1
|
Takeishi A, Shaban AK, Kakihana T, Takihara H, Okuda S, Osada H, Suameitria Dewi DNS, Ozeki Y, Yoshida Y, Nishiyama A, Tateishi Y, Aizu Y, Chuma Y, Onishi K, Hayashi D, Yamamoto S, Mukai T, Ato M, Thai DH, Nhi HTT, Shirai T, Shibata S, Obata F, Fujii J, Yamayoshi S, Kiso M, Matsumoto S. Genetic engineering employing MPB70 and its promoter enables efficient secretion and expression of foreign antigen in bacillus Calmette Guérin (BCG) Tokyo. Microbiol Immunol 2024; 68:130-147. [PMID: 38294180 DOI: 10.1111/1348-0421.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Vaccination is an important factor in public health. The recombinant bacillus Calmette Guérin (rBCG) vaccine, which expresses foreign antigens, is expected to be a superior vaccine against infectious diseases. Here, we report a new recombination platform in which the BCG Tokyo strain is transformed with nucleotide sequences encoding foreign protein fused with the MPB70 immunogenic protein precursor. By RNA-sequencing, mpb70 was found to be the most transcribed among all known genes of BCG Tokyo. Small oligopeptide, namely, polyhistidine tag, was able to be expressed in and secreted from rBCG through a process in which polyhistidine tag fused with intact MPB70 were transcribed by an mpb70 promoter. This methodology was applied to develop an rBCG expressing the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2. Immunoblotting images and mass spectrometry data showed that RBD was also secreted from rBCG. Sera from mice vaccinated with the rBCG showed a tendency of weak neutralizing capacity. The secretion was retained even after a freeze-drying process. The freeze-dried rBCG was administered to and recovered from mice. Recovered rBCG kept secreting RBD. Collectively, our recombination platform offers stable secretion of foreign antigens and can be applied to the development of practical rBCGs.
Collapse
Affiliation(s)
- Atsuki Takeishi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Amina K Shaban
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Taichi Kakihana
- Department of Virology, School of Medicine, Niigata University, Niigata, Japan
| | - Hayato Takihara
- Medical AI Center, School of Medicine, Niigata University, Niigata, Japan
| | - Shujiro Okuda
- Medical AI Center, School of Medicine, Niigata University, Niigata, Japan
| | - Hidekazu Osada
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- NIPPON ZENYAKU KOGYO CO., LTD, Fukushima, Japan
| | - Desak Nyoman Surya Suameitria Dewi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Microbiology, Universitas Ciputra, Surabaya, Indonesia
| | - Yuriko Ozeki
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yutaka Yoshida
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yuki Aizu
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Yasushi Chuma
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Kazuyo Onishi
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Daisuke Hayashi
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Saburo Yamamoto
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsu Mukai
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Duong Huu Thai
- Institute of Vaccines and Medical Biologicals, Nha Trang, Vietnam
| | - Huynh Thi Thao Nhi
- Department of BCG production, Institute of Vaccines and Medical Biologicals, Nha Trang, Vietnam
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Satoshi Shibata
- Department of Microbiology and Immunology, Division of Bacteriology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Fumiko Obata
- Department of Microbiology and Immunology, Division of Bacteriology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Jun Fujii
- Department of Microbiology and Immunology, Division of Bacteriology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Seiya Yamayoshi
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Maki Kiso
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Division of Research Aids, Hokkaido University Institute for Vaccine Research & Development, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Guthrie CM, Tan X, Meeker AC, Self AE, Liu L, Cheng Y. Engineering a dual vaccine against COVID-19 and tuberculosis. Front Cell Infect Microbiol 2023; 13:1273019. [PMID: 37965265 PMCID: PMC10641007 DOI: 10.3389/fcimb.2023.1273019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2 virus, has been one of the top public health threats across the world over the past three years. Mycobacterium bovis BCG is currently the only licensed vaccine for tuberculosis, one of the deadliest infectious diseases in the world, that is caused by Mycobacterium tuberculosis. In the past decades, recombinant M.bovis BCG has been studied as a novel vaccine vector for other infectious diseases in humans besides tuberculosis, such as viral infections. In the current study, we generated a recombinant M. bovis BCG strain AspikeRBD that expresses a fusion protein consisting of M. tb Ag85A protein and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein using synthetic biology technique. Our results show that the recombinant M. bovis BCG strain successfully expressed this fusion protein. Interestingly, the recombinant M. bovis BCG strain AspikeRBD significantly induced SARS-CoV-2 spike-specific T cell activation and IgG production in mice when compared to the parental M.bovis BCG strain, and was more potent than the recombinant M.bovis BCG strain expressing SARS-CoV-2 spike RBD alone. As expected, the recombinant M. bovis BCG strain AspikeRBD activated an increased number of M. tb Ag85A-specific IFNγ-releasing T cells and enhanced IgG production in mice when compared to the parental M.bovis BCG strain or the BCG strain expressing SARS-CoV-2 spike RBD alone. Taken together, our results indicate a potential application of the recombinant M. bovis BCG strain AspikeRBD as a novel dual vaccine against SARS-CoV-2 and M. tb in humans.
Collapse
Affiliation(s)
- Carlyn Monèt Guthrie
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
| | - Xuejuan Tan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
| | - Amber Cherry Meeker
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
| | - Ashton Elisabeth Self
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Yong Cheng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
3
|
Gonzalez-Perez M, Sanchez-Tarjuelo R, Shor B, Nistal-Villan E, Ochando J. The BCG Vaccine for COVID-19: First Verdict and Future Directions. Front Immunol 2021; 12:632478. [PMID: 33763077 PMCID: PMC7982405 DOI: 10.3389/fimmu.2021.632478] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Despite of the rapid development of the vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it will take several months to have enough doses and the proper infrastructure to vaccinate a good proportion of the world population. In this interim, the accessibility to the Bacille Calmette-Guerin (BCG) may mitigate the pandemic impact in some countries and the BCG vaccine offers significant advantages and flexibility in the way clinical vaccines are administered. BCG vaccination is a highly cost-effective intervention against tuberculosis (TB) and many low-and lower-middle-income countries would likely have the infrastructure, and health care personnel sufficiently familiar with the conventional TB vaccine to mount full-scale efforts to administer novel BCG-based vaccine for COVID-19. This suggests the potential for BCG to overcome future barriers to vaccine roll-out in the countries where health systems are fragile and where the effects of this new coronavirus could be catastrophic. Many studies have reported cross-protective effects of the BCG vaccine toward non-tuberculosis related diseases. Mechanistically, this cross-protective effect of the BCG vaccine can be explained, in part, by trained immunity, a recently discovered program of innate immune memory, which is characterized by non-permanent epigenetic reprogramming of macrophages that leads to increased inflammatory cytokine production and consequently potent immune responses. In this review, we summarize recent work highlighting the potential use of BCG for the treatment respiratory infectious diseases and ongoing SARS-CoV-2 clinical trials. In situations where no other specific prophylactic tools are available, the BCG vaccine could be used as a potential adjuvant, to decrease sickness of SARS-CoV-2 infection and/or to mitigate the effects of concurrent respiratory infections.
Collapse
Affiliation(s)
- Maria Gonzalez-Perez
- Transplant Immunology Unit, Department of Immunology, National Center of Microbiology, Instituto De Salud Carlos III, Madrid, Spain
| | - Rodrigo Sanchez-Tarjuelo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Boris Shor
- Manhattan BioSolutions, New York, NY, United States
| | - Estanislao Nistal-Villan
- Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-Centro de Estudios Universitarios (CEU), Madrid, Spain
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, Madrid, Spain
| | - Jordi Ochando
- Transplant Immunology Unit, Department of Immunology, National Center of Microbiology, Instituto De Salud Carlos III, Madrid, Spain
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Angelidou A, Diray-Arce J, Conti MG, Smolen KK, van Haren SD, Dowling DJ, Husson RN, Levy O. BCG as a Case Study for Precision Vaccine Development: Lessons From Vaccine Heterogeneity, Trained Immunity, and Immune Ontogeny. Front Microbiol 2020; 11:332. [PMID: 32218774 PMCID: PMC7078104 DOI: 10.3389/fmicb.2020.00332] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Vaccines have been traditionally developed with the presumption that they exert identical immunogenicity regardless of target population and that they provide protection solely against their target pathogen. However, it is increasingly appreciated that vaccines can have off-target effects and that vaccine immunogenicity can vary substantially with demographic factors such as age and sex. Bacille Calmette-Guérin (BCG), the live attenuated Mycobacterium bovis vaccine against tuberculosis (TB), represents a key example of these concepts. BCG vaccines are manufactured under different conditions across the globe generating divergent formulations. Epidemiologic studies have linked early life immunization with certain BCG formulations to an unanticipated reduction (∼50%) in all-cause mortality, especially in low birthweight males, greatly exceeding that attributable to TB prevention. This mortality benefit has been related to prevention of sepsis and respiratory infections suggesting that BCG induces "heterologous" protection against unrelated pathogens. Proposed mechanisms for heterologous protection include vaccine-induced immunometabolic shifts, epigenetic reprogramming of innate cell populations, and modulation of hematopoietic stem cell progenitors resulting in altered responses to subsequent stimuli, a phenomenon termed "trained immunity." In addition to genetic differences, licensed BCG formulations differ markedly in content of viable mycobacteria key for innate immune activation, potentially contributing to differences in the ability of these diverse formulations to induce TB-specific and heterologous protection. BCG immunomodulatory properties have also sparked interest in its potential use to prevent or alleviate autoimmune and inflammatory diseases, including type 1 diabetes mellitus and multiple sclerosis. BCG can also serve as a model: nanoparticle vaccine formulations incorporating Toll-like receptor 8 agonists can mimic some of BCG's innate immune activation, suggesting that aspects of BCG's effects can be induced with non-replicating stimuli. Overall, BCG represents a paradigm for precision vaccinology, lessons from which will help inform next generation vaccines.
Collapse
Affiliation(s)
- Asimenia Angelidou
- Division of Newborn Medicine, Boston Children’s Hospital and Beth Israel Deaconess Medical Center, Boston, MA, United States
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Maria Giulia Conti
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Kinga K. Smolen
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Simon Daniël van Haren
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - David J. Dowling
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Robert N. Husson
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
5
|
Kim BJ, Kim BR, Kook YH, Kim BJ. Potential of recombinant Mycobacterium paragordonae expressing HIV-1 Gag as a prime vaccine for HIV-1 infection. Sci Rep 2019; 9:15515. [PMID: 31664100 PMCID: PMC6820866 DOI: 10.1038/s41598-019-51875-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
Recombinant Mycobacterium strains such as recombinant BCG (rBCG) have received considerable attention for the HIV-1 vaccine development. Recently, we described a temperature-sensitive Mycobacterium paragordonae (Mpg) strain as a novel live tuberculosis vaccine that is safer and showed an enhanced protective effect against mycobacterial infection compared to BCG. We studied the possibility of developing a vaccine against HIV-1 infection using rMpg strain expressing the p24 antigen (rMpg-p24). We observed that rMpg-p24 can induce an increased p24 expression in infected antigen presenting cells (APCs) compared to rBCG-p24. We also observed that rMpg-p24 can induce enhanced p24 specific immune responses in vaccinated mice as evidenced by increased p24-specific T lymphocyte proliferation, gamma interferon induction, antibody production and cytotoxic T lymphocyte (CTL) responses. Furthermore, an rMpg-p24 prime and plasmid DNA boost showed an increased CTL response and antibody production compared to rBCG or rMpg alone. In summary, our study indicates that a live rMpg-p24 strain induced enhanced immune responses against HIV-1 Gag in vaccinated mice. Thus, rMpg-p24 may have potential as a preventive prime vaccine in a heterologous prime-boost regimen for HIV-1 infection.
Collapse
Affiliation(s)
- Byoung-Jun Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea.
| |
Collapse
|
6
|
Kim BJ, Kim BR, Kook YH, Kim BJ. Development of a Live Recombinant BCG Expressing Human Immunodeficiency Virus Type 1 (HIV-1) Gag Using a pMyong2 Vector System: Potential Use As a Novel HIV-1 Vaccine. Front Immunol 2018; 9:643. [PMID: 29636755 PMCID: PMC5880907 DOI: 10.3389/fimmu.2018.00643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/14/2018] [Indexed: 01/22/2023] Open
Abstract
Even though the rate of new human immunodeficiency virus type 1 (HIV-1) infections is gradually decreasing worldwide, an effective preventive vaccine for HIV-1 is still urgently needed. The recombinant Mycobacterium bovis BCG (rBCG) is promising for the development of an HIV-1 vaccine. Recently, we showed that a recombinant Mycobacterium smegmatis expressing HIV-1 gag in a pMyong2 vector system (rSmeg-pMyong2-p24) increased the efficacy of a vaccine against HIV-1 in mice. Here, we evaluated the potential of an rBCG expressing HIV-1 p24 antigen Gag in pMyong2 (rBCG-pMyong2-p24) in a vaccine application for HIV-1 infection. We found that rBCG-pMyong2-p24 elicited an enhanced HIV-1 p24 Gag expression in rBCG and infected antigen-presenting cells. We also found that compared to rBCG-pAL-p24 in a pAL5000 derived vector system, rBCG-pMyong2-p24 elicited enhanced p24-specific immune responses in vaccinated mice as evidenced by higher levels of HIV-1 Gag-specific CD4 and CD8 T lymphocyte proliferation, gamma interferon ELISPOT cell induction, antibody production, and cytotoxic T lymphocytes (CTL) responses. Furthermore, rBCG-pMyong2-p24 showed a higher level of p24-specific Ab production than rSmeg-pMyong2-p24 in the same pMyong2 vector system. In conclusion, our data indicated that a live recombinant BCG expressing HIV-1 Gag using a pMyong2 vector system, rBCG-pMyong2-p24 elicited an enhanced immune response against HIV-1 infections in a mouse model system. So, rBCG-pMyong2-p24 may have the potential as a prime vaccine in a heterologous prime-boost vaccine strategy for HIV-1 infection.
Collapse
Affiliation(s)
- Byoung-Jun Kim
- Department of Microbiology and Immunology, Biomedical Sciences, College of Medicine, Liver Research Institute, Seoul National University, Seoul, South Korea
- Department of Microbiology and Immunology, Biomedical Sciences, College of Medicine, Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Biomedical Sciences, College of Medicine, Liver Research Institute, Seoul National University, Seoul, South Korea
- Department of Microbiology and Immunology, Biomedical Sciences, College of Medicine, Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Biomedical Sciences, College of Medicine, Liver Research Institute, Seoul National University, Seoul, South Korea
- Department of Microbiology and Immunology, Biomedical Sciences, College of Medicine, Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, College of Medicine, Liver Research Institute, Seoul National University, Seoul, South Korea
- Department of Microbiology and Immunology, Biomedical Sciences, College of Medicine, Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Oliveira TL, Rizzi C, Dellagostin OA. Recombinant BCG vaccines: molecular features and their influence in the expression of foreign genes. Appl Microbiol Biotechnol 2017; 101:6865-6877. [PMID: 28779291 DOI: 10.1007/s00253-017-8439-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 01/17/2023]
Abstract
Recombinant Mycobacterium bovis BCG vaccines (rBCG) were first developed in the 1990s as a means of expressing antigens from multiple pathogens. This review examines the key structural factors of recombinant M. bovis that influence the expression of the heterologous antigens and the generation of genetic and functional stability in rBCG, which are crucial for inducing strong and lasting immune responses. The fundamental aim of this paper is to provide an overview of factors that affect the expression of recombinant proteins in BCG and the generation of the immune response against the target antigens, including mycobacterial promoters, location of foreign antigens, and stability of the vectors. The reporter systems that have been employed for evaluation of these molecular features in BCG are also reviewed here.
Collapse
Affiliation(s)
- Thaís Larré Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Caroline Rizzi
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil. .,Unidade de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário, Caixa Postal 354, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
8
|
Kim BJ, Gong JR, Kim GN, Kim BR, Lee SY, Kook YH, Kim BJ. Recombinant Mycobacterium smegmatis with a pMyong2 vector expressing Human Immunodeficiency Virus Type I Gag can induce enhanced virus-specific immune responses. Sci Rep 2017; 7:44776. [PMID: 28300196 PMCID: PMC5353558 DOI: 10.1038/srep44776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/19/2016] [Indexed: 11/22/2022] Open
Abstract
Recently, we have developed a novel Mycobacterium-Escherichia coli shuttle vector system using pMyong2, which can provide an enhanced expression of heterologous genes in recombinant Mycobacterium smegmatis (rSmeg). To investigate the usefulness of rSmeg using pMyong2 in vaccine application, we vaccinated M. smegmatis with pMyong2 system expressing Human Immunodeficiency Virus Type I (HIV-1) Gag p24 antigen (rSmeg-pMyong2-p24) into mice and examined its cellular and humoral immune responses against HIV gag protein. We found that rSmeg-pMyong2-p24 expressed higher levels of Gag protein in bacteria, macrophage cell line (J774A.1) and mouse bone marrow derived dendritic cells (BMDCs) compared to rSmeg strains using two other vector systems, pAL5000 derived vector (rSmeg-pAL-p24) and the integrative plasmid, pMV306 (rSmeg-pMV306-p24). Inoculation of mice with rSmeg-pMyong2-p24 elicited more effective immunity compared to the other two rSmeg strains, as evidenced by higher levels of HIV-1 Gag-specific CD4 and CD8 T lymphocyte proliferation, interferon gamma ELISPOT cell induction, and antibody production. Furthermore, rSmeg-pMyong2-p24 showed a higher level of cytotoxic T cell response against target cells expressing Gag p24 proteins. Our data suggest that Mycobacterium-Escherichia coli shuttle vector system with pMyong2 may provide an advantage in vaccine application of rSmeg over other vector systems.
Collapse
Affiliation(s)
- Byoung-Jun Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Jeong-Ryeol Gong
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Ga-Na Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - So-Young Lee
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
9
|
Ozeki Y, Igarashi M, Doe M, Tamaru A, Kinoshita N, Ogura Y, Iwamoto T, Sawa R, Umekita M, Enany S, Nishiuchi Y, Osada-Oka M, Hayashi T, Niki M, Tateishi Y, Hatano M, Matsumoto S. A New Screen for Tuberculosis Drug Candidates Utilizing a Luciferase-Expressing Recombinant Mycobacterium bovis Bacillus Calmette-Guéren. PLoS One 2015; 10:e0141658. [PMID: 26571296 PMCID: PMC4646695 DOI: 10.1371/journal.pone.0141658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/12/2015] [Indexed: 02/04/2023] Open
Abstract
Tuberculosis (TB) is a serious infectious disease caused by a bacterial pathogen. Mortality from tuberculosis was estimated at 1.5 million deaths worldwide in 2013. Development of new TB drugs is needed to not only to shorten the medication period but also to treat multi-drug resistant and extensively drug-resistant TB. Mycobacterium tuberculosis (Mtb) grows slowly and only multiplies once or twice per day. Therefore, conventional drug screening takes more than 3 weeks. Additionally, a biosafety level-3 (BSL-3) facility is required. Thus, we developed a new screening method to identify TB drug candidates by utilizing luciferase-expressing recombinant Mycobacterium bovis bacillus Calmette-Guéren (rBCG). Using this method, we identified several candidates in 4 days in a non-BSL-3 facility. We screened 10,080 individual crude extracts derived from Actinomyces and Streptomyces and identified 137 extracts which possessed suppressive activity to the luciferase of rBCG. Among them, 41 compounds inhibited the growth of both Mtb H37Rv and the extensively drug-resistant Mtb (XDR-Mtb) strains. We purified the active substance of the 1904–1 extract, which possessed strong activity toward rBCG, Mtb H37Rv, and XDR-Mtb but was harmless to the host eukaryotic cells. The MIC of this substance was 0.13 μg/ml, 0.5 μg/ml, and 2.0–7.5 μg/ml against rBCG, H37Rv, and 2 XDR-strains, respectively. Its efficacy was specific to acid-fast bacterium except for the Mycobacterium avium intracellular complex. Mass spectrometry and nuclear magnetic resonance analyses revealed that the active substance of 1904–1 was cyclomarin A. To confirm the mode of action of the 1904-1-derived compound, resistant BCG clones were used. Whole genome DNA sequence analysis showed that these clones contained a mutation in the clpc gene which encodes caseinolytic protein, an essential component of an ATP-dependent proteinase, and the likely target of the active substance of 1904–1. Our method provides a rapid and convenient screen to identify an anti-mycobacterial drug.
Collapse
Affiliation(s)
- Yuriko Ozeki
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- * E-mail:
| | - Masayuki Igarashi
- Department of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Matsumi Doe
- Graduate School of Sciences, Osaka City University, Osaka, Japan
| | - Aki Tamaru
- Bacteriology Division, Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Naoko Kinoshita
- Department of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Yoshitoshi Ogura
- Division of Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Tomotada Iwamoto
- Department of Microbiology, Kobe Institute of Health, Kobe, Japan
| | - Ryuichi Sawa
- Department of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Maya Umekita
- Department of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Shymaa Enany
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Yukiko Nishiuchi
- Toneyama Institute for Tuberculosis Research, Osaka City University Medical School, Osaka, Japan
| | - Mayuko Osada-Oka
- Food Hygiene and Environmental Health Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Tetsuya Hayashi
- Division of Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Mamiko Niki
- Department of Bacteriology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Hatano
- Department of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
10
|
Deng S, Martin C, Patil R, Zhu F, Zhao B, Xiang Z, He Y. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis. Vaccine 2015; 33:6938-46. [PMID: 26403370 DOI: 10.1016/j.vaccine.2015.07.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/23/2015] [Indexed: 01/12/2023]
Abstract
A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development.
Collapse
Affiliation(s)
- Shunzhou Deng
- Department of Veterinary Medicine, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Carly Martin
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rasika Patil
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Felix Zhu
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bin Zhao
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; School of Information, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zuoshuang Xiang
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Mohamad D, Suppian R, Mohd Nor N. Immunomodulatory effects of recombinant BCG expressing MSP-1C of Plasmodium falciparum on LPS- or LPS+IFN-γ-stimulated J774A.1 cells. Hum Vaccin Immunother 2014; 10:1880-6. [PMID: 25424796 DOI: 10.4161/hv.28695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Macrophage phagocytosis is the first line of defense of the innate immune system against malaria parasite infection. This study evaluated the immunomodulatory effects of BCG and recombinant BCG (rBCG) strains expressing the C-terminus of the merozoite surface protein-1 (MSP-1C) of Plasmodium falciparum on mouse macrophage cell line J774A.1 in the presence or absence of lipopolysaccharide (LPS) or LPS + IFN-γ. The rBCG strain significantly enhanced phagocytic activity, production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, nitric oxide (NO), and inducible nitric oxide synthase (iNOS) as compared with parental BCG strain, and these activities increased in the presence of LPS and LPS+IFN-γ. Furthermore, the rBCG strain also significantly reduced the macrophage viability as well as the rBCG growth suggesting the involvement of macrophage apoptosis. Taken together, these data indicate that the rBCG strain has an immunomodulatory effect on macrophages, thus strengthen the rational use of rBCG to control malaria infection.
Collapse
Affiliation(s)
- Dhaniah Mohamad
- a School of Health Sciences; Health Campus; Universiti Sains Malaysia; Kelantan, Malaysia
| | | | | |
Collapse
|
12
|
Chapman R, Bourn WR, Shephard E, Stutz H, Douglass N, Mgwebi T, Meyers A, Chin'ombe N, Williamson AL. The use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen. PLoS One 2014; 9:e103314. [PMID: 25061753 PMCID: PMC4111510 DOI: 10.1371/journal.pone.0103314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/28/2014] [Indexed: 01/09/2023] Open
Abstract
Numerous features make Mycobacterium bovis BCG an attractive vaccine vector for HIV. It has a good safety profile, it elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable. Despite these advantages it is often difficult to express viral antigens in BCG, which results in genetic instability and low immunogenicity. The aim of this study was to generate stable recombinant BCG (rBCG) that express high levels of HIV antigens, by modification of the HIV genes. A directed evolution process was applied to recombinant mycobacteria that expressed HIV-1 Gag fused to the green fluorescent protein (GFP). Higher growth rates and increased GFP expression were selected for. Through this process a modified Gag antigen was selected. Recombinant BCG that expressed the modified Gag (BCG[pWB106] and BCG[pWB206]) were more stable, produced higher levels of antigen and grew faster than those that expressed the unmodified Gag (BCG[pWB105]). The recombinant BCG that expressed the modified HIV-1 Gag induced 2 to 3 fold higher levels of Gag-specific CD4 T cells than those expressing the unmodified Gag (BCG[pWB105]). Mice primed with 107 CFU BCG[pWB206] and then boosted with MVA-Gag developed Gag-specific CD8 T cells with a frequency of 1343±17 SFU/106 splenocytes, 16 fold greater than the response induced with MVA-Gag alone. Levels of Gag-specific CD4 T cells were approximately 5 fold higher in mice primed with BCG[pWB206] and boosted with MVA-Gag than in those receiving the MVA-Gag boost alone. In addition mice vaccinated with BCG[pWB206] were protected from a surrogate vaccinia virus challenge.
Collapse
Affiliation(s)
- Rosamund Chapman
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - William R. Bourn
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Enid Shephard
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Medical Research Council, Cape Town, South Africa
- Department of Medicine Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Helen Stutz
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicola Douglass
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thandi Mgwebi
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Department of Molecular and Cell Biology, Faculty Of Science, University of Cape Town, Cape Town, South Africa
| | - Nyasha Chin'ombe
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Cape Town, South Africa
| |
Collapse
|
13
|
Abstract
Malaria is a life-threatening disease caused by parasites of the Plasmodium genus. In many parts of the world, the parasites have developed resistance to a number of antimalarial agents. Key interventions to control malaria include prompt and effective treatment with artemisinin-based combination therapies, use of insecticidal nets by individuals at risk and active research into malaria vaccines. Protection against malaria through vaccination was demonstrated more than 30 years ago when individuals were vaccinated via repeated bites by Plasmodium falciparum-infected and irradiated but still metabolically active mosquitoes. However, vaccination with high doses of irradiated sporozoites injected into humans has long been considered impractical. Yet, following recent success using whole-organism vaccines, the approach has received renewed interest; it was recently reported that repeated injections of irradiated sporozoites increased protection in 80 vaccinated individuals. Other approaches include subunit malaria vaccines, such as the current leading candidate RTS,S (consisting of fusion between a portion of the P. falciparum-derived circumsporozoite protein and the hepatitis B surface antigen), which has been demonstrated to induce reasonably good protection. Although results have been encouraging, the level of protection is generally considered to be too low to achieve eradication of malaria. There is great interest in developing new and better formulations and stable delivery systems to improve immunogenicity. In this review, we will discuss recent strategies to develop efficient malaria vaccines.
Collapse
Affiliation(s)
- C Arama
- Malaria Research and Training Center, University of Sciences Techniques and Technologies of Bamako (USTTB), Bamako, Mali; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
14
|
Kaufmann SH, Cotton MF, Eisele B, Gengenbacher M, Grode L, Hesseling AC, Walzl G. The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Rev Vaccines 2014; 13:619-30. [PMID: 24702486 DOI: 10.1586/14760584.2014.905746] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tuberculosis remains a major health threat and vaccines better than bacillus Calmette-Guérin (BCG) are urgently required. Here we describe our experience with a recombinant BCG expressing listeriolysin and deficient in urease. This potential replacement vaccine has demonstrated superior efficacy and safety over BCG in Mycobacterium tuberculosis aerosol-challenged mice and was safe in numerous animal models including immune-deficient mice, guinea pigs, rabbits and nonhuman primates. Phase I clinical trials in adults in Germany and South Africa have proven safety and a current Phase IIa trial is under way to assess immunogenicity and safety in its target population, newborns in a high tuberculosis incidence setting, with promising early results. Second-generation candidates are being developed to improve safety and efficacy.
Collapse
Affiliation(s)
- Stefan He Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Protective immunity induced by a recombinant BCG vaccine encoding the cyclophilin gene of Toxoplasma gondii. Vaccine 2013; 31:6065-71. [DOI: 10.1016/j.vaccine.2013.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/14/2013] [Accepted: 10/03/2013] [Indexed: 01/18/2023]
|
16
|
Alaro JR, Partridge A, Miura K, Diouf A, Lopez AM, Angov E, Long CA, Burns JM. A chimeric Plasmodium falciparum merozoite surface protein vaccine induces high titers of parasite growth inhibitory antibodies. Infect Immun 2013; 81:3843-54. [PMID: 23897613 PMCID: PMC3811772 DOI: 10.1128/iai.00522-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/23/2013] [Indexed: 01/20/2023] Open
Abstract
The C-terminal 19-kDa domain of Plasmodium falciparum merozoite surface protein 1 (PfMSP119) is an established target of protective antibodies. However, clinical trials of PfMSP142, a leading blood-stage vaccine candidate which contains the protective epitopes of PfMSP119, revealed suboptimal immunogenicity and efficacy. Based on proof-of-concept studies in the Plasmodium yoelii murine model, we produced a chimeric vaccine antigen containing recombinant PfMSP119 (rPfMSP119) fused to the N terminus of P. falciparum merozoite surface protein 8 that lacked its low-complexity Asn/Asp-rich domain, rPfMSP8 (ΔAsn/Asp). Immunization of mice with the chimeric rPfMSP1/8 vaccine elicited strong T cell responses to conserved epitopes associated with the rPfMSP8 (ΔAsn/Asp) fusion partner. While specific for PfMSP8, this T cell response was adequate to provide help for the production of high titers of antibodies to both PfMSP119 and rPfMSP8 (ΔAsn/Asp) components. This occurred with formulations adjuvanted with either Quil A or with Montanide ISA 720 plus CpG oligodeoxynucleotide (ODN) and was observed in both inbred and outbred strains of mice. PfMSP1/8-induced antibodies were highly reactive with two major alleles of PfMSP119 (FVO and 3D7). Of particular interest, immunization with PfMSP1/8 elicited higher titers of PfMSP119-specific antibodies than a combined formulation of rPfMSP142 and rPfMSP8 (ΔAsn/Asp). As a measure of functionality, PfMSP1/8-specific rabbit IgG was shown to potently inhibit the in vitro growth of blood-stage parasites of the FVO and 3D7 strains of P. falciparum. These data support the further testing and evaluation of this chimeric PfMSP1/8 antigen as a component of a multivalent vaccine for P. falciparum malaria.
Collapse
Affiliation(s)
- James R. Alaro
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Andrea Partridge
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kazutoyo Miura
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ababacar Diouf
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ana M. Lopez
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Evelina Angov
- U.S. Military Malaria Research Program, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Carole A. Long
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - James M. Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Kaufmann SHE, Gengenbacher M. Recombinant live vaccine candidates against tuberculosis. Curr Opin Biotechnol 2012; 23:900-7. [DOI: 10.1016/j.copbio.2012.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/05/2012] [Accepted: 03/12/2012] [Indexed: 11/28/2022]
|
18
|
Protection by a recombinant Mycobacterium bovis Bacillus Calmette-Guerin vaccine expressing Shiga toxin 2 B subunit against Shiga toxin-producing Escherichia coli in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1932-7. [PMID: 23035176 DOI: 10.1128/cvi.00473-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have developed a novel vaccine against Shiga toxin (Stx)-producing Escherichia coli (STEC) infection using a recombinant Mycobacterium bovis BCG (rBCG) system. Two intraperitoneal vaccinations with rBCG expressing the Stx2 B subunit (Stx2B) resulted in an increase of protective serum IgG and mucosal IgA responses to Stx2B in BALB/c mice. When orally challenged with 10(3) CFU of STEC strain B2F1 (O91: H21), the immunized mice survived statistically significantly longer than the nonvaccinated mice. We suggest that intraperitoneal immunization with rBCG expressing Stx2B would be a potential vaccine strategy for STEC.
Collapse
|
19
|
Matsumoto S. [Analysis of molecular mechanisms of the virulence and growth coordination of Mycobacterium tuberculosis]. Nihon Saikingaku Zasshi 2011; 66:531-537. [PMID: 22214749 DOI: 10.3412/jsb.66.531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Sohkichi Matsumoto
- Department of Bacteriology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
20
|
Hopkins R, Bridgeman A, Bourne C, Mbewe-Mvula A, Sadoff JC, Both GW, Joseph J, Fulkerson J, Hanke T. Optimizing HIV-1-specific CD8+ T-cell induction by recombinant BCG in prime-boost regimens with heterologous viral vectors. Eur J Immunol 2011; 41:3542-52. [PMID: 21932450 DOI: 10.1002/eji.201141962] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/18/2011] [Accepted: 09/12/2011] [Indexed: 11/07/2022]
Abstract
The desire to induce HIV-1-specific responses soon after birth to prevent breast milk transmission of HIV-1 led us to propose a vaccine regimen which primes HIV-1-specific T cells using a recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vaccine. Because attenuated live bacterial vaccines are typically not sufficiently immunogenic as stand-alone vaccines, rBCG-primed T cells will likely require boost immunization(s). Here, we compared modified Danish (AERAS-401) and Pasteur lysine auxotroph (222) strains of BCG expressing the immunogen HIVA for their potency to prime HIV-1-specific responses in adult BALB/c mice and examined four heterologous boosting HIVA vaccines for their immunogenic synergy. We found that both BCG.HIVA(401) and BCG.HIVA(222) primed HIV-1-specific CD8(+) T-cell-mediated responses. The strongest boosts were delivered by human adenovirus-vectored HAdV5.HIVA and sheep atadenovirus-vectored OAdV7.HIVA vaccines, followed by poxvirus MVA.HIVA; the weakest was plasmid pTH.HIVA DNA. The prime-boost regimens induced T cells capable of efficient in vivo killing of sensitized target cells. We also observed that the BCG.HIVA(401) and BCG.HIVA(222) vaccines have broadly similar immunologic properties, but display a number of differences mainly detected through distinct profiles of soluble intercellular signaling molecules produced by immune splenocytes in response to both HIV-1- and BCG-specific stimuli. These results encourage further development of the rBCG prime-boost regimen.
Collapse
Affiliation(s)
- Richard Hopkins
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Arama C, Waseem S, Fernández C, Assefaw-Redda Y, You L, Rodriguez A, Radošević K, Goudsmit J, Kaufmann SHE, Reece ST, Troye-Blomberg M. A recombinant Bacille Calmette-Guérin construct expressing the Plasmodium falciparum circumsporozoite protein enhances dendritic cell activation and primes for circumsporozoite-specific memory cells in BALB/c mice. Vaccine 2011; 30:5578-84. [PMID: 21983157 DOI: 10.1016/j.vaccine.2011.09.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/29/2011] [Accepted: 09/01/2011] [Indexed: 11/18/2022]
Abstract
A protective malaria vaccine may induce both high levels of neutralising antibodies and strong T-cell responses. The Plasmodium falciparum circumsporozoite protein (CSp) is a leading pre-erythrocytic vaccine candidate. CSp is a week immunogen per se, but Mycobacterium bovis Bacille Calmette-Guérin (BCG) has excellent adjuvant activity and has been utilized as a vector to deliver heterologous vaccine candidate antigens. It is safe in immunocompetent individuals and inexpensive to produce. We assessed in vitro and in vivo a recombinant BCG-expressing CSp (BCG-CS) as malaria vaccine candidate. Immunisation of BALB/c mice with BCG-CS augmented numbers of dendritic cells (DCs) in draining lymph nodes and in the spleen. The activation markers MHC-class-II, CD40, CD80 and CD86 on DCs were significantly upregulated by BCG-CS as compared to wild-type BCG (wt-BCG). In vitro stimulation of bone marrow-derived DCs and macrophages with BCG-CS induced IL-12 and TNF-α production. BCG-CS induced higher phagocytic activity in macrophages as compared to wt-BCG. Immunogenicity studies show that BCG-CS induced CS-specific antibodies and IFN-γ-producing memory cells. In conclusion, BCG-CS is highly efficient in activating antigen-presenting cells (APCs) for priming of adaptive immunity. Implications for the rational design of novel vaccines against malaria and TB, the two major devastating poverty-related diseases, are discussed.
Collapse
Affiliation(s)
- Charles Arama
- Department of Immunology, Wenner-Gren Institute, Stockholm University, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mycobacterium bovis Bacille Calmette-Guérin as a Vaccine Vector for Global Infectious Disease Control. Tuberc Res Treat 2011; 2011:574591. [PMID: 22567267 PMCID: PMC3335490 DOI: 10.1155/2011/574591] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/07/2011] [Indexed: 01/19/2023] Open
Abstract
Mycobacterium bovis bacille Calmette-Guérin (BCG) is the only available vaccine for tuberculosis (TB). Although this vaccine is effective in controlling infantile TB, BCG-induced protective effects against pulmonary diseases in adults have not been clearly demonstrated. Recombinant BCG (rBCG) technology has been extensively applied to obtain more potent immunogenicity of this vaccine, and several candidate TB vaccines have currently reached human clinical trials. On the other hand, recent progress in the improvement of the BCG vector, such as the codon optimization strategy and combination with viral vector boost, allows us to utilize this bacterium in HIV vaccine development. In this paper, we review recent progress in rBCG-based vaccine studies that may have implications in the development of novel vaccines for controlling global infectious diseases in the near future.
Collapse
|
23
|
Nurul AA, Norazmi MN. Immunogenicity and in vitro protective efficacy of recombinant Mycobacterium bovis bacille Calmette Guerin (rBCG) expressing the 19 kDa merozoite surface protein-1 (MSP-1(19)) antigen of Plasmodium falciparum. Parasitol Res 2011; 108:887-97. [PMID: 21057812 DOI: 10.1007/s00436-010-2130-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
Abstract
Vaccine development against the blood-stage malaria parasite is aimed at reducing the pathology of the disease. We constructed a recombinant Mycobacterium bovis bacille Calmette Guerin (rBCG) expressing the 19 kDa C-terminus of Plasmodium falciparum merozoite surface protein-1 (MSP-1(19)) to evaluate its protective ability against merozoite invasion of red blood cells in vitro. A mutated version of MSP-1(19), previously shown to induce the production of inhibitory but not blocking antibodies, was cloned into a suitable shuttle plasmid and transformed into BCG Japan (designated rBCG016). A native version of the molecule was also cloned into BCG (rBCG026). Recombinant BCG expressing the mutated version of MSP-1(19) (rBCG016) elicited enhanced specific immune response against the epitope in BALB/c mice as compared to rBCG expressing the native version of the epitope (rBCG026). Sera from rBCG016-immunized mice contained significant levels of specific IgG, especially of the IgG2a subclass, against MSP-1(19) as determined by enzyme-linked immunosorbent assay. The sera was reactive with fixed P. falciparum merozoites as demonstrated by indirect immunofluorescence assay (IFA) and inhibited merozoite invasion of erythrocytes in vitro. Furthermore, lymphocytes from rBCG016-immunized mice demonstrated higher proliferative response against the MSP-1(19) antigen as compared to those of rBCG026- and BCG-immunized animals. rBCG expressing the mutated version of MSP-1(19) of P. falciparum induced enhanced humoral and cellular responses against the parasites paving the way for the rational use of rBCG as a blood-stage malaria vaccine candidate.
Collapse
Affiliation(s)
- Asma Abdullah Nurul
- School of Dental Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | | |
Collapse
|
24
|
Construction of an unmarked recombinant BCG expressing a pertussis antigen by auxotrophic complementation: protection against Bordetella pertussis challenge in neonates. Vaccine 2009; 27:7346-51. [PMID: 19782111 DOI: 10.1016/j.vaccine.2009.09.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/02/2009] [Accepted: 09/13/2009] [Indexed: 10/20/2022]
Abstract
Mycobacterium bovis BCG has long been investigated as a candidate for heterologous antigen presentation. We have previously described an rBCG-Pertussis that confers protection against challenge with Bordetella pertussis in neonate and adult mice. In order to obtain stable expression in vivo, we constructed an unmarked BCG lysine auxotrophic and a complementation vector containing the lysine and the genetically detoxified S1 pertussis toxin genes, both under control of the same promoter. Complemented BCG-Delta lysine growth and expression of the pertussis antigen were stable, without the use of an antibiotic marker. Our results show that the complemented rBCG-Delta lysA-S1PT-lysA(+)(kan(-)), which is now suitable to be evaluated in clinical trials, maintains similar characteristics of the original rBCG-pNL71S1PT strain, such as the antigen expression level, cellular immune response and protection against the same model challenge in neonatal-immunized mice.
Collapse
|
25
|
Recombinant Mycobacterium bovis BCG. Vaccine 2009; 27:6495-503. [PMID: 19720367 DOI: 10.1016/j.vaccine.2009.08.044] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 12/14/2022]
Abstract
The Bacillus Calmette-Guerin (BCG) is an attenuated strain of Mycobacterium bovis that has been broadly used as a vaccine against human tuberculosis. This live bacterial vaccine is able to establish a persistent infection and induces both cellular and humoral immune responses. The development of mycobacterial genetic systems to express foreign antigens and the adjuvanticity of BCG are the basis of the potential use of this attenuated mycobacterium as a recombinant vaccine. Over the years, a range of strategies has been developed to allow controlled and stable expression of viral, bacterial and parasite antigens in BCG. Herein, we review the strategies developed to express heterologous antigens in BCG and the immune response elicited by recombinant BCG constructs. In addition, the use of recombinant BCG as an immunomodulator and future perspectives of BCG as a recombinant vaccine vector are discussed.
Collapse
|
26
|
Rahman MJ, Fernández C. Neonatal vaccination with Mycobacterium bovis BCG: potential effects as a priming agent shown in a heterologous prime-boost immunization protocol. Vaccine 2009; 27:4038-46. [PMID: 19379788 DOI: 10.1016/j.vaccine.2009.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/02/2009] [Accepted: 04/09/2009] [Indexed: 12/20/2022]
Abstract
In general prime-boost immunization including Mycobacterium bovis bacille Calmette-Guérin (BCG) as a priming agent has been a recent successful strategy in animal models. However, the effects of BCG as a priming vaccine have not been investigated systematically. Thus, we modelled a heterologous prime-boost immunization in mice with BCG administered at the neonatal period and mycobacterial heparin-binding hemagglutinin (HBHA) at adult ages. Mice were challenged with a high dose of BCG (10(7) colony forming units) via intranasal (i.n.) route. We addressed whether the route of administration and addition of adjuvants could be of importance in HBHA-immunizations while animals were primed with BCG. Our results showed that prime-boost immunization induced significantly higher levels of protection in animals compared to the group vaccinated with BCG alone. Most importantly, the levels of protection were comparable between the i.n. and subcutaneous (s.c.) boostings with native (n) HBHA and the coadministration of adjuvant was not necessary. Moreover, priming with BCG improved also the protection promoted by the recombinant form of HBHA, even if to a lower degree to that observed after nHBHA boosting. In general, vaccination with BCG prior to the HBHA administration was found to contribute in two ways: it primed the immune system and provided adjuvant effect. We discuss the several outcomes following neonatal BCG priming and HBHA boosting for better protection against tuberculosis.
Collapse
Affiliation(s)
- Muhammad Jubayer Rahman
- Department of Immunology, Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.
| | | |
Collapse
|
27
|
Recombinant Mycobacterium bovis BCG prime-recombinant adenovirus boost vaccination in rhesus monkeys elicits robust polyfunctional simian immunodeficiency virus-specific T-cell responses. J Virol 2009; 83:5505-13. [PMID: 19297477 DOI: 10.1128/jvi.02544-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While mycobacteria have been proposed as vaccine vectors because of their persistence and safety, little has been done systematically to optimize their immunogenicity in nonhuman primates. We successfully generated recombinant Mycobacterium bovis BCG (rBCG) expressing simian immunodeficiency virus (SIV) Gag and Pol as multigenic, nonintegrating vectors, but rBCG-expressing SIV Env was unstable. A dose and route determination study in rhesus monkeys revealed that intramuscular administration of rBCG was associated with local reactogenicity, whereas intravenous and intradermal administration of 10(6) to 10(8) CFU of rBCG was well tolerated. After single or repeat rBCG inoculations, monkeys developed high-frequency gamma interferon enzyme-linked immunospot responses against BCG purified protein derivative. However, the same animals developed only modest SIV-specific CD8(+) T-cell responses. Nevertheless, high-frequency SIV-specific cellular responses were observed in the rBCG-primed monkeys after boosting with recombinant adenovirus 5 (rAd5) expressing the SIV antigens. These cellular responses were of greater magnitude and more persistent than those generated after vaccination with rAd5 alone. The vaccine-elicited cellular responses were predominantly polyfunctional CD8(+) T cells. These findings support the further exploration of mycobacteria as priming vaccine vectors.
Collapse
|
28
|
Wang Q, Li J, Zhang X, Liu Q, Liu C, Ma G, Cao L, Gong P, Cai Y, Zhang G. Protective immunity of recombinant Mycobacterium bovis BCG expressing rhomboid gene against Eimeria tenella challenge. Vet Parasitol 2009; 160:198-203. [DOI: 10.1016/j.vetpar.2008.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 10/22/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
|
29
|
Hisaeda H, Tetsutani K, Imai T, Moriya C, Tu L, Hamano S, Duan X, Chou B, Ishida H, Aramaki A, Shen J, Ishii KJ, Coban C, Akira S, Takeda K, Yasutomo K, Torii M, Himeno K. Malaria parasites require TLR9 signaling for immune evasion by activating regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:2496-503. [PMID: 18250459 DOI: 10.4049/jimmunol.180.4.2496] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Malaria is still a life-threatening infectious disease that continues to produce 2 million deaths annually. Malaria parasites have acquired immune escape mechanisms and prevent the development of sterile immunity. Regulatory T cells (Tregs) have been reported to contribute to immune evasion during malaria in mice and humans, suggesting that activating Tregs is one of the mechanisms by which malaria parasites subvert host immune systems. However, little is known about how these parasites activate Tregs. We herein show that TLR9 signaling to dendritic cells (DCs) is crucial for activation of Tregs. Infection of mice with the rodent malaria parasite Plasmodium yoelii activates Tregs, leading to enhancement of their suppressive function. In vitro activation of Tregs requires the interaction of DCs with parasites in a TLR9-dependent manner. Furthermore, TLR9(-/-) mice are partially resistant to lethal infection, and this is associated with impaired activation of Tregs and subsequent development of effector T cells. Thus, malaria parasites require TLR9 to activate Tregs for immune escape.
Collapse
Affiliation(s)
- Hajime Hisaeda
- Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Petritus PM, Burns JM. Suppression of lethal Plasmodium yoelii malaria following protective immunization requires antibody-, IL-4-, and IFN-gamma-dependent responses induced by vaccination and/or challenge infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:444-53. [PMID: 18097046 DOI: 10.4049/jimmunol.180.1.444] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunization with Plasmodium yoelii merozoite surface protein (PyMSP)-8 protects mice from lethal malaria but does not prevent infection. Using this merozoite surface protein-based vaccine model, we investigated vaccine- and infection-induced immune responses that contribute to protection. Analysis of prechallenge sera from rPyMSP-8-immunized C57BL/6 and BALB/c mice revealed high and comparable levels of Ag-specific IgG, but differences in isotype profile and specificity for conformational epitopes were noted. As both strains of mice were similarly protected against P. yoelii, we could not correlate vaccine-induced responses with protection. However, passive immunization studies suggested that protection resulted from differing immune responses. Studies with cytokine-deficient mice showed that protection was induced by immunization of C57BL/6 mice only when IL-4 and IFN-gamma were both present. In BALB/c mice, the absence of either IL-4 or IFN-gamma led to predictable shifts in the IgG isotype profile but did not reduce the magnitude of the Ab response induced by rPyMSP-8 immunization. Immunized IL-4-/- BALB/c mice were solidly protected against P. yoelii. To our surprise, immunized IFN-gamma-/- BALB/c mice initially controlled parasite growth but eventually succumbed to infection. Analysis of cytokine production revealed that P. yoelii infection induced two distinct peaks of IFN-gamma that correlated with periods of controlled parasite growth in intact, rPyMSP-8-immunized BALB/c mice. Maximal parasite growth occurred during a period of sustained TGF-beta production. Combined, the data indicate that induction of protective responses by merozoite surface protein-based vaccines depends on IL-4 and IFN-gamma-dependent pathways and that vaccine efficacy is significantly influenced by host responses elicited upon infection.
Collapse
Affiliation(s)
- Patricia M Petritus
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | |
Collapse
|
31
|
Borsuk S, Mendum TA, Fagundes MQ, Michelon M, Cunha CW, McFadden J, Dellagostin OA. Auxotrophic complementation as a selectable marker for stable expression of foreign antigens in Mycobacterium bovis BCG. Tuberculosis (Edinb) 2007; 87:474-80. [PMID: 17888740 DOI: 10.1016/j.tube.2007.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 06/20/2007] [Accepted: 07/19/2007] [Indexed: 10/22/2022]
Abstract
Mycobacterium bovis BCG has the potential to be an effective live vector for multivalent vaccines. However, most mycobacterial cloning vectors rely on antibiotic resistance genes as selectable markers, which would be undesirable in any practical vaccine. Here we report the use of auxotrophic complementation as a selectable marker that would be suitable for use in a recombinant vaccine. A BCG auxotrophic for the amino acid leucine was constructed by knocking out the leuD gene by unmarked homologous recombination. Expression of leuD on a plasmid not only allowed complementation, but also acted as a selectable marker. Removal of the kanamycin resistance gene, which remained necessary for plasmid manipulations in Escherichia coli, was accomplished by two different methods: restriction enzyme digestion followed by re-ligation before BCG transformation, or by Cre-loxP in vitro recombination mediated by the bacteriophage P1 Cre Recombinase. Stability of the plasmid was evaluated during in vitro and in vivo growth of the recombinant BCG in comparison to selection by antibiotic resistance. The new system was highly stable even during in vivo growth, as the selective pressure is maintained, whereas the conventional vector was unstable in the absence of selective pressure. This new system will now allow the construction of potential recombinante vaccine strains using stable multicopy plasmid vectors without the inclusion of antibiotic resistance markers.
Collapse
Affiliation(s)
- Sibele Borsuk
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP-354, 96010-900 Pelotas, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Heterologous immunity, or protection by one invading organism against another across phylogenetic divides, has been recognised for decades. It was initially thought to operate largely through enhancement of phagocytosis, but this explanation became untenable when it was realised it worked extremely well against intraerythrocytic protozoa and killed them while they were free in the circulation. Clearly a soluble mediator was called for. This review summarises the logic that arose from this observation, which led to a wider appreciation of the roles of pro-inflammatory cytokines, and then nitric oxide, in the host's response against invaders, as well as the ability of these mediators to harm the host itself if they are generated too enthusiastically. This has led to a discernable pattern across heterologous immunity as a whole, and its lessons influence a range of areas, including vaccine development.
Collapse
|
33
|
Dietrich J, Billeskov R, Doherty TM, Andersen P. Synergistic effect of bacillus calmette guerin and a tuberculosis subunit vaccine in cationic liposomes: increased immunogenicity and protection. THE JOURNAL OF IMMUNOLOGY 2007; 178:3721-30. [PMID: 17339470 DOI: 10.4049/jimmunol.178.6.3721] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present work, we evaluated a new TB vaccine approach based on a combination of the Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine and a subunit vaccine consisting of the proteins Ag85B and ESAT-6. We demonstrate that in addition to its vaccine efficacy BCG is an immune modulator that can potentiate a Th1 immune response better than the well-known adjuvant mono phosphoryl lipid A, leading to enhanced recognition of the subunit vaccine Ag85B-ESAT-6. Importantly, adding a vehicle to the vaccine, such as the cationic liposome dimethyl dioctadecyl ammonium bromide (DDA), significantly increased the potentiating effect of BCG. This synergistic effect between BCG and Ag85B-ESAT-6/liposome required drainage to the same lymph node of all vaccine components but did not require direct mixing of the components and was therefore also observed when BCG and Ag85B-ESAT-6/liposome were given as separate injections at sites draining to the same lymph node. The resulting optimized vaccine protocol consisting of BCG and subunit in liposomes (injected side by side) followed by boosting with the subunit in conventional adjuvant resulted in an impressive increase in the protective efficacy of up to 7-fold compared with BCG alone and 3-fold compared with unaugmented BCG boosted by the subunit vaccine. Thus, these studies suggest an immunization strategy where a novel TB subunit vaccine is administered as part of the child vaccination program together with BCG in neonates and followed by subunit boosting.
Collapse
Affiliation(s)
- Jes Dietrich
- Department of Infectious Disease Immunology, Statens Serum Institute, Artillerivej 5, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
34
|
Santangelo MP, McIntosh D, Bigi F, Armôa GRG, Campos ASD, Ruybal P, Dellagostin OA, McFadden J, Mendum T, Gicquel B, Winter N, Farber M, Cataldi A. Mycobacterium bovis BCG as a delivery system for the RAP-1 antigen from Babesia bovis. Vaccine 2007; 25:1104-13. [PMID: 17049681 DOI: 10.1016/j.vaccine.2006.09.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 09/15/2006] [Accepted: 09/15/2006] [Indexed: 11/20/2022]
Abstract
Babesia bovis is the causative agent of babesiosis, a tick-borne disease that is a major cause of loss to livestock production in Latin America. Vaccination against Babesia species represents a major challenge against cattle morbidity and mortality in enzootic areas. The aim of this study was to evaluate the capacity of Bacille Calmette-Guerin (BCG) to deliver the rhoptry associated protein (RAP-1) antigen of B. bovis and to stimulate specific cellular and humoral immune responses in mice. Two of five mycobacterial expression vectors efficiently expressed the antigen. These constructs were subsequently studied in vivo following three immunization protocols. The construct with the greatest in vivo stability proved to be the one that induced the strongest immune responses. Our data support the hypothesis that specific T lymphocyte priming by rBCG can be employed as a component of a combined vaccine strategy to induce long-lasting humoral and cellular immune responsiveness towards B. bovis and encourage further work on the application of rBCG to the development of Babesia vaccines.
Collapse
Affiliation(s)
- M P Santangelo
- Institute of Biotechnology, CICVyA-INTA, Los Reseros y Las Cabañas, 1712 Castelar, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang ZH, Jiang PH, Li NJ, Shi M, Huang W. Oral vaccination of mice against rodent malaria with recombinant Lactococcus lactis expressing MSP-1(19). World J Gastroenterol 2006; 11:6975-80. [PMID: 16437602 PMCID: PMC4717040 DOI: 10.3748/wjg.v11.i44.6975] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To construct the recombinant Lactococcus lactis as oral delivery vaccination against malaria. METHODS The C-terminal 19-ku fragments of MSP1 (MSP-1(19)) of Plasmodium yoelii 265-BY was expressed in L. lactis and the recombinant L. lactis was administered orally to BALB/c and C57BL/6 mice. After seven interval vaccinations within 4 wk, the mice were challenged with P. yoelii 265-BY parasites of erythrocytic stage. The protective efficacy of recombinant L. lactis was evaluated. RESULTS The peak parasitemias in average for the experiment groups of BALB/c and C57BL/6 mice were 0.8+/-0.4% and 20.8+/-26.5%, respectively, and those of their control groups were 12.0+/-0.8% and 60.8+/-9.6%, respectively. None of the BALB/c mice in both experimental group and control group died during the experiment. However, all the C57BL/6 mice in the control group died within 23 d and all the vaccinated mice survived well. CONCLUSION The results imply the potential of recombinant L. lactis as oral delivery vaccination against malaria.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- Department of Biochemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
36
|
Cayabyab MJ, Hovav AH, Hsu T, Krivulka GR, Lifton MA, Gorgone DA, Fennelly GJ, Haynes BF, Jacobs WR, Letvin NL. Generation of CD8+ T-cell responses by a recombinant nonpathogenic Mycobacterium smegmatis vaccine vector expressing human immunodeficiency virus type 1 Env. J Virol 2006; 80:1645-52. [PMID: 16439521 PMCID: PMC1367151 DOI: 10.1128/jvi.80.4.1645-1652.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Because the vaccine vectors currently being evaluated in human populations all have significant limitations in their immunogenicity, novel vaccine strategies are needed for the elicitation of cell-mediated immunity. The nonpathogenic, rapidly growing mycobacterium Mycobacterium smegmatis was engineered as a vector expressing full-length human immunodeficiency virus type 1 (HIV-1) HXBc2 envelope protein. Immunization of mice with recombinant M. smegmatis led to the expansion of major histocompatibility complex class I-restricted HIV-1 epitope-specific CD8(+) T cells that were cytolytic and secreted gamma interferon. Effector and memory T lymphocytes were elicited, and repeated immunization generated a stable central memory pool of virus-specific cells. Importantly, preexisting immunity to Mycobacterium bovis BCG had only a marginal effect on the immunogenicity of recombinant M. smegmatis. This mycobacterium may therefore be a useful vaccine vector.
Collapse
Affiliation(s)
- Mark J Cayabyab
- Department of Medicine, Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02130, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Page KR, Jedlicka AE, Fakheri B, Noland GS, Kesavan AK, Scott AL, Kumar N, Manabe YC. Mycobacterium-induced potentiation of type 1 immune responses and protection against malaria are host specific. Infect Immun 2006; 73:8369-80. [PMID: 16299335 PMCID: PMC1307063 DOI: 10.1128/iai.73.12.8369-8380.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria and tuberculosis are endemic in many regions of the world, and coinfection with the two pathogens is common. In this study, we examined the effects of long- and short-term infection with Mycobacterium tuberculosis on the course of a lethal form of murine malaria in resistant (C57BL/6) and susceptible (BALB/c) mice. C57BL/6 mice coinfected with M. tuberculosis CDC1551 and Plasmodium yoelii 17XL had a lower peak parasitemia and increased survival compared to mice infected with P. yoelii 17XL alone. Splenic microarray analysis demonstrated potentiation of type 1 immune responses in coinfected C57BL/6 mice, which was especially prominent 5 days after infection with P. yoelii 17XL. Splenocytes from coinfected C57BL/6 mice produced higher levels of gamma interferon (IFN-gamma) and tumor necrosis factor alpha than splenocytes from mice infected with either pathogen alone. Interestingly, mycobacterium-induced protection against lethal P. yoelii is mouse strain specific. BALB/c mice were significantly more susceptible than C57BL/6 mice to infection with P. yoelii 17XL and were not protected against lethal malaria by coinfection with M. tuberculosis. In addition, M. tuberculosis did not augment IFN-gamma responses in BALB/c mice subsequently infected with P. yoelii 17XL. These data indicate that M. tuberculosis-induced potentiation of type 1 immune responses is associated with protection against lethal murine malaria.
Collapse
Affiliation(s)
- Kathleen R Page
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Suppian R, Zainuddin ZF, Norazmi MN. Cloning and expression of malaria and tuberculosis epitopes in mycobacterium bovis bacille calmette-guérin. Malays J Med Sci 2006; 13:13-20. [PMID: 22589585 PMCID: PMC3347897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2005] [Accepted: 12/26/2005] [Indexed: 05/31/2023] Open
Abstract
Mycobacterium bovis bacille Calmette-Guèrin (BCG) represents one of the most promising live vectors for the delivery of foreign antigens to the immune system. A recombinant BCG containing a synthetic gene coding for the malarial epitopes namely, the fragment 2 of region II of EBA-175 (F2R(II)EBA) and the repeat sequence of the circumsporozoite protein NANP generated in favour of mycobacterium codon usage using assembly PCR was constructed. Two T-cell epitopes of the 6-kDa M. tuberculosis early-secreted antigenic target (ESAT-6) antigen were also clone in the same construct. Expression of the synthetic gene was driven by the heat shock protein 65 (hsp65) promoter from M. tuberculosis and the signal peptide from the MPT63 antigen of M. tuberculosis. Expression of the composite epitopes was detected by Western blotting of the cell extract and culture supernatant of the recombinant clones using a specific rabbit polyclonal antibody against F2R(II)EBA. This study demonstrates the possibility of cloning and expressing immunogenic epitopes from causative agents of two important diseases: malaria and tuberculosis (TB) in a single recombinant BCG construct.
Collapse
Affiliation(s)
- Rapeah Suppian
- Correspondence : Dr. Rapeah Suppian, BSc. (USM), PhD. (USM), School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia, E-mail: Tel :+609-7663903; Fax : +609-7647884
| | | | | |
Collapse
|
39
|
Dennehy M, Williamson AL. Factors influencing the immune response to foreign antigen expressed in recombinant BCG vaccines. Vaccine 2005; 23:1209-24. [PMID: 15652663 DOI: 10.1016/j.vaccine.2004.08.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 08/26/2004] [Indexed: 11/30/2022]
Abstract
A wide range of recombinant BCG vaccine candidates containing foreign viral, bacterial, parasite or immunomodulatory genetic material have been developed and evaluated, primarily in animal models, for immune response to the foreign antigen. This review considers some of the factors that may influence the immunogenicity of these vaccines. The influence of levels and timing of expression of the foreign antigen and the use of targeting sequences are considered in the first section. Genetic and functional stability of rBCG is reviewed in the second section. In the last section, the influence of dose and route of immunization, strain of BCG and the animal model used are discussed.
Collapse
Affiliation(s)
- Maureen Dennehy
- The Biovac Institute, Private Bag X3, Pinelands, 7430 Cape Town, South Africa.
| | | |
Collapse
|
40
|
Hu PQ, Tuma-Warrino RJ, Bryan MA, Mitchell KG, Higgins DE, Watkins SC, Salter RD. Escherichia coliExpressing Recombinant Antigen and Listeriolysin O Stimulate Class I-Restricted CD8+T Cells following Uptake by Human APC. THE JOURNAL OF IMMUNOLOGY 2004; 172:1595-601. [PMID: 14734740 DOI: 10.4049/jimmunol.172.3.1595] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vaccination against cancer or intracellular pathogens requires stimulation of class I-restricted CD8(+) T cells. It is therefore important to develop Ag delivery vectors that will promote cross-presentation by APCs and stimulate appropriate inflammatory responses. Toward this goal, we tested the potential of Escherichia coli as an Ag delivery vector in in vitro human culture. Bacteria expressing enhanced green fluorescent protein were internalized efficiently by dendritic cells, as shown by flow cytometry and fluorescence microscopy. Phenotypic changes in DC were observed, including up-regulation of costimulatory molecules and IL-12p40 production. We tested whether bacteria expressing recombinant Ags could stimulate human T cells using the influenza matrix protein as a model Ag. Specific responses against an immunodominant epitope were seen using IFN-gamma ELISPOT assays when the matrix protein was coexpressed with listeriolysin O, but not when expressed alone. THP-1 macrophages were also capable of stimulating T cells after uptake of bacteria, but showed slower kinetics and lower overall levels of T cell stimulation than dendritic cells. Increased phagocytosis of bacteria induced by differentiation of THP-1 increased their ability to stimulate T cells, as did opsonization. Presentation was blocked by proteasome inhibitors, but not by lysosomal protease inhibitors leupeptin and E64. These results demonstrate that recombinant E. coli can be engineered to direct Ags to the cytosol of human phagocytic APCs, and suggest possible vaccine strategies for generating CD8(+) T cell responses against pathogens or tumors.
Collapse
Affiliation(s)
- Paul Q Hu
- Department of Immunology and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Mazzantini RP, Miyaji EN, Dias WO, Sakauchi D, Nascimento ALTO, Raw I, Winter N, Gicquel B, Rappuoli R, Leite LCC. Adjuvant activity of Mycobacterium bovis BCG expressing CRM197 on the immune response induced by BCG expressing tetanus toxin fragment C. Vaccine 2004; 22:740-6. [PMID: 14741167 DOI: 10.1016/j.vaccine.2003.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to develop a combined recombinant Mycobacterium bovis BCG (rBCG) vaccine against diphtheria, pertussis and tetanus (DPT), we have constructed different strains of rBCG expressing tetanus toxin fragment C (FC), driven by the up-regulated M. fortuitum beta-lactamase promoter, pBlaF*. Tetanus toxin FC was expressed in comparable levels in native form or in fusion with the beta-lactamase exportation signal sequence; however, in both constructs it was localized to the cytosol. Immunization of mice with rBCG-FC or its combination with rBCG expressing CRM197, induced anti-tetanus toxin antibodies with a Th2 immunoglobulin profile. Administration of a subimmunizing dose of the diphtheria-tetanus toxoid vaccine showed that rBCG-FC primed mice for production of an intense humoral response. Interestingly, the combination of rBCG-FC and rBCG-CRM197 reduced the time required for maturation of the immune response and increased anti-tetanus toxin antibody levels, suggesting adjuvant properties for rBCG-CRM197; this combination induced 75% protection in mice challenged with 100 minimum lethal doses (MLD) of tetanus toxin. Antisera from guinea pigs immunized with this combination were shown to neutralize tetanus toxin and diphtheria toxin. Our results suggest reciprocal adjuvant effects of rBCG-FC and rBCG-CRM197, which may contribute to induction of a more effective immune response against both diseases.
Collapse
Affiliation(s)
- Rogerio P Mazzantini
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chelimo K, Sumba PO, Kazura JW, Ofula AV, John CC. Interferon-gamma responses to Plasmodium falciparum liver-stage antigen-1 and merozoite-surface protein-1 increase with age in children in a malaria holoendemic area of western Kenya. Malar J 2003; 2:37. [PMID: 14613510 PMCID: PMC280688 DOI: 10.1186/1475-2875-2-37] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Accepted: 11/05/2003] [Indexed: 11/24/2022] Open
Abstract
Background In areas of high-level, year-round malaria transmission, morbidity and mortality due to malaria decrease after the first two to three years of life. This reduction may be related to the development of cellular immunity to specific antigens expressed in the different life-cycle stages of Plasmodium falciparum. Methods A cross sectional study was conducted to evaluate T cell cytokine responses to the P. falciparum pre-erythrocytic antigen liver-stage antigen-1 (LSA-1) and the blood-stage antigen merozoite-surface protein-1 (MSP-1) in children under five years of age residing in a malaria holoendemic region of western Kenya. Interferon-γ (IFN-γ) and interleukin-10 (IL-10) responses to the LSA-1 T3 peptide (aa 1813–1835) and the MSP-1 aa20–39 peptide were tested in 48 children. Results The proportion of children producing IFN-γ to LSA-1 and to MSP-1 increased with age: in the 0–12, 13–24, 25–36 and 37–48 month age groups, zero, 11.1, 36.4 and 40% of children had IFN-γ responses to LSA-1 (p = 0.019), and 10, 10, 27.7 and 40% of children had IFN-γ responses to MSP-1 (p = 0.07), respectively. In contrast, the proportion of children producing IL-10 to LSA-1 and MSP-1 was similar in all age groups. Conclusion The data suggest that development of IFN-γ responses to LSA-1 and MSP-1 requires increased age and/or repeated exposure, whereas IL-10 responses to these antigens may occur at any age and with limited exposure. The data also demonstrate that by the age of 4 years, children in a malaria holoendemic area develop frequencies of IFN-γ responses to LSA-1 and MSP-1 similar to those seen in adults in the area.
Collapse
Affiliation(s)
- Kiprotich Chelimo
- Maseno University, P.O Box 333, Maseno, Kenya
- Kenya Medical Research Institute, P.O Box, 1578, Kisumu, Kenya
| | - Peter O Sumba
- Kenya Medical Research Institute, P.O Box, 1578, Kisumu, Kenya
| | - James W Kazura
- Center for Global Health and Disease, Case Western Reserve University and Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
| | | | - Chandy C John
- Center for Global Health and Disease, Case Western Reserve University and Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
- Rainbow Center for International Child Health and Division of Pediatric Infectious Diseases, Case Western Reserve University and Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
| |
Collapse
|
43
|
Uno-Furuta S, Matsuo K, Tamaki S, Takamura S, Kamei A, Kuromatsu I, Kaito M, Matsuura Y, Miyamura T, Adachi Y, Yasutomi Y. Immunization with recombinant Calmette-Guerin bacillus (BCG)-hepatitis C virus (HCV) elicits HCV-specific cytotoxic T lymphocytes in mice. Vaccine 2003; 21:3149-56. [PMID: 12804842 DOI: 10.1016/s0264-410x(03)00256-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since virus-specific cytotoxic T lymphocytes (CTLs) play a critical role in preventing the spread of hepatitis C virus (HCV), an effective HCV vaccine should be capable of eliciting HCV-specific CTLs. In the present study, we assessed the capability of a novel recombinant vaccine using an attenuated tuberculosis bacillus, Calmette-Guerin bacillus (BCG), as a vaccine vehicle to elicit HCV-specific CTLs. BCG was engineered to express the CTL epitope of HCV-non-structure protein 5a (NS5a) as a chimeric protein with alpha antigen of mycobacteria. Immunization with this recombinant BCG elicited major histocompatibility complex class I-restricted CD8(+) HCV-NS5a-specific CTLs in mice. Immunized mice showed a substantial reduction in the vaccinia virus titer compared with control mice when the immunized mice were challenged with a recombinant vaccinia virus expressing HCV-NS5a genes. These findings provide evidences for the possibility of BCG as a vaccine vector and its continued exploration as a vehicle for eliciting HCV-specific immunity.
Collapse
Affiliation(s)
- Satori Uno-Furuta
- Department of Bioregulation, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dietrich G, Viret JF, Gentschev I. Haemolysin A and listeriolysin--two vaccine delivery tools for the induction of cell-mediated immunity. Int J Parasitol 2003; 33:495-505. [PMID: 12782050 DOI: 10.1016/s0020-7519(03)00058-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haemolysin A of Escherichia coli and listeriolysin of Listeria monocytogenes represent important bacterial virulence factors. While such cytolysins are usually the reason for morbidity and even mortality, vaccine researchers have turned haemolysin A and listeriolysin into tools for vaccine delivery. Both cytolysins have found widespread application in vaccine research and are highly suitable for the elicitation of cell-mediated immunity. In this paper, we will review vaccine delivery mediated by the haemolysin A secretion system and listeriolysin and will highlight their use in vaccination approaches against protozoan parasites.
Collapse
Affiliation(s)
- Guido Dietrich
- Vaccine Research, Berna Biotech AG, Rehhagstr. 79, CH-3018, Bern, Switzerland.
| | | | | |
Collapse
|
45
|
Sakai T, Hisaeda H, Nakano Y, Zhang M, Takashima M, Ishii K, Maekawa Y, Matsumoto S, Nitta Y, Miyazaki JI, Yamamoto S, Himeno K. Gene gun-based co-immunization of merozoite surface protein-1 cDNA with IL-12 expression plasmid confers protection against lethal Plasmodium yoelii in A/J mice. Vaccine 2003; 21:1432-44. [PMID: 12615440 DOI: 10.1016/s0264-410x(02)00665-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The carboxyl-terminal region of the merozoite surface protein-1 (MSP1) is a leading candidate for a vaccine against malaria in the erythrocytic stage. In this study, we investigated the utility of interleukin-12 (IL-12) cDNA as an adjuvant for malaria DNA vaccine in a mouse challenge model. We found that co-immunization of expression plasmids encoding a C-terminal 15-kDa fragment of MSP1 (MSP1-15) with the IL-12 gene using a gene gun significantly increased the protective immunity against malaria as compared with MSP1-15 DNA immunization alone. Co-immunization of IL-12 DNA potentiated MSP1-15-specific T helper (Th)1-type immune responses as evaluated by in vivo antibody (Ab) responses and in vitro cytokine profiles. After the Plasmodium yoelii challenge, mice immunized with MSP1-15 plus IL-12 DNA showed a higher level of interferon gamma (IFN-gamma) production than did other groups of mice. In vivo neutralization of IFN-gamma or depletion of CD4(+) T cells completely abolished this protective immunity. Macrophages, but not nitric oxide (NO), were found to play an important role in this effector mechanism. The sera from mice in which the infection had been cleared by the vaccination showed strong protection against P. yoelii infection. Thus, in addition to cellular immune responses, Abs against parasites induced in the course of infection are essential for protection against P. yoelii. The results indicate that combined vaccination with DNA encoding antigenic peptides plus IL-12 DNA provides a strategy for improving the prophylactic efficacy of a vaccine for malaria infection.
Collapse
Affiliation(s)
- Tohru Sakai
- Department of Parasitology and Immunology, University of Tokushima School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Espinosa AM, Sierra AY, Barrero CA, Cepeda LA, Cantor EM, Lombo TB, Guzmán F, Avila SJ, Patarroyo MA. Expression, polymorphism analysis, reticulocyte binding and serological reactivity of two Plasmodium vivax MSP-1 protein recombinant fragments. Vaccine 2003; 21:1033-43. [PMID: 12559776 DOI: 10.1016/s0264-410x(02)00660-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Among the four parasite species causing malaria in humans, Plasmodium vivax prevails on both the Asian and the American continents. Several antigens from this parasite's erythrocytic stages have been characterised and some of them are considered to be good vaccine candidates. The P. vivax merozoite surface protein-1 (PvMSP-1) is a 200 kDa antigen, thought to mediate the initial contact between the merozoite and the erythrocyte. An effective blockage of this interaction could be important in anti-malarial vaccine design. This study analyses the genetic polymorphism, binding to both reticulocytes and erythrocytes, antigenicity and immunogenicity of two recombinant proteins belonging to the 33 kDa PvMSP-1 proteolytic fragment. Both regions showed very low genetic variation, bound reticulocytes with higher affinity than erythrocytes, were recognised by naturally P. vivax-infected patient sera and were immunogenic when used to immunise rabbits, making them good vaccine candidates against P. vivax, to be further preclinically tested in the Aotus monkey model.
Collapse
|
47
|
Dietrich G, Viret JF, Hess J. Novel vaccination strategies based on recombinant Mycobacterium bovis BCG. Int J Med Microbiol 2003; 292:441-51. [PMID: 12635927 DOI: 10.1078/1438-4221-00227] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this manuscript, we will review the utilization of Mycobacterium bovis Bacille Calmette-Guerin (BCG) as a vaccine against tuberculosis (TB) and as a carrier system for heterologous antigens. BCG is one of the most widely used vaccines. Novel techniques in genome manipulation allow the construction of virulence-attenuated recombinant (r)-BCG strains that can be employed as homologous vaccines, or as heterologous antigen delivery systems, for priming pathogen-specific immunity against infectious diseases, including TB. Several approaches are available for heterologous antigen expression and compartmentalization in BCG and recent findings show the potential to modulate and direct the immune responses induced by r-BCG strains as desired. Recent achievements in complete genome analysis of various target pathogens, combined with a better understanding of protective pathogen-specific immune responses, form the basis for the rational design of a new generation of recombinant mycobacterial vaccines against a multitude of infectious diseases.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- BCG Vaccine/genetics
- BCG Vaccine/immunology
- Cattle
- Communicable Disease Control
- Genetic Vectors
- Humans
- Mycobacterium bovis/genetics
- Recombination, Genetic
- Tuberculosis/prevention & control
- Tuberculosis Vaccines/immunology
- Vaccination/methods
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, DNA/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Guido Dietrich
- Bacterial Vaccine Research, Berna Biotech Ltd., Berne, Switzerland.
| | | | | |
Collapse
|
48
|
Kawabata Y, Udono H, Honma K, Ueda M, Mukae H, Kadota JI, Kohno S, Yui K. Merozoite surface protein 1-specific immune response is protective against exoerythrocytic forms of Plasmodium yoelii. Infect Immun 2002; 70:6075-82. [PMID: 12379684 PMCID: PMC130348 DOI: 10.1128/iai.70.11.6075-6082.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the difficulties in developing an effective malaria vaccine is the antigenic change of the parasite during the life cycle. It is desirable that vaccine-induced protective immunity be effective at different stages of parasite development. Merozoite surface protein 1 (MSP1) is a candidate vaccine antigen against blood-stage malaria, but it is also expressed in the exoerythrocytic forms. It was not known, however, whether the anti-MSP1 immune response is effective against the liver-stage malaria parasite. We generated a recombinant protein of MSP1 fused to heat-shock cognate protein 70 (hsc70) and studied its vaccination effect. When C57BL/6 mice were immunized with the fusion protein prior to challenge infection with Plasmodium yoelii sporozoites, the onset of parasitemia was delayed or no parasitemia was observed. To determine whether this was due to the protective immunity against liver-stage parasites, P. yoelii-specific rRNA in the infected liver was quantitated by real-time reverse transcription-PCR analysis. The level of parasite-specific rRNA was reduced in mice immunized with the fusion protein of MSP1 and hsc70 but not with hsc70 alone, indicating that MSP1-specific immunity can be protective against the exoerythrocytic form of the parasite. Furthermore, the adoptive transfer experiments of immune lymphocytes and serum into naive mice suggested that the protective immunity was dependent on cellular and not humoral immunity. Finally, the vaccine-induced protection was also observed in A/J, C3H, and BALB/c mice, suggesting that MSP1-specific protective immunity at the exoerythrocytic stage can be induced in animals over a wide range of genetic backgrounds.
Collapse
Affiliation(s)
- Yuko Kawabata
- Division of Immunology, Department of Molecular Medicine, Nagasaki University School of Medicine, Sakamoto, Nagasaki 852-8523, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Grode L, Kursar M, Fensterle J, Kaufmann SHE, Hess J. Cell-mediated immunity induced by recombinant Mycobacterium bovis Bacille Calmette-Guérin strains against an intracellular bacterial pathogen: importance of antigen secretion or membrane-targeted antigen display as lipoprotein for vaccine efficacy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1869-76. [PMID: 11823521 DOI: 10.4049/jimmunol.168.4.1869] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Live recombinant vaccines expressing defined pathogen-derived Ags represent powerful candidates for future vaccination strategies. In this study, we report on the differential induction of protective cell-mediated immunity elicited by different recombinant Mycobacterium bovis Bacille Calmette-Guérin (BCG) strains displaying p60 Ag of Listeria monocytogenes in secreted, cytosolic, or membrane-attached form for T cell recognition. Anti-listerial protection evoked by the membrane-linked p60 lipoprotein of rBCG Mp60 and that of the p60 derivative secreted by rBCG Sp60-40 were nearly equal, whereas cytosolic p60 displayed by rBCG Np60 failed to protect mice from listeriosis. In vivo depletion of CD4 or CD8 T cell subpopulations in rBCG Mp60-vaccinated mice before listerial challenge revealed interactions of both T cell subsets in anti-listerial protection. In rBCG Sp60-40-vaccinated animals, CD4 T cells predominantly contributed to anti-listerial control as shown by the failure of anti-CD8 mAb treatment to impair the outcome of listeriosis in rBCG Sp60-40-vaccinated mice after L. monocytogenes challenge. Hence, differential Ag display by rBCG influences cell-mediated immunity, which in turn may impact vaccine efficacy due to the different requirements of CD4 or CD8 T cells for pathogen elimination.
Collapse
Affiliation(s)
- Leander Grode
- Department of Immunology, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | | | | | | | | |
Collapse
|
50
|
Gentschev I, Dietrich G, Spreng S, Pilgrim S, Stritzker J, Kolb-Mäurer A, Goebel W. Delivery of protein antigens and DNA by attenuated intracellular bacteria. Int J Med Microbiol 2002; 291:577-82. [PMID: 11890559 DOI: 10.1078/1438-4221-00170] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
On the basis of attenuated intracellular bacteria, we have developed two delivery systems for either heterologous proteins or DNA vaccine vectors. The first system utilizes attenuated strains of Gram-negative bacteria which are engineered to secrete heterologous antigens via the alpha-hemolysin secretion system (type I) of Escherichia coli. The second system is based on attenuated suicide strains of Listeria monocytogenes, which are used for the direct delivery of eukaryotic antigen expression vectors into professional antigen-presenting cells (APC) like macrophages and dendritic cells in vitro and can be also used in animal models.
Collapse
|