Tfh-cell function, which may contribute to the low production of BnAbs by B cells during HIV infection.
Collapse
|
43
|
Iyer VS, Boddul SV, Johnsson AK, Raposo B, Sharma RK, Shen Y, Kasza Z, Lim KW, Chemin K, Nilsson G, Malmström V, Phan AT, Wermeling F. Modulating T-cell activation with antisense oligonucleotides targeting lymphocyte cytosolic protein 2. J Autoimmun 2022; 131:102857. [PMID: 35780036 DOI: 10.1016/j.jaut.2022.102857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Dysregulated T-cell activation is a hallmark of several autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS). The lymphocyte cytosolic protein 2 (LCP2), also known as SLP-76, is essential for the development and activation of T cells. Despite the critical role of LCP2 in T-cell activation and the need for developing drugs that modify T-cell activation, no LCP2 inhibitors have been developed. This can be explained by the "undruggable" nature of LCP2, lacking a structure permissive to standard small molecule inhibitor modalities. Here, we explored an alternative drug modality, developing antisense oligonucleotides (ASOs) targeting LCP2 mRNAs, and evaluated its activity in modulating T-cell activation. We identified a set of 3' UTR targeting LCP2 ASOs, which knocked down LCP2 in a human T-cell line and primary human T cells and found that these suppressed T-cell receptor mediated activation. We also found that the ASOs suppressed FcεR1-mediated mast cell activation, in line with the role of LCP2 in mast cells. Taken together, our data provide examples of how immunomodulatory ASOs that interfere with undruggable targets can be developed and propose that such drug modalities can be used to treat autoimmune diseases.
Collapse
Affiliation(s)
- Vaishnavi Srinivasan Iyer
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Sanjaykumar V Boddul
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anna-Karin Johnsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Bruno Raposo
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ravi K Sharma
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Yunbing Shen
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Zsolt Kasza
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Karine Chemin
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| | - Fredrik Wermeling
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
44
|
Kleinman AJ, Sivanandham S, Sette P, Sivanandham R, Policicchio BB, Xu C, Penn E, Brocca-Cofano E, Le Hingrat Q, Ma D, Pandrea I, Apetrei C. Changes to the Simian Immunodeficiency Virus (SIV) Reservoir and Enhanced SIV-Specific Responses in a Rhesus Macaque Model of Functional Cure after Serial Rounds of Romidepsin Administrations. J Virol 2022; 96:e0044522. [PMID: 35638831 PMCID: PMC9215247 DOI: 10.1128/jvi.00445-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
HIV persistence requires lifelong antiretroviral therapy (ART), calling for a cure. The histone deacetylase inhibitor, romidepsin, is used in the "shock and kill" approach with the goal of reactivating virus and subsequently clearing infected cells through cell-mediated immune responses. We tested serial and double infusions of romidepsin in a rhesus macaque (RM) model of SIV functional cure, which controls virus without ART. Off ART, romidepsin reactivated SIV in all RMs. Subsequent infusions resulted in diminished reactivation, and two RMs did not reactivate the virus after the second or third infusions. Therefore, those two RMs received CD8-depleting antibody to assess the replication competence of the residual reservoir. The remaining RMs received double infusions, i.e., two doses separated by 48-h. Double infusions were well tolerated, induced immune activation, and effectively reactivated SIV. Although reactivation was gradually diminished, cell-associated viral DNA was minimally changed, and viral outgrowth occurred in 4/5 RMs. In the RM which did not reactivate after CD8 depletion, viral outgrowth was not detected in peripheral blood mononuclear cells (PBMC)-derived CD4+ cells. The frequency of SIV-specific CD8+ T cells increased after romidepsin administration, and the increased SIV-specific immune responses were associated, although not statistically, with the diminished reactivation. Thus, our data showing sequential decreases in viral reactivation with repeated romidepsin administrations with all RMs and absence of viral reactivation after CD8+ T-cell depletion in one animal suggest that, in the context of healthy immune responses, romidepsin affected the inducible viral reservoir and gradually increased immune-mediated viral control. Given the disparities between the results of romidepsin administration to ART-suppressed SIVmac239-infected RMs and HIV-infected normal progressors compared to our immune-healthy model, our data suggest that improving immune function for greater SIV-specific responses should be the starting point of HIV cure strategies. IMPORTANCE HIV cure is sought after due to the prevalence of comorbidities that occur in persons with HIV. One of the most investigated HIV cure strategies is the "shock and kill" approach. Our study investigated the use of romidepsin, a histone deacetylase (HDAC) inhibitor, in our rhesus macaque model of functional cure, which allows for better resolution of viral reactivation due to the lack of antiretroviral therapy. We found that repeated rounds of romidepsin resulted in gradually diminished viral reactivation. One animal inevitably lacked replication-competent virus in the blood. With the accompanying enhancement of the SIV-specific immune response, our data suggest that there is a reduction of the viral reservoir in one animal by the cell-mediated immune response. With the differences observed between our model and persons living with HIV (PWH) treated with romidepsin, specifically in the context of a healthy immune system in our model, our data thereby indicate the importance of restoring the immune system for cure strategies.
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sindhuja Sivanandham
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paola Sette
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ranjit Sivanandham
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin B. Policicchio
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ellen Penn
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Egidio Brocca-Cofano
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Quentin Le Hingrat
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dongzhu Ma
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
45
|
Pathania AS, Prathipati P, Olwenyi OA, Chava S, Smith OV, Gupta SC, Chaturvedi NK, Byrareddy SN, Coulter DW, Challagundla KB. miR-15a and miR-15b modulate natural killer and CD8 +T-cell activation and anti-tumor immune response by targeting PD-L1 in neuroblastoma. Mol Ther Oncolytics 2022; 25:308-329. [PMID: 35663229 PMCID: PMC9133764 DOI: 10.1016/j.omto.2022.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/27/2022] [Indexed: 11/12/2022] Open
Abstract
Neuroblastoma (NB) is an enigmatic and deadliest pediatric cancer to treat. The major obstacles to the effective immunotherapy treatments in NB are defective immune cells and the immune evasion tactics deployed by the tumor cells and the stromal microenvironment. Nervous system development during embryonic and pediatric stages is critically mediated by non-coding RNAs such as micro RNAs (miR). Hence, we explored the role of miRs in anti-tumor immune response via a range of data-driven workflows and in vitro & in vivo experiments. Using the TARGET, NB patient dataset (n=249), we applied the robust bioinformatic workflows incorporating differential expression, co-expression, survival, heatmaps, and box plots. We initially demonstrated the role of miR-15a-5p (miR-15a) and miR-15b-5p (miR-15b) as tumor suppressors, followed by their negative association with stromal cell percentages and a statistically significant negative regulation of T and natural killer (NK) cell signature genes, especially CD274 (PD-L1) in stromal-low patient subsets. The NB phase-specific expression of the miR-15a/miR-15b-PD-L1 axis was further corroborated using the PDX (n=24) dataset. We demonstrated miR-15a/miR-15b mediated degradation of PD-L1 mRNA through its interaction with the 3'-untranslated region and the RNA-induced silencing complex using sequence-specific luciferase activity and Ago2 RNA immunoprecipitation assays. In addition, we established miR-15a/miR-15b induced CD8+T and NK cell activation and cytotoxicity against NB in vitro. Moreover, injection of murine cells expressing miR-15a reduced tumor size, tumor vasculature and enhanced the activation and infiltration of CD8+T and NK cells into the tumors in vivo. We further established that blocking the surface PD-L1 using an anti-PD-L1 antibody rescued miR-15a/miR-15b induced CD8+T and NK cell-mediated anti-tumor responses. These findings demonstrate that miR-15a and miR-15b induce an anti-tumor immune response by targeting PD-L1 in NB.
Collapse
Affiliation(s)
- Anup S. Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Omalla A. Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Srinivas Chava
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Oghenetejiri V. Smith
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subash C. Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siddappa N. Byrareddy
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishore B. Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
46
|
Mohsenzadegan M, Nowroozi MR, Fotovvat A, Bavandpour Baghshahi P, Bokaie S, Inanloo SH, Sharifi L. The prospect of targeting T cell immunoglobulin and mucin-domain containing-3 in renal cell carcinoma immunotherapy. Scand J Immunol 2022; 96:e13197. [PMID: 35700044 DOI: 10.1111/sji.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 11/28/2022]
Abstract
Despite the advances in the diagnosis and treatment of renal cell carcinoma (RCC), it remains one of the most deadly urological cancers. At present, using immune checkpoint inhibition and their combination with antiangiogenic therapy is the standard of care in patients with advanced RCC. Unfortunately, a considerable part of tumour-bearing hosts does not benefit from this type of treatment. However, our knowledge about the detailed role of mucin-domain containing-3 (TIM-3) in the RCC cells is little, and further studies are required in this field, but its significant expression in the RCC microenvironment makes this receptor a promising target for designing new monoclonal antibodies alone or in combination with other checkpoint inhibitors for RCC immunotherapy.
Collapse
Affiliation(s)
- Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | | | - Amirreza Fotovvat
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saied Bokaie
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Hassan Inanloo
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Laleh Sharifi
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Long Y, Yu X, Chen R, Tong Y, Gong L. Noncanonical PD-1/PD-L1 Axis in Relation to the Efficacy of Anti-PD Therapy. Front Immunol 2022; 13:910704. [PMID: 35663968 PMCID: PMC9157498 DOI: 10.3389/fimmu.2022.910704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022] Open
Abstract
With programmed death 1/ligand 1 (PD-1/PD-L1) as the cornerstone, anti-PD antibodies have pioneered revolutionary immunotherapies for malignancies. But most patients struggled to respond to anti-PD owing to primary or acquired resistance or even hyperprogression, pointing to more efforts needed to explore this axis. PD-1 constrains T-cell immunoreactivity via engaging with PD-L1 of tumor/myeloid cells is the canonical PD-1/PD-L1 axis function mode. Studies are increasingly aware of the impact of noncanonical PD-1/PD-L1 expression in various cancers. PD-L1 induced on activated T-cells ligates to PD-1 to mediate self-tolerance or acts on intratumoral myeloid cells and other T-cells, affecting their survival, differentiation and immunophenotyping, leading to tumor immunosuppression. Myeloid PD-1 interferes with their proliferation, differentiation, cytokine secretion and phagocytosis, mediating remarkable pro-tumor effects. Tumor cell intrinsic PD-1 signaling has diverse functions in different tumors, resulting in pro-proliferation or proliferation inhibition. These nonclassical PD-1/PD-L1 functions may be novel anti-PD mechanisms or causes of treatment resistance. This review highlights the nonnegligible role of T-cell-intrinsic PD-L1 and tumor/myeloid PD-1 in the cell interplay network and the complex impact on the efficacy of anti-PD antibodies. Reconsidering and rational utilization of the comprehensive PD-1/PD-L1 axis could cumulate breakthroughs in precision treatment and combination for anti-PD therapies.
Collapse
Affiliation(s)
- Yiru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolu Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Runqiu Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yongliang Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
48
|
Kumar Singh A, Padwal V, Palav H, Velhal S, Nagar V, Patil P, Patel V. Highly dampened HIV-specific cytolytic effector T cell responses define viremic non-progression. Immunobiology 2022; 227:152234. [PMID: 35671626 DOI: 10.1016/j.imbio.2022.152234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022]
Abstract
This study reports on HIV-specific T cell responses in HIV-1 infected Viremic Non-Progressors (VNPs), a rare group of people living with HIV that exhibit asymptomatic infection over several years accompanied by stable CD4+ T cell counts in spite of ongoing viral replication. We attempted to identify key virus-specific functional attributes that could underlie the apparently paradoxical virus-host equilibrium observed in VNPs. Our results revealed modulation of HIV-specific CD4+ and CD8+ effector T cell responses in VNPs towards a dominant non-cytolytic profile with concomitantly diminished degranulation (CD107a+) ability. Further, the HIV specific CD8+ effector T cell response was primarily enriched for MIP-1β producing cells. As expected, concordant with better viral suppression, VCs exhibit a robust cytolytic T cell response. Interestingly, PuPs shared features common to both these responses but did not exhibit a CD4+ central memory IFN-γ producing Gag-specific response that was shared by both non-progressor (VC and VNP) groups, suggesting CD4 helper response is critical for non-progression. Our study also revealed that cytolytic response in VNPs is primarily limited to polyfunctional cells while both monofunctional and polyfunctional cells significantly contribute to cytolytic responses in VCs. To further understand mechanisms underlying the unique HIV-specific effector T cell response described here in VNPs we also evaluated and demonstrated a possible role for altered gut homing in these individuals. Our findings inform immunotherapeutic interventions to achieve functional cures in the context of ART resistance and serious non AIDS events.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Varsha Padwal
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Harsha Palav
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Shilpa Velhal
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Vidya Nagar
- Department of Medicine, Grant Medical College & Sir J. J. Group of Hospitals, Mumbai, Maharashtra, India
| | - Priya Patil
- Department of Medicine, Grant Medical College & Sir J. J. Group of Hospitals, Mumbai, Maharashtra, India
| | - Vainav Patel
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India.
| |
Collapse
|
49
|
Takata H, Trautmann L. Transforming dysfunctional CD8+ T cells into natural controller-like CD8+ T cells: can TCF-1 be the magic wand? J Clin Invest 2022; 132:e160474. [PMID: 35642630 PMCID: PMC9151690 DOI: 10.1172/jci160474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
HIV infection results in defective CD8+ T cell functions that are incompletely resolved by antiretroviral therapy (ART) except in natural controllers, who have functional CD8+ T cells associated with viral control. In this issue of the JCI, Perdomo-Celis et al. demonstrated that targeting the Wnt/transcription factor T cell factor 1 (Wnt/TCF-1) pathway in dysfunctional CD8+ T cells led to gains in stemness phenotype, metabolic quiescence, survival potential, response to homeostatic γ-chain cytokines, and antiviral capacities, similar to profiles of functional CD8+ T cells in natural controllers. Although reprogramming might not sufficiently reverse the imprinted dysfunction of CD8+ T cells in HIV infection, these findings outline the Wnt/TCF-1 pathway as a potential target to reprogram dysfunctional CD8+ T cells in efforts to achieve HIV remission.
Collapse
|
50
|
York J, Gowrishankar K, Micklethwaite K, Palmer S, Cunningham AL, Nasr N. Evolving Strategies to Eliminate the CD4 T Cells HIV Viral Reservoir via CAR T Cell Immunotherapy. Front Immunol 2022; 13:873701. [PMID: 35572509 PMCID: PMC9098815 DOI: 10.3389/fimmu.2022.873701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Although the advent of ART has significantly reduced the morbidity and mortality associated with HIV infection, the stable pool of HIV in latently infected cells requires lifelong treatment adherence, with the cessation of ART resulting in rapid reactivation of the virus and productive HIV infection. Therefore, these few cells containing replication-competent HIV, known as the latent HIV reservoir, act as the main barrier to immune clearance and HIV cure. While several strategies involving HIV silencing or its reactivation in latently infected cells for elimination by immune responses have been explored, exciting cell based immune therapies involving genetically engineered T cells expressing synthetic chimeric receptors (CAR T cells) are highly appealing and promising. CAR T cells, in contrast to endogenous cytotoxic T cells, can function independently of MHC to target HIV-infected cells, are efficacious and have demonstrated acceptable safety profiles and long-term persistence in peripheral blood. In this review, we present a comprehensive picture of the current efforts to target the HIV latent reservoir, with a focus on CAR T cell therapies. We highlight the current challenges and advances in this field, while discussing the importance of novel CAR designs in the efforts to find a HIV cure.
Collapse
Affiliation(s)
- Jarrod York
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Kavitha Gowrishankar
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Children’s Cancer Research Unit, Kids Research, The Children’s Hospital at Westmead, Sydney Children’s Hospitals Network, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Kenneth Micklethwaite
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- NSW Health Pathology Blood Transplant and Cell Therapies Laboratory – Institute of Clinical Pathology and Medical Research (ICPMR) Westmead, Sydney, NSW, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|