1
|
Gao H, Yang S, Song Q, Tang W, Wang Y, Shi B, Tang J, Luo Y. Gabexate mesylate thermo-sensitive in-situ gel is effective for treating grade-III pancreatic trauma in beagle dogs guided by contrast-enhanced ultrasound. Animal Model Exp Med 2025; 8:534-543. [PMID: 39846391 PMCID: PMC11904112 DOI: 10.1002/ame2.12526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/29/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND This study evaluates the efficacy of gabexate mesylate thermosensitive in-situ gel (GMTI) in the treatment of beagle grade III pancreatic trauma (PT) with the assistance of contrast-enhanced ultrasound (CEUS) and investigates its mechanism of action. METHODS A grade III PT model consisting of 15 beagle dogs with severed main pancreatic ducts was created and treated with cephalic vein injection of gabexate mesylate (GM) (1.54 mL/10 kg, TID) and peripancreatic injection of GMTI (4.63 mL/10 kg, QD) guided by CEUS within 24 h post-surgery. Ascites and serum levels of amylase (AMY), lipase (LPS), C-reactive protein (CRP), interleukin (IL)-6, tumor necrosis factor (TNF)-α, and urinary trypsinogen activating peptide (TAP) were detected by ELISA. Histopathological changes in the canine pancreas were observed by Hematoxylin and Eosin staining. RESULTS CEUS accurately displayed pancreatic lesions and guided catheterisation. Compared to the control group, the ascites was significantly reduced after treatment (p < 0.01). AMY and LPS ascites significantly decreased on post-operative 1st and 2nd day (p < 0.01). The levels of AMY, LPS, CRP, IL-6, and TNF-α in serum were decreased (p < 0.05 or p < 0.01). Urinary TAP was decreased 1 and 2 days after treatment (p < 0.05 or p < 0.01, respectively). In the control group, pancreatic tissue necrosis was evident in the wound area. Normal glandular cell structures and fibrous tissue hyperplasia were observed in the wound area after GMTI treatment. The GMTI group performed better than the GM group in improving pancreatic histology and reducing AMY levels in the early post-operative period. CONCLUSION Guided by CEUS, daily peripancreatic injections of GMTI in Beagles effectively inhibit pancreatic enzyme activity and aid in the adjuvant treatment of pancreatic trauma.
Collapse
Affiliation(s)
- Hanjing Gao
- Department of Ultrasound, First Medical Center of General Hospital of Chinese PLA, Beijing, China
- Department of Ultrasound, Second Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Shanshan Yang
- Department of Disease Prevention and Control, General Hospital of Chinese PLA, First Medical Center, Beijing, China
| | - Qing Song
- Department of Ultrasound, General Hospital of Chinese PLA, Seventh Medical Center, Beijing, China
| | - Wenjing Tang
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
- Institute of Neurological Research, Chinese PLA General Hospital, Beijing, China
| | - Yiru Wang
- Department of Ultrasound, First Medical Center of General Hospital of Chinese PLA, Beijing, China
| | - Bin Shi
- Department of Organ Transplantation, General Hospital of Chinese PLA, Third Medical Center, Beijing, China
| | - Jie Tang
- Department of Ultrasound, First Medical Center of General Hospital of Chinese PLA, Beijing, China
| | - Yukun Luo
- Department of Ultrasound, First Medical Center of General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
2
|
Du W, Wang X, Zhou Y, Wu W, Huang H, Jin Z. From micro to macro, nanotechnology demystifies acute pancreatitis: a new generation of treatment options emerges. J Nanobiotechnology 2025; 23:57. [PMID: 39881355 PMCID: PMC11776322 DOI: 10.1186/s12951-025-03106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Acute pancreatitis (AP) is a disease characterized by an acute inflammatory response in the pancreas. This is caused by the abnormal activation of pancreatic enzymes by a variety of etiologic factors, which results in a localized inflammatory response. The symptoms of this disease include abdominal pain, nausea and vomiting and fever. These symptoms are induced by a hyperinflammatory response and oxidative stress. In recent years, research has focused on developing anti-inflammatory and antioxidative therapies for the treatment of acute pancreatitis (AP). However, there are still limitations to this approach, including poor drug stability, low bioavailability and a short half-life. The advent of nanotechnology has opened up a novel avenue for the management of acute pancreatitis (AP). Nanomaterials can serve as an efficacious vehicle for conventional pharmaceuticals, enhancing their targeting ability, improving bioavailability and prolonging their half-life. Moreover, they can also exert a direct therapeutic effect. This review begins by introducing the general situation of acute pancreatitis (AP). It then discusses the pathogenesis of acute pancreatitis (AP) and the current status of treatment. Finally, it considers the literature related to the treatment of acute pancreatitis (AP) by nanomaterials. The objective of this study is to provide a comprehensive review of the existing literature on the use of nanomaterials in the treatment of acute pancreatitis (AP). In particular, the changes in inflammatory markers and therapeutic outcomes following the administration of nanomaterials are examined. This is done with the intention of offering insights that can inform subsequent research and facilitate the clinical application of nanomaterials in the management of acute pancreatitis (AP).
Collapse
Affiliation(s)
- Wei Du
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xinyue Wang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuyan Zhou
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wencheng Wu
- Central Laboratory, Department of Medical Ultrasound, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Haojie Huang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zhendong Jin
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Bertola L, Pepe G, Dolce A, Lecchi C, Borroni EM, Savino B, Canesi S, Sala L, Moretti P, Giordano A, Ressel L, Scanziani E, Vegeto E, Recordati C. Sex-dependent modulation of caerulein-induced acute pancreatitis in C57BL/6J mice. Vet Pathol 2025:3009858241312606. [PMID: 39878085 DOI: 10.1177/03009858241312606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Acute pancreatitis (AP) is a life-threatening condition, with a higher mortality rate in men than women and in which estrogens might play a protective role. This study aimed to investigate sex-dependent differences in a mouse model of caerulein-induced AP. Thirty-six C57BL/6J mice (19 females and 17 males) were treated intraperitoneally with phosphate-buffered saline or caerulein, and sacrificed 12 hours, 2 days, or 7 days after the last injection. Blood was collected for amylase, lipase, and glucose determination. Severity and extent of inflammation, apoptosis, and acinar to ductal metaplasia (ADM) in pancreatic tissue were scored histologically and total macrophages, major histocompatibility complex (MHC)-II+ cells, M2 macrophages, T and B cells, neutrophils, apoptosis, and ADM were marked immunohistochemically and quantified by digital image analysis. Serum amylase had a peak at 12 hours, without differences between the sexes. In females, pancreatitis reached a peak at 12 hours with a fast recovery while, in males, the peak was delayed to day 2 with residual apoptosis still present. Macrophages were the main inflammatory cell population, followed by T cells, B cells and neutrophils, without differences between sexes. In males, CD206+ cells and apoptosis were higher at both days 2 and 7, and cytokeratin-19+ (CK19+) ADM was higher at day 7 compared with females. The results of this study revealed a faster onset and resolution of caerulein-induced AP in female mice compared with male mice, supporting a sex-dependent modulation of acute pancreatitis.
Collapse
Affiliation(s)
- Luca Bertola
- University of Milan, Lodi, Italy
- Fondazione UNIMI, Milan, Italy
| | | | | | | | - Elena Monica Borroni
- University of Milan, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Benedetta Savino
- University of Milan, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Simone Canesi
- University of Milan, Lodi, Italy
- Fondazione UNIMI, Milan, Italy
| | - Laura Sala
- University of Milan, Lodi, Italy
- Fondazione UNIMI, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
4
|
Sun HW, Bai YY, Qin ZL, Li RZ, Madzikatire TB, Akuetteh PDP, Li Q, Kong HR, Jin YP. Transfection of 12/15-lipoxygenase effectively alleviates inflammatory responses during experimental acute pancreatitis. World J Gastroenterol 2024; 30:4544-4556. [PMID: 39563743 PMCID: PMC11572619 DOI: 10.3748/wjg.v30.i42.4544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 10/31/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP), the initially triggered inflammatory process in the pancreas, can be life-threatening. It has been reported that 15-lipoxygenase may promote the removal of damaged intracellular components, maintain intracellular homeostasis, and promote apoptosis by upregulating the activity of caspases. Despite an increased understanding of the lipoxygenase pathway in inflammation and immune diseases, the role of the Alox15 gene product in modulating the inflammatory changes during AP is not well defined. AIM To investigate the effect of Alox15 expression in cerulein-induced AP in rats. METHODS Model rats were transfected with Alox15 by injecting a recombinant lentivirus vector encoding Alox15 into the left gastric artery before inducing AP. The expression of Alox15 was then assessed at the mRNA and protein levels. RESULTS Our in vivo results showed that serum amylase activity and pancreatic tissue water content were significantly reduced in Alox15-transfected rats. Further, the mRNA expression levels of tumor necrosis factor alpha, interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein-1, as well as the protein expression of nuclear factor kappa B in pancreatic tissue were reduced. Additionally, we observed an upregulation of cleaved caspase-3 that implies an induction of apoptosis in pancreatic cells. The transfection of Alox15 resulted in a lower number of autophagic vacuoles in AP. CONCLUSION Our findings demonstrate a regulatory role of Alox15 in apoptosis and autophagy, making it a potential therapeutic target for AP.
Collapse
Affiliation(s)
- Hong-Wei Sun
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yong-Yu Bai
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Zhen-Liu Qin
- Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Ri-Zhao Li
- Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | | | | | - Qiang Li
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hong-Ru Kong
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yue-Peng Jin
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
5
|
Hao M, Sebag SC, Qian Q, Yang L. Lysosomal physiology and pancreatic lysosomal stress in diabetes mellitus. EGASTROENTEROLOGY 2024; 2:e100096. [PMID: 39512752 PMCID: PMC11542681 DOI: 10.1136/egastro-2024-100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Endocrine and exocrine functions of the pancreas control nutritional absorption, utilisation and systemic metabolic homeostasis. Under basal conditions, the lysosome is pivotal in regulating intracellular organelles and metabolite turnover. In response to acute or chronic stress, the lysosome senses metabolic flux and inflammatory challenges, thereby initiating the adaptive programme to re-establish cellular homeostasis. A growing body of evidence has demonstrated the pathophysiological relevance of the lysosomal stress response in metabolic diseases in diverse sets of tissues/organs, such as the liver and the heart. In this review, we discuss the pathological relevance of pancreatic lysosome stress in diabetes mellitus. We begin by summarising lysosomal biology, followed by exploring the immune and metabolic functions of lysosomes and finally discussing the interplay between lysosomal stress and the pathogenesis of pancreatic diseases. Ultimately, our review aims to enhance our understanding of lysosomal stress in disease pathogenesis, which could potentially lead to the discovery of innovative treatment methods for these conditions.
Collapse
Affiliation(s)
- Meihua Hao
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Sara C Sebag
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Qingwen Qian
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Zhu L, Xu Y, Lei J. Molecular mechanism and potential role of mitophagy in acute pancreatitis. Mol Med 2024; 30:136. [PMID: 39227768 PMCID: PMC11373529 DOI: 10.1186/s10020-024-00903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Acute pancreatitis (AP) is a multifaceted inflammatory disorder stemming from the aberrant activation of trypsin within the pancreas. Despite the contribution of various factors to the pathogenesis of AP, such as trypsin activation, dysregulated increases in cytosolic Ca2+ levels, inflammatory cascade activation, and mitochondrial dysfunction, the precise molecular mechanisms underlying the disease are still not fully understood. Mitophagy, a cellular process that preserves mitochondrial homeostasis under stress, has emerged as a pivotal player in the context of AP. Research suggests that augmenting mitophagy can mitigate pancreatic injury by clearing away malfunctioning mitochondria. Elucidating the role of mitophagy in AP may pave the way for novel therapeutic strategies. This review article aims to synthesize the current research findings on mitophagy in AP and underscore its significance in the clinical management of the disorder.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yunfei Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- Postdoctoral Research Station of Biology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Jian Lei
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
7
|
Fu X, Xiu Z, Xu Q, Yue R, Xu H. Interleukin-22 Alleviates Caerulein-Induced Acute Pancreatitis by Activating AKT/mTOR Pathway. Dig Dis Sci 2024; 69:1691-1700. [PMID: 38466463 PMCID: PMC11098937 DOI: 10.1007/s10620-024-08360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Acute pancreatitis (AP) is one of the most common acute abdominal disorders; due to the lack of specific treatment, the treatment of acute pancreatitis, especially serious acute pancreatitis (SAP), is difficult and challenging. We will observe the changes of Interleukin -22 levels in acute pancreatitis animal models, and explore the mechanism of Interleukin -22 in acute pancreatitis. OBJECTIVE This study aims to assess the potential protective effect of Interleukin -22 on caerulein-induced acute pancreatitis and to explore its mechanism. METHODS Blood levels of amylase and lipase and Interleukin -22 were assessed in mice with acute pancreatitis. In animal model and cell model of caerulein-induced acute pancreatitis, the mRNA levels of P62 and Beclin-1 were determined using PCR, and the protein expression of P62, LC3-II, mTOR, AKT, p-mTOR, and p-AKT were evaluated through Western blot analysis. RESULTS Interleukin -22 administration reduced blood amylase and lipase levels and mitigated tissue damage in acute pancreatitis mice model. Interleukin -22 inhibited the relative mRNA levels of P62 and Beclin-1, and the Interleukin -22 group showed a decreased protein expression of LC3-II and P62 and the phosphorylation of the AKT/mTOR pathway. Furthermore, we obtained similar results in the cell model of acute pancreatitis. CONCLUSION This study suggests that Interleukin -22 administration could alleviate pancreatic damage in caerulein-induced acute pancreatitis. This effect may result from the activation of the AKT/mTOR pathway, leading to the inhibition of autophagy. Consequently, Interleukin -22 shows potential as a treatment.
Collapse
Affiliation(s)
- Xinjuan Fu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
- Gastroenterology Center, Qingdao Hiser Hospital Affiliated to Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266033, China
| | - Zhigang Xiu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Qianqian Xu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Rui Yue
- Department of Critical Care Medicine, Shandong Public Health Clinic Center, Jinan, 250100, China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China.
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
8
|
Tsomidis I, Voumvouraki A, Kouroumalis E. The Pathogenesis of Pancreatitis and the Role of Autophagy. GASTROENTEROLOGY INSIGHTS 2024; 15:303-341. [DOI: 10.3390/gastroent15020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The pathogenesis of acute and chronic pancreatitis has recently evolved as new findings demonstrate a complex mechanism operating through various pathways. In this review, the current evidence indicating that several mechanisms act in concert to induce and perpetuate pancreatitis were presented. As autophagy is now considered a fundamental mechanism in the pathophysiology of both acute and chronic pancreatitis, the fundamentals of the autophagy pathway were discussed to allow for a better understanding of the pathophysiological mechanisms of pancreatitis. The various aspects of pathogenesis, including trypsinogen activation, ER stress and mitochondrial dysfunction, the implications of inflammation, and macrophage involvement in innate immunity, as well as the significance of pancreatic stellate cells in the development of fibrosis, were also analyzed. Recent findings on exosomes and the miRNA regulatory role were also presented. Finally, the role of autophagy in the protection and aggravation of pancreatitis and possible therapeutic implications were reviewed.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| |
Collapse
|
9
|
Yang K, Xie R, Xiao G, Zhao Z, Ding M, Lin T, Tsang YS, Chen Y, Xu D, Fei J. The integration of single-cell and bulk RNA-seq atlas reveals ERS-mediated acinar cell damage in acute pancreatitis. J Transl Med 2024; 22:346. [PMID: 38605381 PMCID: PMC11010368 DOI: 10.1186/s12967-024-05156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a clinically common acute abdominal disease, whose pathogenesis remains unclear. The severe patients usually have multiple complications and lack specific drugs, leading to a high mortality and poor outcome. Acinar cells are recognized as the initial site of AP. However, there are no precise single-cell transcriptomic profiles to decipher the landscape of acinar cells during AP, which are the missing pieces of jigsaw we aimed to complete in this study. METHODS A single-cell sequencing dataset was used to identify the cell types in pancreas of AP mice and to depict the transcriptomic maps in acinar cells. The pathways' activities were evaluated by gene sets enrichment analysis (GSEA) and single-cell gene sets variation analysis (GSVA). Pseudotime analysis was performed to describe the development trajectories of acinar cells. We also constructed the protein-protein interaction (PPI) network and identified the hub genes. Another independent single-cell sequencing dataset of pancreas samples from AP mice and a bulk RNA sequencing dataset of peripheral blood samples from AP patients were also analyzed. RESULTS In this study, we identified genetic markers of each cell type in the pancreas of AP mice based on single-cell sequencing datasets and analyzed the transcription changes in acinar cells. We found that acinar cells featured acinar-ductal metaplasia (ADM), as well as increased endocytosis and vesicle transport activity during AP. Notably, the endoplasmic reticulum stress (ERS) and ER-associated degradation (ERAD) pathways activated by accumulation of unfolded/misfolded proteins in acinar cells could be pivotal for the development of AP. CONCLUSION We deciphered the distinct roadmap of acinar cells in the early stage of AP at single-cell level. ERS and ERAD pathways are crucially important for acinar homeostasis and the pathogenesis of AP.
Collapse
Affiliation(s)
- Kaige Yang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongli Xie
- Department of General Surgery, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guohui Xiao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Zhao
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Min Ding
- Department of General Surgery, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tingyu Lin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiu Sing Tsang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dan Xu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian Fei
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of General Surgery, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Ding WX, Ma X, Kim S, Wang S, Ni HM. Recent insights about autophagy in pancreatitis. EGASTROENTEROLOGY 2024; 2:e100057. [PMID: 38770349 PMCID: PMC11104508 DOI: 10.1136/egastro-2023-100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Acute pancreatitis is a common inflammatory gastrointestinal disease without any successful treatment. Pancreatic exocrine acinar cells have high rates of protein synthesis to produce and secrete large amounts of digestive enzymes. When the regulation of organelle and protein homeostasis is disrupted, it can lead to endoplasmic reticulum (ER) stress, damage to the mitochondria and improper intracellular trypsinogen activation, ultimately resulting in acinar cell damage and the onset of pancreatitis. To balance the homeostasis of organelles and adapt to protect themselves from organelle stress, cells use protective mechanisms such as autophagy. In the mouse pancreas, defective basal autophagy disrupts ER homoeostasis, leading to ER stress and trypsinogen activation, resulting in spontaneous pancreatitis. In this review, we discuss the regulation of autophagy and its physiological role in maintaining acinar cell homeostasis and function. We also summarise the current understanding of the mechanisms and the role of defective autophagy at multiple stages in experimental pancreatitis induced by cerulein or alcohol.
Collapse
Affiliation(s)
- Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sydney Kim
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
11
|
Zhao Z, Han L, Xin M, Zhou L, Jiang K, Huang Q, Dai R. Still water run deep: Therapeutic TP effect of ucMSC-Ex via regulating mTOR to enhance autophagy. J Cell Mol Med 2024; 28:e18120. [PMID: 38358010 PMCID: PMC10868142 DOI: 10.1111/jcmm.18120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Our previous study confirmed that umbilical cord mesenchymal stem cells-exosomes (ucMSC-Ex) inhibit apoptosis of pancreatic acinar cells to exert protective effects. However, the relationship between apoptosis and autophagy in traumatic pancreatitis (TP) has rarely been reported. We dissected the transcriptomics after pancreatic trauma and ucMSC-Ex therapy by high-throughput sequencing. Additionally, we used rapamycin and MHY1485 to regulate mTOR. HE, inflammatory factors and pancreatic enzymatic assays were used to comprehensively determine the local versus systemic injury level, fluorescence staining and electron microscopy were used to detect the effect of autophagy, and observe the expression levels of autophagy-related markers at the gene and protein levels. High-throughput sequencing identified that autophagy played a crucial role in the pathophysiological process of TP and ucMSC-Ex therapy. The results of electron microscopy, immunofluorescence staining, polymerase chain reaction and western blot suggested that therapeutic effect of ucMSC-Ex was mediated by activation of autophagy in pancreatic acinar cells through inhibition of mTOR. ucMSC-Ex can attenuate pancreas injury by inhibiting mTOR to regulate acinar cell autophagy after TP. Future studies will build on the comprehensive sequencing of RNA carried by ucMSC-Ex to predict and verify specific non-coding RNA.
Collapse
Affiliation(s)
- Zhirong Zhao
- Research Institute of General SurgeryJinling Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingJiangsu ProvinceChina
| | - Li Han
- General Surgery CenterGeneral Hospital of Western Theater CommandChengduSichuan ProvinceChina
| | - Mei Xin
- General Surgery CenterGeneral Hospital of Western Theater CommandChengduSichuan ProvinceChina
| | - Lichen Zhou
- General Surgery CenterGeneral Hospital of Western Theater CommandChengduSichuan ProvinceChina
| | - Kexin Jiang
- General Surgery CenterGeneral Hospital of Western Theater CommandChengduSichuan ProvinceChina
- College of MedicineSouthwest Jiaotong UniversityChengduSichuan ProvinceChina
| | - Qian Huang
- Research Institute of General SurgeryJinling Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingJiangsu ProvinceChina
| | - Ruiwu Dai
- General Surgery CenterGeneral Hospital of Western Theater CommandChengduSichuan ProvinceChina
- College of MedicineSouthwest Jiaotong UniversityChengduSichuan ProvinceChina
- Clinical Medical CollegeChengdu Medical CollegeChengduSichuan ProvinceChina
- Pancreatic injury and repair Key laboratory of Sichuan ProvinceGeneral Hospital of Western Theater CommandChengduSichuan ProvinceChina
| |
Collapse
|
12
|
Mehanna S, Arakawa S, Imasaka M, Chen W, Nakanishi Y, Nishiura H, Shimizu S, Ohmuraya M. Beclin1 is essential for the pancreas development. Dev Biol 2023; 504:113-119. [PMID: 37739117 DOI: 10.1016/j.ydbio.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Beclin1 (Becn1) is a multifunctional protein involved in autophagy regulation, membrane trafficking, and tumor suppression. In this study, we examined the roles of Becn1 in the pancreas development by generating mice with conditional deletion of Becn1 in the pancreas using pancreatic transcriptional factor 1a (Ptf1a)-Cre mice (Becn1f/f; Ptf1aCre/+). Surprisingly, loss of Becn1 in the pancreas resulted in severe pancreatic developmental defects, leading to insufficient exocrine and endocrine pancreatic function. Approximately half of Becn1f/f; Ptf1aCre/+ mice died immediately after birth. However, duodenum and neural tissue development were almost normal, indicating that pancreatic insufficiency was the cause of death. These findings demonstrated a novel role for Becn1 in pancreas morphogenesis, differentiation, and growth, and suggested that loss of this factor leaded to pancreatic agenesis at birth.
Collapse
Affiliation(s)
- Sally Mehanna
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8510, Japan
| | - Mai Imasaka
- Department of Genetics, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Wenting Chen
- Department of Genetics, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yuto Nakanishi
- Department of Genetics, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Hiroshi Nishiura
- Division of Functional Pathology, Department of Pathology, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8510, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
13
|
Tang D, Kang R. SQSTM1 is a therapeutic target for infection and sterile inflammation. Cytokine 2023; 169:156317. [PMID: 37542833 DOI: 10.1016/j.cyto.2023.156317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Inflammation represents a fundamental immune response triggered by various detrimental stimuli, such as infections, tissue damage, toxins, and foreign substances. Protein degradation plays a crucial role in regulating the inflammatory process at multiple levels. The identification of sequestosome 1 (SQSTM1, also known as p62) protein as a binding partner of lymphocyte-specific protein tyrosine kinase in 1995 marked a significant milestone. Subsequent investigations unveiled the activity of SQSTM1 to interact with diverse unstructured substrates, including proteins, organelles, and pathogens, facilitating their delivery to the lysosome for autophagic degradation. In addition to its well-established intracellular functions, emerging studies have reported the active secretion or passive release of SQSTM1 by immune or non-immune cells, orchestrating the inflammatory responses. These distinct characteristics render SQSTM1 a critical therapeutic target in numerous human diseases, including infectious diseases, rheumatoid arthritis, inflammatory bowel disease, pancreatitis, asthma, chronic obstructive pulmonary disease, and cardiovascular diseases. This review provides a comprehensive overview of the structure and modulation of SQSTM1, discusses its intracellular and extracellular roles in inflammation, and highlights its significance in inflammation-related diseases. Future investigations focusing on elucidating the precise localization, structure, post-translational modifications of SQSTM1, as well as the identification of additional interacting partners, hold promise for unravelling further insights into the multifaceted functions of SQSTM1.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
14
|
Ma Z, Xie W, Luo T, Hu Z, Hua J, Zhou J, Yang T, Wang W, Song Z, Yu X, Xu J, Shi S. Exosomes from TNF-α preconditioned human umbilical cord mesenchymal stromal cells inhibit the autophagy of acinar cells of severe acute pancreatitis via shuttling bioactive metabolites. Cell Mol Life Sci 2023; 80:257. [PMID: 37594573 PMCID: PMC11073291 DOI: 10.1007/s00018-023-04861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/16/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023]
Abstract
Severe acute pancreatitis (SAP) is a common critical disease of the digestive system, with high mortality and a lack of effective prevention and treatment measures. Despite mesenchymal stromal cell transplantation having the potential to treat SAP, its clinical application prospect is limited, and the mechanism is unclear. Here, we reveal the therapeutic role of exosomes from TNF-α-preconditioned human umbilical cord mesenchymal stromal cells (HUCMSCs) in attenuating SAP and show that it is partly dependent on exosomal metabolites. Bioactive metabolomics analysis showed that 48 metabolites be significantly differentially expressed between the two groups (Exo-Ctrl group versus Exo-TNF-α group). Then, the further functional experiments indicated that 3,4-dihydroxyphenylglycol could be a key molecule mediating the therapeutic effect of TNF-α-preconditioned HUCMSCs. The animal experiments showed that 3,4-dihydroxyphenylglycol reduced inflammation and oxidative stress in the pancreatic tissue and inhibited acinar cell autophagy in a rat model of SAP. Mechanistically, we revealed that 3,4-dihydroxyphenylglycol activated the mTOR pathway to inhibit acinar cell autophagy and alleviate SAP. In summary, our study demonstrated that exosomes from TNF-α-preconditioned HUMSCs inhibit the autophagy of acinar cells of SAP by shuttling 3,4-dihydroxyphenylglycol and inhibiting the mTOR pathway. This study revealed the vital role and therapeutic potential of metabolite-derived exosomes in SAP, providing a new promising method to prevent and therapy SAP.
Collapse
Affiliation(s)
- Zhilong Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200050, China
| | - Wangcheng Xie
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Tingyi Luo
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhengyu Hu
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
| | - Jia Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200050, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
| |
Collapse
|
15
|
Mainz L, Sarhan MAFE, Roth S, Sauer U, Kalogirou C, Eckstein M, Gerhard-Hartmann E, Seibert HD, Voelker HU, Geppert C, Rosenwald A, Eilers M, Schulze A, Diefenbacher M, Rosenfeldt MT. Acute systemic knockdown of Atg7 is lethal and causes pancreatic destruction in shRNA transgenic mice. Autophagy 2022; 18:2880-2893. [PMID: 35343375 PMCID: PMC9673934 DOI: 10.1080/15548627.2022.2052588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The notion that macroautophagy/autophagy is a potentially attractive therapeutic target for a variety of diseases, including cancer, largely stems from pre-clinical mouse studies. Most of these examine the effects of irreversible and organ confined autophagy deletion using site specific Cre-loxP recombination of the essential autophagy regulating genes Atg7 or Atg5. Model systems with the ability to impair autophagy systemically and reversibly at all disease stages would allow a more realistic approach to evaluate the consequences of authophagy inhibition as a therapeutic concept and its potential side effects. Here, we present shRNA transgenic mice that via doxycycline (DOX) regulable expression of a highly efficient miR30-E-based shRNA enabled knockdown of Atg7 simultaneously in the majority of organs, with the brain and spleen being noteable exceptions. Induced animals deteriorated rapidly and experienced profound destruction of the exocrine pancreas, severe hypoglycemia and depletion of hepatic glycogen storages. Cessation of DOX application restored apparent health, glucose homeostasis and pancreatic integrity. In a similar Atg5 knockdown model we neither observed loss of pancreatic integrity nor diminished survival after DOX treatment, but identified histological changes consistent with steatohepatitis and hepatic fibrosis in the recovery period after termination of DOX. Regulable Atg7-shRNA mice are valuable tools that will enable further studies on the role of autophagy impairment at various disease stages and thereby help to evaluate the consequences of acute autophagy inhibition as a therapeutic concept.Abbreviations: ACTB: actin, beta; AMY: amylase complex; ATG4B: autophagy related 4B, cysteine peptidase; ATG5: autophagy related 5; ATG7: autophagy related 7; Cag: CMV early enhancer/chicken ACTB promoter; Col1a1: collagen, type I, alpha 1; Cre: cre recombinase; DOX: doxycycline; GCG: glucagon; GFP: green fluorescent protein; INS: insulin; LC3: microtubule-associated protein 1 light chain 3; miR30-E: optimized microRNA backbone; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; PNLIP: pancreatic lipase; rtTA: reverse tetracycline transactivator protein; SQSTM1/p62: sequestome 1; TRE: tetracycline responsive element.
Collapse
Affiliation(s)
- Laura Mainz
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Mohamed A. F. E. Sarhan
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Sabine Roth
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Ursula Sauer
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Charis Kalogirou
- Department of Urology and Pediatric Urology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elena Gerhard-Hartmann
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Helen-Desiree Seibert
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Hans-Ulrich Voelker
- Department of Pathology, Leopoldina Medizinisches Versorgungszentrum, Schweinfurt, Germany
| | - Carol Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Martin Eilers
- Biocenter, Department of Biochemistry and Molecular Biology, Julius-Maximilians-University of Würzburg, Germany
| | - Almut Schulze
- Division of Metabolism and Microenvironment, Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Germany
| | - Markus Diefenbacher
- Biocenter, Department of Biochemistry and Molecular Biology, Julius-Maximilians-University of Würzburg, Germany
| | - Mathias T. Rosenfeldt
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany,CONTACT Mathias T. Rosenfeldt Institute of Pathology – University of Würzburg, Josef-Schneider-Str. 2,97080Würzburg, Germany
| |
Collapse
|
16
|
Zheng X, Zhao J, Wang S, Hu L. Research Progress of Antioxidant Nanomaterials for Acute Pancreatitis. Molecules 2022; 27:7238. [PMID: 36364064 PMCID: PMC9658789 DOI: 10.3390/molecules27217238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a complex inflammatory disease caused by multiple etiologies, the pathogenesis of which has not been fully elucidated. Oxidative stress is important for the regulation of inflammation-related signaling pathways, the recruitment of inflammatory cells, the release of inflammatory factors, and other processes, and plays a key role in the occurrence and development of AP. In recent years, antioxidant therapy that suppresses oxidative stress by scavenging reactive oxygen species has become a research highlight of AP. However, traditional antioxidant drugs have problems such as poor drug stability and low delivery efficiency, which limit their clinical translation and applications. Nanomaterials bring a brand-new opportunity for the antioxidant treatment of AP. This review focuses on the multiple advantages of nanomaterials, including small size, good stability, high permeability, and long retention effect, which can be used not only as effective carriers of traditional antioxidant drugs but also directly as antioxidants. In this review, after first discussing the association between oxidative stress and AP, we focused on summarizing the literature related to antioxidant nanomaterials for the treatment of AP and highlighting the effects of these nanomaterials on the indicators related to oxidative stress in pathological states, aiming to provide references for follow-up research and promote clinical application.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Ningxia Medical University, Postgraduate Training Base in Shanghai Gongli Hospital, Pudong New Area, No. 219 Miao Pu Road, Shanghai 200135, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
17
|
Sharma MK, Priyam K, Kumar P, Garg PK, Roy TS, Jacob TG. Effect of calorie-restriction and rapamycin on autophagy and the severity of caerulein-induced experimental acute pancreatitis in mice. FRONTIERS IN GASTROENTEROLOGY 2022; 1. [DOI: 10.3389/fgstr.2022.977169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BackgroundImpaired autophagy contributes to development of acute pancreatitis (AP). We studied the effect of inducing autophagy by calorie-restriction and rapamycin, separately, in the caerulein-induced model of severe AP.MethodsAdult, male, Swiss albino mice were given eight, hourly, intraperitoneal injections of caerulein (Ce) (50µg/Kg/dose). The interventions were calorie restriction (CR) and rapamycin (2mg/Kg). Mice were sacrificed at the 9th hour. Pancreas was harvested for histopathology and immunoblotting. Amylase activity and the levels of cytokines were measured in plasma.ResultsThe histopathological score and amylase activity were significantly lower in calorie-restricted caerulein-induced AP (CRCeAP) in comparison to animals that had unrestricted access to chow. In the CRCeAP group, levels of IL-6 and GM-CSF in plasma were lower and the expression of LC3II and Beclin-1 were higher. On transmission electron-microscopy, the area occupied by autophagic vacuoles was higher in CRCeAP. The expression of caspase-8 and caspase-9 was also higher in CRCeAP. In rapamycin with caerulein-induced AP (Rapa+CeAP), the histopathological score and amylase activity were significantly lower than caerulein-induced AP (CeAP). In Rapa+CeAP, the expression of LC3II and Beclin-1 were higher, whereas; SQSTM1 was decreased. The number of autophagic vacuoles in Rapa+CeAP group was fewer. Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) were lower in Rapa+CeAP. Caspase-3 increased and high mobility group box 1 (HMGB1) decreased in Rapa+CeAP.ConclusionCalorie-restriction and rapamycin can individually decrease the severity of injury in the caerulein-induced model of severe AP.
Collapse
|
18
|
Neubauer C, Ewers M, Schulz HU, Weiß FU, Lämmerhirt F, Lerch MM, Bugert P, Landt O, Algül H, Rosendahl J, Witt H. Genetic Analysis of the ATG16L1 c.898A>G (p.T300A) Variant in Acute and Chronic Pancreatitis. Pancreas 2022; 51:1231-1234. [PMID: 37078950 DOI: 10.1097/mpa.0000000000002177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
OBJECTIVES Human and animal studies suggest an important role of autophagy in the pathogenesis of pancreatitis. ATG16L1 (autophagy-related 16 like 1) is part of a protein complex that is involved in the formation of autophagosomes. The c.898A > G (p.T300A) variant of ATG16L1 is associated with Crohn disease. In this study, we analyzed ATG16L1 c.898A > G (p.T300A) for an association with pancreatitis. METHODS We genotyped 777 patients and 551 control subjects of German origin by melting curve analysis using fluorescence resonance energy transfer probes. The patient group included 429 patients with nonalcoholic chronic pancreatitis (CP), 141 patients with alcoholic CP, and 207 patients with acute pancreatitis (AP). We classified AP by severity according to the Atlanta symposium 1992. RESULTS Allele and genotype frequencies of ATG16L1 c.898A > G (p.T300A) did not differ significantly between patients and controls (G allele frequencies: nonalcoholic CP, 49.9%; alcoholic CP, 48.2%; AP, 49.5%; controls, 52.7%). We found no significant association with the severity of AP either. CONCLUSIONS Our data do not support a role of ATG16L1 c.898A > G (p.T300A) in the pathogenesis of AP or CP or an influence on the severity of AP.
Collapse
Affiliation(s)
- Claudia Neubauer
- From the Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising
| | - Maren Ewers
- From the Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising
| | - Hans-Ulrich Schulz
- Klinik für Allgemein- und Viszeralchirurgie, AMEOS Klinikum Haldensleben, Haldensleben
| | - Frank Ulrich Weiß
- Department of Medicine A, Greifswald University Medicine, Greifswald
| | - Felix Lämmerhirt
- Department of Medicine A, Greifswald University Medicine, Greifswald
| | | | | | | | - Hana Algül
- Comprehensive Cancer Center Munich TUM (CCCM), Klinikum rechts der Isar, Technical University Munich (TUM), Munich
| | - Jonas Rosendahl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Heiko Witt
- From the Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising
| |
Collapse
|
19
|
Voronina S, Chvanov M, De Faveri F, Mayer U, Wileman T, Criddle D, Tepikin A. Autophagy, Acute Pancreatitis and the Metamorphoses of a Trypsinogen-Activating Organelle. Cells 2022; 11:cells11162514. [PMID: 36010591 PMCID: PMC9406838 DOI: 10.3390/cells11162514] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
Recent studies have highlighted the importance of autophagy and particularly non-canonical autophagy in the development and progression of acute pancreatitis (a frequent disease with considerable morbidity and significant mortality). An important early event in the development of acute pancreatitis is the intrapancreatic activation of trypsinogen, (i.e., formation of trypsin) leading to the autodigestion of the organ. Another prominent phenomenon associated with the initiation of this disease is vacuolisation and specifically the formation of giant endocytic vacuoles in pancreatic acinar cells. These organelles develop in acinar cells exposed to several inducers of acute pancreatitis (including taurolithocholic acid and high concentrations of secretagogues cholecystokinin and acetylcholine). Notably, early trypsinogen activation occurs in the endocytic vacuoles. These trypsinogen-activating organelles undergo activation, long-distance trafficking, and non-canonical autophagy. In this review, we will discuss the role of autophagy in acute pancreatitis and particularly focus on the recently discovered LAP-like non-canonical autophagy (LNCA) of endocytic vacuoles.
Collapse
Affiliation(s)
- Svetlana Voronina
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Michael Chvanov
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Francesca De Faveri
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Ulrike Mayer
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Tom Wileman
- Quadram Institute Bioscience and Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - David Criddle
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Alexei Tepikin
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence:
| |
Collapse
|
20
|
Cridge H, Lim SY, Algül H, Steiner JM. New insights into the etiology, risk factors, and pathogenesis of pancreatitis in dogs: Potential impacts on clinical practice. J Vet Intern Med 2022; 36:847-864. [PMID: 35546513 PMCID: PMC9151489 DOI: 10.1111/jvim.16437] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
While most cases of pancreatitis in dogs are thought to be idiopathic, potential risk factors are identified. In this article we provide a state‐of‐the‐art overview of suspected risk factors for pancreatitis in dogs, allowing for improved awareness and detection of potential dog‐specific risk factors, which might guide the development of disease prevention strategies. Additionally, we review important advances in our understanding of the pathophysiology of pancreatitis and potential areas for therapeutic manipulation based thereof. The outcome of pathophysiologic mechanisms and the development of clinical disease is dependent on the balance between stressors and protective mechanisms, which can be evaluated using the critical threshold theory.
Collapse
Affiliation(s)
- Harry Cridge
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Sue Yee Lim
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, USA
| | - Hana Algül
- Gastrointestinal Cancer and Inflammatory Research Laboratory, Technical University of Munich, Munich, Germany
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, USA
| |
Collapse
|
21
|
ATG7-enhanced impaired autophagy exacerbates acute pancreatitis by promoting regulated necrosis via the miR-30b-5p/CAMKII pathway. Cell Death Dis 2022; 13:211. [PMID: 35256590 PMCID: PMC8901675 DOI: 10.1038/s41419-022-04657-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 01/18/2023]
Abstract
The present study was performed to explore whether and how impaired autophagy could modulate calcium/calmodulin-dependent protein kinase II (CAMKII)-regulated necrosis in the pathogenesis of acute pancreatitis (AP). Wistar rats and AR42J cells were used for AP modeling. When indicated, genetic regulation of CAMKII or ATG7 was performed prior to AP induction. AP-related necrotic injury was positively regulated by the incubation level of CAMKII. ATG7 positively modulated the level of CAMKII and necrosis following AP induction, indicating that there might be a connection between impaired autophagy and CAMKII-regulated necrosis in the pathogenesis of AP. microRNA (miR)-30b-5p was predicted and then verified as the upstream regulator of CAMKII mRNA in our setting of AP. Given that the level of miR-30b-5p was negatively correlated with the incubation levels of ATG7 after AP induction, a rescue experiment was performed and indicated that the miR-30b-5p mimic compromised ATG7 overexpression-induced upregulation of CAMKII-regulated necrosis after AP induction. In conclusion, our results indicate that ATG7-enhanced impaired autophagy exacerbates AP by promoting regulated necrosis via the miR-30b-5p/CAMKII pathway.
Collapse
|
22
|
Yang YF, Wang CM, Hsiao IH, Liu YL, Lin WH, Lin CL, Hung HC, Liu GY. Peptidylarginine deiminase 2 promotes T helper 17-like T cell activation and activated T cell-autonomous death (ACAD) through an endoplasmic reticulum stress and autophagy coupling mechanism. Cell Mol Biol Lett 2022; 27:19. [PMID: 35236296 PMCID: PMC8903576 DOI: 10.1186/s11658-022-00312-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
Peptididylarginine deiminase type 2 (PADI2) catalyzes the conversion of arginine residues to citrulline residues on proteins. We demonstrate that PADI2 induces T cell activation and investigate how PADI2 promotes activated T cell autonomous death (ACAD). In activated Jurkat T cells, overexpression of PADI2 significantly increases citrullinated proteins and induces endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling, ultimately resulting in the expression of autophagy-related proteins and autophagy. PADI2 promoted autophagy and resulted in the early degradation of p62 and the light chain 3B (LC3B)-II accumulation. In Jurkat T cells, silencing the autophagy-related gene (Atg) 12 protein inhibits PADI2-mediated autophagy and promotes ER stress and apoptosis, whereas overexpression of Atg12 decreased ER stress and prolonged autophagy to promote cell survival. Additionally, PADI2 regulates T cell activation and the production of Th17 cytokines in Jurkat T cells (interleukins 6, IL-17A, IL-17F, IL-21, and IL-22). In Jurkat T cells, silencing IL-6 promotes autophagy mediated by PADI2 and inhibits PADI2-induced apoptosis, whereas silencing Beclin-1 increases the activation and survival of Th17-like T cells while decreasing autophagy and apoptosis. PADI2 silencing alleviates ER stress caused by PADI2 and decreases cytokine expression associated with Th17-like T cell activation and ACAD. We propose that PADI2 was involved in Th17 lymphocyte ACAD via a mechanism involving ER stress and autophagy that was tightly regulated by PADI2-mediated citrullination. These findings suggest that inhibiting Th17 T cell activation and the development of severe autoimmune diseases may be possible through the use of novel antagonists that specifically target PADI2.
Collapse
Affiliation(s)
- Yi-Fang Yang
- Department of Life Sciences, National Chung Hsing University (NCHU), Taichung, 40227, Taiwan.,Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chuang-Ming Wang
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital (CYCH), Chia-Yi, 60002, Taiwan
| | - I-Hsin Hsiao
- Department of Life Sciences, National Chung Hsing University (NCHU), Taichung, 40227, Taiwan
| | - Yi-Liang Liu
- Department of Life Sciences, National Chung Hsing University (NCHU), Taichung, 40227, Taiwan.,Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Wen-Hao Lin
- Department of Life Sciences, National Chung Hsing University (NCHU), Taichung, 40227, Taiwan.,Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung Hsing University (NCHU), Taichung, 40227, Taiwan. .,Institute of Genomics and Bioinformatics, National Chung Hsing University (NCHU), Taichung, 40227, Taiwan. .,iEGG and Animal Biotechnology Center, NCHU, Taichung, 40227, Taiwan.
| | - Guang-Yaw Liu
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan. .,Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
| |
Collapse
|
23
|
The lncRNA TCONS_00021785/miR-21-5p/Trim33 axis regulates VMP1-mediated zymophagy, reduces the activation of trypsinogen, and promotes acinar cell recovery. Cell Death Dis 2022; 8:65. [PMID: 35169128 PMCID: PMC8847645 DOI: 10.1038/s41420-022-00862-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/31/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
Abstract
In the early stage of acute pancreatitis, trypsinogen in acinar cells is activated, and the cells clear trypsin through zymophagy to avoid damage. Studies have shown that the substrate of zymophagy is ubiquitinated pancreatin, but the mechanism of pancreatin ubiquitination and the regulatory mechanism of zymophagy are not fully understood. Our results show that Trim33 can enhance cell viability, reduce cell necrosis, and reduce trypsinogen activation. Trim33 is a key E3 ligase enzyme that mediates trypsin ubiquitination. The results showed that overexpression of Trim33 can significantly increase VMP1 mRNA and protein levels. However, knocking down Trim33 produced the opposite effect, which indicates that Trim33, as a transcriptional mediator, affects zymophagy by regulating the expression of VMP1. In addition, we explored the transcriptional regulation mechanism of the Trim33 molecule. Our research shows that lncRNA TCONS_00021785 can competitively bind miR-21-5p to upregulate Trim33, thereby initiating enzyme autophagy and reducing zymogen activation.
Collapse
|
24
|
Inman KS, Liu Y, Scotti Buzhardt ML, Leitges M, Krishna M, Crawford HC, Fields AP, Murray NR. Prkci Regulates Autophagy and Pancreatic Tumorigenesis in Mice. Cancers (Basel) 2022; 14:796. [PMID: 35159064 PMCID: PMC8834021 DOI: 10.3390/cancers14030796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
Protein kinase C iota (PKCι) functions as a bonafide human oncogene in lung and ovarian cancer and is required for KrasG12D-mediated lung cancer initiation and progression. PKCι expression is required for pancreatic cancer cell growth and maintenance of the transformed phenotype; however, nothing is known about the role of PKCι in pancreas development or pancreatic tumorigenesis. In this study, we investigated the effect of pancreas-specific ablation of PKCι expression on pancreatic cellular homeostasis, susceptibility to pancreatitis, and KrasG12D-mediated pancreatic cancer development. Knockout of pancreatic Prkci significantly increased pancreatic immune cell infiltration, acinar cell DNA damage, and apoptosis, but reduced sensitivity to caerulein-induced pancreatitis. Prkci-ablated pancreatic acinar cells exhibited P62 aggregation and a loss of autophagic vesicles. Loss of pancreatic Prkci promoted KrasG12D-mediated pancreatic intraepithelial neoplasia formation but blocked progression to adenocarcinoma, consistent with disruption of autophagy. Our results reveal a novel promotive role for PKCι in pancreatic epithelial cell autophagy and pancreatic cancer progression.
Collapse
Affiliation(s)
- Kristin S. Inman
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (K.S.I.); (Y.L.); (M.L.S.B.); (H.C.C.); (A.P.F.)
- Environmental Health Perspectives/National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Yi Liu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (K.S.I.); (Y.L.); (M.L.S.B.); (H.C.C.); (A.P.F.)
| | - Michele L. Scotti Buzhardt
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (K.S.I.); (Y.L.); (M.L.S.B.); (H.C.C.); (A.P.F.)
- Neogenomics Laboratories, Clinical Division, Charlotte, NC 28104, USA
| | - Michael Leitges
- Department of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL A1M 2V7, Canada;
| | - Murli Krishna
- Department of Pathology/Lab Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Howard C. Crawford
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (K.S.I.); (Y.L.); (M.L.S.B.); (H.C.C.); (A.P.F.)
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Detroit, MI 48202, USA
| | - Alan P. Fields
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (K.S.I.); (Y.L.); (M.L.S.B.); (H.C.C.); (A.P.F.)
| | - Nicole R. Murray
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (K.S.I.); (Y.L.); (M.L.S.B.); (H.C.C.); (A.P.F.)
| |
Collapse
|
25
|
Mareninova OA, Dillon DL, Wightman CJM, Yakubov I, Takahashi T, Gaisano HY, Munson K, Ohmuraya M, Dawson D, Gukovsky I, Gukovskaya AS. Rab9 Mediates Pancreatic Autophagy Switch From Canonical to Noncanonical, Aggravating Experimental Pancreatitis. Cell Mol Gastroenterol Hepatol 2021; 13:599-622. [PMID: 34610499 PMCID: PMC8715155 DOI: 10.1016/j.jcmgh.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autophagosome, the central organelle in autophagy process, can assemble via canonical pathway mediated by LC3-II, the lipidated form of autophagy-related protein LC3/ATG8, or noncanonical pathway mediated by the small GTPase Rab9. Canonical autophagy is essential for exocrine pancreas homeostasis, and its disordering initiates and drives pancreatitis. The involvement of noncanonical autophagy has not been explored. We examine the role of Rab9 in pancreatic autophagy and pancreatitis severity. METHODS We measured the effect of Rab9 on parameters of autophagy and pancreatitis responses using transgenic mice overexpressing Rab9 (Rab9TG) and adenoviral transduction of acinar cells. Effect of canonical autophagy on Rab9 was assessed in ATG5-deficient acinar cells. RESULTS Pancreatic levels of Rab9 and its membrane-bound (active) form decreased in rodent pancreatitis models and in human disease. Rab9 overexpression stimulated noncanonical and inhibited canonical/LC3-mediated autophagosome formation in acinar cells through up-regulation of ATG4B, the cysteine protease that delipidates LC3-II. Conversely, ATG5 deficiency caused Rab9 increase in acinar cells. Inhibition of canonical autophagy in Rab9TG pancreas was associated with accumulation of Rab9-positive vacuoles containing markers of mitochondria, protein aggregates, and trans-Golgi. The shift to the noncanonical pathway caused pancreatitis-like damage in acinar cells and aggravated experimental pancreatitis. CONCLUSIONS The results show that Rab9 regulates pancreatic autophagy and indicate a mutually antagonistic relationship between the canonical/LC3-mediated and noncanonical/Rab9-mediated autophagy pathways in pancreatitis. Noncanonical autophagy fails to substitute for its canonical counterpart in protecting against pancreatitis. Thus, Rab9 decrease in experimental and human pancreatitis is a protective response to sustain canonical autophagy and alleviate disease severity.
Collapse
Affiliation(s)
- Olga A Mareninova
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Dustin L Dillon
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Carli J M Wightman
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | | | | | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Keith Munson
- Department of Physiology, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - David Dawson
- Department of Pathology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Ilya Gukovsky
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Anna S Gukovskaya
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California.
| |
Collapse
|
26
|
Mareninova OA, Vegh ET, Shalbueva N, Wightman CJ, Dillon DL, Malla S, Xie Y, Takahashi T, Rakonczay Z, French SW, Gaisano HY, Gorelick FS, Pandol SJ, Bensinger SJ, Davidson NO, Dawson DW, Gukovsky I, Gukovskaya AS. Dysregulation of mannose-6-phosphate-dependent cholesterol homeostasis in acinar cells mediates pancreatitis. J Clin Invest 2021; 131:146870. [PMID: 34128834 PMCID: PMC8321573 DOI: 10.1172/jci146870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/11/2021] [Indexed: 01/18/2023] Open
Abstract
Disordered lysosomal/autophagy pathways initiate and drive pancreatitis, but the underlying mechanisms and links to disease pathology are poorly understood. Here, we show that the mannose-6-phosphate (M6P) pathway of hydrolase delivery to lysosomes critically regulates pancreatic acinar cell cholesterol metabolism. Ablation of the Gnptab gene encoding a key enzyme in the M6P pathway disrupted acinar cell cholesterol turnover, causing accumulation of nonesterified cholesterol in lysosomes/autolysosomes, its depletion in the plasma membrane, and upregulation of cholesterol synthesis and uptake. We found similar dysregulation of acinar cell cholesterol, and a decrease in GNPTAB levels, in both WT experimental pancreatitis and human disease. The mechanisms mediating pancreatic cholesterol dyshomeostasis in Gnptab-/- and experimental models involve a disordered endolysosomal system, resulting in impaired cholesterol transport through lysosomes and blockage of autophagic flux. By contrast, in Gnptab-/- liver the endolysosomal system and cholesterol homeostasis were largely unaffected. Gnptab-/- mice developed spontaneous pancreatitis. Normalization of cholesterol metabolism by pharmacologic means alleviated responses of experimental pancreatitis, particularly trypsinogen activation, the disease hallmark. The results reveal the essential role of the M6P pathway in maintaining exocrine pancreas homeostasis and function, and implicate cholesterol disordering in the pathogenesis of pancreatitis.
Collapse
Affiliation(s)
- Olga A. Mareninova
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Eszter T. Vegh
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Natalia Shalbueva
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Carli J.M. Wightman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Dustin L. Dillon
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Sudarshan Malla
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yan Xie
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Zoltan Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Samuel W. French
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, California, USA
| | | | - Fred S. Gorelick
- Departments of Cell Biology and Internal Medicine, Yale University School of Medicine and VA West Haven, West Haven, Connecticut, USA
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Nicholas O. Davidson
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David W. Dawson
- Department of Pathology and Laboratory Medicine and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Anna S. Gukovskaya
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
27
|
Song Y, Zhang Z, Yu Z, Xia G, Wang Y, Wang L, Peng C, Jiang B, Liu S. Wip1 Aggravates the Cerulein-Induced Cell Autophagy and Inflammatory Injury by Targeting STING/TBK1/IRF3 in Acute Pancreatitis. Inflammation 2021; 44:1175-1183. [PMID: 33417178 DOI: 10.1007/s10753-021-01412-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/22/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
Acute pancreatitis (AP) is an inflammatory reaction of pancreatic tissue self-digestion, edema, hemorrhage, and even necrosis after the activation of pancreatic enzymes in the pancreas caused by a variety of etiologies. This study was aimed to explore the functions and mechanism of Wip1 in AP. Twenty male SD rats were randomly assigned into 2 groups (control group: saline treatment; AP group: cerulein treatment). And cerulein-treated AR42J cells were conducted as AP model in vitro. The levels of amylase were detected by using the Beckman biochemical analyzer. The levels of IFNβ and TNFα were analyzed by ELISA. The autophagosomes were observed by transmission electron microscopy. The Wip1-specific shRNAs were transfected to AR42J cells to silence the expression of Wip1. The levels of Wip1 were measured by qRT-PCR and Western blot. The levels of STING/TBK1/IRF3 and LC3 were measured by Western blot. The AP model was successfully constructed by cerulein administration. Wip1 was notably upregulated in AP models. Autophagy and STING pathway activation were involved in the development of AP. Wip1 inhibition counteracts the promotion effect on inflammatory response induced by cerulein in AR42J Cells. Wip1 inhibition inhibited the activity of the STING/TBK1/IRF3 and reduced LC3 levels in AP. This study preliminarily explored that Wip1 could regulate autophagy and participate in the development of AP through the STING/TBK1/IRF3 signaling pathway.
Collapse
Affiliation(s)
- Yinghui Song
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Zhihua Zhang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Zhangtao Yu
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Guoyi Xia
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Yizhi Wang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Le Wang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China.
- Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha, Hunan Province, China.
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China.
| |
Collapse
|
28
|
Iwama H, Mehanna S, Imasaka M, Hashidume S, Nishiura H, Yamamura KI, Suzuki C, Uchiyama Y, Hatano E, Ohmuraya M. Cathepsin B and D deficiency in the mouse pancreas induces impaired autophagy and chronic pancreatitis. Sci Rep 2021; 11:6596. [PMID: 33758261 PMCID: PMC7988038 DOI: 10.1038/s41598-021-85898-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
The major lysosomal proteases, Cathepsin B (CTSB), Cathepsin D (CTSD) and Cathepsin L (CTSL), are implicated in autophagic activity. To investigate the role of each cathepsin in the exocrine pancreas, we generated mice in which the pancreas was specifically deficient in Ctsb, Ctsd and Ctsl. Each of these gene knockout (KO) and Ctsb;Ctsl and Ctsd;Ctsl double-knockout (DKO) mice were almost normal. However, we found cytoplasmic degeneration in the pancreatic acinar cells of Ctsb;Ctsd DKO mice, similar to autophagy related 5 (Atg5) KO mice. LC3 and p62 (autophagy markers) showed remarkable accumulation and the numbers of autophagosomes and autolysosomes were increased in the pancreatic acinar cells of Ctsb;Ctsd DKO mice. Moreover, these Ctsb;Ctsd DKO mice also developed chronic pancreatitis (CP). Thus, we conclude that both Ctsb and Ctsd deficiency caused impaired autophagy in the pancreatic acinar cells, and induced CP in mice.
Collapse
Affiliation(s)
- Hideaki Iwama
- Department of Genetics, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.,Department of Gastroenterological Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Sally Mehanna
- Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.,Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mai Imasaka
- Department of Genetics, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Shinsuke Hashidume
- Department of Genetics, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Hiroshi Nishiura
- Division of Functional Pathology, Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Ken-Ichi Yamamura
- Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Chigure Suzuki
- Department of Pharmacology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasuo Uchiyama
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Etsuro Hatano
- Department of Gastroenterological Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
29
|
Manandhar S, Sinha P, Ejiwale G, Bhatia M. Hydrogen Sulfide and its Interaction with Other Players in Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:129-159. [PMID: 34302691 DOI: 10.1007/978-981-16-0991-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) plays a vital role in human physiology and in the pathophysiology of several diseases. In addition, a substantial role of H2S in inflammation has emerged. This chapter will discuss the involvement of H2S in various inflammatory diseases. Furthermore, the contribution of reactive oxygen species (ROS), adhesion molecules, and leukocyte recruitment in H2S-mediated inflammation will be discussed. The interrelationship of H2S with other gasotransmitters in inflammation will also be examined. There is mixed literature on the contribution of H2S to inflammation due to studies reporting both pro- and anti-inflammatory actions. These apparent discrepancies in the literature could be resolved with further studies.
Collapse
Affiliation(s)
- Sumeet Manandhar
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Priyanka Sinha
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Grace Ejiwale
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
30
|
Dolai S, Takahashi T, Qin T, Liang T, Xie L, Kang F, Miao YF, Xie H, Kang Y, Manuel J, Winter E, Roche PA, Cattral MS, Gaisano HY. Pancreas-specific SNAP23 depletion prevents pancreatitis by attenuating pathological basolateral exocytosis and formation of trypsin-activating autolysosomes. Autophagy 2020; 17:3068-3081. [PMID: 33213278 DOI: 10.1080/15548627.2020.1852725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Intrapancreatic trypsin activation by dysregulated macroautophagy/autophagy and pathological exocytosis of zymogen granules (ZGs), along with activation of inhibitor of NFKB/NF-κB kinase (IKK) are necessary early cellular events in pancreatitis. How these three pancreatitis events are linked is unclear. We investigated how SNAP23 orchestrates these events leading to pancreatic acinar injury. SNAP23 depletion was by knockdown (SNAP23-KD) effected by adenovirus-shRNA (Ad-SNAP23-shRNA/mCherry) treatment of rodent and human pancreatic slices and in vivo by infusion into rat pancreatic duct. In vitro pancreatitis induction by supraphysiological cholecystokinin (CCK) or ethanol plus low-dose CCK were used to assess SNAP23-KD effects on exocytosis and autophagy. Pancreatitis stimuli resulted in SNAP23 translocation from its native location at the plasma membrane to autophagosomes, where SNAP23 would bind and regulate STX17 (syntaxin17) SNARE complex-mediated autophagosome-lysosome fusion. This SNAP23 relocation was attributed to IKBKB/IKKβ-mediated SNAP23 phosphorylation at Ser95 Ser120 in rat and Ser120 in human, which was blocked by IKBKB/IKKβ inhibitors, and confirmed by the inability of IKBKB/IKKβ phosphorylation-disabled SNAP23 mutant (Ser95A Ser120A) to bind STX17 SNARE complex. SNAP23-KD impaired the assembly of STX4-driven basolateral exocytotic SNARE complex and STX17-driven SNARE complex, causing respective reduction of basolateral exocytosis of ZGs and autolysosome formation, with consequent reduction in trypsinogen activation in both compartments. Consequently, pancreatic SNAP23-KD rats were protected from caerulein and alcoholic pancreatitis. This study revealed the roles of SNAP23 in mediating pathological basolateral exocytosis and IKBKB/IKKβ's involvement in autolysosome formation, both where trypsinogen activation would occur to cause pancreatitis. SNAP23 is a strong candidate to target for pancreatitis therapy.
Collapse
Affiliation(s)
- Subhankar Dolai
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Tairan Qin
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tao Liang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Li Xie
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fei Kang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yi-Fan Miao
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Huanli Xie
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Youhou Kang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Justin Manuel
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Erin Winter
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Paul A Roche
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Mark S Cattral
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Herbert Y Gaisano
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Mareninova OA, Jia W, Gretler SR, Holthaus CL, Thomas DDH, Pimienta M, Dillon DL, Gukovskaya AS, Gukovsky I, Groblewski GE. Transgenic expression of GFP-LC3 perturbs autophagy in exocrine pancreas and acute pancreatitis responses in mice. Autophagy 2020; 16:2084-2097. [PMID: 31942816 PMCID: PMC7595606 DOI: 10.1080/15548627.2020.1715047] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 12/25/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Pancreatitis is a common, sometimes fatal, disease of exocrine pancreas, initiated by damaged acinar cells. Recent studies implicate disordered macroautophagy/autophagy in pancreatitis pathogenesis. ATG8/LC3 protein is critical for autophagosome formation and a widely used marker of autophagic vacuoles. Transgenic GFP-LC3 mice are a valuable tool to investigate autophagy ; however, comparison of homeostatic and disease responses between GFP-LC3 and wild-type (WT) mice has not been done. We examined the effects of GFP-LC3 expression on autophagy, acinar cell function, and experimental pancreatitis. Unexpectedly, GFP-LC3 expression markedly increased endogenous LC3-II level in pancreas, caused by downregulation of ATG4B, the protease that deconjugates/delipidates LC3-II. By contrast, GFP-LC3 expression had lesser or no effect on autophagy in liver, lung and spleen. Autophagic flux analysis showed that autophagosome formation in GFP-LC3 acinar cells increased 3-fold but was not fully counterbalanced by increased autophagic degradation. Acinar cell (ex vivo) pancreatitis inhibited autophagic flux in WT and essentially blocked it in GFP-LC3 cells. In vivo pancreatitis caused autophagy impairment in WT mice, manifest by upregulation of LC3-II and SQSTM1/p62, increased number and size of autophagic vacuoles, and decreased level of TFEB, all of which were exacerbated in GFP-LC3 mice. GFP-LC3 expression affected key pancreatitis responses; most dramatically, it worsened increases in serum AMY (amylase), a diagnostic marker of acute pancreatitis, in several mouse models. The results emphasize physiological importance of autophagy for acinar cell function, demonstrate organ-specific effects of GFP-LC3 expression, and indicate that application of GFP-LC3 mice in disease models should be done with caution.Abbreviations: AP: acute pancreatitis; Arg-AP: L-arginine-induced acute pancreatitis; ATG: autophagy-related (protein); AVs: autophagic vacuoles; CCK: cholecystokinin-8; CDE: choline-deficient, D,L-ethionine supplemented diet; CER: caerulein (ortholog of CCK); CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; ER: endoplasmic reticulum; LAMP: lysosomal-associated membrane protein; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; TEM: transmission electron microscopy; TFEB: transcription factor EB; ZG: zymogen granule(s).
Collapse
Affiliation(s)
- Olga A. Mareninova
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Pancreatic Research Group, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Wenzhuo Jia
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Department of General Surgery, Beijing Hospital, National Centre of Gerontology, Beijing, China
| | - Sophie R. Gretler
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Pancreatic Research Group, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Conner L. Holthaus
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | - Diana D. H. Thomas
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | - Michael Pimienta
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Dustin L. Dillon
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Pancreatic Research Group, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Anna S. Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Pancreatic Research Group, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Pancreatic Research Group, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
32
|
Yuan J, Chheda C, Piplani H, Geng M, Tan G, Thakur R, Pandol SJ. Pancreas-specific deletion of protein kinase D attenuates inflammation, necrosis, and severity of acute pancreatitis. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165987. [PMID: 33039594 DOI: 10.1016/j.bbadis.2020.165987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Protein kinase D (PKD) family, which includes PKD/PKD1, PKD2, and PKD3, has been increasingly implicated in the regulation of multiple cellular functions and human diseases. We recently reported that pharmacologic inhibition of PKD ameliorated the pathologic responses and severity of pancreatitis. However, to further investigate the importance of PKD family members in pancreatitis, it is necessary to explore the effects of pancreas-specific genetic inhibition of PKD isoform on pathology of pancreatitis. METHODS We generated a mouse model (referred as PKD3Δpanc mice) with pancreas-specific deletion of PKD3, the predominant PKD isoform in mouse pancreatic acinar cells, by crossing Pkd3flox/flox mice with Pdx1-Cre transgenic mice which express Cre recombinase under the control of the mouse Pdx1 promoter. Pancreas-specific deletion of the PKD3 gene and PKD3 protein was confirmed by PCR and Western blot analysis. Experimental pancreatitis was induced in PKD3Δpanc and Pkd3flox/flox (control mice) littermates by intraperitoneal injections of cerulein or L-arginine. RESULTS Compared to the control mice, PKD3Δpanc mice displayed significant attenuation in inflammation, necrosis, and severity of pancreatitis in both experimental models. PKD3Δpanc mice had markedly decreased NF-κB and trypsinogen activation, pancreatic mRNA expression of multiple inflammatory molecules, and the receptor-interacting protein kinase 1 (RIP1) activation in pancreatitis. PKD3Δpanc mice also had less pancreatic ATP depletion, increased pro-survival Bcl-2 family protein expression, and autophagy promotion. CONCLUSION With PKD3Δpanc mouse model, we further demonstrated that PKD plays a critical role in pathobiological process of pancreatitis and PKD constitutes a novel therapeutic target to treat this disorder.
Collapse
Affiliation(s)
- Jingzhen Yuan
- Cedars-Sinai Medical Center, Los Angeles, CA, USA; Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, South California Research Center for Alcoholic Liver and Pancreatic Diseases, California, USA.
| | | | | | - Meng Geng
- Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, South California Research Center for Alcoholic Liver and Pancreatic Diseases, California, USA; Frank Netter H. School of Medicine at Quinnipiac University, CT, USA
| | - Grace Tan
- Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, South California Research Center for Alcoholic Liver and Pancreatic Diseases, California, USA; Loma Linda Medical School, Los Angeles, CA, United States of America
| | - Reetu Thakur
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Pandol
- Cedars-Sinai Medical Center, Los Angeles, CA, USA; Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, South California Research Center for Alcoholic Liver and Pancreatic Diseases, California, USA
| |
Collapse
|
33
|
Choi S, Kim H. The Remedial Potential of Lycopene in Pancreatitis through Regulation of Autophagy. Int J Mol Sci 2020; 21:ijms21165775. [PMID: 32806545 PMCID: PMC7460830 DOI: 10.3390/ijms21165775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved process that degrades damaged organelles and recycles macromolecules to support cell survival. However, in certain disease states, dysregulated autophagy can play an important role in cell death. In pancreatitis, the accumulation of autophagic vacuoles and damaged mitochondria and premature activation of trypsinogen are shown in pancreatic acinar cells (PACs), which are the hallmarks of impaired autophagy. Oxidative stress mediates inflammatory signaling and cytokine expression in PACs, and it also causes mitochondrial dysfunction and dysregulated autophagy. Thus, oxidative stress may be a mediator for autophagic impairment in pancreatitis. Lycopene is a natural pigment that contributes to the red color of fruits and vegetables. Due to its antioxidant activity, it inhibited oxidative stress-induced expression of cytokines in experimental models of acute pancreatitis. Lycopene reduces cell death through the activation of 5′-AMP-activated protein kinase-dependent autophagy in certain cells. Therefore, lycopene may ameliorate pancreatitis by preventing oxidative stress-induced impairment of autophagy and/or by directly activating autophagy in PACs.
Collapse
|
34
|
Mei Q, Zeng Y, Huang C, Zheng J, Guo Y, Fan J, Fu X, Wang X, Lu Y. Rapamycin Alleviates Hypertriglyceridemia-Related Acute Pancreatitis via Restoring Autophagy Flux and Inhibiting Endoplasmic Reticulum Stress. Inflammation 2020; 43:1510-1523. [DOI: 10.1007/s10753-020-01228-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
De Faveri F, Chvanov M, Voronina S, Moore D, Pollock L, Haynes L, Awais M, Beckett AJ, Mayer U, Sutton R, Criddle DN, Prior IA, Wileman T, Tepikin AV. LAP-like non-canonical autophagy and evolution of endocytic vacuoles in pancreatic acinar cells. Autophagy 2020; 16:1314-1331. [PMID: 31651224 PMCID: PMC7469629 DOI: 10.1080/15548627.2019.1679514] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 08/30/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022] Open
Abstract
Activation of trypsinogen (formation of trypsin) inside the pancreas is an early pathological event in the development of acute pancreatitis. In our previous studies we identified the activation of trypsinogen within endocytic vacuoles (EVs), cellular organelles that appear in pancreatic acinar cells treated with the inducers of acute pancreatitis. EVs are formed as a result of aberrant compound exocytosis and subsequent internalization of post-exocytic structures. These organelles can be up to 12 μm in diameter and can be actinated (i.e. coated with F-actin). Notably, EVs can undergo intracellular rupture and fusion with the plasma membrane, providing trypsin with access to cytoplasmic and extracellular targets. Unraveling the mechanisms involved in cellular processing of EVs is an interesting cell biological challenge with potential benefits for understanding acute pancreatitis. In this study we have investigated autophagy of EVs and discovered that it involves a non-canonical LC3-conjugation mechanism, reminiscent in its properties to LC3-associated phagocytosis (LAP); in both processes LC3 was recruited to single, outer organellar membranes. Trypsinogen activation peptide was observed in approximately 55% of LC3-coated EVs indicating the relevance of the described process to the early cellular events of acute pancreatitis. We also investigated relationships between actination and non-canonical autophagy of EVs and concluded that these processes represent sequential steps in the evolution of EVs. Our study expands the known roles of LAP and indicates that, in addition to its well-established functions in phagocytosis and macropinocytosis, LAP is also involved in the processing of post-exocytic organelles in exocrine secretory cells. ABBREVIATIONS AP: acute pancreatitis; CCK: cholecystokinin; CLEM: correlative light and electron microscopy; DPI: diphenyleneiodonium; EV: endocytic vacuole; LAP: LC3-associate phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; PACs: pancreatic acinar cells; PFA: paraformaldehyde; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; Res: resveratrol; TAP: trypsinogen activation peptide; TEM: transmission electron microscopy; TLC-S: taurolithocholic acid 3-sulfate; TRD: Dextran Texas Red 3000 MW Neutral; ZGs: zymogen granules.
Collapse
Affiliation(s)
- Francesca De Faveri
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Michael Chvanov
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Svetlana Voronina
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Danielle Moore
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Liam Pollock
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Lee Haynes
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Muhammad Awais
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Alison J. Beckett
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Ulrike Mayer
- Bio-Medical Research Centre, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Robert Sutton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - David N. Criddle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Ian A. Prior
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Tom Wileman
- Bio-Medical Research Centre, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Alexei V. Tepikin
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| |
Collapse
|
36
|
Malla SR, Krueger B, Wartmann T, Sendler M, Mahajan UM, Weiss FU, Thiel FG, De Boni C, Gorelick FS, Halangk W, Aghdassi AA, Reinheckel T, Gukovskaya AS, Lerch MM, Mayerle J. Early trypsin activation develops independently of autophagy in caerulein-induced pancreatitis in mice. Cell Mol Life Sci 2020; 77:1811-1825. [PMID: 31363815 PMCID: PMC8221268 DOI: 10.1007/s00018-019-03254-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/18/2022]
Abstract
Premature intrapancreatic trypsinogen activation is widely regarded as an initiating event for acute pancreatitis. Previous studies have alternatively implicated secretory vesicles, endosomes, lysosomes, or autophagosomes/autophagolysosomes as the primary site of trypsinogen activation, from which a cell-damaging proteolytic cascade originates. To identify the subcellular compartment of initial trypsinogen activation we performed a time-resolution analysis of the first 12 h of caerulein-induced pancreatitis in transgenic light chain 3 (LC3)-GFP autophagy reporter mice. Intrapancreatic trypsin activity increased within 60 min and serum amylase within 2 h, but fluorescent autophagosome formation only by 4 h of pancreatitis in parallel with a shift from cytosolic LC3-I to membranous LC3-II on Western blots. At 60 min, activated trypsin in heavier subcellular fractions was co-distributed with cathepsin B, but not with the autophagy markers LC3 or autophagy protein 16 (ATG16). Supramaximal caerulein stimulation of primary pancreatic acini derived from LC3-GFP mice revealed that trypsinogen activation is independent of autophagolysosome formation already during the first 15 min of exposure to caerulein. Co-localization studies (with GFP-LC3 autophagosomes versus Ile-Pro-Arg-AMC trypsin activity and immunogold-labelling of lysosomal-associated membrane protein 2 [LAMP-2] versus trypsinogen activation peptide [TAP]) indicated active trypsin in autophagolysosomes only at the later timepoints. In conclusion, during the initiating phase of caerulein-induced pancreatitis, premature protease activation develops independently of autophagolysosome formation and in vesicles arising from the secretory pathway. However, autophagy is likely to regulate overall intracellular trypsin activity during the later stages of this disease.
Collapse
Affiliation(s)
- Sudarshan R Malla
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruchstrasse, Greifswald, 17475, Germany
- Veterans Affairs Greater Los Angeles Healthcare System, David Geffen School of Medicine, Southern California Research Center for Alcoholic Liver and Pancreatic Disease and Cirrhosis, University of California at Los Angeles, Los Angeles, CA, 90073, USA
| | - Burkhard Krueger
- Division of Medical Biology, University of Rostock, Rostock, 18051, Germany
| | - Thomas Wartmann
- Division of Experimental Surgery, University of Magdeburg, Magdeburg, 39120, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruchstrasse, Greifswald, 17475, Germany
| | - Ujjwal M Mahajan
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruchstrasse, Greifswald, 17475, Germany
- Department of Medicine II, Ludwigs-Maximilians University Munich, 80539, Munich, Germany
| | - F Ulrich Weiss
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruchstrasse, Greifswald, 17475, Germany
| | - Franziska G Thiel
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruchstrasse, Greifswald, 17475, Germany
| | - Carina De Boni
- Division of Experimental Surgery, University of Magdeburg, Magdeburg, 39120, Germany
| | | | - Walter Halangk
- Division of Experimental Surgery, University of Magdeburg, Magdeburg, 39120, Germany
| | - Ali A Aghdassi
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruchstrasse, Greifswald, 17475, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, 79104, Germany
| | - Anna S Gukovskaya
- Veterans Affairs Greater Los Angeles Healthcare System, David Geffen School of Medicine, Southern California Research Center for Alcoholic Liver and Pancreatic Disease and Cirrhosis, University of California at Los Angeles, Los Angeles, CA, 90073, USA
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruchstrasse, Greifswald, 17475, Germany.
| | - Julia Mayerle
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruchstrasse, Greifswald, 17475, Germany
- Department of Medicine II, Ludwigs-Maximilians University Munich, 80539, Munich, Germany
| |
Collapse
|
37
|
Roles of Autophagy and Pancreatic Secretory Trypsin Inhibitor in Trypsinogen Activation in Acute Pancreatitis. Pancreas 2020; 49:493-497. [PMID: 32282761 DOI: 10.1097/mpa.0000000000001519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The focus of the review is on roles of autophagy and pancreatic secretory trypsin inhibitor (PSTI), an endogenous trypsin inhibitor, in trypsinogen activation in acute pancreatitis. Acute pancreatitis is a disease in which tissues in and around the pancreas are autodigested by pancreatic digestive enzymes. This reaction is triggered by the intrapancreatic activation of trypsinogen. Autophagy causes trypsinogen and cathepsin B, a trypsinogen activator, to colocalize within the autolysosomes. Consequently, if the resultant trypsin activity exceeds the inhibitory activity of PSTI, the pancreatic digestive enzymes are activated, and they cause autodigestion of the acinar cells. Thus, autophagy and PSTI play important roles in the development and suppression of acute pancreatitis, respectively.
Collapse
|
38
|
Ikari S, Lu SL, Hao F, Imai K, Araki Y, Yamamoto YH, Tsai CY, Nishiyama Y, Shitan N, Yoshimori T, Otomo T, Noda T. Starvation-induced autophagy via calcium-dependent TFEB dephosphorylation is suppressed by Shigyakusan. PLoS One 2020; 15:e0230156. [PMID: 32134989 PMCID: PMC7058311 DOI: 10.1371/journal.pone.0230156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
Kampo, a system of traditional Japanese therapy utilizing mixtures of herbal medicine, is widely accepted in the Japanese medical system. Kampo originated from traditional Chinese medicine, and was gradually adopted into a Japanese style. Although its effects on a variety of diseases are appreciated, the underlying mechanisms remain mostly unclear. Using a quantitative tf-LC3 system, we conducted a high-throughput screen of 128 kinds of Kampo to evaluate the effects on autophagy. The results revealed a suppressive effect of Shigyakusan/TJ-35 on autophagic activity. TJ-35 specifically suppressed dephosphorylation of ULK1 and TFEB, among several TORC1 substrates, in response to nutrient deprivation. TFEB was dephosphorylated by calcineurin in a Ca2+ dependent manner. Cytosolic Ca2+ concentration was increased in response to nutrient starvation, and TJ-35 suppressed this increase. Thus, TJ-35 prevents the starvation-induced Ca2+ increase, thereby suppressing induction of autophagy.
Collapse
Affiliation(s)
- Sumiko Ikari
- Center for Frontier Oral Science, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Shiou-Ling Lu
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Feike Hao
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
- China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Kenta Imai
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yasuhiro Araki
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Yo-hei Yamamoto
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Chao-Yuan Tsai
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yumi Nishiyama
- Medicinal Botanical Garden, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Nobukazu Shitan
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Tamotsu Yoshimori
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Takanobu Otomo
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
39
|
Takahashi T, Miao Y, Kang F, Dolai S, Gaisano HY. Susceptibility Factors and Cellular Mechanisms Underlying Alcoholic Pancreatitis. Alcohol Clin Exp Res 2020; 44:777-789. [PMID: 32056245 DOI: 10.1111/acer.14304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Alcohol is a major cause of acute and chronic pancreatitis. There have been some recent advances in the understanding of the mechanisms underlying alcoholic pancreatitis, which include perturbation in mitochondrial function and autophagy and ectopic exocytosis, with some of these cellular events involving membrane fusion soluble N-ethylmaleimide-sensitive factor receptor protein receptor proteins. Although new insights have been unraveled recently, the precise mechanisms remain complex, and their finer details have yet to be established. The overall pathophysiology of pancreatitis involves not only the pancreatic acinar cells but also the stellate cells and duct cells. Why only some are more susceptible to pancreatitis and with increased severity, while others are not, would suggest that there may be undefined protective factors or mechanisms that enhance recovery and regeneration after injury. Furthermore, there are confounding influences of lifestyle factors such as smoking and diet, and genetic background. Whereas alcohol and smoking cessation and a generally healthy lifestyle are intuitively the advice given to these patients afflicted with alcoholic pancreatitis in order to reduce disease recurrence and progression, there is as yet no specific treatment. A more complete understanding of the pathogenesis of pancreatitis from which novel therapeutic targets could be identified will have a great impact, particularly with the stubbornly high fatality (>30%) of severe pancreatitis. This review focuses on the susceptibility factors and underlying cellular mechanisms of alcohol injury on the exocrine pancreas.
Collapse
Affiliation(s)
- Toshimasa Takahashi
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Yifan Miao
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Fei Kang
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Subhankar Dolai
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Herbert Y Gaisano
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
The Regulatory Effect of the Kinase Inhibitor PD98059 on Autophagic Flux During Trypsinogen Activation in Pancreatic Acinar Cells. Pancreas 2020; 49:290-299. [PMID: 32011537 DOI: 10.1097/mpa.0000000000001490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES To study the role of kinase inhibitor PD98059 on autophagy flow in the process of trypsinogen activation in pancreatic acinar cell and its related mechanism. METHODS In the present study, bioinformatics analysis was used to predict kinases and their most relevant inhibitor (PD98059) which participates in autophagy of acute pancreatitis (AP). The rat pancreatic acini AR42J cells were divided into 4 groups: control group, sodium taurocholate hydrate (TLC) group, PD98059 group, and TLC + PD group. Twenty-seven Sprague-Dawley rats were divided into 3 groups (n = 9), including control group, severe AP (SAP) group, and SAP + PD group. We detected trypsinogen activation, autophagic activation, lysosome pH, and cathepsin-L activity in vivo and in vitro. RESULTS Results revealed trypsinogen activation was significantly inhibited in mitogen-activated protein kinase 1, JAK2, LYN, and their common inhibitor was PD98059. The trypsinogen activation, Beclin1, and light chain 3 II expressions were reduced, whereas the expressions of lysosomal-associated membrane protein 2, cathepsin L1, and cathepsin-L activity is upregulated after the PD98059 pretreatment, both in vivo and in vitro. CONCLUSIONS Lysosomal dysfunction blocked autophagy flux, accompanied by increasing pancreatic acinar cell autophagy in the process of trypsinogen activation. PD98059 inhibited AP occurrence and pancreatic injury via improving the blocked autophagic pathway and reducing trypsinogen activation.
Collapse
|
41
|
Piplani H, Marek-Iannucci S, Sin J, Hou J, Takahashi T, Sharma A, de Freitas Germano J, Waldron RT, Saadaeijahromi H, Song Y, Gulla A, Wu B, Lugea A, Andres AM, Gaisano HY, Gottlieb RA, Pandol SJ. Simvastatin induces autophagic flux to restore cerulein-impaired phagosome-lysosome fusion in acute pancreatitis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165530. [PMID: 31398467 PMCID: PMC11750078 DOI: 10.1016/j.bbadis.2019.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/16/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND During pancreatitis, autophagy is activated, but lysosomal degradation of dysfunctional organelles including mitochondria is impaired, resulting in acinar cell death. Retrospective cohort analyses demonstrated an association between simvastatin use and decreased acute pancreatitis incidence. METHODS We examined whether simvastatin can protect cell death induced by cerulein and the mechanisms involved during acute pancreatitis. Mice were pretreated with DMSO or simvastatin (20 mg/kg) for 24 h followed by 7 hourly cerulein injections and sacrificed 1 h after last injection to harvest blood and tissue for analysis. RESULTS Pancreatic histopathology revealed that simvastatin reduced necrotic cell death, inflammatory cell infiltration and edema. We found that cerulein triggered mitophagy with autophagosome formation in acinar cells. However, autophagosome-lysosome fusion was impaired due to altered levels of LAMP-1, AMPK and ULK-1, resulting in autophagosome accumulation (incomplete autophagy). Simvastatin abrogated these effects by upregulating LAMP-1 and activating AMPK which phosphorylated ULK-1, resulting in increased formation of functional autolysosomes. In contrast, autophagosomes accumulated in control group during pancreatitis. The effects of simvastatin to promote autophagic flux were inhibited by chloroquine. Mitochondria from simvastatin-treated mice were resistant to calcium overload compared to control, suggesting that simvastatin induced mitochondrial quality control to eliminate susceptible mitochondria. Clinical specimens showed a significant increase in cell-free mtDNA in plasma during pancreatitis compared to normal controls. Furthermore, genetic deletion of parkin abrogated the benefits of simvastatin. CONCLUSION Our findings reveal the novel role of simvastatin in enhancing autophagic flux to prevent pancreatic cell injury and pancreatitis.
Collapse
Affiliation(s)
- Honit Piplani
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stefanie Marek-Iannucci
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jon Sin
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean Hou
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Toshimasa Takahashi
- Department of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Ankush Sharma
- Institute of Biosciences and Department of Informatics, University of Oslo, Norway
| | - Juliana de Freitas Germano
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard T Waldron
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hannaneh Saadaeijahromi
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yang Song
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aiste Gulla
- Department of Surgery, MedStar Georgetown University Hospital, USA; Vilnius University Hospital Santaros Klinikos, Lithuania
| | - Bechien Wu
- Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA, USA
| | - Aurelia Lugea
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Allen M Andres
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Roberta A Gottlieb
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Dong K, Chen X, Xie L, Yu L, Shen M, Wang Y, Wu S, Wang J, Lu J, Wei G, Xu D, Yang L. Spautin-A41 Attenuates Cerulein-Induced Acute Pancreatitis through Inhibition of Dysregulated Autophagy. Biol Pharm Bull 2019; 42:1789-1798. [DOI: 10.1248/bpb.b19-00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kai Dong
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xia Chen
- Department of Endocrinology and Metabolism, Shanghai Fourth People’s Hospital, Tongji University
| | - Liping Xie
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
| | - Lanting Yu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
| | - Mengjun Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yanping Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
| | - Shanshan Wu
- Shandong University Affiliated Shandong Provincial Hospital Affiliated, Department of Endocrinology and Metabolism
| | - Jiajia Wang
- Department of Endocrinology, Medical College of Soochow University
| | - Junxi Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
| | - Gang Wei
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
| | - Dongliang Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
- Department of Urology, Changzheng Hospital, Second Military Medical University
| | - Liu Yang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
| |
Collapse
|
43
|
Song G, Liu D, Geng X, Ma Z, Wang Y, Xie W, Qian D, Meng H, Zhou B, Song Z. Bone marrow-derived mesenchymal stem cells alleviate severe acute pancreatitis-induced multiple-organ injury in rats via suppression of autophagy. Exp Cell Res 2019; 385:111674. [PMID: 31678171 DOI: 10.1016/j.yexcr.2019.111674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/01/2019] [Accepted: 10/15/2019] [Indexed: 02/09/2023]
Abstract
Patients with severe acute pancreatitis (SAP) represent a substantial challenge to medical practitioners due to the high associated rates of morbidity and mortality and a lack of satisfactory therapeutic outcomes. In a previous study, our group demonstrated that bone marrow-derived mesenchymal stem cells (BMSCs) can ameliorate SAP; however, the mechanisms of action remain to be fully understood. BMSCs were intravenously injected into SAP rats 12 h after experimental induction of SAP using sodium taurocholate (NaT). Histopathological changes and the levels of pro-inflammatory mediators were assessed by hematoxylin and eosin (H&E) staining and ELISA, respectively. Autophagy levels were assessed using qRT-PCR, western blotting, immunohistochemistry, immunofluorescence, and transmission electron microscopy. AR42J cells and human umbilical vein endothelial cells (HUVECs) were administered BMSC-conditioned media (BMSC-CM) after NaT treatment, and cell viability was measured using a Cell Counting Kit-8 (CCK-8) and flow cytometry. In vivo, BMSCs effectively reduced multiple systematic inflammatory responses, suppressed the activation of autophagy, and improved intestinal dysfunction. In vitro, BMSC-CM significantly improved the viability of injured cells, promoted angiogenesis, and decreased autophagy. We therefore propose that the administration of BMSCs alleviates SAP-induced multiple organ injury by inhibiting autophagy.
Collapse
Affiliation(s)
- Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Dalu Liu
- Shanghai Clinical Medical College of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiang Geng
- Department of General Surgery, Changzhou NO.2 People's Hospital, Changzhou, Jiangsu, 213164, China
| | - Zhilong Ma
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yuxiang Wang
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Wangcheng Xie
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Daohai Qian
- Department of Hepatobiliary Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Hongbo Meng
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Bo Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
44
|
Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Tóth M. Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology 2019; 156:1951-1968.e1. [PMID: 30660731 PMCID: PMC6903413 DOI: 10.1053/j.gastro.2018.11.081] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
Since the discovery of the first trypsinogen mutation in families with hereditary pancreatitis, pancreatic genetics has made rapid progress. The identification of mutations in genes involved in the digestive protease-antiprotease pathway has lent additional support to the notion that pancreatitis is a disease of autodigestion. Clinical and experimental observations have provided compelling evidence that premature intrapancreatic activation of digestive proteases is critical in pancreatitis onset. However, disease course and severity are mostly governed by inflammatory cells that drive local and systemic immune responses. In this article, we review the genetics, cell biology, and immunology of pancreatitis with a focus on protease activation pathways and other early events.
Collapse
Affiliation(s)
- Julia Mayerle
- Medical Department II, University Hospital, LMU, Munich, Germany,Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Eszter Hegyi
- Institute for Translational Medicine, University of Pécs, Hungary
| | - Georg Beyer
- Medical Department II, University Hospital, LMU, Munich, Germany
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118
| |
Collapse
|
45
|
Saluja A, Dudeja V, Dawra R, Sah RP. Early Intra-Acinar Events in Pathogenesis of Pancreatitis. Gastroenterology 2019; 156:1979-1993. [PMID: 30776339 DOI: 10.1053/j.gastro.2019.01.268] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Premature activation of digestive enzymes in the pancreas has been linked to development of pancreatitis for more than a century. Recent development of novel models to study the role of pathologic enzyme activation has led to advances in our understanding of the mechanisms of pancreatic injury. Colocalization of zymogen and lysosomal fraction occurs early after pancreatitis-causing stimulus. Cathepsin B activates trypsinogen in these colocalized organelles. Active trypsin increases permeability of these organelles resulting in leakage of cathepsin B into the cytosol leading to acinar cell death. Although trypsin-mediated cell death leads to pancreatic injury in early stages of pancreatitis, multiple parallel mechanisms, including activation of inflammatory cascades, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction in the acinar cells are now recognized to be important in driving the profound systemic inflammatory response and extensive pancreatic injury seen in acute pancreatitis. Chymotrypsin, another acinar protease, has recently been shown be play critical role in clearance of pathologically activated trypsin protecting against pancreatic injury. Mutations in trypsin and other genes thought to be associated with pathologic enzyme activation (such as serine protease inhibitor 1) have been found in familial forms of pancreatitis. Sustained intra-acinar activation of nuclear factor κB pathway seems to be key pathogenic mechanism in chronic pancreatitis. Better understanding of these mechanisms will hopefully allow us to improve treatment strategies in acute and chronic pancreatitis.
Collapse
|
46
|
UBIAD1 Plays an Essential Role in the Survival of Pancreatic Acinar Cells. Int J Mol Sci 2019; 20:ijms20081971. [PMID: 31013667 PMCID: PMC6515134 DOI: 10.3390/ijms20081971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/20/2019] [Accepted: 04/21/2019] [Indexed: 12/12/2022] Open
Abstract
UbiA prenyltransferase domain-containing protein 1 (UBIAD1) is a vitamin K2 biosynthetic enzyme. We previously showed the lethality of this enzyme in UBIAD1 knockout mice during the embryonic stage. However, the biological effects of UBIAD1 deficiency after birth remain unclear. In the present study, we used a tamoxifen-inducible systemic UBIAD1 knockout mouse model to determine the role of UBIAD1 in adult mice. UBIAD1 knockout resulted in the death of the mice within about 60 days of administration of tamoxifen. The pancreas presented with the most prominent abnormality in the tamoxifen-induced UBIAD1 knockout mice. The pancreas was reduced remarkably in size; furthermore, the pancreatic acinar cells disappeared and were replaced by vacuoles. Further analysis revealed that the vacuoles were adipocytes. UBIAD1 deficiency in the pancreatic acinar cells caused an increase in oxidative stress and autophagy, leading to apoptotic cell death in the tamoxifen-induced UBIAD 1 knockout mice. These results indicate that UBIAD1 is essential for maintaining the survival of pancreatic acinar cells in the pancreas.
Collapse
|
47
|
Ye R, Onodera T, Blanchard PG, Kusminski CM, Esser V, Brekken RA, Scherer PE. β1 Syntrophin Supports Autophagy Initiation and Protects against Cerulein-Induced Acute Pancreatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:813-825. [PMID: 30653956 DOI: 10.1016/j.ajpath.2019.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/26/2018] [Accepted: 01/02/2019] [Indexed: 01/23/2023]
Abstract
Syntrophins are a family of proteins forming membrane-anchored scaffolds and serving as adaptors for various transmembrane and intracellular signaling molecules. To understand the physiological roles of β1 syntrophin, one of the least characterized members, we generated mouse models to eliminate β1 syntrophin specifically in the endocrine or exocrine pancreas. β1 syntrophin is dispensable for the morphology and function of insulin-producing β cells. However, mice with β1 syntrophin deletion in exocrine acinar cells exhibit increased severity of cerulein-induced acute pancreatitis. Reduced expression of cystic fibrosis transmembrane conductance regulator and dilation of acinar lumen are potential predisposition factors. During the disease progression, a relative lack of autophagy is associated with deficiencies in both actin assembly and endoplasmic reticulum nucleation. Our findings reveal, for the first time, that β1 syntrophin is a critical regulator of actin cytoskeleton and autophagy in pancreatic acinar cells and is potently protective against cerulein-induced acute pancreatitis.
Collapse
Affiliation(s)
- Risheng Ye
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Medical Education, Texas Tech University Health Sciences Center Paul L. Foster School of Medicine, El Paso, Texas
| | - Toshiharu Onodera
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Pierre-Gilles Blanchard
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
48
|
Abu-El-Haija M, Lowe ME. Pediatric Pancreatitis-Molecular Mechanisms and Management. Gastroenterol Clin North Am 2018; 47:741-753. [PMID: 30337030 DOI: 10.1016/j.gtc.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pediatric pancreatitis is an emerging field with an increasing incidence of disease. Management of pediatric pancreatitis is understudied and, therefore, extrapolated from adult studies (although the etiologies are different). There is evidence that feeding is safe in mild acute pancreatitis in children without increased pain or length of stay. Studies are needed to predict course of the disease, disease severity, and risk of chronic pancreatitis in children.
Collapse
Affiliation(s)
- Maisam Abu-El-Haija
- Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave MLC 2010, Cincinnati, Ohio 45229, USA
| | - Mark E Lowe
- Pediatric Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, 660 South Euclid Avenue, MPRB 4th Floor, Campus Box 8208, St Louis, MO 63110, USA.
| |
Collapse
|
49
|
Wang B, Hu C, Mei Y, Bao J, Ding S, Liu X, Mei Q, Xu J. Resolvin D1 Resolve Inflammation in Experimental Acute Pancreatitis by Restoring Autophagic Flux. Dig Dis Sci 2018; 63:3359-3366. [PMID: 29974378 DOI: 10.1007/s10620-018-5191-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 06/28/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acute pancreatitis (AP) is a common acute gastrointestinal disorders. Increasing evidence indicated that autophagy is involved in the development of AP. Resolvin D1 is an endogenous pro-resolving lipid mediator, which can protect mice from cerulein-induced acute pancreatitis and facilitate autophagy in macrophage, but its mechanism remians unclear. AIMS To investigate the effect of resolvin D1 on autophagy in mouse models of cerulein-induced AP. METHODS C57BL/6 mice were randomly divided into control group, AP group and resolvin D1 group. The models of cerulein-induced AP were constructed by intraperitoneally cerulein. Resolvin D1 group was established by intraperitoneally resolvin D1 based on AP models, simultaneously, control group received normal saline. The severity of AP, the level of inflammatory cytokines, the number of autophagic vacuoles, and the expression of autophagy-related markers were evaluated among three groups. RESULTS The AP models were established successfully. Compared to control group, the number of autophagic vacuoles and expressions of autophagy-related markers including Beclin-1, p62 and LC3-II were increased in AP models, In contrast, the degree of inflammation and levels of inflammatory cytokines in AP models were reduced after resolvin D1 treatment. Moreover, resolvin D1 attenuated the number of autophagic vacuoles and expressions of autophagy-related markers. CONCLUSIONS Autophagic flux is impaired in cerulein-induced AP. Resolvin D1 ameliorate the severity of mice with cerulein-induced acute pancreatitis, possible attributing to its reducing impaired autophagy and restoring autophagic flux.
Collapse
Affiliation(s)
- Bingbing Wang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, The Key Laboratory of Digestive Diseases of Anhui Province, 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Cui Hu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, The Key Laboratory of Digestive Diseases of Anhui Province, 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Yongyu Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, The Key Laboratory of Digestive Diseases of Anhui Province, 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Junjun Bao
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, The Key Laboratory of Digestive Diseases of Anhui Province, 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Shaozhen Ding
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, The Key Laboratory of Digestive Diseases of Anhui Province, 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Xiaochang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, The Key Laboratory of Digestive Diseases of Anhui Province, 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, The Key Laboratory of Digestive Diseases of Anhui Province, 218 Jixi Road, Hefei, 230022, Anhui Province, China.
| | - Jianming Xu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, The Key Laboratory of Digestive Diseases of Anhui Province, 218 Jixi Road, Hefei, 230022, Anhui Province, China
| |
Collapse
|
50
|
Xu Y, Liu R, Liao C, Liu J, Zhao H, Li Z, Liu W, Chen L, Wu C, Tan H, Chen Z, Xie N, Li W. High expression of immunity-related GTPase family M protein in glioma promotes cell proliferation and autophagy protein expression. Pathol Res Pract 2018; 215:90-96. [PMID: 30391210 DOI: 10.1016/j.prp.2018.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/13/2018] [Accepted: 10/17/2018] [Indexed: 02/04/2023]
Abstract
Glioma is the commonest malignant tumor in the central nervous system (CNS), characterized by rapid growth. However, the molecular mechanism underlying the growth remains unclear. Immunity-related GTPase family M protein (IRGM) participates in immune response to pathogen and tumorigenesis. Proliferation and autophagy are two crucial functions contributing to aggressive growth. Therefore, our aims were to probe whether IRGM regulates glioma proliferation and autophagy. In this study, we found that 47 glioma specimens had more IRGM expression than 11 non-cancerous brain tissues with immunohistochemistry. IRGM was also up-regulated in human glioma cell lines U87, U251 and A172 and so on compared with immortalized astrocytes. Importantly, overexpression of IRGM significantly increased the cell colonies formation, cell proliferation and Akt activation (Thr308 and Ser473 sites) than matched control. On another hand, all of IRGM, autophagy marker LC3II and autophagy adaptor p62 gradually increased after starvation 2 and 4 h. Furthermore, western blot and immunofluorescence results showed that knockdown of IRGM inhibited the formation of LC3-II and the expression of p62. Our data uncovered that IRGM acted in glioma proliferation and autophagy, providing a new target with dual roles for the future translation research.
Collapse
Affiliation(s)
- Yanwen Xu
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, China; Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, Guangdong Province, China; Medicine Department, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Renli Liu
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, Guangdong Province, China
| | - Chuanpeng Liao
- Medicine Department, Shenzhen University, Shenzhen, Guangdong Province, China; Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, Guangdong Province, China
| | - Jing Liu
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, Guangdong Province, China; Medicine Department, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Huafu Zhao
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, Guangdong Province, China; Medicine Department, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Zongyang Li
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, Guangdong Province, China; Medicine Department, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Wenlan Liu
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, Guangdong Province, China; Medicine Department, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Lei Chen
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, Guangdong Province, China; Medicine Department, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Changpeng Wu
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, Guangdong Province, China; Medicine Department, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Hui Tan
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, Guangdong Province, China; Medicine Department, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Zhongping Chen
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, China
| | - Ni Xie
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, China; Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, Guangdong Province, China; Medicine Department, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Weiping Li
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, China; Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, Guangdong Province, China; Medicine Department, Shenzhen University, Shenzhen, Guangdong Province, China.
| |
Collapse
|