1
|
Belyaev AV, Fedotova IV. Molecular mechanisms of catch bonds and their implications for platelet hemostasis. Biophys Rev 2023; 15:1233-1256. [PMID: 37974999 PMCID: PMC10643804 DOI: 10.1007/s12551-023-01144-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 11/19/2023] Open
Abstract
Adhesive molecular bonds between blood cells are essential for thrombosis and hemostasis as they provide means for platelet adhesion, aggregation, and signaling in flowing blood. According to the nowadays conventional definition, a "catch" bond is a type of non-covalent bio-molecular bridge, whose dissociation lifetime counter-intuitively increases with applied tensile force. Following recent experimental findings, such receptor-ligand protein bonds are vital to the blood cells involved in the prevention of bleeding (hemostatic response) and infection (immunity). In this review, we examine the up-to-date experimental discoveries and theoretical insights about catch bonds between the blood cells, their biomechanical principles at the molecular level, and their role in platelet thrombosis and hemostasis.
Collapse
Affiliation(s)
- Aleksey V. Belyaev
- Faculty of Physics, M.V.Lomonosov Moscow State University, 1, Leninskiye Gory, build.2, Moscow, 119991 Russia
| | - Irina V. Fedotova
- Faculty of Physics, M.V.Lomonosov Moscow State University, 1, Leninskiye Gory, build.2, Moscow, 119991 Russia
| |
Collapse
|
2
|
Chen JL, Cheng TT, Huang CC, Chang HH, Lam CF. Dual phenotypic characteristics of P-selectin in a mouse model of hemorrhagic shock and hepatectomy. Heliyon 2023; 9:e18627. [PMID: 37554775 PMCID: PMC10404689 DOI: 10.1016/j.heliyon.2023.e18627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Membrane-bound P-selectin induces endothelial adhesion of leucocytes and amplifies organ inflammations during major trauma, while soluble P-selectin (sP-sel) mediates survival rescue properties. This study characterized the differential effects of P-selectin in a "2-hit" model of hemorrhagic shock (HS) and partial hepatectomy (PH). MATERIALS AND METHODS HS was induced by withdrawing blood (0.3 mL) directly from the mouse femoral arteries. 70% or 50% of liver volumes were resected after inducing HS. Time of survival in P-selectin deficient (Selp -/-) mice treated with and without intraperitoneal injections of recombinant P-sel IgG-Fc fusion proteins (rP-sel-Fc, 1.5 mg/kg) were recorded for up to 72h after injury. In addition, liver regeneration at 72h after HS and 50% PH was assessed in wild-type and Selp -/- mice. RESULTS Compared to wild-types, Selp -/- mice had significantly higher mortality rates post HS and 70% PH, as none of these animals survived up to 48h postoperatively. The survival curve was restored in Selp -/- mice pre-treated with rP-sel-Fc. In the HS followed by 50% PH experimental arm, liver remnant growth ratios were significantly higher in Selp -/- mice (15.7 ± 3.1 vs 11.7 ± 4.9, P = 0.040). The elevated serum concentrations of alanine aminotransferase post-PH were significantly reduced in Selp -/- mice. Hepatocyte proliferation indices (CYP7a1 and PCNA) expression were enhanced and myeloperoxidase activity in the regenerated remnant liver was reduced in the Selp -/- mice. CONCLUSION In critical conditions induced by HS and PH, P-selectin mediates two distinct phenotypic characteristics. Soluble-form circulating P-selectin improves survival in the acute stage of HS and extensive loss of liver parenchyma; membrane-bound P-selectin induces regional pro-inflammatory reactions in the remnant liver after the acute stage of two insults, thereby inhibiting hepatic regeneration. The results of this pre-clinical study may provide molecular mechanistic insight and clinical therapeutic applications of P-selectin in the acute and regenerative phases of traumatic hepatic injury.
Collapse
Affiliation(s)
- Jen-Lung Chen
- Division of General Surgery, Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, 824, Taiwan
| | - Tzu-Ting Cheng
- Department of Anesthesiology, E-Da Hospital, I-Shou University, Kaohsiung, 824, Taiwan
| | - Chien-Chi Huang
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, 824, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, 907, Taiwan
| | - Chen-Fuh Lam
- Department of Anesthesiology, E-Da Hospital, I-Shou University, Kaohsiung, 824, Taiwan
- Department of Anesthesiology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, 622, Taiwan
| |
Collapse
|
3
|
Mylvaganam S, Riedl M, Vega A, Collins RF, Jaqaman K, Grinstein S, Freeman SA. Stabilization of Endothelial Receptor Arrays by a Polarized Spectrin Cytoskeleton Facilitates Rolling and Adhesion of Leukocytes. Cell Rep 2021; 31:107798. [PMID: 32579925 PMCID: PMC7548125 DOI: 10.1016/j.celrep.2020.107798] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/15/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Multivalent complexes of endothelial adhesion receptors (e.g., selectins) engage leukocytes to orchestrate their migration to inflamed tissues. Proper anchorage and sufficient density (clustering) of endothelial receptors are required for efficient leukocyte capture and rolling. We demonstrate that a polarized spectrin network dictates the stability of the endothelial cytoskeleton, which is attached to the apical membrane, at least in part, by the abundant transmembrane protein CD44. Single-particle tracking revealed that CD44 undergoes prolonged periods of immobilization as it tethers to the cytoskeleton. The CD44-spectrin "picket fence" alters the behavior of bystander molecules-notably, selectins-curtailing their mobility, inducing their apical accumulation, and favoring their clustering within caveolae. Accordingly, depletion of either spectrin or CD44 virtually eliminated leukocyte rolling and adhesion to the endothelium. Our results indicate that a unique spectrin-based apical cytoskeleton tethered to transmembrane pickets-notably, CD44-is essential for proper extravasation of leukocytes in response to inflammation.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Magdalena Riedl
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada
| | - Anthony Vega
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Richard F Collins
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
4
|
Jungraithmayr W. Novel Strategies for Endothelial Preservation in Lung Transplant Ischemia-Reperfusion Injury. Front Physiol 2020; 11:581420. [PMID: 33391010 PMCID: PMC7775419 DOI: 10.3389/fphys.2020.581420] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Lung ischemia reperfusion (IR) injury inevitably occurs during lung transplantation. The pulmonary endothelium is the primary target of IR injury that potentially results in severe pulmonary dysfunction. Over the last decades, various molecules, receptors, and signaling pathways were identified in order to develop treatment strategies for the preservation of the pulmonary endothelium against IR injury. We here review the latest and most promising therapeutic strategies for the protection of the endothelium against IR injury. These include the stabilization of the endothelial glycocalyx, inhibition of endothelial autophagy, inhibition of adhesion molecules, targeting of angiotensin-converting enzyme, and traditional viral and novel non-viral gene transfer approaches. Though some of these strategies proved to be promising in experimental studies, very few of these treatment concepts made the transfer into clinical application. This dilemma underscores the need for more experimental evidence for the translation into clinical studies to invent therapeutic concepts against IR injury-mediated endothelial damage.
Collapse
Affiliation(s)
- Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Freiburg, Freiburg, Germany.,Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland.,Department of Thoracic Surgery, University Hospital Rostock, Rostock, Germany
| |
Collapse
|
5
|
Hypothermic Oxygenated Machine Perfusion Alleviates Donation After Circulatory Death Liver Injury Through Regulating P-selectin-dependent and -independent Pathways in Mice. Transplantation 2019; 103:918-928. [PMID: 31033856 DOI: 10.1097/tp.0000000000002621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypothermic oxygenated machine perfusion (HOPE) has been shown to improve the quality of liver donation after circulatory death (DCD) compared to cold storage (CS). However, the mechanism by which HOPE works is unclear. In this study, a mouse liver HOPE system was developed to characterize the role of P-selectin in the protective effect of HOPE on DCD livers. METHODS A warm ischemia model of the liver and an isolated perfused liver system were established to determine a suitable flow rate for HOPE. Perfusate and tissue samples from wild-type and P-selectin knockout (KO) mice were used to determine liver function, apoptosis and necrosis rates, deoxyribonucleic acid injury and oxidative stress levels, leukocyte and endothelial cell activation, and inflammatory reactions. RESULTS A mouse liver HOPE system was successfully established. HOPE at flow rates between 0.1 and 0.5 mL/min · g were shown to have a protective effect on the DCD liver. P-selectin KO improved the quality of the DCD liver in the CS group, and reduction of P-selectin expression in the wild-type HOPE group had similar protective effects. Moreover, there was a reduction in the degree of oxidative stress and deoxyribonucleic acid injury in the P-selectin KO HOPE group compared with the P-selectin KO CS group. CONCLUSIONS We established a mouse HOPE system and determined its suitable flow. We also proved that P-selectin deficiency alleviated DCD liver injury. HOPE protected the DCD liver through regulating P-selectin-dependent and -independent pathways.
Collapse
|
6
|
van der Ven AT, Pape JC, Hermann D, Schloesser R, Genius J, Fischer N, Mößner R, Scherbaum N, Wiltfang J, Rujescu D, Benninghoff J. Methylene Blue (Tetramethylthionine Chloride) Influences the Mobility of Adult Neural Stem Cells: A Potentially Novel Therapeutic Mechanism of a Therapeutic Approach in the Treatment of Alzheimer's Disease. J Alzheimers Dis 2018; 57:531-540. [PMID: 28269766 DOI: 10.3233/jad-160755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An interest in neurogenesis in the adult human brain as a relevant and targetable process has emerged as a potential treatment option for Alzheimer's disease and other neurodegenerative conditions. The aim of this study was to investigate the effects of tetramethylthionine chloride (methylene blue, MB) on properties of adult murine neural stem cells. Based on recent clinical studies, MB has increasingly been discussed as a potential treatment for Alzheimer's disease. While no differences in the proliferative capacity were identified, a general potential of MB in modulating the migratory capacity of adult neural stem cells was indicated in a cell mobility assay. To our knowledge, this is the first time that MB could be associated with neural mobility. The results of this study add insight to the spectrum of features of MB within the central nervous system and may be helpful for understanding the molecular mechanisms underlying a potential therapeutic effect of MB.
Collapse
Affiliation(s)
- Amelie T van der Ven
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany.,Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, MA, USA
| | | | - Dirk Hermann
- Department of Neurology, Chair of Vascular Neurology and Dementia, University Hospital of Essen, Germany
| | | | - Just Genius
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany
| | - Nadine Fischer
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany
| | - Rainald Mößner
- Department of Psychiatry, University of Tübingen, Germany
| | - Norbert Scherbaum
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany
| | - Jens Wiltfang
- Department of Psychiatry, University of Göttingen, Germany
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, University of Halle (Saale), Germany
| | - Jens Benninghoff
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany
| |
Collapse
|
7
|
Abstract
The microvasculature plays a central role in the pathophysiology of hemorrhagic shock and is also involved in arguably all therapeutic attempts to reverse or minimize the adverse consequences of shock. Microvascular studies specific to hemorrhagic shock were reviewed and broadly grouped depending on whether data were obtained on animal or human subjects. Dedicated sections were assigned to microcirculatory changes in specific organs, and major categories of pathophysiological alterations and mechanisms such as oxygen distribution, ischemia, inflammation, glycocalyx changes, vasomotion, endothelial dysfunction, and coagulopathy as well as biomarkers and some therapeutic strategies. Innovative experimental methods were also reviewed for quantitative microcirculatory assessment as it pertains to changes during hemorrhagic shock. The text and figures include representative quantitative microvascular data obtained in various organs and tissues such as skin, muscle, lung, liver, brain, heart, kidney, pancreas, intestines, and mesentery from various species including mice, rats, hamsters, sheep, swine, bats, and humans. Based on reviewed findings, a new integrative conceptual model is presented that includes about 100 systemic and local factors linked to microvessels in hemorrhagic shock. The combination of systemic measures with the understanding of these processes at the microvascular level is fundamental to further develop targeted and personalized interventions that will reduce tissue injury, organ dysfunction, and ultimately mortality due to hemorrhagic shock. Published 2018. Compr Physiol 8:61-101, 2018.
Collapse
Affiliation(s)
- Ivo Torres Filho
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| |
Collapse
|
8
|
Ma C, Qu J, Li X, Zhao X, Li L, Xiao C, Edmunds G, Gashash E, Song J, Wang PG. Improvement of core-fucosylated glycoproteome coverage via alternating HCD and ETD fragmentation. J Proteomics 2016; 146:90-8. [PMID: 27282921 DOI: 10.1016/j.jprot.2016.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 01/03/2023]
Abstract
UNLABELLED Core-fucosylation (CF) plays important roles in regulating biological processes in eukaryotes. Alterations of CF-glycosites or CF-glycans in bodily fluids correlate with cancer development. Therefore, global research of protein core-fucosylation with an emphasis on proteomics can explain pathogenic and metastasis mechanisms and aid in the discovery of new potential biomarkers for early clinical diagnosis. In this study, a precise and high throughput method was established to identify CF-glycosites from human plasma. We found that alternating HCD and ETD fragmentation (AHEF) can provide a complementary method to discover CF-glycosites. A total of 407 CF-glycosites among 267 CF-glycoproteins were identified in a mixed sample made from six normal human plasma samples. Among the 407 CF-glycosites, 10 are without the N-X-S/T/C consensus motif, representing 2.5% of the total number identified. All identified CF-glycopeptide results from HCD and ETD fragmentation were filtered with neutral loss peaks and characteristic ions of GlcNAc from HCD spectra, which assured the credibility of the results. This study provides an effective method for CF-glycosites identification and a valuable biomarker reference for clinical research. BIOLOGICAL SIGNIFICANCE CF-glycosytion plays an important role in regulating biological processes in eukaryotes. Alterations of the glycosites and attached CF-glycans are frequently observed in various types of cancers. Thus, it is crucial to develop a strategy for mapping human CF-glycosylation. Here, we developed a complementary method via alternating HCD and ETD fragmentation (AHEF) to analyze CF-glycoproteins. This strategy reveals an excellent complementarity of HCD and ETD in the analysis of CF-glycoproteins, and provides a valuable biomarker reference for clinical research.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States.
| | - Jingyao Qu
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Xu Li
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Xinyuan Zhao
- National Institute of Biological Sciences, Beijing 102206, People's Republic of China
| | - Lei Li
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Cong Xiao
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Garrett Edmunds
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Ebtesam Gashash
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Jing Song
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Peng George Wang
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
9
|
Carbon monoxide protects against hemorrhagic shock and resuscitation-induced microcirculatory injury and tissue injury. Shock 2015; 43:166-71. [PMID: 25243427 DOI: 10.1097/shk.0000000000000264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UNLABELLED Traumatic injury is a significant cause of morbidity and mortality worldwide. Microcirculatory activation and injury from hemorrhage contribute to organ injury. Many adaptive responses occur within the microcirculatory beds to limit injury including upregulation of heme oxygenase (HO) enzymes, the rate-limiting enzymes in the breakdown of heme to carbon monoxide (CO), iron, and biliverdin. Here we tested the hypothesis that CO abrogates trauma-induced injury and inflammation protecting the microcirculatory beds. METHODS C57Bl/6 mice underwent sham operation or hemorrhagic shock to a mean arterial pressure of 25 mmHg for 120 minutes. Mice were resuscitated with lactated Ringer's at 2× the volume of maximal shed blood. Mice were randomized to receive CO-releasing molecule or inactive CO-releasing molecule at resuscitation. A cohort of mice was pretreated with tin protoporphyrin-IX to inhibit endogenous CO generation by HOs. Primary mouse liver sinusoidal endothelial cells were cultured for in vitro experiments. RESULTS Carbon monoxide-releasing molecule protected against hemorrhagic shock/resuscitation organ injury and systemic inflammation and reduced hepatic sinusoidal endothelial injury. Inhibition of HO activity with tin protoporphyrin-IX exacerbated liver hepatic sinusoidal injury. Hemorrhagic shock/resuscitation in vivo or cytokine stimulation in vitro resulted in increased endothelial expression of adhesion molecules that was associated with decreased leukocyte adhesion in vivo and in vitro. CONCLUSIONS Hemorrhagic shock/resuscitation is associated with endothelial injury. Heme oxygenase enzymes and CO are involved in part in diminishing this injury and may prove useful as a therapeutic adjunct that can be harnessed to protect against endothelial activation and damage.
Collapse
|
10
|
Low level of procoagulant platelet microparticles is associated with impaired coagulation and transfusion requirements in trauma patients. J Trauma Acute Care Surg 2014; 77:692-700. [PMID: 25494419 DOI: 10.1097/ta.0000000000000437] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Following activation, platelets release small vesicles called platelet-derived microparticles (PMPs). PMPs accelerate thrombin generation and thus clot formation at sites of injury by exposing the procoagulant membrane phospholipid phosphatidylserine (PS). The role of PMPs in coagulopathy and hemorrhage following trauma remains elusive. We hypothesized that low levels of PS-positive PMPs (PS + PMPs) would be associated with impaired clot formation. METHODS This is a prospective observational study of 210 trauma patients admitted directly to a Level 1 trauma center. Plasma levels of PS + PMPs were determined by flow cytometry. Coagulation status was assessed by rotational thrombelastometry, and impaired clot formation was defined by an α angle less than 63 degrees using the tissue factor-based EXTEM reagent. Transfusion requirement was assessed by number of units of red blood cells (RBCs) transfused within 24 hours of admission; platelet aggregation capacity was evaluated by the Multiplate assay; and injury severity was determined by the Injury Severity Score (ISS). RESULTS The median ISS was 17, and blood samples were obtained after a median of 65 minutes following injury. Significantly lower levels of PS + PMPs were found in patients with impaired clot formation (p < 0.001). A low level of PS + PMPs was associated with a higher number of RBCs transfused during the initial 24 hours after admission (p < 0.03) when corrected for risk factors, for example, platelet count, hemoglobin level, and ISS. Platelet aggregation and PS + PMPs did not correlate significantly. CONCLUSION Low levels of PMPs were associated with impaired clot formation in trauma patients at admission and also with the number of RBC transfusions. This suggests that PMPs may play an important and not previously investigated role in trauma-induced coagulopathy. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
|
11
|
Synergistic deleterious effect of hypoxemia and hypovolemia on microcirculation in intestinal villi*. Crit Care Med 2013; 41:e376-84. [PMID: 23963129 DOI: 10.1097/ccm.0b013e318292388d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the effect of hypoxemia, hemorrhagic shock, and the association of both of these on intestinal microcirculation (microcirculatory perfusion and leukocytes-endothelium interactions in postcapillary venules), as it can be encountered in hemorrhagic shock following trauma. DESIGN Prospective controlled experimental study. SETTING University research laboratory. SUBJECTS Forty-eight anesthetized and mechanically ventilated Balb/c mice. INTERVENTION Mice were randomly assigned to hypoxemia group in which we decreased inspired oxygen fraction during 60 minutes to reach a PaO2 of 40 mm Hg, hemorrhagic shock group in which animals were exsanguinated to a mean arterial pressure level of 40 mm Hg during 30 minutes, hypoxemia-hemorrhagic shock group in which PaO2 was decreased to 40 mm Hg during 60 minutes with exsanguination from the 30th to the 60th minute to a mean arterial pressure level of 40 mm Hg; or control group. MEASUREMENTS AND MAIN RESULTS Hypoxemia decreased RBCs velocity in intestinal villi but did not alter the fraction of perfused villi. Hypoxemia also triggered leukocytes adhesion to the venular endothelium. Hemorrhagic shock not only decreased RBCs velocity in villi but also slightly altered the fraction of perfused villi (94% ± 2% in hemorrhagic shock group vs 100% ± 0% in control group, p < 0.005). Furthermore, hemorrhagic shock triggered leukocytes adhesion to the venular endothelium to the same extent as hypoxemia. When hypoxemia was associated to hemorrhagic shock, it decreased villous RBCs velocity in an additive manner and the fraction of perfused villi dropped in a synergistic manner (69% ± 3% in hypoxemia-hemorrhagic shock group vs 94 ± 2 in hemorrhagic shock group, p < 0.005). The association of hypoxemia and hemorrhagic shock did not further amplify leukocytes adhesion to intestinal venules compared with either hypoxemia or hemorrhagic shock alone. CONCLUSIONS During hemorrhagic shock, the occurrence of hypoxemia considerably alters villous intestinal perfusion as it decreases the fraction of perfused villi in a synergistic manner, thereby increasing the risk of villous ischemia. The association of hypoxemia and hemorrhagic shock did not amplify leukocytes adhesion to the endothelium further than either hemorrhagic shock or hypoxemia alone did. As hypoxemia frequently occurs simultaneously with hemorrhagic shock in traumatic conditions, it can worsen gut ischemia leading to the exacerbation of multiple organ failure syndrome.
Collapse
|
12
|
Werner I, Guo F, Bogert NV, Stock UA, Meybohm P, Moritz A, Beiras-Fernandez A. Methylene blue modulates transendothelial migration of peripheral blood cells. PLoS One 2013; 8:e82214. [PMID: 24340007 PMCID: PMC3858277 DOI: 10.1371/journal.pone.0082214] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/22/2013] [Indexed: 12/27/2022] Open
Abstract
Vasoplegia is a severe complication after cardiac surgery. Within the last years the administration of nitric oxide synthase inhibitor methylene blue (MB) became a new therapeutic strategy. Our aim was to investigate the role of MB on transendothelial migration of circulating blood cells, the potential role of cyclic cGMP, eNOS and iNOS in this process, and the influence of MB on endothelial cell apoptosis. Human vascular endothelial cells (HuMEC-1) were treated for 30 minutes or 2 hours with different concentrations of MB. Inflammation was mimicked by LPS stimulation prior and after MB. Transmigration of PBMCs and T-Lymphocytes through the treated endothelial cells was investigated. The influence of MB upon the different subsets of PBMCs (Granulocytes, T- and B-Lymphocytes, and Monocytes) was assessed after transmigration by means of flow-cytometry. The effect of MB on cell apoptosis was evaluated using Annexin-V and Propidium Iodide stainings. Analyses of the expression of cyclic cGMP, eNOS and iNOS were performed by means of RT-PCR and Western Blot. Results were analyzed using unpaired Students T-test. Analysis of endothelial cell apoptosis by MB indicated a dose-dependent increase of apoptotic cells. We observed time- and dose-dependent effects of MB on transendothelial migration of PBMCs. The prophylactic administration of MB led to an increase of transendothelial migration of PBMCs but not Jurkat cells. Furthermore, HuMEC-1 secretion of cGMP correlated with iNOS expression after MB administration but not with eNOS expression. Expression of these molecules was reduced after MB administration at protein level. This study clearly reveals that endothelial response to MB is dose- and especially time-dependent. MB shows different effects on circulating blood cell-subtypes, and modifies the release patterns of eNOS, iNOS, and cGMP. The transendothelial migration is modulated after treatment with MB. Furthermore, MB provokes apoptosis of endothelial cells in a dose/time-dependent manner.
Collapse
Affiliation(s)
- Isabella Werner
- Department of Thoracic and Cardiovascular Surgery, Johann-Wolfgang-Goethe University Hospital, Frankfurt/Main, Germany
| | - Fengwei Guo
- Department of Thoracic and Cardiovascular Surgery, Johann-Wolfgang-Goethe University Hospital, Frankfurt/Main, Germany
| | - Nicolai V. Bogert
- Department of Thoracic and Cardiovascular Surgery, Johann-Wolfgang-Goethe University Hospital, Frankfurt/Main, Germany
| | - Ulrich A. Stock
- Department of Thoracic and Cardiovascular Surgery, Johann-Wolfgang-Goethe University Hospital, Frankfurt/Main, Germany
| | - Patrick Meybohm
- Clinic of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Johann-Wolfgang-Goethe University Hospital, Frankfurt/Main, Germany
| | - Anton Moritz
- Department of Thoracic and Cardiovascular Surgery, Johann-Wolfgang-Goethe University Hospital, Frankfurt/Main, Germany
| | - Andres Beiras-Fernandez
- Department of Thoracic and Cardiovascular Surgery, Johann-Wolfgang-Goethe University Hospital, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
13
|
Wang QM, Stalker TJ, Gong Y, Rikitake Y, Scalia R, Liao JK. Inhibition of Rho-kinase attenuates endothelial-leukocyte interaction during ischemia-reperfusion injury. Vasc Med 2012; 17:379-85. [PMID: 23015643 DOI: 10.1177/1358863x12459790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Resuscitation from hemorrhagic shock induces endothelial dysfunction and activates inflammatory cascades leading to organ damage. Following restoration of blood flow to ischemic vascular beds, leukocyte-endothelium interactions leading to leukocyte infiltration into the vascular wall occur very early due, in part, to the loss of endothelium-derived nitric oxide (NO). The mechanism by which ischemia-reperfusion injury impairs endothelium-derived NO is not completely understood. We hypothesized that inhibition of Rho-kinase could exert beneficial effects following hemorrhagic shock by preserving endothelial function and attenuating leukocyte trafficking in the microcirculation. Using intravital microscopy, we found that resuscitation from hemorrhage acutely increased the number of rolling and adherent leukocytes in the mouse splanchnic microcirculation. Treatment of mice with the Rho-kinase inhibitor fasudil, markedly attenuated leukocyte-endothelium interaction in response to hemorrhage/reinfusion. The beneficial effect of fasudil was not observed in endothelial nitric oxide synthase (eNOS)(-/-) mice. In conclusion, inhibition of Rho-kinase prevents inflammatory leukocyte trafficking in the microcirculation via an eNOS-dependent mechanism. Our data support a role for Rho-kinase inhibitors in the treatment of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qing Mei Wang
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
14
|
Ultrasound Molecular Imaging Contrast Agent Binding to Both E- and P-Selectin in Different Species. Invest Radiol 2012; 47:516-23. [DOI: 10.1097/rli.0b013e31825cc605] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Blake CM, Wang H, Laskowitz DT, Sullenger BA. A reversible aptamer improves outcome and safety in murine models of stroke and hemorrhage. Oligonucleotides 2011; 21:11-9. [PMID: 21142878 PMCID: PMC3043993 DOI: 10.1089/oli.2010.0262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 11/10/2010] [Indexed: 11/13/2022]
Abstract
Treatment of acute ischemic stroke with intravenous tissue-type plasminogen activator is underutilized partly due to the risk of life-threatening hemorrhage. In response to the clinical need for safer stroke therapy, we explored using an aptamer-based therapeutic strategy to promote cerebral reperfusion in a murine model of ischemic stroke. Aptamers are nucleic acid ligands that bind to their targets with high affinity and specificity, and can be rapidly reversed with an antidote. Here we show that a Factor IXa aptamer administered intravenously after 60 minutes of cerebral ischemia and reperfusion improved neurological function and was associated with reduced thrombin generation and decreased inflammation. Moreover, when the aptamer was administered in the setting of intracranial hemorrhage, treatment with its specific antidote reduced hematoma volume and improved survival. The ability to rapidly reverse a pharmacologic agent that improves neurological function after ischemic stroke should intracranial hemorrhage arise indicates that aptamer-antidote pairs may represent a novel, safer approach to treatment of stroke.
Collapse
Affiliation(s)
- Charlene M. Blake
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina
- Duke Translational Research Institute, Duke University Medical Center, Durham, North Carolina
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Haichen Wang
- Division of Neurology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Daniel T. Laskowitz
- Division of Neurology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Bruce A. Sullenger
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina
- Duke Translational Research Institute, Duke University Medical Center, Durham, North Carolina
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
16
|
Kowalewska PM, Patrick AL, Fox-Robichaud AE. Innate immunity of the liver microcirculation. Cell Tissue Res 2010; 343:85-96. [PMID: 21049273 DOI: 10.1007/s00441-010-1058-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/10/2010] [Indexed: 12/30/2022]
Abstract
The liver is a complex organ with a unique microcirculation and both synthetic and immune functions. Innate immune responses have been studied in response to single inflammatory mediators and several clinically relevant models of infection and injury. While standard histological techniques have been used in many models, the liver microcirculation is also amenable to in vivo examination using epifluorescent, confocal and transillumination intravital microscopy. These techniques have begun to clarify not only the molecular mechanisms but also the specific cell populations involved in the liver inflammation. In this review, we discuss the cells and mediators involved in hepatic innate immunity in simple and complex models of injury and infection, and present the view that the liver microcirculation utilizes non-classical pathways for leukocyte recruitment.
Collapse
|
17
|
Hayashi T, Ago K, Ago M, Yamanouchi H, Bunai Y, Ogata M. The infiltration of ‘primed’ neutrophils into multiple organs due to physical abuse to the elderly: An immunohistochemical study. Forensic Sci Int 2010; 202:17-25. [DOI: 10.1016/j.forsciint.2010.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 01/29/2010] [Accepted: 04/11/2010] [Indexed: 11/16/2022]
|
18
|
Läubli H, Borsig L. Selectins promote tumor metastasis. Semin Cancer Biol 2010; 20:169-77. [PMID: 20452433 DOI: 10.1016/j.semcancer.2010.04.005] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 04/29/2010] [Indexed: 11/17/2022]
Abstract
Cancer metastasis is facilitated by cell-cell interactions between cancer cells and endothelial cells in distant tissues. In addition, cancer cell interactions with platelets and leukocytes contribute to cancer cell adhesion, extravasation, and the establishment of metastatic lesions. Selectins are carbohydrate-binding molecules that bind to sialylated, fucosylated glycan structures, and are found on endothelial cells, platelets and leukocytes. There are three members of the selectin family: P-selectin expressed on activated platelets and endothelial cells, L-selectin present on leukocytes and E-selectin expressed on activated endothelial cells. Besides the accepted roles of selectins in physiological processes, such as inflammation, immune response and hemostasis, there is accumulating evidence for the potential of selectins to contribute to a number of pathophysiological processes, including cancer metastasis. Cancer cell interactions with selectins are possible due to a frequent presence of carbohydrate determinants--selectin ligands on the cell surface of tumor cells from various type of cancer. The degree of selectin ligand expression by cancer cells is well correlated with metastasis and poor prognosis for cancer patients. Initial adhesion events of cancer cells facilitated by selectins result in activation of integrins, release of chemokines and are possibly associated with the formation of permissive metastatic microenvironment. While E-selectin has been evaluated as one of the initiating adhesion events during metastasis, it is becoming apparent that P-selectin and L-selectin-mediated interactions significantly contribute to this process as well. In this review we discuss the current evidence for selectins as potential facilitators of metastasis.
Collapse
Affiliation(s)
- Heinz Läubli
- Institute of Physiology, University of Zürich, Zürich Center for Integrative Human Physiology, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
19
|
Carlow DA, Gossens K, Naus S, Veerman KM, Seo W, Ziltener HJ. PSGL-1 function in immunity and steady state homeostasis. Immunol Rev 2009; 230:75-96. [PMID: 19594630 DOI: 10.1111/j.1600-065x.2009.00797.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The substantial importance of P-selectin glycoprotein ligand 1 (PSGL-1) in leukocyte trafficking has continued to emerge beyond its initial identification as a selectin ligand. PSGL-1 seemed to be a relatively simple molecule with an extracellular mucin domain extended as a flexible rod, teleologically consistent with its primary role in tethering leukocytes to endothelial selectins. The rolling interaction between leukocyte and endothelium mediated by this selectin-PSGL-1 interaction requires branched O-glycan extensions on specific PSGL-1 amino acid residues. In some cells, such as neutrophils, the glycosyltransferases involved in formation of the O-glycans are constitutively expressed, while in other cells, such as T cells, they are expressed only after appropriate activation. Thus, PSGL-1 supports leukocyte recruitment in both innate and adaptive arms of the immune response. A complex array of amino acids within the selectins engage multiple sugar residues of the branched O-glycans on PSGL-1 and provide the molecular interactions responsible for the velcro-like catch bonds that support leukocyte rolling. Such binding of PSGL-1 can also induce signaling events that influence cell phenotype and function. Scrutiny of PSGL-1 has revealed a better understanding of how it performs as a selectin ligand and yielded unexpected insights that extend its scope from supporting leukocyte rolling in inflammatory settings to homeostasis including stem cell homing to the thymus and mature T-cell homing to secondary lymphoid organs. PSGL-1 has been found to bind homeostatic chemokines CCL19 and CCL21 and to support the chemotactic response to these chemokines. Surprisingly, the O-glycan modifications of PSGL-1 that support rolling mediated by selectins in inflammatory conditions interfere with PSGL-1 binding to homeostatic chemokines and thereby limit responsiveness to the chemotactic cues used in steady state T-cell traffic. The multi-level influence of PSGL-1 on cell traffic in both inflammatory and steady state settings is therefore substantially determined by the orchestrated addition of O-glycans. However, central as specific O-glycosylation is to PSGL-1 function, in vivo regulation of PSGL-1 glycosylation in T cells remains poorly understood. It is our purpose herein to review what is known, and not known, of PSGL-1 glycosylation and to update understanding of PSGL-1 functional scope.
Collapse
Affiliation(s)
- Douglas A Carlow
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Fucosyltransferase IV and VII-directed selectin ligand function determines long-term survival in experimental tuberculosis. Immunobiology 2009; 214:674-82. [DOI: 10.1016/j.imbio.2008.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 11/21/2022]
|
21
|
Tomita H, Iwata Y, Ogawa F, Komura K, Shimizu K, Yoshizaki A, Hara T, Muroi E, Yanaba K, Bae S, Takenaka M, Hasegawa M, Fujimoto M, Sato S. P-selectin glycoprotein ligand-1 contributes to wound healing predominantly as a p-selectin ligand and partly as an e-selectin ligand. J Invest Dermatol 2009; 129:2059-67. [PMID: 19177138 DOI: 10.1038/jid.2008.446] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell adhesion molecules are critical to wound healing through leukocyte recruitment. Although P-selectin glycoprotein ligand-1 (PSGL-1) regulates leukocyte rolling by binding P-selectin, but also binding E- and L-selectins with lower affinity, little is known about a role of PSGL-1 in wound healing. To clarify a role of PSGL-1 and its interaction with E- and P-selectins in wound healing, we investigated cutaneous wound healing in PSGL-1-deficient (PSGL-1(-/-)) mice in comparison with E-selectin(-/-), P-selectin(-/-), and P-selectin(-/-) mice treated with an anti-E-selectin antibody. PSGL-1 deficiency inhibited early wound healing, which was accompanied by decreased inflammatory cell infiltration and growth factor expression. By contrast, E-selectin deficiency did not affect wound healing. In general, the inhibitory effect of PSGL-1 deficiency on wound healing was similar to that of P-selectin deficiency either alone or with E-selectin blockade. However, early granulation tissue formation, late angiogenesis, and early infiltration of neutrophils and macrophages in PSGL-1(-/-) mice were inhibited beyond the inhibition in P-selectin(-/-) mice, but to a similar level of inhibition in P-selectin(-/-) mice with E-selectin blockade. These results suggest that PSGL-1 contributes to wound healing predominantly as a P-selectin ligand and partly as an E-selectin ligand by mediating infiltration of inflammatory cells.
Collapse
Affiliation(s)
- Hajime Tomita
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Barthel SR, Gavino JD, Descheny L, Dimitroff CJ. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets 2007; 11:1473-91. [PMID: 18028011 DOI: 10.1517/14728222.11.11.1473] [Citation(s) in RCA: 295] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation and cancer metastasis are associated with extravasation of leukocytes or tumor cells from blood into tissue. Such movement is believed to follow a coordinated and sequential molecular cascade initiated, in part, by the three members of the selectin family of carbohydrate-binding proteins: E-selectin (CD62E), L-selectin (CD62L) and P-selectin (CD62P). E-selectin is particularly noteworthy in disease by virtue of its expression on activated endothelium and on bone-skin microvascular linings and for its role in cell rolling, cell signaling and chemotaxis. E-selectin, along with L- or P-selectin, mediates cell tethering and rolling interactions through the recognition of sialo-fucosylated Lewis carbohydrates expressed on structurally diverse protein-lipid ligands on circulating leukocytes or tumor cells. Major advances in understanding the role of E-selectin in inflammation and cancer have been advanced by experiments assaying E-selectin-mediated rolling of leukocytes and tumor cells under hydrodynamic shear flow, by clinical models of E-selectin-dependent inflammation, by mice deficient in E-selectin and by mice deficient in glycosyltransferases that regulate the binding activity of E-selectin ligands. Here, the authors elaborate on how E-selectin and its ligands may facilitate leukocyte or tumor cell recruitment in inflammatory and metastatic settings. Antagonists that target cellular interactions with E-selectin and other members of the selectin family, including neutralizing monoclonal antibodies, competitive ligand inhibitors or metabolic carbohydrate mimetics, exemplify a growing arsenal of potentially effective therapeutics in controlling inflammation and the metastatic behavior of cancer.
Collapse
Affiliation(s)
- Steven R Barthel
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine, Room 669, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
23
|
Mollen KP, Levy RM, Prince JM, Hoffman RA, Scott MJ, Kaczorowski DJ, Vallabhaneni R, Vodovotz Y, Billiar TR. Systemic inflammation and end organ damage following trauma involves functional TLR4 signaling in both bone marrow-derived cells and parenchymal cells. J Leukoc Biol 2007; 83:80-8. [DOI: 10.1189/jlb.0407201] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
24
|
Baïsse B, Galisson F, Giraud S, Schapira M, Spertini O. Evolutionary conservation of P-selectin glycoprotein ligand-1 primary structure and function. BMC Evol Biol 2007; 7:166. [PMID: 17868453 PMCID: PMC2174952 DOI: 10.1186/1471-2148-7-166] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 09/14/2007] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND P-selectin glycoprotein ligand-1 (PSGL-1) plays a critical role in recruiting leukocytes in inflammatory lesions by mediating leukocyte rolling on selectins. Core-2 O-glycosylation of a N-terminal threonine and sulfation of at least one tyrosine residue of PSGL-1 are required for L- and P-selectin binding. Little information is available on the intra- and inter-species evolution of PSGL-1 primary structure. In addition, the evolutionary conservation of selectin binding site on PSGL-1 has not been previously examined in detail. Therefore, we performed multiple sequence alignment of PSGL-1 amino acid sequences of 14 mammals (human, chimpanzee, rhesus monkey, bovine, pig, rat, tree-shrew, bushbaby, mouse, bat, horse, cat, sheep and dog) and examined mammalian PSGL-1 interactions with human selectins. RESULTS A signal peptide was predicted in each sequence and a propeptide cleavage site was found in 9/14 species. PSGL-1 N-terminus is poorly conserved. However, each species exhibits at least one tyrosine sulfation site and, except in horse and dog, a T [D/E]PP [D/E] motif associated to the core-2 O-glycosylation of a N-terminal threonine. A mucin-like domain of 250-280 amino acids long was disclosed in all studied species. It lies between the conserved N-terminal O-glycosylated threonine (Thr-57 in human) and the transmembrane domain, and contains a central region exhibiting a variable number of decameric repeats (DR). Interspecies and intraspecies polymorphisms were observed. Transmembrane and cytoplasmic domain sequences are well conserved. The moesin binding residues that serve as adaptor between PSGL-1 and Syk, and are involved in regulating PSGL-1-dependent rolling on P-selectin are perfectly conserved in all analyzed mammalian sequences. Despite a poor conservation of PSGL-1 N-terminal sequence, CHO cells co-expressing human glycosyltransferases and human, bovine, pig or rat PSGL-1 efficiently rolled on human L- or P-selectin. By contrast, pig or rat neutrophils were much less efficiently recruited than human or bovine neutrophils on human selectins. Horse PSGL-1, glycosylated by human or equine glycosyltransferases, did not interact with P-selectin. In all five species, tyrosine sulfation of PSGL-1 was required for selectin binding. CONCLUSION These observations show that PSGL-1 amino acid sequence of the transmembrane and cytoplasmic domains are well conserved and that, despite a poor conservation of PSGL-1 N-terminus, L- and P-selectin binding sites are evolutionary conserved. Functional assays reveal a critical role for post-translational modifications in regulating mammalian PSGL-1 interactions with selectins.
Collapse
Affiliation(s)
- Bénédicte Baïsse
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois, Bugnon 46, 1011 Lausanne, Switzerland
| | - Frédérique Galisson
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois, Bugnon 46, 1011 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Center for Integrative Genomics, UNIL, Dorigny, 1015 Lausanne, Switzerland
| | - Sylvain Giraud
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois, Bugnon 46, 1011 Lausanne, Switzerland
| | - Marc Schapira
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois, Bugnon 46, 1011 Lausanne, Switzerland
| | - Olivier Spertini
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois, Bugnon 46, 1011 Lausanne, Switzerland
| |
Collapse
|
25
|
Ouedraogo R, Gong Y, Berzins B, Wu X, Mahadev K, Hough K, Chan L, Goldstein BJ, Scalia R. Adiponectin deficiency increases leukocyte-endothelium interactions via upregulation of endothelial cell adhesion molecules in vivo. J Clin Invest 2007; 117:1718-26. [PMID: 17549259 PMCID: PMC1878515 DOI: 10.1172/jci29623] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 04/02/2007] [Indexed: 12/27/2022] Open
Abstract
This study reports on what we believe are novel mechanism(s) of the vascular protective action of adiponectin. We used intravital microscopy to measure leukocyte-endothelium interactions in adiponectin-deficient (Ad(-/-)) mice and found that adiponectin deficiency was associated with a 2-fold increase in leukocyte rolling and a 5-fold increase in leukocyte adhesion in the microcirculation. Measurement of endothelial NO (eNO) revealed that adiponectin deficiency drastically reduced levels of eNO in the vascular wall. Immunohistochemistry demonstrated increased expression of E-selectin and VCAM-1 in the vascular endothelium of Ad(-/-) mice. Systemic administration of the recombinant globular adiponectin domain (gAd) to Ad(-/-) mice significantly attenuated leukocyte-endothelium interactions and adhesion molecule expression in addition to restoring physiologic levels of eNO. Importantly, prior administration of gAd also protected WT mice against TNF-alpha-induced leukocyte-endothelium interactions, indicating a pharmacologic action of gAd. Mechanistically, blockade of eNOS with N(omega)-nitro-L-arginine methyl ester ( L-NAME) abolished the inhibitory effect of gAd on leukocyte adhesion, demonstrating the obligatory role of eNOS signaling in the antiinflammatory action of gAd. We believe this is the first demonstration that gAd protects the vasculature in vivo via increased NO bioavailability with suppression of leukocyte-endothelium interactions. Overall, we provide evidence that loss of adiponectin induces a primary state of endothelial dysfunction with increased leukocyte-endothelium adhesiveness.
Collapse
Affiliation(s)
- Raogo Ouedraogo
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Molecular Physiology and Biophysics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Section of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yulan Gong
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Molecular Physiology and Biophysics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Section of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Brett Berzins
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Molecular Physiology and Biophysics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Section of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Xiandong Wu
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Molecular Physiology and Biophysics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Section of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Kalyankar Mahadev
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Molecular Physiology and Biophysics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Section of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Kelly Hough
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Molecular Physiology and Biophysics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Section of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Lawrence Chan
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Molecular Physiology and Biophysics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Section of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Barry J. Goldstein
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Molecular Physiology and Biophysics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Section of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Rosario Scalia
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Molecular Physiology and Biophysics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Section of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
26
|
Yukami T, Hasegawa M, Matsushita Y, Fujita T, Matsushita T, Horikawa M, Komura K, Yanaba K, Hamaguchi Y, Nagaoka T, Ogawa F, Fujimoto M, Steeber DA, Tedder TF, Takehara K, Sato S. Endothelial selectins regulate skin wound healing in cooperation with L-selectin and ICAM-1. J Leukoc Biol 2007; 82:519-31. [PMID: 17595378 DOI: 10.1189/jlb.0307152] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Skin wound healing is mediated by inflammatory cell infiltration that is highly regulated by various adhesion molecules. Mice lacking intercellular adhesion molecule-1 (ICAM-1) delayed skin wound healing and mice lacking both L-selectin and ICAM-1 (L-selectin/ICAM-1(-/-)) show more delayed wound healing. Deficiency of both endothelial selectins (E-selectin or P-selectin) also delays wound healing. However, the relative contribution and interaction of selectins and ICAM-1 to the wound healing remain unknown. To clarify them, repair of excisional wounds was examined in L-selectin/ICAM-1(-/-) mice, wild-type mice with both E- and P-selectin blockade, and L-selectin/ICAM-1(-/-) mice with both E- and P-selectin blockade. Wild-type mice with both E- and P-selectin blockade showed delayed wound healing that was comparable with that in L-selectin/ICAM-1(-/-) mice. Combined E- and P-selectin blockade in L-selectin/ICAM-1(-/-) mice resulted in more significant delay. Mice lacking or blocked for adhesion molecules also showed suppressed keratinocyte migration, angiogenesis, granulation tissue formation, leukocyte infiltration, and cytokine expression, including transforming growth factor-beta and interleukin-6. Application of basic fibroblast growth factor (bFGF) but not platelet-derived growth factor to the wounds significantly improved wound healing in L-selectin/ICAM-1(-/-) mice with both E- and P-selectin blockade. bFGF significantly increased the leukocyte infiltration and subsequent fibrogenic cytokine production, as well as keratinocyte migration, angiogenesis, and collagen synthesis despite the loss of four kinds of adhesion molecules. These results indicate that skin wound healing is regulated cooperatively by all selectins and ICAM-1 and may provide critical information for the therapy of skin wounds.
Collapse
Affiliation(s)
- Toru Yukami
- Department of Dermatology, Kanazawa University Graduate School of Medical Science, 13-1, Takara-machi, Kanazawa 920-8641, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Laschke MW, Menger MD, Wang Y, Lindell G, Jeppsson B, Thorlacius H. Sepsis-associated cholestasis is critically dependent on P-selectin-dependent leukocyte recruitment in mice. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1396-402. [PMID: 17255363 DOI: 10.1152/ajpgi.00539.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cholestasis is a major complication in sepsis although the underlying mechanisms remain elusive. The aim of this study was to evaluate the role of P-selectin and leukocyte recruitment in endotoxemia-associated cholestasis. C57BL/6 mice were challenged intraperitoneally with endotoxin (0.4 mg/kg), and 6 h later the common bile duct was cannulated for determination of bile flow and biliary excretion of bromosulfophthalein. Mice were pretreated with an anti-P-selectin antibody or an isotype-matched control antibody. Leukocyte infiltration was determined by measuring hepatic levels of myeloperoxidase. Tumor necrosis factor-alpha and CXC chemokines in the liver was determined by ELISA. Liver damage was monitored by measuring serum levels of alanine aminotransferase and aspartate aminotransferase. Apoptosis was quantified morphologically by nuclear condensation and fragmentation using Hoechst 33342 staining. Endotoxin induced a significant inflammatory response with increased TNF-alpha and CXC chemokine concentrations, leukocyte infiltration, liver enzyme release, and apoptotic cell death. This response was associated with pronounced cholestasis indicated by a >70% decrease of bile flow and biliary excretion of bromosulfophthalein. Immunoneutralization of P-selectin significantly attenuated endotoxin-induced leukocyte infiltration reflected by a >60% reduction of hepatic myeloperoxidase levels. Interference with P-selectin decreased endotoxin-mediated hepatocellular apoptosis and necrosis, but did not affect hepatic levels of tumor necrosis factor-alpha and CXC chemokines. Of interest, inhibition of P-selectin restored bile flow and biliary excretion of bromosulfophthalein to normal levels in endotoxin-challenged animals. Our study demonstrates for the first time that P-selectin-mediated recruitment of leukocytes, but not the local production of proinflammatory mediators, is the primary cause of cholestasis in septic liver injury.
Collapse
Affiliation(s)
- Matthias W Laschke
- Dept. of Surgery, Malmö Univ. Hospital, Lund Univ., S-205 02 Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Kentner R, Safar P, Behringer W, Wu X, Henchir J, Ma L, Hsia CJC, Tisherman SA. Small volume resuscitation with tempol is detrimental during uncontrolled hemorrhagic shock in rats. Resuscitation 2007; 72:295-305. [PMID: 17112648 DOI: 10.1016/j.resuscitation.2006.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 05/26/2006] [Accepted: 05/26/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND In a previous study, titration of a hypertonic saline (HTS) solution during severe uncontrolled hemorrhagic shock (UHS) failed to reduce mortality. In a separate study, a novel antioxidant, polynitroxylated albumin (PNA) plus tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl), infused during shock increased long-term survival. We hypothesized that combining potent antioxidants with a hypertonic solution during UHS would preserve the logistical advantage of small volume resuscitation and improve survival. METHODS An UHS outcome model in rats was used. UHS phase I (90 min) included blood withdrawal of 30 ml/kg over 15 min, followed by tail amputation for uncontrolled bleeding. At 20 min, rats were randomized to four groups (n=10 each) for hypotensive resuscitation from 20 to 90 min (mean arterial pressure [MAP] > or = 40 mmHg): HTS/starch group received 7.2% NaCl/10% hydroxyethyl starch; HTS/albumin group received 7.5% NaCl/20% albumin; HTS/PNA group received 7.5% NaCl/20% PNA; HTS/albumin+tempol group received 7.5% NaCl/20% albumin plus tempol. Resuscitation phase II (180 min) included hemostasis, return of shed blood and administration of fluids to restore MAP > or = 80 mmHg. Observation phase III was to 72 h. RESULTS The total amount of fluid required to maintain hypotensive MAP during HS was low and did not differ between groups (range: 3.4+/-1.9 to 5.3+/-2.5 ml/kg). The rate of fluid administration required was higher in the HTS/albumin+tempol group compared to all other groups (p=0.006). Additional uncontrolled blood loss was highest in the HTS/PNA group (16.2+/-5.7 ml/kg [p=0.01] versus 10.4+/-7.9 ml/kg in the HTS/starch group, 7.7+/-5.2 ml/kg in the HTS/albumin group and 8.2+/-7.1 ml/kg in the HTS/albumin+tempol group). MAP after start of resuscitation in phase I was lower in the HTS/albumin+tempol group than the HTS/albumin or HTS/PNA groups (p<0.01). This group was also less tachycardic. Long-term survival was low in all groups (2 of 10 after HTS/starch and 1 of 10 after HTS/albumin, 3 of 10 after HTS/PNA, 1 of 10 after HTS/albumin+tempol). Median survival time was shortest in the HTS/albumin+tempol group (72 min [CI 34-190]) compared to all other groups (p=0.01). CONCLUSIONS Despite its benefits in other model systems, free tempol is potentially hazardous when combined with hypertonic fluids. PNA abrogates these deleterious effects on acute mortality but may lead to increased blood loss in the setting of UHS.
Collapse
Affiliation(s)
- Rainer Kentner
- Safar Center for Resuscitation Research, University of Pittsburgh, 3434 Fifth Avenue, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Scalia R. Evaluation of endothelial function by in vivo microscopy. METHODS IN MOLECULAR MEDICINE 2007; 139:225-35. [PMID: 18287675 DOI: 10.1007/978-1-59745-571-8_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This chapter describes a method that permits simultaneous measurement of leukocyte- endothelium interactions and endothelial nitric oxide (NO) levels in the microcirculation in vivo. The method is also useful to study the effect of NO replenishing therapy on adhesion of leukocytes to the vascular endothelium in acute and chronic inflammatory states of the cardiovascular system. This research approach requires the combination of two well-established physiology techniques, that is, intravital microscopy and real-time measurement of NO with microelectrodes. Intravital microscopy is considered the method of choice to monitor leukocyte-endothelial cell interactions in intact vascular beds of live animals. In vivo microscopy is currently used to study the endothelial cell phenotype of mice carrying mutations or deletion of targeted genes. Intravital microscopy is also used to study endothelial cell function in acute (e.g., ischemia-reperfusion injury) and chronic (e.g., hypercholesterolemia, hyperglycemia, and diabetes) inflammatory states of the cardiovascular system. NO sensors allow for continuous, amperometric quantification of NO levels in cells and organ tissues. Coupling of NO electrode technology with intravital microscopy has recently permitted to measure NO bioavailability in the normal and inflamed microcirculation. The method described here can be used to study in vivo how acute and chronic inflammatory states of the cardiovascular system alter endothelial function resulting in endothelial cell activation and damage.
Collapse
Affiliation(s)
- Rosario Scalia
- Department of Physiology, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Campbell JE, Garrison RN, Zakaria ER. Clinical peritoneal dialysis solutions modulate white blood cell-intestinal vascular endothelium interaction. Am J Surg 2006; 192:610-6. [PMID: 17071193 PMCID: PMC1764609 DOI: 10.1016/j.amjsurg.2006.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/07/2006] [Accepted: 08/07/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hemorrhagic shock (HS) with conventional resuscitation (CR) (HSCR) primes neutrophils and modulates leukocyte (WBC)-endothelium interaction as part of an exaggerated systemic inflammatory response. We hypothesize that topical application of clinical peritoneal dialysis solutions (PD) modulates such interaction. METHODS Intestinal intravital microscopy was used to measure WBC rolling in terminal ileum post capillary venules (V2 and V3) in sham-operated animals, and in animals that underwent fixed pressure hemorrhage (50% mean arterial pressure for 60 minutes), followed by conventional resuscitation with the return of the shed blood and 2 vol of saline. Number of rolling WBCs per thirty seconds in selected V2 and V3, bathed in either Kreb's solution or a 2.5% clinical peritoneal dialysis solution (PD) was quantified. Diameters were measured for the in-flow arterioles (A1), and out-flow venules (V1), for calculation of local blood flow with optical Doppler velocimetry. RESULTS The PD solution significantly (P < .05, n = 11) attenuated WBC-endothelium interaction in sham-operated animals while no significant difference was elicited in HSCR (P > .05, n = 9 Kreb's, n = 7 PD). In addition, the PD solution produced an instantaneous dilation at all levels of the intestinal arterioles in both sham and HSCR. While intestinal venular blood outflow was increased by the PD solution, venular diameters changed very little. CONCLUSION Superfusion of the gut with glucose-based peritoneal dialysis solutions decreases the concentration of rolling leukocytes along the venular vascular endothelium by a vasodilation-mediated increase in arteriolar inflow and venous outflow mechanism. Hemorrhagic shock and conventional resuscitation enhance the concentration of rolling leukocytes presumably by mechanisms related to upregulation of the adhesion molecules and the low-flow state. Hemorrhage and resuscitation-enhanced leukocytes rolling was not reversed by adjunctive DPR despite the associated marked increase in arterial inflow and venous outflow. The status of the endothelium and the level of leukocyte priming in low-flow states are stronger predictors of leukocyte-endothelium interaction than rheology factors.
Collapse
Affiliation(s)
| | - Richard N. Garrison
- Department of Physiology, Louisville, KY, USA
- Department of Biophysics, University of Louisville, Louisville, KY, USA
- Veterans Administration Medical Center, Louisville, KY, USA
| | - El Rasheid Zakaria
- Department of Physiology, Louisville, KY, USA
- Department of Biophysics, University of Louisville, Louisville, KY, USA
- * Corresponding author. Department of Physiology and Biophysics, Health Sciences Center A-1115, University of Louisville, Louisville, KY 40292. Tel.: +1-502-287-5249; fax: +1-502-894-6242. E-mail address:
| |
Collapse
|
31
|
Swers JS, Widom A, Phan U, Springer TA, Wittrup KD. A high affinity human antibody antagonist of P-selectin mediated rolling. Biochem Biophys Res Commun 2006; 350:508-13. [PMID: 17027652 DOI: 10.1016/j.bbrc.2006.08.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Accepted: 08/15/2006] [Indexed: 11/26/2022]
Abstract
We have characterized the IgG form of a previously isolated and engineered single-chain Fv (scFv), named RR2r3s4-1, that binds to human PSGL-1. This fully human IgG was determined to have a Kd of 1.8+/-0.7 nM by fluorescence quenching titration. It better inhibits P-selectin-PSGL-1 interactions than a commercially available murine monoclonal antibody KPL1 and better inhibits neutrophil rolling than KPL1. Thus, RR2r3s4-1 is the most effective antibody at inhibiting P-selectin-PSGL-1 interactions known. Specificity analysis reveals that RR2r3s4-1 does not cross react with murine PSGL-1 and thus requires more than tyrosine sulfate for binding to human PSGL-1. This evidence demonstrates the therapeutic potential of this antibody as a potent anti-inflammatory therapeutic.
Collapse
Affiliation(s)
- Jeffrey S Swers
- Department of Chemical Engineering, Massachusetts Institute of Technology 66-552, 25 Ames Street, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
32
|
Zamuner SR, Zuliani JP, Fernandes CM, Gutiérrez JM, de Fátima Pereira Teixeira C. Inflammation induced by Bothrops asper venom: release of proinflammatory cytokines and eicosanoids, and role of adhesion molecules in leukocyte infiltration. Toxicon 2005; 46:806-13. [PMID: 16198389 DOI: 10.1016/j.toxicon.2005.08.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 08/17/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
Bothrops asper venom (BaV) causes systemic and local effects characterized by an acute inflammatory reaction with accumulation of leukocytes and release of endogenous mediators. In this study, the effects of BaV on the release of the cytokines IL-1, IL-6 and TNF-alpha and the eicosanoids LTB4 and TXA2 in the peritoneal cavity of mice were analyzed. We also investigated the participation of beta2 integrin chain, l-selectin, LFA-1, ICAM-1 and PECAM-1 adhesion molecules in the BaV-induced leukocyte accumulation. Levels of proinflammatory cytokines IL-6 and TNF-alpha, as well as eicosanoids LTB4 and TXA2 were significantly increased after BaV injection (250 microg/kg), whereas no increment in IL-1 was observed. Anti-mouse l-selectin, LFA-1, ICAM-1, PECAM-1 and beta2 integrin chain monoclonal antibodies resulted in a reduction of neutrophil accumulation induced by BaV injection compared with isotype-matched control injected animals. These data suggest that BaV is able to induce the activation of leukocytes and endothelium to express adhesion molecules involved in the recruitment of neutrophils into the inflammed site. Furthermore, these results showed that BaV induces the release of cytokines and eicosanoids in the local of the venom injection; these inflammatory mediators may be important for the initiation and amplification of the inflammatory reaction characteristic from Bothrops sp envenomation.
Collapse
Affiliation(s)
- Stella Regina Zamuner
- Laboratório de Farmacologia, Instituto Butantan, Ave Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil
| | | | | | | | | |
Collapse
|
33
|
López-Bojórquez LN, Dehesa AZ, Reyes-Terán G. Molecular mechanisms involved in the pathogenesis of septic shock. Arch Med Res 2005; 35:465-79. [PMID: 15631870 DOI: 10.1016/j.arcmed.2004.07.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pathogenesis of the development of sepsis is highly complex and has been the object of study for many years. The inflammatory phenomena underlying septic shock are described in this review, as well as the enzymes and genes involved in the cellular activation that precedes this condition. The most important molecular aspects are discussed, ranging from the cytokines involved and their respective transduction pathways to the cellular mechanisms related to accelerated catabolism and multi-organic failure.
Collapse
Affiliation(s)
- Lucia Nikolaia López-Bojórquez
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, D.F., Mexico.
| | | | | |
Collapse
|
34
|
Schmid-Schönbein GW, Hugli TE. A new hypothesis for microvascular inflammation in shock and multiorgan failure: self-digestion by pancreatic enzymes. Microcirculation 2005; 12:71-82. [PMID: 15804975 DOI: 10.1080/10739680590896009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Shock is accompanied by a severe inflammatory cascade in the microcirculation, the origin of which has been hypothesized in the past to be associated with specific mediators such as endotoxin, oxygen free radicals, nitric oxide, cytokines, and lipid products. But no intervention with clinical effectiveness has been derived from these ideas to date. The authors propose here a new hypothesis suggesting that degradative enzymes, synthesized in the pancreas as part of normal digestion, may play a central role in shock and multiorgan failure. These powerful enzymes have the ability to digest almost every biological material. Self-digestion (i.e. autodegradation) is prevented by compartmentalizing the fully activated degradative enzymes in the intestinal lumen by the mucosal barrier. In shock, maintenance of the mucosal barrier is impaired and it becomes permeable to pancreatic enzymes. Digestive enzymes thereby gain access to the wall of the intestine and initiate self-digestion of submucosal extracellular matrix proteins and interstitial cells. The process leads to generation and release of a host of strong inflammatory mediators. The authors hypothesize that inhibition of pancreatic enzymes in the lumen of tile intestine can serve to attenuate formation of these inflammatory mediators in ischemic tissues following hemorrhagic shock, and consequently prevent cell and tissue injury as well as multiorgan failure.
Collapse
Affiliation(s)
- Geert W Schmid-Schönbein
- Department of Bioengineering, Whitaker Institute of Biomedical Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
35
|
Ushiyama A, Yamada S, Ohkubo C. Microcirculatory parameters measured in subcutaneous tissue of the mouse using a novel dorsal skinfold chamber. Microvasc Res 2005; 68:147-52. [PMID: 15313125 DOI: 10.1016/j.mvr.2004.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Indexed: 10/26/2022]
Abstract
The dorsal skinfold chamber (DSC) is a transparent devise useful for the long-term study of subcutaneous microcirculation. Commonly used chambers are made of metal, thus heavy and potentially stress including. Therefore, we developed a nonmetallic dorsal skinfold chamber and demonstrated that it performs as well as metal chambers. The essential structural parts of the nonmetallic chamber are made of polyacetal resin (Duracon), and its design was based on an existing titanium chamber. Both Duracon and titanium chambers were implanted onto an 8-week-old male BALB/c mice and microcirculatory parameters were compared. In subcutaneous venules, there were no significant differences between the chambers in terms of maximum blood velocity, blood flow rate, or the number of rolling or adhering leukocytes in vessels. In arterioles, main frequency of vasomotion showed no significant difference between the two types of chambers. This novel nonmetallic chamber frame was determined to be as practical as the metal frame. The nonmetallic chamber is about 40% lighter in weight than the metallic one, subjecting mice to less stress. Additionally, the chamber has greater applications in experimental use where metallic frames are unsuitable, such as those employing nonionizing radiation.
Collapse
Affiliation(s)
- Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, Tokyo, Japan.
| | | | | |
Collapse
|
36
|
Zakaria ER, Garrison RN, Kawabe T, Harris PD. Role of neutrophils on shock/resuscitation-mediated intestinal arteriolar derangements. Shock 2004; 21:248-53. [PMID: 14770038 DOI: 10.1097/01.shk.0000111824.07309.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adequate resuscitation from hemorrhagic shock that preserves hemodynamics is associated with a generalized and progressive intestinal arteriolar vasoconstriction and hypoperfusion coupled with impairment of the endothelium-dependent dilation response. This study was performed to investigate the role of neutrophils on the postresuscitation intestinal arteriolar derangements. Experiments were performed in anesthetized rats 24 h after neutrophil depletion. Neutropenia was induced with antineutrophil serum by tail vein injection. Rats injected with rabbit serum lacking anti-rat neutrophil antibody served as controls. Hemorrhagic shock was 50% of mean arterial pressure for 60 min. Resuscitation was with the shed blood returned plus 2 volumes of saline. A nonhemorrhage group served as control. Intravital videomicroscopy of the terminal ileum was used to measure microvascular diameter and centerline red cell velocity. Endothelial function was assessed from the response to the endothelium-dependent dilator acetylcholine (10(-9) to 10(-4) M). Regardless of neutrophil count, hemorrhagic shock caused selective vasoconstriction of inflow A1 arterioles (-21.49 +/- 0.67%) from baseline, which was not seen in the premucosal A3 vessels (pA3, dA3). At 2 h postresuscitation, there was a generalized vasoconstriction from baseline diameter in A1 (-21.26 +/- 2.29%), pA3 (-22.66 +/- 5.02%), and dA3 (-17.62 +/- 4.84%). Neutrophil depletion caused a significant reset of baseline A1 blood flow from 701 +/- 90 nL/s to 978 +/- 90 nL/s and attenuated the postresuscitation hypoperfusion. This occurred independently of the A1 diameter change. Hemorrhagic shock/resuscitation caused impairment of the endothelium-dependent dilation response irrespective of neutrophil count. This study demonstrates that neutrophils do not contribute to the hemorrhagic/resuscitation-mediated intestinal arteriolar derangements, but appear to possess a role in the intestinal arteriolar blood flow regulation under normal and low flow states possibly via a rheologic effect.
Collapse
Affiliation(s)
- El Rasheid Zakaria
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | | | |
Collapse
|
37
|
Kirschenbaum LA, McKevitt D, Rullan M, Reisbeck B, Fujii T, Astiz ME. Importance of platelets and fibrinogen in neutrophil-endothelial cell interactions in septic shock. Crit Care Med 2004; 32:1904-9. [PMID: 15343020 DOI: 10.1097/01.ccm.0000139918.80602.57] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To examine the role of platelets, fibrin, and adhesion molecules in mediating neutrophil-endothelial cell interactions in septic shock. DESIGN Controlled experiments using phase contrast microscopy to examine neutrophil, platelet, and endothelial cell interactions in flowing cell suspensions under simulated physiologic conditions. SETTING University research laboratory. PATIENTS Adult patients with septic shock and normal volunteers. INTERVENTIONS Microslides were coated with human umbilical vein endothelial cells. Neutrophils were removed from control subjects and patients in septic shock and were perfused over endothelial cells at rates representing a range of physiologic shear stresses. In an attempt to examine the effects of fibrin deposition on neutrophil-endothelial cell interactions, neutrophils, with and without platelets, were suspended in plasma and serum was removed from patients in septic shock. In addition, blocking monoclonal antibodies against the platelet receptor P-selectin and neutrophil receptor CD11b/CD18, and a platelet glycoprotein IIb/IIIa inhibitor, were incubated with cells suspended in plasma. Phase contrast video microscopy was used to count the number of neutrophils/mm adherent to endothelial cells during cessation of flow. Neutrophil rolling velocity was calculated as the time required for neutrophils to move across a 1-mm field (mm/sec). Leukoaggregation was defined as the number of neutrophils in aggregates (three or more nuclei) across a 1-mm field. MEASUREMENTS AND MAIN RESULTS Normal neutrophils exposed to plasma from patients with septic shock demonstrated significant increases in aggregation and endothelial cell adherence with associated decreases in neutrophil rolling velocity. These changes were significantly enhanced in the presence of platelets and significantly attenuated in the presence of serum, which is fibrinogen depleted. Preincubation with antibodies to the surface receptors P-selectin, CD11b/CD18, and glycoprotein IIb/IIIa abrogated the changes in neutrophil aggregation, adhesion, and rolling velocity. CONCLUSIONS These data suggest that platelets and fibrinogen play an important role in mediating neutrophil-endothelial cell adherence in septic shock.
Collapse
|
38
|
Hirata T, Furukawa Y, Yang BG, Hieshima K, Fukuda M, Kannagi R, Yoshie O, Miyasaka M. Human P-selectin glycoprotein ligand-1 (PSGL-1) interacts with the skin-associated chemokine CCL27 via sulfated tyrosines at the PSGL-1 amino terminus. J Biol Chem 2004; 279:51775-82. [PMID: 15466853 DOI: 10.1074/jbc.m409868200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1), a sialomucin expressed on leukocytes, is a major ligand for P-selectin and mediates leukocyte rolling on the endothelium. Here we show that human PSGL-1 interacts with CCL27 (CTACK/ILC/ESkine), a skin-associated chemokine that attracts skin-homing T lymphocytes. A recombinant soluble form of PSGL-1 (rPSGL-Ig) preferentially bound CCL27 among several chemokines tested. This interaction was abrogated by arylsulfatase treatment of rPSGL-Ig, suggesting that sulfated tyrosines play a critical role. In contrast, removal of either N-glycans or O-glycans by glycosidase treatment of rPSGL-Ig did not affect the interaction. The binding of CCL27 to a recombinant PSGL-1 synthesized in the presence of a sulfation inhibitor was lower than that produced in normal medium. Moreover, mutation of the tyrosines at the amino terminus of PSGL-1 to phenylalanine abolished the binding, further supporting the role of sulfated tyrosines in the CCL27-PSGL-1 interaction. Functionally, rPSGL-Ig reduced the chemotaxis of L1.2 cells expressing CCR10, the receptor for CCL27. In addition, the expression of human PSGL-1 on CCR10-expressing L1.2 cells resulted in reduced chemotaxis to CCL27. These findings suggest a role for PSGL-1 in regulating chemokine-mediated responses, in addition to its role as a selectin ligand.
Collapse
Affiliation(s)
- Takako Hirata
- Laboratory of Molecular and Cellular Recognition, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wolfrum S, Dendorfer A, Rikitake Y, Stalker TJ, Gong Y, Scalia R, Dominiak P, Liao JK. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arterioscler Thromb Vasc Biol 2004; 24:1842-7. [PMID: 15319269 PMCID: PMC2649731 DOI: 10.1161/01.atv.0000142813.33538.82] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Rho-kinase activity is increased in cardiovascular diseases and in patients with cardiovascular risk factors. However, it is not known whether inhibition of Rho-kinase could lead to cardiovascular protection and, if so, by what mechanism. METHODS AND RESULTS In human endothelial cells, the Rho-kinase inhibitor, hydroxyfasudil (HF) (1 to 100 micromol/L), increased Akt serine-473 phosphorylation within 15 minutes, leading to a 2.2-fold and 4.0-fold increase in Akt kinase activity and nitric oxide (NO) release, respectively. Activation of Akt and eNOS by HF was completely blocked by the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, LY294002 (10 micromol/L). To determine the physiological relevance of this pathway, we used 2 models of ischemia-reperfusion (I/R) injury. Acute administration of fasudil (10 mg/kg, intraperitoneal, 1 hour before ischemia) decreased leukocyte recruitment and adhesion to the mesenteric endothelium after I/R injury in wild-type but not eNOS-/- mice. Similarly, treatment with fasudil decreased myocardial infarct size by 38% in rats subjected to transient coronary artery occlusion. Cotreatment with 2 PI3-kinase inhibitors, wortmannin and LY294002, or the eNOS inhibitor, L-NAME, blocked the cardiovascular protective effects of fasudil. CONCLUSIONS Inhibition of Rho-kinase leads to the activation of the PI3-kinase/Akt/eNOS pathway and cardiovascular protection. These findings suggest that Rho-kinase may play an important role in mediating the inflammatory response to I/R injury.
Collapse
Affiliation(s)
- Sebastian Wolfrum
- Vascular Medicine Research Unit, Brigham & Women's Hospital and Harvard Medical School, Cambridge, Mass 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Klintman D, Li X, Thorlacius H. Important role of P-selectin for leukocyte recruitment, hepatocellular injury, and apoptosis in endotoxemic mice. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2004; 11:56-62. [PMID: 14715545 PMCID: PMC321325 DOI: 10.1128/cdli.11.1.56-62.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Leukocyte recruitment in the liver includes a two-step procedure in which selectin-dependent leukocyte rolling is a prerequisite for subsequent CD18-dependent leukocyte firm adhesion in postsinusoidal venules. However, the roles of the individual selectins in leukocyte rolling and adhesion, hepatocellular injury, and apoptosis remain elusive. Therefore, we examined the pathophysiological role of P-, E-, and L-selectin in male C57BL/6 mice challenged with lipopolysaccharide (LPS) and D-galactosamine (Gal) by use of intravital microscopy of the liver microcirculation. In control animals, administration of LPS-Gal provoked reproducible hepatic damage, including marked increases of leukocyte recruitment, liver enzymes, and hepatocyte apoptosis and reduced sinusoidal perfusion. Interestingly, pretreatment with an anti-P-selectin antibody (RB40.34) markedly reduced leukocyte rolling and firm adhesion by 65 and 71%, respectively. Moreover, interference with P-selectin function significantly improved sinusoidal perfusion and reduced the increase in liver enzymes by 49 to 84% in endotoxemic mice. Moreover, the activity of caspase-3 and the number of apoptotic hepatocytes were significantly reduced by 55 and 54%, respectively, in RB40.34-treated animals. In contrast, administration of an anti-E-selectin antibody (10E9.6) and an anti-L-selectin antibody (Mel-14) did not protect against endotoxin-induced leukocyte responses or hepatic injury. In conclusion, our novel findings document a principal role of P-selectin in mediating leukocyte rolling, a precondition to the subsequent firm adhesion of leukocytes in liver injury. Furthermore, our novel data demonstrate that inhibition of P-selectin function reduces hepatocellular injury and apoptosis, suggesting a causal relationship between leukocyte recruitment on one hand and hepatocellular injury and apoptosis on the other hand. Based on these findings, it is suggested that P-selectin may be an important therapeutic target in endotoxin-induced liver injury.
Collapse
Affiliation(s)
- Daniel Klintman
- Department of Surgery, Malmö University Hospital, Lund University, S-205 02 Malmö, Sweden
| | | | | |
Collapse
|
41
|
Leone M, Garcin F, Chaabane W, Boutière-Albanèse B, Albanèse J, Dignat-Georges F, Martin C. Activation des molécules d’adhésion chez les patients en choc septique. ACTA ACUST UNITED AC 2003; 22:721-9. [PMID: 14522392 DOI: 10.1016/s0750-7658(03)00327-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To analyze the pattern of adhesion molecules in patients with septic shock. Data sources. - References obtained from Pubmed databank. DATA EXTRACTION Models of inflammation linking endothelial dysfunction, adhesion molecules and septic states were analyzed. DATA SYNTHESIS The endothelium has been identified as the central effector in the inflammatory response. Adhesion molecules are strongly involved in the inflammatory process by modulating the leukocyte trafficking. The most important adhesion molecules are the selectins (E-, L-, and P-selectins) and members of the immunoglobulin superfamily (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1). Plasma levels of these molecules are increased in septic shock patients, which may be related to a marked activation of the endothelium. However, a dichotomous profile is observed between plasma and tissue expression. The inhibition of adhesive molecule actions could make it possible to control the inflammatory response.
Collapse
Affiliation(s)
- M Leone
- Département d'anesthésie et de réanimation et centre de traumatologie, hôpital Nord, boulevard P.-Dramard, 13915 Marseille cedex 20, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
Yanaba K, Kaburagi Y, Takehara K, Steeber DA, Tedder TF, Sato S. Relative contributions of selectins and intercellular adhesion molecule-1 to tissue injury induced by immune complex deposition. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1463-73. [PMID: 12707029 PMCID: PMC1851207 DOI: 10.1016/s0002-9440(10)64279-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immune complex-induced tissue injury is mediated by inflammatory cell infiltration that is highly regulated by multiple adhesion molecules. To assess the relative contribution of adhesion molecules, including selectins and ICAM-1, in this pathogenetic process, the cutaneous passive Arthus reaction was examined in mice lacking E-selectin, P-selectin, or both L-selectin and ICAM-1 with anti-P- or E-selectin mAbs. Edema and hemorrhage were significantly reduced in P-selectin(-/-) mice compared with wild-type mice while they were not inhibited in E-selectin(-/-) mice. Combined E- and P-selectin blockade resulted in more significant reduction relative to L-selectin/ICAM-1(-/-) as well as P-selectin(-/-) mice. Remarkably, both E- and P-selectin blockade in L-selectin/ICAM-1(-/-) mice completely abrogated edema and hemorrhage. The inhibited edema and hemorrhage paralleled reduced infiltration of neutrophils and mast cells that expressed significant levels of P-selectin glycoprotein ligand-1. Similarly reduced infiltration of neutrophils and mast cells was observed in the peritoneal Arthus reaction and was associated partly with the decreased production of tumor necrosis factor-alpha and interleukin-6. The results of this study indicate that both endothelial selectins contribute predominantly to the Arthus reaction by regulating mast cell and neutrophil infiltration and that the full development of the Arthus reaction is mediated cooperatively by all selectins and ICAM-1.
Collapse
Affiliation(s)
- Koichi Yanaba
- Department of Dermatology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Hicks AER, Nolan SL, Ridger VC, Hellewell PG, Norman KE. Recombinant P-selectin glycoprotein ligand-1 directly inhibits leukocyte rolling by all 3 selectins in vivo: complete inhibition of rolling is not required for anti-inflammatory effect. Blood 2003; 101:3249-56. [PMID: 12480716 DOI: 10.1182/blood-2002-07-2329] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Selectin-dependent leukocyte rolling is one of the earliest steps of an acute inflammatory response and, as such, contributes to many inflammatory diseases. Although inhibiting leukocyte rolling with selectin antagonists is a strategy that promises far-reaching clinical benefit, the perceived value of this strategy has been limited by studies using inactive, weak, or poorly characterized antagonists. Recombinant P-selectin glycoprotein ligand-1-immunoglobulin (rPSGL-Ig) is a recombinant form of the best-characterized selectin ligand (PSGL-1) fused to IgG, and is one of the best prospects in the search for effective selectin antagonists. We have used intravital microscopy to investigate the ability of rPSGL-Ig to influence leukocyte rolling in living blood vessels and find that it can reduce rolling dependent on each of the selectins in vivo. Interestingly, doses of rPSGL-Ig required to reverse pre-existing leukocyte rolling are 30-fold higher than those required to limit inflammation, suggesting additional properties of this molecule. In support of this, we find that rPSGL-Ig can bind the murine chemokine KC and inhibit neutrophil migration toward this chemoattractant in vitro.
Collapse
Affiliation(s)
- Anne E R Hicks
- Cardiovascular Research Group, University of Sheffield, Sheffield, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Abstract
As renal function declines, the prevalence of both malnutrition and cardiovascular disease increase. Both malnutrition and vascular disease correlate with the levels of markers of inflammation both in patients treated with dialysis and in those not yet on dialysis. While it is possible that the markers of inflammation (increased levels of C-reactive protein (CRP) or interleukin-6 (IL-6)) are a result of inflammation arising from the atherosclerotic process, changes in endothelial cell gene expression, in plasma protein composition and in lipoprotein structure that arise from inflammation are likely to be atherogenic. The causes of inflammation are likely to be multifactorial. CRP levels are associated with cardiovascular risk in the general population and decrease following treatment with HMG-CoA reductase inhibitors. It is speculated that use of these agents or directly suppressing inflammation may have use in treating the inflammatory-malnutrition syndrome in dialysis patients.
Collapse
|
45
|
Yokoyama Y, Schwacha MG, Bland KI, Chaudry IH. Effect of estradiol administration on splanchnic perfusion after trauma-hemorrhage and sepsis. Curr Opin Crit Care 2003; 9:137-42. [PMID: 12657977 DOI: 10.1097/00075198-200304000-00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review focuses on the latest mechanistic understanding of the effects of estradiol on the splanchnic circulation and the possibility of estradiol treatment as an adjunct for the treatment of trauma-hemorrhage and sepsis. RECENT FINDINGS Systemic hypotension induced by shock accompanies marked alterations in blood flow to various organs. Decreased splanchnic perfusion is frequently observed after insults, such as severe hemorrhage or sepsis, which leads to the destruction of the intestinal mucosal barrier and hepatic dysfunction. Studies suggest that estradiol acts as a facilitator of the intestinal blood flow via the increased production of nitric oxide, decreased production of vasoconstrictors, attenuated neutrophil adhesion, and decreased formation of oxygen free radicals. SUMMARY Trauma-hemorrhage results in decreased circulating blood volume. In contrast, sepsis is an inflammatory state mainly mediated by bacterial products. However, these divergent insults show similar pathophysiologic alterations in terms of the splanchnic circulation. Because estradiol effectively protects the organs from circulatory failure after various adverse circulatory conditions, many studies are being performed to clarify the molecular mechanism of estradiol action with regard to tissue circulation. Estradiol improves the macro- and microcirculation of the splanchnic organs by multiple mechanisms. Nonetheless, it remains unclear which mechanism plays the most important role in the treatment of trauma-hemorrhage and sepsis. Additional studies are required to elucidate the precise mechanism of estradiol action and to determine the usefulness of estradiol treatment for severe hemorrhage and sepsis in patients.
Collapse
Affiliation(s)
- Yukihiro Yokoyama
- Center for Surgical Research and Department of Surgery, University of Alabama, Birmingham 35294-0019, USA
| | | | | | | |
Collapse
|
46
|
Pruefer D, Makowski J, Dahm M, Guth S, Oelert H, Darius H, Buerke M. Aprotinin inhibits leukocyte-endothelial cell interactions after hemorrhage and reperfusion. Ann Thorac Surg 2003; 75:210-5; discussion 215-6. [PMID: 12537218 DOI: 10.1016/s0003-4975(02)03932-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The serine protease inhibitor aprotinin has been successfully used to reduce blood loss in patients undergoing cardiac operations. We studied aprotinin for its ability to modulate leukocyte-endothelial cell interactions after ischemia and reperfusion. METHODS The effects of aprotinin on leukocyte-endothelial cell interactions were observed by intravital microscopy in the rat mesenteric microcirculation and immunohistochemical analysis. The inflammatory cascade (leukocyte rolling, firm adherence, and transmigration) was studied after thrombin stimulation and after hemorrhage and reperfusion. RESULTS Intravenous bolus administration of aprotinin treatment (20,000 U/kg) significantly reduced leukocyte rolling from 55 +/- 8 to 17 +/- 3 cells/min (p < 0.01) and adherent cells from 12 +/- 2 to 7 +/- 1.4 cells (p < 0.05) along the venous endothelium of the rat mesentery after thrombin activation. In addition, aprotinin pretreatment significantly inhibited transmigration of leukocytes from 11.3 +/- 1.2 to 6.0 +/- 1.1 cells (p < 0.05) through the microvascular endothelial wall. Similarly, aprotinin decreased leukocyte-endothelium interaction after hemorrhagic shock. Moreover, immunohistochemistry demonstrated that aprotinin significantly attenuated P-selectin expression by the intestinal vascular endothelium. CONCLUSIONS. Our data demonstrate that aprotinin potently inhibits recruitment of leukocytes in the microvasculature by interfering with endothelial cell-polymorphonuclear neutrophil interaction, and is a potent endothelial protective agent in clinically relevant doses. Thus, aprotinin pretreatment may be useful for primary prevention of inflammatory tissue injury mediated by ischemia-reperfusion injury such as shock, trauma, open heart operation, or other extensive vascular surgical procedures.
Collapse
Affiliation(s)
- Diethard Pruefer
- Department of Cardiothoracic and Vascular Surgery, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Zamuner SR, Teixeira CFP. Cell adhesion molecules involved in the leukocyte recruitment induced by venom of the snake Bothrops jararaca. Mediators Inflamm 2002; 11:351-7. [PMID: 12581499 PMCID: PMC1781683 DOI: 10.1080/0962935021000051548] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
It has been shown that Bothrops jararaca venom (BjV) induces a significant leukocyte accumulation, mainly neutrophils, at the local of tissue damage. Therefore, the role of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1), LECAM-1, CD18, leukocyte function-associated antigen-1 (LFA-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1) on the BjV-induced neutrophil accumulation and the correlation with release of LTB4, TXA2, tumor necrosis factor-alpha, interleukin (IL)-1 and IL-6 have been investigated. Anti-mouse LECAM-1, LFA-1, ICAM-1 and PECAM-1 monoclonal antibody injection resulted in a reduction of 42%, 80%, 66% and 67%, respectively, of neutrophil accumulation induced by BjV (250 microg/kg, intraperitoneal) injection in male mice compared with isotype-matched control injected animals. The anti-mouse CD18 monoclonal antibody had no significant effect on venom-induced neutrophil accumulation. Concentrations of LTB(4), TXA(2), IL-6 and TNF-alpha were significant increased in the peritoneal exudates of animals injected with venom, whereas no increment in IL-1 was detected. This results suggest that ICAM-1, LECAM-1, LFA-1 and PECAM-1, but not CD18, adhesion molecules are involved in the recruitment of neutrophils into the inflammatory site induced by BjV. This is the first in vivo evidence that snake venom is able to up-regulate the expression of adhesion molecules by both leukocytes and endothelial cells. This venom effect may be indirect, probably through the release of the inflammatory mediators evidenced in the present study.
Collapse
Affiliation(s)
- Stella R Zamuner
- Laboratory of Pharmacology, Butantan Institute, Av. Vital Brazil 1500, São Paulo, SP CEP 05504-900, Brazil
| | | |
Collapse
|
48
|
Zhou T, Chen JL, Song W, Wang F, Zhang MJ, Ni PH, Geng JG. Effect of N-desulfated heparin on hepatic/renal ischemia reperfusion injury in rats. World J Gastroenterol 2002; 8:897-900. [PMID: 12378638 PMCID: PMC4656583 DOI: 10.3748/wjg.v8.i5.897] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of N-desulfated heparin on hepatic/renal ischemia and reperfusion injury in rats.
METHODS: Using rat models of 60 min hepatic or renal ischemia followed by 1 h, 3 h, 6 h and 24 h reperfusion, animals were randomly divided into following groups, the sham operated controls, ischemic group receiving only normal saline, and treated group receiving N-desulfated heparin at a dose of 12 mg/kg at 5 min before reperfusion. P-selectin expression was detected in hepatic/renal tissues with immunohistochemistry method.
RESULTS: P-selectin expression, serum ALT, AST, BUN and Cr levels were significantly increased during 60 minute ischemia and 1 h, 3 h, 6 h and 24 h reperfusion, while the increment was significantly inhibited, and hepatic/renal pathology observed by light microscopy was remarkably improved by treatment with the N-desulfated heparin. Furthermore, the heparin was found no effects on PT and KPTT.
CONCLUSION: P-selectin might mediate neutrophil infiltration and contribute to hepatic/renal ischemia and reperfusion. The N-desulfated heparin might prevent hepatic/renal damage induced by ischemia and reperfusion injury without significant anticoagulant activity.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Nephrology, Ruijin Hospital, Shanghai Second Medical University, Shanghai 200025,China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Lipopolysaccharide (LPS) mimics many of the effects of septic shock, including hypotension. LPS-induced hypotension has been attributed to nitric oxide (NO) activation of leukocytes, oxidants, cytokines, and other causes. However, there are some observations inconsistent with these "biochemical" causes. This study investigated a "physiological" mechanism: Are abdominal vagal afferent neurons involved in LPS-induced hypotension? The involvement of NO and leukocytes was also considered. Intravenous LPS (5 mg/kg) was used to induce hypotension in anesthetized rats. Subdiaphragmatic vagal activity was blocked with perivagal lidocaine (2%). Intravenous capsaicin (CAP, 1 mg/kg) or resiniferatoxin (RTX, 1 microg/kg) were used to inhibit afferent neural activity about 30 min before LPS. CAP and RTX have different receptors on different afferent nerves. Blood pressure, plasma nitrate and nitrite (NOx), stable products of NO, and leukocytes were measured over 3 h. LPS-induced hypotension was markedly attenuated by perivagal lidocaine and i.v. RTX, but was not affected by i.v. CAP. LPS caused a marked, transient decrease in leukocytes, mainly neutrophils, which was over within 10 min. This early leukocyte response was not affected by treatments that reduced LPS-induced hypotension. NO increased 3 h after LPS, and the changes in NO were not associated with effects of the pretreatments on blood pressure. It was concluded that abdominal vagal afferents are early mediators of LPS-induced hypotension. Also, NO and leukocytes were not direct mediators of the hypotension.
Collapse
Affiliation(s)
- David Mailman
- Department of Biology and Biochemistry, University of Houston, Texas 77204, USA
| |
Collapse
|
50
|
Leone M, Boutière B, Camoin-Jau L, Albanèse J, Horschowsky N, Mège JL, Martin C, Dignat-George F. Systemic endothelial activation is greater in septic than in traumatic-hemorrhagic shock but does not correlate with endothelial activation in skin biopsies. Crit Care Med 2002; 30:808-14. [PMID: 11940750 DOI: 10.1097/00003246-200204000-00015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Sepsis and severe trauma result in endothelial activation and damage. The activated endothelium expresses adhesion receptors that control leukocyte trafficking. After activation, some adhesion molecules are also released into plasma as soluble forms. The present study was designed to compare the expression of soluble cell adhesion molecules (sCAMs) in three groups of patients: those with septic shock, severe sepsis, and traumatic-hemorrhagic shock. In addition, the endothelial expression of these adhesive molecules was examined in skin biopsies. DESIGN Prospective observational study SETTING Intensive care unit at a university hospital PATIENTS The study included 15 patients with septic shock (by Bone's definition), 11 patients with severe sepsis (by Bone's definition), and 13 patients with traumatic-hemorrhagic shock. Fifteen healthy blood donors served as controls. MEASUREMENTS AND MAIN RESULTS Measurements of sCAMs were performed on days 1, 2, and 3 of the disease. On day 1, when compared with controls, sE-selectin, sP-selectin, soluble vascular cell adhesion molecule (sVCAM)-1, and soluble intercellular adhesion molecule (sICAM)-1 were markedly elevated in septic shock patients, whereas these sCAMs, except for sP-selectin, were within normal ranges in traumatic-hemorrhagic shock patients. In patients with severe sepsis, an earlier stage than septic shock in the sepsis continuum, intermediate values of sCAMs were found. In skin biopsies of septic shock patients, the endothelial cells expressed a bright staining of constitutive endothelial molecules (CD146, CD144, CD131). Inducible molecules (ICAM-1, VCAM-1, and E-selectin) were positively expressed with bright staining. The biopsies from traumatic-hemorrhagic shock patients showed a similar positive expression of endothelial molecules. CONCLUSION The patterns of sCAMs indicate that the systemic activation of the endothelium is different in the three clinical entities, maximum in septic shock, intermediate in severe sepsis, and not different from controls in traumatic-hemorrhagic shock. Comparable endothelial activation as evidenced by skin biopsies suggests that caution is required in the interpretation of CAMs in plasma, which does not necessarily reflect the in situ activation state of endothelium.
Collapse
Affiliation(s)
- Marc Leone
- Intensive Care Unit and Trauma Center, Unité des Rickettsies, CNRS UMR 6020, France
| | | | | | | | | | | | | | | |
Collapse
|