1
|
Su Y, Lucas R, Fulton DJ, Verin AD. Mechanisms of pulmonary endothelial barrier dysfunction in acute lung injury and acute respiratory distress syndrome. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:80-87. [PMID: 39006829 PMCID: PMC11242916 DOI: 10.1016/j.pccm.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 07/16/2024]
Abstract
Endothelial cells (ECs) form a semi-permeable barrier between the interior space of blood vessels and the underlying tissues. Pulmonary endothelial barrier integrity is maintained through coordinated cellular processes involving receptors, signaling molecules, junctional complexes, and protein-regulated cytoskeletal reorganization. In acute lung injury (ALI) or its more severe form acute respiratory distress syndrome (ARDS), the loss of endothelial barrier integrity secondary to endothelial dysfunction caused by severe pulmonary inflammation and/or infection leads to pulmonary edema and hypoxemia. Pro-inflammatory agonists such as histamine, thrombin, bradykinin, interleukin 1β, tumor necrosis factor α, vascular endothelial growth factor, angiopoietin-2, and platelet-activating factor, as well as bacterial toxins and reactive oxygen species, cause dynamic changes in cytoskeletal structure, adherens junction disorganization, and detachment of vascular endothelial cadherin (VE-cadherin) from the actin cytoskeleton, leading to an increase in endothelial permeability. Endothelial interactions with leukocytes, platelets, and coagulation enhance the inflammatory response. Moreover, inflammatory infiltration and the associated generation of pro-inflammatory cytokines during infection cause EC death, resulting in further compromise of the structural integrity of lung endothelial barrier. Despite the use of potent antibiotics and aggressive intensive care support, the mortality of ALI is still high, because the mechanisms of pulmonary EC barrier disruption are not fully understood. In this review, we summarized recent advances in the studies of endothelial cytoskeletal reorganization, inter-endothelial junctions, endothelial inflammation, EC death, and endothelial repair in ALI and ARDS, intending to shed some light on the potential diagnostic and therapeutic targets in the clinical management of the disease.
Collapse
Affiliation(s)
- Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Rudolf Lucas
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J.R. Fulton
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Aguado-Alvaro LP, Garitano N, Pelacho B. Fibroblast Diversity and Epigenetic Regulation in Cardiac Fibrosis. Int J Mol Sci 2024; 25:6004. [PMID: 38892192 PMCID: PMC11172550 DOI: 10.3390/ijms25116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiac fibrosis, a process characterized by excessive extracellular matrix (ECM) deposition, is a common pathological consequence of many cardiovascular diseases (CVDs) normally resulting in organ failure and death. Cardiac fibroblasts (CFs) play an essential role in deleterious cardiac remodeling and dysfunction. In response to injury, quiescent CFs become activated and adopt a collagen-secreting phenotype highly contributing to cardiac fibrosis. In recent years, studies have been focused on the exploration of molecular and cellular mechanisms implicated in the activation process of CFs, which allow the development of novel therapeutic approaches for the treatment of cardiac fibrosis. Transcriptomic analyses using single-cell RNA sequencing (RNA-seq) have helped to elucidate the high cellular diversity and complex intercellular communication networks that CFs establish in the mammalian heart. Furthermore, a significant body of work supports the critical role of epigenetic regulation on the expression of genes involved in the pathogenesis of cardiac fibrosis. The study of epigenetic mechanisms, including DNA methylation, histone modification, and chromatin remodeling, has provided more insights into CF activation and fibrotic processes. Targeting epigenetic regulators, especially DNA methyltransferases (DNMT), histone acetylases (HAT), or histone deacetylases (HDAC), has emerged as a promising approach for the development of novel anti-fibrotic therapies. This review focuses on recent transcriptomic advances regarding CF diversity and molecular and epigenetic mechanisms that modulate the activation process of CFs and their possible clinical applications for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Laura Pilar Aguado-Alvaro
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (L.P.A.-A.); (N.G.)
- Program of Cardiovascular Disease, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Nerea Garitano
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (L.P.A.-A.); (N.G.)
- Program of Cardiovascular Disease, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Beatriz Pelacho
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (L.P.A.-A.); (N.G.)
- Program of Cardiovascular Disease, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
3
|
Kitazawa T, Takai H, Kono T, Okada H, Ogata Y. Carbonate apatite increases gene expression of osterix and bone morphogenetic protein 2 in the alveolar ridge after socket grafting. J Oral Sci 2024; 66:15-19. [PMID: 38008425 DOI: 10.2334/josnusd.23-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
PURPOSE After tooth extraction, preservation of the alveolar ridge by socket grafting attenuates bone resorption. Runt-related transcription factor 2 (RUNX2) and SP7/Osterix (OSX) are transcription factors playing an important role in osteoblast differentiation. The purpose of this study was to evaluate the effects of carbonate apatite (CO3Ap) on osteoblast-related gene and protein expression after socket grafting. METHODS Alveolar bone and new bone after CO3Ap grafting were collected at the time of implant placement. Levels of mRNA for RUNX2, SP7/OSX, bone morphogenetic protein 2 (BMP2), BMP7 and platelet derived growth factor B were determined by real-time PCR. Immunostaining was performed using antibodies against RUNX2, SP7/OSX, vimentin and cytokeratin. To evaluate bone resorption rates, cone-beam CT (CBCT) imaging was performed after socket grafting and before implant placement. RESULTS CBCT imaging showed that the average degree of bone resorption at the CO3Ap graft site was 7.15 ± 3.79%. At the graft sites, levels of SP7/OSX and BMP2 mRNA were significantly increased. Replacement of CO3Ap with osteoid was evident histologically, and in the osteoid osteoblast-like cells were stained for SP7/OSX and vimentin. CONCLUSION These results show that gene expression of both SP7/OSX and BMP2 can be induced by CO3Ap, suggesting that increased expression of SP7/OSX and vimentin may be involved in the BMP pathway.
Collapse
Affiliation(s)
- Tadashi Kitazawa
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| | - Tetsuro Kono
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
- Department of Histology, Nihon University School of Dentistry at Matsudo
| | - Hiroyuki Okada
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
- Department of Histology, Nihon University School of Dentistry at Matsudo
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| |
Collapse
|
4
|
Yanda MK, Zeidan A, Cebotaru L. Ameliorating liver disease in an autosomal recessive polycystic kidney disease mouse model. Am J Physiol Gastrointest Liver Physiol 2023; 324:G404-G414. [PMID: 36880660 PMCID: PMC10085553 DOI: 10.1152/ajpgi.00255.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Systemic and portal hypertension, liver fibrosis, and hepatomegaly are manifestations associated with autosomal recessive polycystic kidney disease (ARPKD), which is caused by malfunctions of fibrocystin/polyductin (FPC). The goal is to understand how liver pathology occurs and to devise therapeutic strategies to treat it. We injected 5-day-old Pkhd1del3-4/del3-4 mice for 1 mo with the cystic fibrosis transmembrane conductance regulator (CFTR) modulator VX-809 designed to rescue processing and trafficking of CFTR folding mutants. We used immunostaining and immunofluorescence techniques to evaluate liver pathology. We assessed protein expression via Western blotting. We detected abnormal biliary ducts consistent with ductal plate abnormalities, as well as a greatly increased proliferation of cholangiocytes in the Pkhd1del3-4/del3-4 mice. CFTR was present in the apical membrane of cholangiocytes and increased in the Pkhd1del3-4/del3-4 mice, consistent with a role for apically located CFTR in enlarged bile ducts. Interestingly, we also found CFTR in the primary cilium, in association with polycystin (PC2). Localization of CFTR and PC2 and overall length of the cilia were increased in the Pkhd1del3-4/del3-4 mice. In addition, several of the heat shock proteins; 27, 70, and 90 were upregulated, suggesting that global changes in protein processing and trafficking had occurred. We found that a deficit of FPC leads to bile duct abnormalities, enhanced cholangiocyte proliferation, and misregulation of heat shock proteins, which all returned toward wild type (WT) values following VX-809 treatment. These data suggest that CFTR correctors can be useful as therapeutics for ARPKD. Given that these drugs are already approved for use in humans, they can be fast-tracked for clinical use.NEW & NOTEWORTHY ARPKD is a multiorgan genetic disorder resulting in newborn morbidity and mortality. There is a critical need for new therapies to treat this disease. We show that persistent cholangiocytes proliferation occurs in a mouse model of ARPKD along with mislocalized CFTR and misregulated heat shock proteins. We found that VX-809, a CFTR modulator, inhibits proliferation and limits bile duct malformation. The data provide a therapeutic pathway for strategies to treat ADPKD.
Collapse
Affiliation(s)
- Murali K Yanda
- Departments of Medicine and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Adi Zeidan
- Departments of Medicine and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Liudmila Cebotaru
- Departments of Medicine and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
5
|
Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells 2022; 11:cells11091386. [PMID: 35563692 PMCID: PMC9102016 DOI: 10.3390/cells11091386] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 12/14/2022] Open
Abstract
The adult mammalian heart contains abundant interstitial and perivascular fibroblasts that expand following injury and play a reparative role but also contribute to maladaptive fibrotic remodeling. Following myocardial infarction, cardiac fibroblasts undergo dynamic phenotypic transitions, contributing to the regulation of inflammatory, reparative, and angiogenic responses. This review manuscript discusses the mechanisms of regulation, roles and fate of fibroblasts in the infarcted heart. During the inflammatory phase of infarct healing, the release of alarmins by necrotic cells promotes a pro-inflammatory and matrix-degrading fibroblast phenotype that may contribute to leukocyte recruitment. The clearance of dead cells and matrix debris from the infarct stimulates anti-inflammatory pathways and activates transforming growth factor (TGF)-β cascades, resulting in the conversion of fibroblasts to α-smooth muscle actin (α-SMA)-expressing myofibroblasts. Activated myofibroblasts secrete large amounts of matrix proteins and form a collagen-based scar that protects the infarcted ventricle from catastrophic complications, such as cardiac rupture. Moreover, infarct fibroblasts may also contribute to cardiac repair by stimulating angiogenesis. During scar maturation, fibroblasts disassemble α-SMA+ stress fibers and convert to specialized cells that may serve in scar maintenance. The prolonged activation of fibroblasts and myofibroblasts in the infarct border zone and in the remote remodeling myocardium may contribute to adverse remodeling and to the pathogenesis of heart failure. In addition to their phenotypic plasticity, fibroblasts exhibit remarkable heterogeneity. Subsets with distinct phenotypic profiles may be responsible for the wide range of functions of fibroblast populations in infarcted and remodeling hearts.
Collapse
|
6
|
Wang S, Bai J. Functions and roles of IFIX, a member of the human HIN-200 family, in human diseases. Mol Cell Biochem 2022; 477:771-780. [PMID: 35039991 DOI: 10.1007/s11010-021-04297-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022]
Abstract
Pyrin and hematopoietic expression, interferon-inducible nature, and nuclear localization (HIN) domain family member 1 (PYHIN1), also known as IFIX, belongs to the family of pyrin proteins. This family includes structurally and functionally related mouse (e.g., p202, p203, and p204 proteins) and human (e.g., the interferon-inducible protein 16, absent in melanoma 2 protein, myeloid cell nuclear differentiation antigen, and pyrin and HIN domain family 1 or IFIX) proteins. The IFIX protein belongs to the HIN-200 family of interferon-inducible proteins that have a 200-amino acid signature motif at their C-termini. The increased expression of pyrin proteins in most cell types inhibits cell cycle control and modulates cell survival. Consistent with this role for pyrin proteins, IFIX is a potential antiviral DNA sensor that is essential for immune responses, the detection of viral DNA in the nucleus and cytoplasm, and the binding of foreign DNA via its HIN domain in a sequence non-specific manner. By promoting the ubiquitination and subsequent degradation of MDM2, IFIX acts as a tumor suppressor, thereby leading to p53/TP53 stabilization, HDAC1 regulation via the ubiquitin-proteasome pathway, and tumor-cell-specific silencing of the maspin gene. These data demonstrate that the potential molecular mechanism(s) underlying the action of the IFIX protein might be associated with the development of human diseases, such as viral infections, malignant tumors, and autoimmune diseases. This review summarizes the current insights into IFIX functions and how its regulation affects the outcomes of various human diseases.
Collapse
Affiliation(s)
- Shan Wang
- Department of Oral Pathology, Hospital of Stomatology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Jie Bai
- Department of Ophthalmology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, People's Republic of China.
| |
Collapse
|
7
|
Wang S, Li F, Fan H. Interferon-inducible protein, IFIX, has tumor-suppressive effects in oral squamous cell carcinoma. Sci Rep 2021; 11:19593. [PMID: 34599264 PMCID: PMC8486792 DOI: 10.1038/s41598-021-99157-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
IFIX, a newly discovered member of the interferon-inducible HIN-200 family, has been identified as a tumor suppressor in breast cancer; however, the involvement of IFIX in oral cancer are poorly understood. Here, we demonstrate a relationship between the level of IFIX expression and the invasive or migratory abilities of oral squamous cell carcinoma. Higher IFIX expression significantly correlated with clinicopathological parameters such as the histopathological grade of clinical samples. In vitro, IFIX overexpression suppressed the invasiveness of human tongue squamous cell carcinoma CAL-27 cells, and this inhibitory effect was mediated by stabilization of the cytoskeleton through various cytokeratins along with downregulation of paxillin, an intracellular adaptor protein that promotes tumor invasion. This inhibitory effect does not appear to affect the transformation of cancer stem-like cells in this cell culture model. Altogether, these data provide novel insights into the tumor-suppressive function of IFIX, namely, stabilization of the cancer cell cytoskeleton.
Collapse
Affiliation(s)
- Shan Wang
- Department of Oral Pathology, Hospital of Stomatology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, People's Republic of China. .,Institute of oral biomedicine, Heilongjiang Academy of Medical Science, Harbin, 150086, People's Republic of China.
| | - Fang Li
- Department of Oral and Maxillofacial Surgery, Hainan Maternal and Children's Medical Center, Haikou, 570000, People's Republic of China
| | - Haixia Fan
- Department of Oral Medicine, Jining Medical College, Jining, 272067, People's Republic of China
| |
Collapse
|
8
|
Jiang W, Xiong Y, Li X, Yang Y. Cardiac Fibrosis: Cellular Effectors, Molecular Pathways, and Exosomal Roles. Front Cardiovasc Med 2021; 8:715258. [PMID: 34485413 PMCID: PMC8415273 DOI: 10.3389/fcvm.2021.715258] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
Cardiac fibrosis, a common pathophysiologic process in most heart diseases, refers to an excess of extracellular matrix (ECM) deposition by cardiac fibroblasts (CFs), which can lead to cardiac dysfunction and heart failure subsequently. Not only CFs but also several other cell types including macrophages and endothelial cells participate in the process of cardiac fibrosis via different molecular pathways. Exosomes, ranging in 30-150 nm of size, have been confirmed to play an essential role in cellular communications by their bioactive contents, which are currently a hot area to explore pathobiology and therapeutic strategy in multiple pathophysiologic processes including cardiac fibrosis. Cardioprotective factors such as RNAs and proteins packaged in exosomes make them an excellent cell-free system to improve cardiac function without significant immune response. Emerging evidence indicates that targeting selective molecules in cell-derived exosomes could be appealing therapeutic treatments in cardiac fibrosis. In this review, we summarize the current understandings of cellular effectors, molecular pathways, and exosomal roles in cardiac fibrosis.
Collapse
Affiliation(s)
- Wenyang Jiang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuyan Xiong
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaosong Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Padmapriya VM, Kavitha B, Sivapathasundram B, Nagaraj J. Comparison of cytokeratin expressions among orthokeratinized odontogenic cysts, epidermoid cysts and odontogenic keratocysts: An immunohistochemical study. J Oral Maxillofac Pathol 2021; 24:472-478. [PMID: 33967483 PMCID: PMC8083416 DOI: 10.4103/jomfp.jomfp_243_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 07/08/2020] [Accepted: 09/25/2020] [Indexed: 11/23/2022] Open
Abstract
Background: Orthokeratinized odontogenic cysts are keratinizing jaw cysts and due their association with impacted teeth and keratinaceous content, they resemble odontogenic keratocysts but differ in regards to biological behaviour, being less aggressive. To unravel the nature of OOCs, as they resemble epidermoid cysts histologically and due to their developmental resemblances to OKCs, this study was conducted. Aim and Objective: To compare the cytokeratin expressions of CK 10 and CK 19 among orthokeratinized odontogenic keratocysts, epidermoid cysts and odontogenic keratocysts by immunohistochemical study. Materials and Methods: 30 cases of all three cysts were collected, 10 cases in each of these cysts (OOCs, EDCs and OKCs) were incubated with CK 10 and CK 19 markers respectively. IHC staining was performed and assessed all layers of epithelium. All the data were analyzed using SPSS software, P values were obtained by the Chi-square test and Fisher's test. Results: The expression pattern of CK10 showed 100% positive in both OOCs and EDCs with significant difference in OKCs. CK19 expression, between EDCs and OKCs was significant but between OOCs & EDCs and OOCs & OKCs was found to be statistically insignificant. Conclusion: CK 10 expressions in both OOCs and EDCs were near identical both in terms of expression and patterns of expression in surface and spinous layers. OOCs may not be distinguished from EDCs both histologically and with CK 10 expression. CK19 expression between OOCs & EDCs and OOCs & OKCs was statistically insignificant. Thus, based upon CK 19 expression, no significant differences were found between OOCs & EDCs and OOCs & OKCs, implying that OOCs resemble both EDCs and OKCs.
Collapse
Affiliation(s)
- V M Padmapriya
- Department of Health Research, ICMR-National Institute of Epidemiology, Ministry of Health and Family Welfare, Chennai, Tamil Nadu, India
| | - B Kavitha
- Department of Oral and Maxillofacial Pathology, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India
| | - B Sivapathasundram
- Department of Oral and Maxillofacial Pathology, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India
| | - J Nagaraj
- Department of Health Research, ICMR-National Institute of Epidemiology, Ministry of Health and Family Welfare, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Li Y, Lv Z, Zhang S, Wang Z, He L, Tang M, Pu W, Zhao H, Zhang Z, Shi Q, Cai D, Wu M, Hu G, Lui KO, Feng J, Nieto MA, Zhou B. Genetic Fate Mapping of Transient Cell Fate Reveals N-Cadherin Activity and Function in Tumor Metastasis. Dev Cell 2020; 54:593-607.e5. [PMID: 32668208 DOI: 10.1016/j.devcel.2020.06.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/26/2020] [Accepted: 06/16/2020] [Indexed: 01/06/2023]
Abstract
Genetic lineage tracing unravels cell fate and plasticity in development, tissue homeostasis, and diseases. However, it remains technically challenging to trace temporary or transient cell fate, such as epithelial-to-mesenchymal transition (EMT) in tumor metastasis. Here, we generated a genetic fate-mapping system for temporally seamless tracing of transient cell fate. Highlighting its immediate application, we used it to study EMT gene activity from the local primary tumor to a distant metastatic site in vivo. In a spontaneous breast-to-lung metastasis model, we found that primary tumor cells activated vimentin and N-cadherin in situ, but only N-cadherin was activated and functionally required during metastasis. Tumor cells that have ever expressed N-cadherin constituted the majority of metastases in lungs, and functional deletion of N-cad significantly reduced metastasis. The seamless genetic recording system described here provides an alternative way for understanding transient cell fate and plasticity in biological processes.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zan Lv
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shaohua Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhuo Wang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 201100, Shanghai, China
| | - Lingjuan He
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Muxue Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenjuan Pu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huan Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenqian Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qihui Shi
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 201100, Shanghai, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Mingfu Wu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kathy O Lui
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR 999077, China
| | - Jing Feng
- Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201400, China
| | - M Angela Nieto
- Institute de Neurociencias CSIC-UMH, Avda. Ramon y Cajal s/n, 03550 San Juan de Alicante, Spain
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
11
|
Evaluation of digital image analysis as a supportive tool for the stratification of head and neck vascular anomalies. Eur Arch Otorhinolaryngol 2020; 277:2893-2906. [PMID: 32488381 PMCID: PMC7496082 DOI: 10.1007/s00405-020-06097-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/27/2020] [Indexed: 11/26/2022]
Abstract
Background The histological differentiation of individual types of vascular anomalies (VA), such as lymphatic malformations (LM), hemangioma (Hem), paraganglioma (PG), venous malformations (VeM), arteriovenous malformations (AVM), pyogenic granulomas (GP), and (not otherwise classified) vascular malformations (VM n.o.c.) is frequently difficult due to the heterogeneity of these anomalies. The aim of the study was to evaluate digital image analysis as a method for VA stratification Methods A total of 40 VA tissues were examined immunohistologically using a selection of five vascular endothelial-associated markers (CD31, CD34, CLDN5, PDPN, VIM). The staining results were documented microscopically followed by digital image analyses based quantification of the candidate-marker-proteins using the open source program ImageJ/Fiji. Results Differences in the expression patterns of the candidate proteins could be detected particularly when deploying the quotient of the quantified immunohistochemical signal values. Deploying signal marker quotients, LM could be fully distinguished from all other tested tissue types. GP achieved stratification from LM, Hem, VM, PG and AVM tissues, whereas Hem, PG, VM and AVM exhibited significantly different signal marker quotients compared with LM and GP tissues. Conclusion Although stratification of different VA from each other was only achieved in part with the markers used, the results of this study strongly support the usefulness of digital image analysis for the stratification of VA. Against the background of upcoming new diagnostic techniques involving artificial intelligence and deep (machine) learning, our data serve as a paradigm of how digital evaluation methods can be deployed to support diagnostic decision making in the field of VAs.
Collapse
|
12
|
Abstract
The components of the endothelial cell cytoskeleton that have been shown to be important in maintaining endothelial structural integrity and in regulating endothelial repair include F-actin microfilament bundles, including stress fibers, and microtubules, and centrosomes. Endothelial cells contain peripheral and central actin microfilaments. The dense peripheral band (DPB) consists of peripheral actin microfilament bundles which are associated with vinculin adhesion plaques and are most prominent in low or no hemodynamic shear stress conditions. The central microfilaments are very prominent in areas of elevated hemodynamic shear stress. There is a redistribution of actin microfilaments characterized by a decrease of peripheral actin and an increase in central microfilaments under a variety of conditions, including exposure to thrombin, phorbol-esters, and hemodynamic shear stress. During reendothelialization, there is a sequential series of cytoskeletal changes. The DPB remains intact during the rapid lamellipodia mediated repair of very small wounds except at the base of the lamellipodia where it is splayed. The DPB is reduced or absent when cell locomotion occurs to repair a wound. In addition, when cell locomotion is required, the centrosome, in the presence of intact microtubules, redistributes to the front of the cell to establish cell polarity and acts as a modulator of the directionality of migration. This occurs prior to the loss of the DPB but does not occur in very small wounds that close without migration. Thus, the cytoskeleton is a dynamic intracellular system which regulates endothelial integrity and repair and is modulated by external stimuli that are present at the vessel wall-blood interface.
Collapse
Affiliation(s)
- Avrum I. Gotlieb
- The Toronto Hospital–General Division, Vascular Research Laboratory, 200 Elizabeth Street, CCRW 1-857, Toronto, Ontario, Canada M5G 2C4
| |
Collapse
|
13
|
Branca JJV, Maresca M, Morucci G, Mello T, Becatti M, Pazzagli L, Colzi I, Gonnelli C, Carrino D, Paternostro F, Nicoletti C, Ghelardini C, Gulisano M, Di Cesare Mannelli L, Pacini A. Effects of Cadmium on ZO-1 Tight Junction Integrity of the Blood Brain Barrier. Int J Mol Sci 2019; 20:E6010. [PMID: 31795317 PMCID: PMC6928912 DOI: 10.3390/ijms20236010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cadmium (Cd) is a highly toxic environmental pollutant released from the smelting and refining of metals and cigarette smoking. Oral exposure to cadmium may result in adverse effects on a number of tissues, including the central nervous system (CNS). In fact, its toxicity has been related to neurological disorders, as well as neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Under normal conditions, Cd barely reaches the brain in adults because of the presence of the blood-brain barrier (BBB); however, it has been demonstrated that Cd-dependent BBB alteration contributes to pathogenesis of neurodegeneration. However, the mechanism underlying Cd-dependent BBB alteration remain obscure. Here, we investigated the signaling pathway of Cd-induced tight junction (TJ), F-actin, and vimentin protein disassembly in a rat brain endothelial cell line (RBE4). RBE4 cells treated with 10 μM cadmium chloride (CdCl2) showed a dose- and time-dependent significant increase in reactive oxygen species (ROS) production. This phenomenon was coincident with the alteration of the TJ zonula occludens-1 (ZO-1), F-actin, and vimentin proteins. The Cd-dependent ROS increase elicited the upregulation of GRP78 expression levels, a chaperone involved in endoplasmic reticulum (ER) stress that induces caspase-3 activation. Further signal profiling by the pannexin-1 (PANX1) specific inhibitor 10Panx revealed a PANX1-independent increase in ATP spillage in Cd-treated endothelial cells. Our results point out that a ROS-dependent ER stress-mediated signaling pathway involving caspase-3 activation and ATP release is behind the BBB morphological alterations induced by Cd.
Collapse
Affiliation(s)
- Jacopo Junio Valerio Branca
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Mario Maresca
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.M.); (C.G.); (L.D.C.M.)
| | - Gabriele Morucci
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (T.M.); (M.B.); (L.P.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (T.M.); (M.B.); (L.P.)
| | - Luigia Pazzagli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (T.M.); (M.B.); (L.P.)
| | - Ilaria Colzi
- Department of Biology, Plant Ecology and Physiology Laboratory, University of Florence, 50121 Florence, Italy; (I.C.); (C.G.)
| | - Cristina Gonnelli
- Department of Biology, Plant Ecology and Physiology Laboratory, University of Florence, 50121 Florence, Italy; (I.C.); (C.G.)
| | - Donatello Carrino
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Ferdinando Paternostro
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Claudio Nicoletti
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.M.); (C.G.); (L.D.C.M.)
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.M.); (C.G.); (L.D.C.M.)
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| |
Collapse
|
14
|
The cell-cell junctions of mammalian testes. III. Absence of an endothelial cell layer covering the peritubular wall of the seminiferous tubules-an immunocytochemical correction of a 50-year-old error in the literature. Cell Tissue Res 2019; 379:75-92. [PMID: 31713729 DOI: 10.1007/s00441-019-03116-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/22/2019] [Indexed: 12/28/2022]
Abstract
In the molecular biological and ultrastructural studies of the peritubular wall cells encasing the seminiferous tubules of mammalian testes, we found it necessary to characterize the outermost cell layer bordering on the interstitial space in detail. For half a century, the extremely thin cells of this monolayer have in the literature been regarded as part of a lymphatic endothelium, in particular in rodents. However, our double-label immunofluorescence microscopical results have shown that in all six mammalian species examined, including three rodent ones (rat, mouse, guinea pig), this classification is not correct: the very attenuated cells of this monolayer are not of lymphatic endothelial nature as they do not contain established endothelial marker molecules. In particular, they do not contain claudin-5-positive tight junctions, VE-cadherin-positive adherens junctions, "lymph vessel endothelium hyaluronan receptor 1" (LYVE-1), podoplanin, protein myozap and "von Willebrand Factor" (vWF). By contrast and as controls, all these established marker molecules for the lymphatic endothelial cell type are found in the endothelia of the lymph and-partly also-blood vessels located nearby in the interstitial space. Thus, our results provide evidence that the monolayer cells covering the peritubular wall do not contain endothelial marker molecules and hence are not endothelial cells. We discuss possible methodological reasons for the maintenance of this incorrect cell type classification in the literature and emphasize the value of molecular analyses using multiple cell type-specific markers, also with respect to physiology and medical sciences.
Collapse
|
15
|
Humeres C, Frangogiannis NG. Fibroblasts in the Infarcted, Remodeling, and Failing Heart. JACC Basic Transl Sci 2019; 4:449-467. [PMID: 31312768 PMCID: PMC6610002 DOI: 10.1016/j.jacbts.2019.02.006] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Expansion and activation of fibroblasts following cardiac injury is important for repair but may also contribute to fibrosis, remodeling, and dysfunction. The authors discuss the dynamic alterations of fibroblasts in failing and remodeling myocardium. Emerging concepts suggest that fibroblasts are not unidimensional cells that act exclusively by secreting extracellular matrix proteins, thus promoting fibrosis and diastolic dysfunction. In addition to their involvement in extracellular matrix expansion, activated fibroblasts may also exert protective actions, preserving the cardiac extracellular matrix, transducing survival signals to cardiomyocytes, and regulating inflammation and angiogenesis. The functional diversity of cardiac fibroblasts may reflect their phenotypic heterogeneity.
Collapse
Key Words
- AT1, angiotensin type 1
- ECM, extracellular matrix
- FAK, focal adhesion kinase
- FGF, fibroblast growth factor
- IL, interleukin
- MAPK, mitogen-activated protein kinase
- MRTF, myocardin-related transcription factor
- PDGF, platelet-derived growth factor
- RNA, ribonucleic acid
- ROCK, Rho-associated coiled-coil containing kinase
- ROS, reactive oxygen species
- SMA, smooth muscle actin
- TGF, transforming growth factor
- TRP, transient receptor potential
- cytokines
- extracellular matrix
- fibroblast
- infarction
- lncRNA, long noncoding ribonucleic acid
- miRNA, micro–ribonucleic acid
- remodeling
Collapse
Affiliation(s)
- Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
16
|
Vo NTK, Moore LC, Leis E, DeWitte-Orr SJ. Class A scavenger receptors mediate extracellular dsRNA sensing, leading to downstream antiviral gene expression in a novel American toad cell line, BufoTad. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:140-149. [PMID: 30452932 DOI: 10.1016/j.dci.2018.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Viral double-stranded (ds)RNA is a potent pathogen-associated molecular pattern (PAMP), capable of inducing a strong antiviral state within the cell, protecting the cell from virus infection. In mammals and fish, sensing extracellular dsRNA is mediated by cell-surface class A scavenger receptors (SR-As). Currently, very little is known about SR-As in amphibians, including: sequence, expression patterns and function. To this end, SR-A expression and function was studied in a novel American toad (Anaxyrus americanus) tadpole cell line called BufoTad. BufoTad was derived from a whole tadpole. The cell line exhibits a cobblestone morphology and expresses abundant levels of transcripts for cytokeratin 19, vimentin, claudin 3, chemokine receptor CXCR4, and SR-AI, one of the five members of the SR-A family, collectively suggesting that BufoTad could be endothelial-like. BufoTad cells bound acetylated LDL, whereas the Xenopus laevis kidney epithelial A6 cell line did not, suggesting functional SR-A activity in BufoTad cells. Additionally, three SR-A competitive ligands (DxSO4, fucoidan, poly inosine (pI)) completely blocked AcLDL binding in BufoTad cells, whereas their three corresponding non-competitive ligands (ChSO4, fetuin, poly cytosine (pC)) did not. A commercial dsRNA, poly IC, induced robust expression of an Mx-like gene transcript, a possible antiviral protein in BufoTad cells. Employing the same SR-A ligand blocking assay used for AcLDL blocked dsRNA-induced ISG expression. This study is the first demonstration that amphibian SR-As have functional ligand binding activities in a live biological cellular model and that sensing extracellular dsRNA in amphibian cells leads to antiviral gene expression that is mediated by class A scavenger receptors.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Levi C Moore
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Eric Leis
- La Crosse Fish Health Center, U.S. Fish and Wildlife Service, Midwest Fisheries Center, Onalaska, WI, USA
| | - Stephanie J DeWitte-Orr
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada; Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
17
|
Stromal cells in breast cancer as a potential therapeutic target. Oncotarget 2018; 9:23761-23779. [PMID: 29805773 PMCID: PMC5955086 DOI: 10.18632/oncotarget.25245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer in the United States is the second most commonly diagnosed cancer in women. About 1 in 8 women will develop invasive breast cancer over the course of her lifetime and breast cancer remains the second leading cause of cancer-related death. In pursuit of novel therapeutic strategies, researchers have examined the tumor microenvironment as a potential anti-cancer target. In addition to neoplastic cells, the tumor microenvironment is composed of several critical normal cell types, including fibroblasts, vascular and lymph endothelial cells, osteoclasts, adipocytes, and immune cells. These cells have important roles in healthy tissue stasis, which frequently are altered in tumors. Indeed, tumor-associated stromal cells often contribute to tumorigenesis, tumor progression, and metastasis. Consequently, these host cells may serve as a possible target in anti-tumor and anti-metastatic therapeutic strategies. Targeting the tumor associated host cells offers the benefit that such cells do not mutate and develop resistance in response to treatment, a major cause of failure in cancer therapeutics targeting neoplastic cells. This review discusses the role of host cells in the tumor microenvironment during tumorigenesis, progression, and metastasis, and provides an overview of recent developments in targeting these cell populations to enhance cancer therapy efficacy.
Collapse
|
18
|
Circulating tumor cell as a biomarker for evaluating allogenic NK cell immunotherapy on stage IV non-small cell lung cancer. Immunol Lett 2017; 191:10-15. [PMID: 28916277 DOI: 10.1016/j.imlet.2017.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 01/08/2023]
Abstract
In this study, we determined the number of peripheral blood circulating tumor cells (CTCs) pre- and post-NK in patients with stage IV non- small cell lung cancer (NSCLC) as a reference for understanding the relevance of any changes to the efficacy of NK cells therapy. The patients were given one to three courses of immunotherapy. CTC numbers and CTC-related gene expression were measured in the peripheral blood of 31 patients with stage IV NSCLC at 1day before and 7 and 30d after NK cells therapy using magnetic activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) combined with real-time quantitative PCR (RT-qPCR). Throughout the research, fever was the most common reaction (34.6%). The number of CTCs was 18.11±5.813, 15.13±5.984 and 10.32±5.623, respectively, and this decreased significantly over time. ΔCt values for the CTC-related genes CEA, MAGE-3 and CK18 increased significantly after NK cells infusion. The expression of CEA, CK18 and MAGE-3 decreased significantly with time after NK. CTC was a useful biomarker for evaluating the efficacy of NK cells therapy on stage IV NSCLC.
Collapse
|
19
|
Abstract
Cardiac fibrosis remains an important health concern, but the study of fibroblast biology has been hindered by a lack of effective means for identifying and tracking fibroblasts. Recent advances in fibroblast-specific lineage tags and reporters have permitted a better understanding of these cells. After injury, multiple cell types have been implicated as the source for extracellular matrix-producing cells, but emerging studies suggest that resident cardiac fibroblasts contribute substantially to the remodeling process. In this review, we discuss recent findings regarding cardiac fibroblast origin and identity. Our understanding of cardiac fibroblast biology and fibrosis is still developing and will expand profoundly in the next few years, with many of the recent findings regarding fibroblast gene expression and behavior laying down the groundwork for interpreting the purpose and utility of these cells before and after injury. (Circ J 2016; 80: 2269-2276).
Collapse
Affiliation(s)
- Malina J Ivey
- Department of Cell and Molecular Biology, Center for Cardiovascular Research, University of Hawaii
| | | |
Collapse
|
20
|
Dhawan I, Sandhu SV, Bhandari R, Sood N, Bhullar RK, Sethi N. Detection of cervical lymph node micrometastasis and isolated tumor cells in oral squamous cell carcinoma using immunohistochemistry and serial sectioning. J Oral Maxillofac Pathol 2016; 20:436-444. [PMID: 27721609 PMCID: PMC5051292 DOI: 10.4103/0973-029x.190946] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/16/2016] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Oral squamous cell carcinoma (OSCC) comprises one of the largest subsets of cancers with a tendency for regional metastasis. Nodal status is a key prognostic indicator in patients with OSCC, particularly with N0 neck. Occult metastasis in the form of micrometastasis (MM) and isolated tumor cells (ITCs), often goes undetected by routine hematoxylin and eosin (H&E) examination using 1-2 sections for analysis. This limitation could be overcome by combining serial sectioning (SS) with immunohistochemistry (IHC) for the detection of MM and ITC. Pan-cytokeratin (pan-CK) (AE1/AE3) is particularly a useful marker to detect these deposits as their presence has resulted in varied interpretations and different applications of the tumor-node-metastasis system. OBJECTIVES The objective of the study was to identify a suitable method for detecting MM and ITC in lymph nodes (LNs) of OSCC by combining SS and IHC and to compare it with conventional H&E staining. MATERIALS AND METHODS This laboratory-based, prospective study was conducted on 133 LNs harnessed from ten patients treated with radical neck dissection for primary OSCC. The LNs were subjected to SS at 100 μm intervals. The sections were stained with routine H&E staining, pan-CK and analyzed for MM and ITC according to criteria laid by Hermanek et al. STATISTICAL ANALYSIS The obtained data were subjected to statistical analysis using Chi-square test. RESULTS The application of combination of SS and IHC using pan-CK (AE1/AE3) in our study revealed the presence of MM and ITC in 2.25% of the LNs diagnosed as negative on routine H&E examination. The detection of these occult metastatic deposits resulted in upstaging of 33.33% of the patients. CONCLUSION In the view of crucial role of occult LN metastasis in prognosis and survival of OSCC patients with N0 neck, diagnostic tools such as IHC staining, particularly with pan-CK (AE1/AE3), combined with SS should be preferred over conventional methods as they result in upstaging, thus sparing the low-risk patients the morbidity of unnecessary treatment.
Collapse
Affiliation(s)
- Isha Dhawan
- Department of Oral and Maxillofacial Pathology, Genesis Institute of Dental Sciences and Research, Ferozepur, Punjab, India
| | - Simarpreet V Sandhu
- Department of Oral and Maxillofacial Pathology, Genesis Institute of Dental Sciences and Research, Ferozepur, Punjab, India
| | - Rajat Bhandari
- Department of Oral and Maxillofacial Pathology, Genesis Institute of Dental Sciences and Research, Ferozepur, Punjab, India
| | - Neena Sood
- Department of Pathology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Ramanpreet Kaur Bhullar
- Department of Oral and Maxillofacial Pathology, Desh Bhagat Dental College and Hospital, Muktsar, Punjab, India
| | - Neerja Sethi
- Department of Oral and Maxillofacial Pathology, Genesis Institute of Dental Sciences and Research, Ferozepur, Punjab, India
| |
Collapse
|
21
|
Shi J, Li Y, Liang S, Zeng J, Liu G, Mu F, Li H, Chen J, Lin M, Sheng S, Zhang H, Liu T, Niu L. Circulating tumour cells as biomarkers for evaluating cryosurgery on unresectable hepatocellular carcinoma. Oncol Rep 2016; 36:1845-51. [PMID: 27573435 DOI: 10.3892/or.2016.5050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/30/2016] [Indexed: 11/06/2022] Open
Abstract
We evaluated the efficacy of pre-cryosurgery and post-cryosurgery circulating tumour cells (CTCs) as biomarkers for unresectable hepatocellular carcinoma (HCC). Real‑time qPCR was used to detect potential biomarker genes in CTCs, and magnetic-activated cell sorting (MACS) and fluorescence‑activated cell sorting (FACS) was performed on 47 patients with hepatocellular cancer who underwent cryosurgery. CTCs in the 47 patients were assessed 1 day before cryosurgery, and 7 and 30 days after cryosurgery. The number of CTCs was 17.70±5.725, 14.64±6.761 and 10.28±5.598, respectively, and this decreased significantly over time (P<0.01). ΔCt values for MAGE-3, survivin and carcinoembryonic antigen (CEA) were elevated significantly compared with those obtained before cryosurgery; 2-ΔΔCt values were <1 before cryosurgery, and were 0.63±1.56, 0.21±0.22 and 0.22±0.34 for MAGE-3, survivin and CEA, respectively, at 7 days after treatment. At 30 days after treatment, 2-ΔΔCt values for MAGE-3, survivin and CEA were 0.24±0.82, 0.03±0.07 and 0.02±0.08, indicating that gene expression in CTCs significantly decreased over time (P<0.01). CTCs were useful biomarkers for evaluating the efficacy of cryosurgery on unresectable HCC.
Collapse
Affiliation(s)
- Jian Shi
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yuan Li
- Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou Fuda Cancer Institute, Guangzhou, Guangdong 510665, P.R. China
| | - Shuzhen Liang
- Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou Fuda Cancer Institute, Guangzhou, Guangdong 510665, P.R. China
| | - Jianying Zeng
- Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou Fuda Cancer Institute, Guangzhou, Guangdong 510665, P.R. China
| | - Guifeng Liu
- Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou Fuda Cancer Institute, Guangzhou, Guangdong 510665, P.R. China
| | - Feng Mu
- Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou Fuda Cancer Institute, Guangzhou, Guangdong 510665, P.R. China
| | - Haibo Li
- Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou Fuda Cancer Institute, Guangzhou, Guangdong 510665, P.R. China
| | - Jibing Chen
- Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou Fuda Cancer Institute, Guangzhou, Guangdong 510665, P.R. China
| | - Mao Lin
- Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou Fuda Cancer Institute, Guangzhou, Guangdong 510665, P.R. China
| | - Shihou Sheng
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Huaiyu Zhang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Lizhi Niu
- Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou Fuda Cancer Institute, Guangzhou, Guangdong 510665, P.R. China
| |
Collapse
|
22
|
Shi J, Li Y, Liang S, Zeng J, Liu G, Mu F, Li H, Chen J, Liu T, Niu L. Analysis of circulating tumor cells in colorectal cancer liver metastasis patients before and after cryosurgery. Cancer Biol Ther 2016; 17:935-42. [PMID: 27415969 PMCID: PMC5036405 DOI: 10.1080/15384047.2016.1210731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we determined the number of peripheral blood circulating tumor cells (CTCs) pre- and post-cryosurgery in patients with colorectal cancer liver metastasis as a reference for understanding the relevance of any changes to the efficacy of cryosurgery. CTC numbers and CTC-related gene expression were measured in the peripheral blood of 55 patients with colorectal liver metastasis at 1 day before and 7 and 30 d after cryoablation using magnetic activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) combined with real-time quantitative PCR (RT-qPCR). The number of CTCs decreased significantly with postoperative time (P < 0.01). Delta cycle threshold values for the CTC-related genes CEA, Ep-CAM, CK18 and CK19 increased significantly after cryoablation. Furthermore, the expression of CEA, Ep-CAM, CK18 and CK19 decreased significantly with time after cryoablation (P < 0.01). RT-qPCR and FACS combined with MACS has significant diagnostic and prognostic value for evaluating the efficacy of cryosurgery in patients with advanced colorectal cancer.
Collapse
Affiliation(s)
- Jian Shi
- a Department of General Surgery , The Second Hospital of Jilin University , Changchun , Jilin , China
| | - Yuan Li
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Shuzhen Liang
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Jianying Zeng
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Guifeng Liu
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Feng Mu
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Haibo Li
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Jibing Chen
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Tongjun Liu
- a Department of General Surgery , The Second Hospital of Jilin University , Changchun , Jilin , China
| | - Lizhi Niu
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| |
Collapse
|
23
|
Role of Intermediate Filaments in Vesicular Traffic. Cells 2016; 5:cells5020020. [PMID: 27120621 PMCID: PMC4931669 DOI: 10.3390/cells5020020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 12/28/2022] Open
Abstract
Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.
Collapse
|
24
|
Abstract
Myocardial fibrosis is a significant global health problem associated with nearly all forms of heart disease. Cardiac fibroblasts comprise an essential cell type in the heart that is responsible for the homeostasis of the extracellular matrix; however, upon injury, these cells transform to a myofibroblast phenotype and contribute to cardiac fibrosis. This remodeling involves pathological changes that include chamber dilation, cardiomyocyte hypertrophy and apoptosis, and ultimately leads to the progression to heart failure. Despite the critical importance of fibrosis in cardiovascular disease, our limited understanding of the cardiac fibroblast impedes the development of potential therapies that effectively target this cell type and its pathological contribution to disease progression. This review summarizes current knowledge regarding the origins and roles of fibroblasts, mediators and signaling pathways known to influence fibroblast function after myocardial injury, as well as novel therapeutic strategies under investigation to attenuate cardiac fibrosis.
Collapse
Affiliation(s)
- Joshua G Travers
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Fadia A Kamal
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Jeffrey Robbins
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Katherine E Yutzey
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Burns C Blaxall
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH.
| |
Collapse
|
25
|
Santoro A, Pannone G, Ninivaggi R, Petruzzi M, Santarelli A, Russo GM, Lepore S, Pietrafesa M, Laurenzana I, Leonardi R, Bucci P, Natalicchio MI, Lucchese A, Papagerakis S, Bufo P. Relationship between CK19 expression, deregulation of normal keratinocyte differentiation pattern and high risk-human papilloma virus infection in oral and oropharyngeal squamous cell carcinoma. Infect Agent Cancer 2015; 10:46. [PMID: 26672675 PMCID: PMC4678638 DOI: 10.1186/s13027-015-0041-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/02/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Simple epithelial keratins appear early during embryonic development and are expressed in non-stratified, ductal and pseudo-stratified epithelial tissues. CK19, the lowest molecular weight keratin, is also expressed in basal layer of squamous epithelia of mucosal surfaces. Previous studies have shown that High Risk-Human Papilloma Virus (HR-HPV) epithelial infection induces cell immortalization via E6 and E7 viral proteins and this, in turn, impairs cytokeratin expression in cancerous cells lines derived from uterine cervix. Here, we demonstrate the possible relationship between HR-HPV(+) oral/oropharyngeal cancer and the high levels of CK19 expression. METHODS We analyzed 38 cases of Oral Squamous Cell Carcinomas/ Oro-Pharyngeal Squamous Cell Carcinomas (OSCCs/OPSCCs) by Immunohistochemistry (IHC) using specific antibody (Ab) detecting CK19, by In Situ Hybridization (ISH) and Polymerase Chain Reaction (PCR) based methods in order to define the HPV infectious status. We also evaluated the variation of CK19 expression in UPCI-SCC-131 (HPV(-)) and UPCI-SCC-154 (HPV(+)) cell lines by immunocytochemistry (ICC) and flow cytometry. RESULTS CK19 OSCC/OPSCC score has been identified multiplying percentage of cancer expressing cells to staining intensity. CK19 expression score in OSCCs/OPSCCs was very different between HPV(+) (mean: 288.0 ± 24.3) and HPV(-) cancers (mean: 66.2 ± 96.9). This difference was statistically significant (p < 0.001) with a strong evidence of correlation (p < 0.001; Spearman's R: +0.72). ROC curve analysis was performed on CK19 expression index related to HPV positivity. Heterogeneous areas of immunoreactivity varying in percentage value, intensity and/or localization were observed in normal epithelium, both perilesional and distant from the tumor with important differences between HR-HPV(+) and HR-HPV(-) carcinomas. By ICC and flow cytometry, the two analyzed cell lines were both CK19 positive but showed a different level of expression, in particular it should be noted that the UPCI-SCC-154 (HPV(+)) cell line had a higher expression than UPCI-SCC-131 (HPV(-)). CONCLUSIONS In this study we demonstrated, for the first time, strong association between CK19 up-regulation and HR-HPV(+) OSCCs/OPSCCs. This test has a good accuracy. We identified ROC curve with a cut-off > 195 for HR-HPV positive results (Sensitivity: 92.3 %; Specificity: 89.3 %). Furthermore, in OSCC/OPSCC, the CK19 test may be useful in identifying HR-HPV infection, the latter being related to HPV E7 potential to disrupt normal cytokeratin expression pattern.
Collapse
Affiliation(s)
- Angela Santoro
- Department of Laboratory and Services, Institute of Histopathology and Diagnostic Cytopathology, Fondazione di Ricerca e Cura 'Giovanni Paolo II'-UCSC, Largo Agostino Gemelli, 1, Campobasso, Italy
| | - Giuseppe Pannone
- Department of Clinical and Experimental Medicine, Institute of Pathological Anatomy, University of Foggia, Foggia, Italy
| | - Rossella Ninivaggi
- Department of Odontostomatology and Surgery, University of Bari, Bari, Italy
| | - Massimo Petruzzi
- Department of Odontostomatology and Surgery, University of Bari, Bari, Italy
| | - Andrea Santarelli
- Department of Clinic Specialistic and Stomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Giuseppe Maria Russo
- Department of Clinical and Experimental Medicine, Institute of Pathological Anatomy, University of Foggia, Foggia, Italy
| | - Silvia Lepore
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Oncological Reference Centre of Basilicata, Rionero in Vulture, Italy
| | - Michele Pietrafesa
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Oncological Reference Centre of Basilicata, Rionero in Vulture, Italy
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Oncological Reference Centre of Basilicata, Rionero in Vulture, Italy
| | - Rosalia Leonardi
- Department Medical-Surgical Specialties, Section of Oral Medicine, Policlinico, University of Catania, Catania, Italy
| | - Paolo Bucci
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Institute of Oral Pathology, University of Napoli 'Federico II', Naples, Italy
| | | | - Alberta Lucchese
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties - Second University of Napoli (SUN), Naples, Italy
| | - Silvana Papagerakis
- Department of Otolaryngology - Head and Neck Oncology, University of Michigan, 500 S State St, Ann Arbor, MI 48109 USA
| | - Pantaleo Bufo
- Department of Clinical and Experimental Medicine, Institute of Pathological Anatomy, University of Foggia, Foggia, Italy
| |
Collapse
|
26
|
Dave JM, Bayless KJ. Vimentin as an integral regulator of cell adhesion and endothelial sprouting. Microcirculation 2015; 21:333-44. [PMID: 24387004 DOI: 10.1111/micc.12111] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/30/2013] [Indexed: 12/11/2022]
Abstract
Angiogenesis is a multistep process that requires intricate changes in cell shape to generate new blood vessels. IF are a large family of proteins that play an important structural and functional role in forming and regulating the cytoskeleton. Vimentin, a major type III intermediate filament protein is expressed in endothelial and other mesenchymal cells. The structure of vimentin is conserved in mammals and shows dynamic expression profiles in various cell types and different developmental stages. Although initial studies with vimentin-deficient mice demonstrated a virtually normal phenotype, subsequent studies have revealed several defects in cell attachment, migration, signaling, neurite extension, and vascularization. Regulation of vimentin is highly complex and is driven by posttranslational modifications such as phosphorylation and cleavage by intracellular proteases. This review discusses various novel functions which are now known to be mediated by vimentin, summarizing structure, regulation and roles of vimentin in cell adhesion, migration, angiogenesis, neurite extension, and cancer. We specifically highlight a pathway involving growth factor-mediated calpain activation, vimentin cleavage, and MT1-MMP membrane translocation that is required for endothelial cell invasion in 3D environments. This pathway may also regulate the analogous processes of neurite extension and tumor cell invasion.
Collapse
Affiliation(s)
- Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | | |
Collapse
|
27
|
Vasca V, Vasca E, Freiman P, Marian D, Luce A, Mesolella M, Caraglia M, Ricciardiello F, Duminica T. Keratin 5 expression in squamocellular carcinoma of the head and neck. Oncol Lett 2014; 8:2501-2504. [PMID: 25364416 PMCID: PMC4214456 DOI: 10.3892/ol.2014.2591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 04/01/2014] [Indexed: 11/06/2022] Open
Abstract
Keratin 5 (K5) is present in the basal layer of a stratified squamous keratinized and non-keratinized epithelium. K5 and K14 have been demonstrated in the mucosa and tumors of the oral cavity, oropharynx, hypopharynx and larynx, and in the mitotic active basal cells of a stratified squamous epithelium. The aim of the present study was to assess K5 expression in squamocellular carcinoma with various localizations in the head and neck. A total of 13 biopsy fragments were included from patients diagnosed with squamocellular carcinoma of the larynx area (n=2), pharynx (n=2), hard palate (n=1), tongue (n=2), submandibular (n=1), lip (n=1), gingival sulcus (n=1), nasal pyramid (n=1), maxilla (n=1) and zygomatic (n=1). The immunohistochemical staining for K5 was evaluated according to the following score criteria: 0 (0% positive cells); 1 (<10% positive cells); 2 (10-30% positive cells); and 3 (>30% positive cells). K5 expression was observed in all squamocellular carcinomas included in the present study with scores between 1 and 3. For well- and moderately-differentiated histopathological types, a maximum score of 3 was recorded for all of the cases, not including the laryngeal area, which presented a score of 2. The following scores were identified in the regions of the poorly differentiated carcinomas: Jaw, 3; gingival sulcus, 2; and tongue and submandibular area, 1. These observations may aid with an improved stratification of head and neck squamocellular carcinoma, thus improving the diagnosis and treatment strategies for this type of cancer.
Collapse
Affiliation(s)
- Virgil Vasca
- Faculty of Medicine, Pharmacy and Dental Medicine, 'Vasile Goldiş' Western University of Arad, Arad 310025, Romania
| | - Elisabeta Vasca
- Faculty of Medicine, Pharmacy and Dental Medicine, 'Vasile Goldiş' Western University of Arad, Arad 310025, Romania
| | - Paul Freiman
- Faculty of Medicine, Pharmacy and Dental Medicine, 'Vasile Goldiş' Western University of Arad, Arad 310025, Romania
| | - Diana Marian
- Faculty of Medicine, Pharmacy and Dental Medicine, 'Vasile Goldiş' Western University of Arad, Arad 310025, Romania
| | - Amalia Luce
- Department of Biochemistry, Biophysics and General Pathology, The Second University of Naples, Naples I-80138, Italy
| | - Massimo Mesolella
- Department of Otolaryngology, Head and Neck Surgery, The University of Naples 'Federico II', Naples I-80131, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, The Second University of Naples, Naples I-80138, Italy
| | - Filippo Ricciardiello
- Department of Otolaryngology, Head and Neck Surgery, The University of Naples 'Federico II', Naples I-80131, Italy
| | - Tatiana Duminica
- Faculty of Medicine, Pharmacy and Dental Medicine, 'Vasile Goldiş' Western University of Arad, Arad 310025, Romania
| |
Collapse
|
28
|
Mu H, Lin KX, Zhao H, Xing S, Li C, Liu F, Lu HZ, Zhang Z, Sun YL, Yan XY, Cai JQ, Zhao XH. Identification of biomarkers for hepatocellular carcinoma by semiquantitative immunocytochemistry. World J Gastroenterol 2014; 20:5826-5838. [PMID: 24914343 PMCID: PMC4024792 DOI: 10.3748/wjg.v20.i19.5826] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/14/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of key biomarkers in hepatoma cell lines, tumor cells from patients’ blood samples, and tumor tissues.
METHODS: We performed the biomarker tests in two steps. First, cells plated on coverslips were used to assess biomarkers, and fluorescence intensities were calculated using the NIH Image J software. The measured values were analyzed using the SPSS 19.0 software to make comparisons among eight cell lines. Second, eighty-four individual samples were used to assess the biomarkers’ expression. Negative enrichment of the blood samples was performed, and karyocytes were isolated and dropped onto pre-treated glass slides for further analysis by immunofluorescence staining. Fluorescence intensities were compared among hepatocellular carcinoma (HCC) patients, chronic HBV-infected patients, and healthy controls following methods similar to those used for cell lines. The relationships between the expression of biomarkers and clinical pathological parameters were analyzed by Spearman rank correlation tests. In addition, we studied the distinct biomarkers’ expression with three-dimensional laser confocal microscopy reconstructions, and Kaplan-Meier survival analysis was performed to understand the clinical significance of these biomarkers.
RESULTS: Microscopic examination and fluorescence intensity calculations indicated that cytokeratin 8/18/19 (CK) expression was significantly higher in six of the seven HCC cell lines examined than in the control cells, and the expression levels of asialoglycoprotein receptor (ASGPR) and glypican-3 (GPC3) were higher in all seven HCC cell lines than in the control. Cells obtained from HCC patients’ blood samples also displayed significantly higher expression levels of ASGPR, GPC3, and CK than cells from chronic HBV-infected patients or healthy controls; these proteins may be valuable surface biomarkers for identifying HCC circulating tumor cells isolated and enriched from the blood samples. The stem cell-like and epithelial-mesenchymal transition-related biomarkers could be detected on the karyocyte slides. ASGPR and GPC3 were expressed at high levels, and thus three-dimensional reconstructions were used to observe their expression in detail. This analysis indicated that GPC3 was localized in the cytoplasm and membrane, but that ASGPR had a polar localization. Survival analyses showed that expression of GPC3 and ASGPR is associated with a patient’s overall survival (OS).
CONCLUSION: ASGPR, GPC3, and CK may be valuable HCC biomarkers for CTC detection; the expression of ASGPR and GPC3 might be helpful for understanding patients’ OS.
Collapse
MESH Headings
- Adult
- Aged
- Asialoglycoprotein Receptor/metabolism
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Glypicans/metabolism
- Hepatitis B virus
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/metabolism
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Keratin-18/metabolism
- Keratin-19/metabolism
- Keratin-8/metabolism
- Liver Neoplasms/diagnosis
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Male
- Middle Aged
- Neoplasm Metastasis
- Neoplasm Recurrence, Local
- Neoplastic Cells, Circulating/metabolism
Collapse
|
29
|
Diamond E, Lee GY, Akhtar NH, Kirby BJ, Giannakakou P, Tagawa ST, Nanus DM. Isolation and characterization of circulating tumor cells in prostate cancer. Front Oncol 2012; 2:131. [PMID: 23087897 PMCID: PMC3468833 DOI: 10.3389/fonc.2012.00131] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/16/2012] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Circulating tumor cells (CTCs) are tumor cells found in the peripheral blood that putatively originate from established sites of malignancy and likely have metastatic potential. Analysis of CTCs has demonstrated promise as a prognostic marker as well as a source of identifying potential targets for novel therapeutics. Isolation and characterization of these cells for study, however, remain challenging owing to their rarity in comparison with other cellular components of the peripheral blood. Several techniques that exploit the unique biochemical properties of CTCs have been developed to facilitate their isolation. Positive selection of CTCs has been achieved using microfluidic surfaces coated with antibodies against epithelial cell markers or tumor-specific antigens such as EpCAM or prostate-specific membrane antigen (PSMA). Following isolation, characterization of CTCs may help guide clinical decision making. For instance, molecular and genetic characterization may shed light on the development of chemotherapy resistance and mechanisms of metastasis without the need for a tissue biopsy. This paper will review novel isolation techniques to capture CTCs from patients with advanced prostate cancer, as well as efforts to characterize the CTCs. We will also review how these analyzes can assist in clinical decision making. CONCLUSION The study of CTCs provides insight into the molecular biology of tumors of prostate origin that will eventually guide the development of tailored therapeutics. These advances are predicated on high yield and accurate isolation techniques that exploit the unique biochemical features of these cells.
Collapse
Affiliation(s)
- Elan Diamond
- Division of Hematology and Medical Oncology, Weill Cornell Medical College New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Fan D, Takawale A, Lee J, Kassiri Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. FIBROGENESIS & TISSUE REPAIR 2012; 5:15. [PMID: 22943504 PMCID: PMC3464725 DOI: 10.1186/1755-1536-5-15] [Citation(s) in RCA: 599] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/16/2012] [Indexed: 12/30/2022]
Abstract
Fibroblasts comprise the largest cell population in the myocardium. In heart disease, the number of fibroblasts is increased either by replication of the resident myocardial fibroblasts, migration and transformation of circulating bone marrow cells, or by transformation of endothelial/epithelial cells into fibroblasts and myofibroblasts. The primary function of fibroblasts is to produce structural proteins that comprise the extracellular matrix (ECM). This can be a constructive process; however, hyperactivity of cardiac fibroblasts can result in excess production and deposition of ECM proteins in the myocardium, known as fibrosis, with adverse effects on cardiac structure and function. In addition to being the primary source of ECM proteins, fibroblasts produce a number of cytokines, peptides, and enzymes among which matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitor of metalloproteinases (TIMPs), directly impact the ECM turnover and homeostasis. Function of fibroblasts can also in turn be regulated by MMPs and TIMPs. In this review article, we will focus on the function of cardiac fibroblasts in the context of ECM formation, homeostasis and remodeling in the heart. We will discuss the origins and multiple roles of cardiac fibroblasts in myocardial remodeling in different types of heart disease in patients and in animal models. We will further provide an overview of what we have learned from experimental animal models and genetically modified mice with altered expression of ECM regulatory proteins, MMPs and TIMPs.
Collapse
Affiliation(s)
- Dong Fan
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | | | | | | |
Collapse
|
31
|
Bauer PO, Hudec R, Goswami A, Kurosawa M, Matsumoto G, Mikoshiba K, Nukina N. ROCK-phosphorylated vimentin modifies mutant huntingtin aggregation via sequestration of IRBIT. Mol Neurodegener 2012; 7:43. [PMID: 22929228 PMCID: PMC3502191 DOI: 10.1186/1750-1326-7-43] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/06/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Huntington's Disease (HD) is a fatal hereditary neurodegenerative disease caused by the accumulation of mutant huntingtin protein (Htt) containing an expanded polyglutamine (polyQ) tract. Activation of the channel responsible for the inositol-induced Ca²⁺ release from ensoplasmic reticulum (ER), was found to contribute substantially to neurodegeneration in HD. Importantly, chemical and genetic inhibition of inositol 1,4,5-trisphosphate (IP3) receptor type 1 (IP3R1) has been shown to reduce mutant Htt aggregation. RESULTS In this study, we propose a novel regulatory mechanism of IP3R1 activity by type III intermediate filament vimentin which sequesters the negative regulator of IP3R1, IRBIT, into perinuclear inclusions, and reduces its interaction with IP3R1 resulting in promotion of mutant Htt aggregation. Proteasome inhibitor MG132, which causes polyQ proteins accumulation and aggregation, enhanced the sequestration of IRBIT. Furthermore we found that IRBIT sequestration can be prevented by a rho kinase inhibitor, Y-27632. CONCLUSIONS Our results suggest that vimentin represents a novel and additional target for the therapy of polyQ diseases.
Collapse
Affiliation(s)
- Peter O Bauer
- Laboratory for Structural Neuropathology, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Grin B, Mahammad S, Wedig T, Cleland MM, Tsai L, Herrmann H, Goldman RD. Withaferin a alters intermediate filament organization, cell shape and behavior. PLoS One 2012; 7:e39065. [PMID: 22720028 PMCID: PMC3376126 DOI: 10.1371/journal.pone.0039065] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/18/2012] [Indexed: 01/09/2023] Open
Abstract
Withaferin A (WFA) is a steroidal lactone present in Withania somnifera which has been shown in vitro to bind to the intermediate filament protein, vimentin. Based upon its affinity for vimentin, it has been proposed that WFA can be used as an anti-tumor agent to target metastatic cells which up-regulate vimentin expression. We show that WFA treatment of human fibroblasts rapidly reorganizes vimentin intermediate filaments (VIF) into a perinuclear aggregate. This reorganization is dose dependent and is accompanied by a change in cell shape, decreased motility and an increase in vimentin phosphorylation at serine-38. Furthermore, vimentin lacking cysteine-328, the proposed WFA binding site, remains sensitive to WFA demonstrating that this site is not required for its cellular effects. Using analytical ultracentrifugation, viscometry, electron microscopy and sedimentation assays we show that WFA has no effect on VIF assembly in vitro. Furthermore, WFA is not specific for vimentin as it disrupts the cellular organization and induces perinuclear aggregates of several other IF networks comprised of peripherin, neurofilament-triplet protein, and keratin. In cells co-expressing keratin IF and VIF, the former are significantly less sensitive to WFA with respect to inducing perinuclear aggregates. The organization of microtubules and actin/microfilaments is also affected by WFA. Microtubules become wavier and sparser and the number of stress fibers appears to increase. Following 24 hrs of exposure to doses of WFA that alter VIF organization and motility, cells undergo apoptosis. Lower doses of the drug do not kill cells but cause them to senesce. In light of our findings that WFA affects multiple IF systems, which are expressed in many tissues of the body, caution is warranted in its use as an anti-cancer agent, since it may have debilitating organism-wide effects.
Collapse
Affiliation(s)
- Boris Grin
- Department of Cell and Molecular Biology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States of America.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kikuchi A, Kishi A, Yamamoto M, Yamane S, Umezawa T, Ide Y, Abe S. Expression of Intermediate Filaments in the Development of Genioglossus Muscle. J HARD TISSUE BIOL 2012. [DOI: 10.2485/jhtb.21.421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Fries P, Popowych YI, Guan LL, Beskorwayne T, Potter A, Babiuk L, Griebel PJ. Mucosal dendritic cell subpopulations in the small intestine of newborn calves. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1040-1051. [PMID: 21527286 DOI: 10.1016/j.dci.2011.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 05/30/2023]
Abstract
Mucosal dendritic cell development in the newborn is poorly understood despite evidence that distinct DC subpopulations populate individual mucosal surfaces. Therefore, we investigated DC phenotype and distribution in the small intestine of newborn calves. DC phenotype was analyzed using flow cytometry and DC distribution was investigated with immunohistochemistry. Purification of CD11c(Hi)MHC Class II(+) cells confirmed CD11c defined myeloid cells and a comparison of neonatal blood and intestine revealed distinct mucosal DC subpopulations. CD11c(Hi)CD14(+) cells were significantly more abundant in newborn ileum versus jejunum and CD335(+) NK cells were the only lymphoid population significantly different in ileum versus jejunum. Immunohistochemistry revealed unique patterns of myeloid cell distribution within the mucosal epithelium, lamina propria, and submucosa. CD11c(+) cells were present within the jejunal but absent from the ileal intraepithelial compartment. In contrast, CD11b(+) cells were present within the ileal but absent from the jejunal intraepithelial compartment. In conclusion, the neonatal small intestine is populated by diverse myeloid subpopulations and significant differences in regional distribution are established early in life. These observations may have significant implications for the response of the newborn to both commensal microflora and enteric pathogens.
Collapse
Affiliation(s)
- Patrick Fries
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Gennero L, De Siena R, Denysenko T, Roos MA, Calisti GF, Martano M, Fiobellot S, Panzone M, Reguzzi S, Gabetti L, Vercelli A, Cavallo G, Ricci E, Pescarmona GP. A novel composition for in vitro and in vivo regeneration of skin and connective tissues. Cell Biochem Funct 2011; 29:311-33. [PMID: 21491468 DOI: 10.1002/cbf.1751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The particular combination of polydeoxyribonucleotides, l-carnitine, calcium ions, proteolytic enzyme and other ingredients acts in a synergetic way in the regeneration of skin and connective tissues. This new formulation of active principles was tested in vitro as a cell and tissue culture medium and in vivo for various preparations in support of tissue regeneration. In vitro, the new blend allowed the maintenance of skin biopsies for more than 1 year in eutrophic conditions. Immunocytochemical analyses of fibroblasts isolated from these biopsies confirmed a significant increase of the epidermal and connective wound-healing markers such as collagen type I, collagen type IV, cytokeratin 1 (CK1), CK5, CK10 and CK14 versus controls. To examine the effects of the new compound in vivo, we studied impaired wound healing in genetically diabetic db/db mice. At day 18, diabetic mice treated with the new composition showed 100% closure of wounds and faster healing than mice treated with the other solutions. This complex of vital continuity factors or life-keeping factors could be used as a tissue-preserving solution or a cosmetic/drug/medical device to accelerate wound healing in the treatment of patients with deficient wound repair to promote the regeneration of cutaneous and connective tissues (injuries-wound, dermatitis) and prevent the recurrent relapses.
Collapse
Affiliation(s)
- Luisa Gennero
- Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Thayer P, Balachandran K, Rathan S, Yap CH, Arjunon S, Jo H, Yoganathan AP. The effects of combined cyclic stretch and pressure on the aortic valve interstitial cell phenotype. Ann Biomed Eng 2011; 39:1654-67. [PMID: 21347552 PMCID: PMC5467644 DOI: 10.1007/s10439-011-0273-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 02/05/2011] [Indexed: 11/26/2022]
Abstract
Aortic valve interstitial cells (VIC) can exhibit phenotypic characteristics of fibroblasts, myofibroblasts, and smooth muscle cells. Others have proposed that valve cells become activated and exhibit myofibroblast or fibroblast characteristics during disease initiation and progression; however, the cues that modulate this phenotypic change remain unclear. We hypothesize that the mechanical forces experienced by the valve play a role in regulating the native phenotype of the valve and that altered mechanical forces result in an activated phenotype. Using a novel ex vivo cyclic stretch and pressure bioreactor, we subjected porcine aortic valve (AV) leaflets to combinations of normal and pathological stretch and pressure magnitudes. The myofibroblast markers α-SMA and Vimentin, along with the smooth muscle markers Calponin and Caldesmon, were analyzed using immunohistochemistry and immunoblotting. Tissue structure was analyzed using Movat's pentachrome staining. We report that pathological stretch and pressure inhibited the contractile and possibly myofibroblast phenotypes as indicated by downregulation of the proteins α-SMA, Vimentin, and Calponin. In particular, Calponin downregulation implies depolymerization of actin filaments and possible conversion to a more synthetic (non-contractile) phenotype. This agreed well with the increase in spongiosa and fibrosa thickness observed under elevated pressure and stretch that are typically indicative of increased matrix synthesis. Our study therefore demonstrates how cyclic stretch and pressure may possibly act together to modulate the AVIC phenotype.
Collapse
Affiliation(s)
- Patrick Thayer
- W.H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kartik Balachandran
- W.H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Swetha Rathan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Choon Hwai Yap
- W.H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sivakkumar Arjunon
- W.H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hanjoong Jo
- Department of Cardiology, Emory University, Atlanta, GA, USA
| | - Ajit P. Yoganathan
- W.H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
37
|
Abstract
Cardiac fibroblasts play a critical role in maintenance of normal cardiac function. They are indispensable for damage control and tissue remodeling on myocardial injury and principal mediators of pathological cardiac remodeling and fibrosis. Despite their manyfold functions, cardiac fibroblasts remain poorly characterized in molecular terms. Evidence is evolving that cardiac fibroblasts are a heterogeneous population and likely derive from various distinct tissue niches in health and disease. Here, we review our emerging understanding of where cardiac fibroblasts come from, as well as how we can possibly use this knowledge to develop novel therapies for cardiac fibrosis.
Collapse
Affiliation(s)
- Elisabeth M Zeisberg
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
38
|
Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 2010; 225:631-7. [PMID: 20635395 DOI: 10.1002/jcp.22322] [Citation(s) in RCA: 480] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibroblasts are at the heart of cardiac function and are the principal determinants of cardiac fibrosis. Nevertheless, cardiac fibroblasts remain poorly characterized in molecular terms. Evidence is evolving that the cardiac fibroblast is a highly heterogenic cell population, and that such heterogeneity is caused by the distinct origins of fibroblasts in the heart. Cardiac fibroblasts can derive either from resident fibroblasts, from endothelial cells via an endothelial-mesenchynmal transition or from bone marrow-derived circulating progenitor cells, monocytes and fibrocytes. Here, we review the function and origin of fibroblasts in cardiac fibrosis.NB. The information given is correct.
Collapse
Affiliation(s)
- Guido Krenning
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
39
|
Serum tumor markers in pancreatic cancer-recent discoveries. Cancers (Basel) 2010; 2:1107-24. [PMID: 24281109 PMCID: PMC3835121 DOI: 10.3390/cancers2021107] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 12/25/2022] Open
Abstract
The low prevalence of pancreatic cancer remains an obstacle to the development of effective screening tools in an asymptomatic population. However, development of effective serologic markers still offers the potential for improvement of diagnostic capabilities, especially for subpopulations of patients with high risk for pancreatic cancer. The accurate identification of patients with pancreatic cancer and the exclusion of disease in those with benign disorders remain important goals. While clinical experience largely dismissed many candidate markers as useful markers of pancreatic cancer, CA19-9 continues to show promise. The present review highlights the development and the properties of different tumor markers in pancreatic cancer and their impact on the diagnostic and treatment of this aggressive disease.
Collapse
|
40
|
Bargagna-Mohan P, Paranthan RR, Hamza A, Dimova N, Trucchi B, Srinivasan C, Elliott GI, Zhan CG, Lau DL, Zhu H, Kasahara K, Inagaki M, Cambi F, Mohan R. Withaferin A targets intermediate filaments glial fibrillary acidic protein and vimentin in a model of retinal gliosis. J Biol Chem 2010; 285:7657-69. [PMID: 20048155 DOI: 10.1074/jbc.m109.093765] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gliosis is a biological process that occurs during injury repair in the central nervous system and is characterized by the overexpression of the intermediate filaments (IFs) glial fibrillary acidic protein (GFAP) and vimentin. A common thread in many retinal diseases is reactive Müller cell gliosis, an untreatable condition that leads to tissue scarring and even blindness. Here, we demonstrate that the vimentin-targeting small molecule withaferin A (WFA) is a novel chemical probe of GFAP. Using molecular modeling studies that build on the x-ray crystal structure of tetrameric vimentin rod 2B domain we reveal that the WFA binding site is conserved in the corresponding domain of tetrameric GFAP. Consequently, we demonstrate that WFA covalently binds soluble recombinant tetrameric human GFAP at cysteine 294. In cultured primary astrocytes, WFA binds to and down-regulates soluble vimentin and GFAP expression to cause cell cycle G(0)/G(1) arrest. Exploiting a chemical injury model that overexpresses vimentin and GFAP in retinal Müller glia, we demonstrate that systemic delivery of WFA down-regulates soluble vimentin and GFAP expression in mouse retinas. This pharmacological knockdown of soluble IFs results in the impairment of GFAP filament assembly and inhibition of cell proliferative response in Müller glia. We further show that a more severe GFAP filament assembly deficit manifests in vimentin-deficient mice, which is partly rescued by WFA. These findings illustrate WFA as a chemical probe of type III IFs and illuminate this class of withanolide as a potential treatment for diverse gliosis-dependent central nervous system traumatic injury conditions and diseases, and for orphan IF-dependent pathologies.
Collapse
Affiliation(s)
- Paola Bargagna-Mohan
- Departmentsof Ophthalmology & Visual Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Levin EC, Acharya NK, Sedeyn JC, Venkataraman V, D'Andrea MR, Wang HY, Nagele RG. Neuronal expression of vimentin in the Alzheimer's disease brain may be part of a generalized dendritic damage-response mechanism. Brain Res 2009; 1298:194-207. [DOI: 10.1016/j.brainres.2009.08.072] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/14/2009] [Accepted: 08/20/2009] [Indexed: 12/23/2022]
|
42
|
Barth M, Schumacher H, Kuhn C, Akhyari P, Lichtenberg A, Franke WW. Cordial connections: molecular ensembles and structures of adhering junctions connecting interstitial cells of cardiac valves in situ and in cell culture. Cell Tissue Res 2009; 337:63-77. [PMID: 19475424 DOI: 10.1007/s00441-009-0806-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 04/06/2009] [Indexed: 01/19/2023]
Abstract
Remarkable efforts have recently been made in the tissue engineering of heart valves to improve the results of valve transplantations and replacements, including the design of artificial valves. However, knowledge of the cell and molecular biology of valves and, specifically, of valvular interstitial cells (VICs) remains limited. Therefore, our aim has been to determine and localize the molecules forming the adhering junctions (AJs) that connect VICs in situ and in cell culture. Using biochemical and immunolocalization methods at the light- and electron-microscopic levels, we have identified, in man, cow, sheep and rat, the components of VIC-connecting AJs in situ and in cell culture. These AJs contain, in addition to the transmembrane glycoproteins N-cadherin and cadherin-11, the typical plaque proteins alpha- and beta-catenin as well as plakoglobin and p120, together with minor amounts of protein p0071, i.e. a total of five plaque proteins of the armadillo family. While we can exclude the occurrence of desmogleins, desmocollins and desmoplakin, we have noted with surprise that AJs of VICs in cell cultures, but not those growing in the valve tissue, contain substantial amounts of the desmosomal plaque protein, plakophilin-2. Clusters of AJs occur not only on the main VIC cell bodies but are also found widely dispersed on their long filopodia thus forming, in the tissue, a meshwork that, together with filopodial attachments to paracrystalline collagen fiber bundles, establishes a three-dimensional suprastructure, the role of which is discussed with respect to valve formation, regeneration and function.
Collapse
Affiliation(s)
- Mareike Barth
- Helmholtz Group/Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Moll R, Sievers E, Hämmerling B, Schmidt A, Barth M, Kuhn C, Grund C, Hofmann I, Franke WW. Endothelial and virgultar cell formations in the mammalian lymph node sinus: endothelial differentiation morphotypes characterized by a special kind of junction (complexus adhaerens). Cell Tissue Res 2008; 335:109-41. [PMID: 19015886 DOI: 10.1007/s00441-008-0700-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 09/15/2008] [Indexed: 12/25/2022]
Abstract
The lymph node sinus are channel structures of unquestionable importance in immunology and pathology, specifically in the filtering of the lymph, the transport and processing of antigens, the adhesion and migration of immune cells, and the spread of metastatic cancer cells. Our knowledge of the cell and molecular biology of the sinus-forming cells is still limited, and the origin and biological nature of these cells have long been a matter of debate. Here, we review the relevant literature and present our own experimental results, in particular concerning molecular markers of intercellular junctions and cell differentiation. We show that both the monolayer cells lining the sinus walls and the intraluminal virgultar cell meshwork are indeed different morphotypes of the same basic endothelial cell character, as demonstrated by the presence of a distinct spectrum of general and lymphatic endothelial markers, and we therefore refer to these cells as sinus endothelial/virgultar cells (SEVCs). These cells are connected by unique adhering junctions, termed complexus adhaerentes, characterized by the transmembrane glycoprotein VE-cadherin, combined with the desmosomal plaque protein desmoplakin, several adherens junction plaque proteins including alpha- and beta-catenin and p120 catenin, and components of the tight junction ensemble, specifically claudin-5 and JAM-A, and the plaque protein ZO-1. We show that complexus adhaerentes are involved in the tight three-dimensional integration of the virgultar network of SEVC processes along extracellular guidance structures composed of paracrystalline collagen bundle "stays". Overall, the SEVC system might be considered as a local and specific modification of the general lymphatic vasculature system. Finally, physiological and pathological alterations of the SEVC system will be presented, and the possible value of the molecular markers described in histological diagnoses of autochthonous lymph node tumors will be discussed.
Collapse
Affiliation(s)
- Roland Moll
- Institute of Pathology, Philipps University of Marburg, 35033 Marburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Saito S, Kusano S, Koizuka I, Nakashima H. [The up-regulation of vimentin and ezrin in the Epstein-Barr virus LMP1 gene transfected cells]. ACTA ACUST UNITED AC 2007; 110:24-31. [PMID: 17302298 DOI: 10.3950/jibiinkoka.110.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Epstein-Barr virus (EBV) is associated with the development of a variety of highly metastatic carcinomas, including nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane protein 1 (LMP1) is essential for B-cell transformation. In this study, we used two-dimensional differential gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC/MS/MS) to study the mechanism behind tumor invasion and metastasis. Eight proteins, including Vimentin and Ezrin, were identified from the alteration of expressed proteins in HEK-293 cells responding to LMP1 gene transfection. Vimentin is a major protein of the mesenchymal intermediate filament, which maintains the cytoskeleton conformation. Ezrin is also an essential protein that links the cell membrane to the actin cytoskeleton. The up-regulation of Vimentin and Ezrin in the LMP1 gene-transfected cells suggests that EBV LMP1 is involved in the progression and metastasis of NPC.
Collapse
Affiliation(s)
- Susumu Saito
- Department of Microbiology, St. Marianna University School of Medicine
| | | | | | | |
Collapse
|
45
|
Abstract
Tumours are known as wounds that do not heal - this implies that cells that are involved in angiogenesis and the response to injury, such as endothelial cells and fibroblasts, have a prominent role in the progression, growth and spread of cancers. Fibroblasts are associated with cancer cells at all stages of cancer progression, and their structural and functional contributions to this process are beginning to emerge. Their production of growth factors, chemokines and extracellular matrix facilitates the angiogenic recruitment of endothelial cells and pericytes. Fibroblasts are therefore a key determinant in the malignant progression of cancer and represent an important target for cancer therapies.
Collapse
Affiliation(s)
- Raghu Kalluri
- Center for Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
46
|
Schenke-Layland K, Riemann I, Opitz F, König K, Halbhuber KJ, Stock UA. Comparative study of cellular and extracellular matrix composition of native and tissue engineered heart valves. Matrix Biol 2005; 23:113-25. [PMID: 15246110 DOI: 10.1016/j.matbio.2004.03.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 03/28/2004] [Accepted: 03/29/2004] [Indexed: 10/26/2022]
Abstract
Tissue engineering of heart valves utilizes biodegradable or metabolizable scaffolds for remodeling by seeded autologous cells. The aim of this study was to determine and compare extracellular matrix (ECM) formations, cellular phenotypes and cell location of native and tissue engineered (TE) valve leaflets. Ovine carotid arteries, ovine and porcine hearts were obtained from slaughterhouses. Cells were isolated from carotid arteries and dissected ovine, porcine and TE leaflets. TE constructs were fabricated from decellularized porcine pulmonary valves, seeded ovine arterial cells and subsequent 16 days dynamic in vitro culture using a pulsatile bioreactor. Native and TE valves were studied by histology (hematoxylin-eosin, resorcin-fuchsin, Movat pentachrome), NIR femtosecond multiphoton laser scanning microscopy and scanning electron microscopy (SEM). Cells of native and TE tissues were identified and localized by immunohistochemistry. Arterial, valvular and re-isolated TE-construct cells were processed for immunocytochemistry and Western blotting. ECM analysis and SEM revealed characteristical and comparable structures in native and TE leaflets. Most cells in native leaflets stained strongly positive for vimentin. Cells positive to alpha-smooth muscle actin (alpha-SMA), myosin and calponin were only found at the ventricular (inflow) side of ovine aortic and porcine pulmonary valve leaflets. Cells from TE constructs had a strong expression of vimentin, alpha-SMA, myosin, calponin and h-caldesmon throughout the entire leaflet. Comparable ECM formation and endothelial cell lining of native and TE leaflets could be demonstrated. However, immunostaining revealed significant differences between valvular cell phenotypes of native and TE leaflets. These results may be essential for further cardiovascular tissue engineering efforts.
Collapse
Affiliation(s)
- K Schenke-Layland
- Department of Cardiothoracic and Vascular Surgery, Friedrich-Schiller-University, Erlanger Allee 101, FZL 07749 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Pekny M, Johansson CB, Eliasson C, Stakeberg J, Wallén A, Perlmann T, Lendahl U, Betsholtz C, Berthold CH, Frisén J. Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 1999; 145:503-14. [PMID: 10225952 PMCID: PMC2185074 DOI: 10.1083/jcb.145.3.503] [Citation(s) in RCA: 313] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In response to injury of the central nervous system, astrocytes become reactive and express high levels of the intermediate filament (IF) proteins glial fibrillary acidic protein (GFAP), vimentin, and nestin. We have shown that astrocytes in mice deficient for both GFAP and vimentin (GFAP-/-vim-/-) cannot form IFs even when nestin is expressed and are thus devoid of IFs in their reactive state. Here, we have studied the reaction to injury in the central nervous system in GFAP-/-, vimentin-/-, or GFAP-/-vim-/- mice. Glial scar formation appeared normal after spinal cord or brain lesions in GFAP-/- or vimentin-/- mice, but was impaired in GFAP-/-vim-/- mice that developed less dense scars frequently accompanied by bleeding. These results show that GFAP and vimentin are required for proper glial scar formation in the injured central nervous system and that some degree of functional overlap exists between these IF proteins.
Collapse
Affiliation(s)
- M Pekny
- Department of Medical Biochemistry, Gothenburg University, SE-405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Martinez G, Carnazza ML, Di Giacomo C, Sorrenti V, Avitabile M, Vanella A. GFAP, S-100 and vimentin proteins in rat after cerebral post-ischemic reperfusion. Int J Dev Neurosci 1998; 16:519-26. [PMID: 9881300 DOI: 10.1016/s0736-5748(98)00035-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
In the present study astrocytes reactivity during cerebral post-ischemic reperfusion was evaluated immunocytochemically by using antibodies to vimentin, glial fibrillary acidic protein (GFAP) and S-100 protein. At the 7th day of post-ischemic reperfusion few GFAP-positive cells were observed in the hippocampus and cerebellum, the number of GFAP-positive cells increased slightly after 20 days of reperfusion. This poor GFAP-positivity may be due to the inhibition of GFAP polymerization by S-100; in fact, S-100 immuno-reactivity was already evident from the 7th day. Vimentin immuno-staining was evident both at the 7th and 20th day of reperfusion in microglial cells and in oligodendrocytes, suggesting that these cells are involved in the recovery of neurons following brain injury.
Collapse
Affiliation(s)
- G Martinez
- Institute of Human Anatomy, University of Catania, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Bavdek SV, Golob Z, van Dijk J, Dorrestein GM, Fazarinc G. Vimentin- and desmin-positive cells in the moulting budgerigar (Melopsittacus undulatus) skin. Anat Histol Embryol 1997; 26:173-8. [PMID: 9334495 DOI: 10.1111/j.1439-0264.1997.tb00121.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The distribution of vimentin- and desmin-positive cells in the budgerigar (Melopsittacus undulatus) dermis was investigated by means of immunohistochemical reactivity with the commercially available (Euro-Diagnostics) polyclonal antibodies. The staining pattern for vimentin in the paraffin sections was generally comparable to that in other animal species with regard to endothelial cells, vascular wall cells, muscle cells and fibroblasts. The modified Schwann cells in the inner core of the Herbst corpuscles reacted distinctly with anti-vimentin and anti-desmin. Some connective tissue cells in the superficial dermal layer, in the feather papilla and along the pulp core inside of the regenerating feathers were particularly well stained with anti-vimentin. Fibroblast-like cells of the regenerating feathers, particularly at the base of the pulp, also reacted strongly with anti-desmin. The findings were discussed with regard to references.
Collapse
Affiliation(s)
- S V Bavdek
- Institute of Anatomy, Histology and Embryology, Veterinary Faculty, University of Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
50
|
Persson E, Rodriguez-Martinez H. Immunocytochemical localization of growth factors and intermediate filaments during the establishment of the porcine placenta. Microsc Res Tech 1997; 38:165-75. [PMID: 9260847 DOI: 10.1002/(sici)1097-0029(19970701/15)38:1/2<165::aid-jemt17>3.0.co;2-n] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The immunocytochemical localization of insulin-like growth factor I (IGF-I) and platelet-derived growth factor A (PDGF-A) chain ligands, PDGF-chain receptors, and the intermediate filaments cytokeratin, desmin, and vimentin in the tissue reorganization and development during the establishment of the porcine epitheliochorial placenta was studied at light and electron microscopic levels in sections of endometrium and/or placenta of gilts during early pregnancy up to day 40 postmating. The endometrial epithelia (surface and glandular) as well as the trophoblast showed PDGF-A and IGF-I labelling. The only temporal difference was seen regarding IGF-I labelling, this being more uniform in the glands during precontact and early contact stages (days 7-12) compared to later stages. Cytokeratin labelling was conspicuous in all epithelia, including the trophoblast. The endometrial stroma showed strong labelling for the PDGF receptors and the intermediate filament vimentin, staining being enhanced along with the increase in the vascular bed during the establishment of the placenta. The maternal endothelium immunoreacted to IGF-I, to both PDGF-A and PDGF receptors, to vimentin and to von Willebrand factor (Factor VIII). Desmin was also expressed in the capillary bed underneath the maternal surface epithelium. In larger blood vessels, desmin was detected in the smooth muscle layer but not in the endothelium. The vascular smooth muscle also reacted with IGF-I, PDGF-A, and PDGF-receptor antibodies. The results suggest the involvement of both growth factors, IGF-I and PDGF, in the early nutrition of the pig embryo and the tissue reorganization that encompasses placentation. IGF-I appears to be related to the secretory tissue compartment (formation of histotrophe), whereas PDGF might play a role in the reorganization of the stroma, particularly during placental angiogenesis. Desmin and von Willebrand factor immunolabelling appears to be useful to monitor the development of the subepithelial capillary bed in the porcine placenta.
Collapse
Affiliation(s)
- E Persson
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Uppsala
| | | |
Collapse
|