1
|
Xia W, Jin C, Wang S, Zhang Y, Li K, Huang X, Zheng C, Chen W. Developmental proteome dynamics in granulosa and thecal layers from growing follicles to pre-ovulatory duck follicles†. Biol Reprod 2025; 112:675-691. [PMID: 39905481 DOI: 10.1093/biolre/ioaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 01/02/2025] [Accepted: 02/03/2025] [Indexed: 02/06/2025] Open
Abstract
Granulosa and thecal layer cells play important roles in the post-hatching follicular growth in laying birds. To examine the biochemical processes of granulosa and thecal layers associated with follicular growth, the technique of data independent acquisition was used in this study to explore protein profiling in granulosa and thecal layers from growing follicles in laying ducks. We identified and quantitatively analyzed 8032 proteins in granulosa cells and 9552 proteins in thecal layer cells. Hierarchical clustering of the resulting profiles revealed differential changes of expression of proteins linked to cell metabolism, signaling, cell junction, especially in steroid synthesis, peroxisome proliferator-activated receptor, and gap junction signaling pathway at different stages of follicles. The highest expression of proteins related to gap junction and peroxisome proliferator-activated receptor signaling pathway occurred in granulosa cells of 3-6 mm or 6-8 mm follicles. In granulosa cells, decreases in the enzymes that catalyze the transformation of estrone into estradiol and proteins related to calcium transport and apoptosis occurred during follicular growth. As follicles grew, proteins related to androgens biosynthesis and involved in gap junction and peroxisome proliferator-activated receptor signaling pathway decreased in the thecal layer cells. Three main group functional clusters extracted from the protein-protein interaction network, were mainly responsible for apoptosis, steroid hormone biosynthesis, and the peroxisome proliferator-activated receptor signaling pathway. These proteomic data provide a holistic framework for understanding how diverse biochemical processes in granulosa cells and thecal layer cells are coordinated at the cellular level during follicular growth in laying birds.
Collapse
Affiliation(s)
- Weiguang Xia
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Chenglong Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Shuang Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Yanan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Kaichao Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Xuebing Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Chuntian Zheng
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Wei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| |
Collapse
|
2
|
Giannuzzi F, Picerno A, Maiullari S, Montenegro F, Cicirelli A, Stasi A, De Palma G, Di Lorenzo VF, Pertosa GB, Pontrelli P, Rossini M, Gallo N, Salvatore L, Di Leo V, Errede M, Tamma R, Ribatti D, Gesualdo L, Sallustio F. Unveiling spontaneous renal tubule-like structures from human adult renal progenitor cell spheroids derived from urine. Stem Cells Transl Med 2025; 14:szaf002. [PMID: 40156847 PMCID: PMC11954590 DOI: 10.1093/stcltm/szaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/05/2025] [Indexed: 04/01/2025] Open
Abstract
The rapidly developing field of renal spheroids and organoids has emerged as a valuable tool for modeling nephrotoxicity, kidney disorders, and kidney development. However, existing studies have relied on intricate and sophisticated differentiation protocols to generate organoids and tubuloids, necessitating the external administration of multiple growth factors within precise timeframes. In our study, we demonstrated that human adult renal progenitor cells (ARPCs) isolated from the urine of both healthy subjects and patients can form spheroids that naturally generated very long tubule-like structures. Importantly, the generation of these tubule-like structures is driven solely by ARPCs, without the need for the external use of chemokines or growth factors to artificially induce this process. These tubule-like structures exhibit the expression of structural and functional renal tubule markers and bear, in some cases, striking structural similarities to various nephron regions, including the distal convoluted tubule, the loop of Henle, and proximal convoluted tubules. Furthermore, ARPC spheroids express markers typical of pluripotent cells, such as stage-specific embryonic antigen 4 (SSEA4), secrete elevated levels of renin, and exhibit angiogenic properties. Notably, ARPCs isolated from the urine of patients with IgA nephropathy form spheroids capable of recapitulating the characteristic IgA1 deposition observed in this disease. These findings represent significant advancements in the field, opening up new avenues for regenerative medicine in the study of kidney development, mechanisms underlying renal disorders, and the development of regenerative therapies for kidney-related ailments.
Collapse
Affiliation(s)
- Francesca Giannuzzi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Silvia Maiullari
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Francesca Montenegro
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Antonella Cicirelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Alessandra Stasi
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Giuseppe De Palma
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori “Giovanni Paolo II,”70124 Bari, Italia
| | | | - Giovanni Battista Pertosa
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Michele Rossini
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
- Typeone Biomaterials Srl, 73021 Calimera, Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
- Typeone Biomaterials Srl, 73021 Calimera, Lecce, Italy
| | - Vincenzo Di Leo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Mariella Errede
- Department of Translational Biomedicine and Neuroscience “DiBraiN,” University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Roberto Tamma
- Department of Translational Biomedicine and Neuroscience “DiBraiN,” University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience “DiBraiN,” University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| |
Collapse
|
3
|
Wu J, Gao H, Rui H, Xu P, Ni L, Zhang J, Wang L. Exploring the role of YBX3 in PEDV infection through the utilization of YBX3 knockout and overexpression cell lines. Virus Genes 2024; 60:667-673. [PMID: 39312036 DOI: 10.1007/s11262-024-02109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/14/2024] [Indexed: 11/16/2024]
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious disease caused by the porcine epidemic diarrhea virus (PEDV), which results in significant economic losses. PEDV infection causes severe damage to the midgut barrier in the small intestine. YBX3, an important protein in tight junctions, promotes epithelial cell proliferation. However, its role in the process of PEDV infection remains unclear. In this study, we observed a significant increase in mRNA expression of YBX3 following PEDV infection. Additionally, the protein expression of YBX3 showed an initial increase followed by a decrease over time. Furthermore, treatment with 2% DSS resulted in a significant down-regulation of YBX3 mRNA and protein expression. Furthermore, we successfully generated knockout and overexpression cell lines of YBX3. Preliminary assays indicated that elevated expression of YBX3 inhibited the PEDV replication, while knockout of YBX3 had the opposite effect. In conclusion, our study has preliminarily revealed the functional role of YBX3 during PEDV infection. This finding lays the foundation for further investigation into its mechanism in future and also provides new insights into the mechanism of PEDV-host interactions.
Collapse
Affiliation(s)
- Jiayun Wu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 22530, China
| | - Huizhen Gao
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 22530, China
| | - Haoyu Rui
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 22530, China
| | - Pan Xu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 22530, China
| | - Ligang Ni
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 22530, China
| | - Junsheng Zhang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 22530, China
| | - Ligang Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 22530, China.
| |
Collapse
|
4
|
Jatana S, Abbadi A, West GA, Ponti AK, Braga-Neto MB, Smith JL, Marino-Melendez A, Willard B, Nagy LE, Motte CDL. Hyperglycemic environments directly compromise intestinal epithelial barrier function in an organoid model and hyaluronan (∼35 kDa) protects via a layilin dependent mechanism. Matrix Biol 2024; 133:116-133. [PMID: 39187208 DOI: 10.1016/j.matbio.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Metabolic syndrome and diabetes in obese individuals are strong risk factors for development of inflammatory bowel disease (IBD) and colorectal cancer. The pathogenic mechanisms of low-grade metabolic inflammation, including chronic hyperglycemic stress, in disrupting gut homeostasis are poorly understood. In this study, we sought to understand the impact of a hyperglycemic environment on intestinal barrier integrity and the protective effects of small molecular weight (35 kDa) hyaluronan on epithelial barrier function. METHODS Intestinal organoids derived from mouse colon were grown in normal glucose media (5 mM) or high glucose media (25 mM) to study the impact of hyperglycemic stress on the intestinal barrier. Additionally, organoids were pretreated with 35 kDa hyaluronan (HA35) to investigate the effect of hyaluronan on epithelial barrier under high glucose stress. Immunoblotting as well as confocal imaging was used to understand changes in barrier proteins, quantitative as well as spatial distribution, respectively. Alterations in barrier function were measured using trans-epithelial electrical resistance and fluorescein isothiocyanate flux assays. Untargeted proteomics analysis was performed to elucidate mechanisms by which HA35 exerts a protective effect on the barrier. Intestinal organoids derived from receptor knockout mice specific to various HA receptors were utilized to understand the role of HA receptors in barrier protection under high glucose conditions. RESULTS We found that high glucose stress decreased the protein expression as well as spatial distribution of two key barrier proteins, zona occludens-1 (ZO-1) and occludin. HA35 prevented the degradation or loss of ZO-1 and maintained the spatial distribution of both ZO-1 and occludin under hyperglycemic stress. Functionally, we also observed a protective effect of HA35 on the epithelial barrier under high glucose conditions. We found that HA receptor, layilin, was involved in preventing barrier protein loss (ZO-1) as well as maintaining spatial distribution of ZO-1 and occludin. Additionally, proteomics analysis showed that cell death and survival was the primary pathway upregulated in organoids treated with HA35 under high glucose stress. We found that XIAP associated factor 1 (Xaf1) was modulated by HA35 thereby regulating apoptotic cell death in the intestinal organoid system. Finally, we observed that spatial organization of both focal adhesion kinase (FAK) as well as F-actin was mediated by HA35 via layilin. CONCLUSION Our results highlight the impact of hyperglycemic stress on the intestinal barrier function. This is of clinical relevance, as impaired barrier function has been observed in individuals with metabolic syndrome. Additionally, we demonstrate barrier protective effects of HA35 through its receptor layilin and modulation of cellular apoptosis under high glucose stress.
Collapse
Affiliation(s)
- Samreen Jatana
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Amina Abbadi
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gail A West
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - András K Ponti
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Manuel B Braga-Neto
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Jordyn L Smith
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Armando Marino-Melendez
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Laura E Nagy
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Carol de la Motte
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
5
|
Itoh M, Watanabe K, Mizukami Y, Sugimoto H. Molecular alterations associated with pathophysiology in liver-specific ZO-1 and ZO-2 knockout mice. Cell Struct Funct 2024; 49:83-99. [PMID: 39322562 PMCID: PMC11930773 DOI: 10.1247/csf.24046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024] Open
Abstract
The liver is a complex organ with a highly organized structure in which tight junctions (TJs) play an important role in maintaining their function by regulating barrier properties and cellular polarity. Dysfunction of TJs is associated with liver diseases, including progressive familial intrahepatic cholestasis (PFIC). In this study, we investigated the molecular alterations in a liver-specific ZO-1 and ZO-2 double-knockout (DKO) mouse model, which exhibits features resembling those of PFIC4 patients with mutations in the ZO-2 gene. RNA-seq analysis revealed the upregulation of genes involved in the oxidative stress response, xenobiotic metabolism, and cholesterol metabolism in DKO livers. Conversely, the expression of genes regulated by HNF4α was lower in DKO livers than in the wild-type controls. Furthermore, age-associated analysis elucidated the timing and progression of these pathway changes as well as alterations in molecules related to TJs and apical polarity. Our research uncovered previously unknown implications of ZO-1 and ZO-2 in liver physiology and provides new insights into the molecular pathogenesis of PFIC4 and other tight junction-related liver diseases. These findings contribute to a better understanding of the complex mechanisms underlying liver function and dysfunction and may lead to the development of novel therapeutic strategies for liver diseases associated with tight junction impairment.Key words: tight junctions, ZO-1/ZO-2 knockout mouse, liver, transcriptome analysis, molecular pathological progression.
Collapse
Affiliation(s)
- Masahiko Itoh
- Department of Biochemistry, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Kenji Watanabe
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi 755-8505, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi 755-8505, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| |
Collapse
|
6
|
Hoppstock G, Lindquist JA, Willems A, Becker A, Reichardt C, Morgenroth R, Stolze S, Zhu C, Brandt S, Mertens PR. DNA-Binding Protein A Is Actively Secreted in a Calcium-and Inflammasome-Dependent Manner and Negatively Influences Tubular Cell Survival. Cells 2024; 13:1742. [PMID: 39451259 PMCID: PMC11506473 DOI: 10.3390/cells13201742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
DNA-binding protein A (DbpA) belongs to the Y-box family of cold shock domain (CSD) proteins that bind RNA/DNA and exert intracellular functions in cell stress, proliferation, and differentiation. Given the pattern of DbpA staining in inflammatory glomerular diseases, without adherence to cell boundaries, we hypothesized extracellular protein occurrence and specific functions. Lipopolysaccharide and ionomycin induce DbpA expression and secretion from melanoma and mesangial cells. Unlike its homologue Y-box-binding protein 1 (YB-1), DbpA secretion requires inflammasome activation, as secretion is blocked upon the addition of a NOD-like receptor protein-3 (NLRP3) inhibitor. The addition of recombinant DbpA enhances melanoma cell proliferation, migration, and competes with tumor necrosis factor (TNF) binding to its receptor (TNFR1). In TNF-induced cell death assays, rDbpA initially blocks TNF-induced apoptosis, whereas at later time points (>24 h), cells are more prone to die. Given that CSD proteins YB-1 and DbpA fulfill the criteria of alarmins, we propose that their release signals an inherent danger to the host. Some data hint at an extracellular complex formation at a ratio of 10:1 (DbpA:YB-1) of both proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peter R. Mertens
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (G.H.); (J.A.L.); (A.W.); (C.Z.); (S.B.)
| |
Collapse
|
7
|
El Bakkouri Y, Chidiac R, Delisle C, Corriveau J, Cagnone G, Gaonac'h-Lovejoy V, Chin A, Lécuyer É, Angers S, Joyal JS, Topisirovic I, Hulea L, Dubrac A, Gratton JP. ZO-1 interacts with YB-1 in endothelial cells to regulate stress granule formation during angiogenesis. Nat Commun 2024; 15:4405. [PMID: 38782923 PMCID: PMC11116412 DOI: 10.1038/s41467-024-48852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Zonula occludens-1 (ZO-1) is involved in the regulation of cell-cell junctions between endothelial cells (ECs). Here we identify the ZO-1 protein interactome and uncover ZO-1 interactions with RNA-binding proteins that are part of stress granules (SGs). Downregulation of ZO-1 increased SG formation in response to stress and protected ECs from cellular insults. The ZO-1 interactome uncovered an association between ZO-1 and Y-box binding protein 1 (YB-1), a constituent of SGs. Arsenite treatment of ECs decreased the interaction between ZO-1 and YB-1, and drove SG assembly. YB-1 expression is essential for SG formation and for the cytoprotective effects induced by ZO-1 downregulation. In the developing retinal vascular plexus of newborn mice, ECs at the front of growing vessels express less ZO-1 but display more YB-1-positive granules than ECs located in the vascular plexus. Endothelial-specific deletion of ZO-1 in mice at post-natal day 7 markedly increased the presence of YB-1-positive granules in ECs of retinal blood vessels, altered tip EC morphology and vascular patterning, resulting in aberrant endothelial proliferation, and arrest in the expansion of the retinal vasculature. Our findings suggest that, through its interaction with YB-1, ZO-1 controls SG formation and the response of ECs to stress during angiogenesis.
Collapse
Affiliation(s)
- Yassine El Bakkouri
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Rony Chidiac
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Chantal Delisle
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jeanne Corriveau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Gael Cagnone
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Vanda Gaonac'h-Lovejoy
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Ashley Chin
- Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada
| | - Éric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | | | - Jean-Sébastien Joyal
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada and Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Laura Hulea
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada and Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Alexandre Dubrac
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
- Centre d'Innovation Biomédicale (CIB), Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
8
|
Nguyen TP, Otani T, Tsutsumi M, Kinoshita N, Fujiwara S, Nemoto T, Fujimori T, Furuse M. Tight junction membrane proteins regulate the mechanical resistance of the apical junctional complex. J Cell Biol 2024; 223:e202307104. [PMID: 38517380 PMCID: PMC10959758 DOI: 10.1083/jcb.202307104] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Epithelia must be able to resist mechanical force to preserve tissue integrity. While intercellular junctions are known to be important for the mechanical resistance of epithelia, the roles of tight junctions (TJs) remain to be established. We previously demonstrated that epithelial cells devoid of the TJ membrane proteins claudins and JAM-A completely lack TJs and exhibit focal breakages of their apical junctions. Here, we demonstrate that apical junctions fracture when claudin/JAM-A-deficient cells undergo spontaneous cell stretching. The junction fracture was accompanied by actin disorganization, and actin polymerization was required for apical junction integrity in the claudin/JAM-A-deficient cells. Further deletion of CAR resulted in the disruption of ZO-1 molecule ordering at cell junctions, accompanied by severe defects in apical junction integrity. These results demonstrate that TJ membrane proteins regulate the mechanical resistance of the apical junctional complex in epithelial cells.
Collapse
Affiliation(s)
- Thanh Phuong Nguyen
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
| | - Motosuke Tsutsumi
- Division of Biophotonics, National Institute for Physiological Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Noriyuki Kinoshita
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Sachiko Fujiwara
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Tomomi Nemoto
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
9
|
Haas AJ, Karakus M, Zihni C, Balda MS, Matter K. ZO-1 Regulates Hippo-Independent YAP Activity and Cell Proliferation via a GEF-H1- and TBK1-Regulated Signalling Network. Cells 2024; 13:640. [PMID: 38607079 PMCID: PMC11011562 DOI: 10.3390/cells13070640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Tight junctions are a barrier-forming cell-cell adhesion complex and have been proposed to regulate cell proliferation. However, the underlying mechanisms are not well understood. Here, we used cells deficient in the junction scaffold ZO-1 alone or together with its paralog ZO-2, which disrupts the junctional barrier. We found that ZO-1 knockout increased cell proliferation, induced loss of cell density-dependent proliferation control, and promoted apoptosis and necrosis. These phenotypes were enhanced by double ZO-1/ZO-2 knockout. Increased proliferation was dependent on two transcriptional regulators: YAP and ZONAB. ZO-1 knockout stimulated YAP nuclear translocation and activity without changes in Hippo-dependent phosphorylation. Knockout promoted TANK-binding kinase 1 (TBK1) activation and increased expression of the RhoA activator GEF-H1. Knockdown of ZO-3, another paralog interacting with ZO1, was sufficient to induce GEF-H1 expression and YAP activity. GEF-H1, TBK1, and mechanotransduction at focal adhesions were found to cooperate to activate YAP/TEAD in ZO-1-deficient cells. Thus, ZO-1 controled cell proliferation and Hippo-independent YAP activity by activating a GEF-H1- and TBK1-regulated mechanosensitive signalling network.
Collapse
Affiliation(s)
| | | | | | - Maria S. Balda
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (A.J.H.); (M.K.); (C.Z.)
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (A.J.H.); (M.K.); (C.Z.)
| |
Collapse
|
10
|
Fülle JB, de Almeida RA, Lawless C, Stockdale L, Yanes B, Lane EB, Garrod DR, Ballestrem C. Proximity Mapping of Desmosomes Reveals a Striking Shift in Their Molecular Neighborhood Associated With Maturation. Mol Cell Proteomics 2024; 23:100735. [PMID: 38342409 PMCID: PMC10943070 DOI: 10.1016/j.mcpro.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.
Collapse
Affiliation(s)
- Judith B Fülle
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | | | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Liam Stockdale
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Bian Yanes
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - E Birgitte Lane
- Skin Research Institute of Singapore, Agency of Science Technology and Research (A∗STAR), Singapore, Singapore
| | - David R Garrod
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Park A, Choi S, Do J, Kim Y, Kim KS, Koh E, Park KS. ZO-1 regulates the migration of mesenchymal stem cells in cooperation with α-catenin in response to breast tumor cells. Cell Death Discov 2024; 10:19. [PMID: 38212369 PMCID: PMC10784548 DOI: 10.1038/s41420-023-01793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
Mesenchymal stem cells are recruited from the bone marrow into breast tumors, contributing to the creation of a tumor microenvironment that fosters tropism for breast tumors. However, the intrinsic mechanisms underlying the recruitment of bone marrow-derived mesenchymal stem cells (MSCs) into the breast tumor microenvironment are still under investigation. Our discoveries identified zonula occludens-1 (ZO-1) as a specific intrinsic molecule that plays a vital role in mediating the collective migration of MSCs towards breast tumor cells and transforming growth factor beta (TGF-β), which is a crucial factor secreted by breast tumor cells. Upon migration in response to MDA-MB-231 cells and TGF-β, MSCs showed increased formation of adherens junction-like structures (AJs) expressing N-cadherin and α-catenin at their cell-cell contacts. ZO-1 was found to be recruited into the AJs at the cell-cell contacts between MSCs. Additionally, ZO-1 collaborated with α-catenin to regulate AJ formation, dependently on the SH3 and GUK domains of the ZO-1 protein. ZO-1 knockdown led to the impaired migration of MSCs in response to the stimuli and subsequent downregulation of AJs formation at the cell-cell contacts during MSCs migration. Overall, our study highlights the novel role of ZO-1 in guiding MSC migration towards breast tumor cells, suggesting its potential as a new strategy for controlling and re-engineering the breast tumor microenvironment.
Collapse
Affiliation(s)
- Aran Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Sanghyuk Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jungbeom Do
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Youngjae Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Kyung-Sup Kim
- Department of Biochemistry and Molecular Biology, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Eunjin Koh
- Department of Biochemistry and Molecular Biology, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea.
- East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
12
|
Hadpech S, Peerapen P, Thongboonkerd V. The upregulation of lamin A/C as a compensatory mechanism during tight junction disruption in renal tubular cells mediated by calcium oxalate crystals. Curr Res Toxicol 2023; 6:100145. [PMID: 38193033 PMCID: PMC10772403 DOI: 10.1016/j.crtox.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Calcium oxalate monohydrate (COM), the most important crystal causing kidney stone disease, upregulates lamin A/C but downregulates zonula occludens-1 (ZO-1) in renal tubular cells. While roles for F-actin and α-tubulin and their association with ZO-1 are known to regulate COM-mediated tight junction (TJ) disruption, roles of lamin A/C and its interplay with ZO-1 in COM kidney stone model remain unclear and are thus the objectives of this study. Lamin A/C was knocked down in MDCK cells by silencing RNA specific for LMNA (siLMNA). Both wild-type (WT) and siLMNA cells were treated with COM for 48-h compared with the untreated (control) cells. Western blotting and immunofluorescence staining revealed upregulated lamin A/C and downregulated ZO-1 in the COM-treated WT cells. siLMNA successfully reduced lamin A/C expression in both control and COM-treated cells. Nonetheless, siLMNA did not reverse the effect of COM on the decreases in ZO-1 and transepithelial resistance, but further reduced their levels in both control and COM-treated cells. Protein-protein interaction analysis demonstrated that two cytoskeletal proteins (actin and tubulin) served as the linkers to connect lamin A/C with ZO-1 and occludin (both of which are the TJ proteins). Altogether, these data implicate that lamin A/C and ZO-1 are indirectly associated to control TJ function, and ZO-1 expression is regulated by lamin A/C. Moreover, COM-induced upregulation of lamin A/C most likely serves as a compensatory mechanism to cope with the downregulation of ZO-1 during COM-mediated TJ disruption.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
13
|
Peng W, Zeng C, Xu J, Zhao H, Zhu Q, Xu H, Chen H, Huang H, Zhou Y, Zhao C. Regulation of epithelial cell differentiation by the Ubiquitous expressed transcript isoform 1 in ulcerative colitis. J Gastroenterol Hepatol 2023; 38:2006-2017. [PMID: 37608570 DOI: 10.1111/jgh.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND AND AIM Mucosal healing has emerged as a desirable treatment goal for patients with ulcerative colitis (UC). Healing of mucosal wounds involves epithelial cell proliferation and differentiation, and Y-box transcription factor ZONAB has recently been identified as the key modulator of intestinal epithelial restitution. METHODS We studied the characteristics of UXT-V1 expression in UC patients using immunohistochemistry and qPCR. The functional role of UXT-V1 in the colonic epithelium was investigated using lentivirus-mediated shRNA in vitro and ex vivo. Through endogenous Co-immunoprecipitation and LC-MS/MS, we identified ZONAB as a UXT-V1-interactive protein. RESULTS Herein, we report that UXT-V1 promotes differentiation of intestinal epithelial cells by regulating the nuclear translocation of ZONAB. UXT-V1 was upregulated in the intestinal epithelia of UC patients compared with that of healthy controls. Knocking down UXT-V1 in NCM-460 cells led to the enrichment of pathways associated with proliferation and differentiation. Furthermore, the absence of UXT-V1 in cultured intestinal epithelial cells and colonic organoids inhibited differentiation to the goblet cell phenotype. Mechanistically, the loss of UXT-V1 in the intestinal epithelial cells allowed nuclear translocation of ZONAB, wherein it regulated the transcription of differentiation-related genes, including AML1 and KLF4. CONCLUSION Taken together, our study reveals a potential role of UXT-V1 in regulating epithelial cell differentiation, proving a molecular basis for mucosal healing in UC.
Collapse
Affiliation(s)
- Wu Peng
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Chengcheng Zeng
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Jing Xu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Hailan Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Qingqing Zhu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Hongli Huang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Yongjian Zhou
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Chong Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| |
Collapse
|
14
|
Pan C, Xu A, Ma X, Yao Y, Zhao Y, Wang C, Chen C. Research progress of Claudin-low breast cancer. Front Oncol 2023; 13:1226118. [PMID: 37904877 PMCID: PMC10613467 DOI: 10.3389/fonc.2023.1226118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/26/2023] [Indexed: 11/01/2023] Open
Abstract
Claudin-low breast cancer (CLBC) is a subgroup of breast cancer discovered at the molecular level in 2007. Claudin is one of the primary proteins that make up tight junctions, and it plays crucial roles in anti-inflammatory and antitumor responses as well as the maintenance of water and electrolyte balance. Decreased expression of claudin results in the disruption of tight junction structures and the activation of downstream signaling pathways, which can lead to tumor formation. The origin of Claudin-low breast cancer is still in dispute. Claudin-low breast cancer is characterized by low expression of Claudin3, 4, 7, E-cadherin, and HER2 and high expression of Vimentin, Snai 1/2, Twist 1/2, Zeb 1/2, and ALDH1, as well as stem cell characteristics. The clinical onset of claudin-low breast cancer is at menopause age, and its histological grade is higher. This subtype of breast cancer is more likely to spread to lymph nodes than other subtypes. Claudin-low breast cancer is frequently accompanied by increased invasiveness and a poor prognosis. According to a clinical retrospective analysis, claudin-low breast cancer can achieve low pathological complete remission. At present, although several therapeutic targets of claudin-low breast cancer have been identified, the effective treatment remains in basic research stages, and no animal studies or clinical trials have been designed. The origin, molecular biological characteristics, pathological characteristics, treatment, and prognosis of CLBC are extensively discussed in this article. This will contribute to a comprehensive understanding of CLBC and serve as the foundation for the individualization of breast cancer treatment.
Collapse
Affiliation(s)
- Chenglong Pan
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Anqi Xu
- Kunming Medical University, Kunming, Yunnan, China
- Department of Anesthesia, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoling Ma
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Yanfei Yao
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Youmei Zhao
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan, China
- The Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
15
|
Yu S, He J, Xie K. Zonula Occludens Proteins Signaling in Inflammation and Tumorigenesis. Int J Biol Sci 2023; 19:3804-3815. [PMID: 37564207 PMCID: PMC10411466 DOI: 10.7150/ijbs.85765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Tight junction (TJ) is the barrier of epithelial and endothelial cells to maintain paracellular substrate transport and cell polarity. As one of the TJ cytoplasmic adaptor proteins adjacent to cell membrane, zonula occludens (ZO) proteins are responsible for connecting transmembrane TJ proteins and cytoplasmic cytoskeleton, providing a binding platform for transmembrane TJ proteins to maintain the barrier function. In addition to the basic structural function, ZO proteins play important roles in signal regulation such as cell proliferation and motility, the latter including cell migration, invasion and metastasis, to influence embryonic development, tissue homeostasis, damage repair, inflammation, tumorigenesis, and cancer progression. In this review, we will focus on the signal regulating function of ZO proteins in inflammation and tumorigenesis, and discuss the limitations of previous research and future challenges in ZO protein research.
Collapse
Affiliation(s)
- Sen Yu
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China
| |
Collapse
|
16
|
Lindquist JA, Bernhardt A, Reichardt C, Sauter E, Brandt S, Rana R, Lindenmeyer MT, Philipsen L, Isermann B, Zhu C, Mertens PR. Cold Shock Domain Protein DbpA Orchestrates Tubular Cell Damage and Interstitial Fibrosis in Inflammatory Kidney Disease. Cells 2023; 12:1426. [PMID: 37408260 DOI: 10.3390/cells12101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
DNA-binding protein A (DbpA) belongs to the Y-box family of cold shock domain proteins that exert transcriptional and translational activities in the cell via their ability to bind and regulate mRNA. To investigate the role of DbpA in kidney disease, we utilized the murine unilateral ureter obstruction (UUO) model, which recapitulates many features of obstructive nephropathy seen in humans. We observed that DbpA protein expression is induced within the renal interstitium following disease induction. Compared with wild-type animals, obstructed kidneys from Ybx3-deficient mice are protected from tissue injury, with a significant reduction in the number of infiltrating immune cells as well as in extracellular matrix deposition. RNAseq data from UUO kidneys show that Ybx3 is expressed by activated fibroblasts, which reside within the renal interstitium. Our data support a role for DbpA in orchestrating renal fibrosis and suggest that strategies targeting DbpA may be a therapeutic option to slow disease progression.
Collapse
Affiliation(s)
- Jonathan A Lindquist
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Anja Bernhardt
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Charlotte Reichardt
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Eva Sauter
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Sabine Brandt
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, 04103 Leipzig, Germany
| | - Maja T Lindenmeyer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, 04103 Leipzig, Germany
| | - Cheng Zhu
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou 310058, China
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
17
|
Soleymanjahi S, Blanc V, Molitor EA, Alvarado DM, Xie Y, Gazit V, Brown JW, Byrnes K, Liu TC, Mills JC, Ciorba MA, Rubin DC, Davidson NO. RBM47 regulates intestinal injury and tumorigenesis by modifying proliferation, oxidative response, and inflammatory pathways. JCI Insight 2023; 8:e161118. [PMID: 37014710 PMCID: PMC10243830 DOI: 10.1172/jci.insight.161118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
RNA-binding protein 47 (RBM47) is required for embryonic endoderm development, but a role in adult intestine is unknown. We studied intestine-specific Rbm47-knockout mice (Rbm47-IKO) following intestinal injury and made crosses into ApcMin/+ mice to examine alterations in intestinal proliferation, response to injury, and tumorigenesis. We also interrogated human colorectal polyps and colon carcinoma tissue. Rbm47-IKO mice exhibited increased proliferation and abnormal villus morphology and cellularity, with corresponding changes in Rbm47-IKO organoids. Rbm47-IKO mice adapted to radiation injury and were protected against chemical-induced colitis, with Rbm47-IKO intestine showing upregulation of antioxidant and Wnt signaling pathways as well as stem cell and developmental genes. Furthermore, Rbm47-IKO mice were protected against colitis-associated cancer. By contrast, aged Rbm47-IKO mice developed spontaneous polyposis, and Rbm47-IKO ApcMin/+ mice manifested an increased intestinal polyp burden. RBM47 mRNA was decreased in human colorectal cancer versus paired normal tissue, along with alternative splicing of tight junction protein 1 mRNA. Public databases revealed stage-specific reduction in RBM47 expression in colorectal cancer associated independently with decreased overall survival. These findings implicate RBM47 as a cell-intrinsic modifier of intestinal growth, inflammatory, and tumorigenic pathways.
Collapse
Affiliation(s)
| | - Valerie Blanc
- Division of Gastroenterology, Department of Medicine
| | | | | | - Yan Xie
- Division of Gastroenterology, Department of Medicine
| | - Vered Gazit
- Division of Gastroenterology, Department of Medicine
| | | | | | | | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine
- Department of Developmental Biology; and
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | - Deborah C. Rubin
- Division of Gastroenterology, Department of Medicine
- Department of Developmental Biology; and
| | - Nicholas O. Davidson
- Division of Gastroenterology, Department of Medicine
- Department of Developmental Biology; and
| |
Collapse
|
18
|
Abrams CK. Mechanisms of Diseases Associated with Mutation in GJC2/Connexin 47. Biomolecules 2023; 13:biom13040712. [PMID: 37189458 DOI: 10.3390/biom13040712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Connexins are members of a family of integral membrane proteins that provide a pathway for both electrical and metabolic coupling between cells. Astroglia express connexin 30 (Cx30)-GJB6 and Cx43-GJA1, while oligodendroglia express Cx29/Cx31.3-GJC3, Cx32-GJB1, and Cx47-GJC2. Connexins organize into hexameric hemichannels (homomeric if all subunits are identical or heteromeric if one or more differs). Hemichannels from one cell then form cell-cell channels with a hemichannel from an apposed cell. (These are termed homotypic if the hemichannels are identical and heterotypic if the hemichannels differ). Oligodendrocytes couple to each other through Cx32/Cx32 or Cx47/Cx47 homotypic channels and they couple to astrocytes via Cx32/Cx30 or Cx47/Cx43 heterotypic channels. Astrocytes couple via Cx30/Cx30 and Cx43/Cx43 homotypic channels. Though Cx32 and Cx47 may be expressed in the same cells, all available data suggest that Cx32 and Cx47 cannot interact heteromerically. Animal models wherein one or in some cases two different CNS glial connexins have been deleted have helped to clarify the role of these molecules in CNS function. Mutations in a number of different CNS glial connexin genes cause human disease. Mutations in GJC2 lead to three distinct phenotypes, Pelizaeus Merzbacher like disease, hereditary spastic paraparesis (SPG44) and subclinical leukodystrophy.
Collapse
Affiliation(s)
- Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Zhelankin AV, Iulmetova LN, Ahmetov II, Generozov EV, Sharova EI. Diversity and Differential Expression of MicroRNAs in the Human Skeletal Muscle with Distinct Fiber Type Composition. Life (Basel) 2023; 13:659. [PMID: 36983815 PMCID: PMC10056610 DOI: 10.3390/life13030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The ratio of fast- and slow-twitch fibers in human skeletal muscle is variable and largely determined by genetic factors. In this study, we investigated the contribution of microRNA (miRNA) in skeletal muscle fiber type composition. The study involved biopsy samples of the vastus lateralis muscle from 24 male participants with distinct fiber type ratios. The miRNA study included samples from five endurance athletes and five power athletes with the predominance of slow-twitch (61.6-72.8%) and fast-twitch (69.3-80.7%) fibers, respectively. Total and small RNA were extracted from tissue samples. Total RNA sequencing (N = 24) revealed 352 differentially expressed genes between the groups with the predominance of fast- and slow-twitch muscle fibers. Small RNA sequencing showed upregulation of miR-206, miR-501-3p and miR-185-5p, and downregulation of miR-499a-5p and miR-208-5p in the group of power athletes with fast-twitch fiber predominance. Two miRtronic miRNAs, miR-208b-3p and miR-499a-5p, had strong correlations in expression with their host genes (MYH7 and MYH7B, respectively). Correlations between the expression of miRNAs and their experimentally validated messenger RNA (mRNA) targets were calculated, and 11 miRNA-mRNA interactions with strong negative correlations were identified. Two of them belonged to miR-208b-3p and miR-499a-5p, indicating their regulatory links with the expression of CDKN1A and FOXO4, respectively.
Collapse
Affiliation(s)
- Andrey V. Zhelankin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Liliia N. Iulmetova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ildus I. Ahmetov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| | - Eduard V. Generozov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Elena I. Sharova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| |
Collapse
|
20
|
Otte ML, Lama Tamang R, Papapanagiotou J, Ahmad R, Dhawan P, Singh AB. Mucosal healing and inflammatory bowel disease: Therapeutic implications and new targets. World J Gastroenterol 2023; 29:1157-1172. [PMID: 36926666 PMCID: PMC10011951 DOI: 10.3748/wjg.v29.i7.1157] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 02/21/2023] Open
Abstract
Mucosal healing (MH) is vital in maintaining homeostasis within the gut and protecting against injury and infections. Multiple factors and signaling pathways contribute in a dynamic and coordinated manner to maintain intestinal homeostasis and mucosal regeneration/repair. However, when intestinal homeostasis becomes chronically disturbed and an inflammatory immune response is constitutively active due to impairment of the intestinal epithelial barrier autoimmune disease results, particularly inflammatory bowel disease (IBD). Many proteins and signaling pathways become dysregulated or impaired during these pathological conditions, with the mechanisms of regulation just beginning to be understood. Consequently, there remains a relative lack of broadly effective therapeutics that can restore MH due to the complexity of both the disease and healing processes, so tissue damage in the gastrointestinal tract of patients, even those in clinical remission, persists. With increased understanding of the molecular mechanisms of IBD and MH, tissue damage from autoimmune disease may in the future be ameliorated by developing therapeutics that enhance the body’s own healing response. In this review, we introduce the concept of mucosal healing and its relevance in IBD as well as discuss the mechanisms of IBD and potential strategies for altering these processes and inducing MH.
Collapse
Affiliation(s)
- Megan Lynn Otte
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Raju Lama Tamang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Julia Papapanagiotou
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
21
|
Nehme Z, Roehlen N, Dhawan P, Baumert TF. Tight Junction Protein Signaling and Cancer Biology. Cells 2023; 12:243. [PMID: 36672179 PMCID: PMC9857217 DOI: 10.3390/cells12020243] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Tight junctions (TJs) are intercellular protein complexes that preserve tissue homeostasis and integrity through the control of paracellular permeability and cell polarity. Recent findings have revealed the functional role of TJ proteins outside TJs and beyond their classical cellular functions as selective gatekeepers. This is illustrated by the dysregulation in TJ protein expression levels in response to external and intracellular stimuli, notably during tumorigenesis. A large body of knowledge has uncovered the well-established functional role of TJ proteins in cancer pathogenesis. Mechanistically, TJ proteins act as bidirectional signaling hubs that connect the extracellular compartment to the intracellular compartment. By modulating key signaling pathways, TJ proteins are crucial players in the regulation of cell proliferation, migration, and differentiation, all of which being essential cancer hallmarks crucial for tumor growth and metastasis. TJ proteins also promote the acquisition of stem cell phenotypes in cancer cells. These findings highlight their contribution to carcinogenesis and therapeutic resistance. Moreover, recent preclinical and clinical studies have used TJ proteins as therapeutic targets or prognostic markers. This review summarizes the functional role of TJ proteins in cancer biology and their impact for novel strategies to prevent and treat cancer.
Collapse
Affiliation(s)
- Zeina Nehme
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
| | - Natascha Roehlen
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, 68198 NE, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, 68105 NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, 68105-1850 NE, USA
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire (IHU), Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France, 75006 Paris, France
| |
Collapse
|
22
|
Guo R, Gong X, Li K, Qiu Z, Yang L, Wan Y, Yao X, Long C, Xu J, Li K, Liu J, Liu J. Xanthine oxidase, a therapeutic target of realgar for non-small cell lung cancer. Heliyon 2023; 9:e12666. [PMID: 36685422 PMCID: PMC9849977 DOI: 10.1016/j.heliyon.2022.e12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/18/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Background The effects of realgar against non-small cell lung cancer (NSCLC) have been massively studied, but the direct therapeutic targets of realgar remain unclear. This study aimed to identify the molecular targets of realgar against NSCLC and explore their therapeutic mechanisms based on a network pharmacology approach and experimental validations. Methods The BATMAN-TCM and Digsee databases were used to predict realgar targets and NSCLC-related genes, respectively. A protein-protein interaction network was constructed for each gene set, and the overlapping genes were identified as potential targets of realgar against NSCLC. The correlation between potential targets and NSCLC was analyzed using The Cancer Genome Atlas and International Cancer Genome Consortium databases, and the key target was validated by in-silico and in-vitro experiments. Results Twenty-three overlapping genes, including xanthine oxidase (XO), were identified as potential targets of realgar against NSCLC. XO was selected as the key target for validation, as it was found to be upregulated in NSCLC tumor tissue, which correlated with poor overall survival. A possible interaction between realgar and XO was revealed by molecular docking which was further validated experimentally. Realgar treatment suppressed the activity of XO in NSCLC cells, as demonstrated by the unchanged XO protein levels. Finally, the mechanism of action of XO as a target against NSCLC through the cell-cell junction organization pathway was investigated. Conclusions Overall, this study proposes a potential molecular mechanism illustrating that XO is a target of realgar against NSCLC and highlights the usefulness of XO as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Rui Guo
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Xiaoyu Gong
- Pharmacy Department, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Kongzhao Li
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Zhengqi Qiu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Lina Yang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Yanbin Wan
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Xinhuang Yao
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Canling Long
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Jiqing Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Kang Li
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Jingyan Liu
- Emergency Department, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China,Corresponding author. Emergency Department, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China.
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China,Corresponding author. Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China.
| |
Collapse
|
23
|
Brunner N, Stein L, Amasheh S. Cellular Distribution Pattern of tjp1 (ZO-1) in Xenopus laevis Oocytes Heterologously Expressing Claudins. J Membr Biol 2023; 256:51-61. [PMID: 35737002 PMCID: PMC9884258 DOI: 10.1007/s00232-022-00251-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Epithelial barriers constitute a fundamental requirement in every organism, as they allow the separation of different environments and set boundaries against noxious and other adverse effectors. In many inflammatory and degenerative diseases, epithelial barrier function is impaired because of a disturbance of the paracellular seal. Recently, the Xenopus laevis oocyte has been established as a heterologous expression model for the analysis of transmembrane tight junction protein interactions and is currently considered to be a suitable screening model for barrier effectors. A prerequisite for this application is a physiological anchoring of claudins to the cytoskeleton via the major scaffolding protein tjp1 (tight junction protein 1, ZO-1). We have analyzed the oocyte model with regard to the interaction of heterologously expressed claudins and tjp1. Our experiments have revealed endogenous tjp1 expression in protein and mRNA analyses of unfertilized Xenopus laevis oocytes expressing human claudin 1 (CLDN1) to claudin 5 (CLDN5). The amphibian cell model can therefore be used for the analysis of claudin interactions.
Collapse
Affiliation(s)
- Nora Brunner
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Laura Stein
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
24
|
Fu R, Jiang X, Li G, Zhu Y, Zhang H. Junctional complexes in epithelial cells: sentinels for extracellular insults and intracellular homeostasis. FEBS J 2022; 289:7314-7333. [PMID: 34453866 DOI: 10.1111/febs.16174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/13/2023]
Abstract
The cell-cell and cell-ECM junctions within the epithelial tissues are crucial anchoring structures that provide architectural stability, mechanical resistance, and permeability control. Their indispensable role as signaling hubs orchestrating cell shape-related changes such as proliferation, differentiation, migration, and apoptosis has also been well recognized. However, growing amount of evidence now suggests that the multitasking nature of epithelial junctions extends well beyond anchorage-dependent or cell shape change-related biological processes. In this review, we discuss the emerging roles of junctional complexes in regulating innate immune defense, stress resistance, and intracellular proteostasis of the epithelial cells, with emphasis on the upstream regulation of epithelial junctions on various aspects of the epithelial barrier.
Collapse
Affiliation(s)
- Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Xiaowan Jiang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Gang Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| |
Collapse
|
25
|
ZO-1 Guides Tight Junction Assembly and Epithelial Morphogenesis via Cytoskeletal Tension-Dependent and -Independent Functions. Cells 2022; 11:cells11233775. [PMID: 36497035 PMCID: PMC9740252 DOI: 10.3390/cells11233775] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Formation and maintenance of tissue barriers require the coordination of cell mechanics and cell-cell junction assembly. Here, we combined methods to modulate ECM stiffness and to measure mechanical forces on adhesion complexes to investigate how tight junctions regulate cell mechanics and epithelial morphogenesis. We found that depletion of the tight junction adaptor ZO-1 disrupted junction assembly and morphogenesis in an ECM stiffness-dependent manner and led to a stiffness-dependant reorganisation of active myosin. Both junction formation and morphogenesis were rescued by inhibition of actomyosin contractility. ZO-1 depletion also impacted mechanical tension at cell-matrix and E-cadherin-based cell-cell adhesions. The effect on E-cadherin also depended on ECM stiffness and correlated with effects of ECM stiffness on actin cytoskeleton organisation. However, ZO-1 knockout also revealed tension-independent functions of ZO-1. ZO-1-deficient cells could assemble functional barriers at low tension, but their tight junctions remained corrupted with strongly reduced and discontinuous recruitment of junctional components. Our results thus reveal that reciprocal regulation between ZO-1 and cell mechanics controls tight junction assembly and epithelial morphogenesis, and that, in a second, tension-independent step, ZO-1 is required to assemble morphologically and structurally fully assembled and functionally normal tight junctions.
Collapse
|
26
|
Kim KW, Shin YJ, Lee SCS. Novel ROCK Inhibitors, Sovesudil and PHP-0961, Enhance Proliferation, Adhesion and Migration of Corneal Endothelial Cells. Int J Mol Sci 2022; 23:ijms232314690. [PMID: 36499014 PMCID: PMC9740482 DOI: 10.3390/ijms232314690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
The loss or dysfunction of human corneal endothelial cells (hCEnCs) is a leading cause of blindness due to corneal failure. Corneal transplantation with a healthy donor cornea has been the only available treatment for corneal endothelial disease. However, the need for way to regenerate the CEnCs has been increased due to the global shortage of donor corneas. The aim of the study is to investigate whether novel Rho-kinase (ROCK) inhibitors can induce the cultivation and regeneration of hCEnCs. Cultured hCEnCs were treated with Y-27632, sovesudil, or PHP-0961 for 24 h. Cellular responses, including cell viability, cytotoxicity, proliferation, and Ki67 expression with ROCK inhibitors were evaluated. We also evaluated wound healing and cell adhesion assays. Porcine corneas were used ex vivo to evaluate the effects of Y-27632, sovesudil, and PHP-0961 on wound healing and regeneration. We performed live/dead cell assays and immunofluorescence staining for SRY (sex determining region Y)-box 2 (SOX2), β-catenin, and ZO-1 on porcine corneas after ROCK inhibitor treatments. Cell viability, cell proliferation rate, and the number of Ki67-positive cells were higher in Y-27632, sovesudil and PHP-0961 treated cells compared to the control. There was no difference in LDH cytotoxicity test between any groups. Cells treated with Y-27632, sovesudil and PHP-0961 showed faster migration, wound healing, and cell adhesion. In the porcine ex vivo experiments, wound healing, the number of live cells, and SOX2-positive cells were higher in Y-27632, sovesudil and PHP-0961 treated corneas. In all experiments, sovesudil and PHP-0961, the novel ROCK inhibitors, were equal or superior to the results of the ROCK inhibitor positive control, Y-27632. In conclusion, sovesudil and PHP-0961, novel ROCK inhibitors have the capacity to regenerate hCEnCs by enhancing cell proliferation and adhesion between cells.
Collapse
Affiliation(s)
- Kyung Wook Kim
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07441, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07441, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
- Correspondence: ; Tel.: +82-2-6960-1240
| | - Sammy Chi Sam Lee
- pH Pharma Co., Ltd., B-1009, U-Space, 670 Daewangpangyo-ro, Bundang-gu, Seongnam-si 13494, Republic of Korea
| |
Collapse
|
27
|
Santerre K, Proulx S. Isolation efficiency of collagenase and EDTA for the culture of corneal endothelial cells. Mol Vis 2022; 28:331-339. [PMID: 36338664 PMCID: PMC9603909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Tissue engineering of the corneal endothelium, as well as cell therapy, has been proposed as an alternative approach for the treatment of corneal endotheliopathies. These approaches require in vitro amplification of functional corneal endothelial cells (CECs). The goal of this study was to compare two common isolation methods, collagenase A and EDTA (EDTA), and determine whether they influence cell viability, morphology, and barrier function. METHODS Human eye bank research-grade corneas were used to isolate and cultivate CECs. All donors were more than 40 years old. Two Descemet membranes from the same donor were used separately to compare the collagenase A and EDTA cell isolation methods. The number of isolated cells, cell viability, morphology, and barrier functionality were compared. RESULTS A higher isolation efficiency of viable CECs and a higher circularity index (endothelial morphology) were obtained using collagenase A. Passage 3 cells presented similar barrier functionalities regardless of the isolation method. CONCLUSIONS This study showed that isolation of CECs using collagenase A yields higher isolation efficiency than EDTA, delaying the loss of endothelial morphology for early passage cells.
Collapse
Affiliation(s)
- Kim Santerre
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec – Université Laval, axe médecine régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada,Département d’Ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Stéphanie Proulx
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec – Université Laval, axe médecine régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada,Département d’Ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
28
|
Sonoi R, Hagihara Y. Quantitative understanding of HepaRG cells during drug-induced intrahepatic cholestasis through changes in bile canaliculi dynamics. Pharmacol Res Perspect 2022; 10:e00960. [PMID: 35621230 PMCID: PMC9137115 DOI: 10.1002/prp2.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
An understanding of the quantitative relationship between bile canaliculus (BC) dynamics and the disruption of tight junctions (TJs) during drug-induced intrahepatic cholestasis may lead to new strategies aimed at drug development and toxicity testing. To investigate the relationship between BC dynamics and TJ disruption, we retrospectively analyzed the extent of TJ disruption in response to changes in the dynamics of BCs cultured with entacapone (ENT). Three hours after adding ENT, the ZO-1-negative BC surface area ratio became significantly higher (4.1-fold) than those of ZO-1-positive BCs. Based on these data, we calculated slopes of surface area changes, m, of each ZO-1-positive and ZO-1-negative BC. BCs with m ≤ 15 that fell within the 95% confidence interval of ZO-1-positive BCs were defined as ZO-1-positive. To validate this method, we compared the frequency of ZO-1-positive BCs, FZ , with that of BCs with m ≤ 15, FT , in culture using drugs that regulate TJ, or induce intrahepatic cholestasis. FT values were correlated with FZ under all culture conditions (R2 = .99). Our results indicate that the magnitude of BC surface area changes is a factor affecting TJ disruption, suggesting that maintaining TJ integrity by slowing BC dilation inhibits cell death.
Collapse
Affiliation(s)
- Rie Sonoi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka, Japan
| |
Collapse
|
29
|
Kuo WT, Odenwald MA, Turner JR, Zuo L. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann N Y Acad Sci 2022; 1514:21-33. [PMID: 35580994 PMCID: PMC9427709 DOI: 10.1111/nyas.14798] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epithelial cells are the first line of mucosal defense. In the intestine, a single layer of epithelial cells must establish a selectively permeable barrier that supports nutrient absorption and waste secretion while preventing the leakage of potentially harmful luminal materials. Key to this is the tight junction, which seals the paracellular space and prevents unrestricted leakage. The tight junction is a protein complex established by interactions between members of the claudin, zonula occludens, and tight junction-associated MARVEL protein (TAMP) families. Claudins form the characteristic tight junction strands seen by freeze-fracture microscopy and create paracellular channels, but the functions of ZO-1 and occludin, founding members of the zonula occludens and TAMP families, respectively, are less well defined. Recent studies have revealed that these proteins have essential noncanonical (nonbarrier) functions that allow them to regulate epithelial apoptosis and proliferation, facilitate viral entry, and organize specialized epithelial structures. Surprisingly, neither is required for intestinal barrier function or overall health in the absence of exogenous stressors. Here, we provide a brief overview of ZO-1 and occludin canonical (barrier-related) functions, and a more detailed examination of their noncanonical functions.
Collapse
Affiliation(s)
- Wei-Ting Kuo
- Graduate Institute of Oral Biology, National Taiwan University, Taipei, Taiwan.,Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Li Zuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Anhui Medical University, Hefei, China
| |
Collapse
|
30
|
Activation of the unfolded protein response by Connexin47 mutations associated with Pelizaeus-Merzbacher-like disease. Mol Cell Neurosci 2022; 120:103716. [PMID: 35276347 DOI: 10.1016/j.mcn.2022.103716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Pelizaeus-Merzbacher-like disease type 1 (PMLD1) is a hypomyelinating disorder arising in patients with mutations in GJC2, encoding Connexin47 (Cx47). PMLD1 causes nystagmus, cerebellar ataxia, spasticity and changes in CNS white matter detected by MRI. At least one mutation (p.I33M) yields a much milder phenotype, spastic paraplegia type 44 (SPG44). Cx47 contributes to gap junction communication channels between oligodendrocytes (OLs), the myelinating cells in the central nervous system (CNS), and between OLs and astrocytes. Prior studies in cell lines have shown that PMLD1 mutants such as p.P87S display defective protein trafficking, intracellular retention in the ER and loss-of-function. Here we show that when expressed in primary OLs, three PMLD1 associated mutants (p.P87S, p.Y269D and p.M283T) show ER retention of Cx47 and evidence of activation of the cellular stress (unfolded protein response, UPR) and apoptotic pathways. On the other hand, the milder SPG44 associated mutation p.I33M shows a wild-type-like subcellular distribution and no activation of the UPR or apoptotic pathways. These studies provide new insight into a potential element of toxic gain of function underlying the mechanism of PMLD1 that should help guide future therapeutic approaches.
Collapse
|
31
|
Ram AK, Vairappan B. Role of zonula occludens in gastrointestinal and liver cancers. World J Clin Cases 2022; 10:3647-3661. [PMID: 35647143 PMCID: PMC9100728 DOI: 10.12998/wjcc.v10.i12.3647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/08/2021] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
A growing body of evidence suggests that tight junction (TJ) proteins play a crucial role in the pathogenesis of various diseases, including gastrointestinal (GI) cancer and hepatocellular carcinoma (HCC). TJ proteins primarily maintain the epithelial and endothelial cells intact together through integral proteins however, recent reports suggest that they also regulate gene expression necessary for cell proliferation, angiogenesis, and metastasis through adapter proteins such as zonula occludens (ZO). ZO proteins are membrane-associated cytosolic scaffolding proteins that modulate cell proliferation by interacting with several transcription factors. Reduced ZO proteins in GI cancer and HCC are correlated with tumor development and poor prognosis. Pubmed has searched for using the keyword ZO and gastric cancer, ZO and cancer, and ZO and HCC for the last ten years to date. This review summarized the role of ZO proteins in cell proliferation and their expression in GI cancer and HCC. Furthermore, therapeutic interventions targeting ZO in GI and liver cancers are reviewed.
Collapse
Affiliation(s)
- Amit Kumar Ram
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| |
Collapse
|
32
|
Napoli D, Strettoi E. Structural abnormalities of retinal pigment epithelial cells in a light‐inducible, rhodopsin mutant mouse. J Anat 2022. [DOI: 10.1111/joa.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Debora Napoli
- Neuroscience Institute, Italian National Research Council, CNR Pisa Italy
- Regional Doctorate School of Neuroscience University of Florence Florence Italy
| | - Enrica Strettoi
- Neuroscience Institute, Italian National Research Council, CNR Pisa Italy
| |
Collapse
|
33
|
Li T, Qin P, Chen B, Niu X, Wang Y, Niu Y, Wei C, Hou D, Ma H, Han R, Li H, Liu X, Kang X, Li Z. A novel 27-bp indel in the intron region of the YBX3 gene is associated with growth traits in chickens. Br Poult Sci 2022; 63:590-596. [PMID: 35382648 DOI: 10.1080/00071668.2022.2059340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The DNA/RNA binding protein YBX3 is associated with gene transcription, DNA repair, and the progression of various diseases and is highly conserved from bacteria to humans.2. The following experiment found a 27-bp insertion/deletion polymorphism in the intron region of the YBX3 gene through resequencing. In cross-designed, F2 resource groups, the indel was significantly associated with broiler weight and body size at 0, 2, 4, 6, 8, 10 and 12 weeks of age and several other traits (semi evisceration weight (SEW), evisceration weight (EW), semi evisceration rate (SER), evisceration rate (ER), head weight (HW), claw weight (CLW), wing weight (DWW), gizzard weight (GW), pancreas weight (PW), chest muscle weight (CMW), leg weight (LW), leg muscle weight (LMW), shedding weight (SW), carcass weight (CW) and pectoral area (PA)) (P<0.05).3. The insertion-insertion (II) genotype was significantly associated with the greatest growth traits and carcass traits, whereas the values associated with the insertion-deletion (ID) genotype were the lowest in the F2 reciprocal cross chickens.4. The mutation sites were genotyped in 3611 individuals from 13 different chicken breeds and cross-designed F2 resource groups. The II genotype is the most important in commercial broilers, and the I allele frequency observed in these breeds was relatively high. However, there is still considerable potential in breeding dual-purpose chickens and commercial laying hens.5. The mRNA expression of the YBX3 gene in tissues from different breeds and developmental stages demonstrated that the 27-bp indel may affect the entire development process of poultry by affecting muscle development. These findings are beneficial for elucidating the function of the YBX3 gene and facilitating enhanced reproduction in the chicken industry.
Collapse
Affiliation(s)
- Tong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Panpan Qin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinran Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Chengjie Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Dan Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Haoxiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.,Henan Innovative Engineering Research Centre of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.,Henan Innovative Engineering Research Centre of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.,Henan Innovative Engineering Research Centre of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
34
|
Chen YC, Chen KF, Lin KYA, Chen JK, Jiang XY, Lin CH. The nephrotoxic potential of polystyrene microplastics at realistic environmental concentrations. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127871. [PMID: 34862106 DOI: 10.1016/j.jhazmat.2021.127871] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
As microplastics (MPs) dispersed into the environment, people might be exposed to MPs. Most pollutants either pass through or concentrate in the kidney. Therefore, nephrotoxicity tests are needed to verify the toxic potential of MPs. Here we used human embryonic kidney 293 (HEK293) cells to determine the association between nephrotoxicity and round-shape polystyrene MPs (PSMPs) (3.54 ± 0.39 μm) under realistic environmental exposure concentrations. Results revealed that PSMPs can adhere to the cell membrane and get entirely engulfed by HEK293 cells. PSMPs can induce cytotoxicity by oxidative stress via inhibition of the antioxidant haem oxygenase-1. Depolarisation of the mitochondrial membrane potential and formation of autophagosomes confirmed that apoptosis and autophagy can be simultaneously induced by PSMPs. The inflammatory factor was only activated (33 cytokines) by noncytotoxic concentration of PSMPs (3 ng/mL); however, the cytotoxic concentration (300 ng/mL) of PSMPs induced autophagy, which might further reduce NLRP3 expression, thus contributing to dampening inflammation (35 cytokines) in HEK293 cells. PSMPs (300 ng/mL) can impair kidney barrier integrity and increase the probability of developing acute kidney injury through the depletion of the zonula occludens-2 proteins and α1-antitrypsin. Altogether, our results demonstrated that environmental exposure to PSMPs may lead to an increased risk of renal disease.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Ku-Fan Chen
- Department of Civil Engineering, National Chi Nan University, Nantou, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan; Laboratory Animal Center, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Xin-Yu Jiang
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan.
| |
Collapse
|
35
|
Cingulin binds to the ZU5 domain of scaffolding protein ZO-1 to promote its extended conformation, stabilization, and tight junction accumulation. J Biol Chem 2022; 298:101797. [PMID: 35259394 PMCID: PMC9010756 DOI: 10.1016/j.jbc.2022.101797] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
Zonula occludens-1 (ZO-1), the major scaffolding protein of tight junctions (TJs), recruits the cytoskeleton-associated proteins cingulin (CGN) and paracingulin (CGNL1) to TJs by binding to their N-terminal ZO-1 interaction motif. The conformation of ZO-1 can be either folded or extended, depending on cytoskeletal tension and intramolecular and intermolecular interactions, and only ZO-1 in the extended conformation recruits the transcription factor DbpA to TJs. However, the sequences of ZO-1 that interact with CGN and CGNL1 and the role of TJ proteins in ZO-1 TJ assembly are not known. Here, we used glutathione-S-transferase pulldowns and immunofluorescence microscopy to show that CGN and CGNL1 bind to the C-terminal ZU5 domain of ZO-1 and that this domain is required for CGN and CGNL1 recruitment to TJs and to phase-separated ZO-1 condensates in cells. We show that KO of CGN, but not CGNL1, results in decreased accumulation of ZO-1 at TJs. Furthermore, ZO-1 lacking the ZU5 domain showed decreased accumulation at TJs, was detectable along lateral contacts, had a higher mobile fraction than full-length ZO-1 by fluorescence recovery after photobleaching analysis, and had a folded conformation, as determined by structured illumination microscopy of its N-terminal and C-terminal ends. The CGN–ZU5 interaction promotes the extended conformation of ZO-1, since binding of the CGN–ZO-1 interaction motif region to ZO-1 resulted in its interaction with DbpA in cells and in vitro. Together, these results show that binding of CGN to the ZU5 domain of ZO-1 promotes ZO-1 stabilization and accumulation at TJs by promoting its extended conformation.
Collapse
|
36
|
Micronutrient Improvement of Epithelial Barrier Function in Various Disease States: A Case for Adjuvant Therapy. Int J Mol Sci 2022; 23:ijms23062995. [PMID: 35328419 PMCID: PMC8951934 DOI: 10.3390/ijms23062995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The published literature makes a very strong case that a wide range of disease morbidity associates with and may in part be due to epithelial barrier leak. An equally large body of published literature substantiates that a diverse group of micronutrients can reduce barrier leak across a wide array of epithelial tissue types, stemming from both cell culture as well as animal and human tissue models. Conversely, micronutrient deficiencies can exacerbate both barrier leak and morbidity. Focusing on zinc, Vitamin A and Vitamin D, this review shows that at concentrations above RDA levels but well below toxicity limits, these micronutrients can induce cell- and tissue-specific molecular-level changes in tight junctional complexes (and by other mechanisms) that reduce barrier leak. An opportunity now exists in critical care—but also medical prophylactic and therapeutic care in general—to consider implementation of select micronutrients at elevated dosages as adjuvant therapeutics in a variety of disease management. This consideration is particularly pointed amidst the COVID-19 pandemic.
Collapse
|
37
|
A Transcriptional Link between HER2, JAM-A and FOXA1 in Breast Cancer. Cells 2022; 11:cells11040735. [PMID: 35203384 PMCID: PMC8870165 DOI: 10.3390/cells11040735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 01/03/2023] Open
Abstract
Overexpression of the human epidermal growth factor receptor-2 (HER2) is associated with aggressive disease in breast and certain other cancers. At a cellular level, the adhesion protein Junctional Adhesion Molecule-A (JAM-A) has been reported to regulate the expression of HER3 via a transcriptional pathway involving FOXA1. Since FOXA1 is also a suggested transcription factor for HER2, this study set out to determine if JAM-A regulates HER2 expression via a similar mechanism. An integrated tripartite approach was taken, involving cellular expression studies after targeted disruption of individual players in the putative pathway, in silico identification of relevant HER2 promoter regions and, finally, interrogation of cancer patient survival databases to deconstruct functionally important links between HER2, JAM-A and FOXA1 gene expression. The outcome of these investigations revealed a unidirectional pathway in which JAM-A expression transcriptionally regulates that of HER2 by influencing the binding of FOXA1 to a specific site in the HER2 gene promoter. Moreover, a correlation between JAM-A and HER2 gene expression was identified in 75% of a sample of 40 cancer types from The Cancer Genome Atlas, and coincident high mean mRNA expression of JAM-A, HER2 and FOXA1 was associated with poorer survival outcomes in HER2-positive (but not HER2-negative) patients with either breast or gastric tumors. These investigations provide the first evidence of a transcriptional pathway linking JAM-A, HER2 and FOXA1 in cancer settings, and support potential future pharmacological targeting of JAM-A as an upstream regulator of HER2.
Collapse
|
38
|
Sun X, Liu Y. Matrix Metalloproteinase-10 in Kidney Injury Repair and Disease. Int J Mol Sci 2022; 23:2131. [PMID: 35216251 PMCID: PMC8877639 DOI: 10.3390/ijms23042131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinase-10 (MMP-10) is a zinc-dependent endopeptidase with the ability to degrade a broad spectrum of extracellular matrices and other protein substrates. The expression of MMP-10 is induced in acute kidney injury (AKI) and chronic kidney disease (CKD), as well as in renal cell carcinoma (RCC). During the different stages of kidney injury, MMP-10 may exert distinct functions by cleaving various bioactive substrates including heparin-binding epidermal growth factor (HB-EGF), zonula occludens-1 (ZO-1), and pro-MMP-1, -7, -8, -9, -10, -13. Functionally, MMP-10 is reno-protective in AKI by promoting HB-EGF-mediated tubular repair and regeneration, whereas it aggravates podocyte dysfunction and proteinuria by disrupting glomerular filtration integrity via degrading ZO-1. MMP-10 is also involved in cancerous invasion and emerges as a promising therapeutic target in patients with RCC. As a secreted protein, MMP-10 could be detected in the circulation and presents an inverse correlation with renal function. Due to the structural similarities between MMP-10 and the other MMPs, development of specific inhibitors targeting MMP-10 is challenging. In this review, we summarize our current understanding of the role of MMP-10 in kidney diseases and discuss the potential mechanisms of its actions.
Collapse
Affiliation(s)
- Xiaoli Sun
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
- Department of Pathology, School of Medicine, University of Pittsburgh, S405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
39
|
Eliseeva IA, Sogorina EM, Smolin EA, Kulakovskiy IV, Lyabin DN. Diverse Regulation of YB-1 and YB-3 Abundance in Mammals. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S48-S167. [PMID: 35501986 DOI: 10.1134/s000629792214005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
YB proteins are DNA/RNA binding proteins, members of the family of proteins with cold shock domain. Role of YB proteins in the life of cells, tissues, and whole organisms is extremely important. They are involved in transcription regulation, pre-mRNA splicing, mRNA translation and stability, mRNA packaging into mRNPs, including stress granules, DNA repair, and many other cellular events. Many processes, from embryonic development to aging, depend on when and how much of these proteins have been synthesized. Here we discuss regulation of the levels of YB-1 and, in part, of its homologs in the cell. Because the amount of YB-1 is immediately associated with its functioning, understanding the mechanisms of regulation of the protein amount invariably reveals the events where YB-1 is involved. Control over the YB-1 abundance may allow using this gene/protein as a therapeutic target in cancers, where an increased expression of the YBX1 gene often correlates with the disease severity and poor prognosis.
Collapse
Affiliation(s)
- Irina A Eliseeva
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | | | - Egor A Smolin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia
| | - Dmitry N Lyabin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
40
|
Hudson N, Campbell M. Tight Junctions of the Neurovascular Unit. Front Mol Neurosci 2021; 14:752781. [PMID: 34867185 PMCID: PMC8640090 DOI: 10.3389/fnmol.2021.752781] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The homeostatic balance of the brain and retina is maintained by the presence of the blood-brain and inner blood-retinal barrier (BBB/iBRB, respectively) which are highly specialized barriers. Endothelial cells forming the lining of these blood vessels are interconnected by the presence of tight junctions which form the BBB and iBRB. These tight junctions, formed of numerous interacting proteins, enable the entry of molecules into neural tissues while restricting the entry of harmful material such as anaphylatoxins, bacteria and viruses. If the tight junction complex becomes dysregulated due to changes in expression levels of one or more of the components, this can have detrimental effects leading to brain and retinal pathology.
Collapse
Affiliation(s)
- Natalie Hudson
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, Ireland
| | - Matthew Campbell
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, Ireland
| |
Collapse
|
41
|
Kuo WT, Zuo L, Odenwald MA, Madha S, Singh G, Gurniak CB, Abraham C, Turner JR. The Tight Junction Protein ZO-1 Is Dispensable for Barrier Function but Critical for Effective Mucosal Repair. Gastroenterology 2021; 161:1924-1939. [PMID: 34478742 PMCID: PMC8605999 DOI: 10.1053/j.gastro.2021.08.047] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUNDS & AIMS Increased permeability is implicated in the pathogenesis of intestinal disease. In vitro and in vivo studies have linked down-regulation of the scaffolding protein ZO-1, encoded by the TJP1 gene, to increased tight junction permeability. This has not, however, been tested in vivo. Here, we assessed the contributions of ZO-1 to in vivo epithelial barrier function and mucosal homeostasis. METHODS Public Gene Expression Omnibus data sets and biopsy specimens from patients with inflammatory bowel disease (IBD) and healthy control individuals were analyzed. Tjp1f/f;vil-CreTg mice with intestinal epithelial-specific ZO-1 knockout (ZO-1KO.IEC) mice and Tjp1f/f mice littermates without Cre expression were studied using chemical and immune-mediated models of disease as well as colonic stem cell cultures. RESULTS ZO-1 transcript and protein expression were reduced in biopsy specimens from patients with IBD. Despite mildly increased intestinal permeability, ZO-1KO.IEC mice were healthy and did not develop spontaneous disease. ZO-1KO.IEC mice were, however, hypersensitive to mucosal insults and displayed defective repair. Furthermore, ZO-1-deficient colonic epithelia failed to up-regulate proliferation in response to damage in vivo or Wnt signaling in vitro. ZO-1 was associated with centrioles in interphase cells and mitotic spindle poles during division. In the absence of ZO-1, mitotic spindles failed to correctly orient, resulting in mitotic catastrophe and abortive proliferation. ZO-1 is, therefore, critical for up-regulation of epithelial proliferation and successful completion of mitosis. CONCLUSIONS ZO-1 makes critical, tight junction-independent contributions to Wnt signaling and mitotic spindle orientation. As a result, ZO-1 is essential for mucosal repair. We speculate that ZO-1 down-regulation may be one cause of ineffective mucosal healing in patients with IBD.
Collapse
Affiliation(s)
- Wei-Ting Kuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Li Zuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Anhui Medical University, Hefei, Anhui, China
| | | | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gurminder Singh
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Pathology, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
42
|
Mccole DF. ZOning in on Novel Roles for Zonula Occludens Proteins in Epithelial Repair. Gastroenterology 2021; 161:1797-1800. [PMID: 34582898 DOI: 10.1053/j.gastro.2021.09.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022]
Affiliation(s)
- Declan F Mccole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California.
| |
Collapse
|
43
|
Czubak-Prowizor K, Babinska A, Swiatkowska M. The F11 Receptor (F11R)/Junctional Adhesion Molecule-A (JAM-A) (F11R/JAM-A) in cancer progression. Mol Cell Biochem 2021; 477:79-98. [PMID: 34533648 PMCID: PMC8755661 DOI: 10.1007/s11010-021-04259-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022]
Abstract
The F11 Receptor (F11R), also called Junctional Adhesion Molecule-A (JAM-A) (F11R/JAM-A), is a transmembrane glycoprotein of the immunoglobulin superfamily, which is mainly located in epithelial and endothelial cell tight junctions and also expressed on circulating platelets and leukocytes. It participates in the regulation of various biological processes, as diverse as paracellular permeability, tight junction formation and maintenance, leukocyte transendothelial migration, epithelial-to-mesenchymal transition, angiogenesis, reovirus binding, and platelet activation. Dysregulation of F11R/JAM-A may result in pathological consequences and disorders in normal cell function. A growing body of evidence points to its role in carcinogenesis and invasiveness, but its tissue-specific pro- or anti-tumorigenic role remains a debated issue. The following review focuses on the F11R/JAM-A tissue-dependent manner in tumorigenesis and metastasis and also discusses the correlation between poor patient clinical outcomes and its aberrant expression. In the future, it will be required to clarify the signaling pathways that are activated or suppressed via the F11R/JAM-A protein in various cancer types to understand its multiple roles in cancer progression and further use it as a novel direct target for cancer treatment.
Collapse
Affiliation(s)
- Kamila Czubak-Prowizor
- Department of Cytobiology and Proteomics, Medical University of Lodz, 6/8 Mazowiecka St., 92-215, Lodz, Poland.
| | - Anna Babinska
- Department of Medicine, State University of New York Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, 11203, USA
| | - Maria Swiatkowska
- Department of Cytobiology and Proteomics, Medical University of Lodz, 6/8 Mazowiecka St., 92-215, Lodz, Poland
| |
Collapse
|
44
|
Crude protein and lactose effects on performance, intestinal and immune function of piglets fed diets without antimicrobials growth promoters. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Arras W, Vercammen H, Ní Dhubhghaill S, Koppen C, Van den Bogerd B. Proliferation Increasing Genetic Engineering in Human Corneal Endothelial Cells: A Literature Review. Front Med (Lausanne) 2021; 8:688223. [PMID: 34268324 PMCID: PMC8275833 DOI: 10.3389/fmed.2021.688223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
The corneal endothelium is the inner layer of the cornea. Despite comprising only a monolayer of cells, dysfunction of this layer renders millions of people visually impaired worldwide. Currently, corneal endothelial transplantation is the only viable means of restoring vision for these patients. However, because the supply of corneal endothelial grafts does not meet the demand, many patients remain on waiting lists, or are not treated at all. Possible alternative treatment strategies include intracameral injection of human corneal endothelial cells (HCEnCs), biomedical engineering of endothelial grafts and increasing the HCEnC density on grafts that would otherwise have been unsuitable for transplantation. Unfortunately, the limited proliferative capacity of HCEnCs proves to be a major bottleneck to make these alternatives beneficial. To tackle this constraint, proliferation enhancing genetic engineering is being investigated. This review presents the diverse array of genes that have been targeted by different genetic engineering strategies to increase the proliferative capacity of HCEnCs and their relevance for clinical and research applications. Together these proliferation-related genes form the basis to obtain a stable and safe supply of HCEnCs that can tackle the corneal endothelial donor shortage.
Collapse
Affiliation(s)
- Wout Arras
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Hendrik Vercammen
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sorcha Ní Dhubhghaill
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium.,Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, Netherlands
| | - Carina Koppen
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Bert Van den Bogerd
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
46
|
Abstract
Mechanical forces have emerged as essential regulators of cell organization, proliferation, migration, and polarity to regulate cellular and tissue homeostasis. Changes in forces or loss of the cellular response to them can result in abnormal embryonic development and diseases. Over the past two decades, many efforts have been put in deciphering the molecular mechanisms that convert forces into biochemical signals, allowing for the identification of many mechanotransducer proteins. Here we discuss how PDZ proteins are emerging as new mechanotransducer proteins by altering their conformations or localizations upon force loads, leading to the formation of macromolecular modules tethering the cell membrane to the actin cytoskeleton.
Collapse
|
47
|
Sonoi R, Hagihara Y. Tight junction stabilization prevents HepaRG cell death in drug-induced intrahepatic cholestasis. Biol Open 2021; 10:269189. [PMID: 34151938 PMCID: PMC8272035 DOI: 10.1242/bio.058606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/18/2021] [Indexed: 01/11/2023] Open
Abstract
Entacapone (ENT), a catechol-O-methyltransferase inhibitor, causes liver injury by inducing bile canaliculi (BC) dilation through inhibition of the myosin light kinase pathway. Loss of tight junctions (TJs) induces hepatocyte depolarization, which causes bile secretory failure, leading to liver damage. To understand the influence of TJ structural changes as a consequence of BC dynamics, we compared the datasets of time-lapse and immunofluorescence images for TJ protein ZO-1 in hepatocytes cultured with ENT, forskolin (FOR), ENT/FOR, and those cultured without any drugs. Retrospective analysis revealed that the drastic change in BC behaviors caused TJ disruption and apoptosis in cells cultured with ENT. Exposure to FOR or sodium taurocholate facilitated TJ formation in the cells cultured with ENT and suppressed BC dynamic changes, leading to the inhibition of TJ disruption and apoptosis. Our findings clarify that hepatocyte TJ stabilization protects against cell death induced by BC disruption.
Collapse
Affiliation(s)
- Rie Sonoi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
48
|
Jung B, Lee H, Kim S, Tchah H, Hwang C. Effect of Rho-Associated Kinase Inhibitor and Mesenchymal Stem Cell-Derived Conditioned Medium on Corneal Endothelial Cell Senescence and Proliferation. Cells 2021; 10:1463. [PMID: 34207965 PMCID: PMC8230597 DOI: 10.3390/cells10061463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022] Open
Abstract
This study aims to obtain sufficient corneal endothelial cells for regenerative application. We examined the combinatory effects of Rho-associated kinase (ROCK) inhibitor Y-27632 and mesenchymal stem cell-derived conditioned medium (MSC-CM) on the proliferation and senescence of rabbit corneal endothelial cells (rCECs). rCECs were cultured in a control medium, a control medium mixed with either Y-27632 or MSC-CM, and a combinatory medium containing Y-27632 and MSC-CM. Cells were analyzed for morphology, cell size, nuclei/cytoplasmic ratio, proliferation capacity and gene expression. rCECs cultured in a combinatory culture medium showed a higher passage number, cell proliferation, and low senescence. rCECs on collagen type I film showed high expression of tight junction. The cell proliferation marker Ki-67 was positively stained either in Y-27632 or MSC-CM-containing media. Genes related to cell proliferation resulted in negligible changes in MKI67, CIP2A, and PCNA in the combinatory medium, suggesting proliferative capacity was maintained. In contrast, all of these genes were significantly downregulated in the other groups. Senescence marker β-galactosidase-positive cells significantly decreased in either MSC-CM and/or Y-27632 mixed media. Senescence-related genes downregulated LMNB1 and MAP2K6, and upregulated MMP2. Cell cycle checkpoint genes such as CDC25C, CDCA2, and CIP2A did not vary in the combinatory medium but were significantly downregulated in either ROCK inhibitor or MSC-CM alone. These results imply the synergistic effect of combinatory culture medium on corneal endothelial cell proliferation and high cell number. This study supports high potential for translation to the development of human corneal endothelial tissue regeneration.
Collapse
Affiliation(s)
- Boyoung Jung
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
| | - Hun Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Department of Ophthalmology, Asan Medical Center, Seoul 05505, Korea
| | - Sumi Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
| | - Hungwon Tchah
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Department of Ophthalmology, Asan Medical Center, Seoul 05505, Korea
| | - Changmo Hwang
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
| |
Collapse
|
49
|
Shepley-McTaggart A, Sagum CA, Oliva I, Rybakovsky E, DiGuilio K, Liang J, Bedford MT, Cassel J, Sudol M, Mullin JM, Harty RN. SARS-CoV-2 Envelope (E) protein interacts with PDZ-domain-2 of host tight junction protein ZO1. PLoS One 2021; 16:e0251955. [PMID: 34106957 PMCID: PMC8189464 DOI: 10.1371/journal.pone.0251955] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
Newly emerged SARS-CoV-2 is the cause of an ongoing global pandemic leading to severe respiratory disease in humans. SARS-CoV-2 targets epithelial cells in the respiratory tract and lungs, which can lead to amplified chloride secretion and increased leak across epithelial barriers, contributing to severe pneumonia and consolidation of the lungs as seen in many COVID-19 patients. There is an urgent need for a better understanding of the molecular aspects that contribute to SARS-CoV-2-induced pathogenesis and for the development of approaches to mitigate these damaging pathologies. The multifunctional SARS-CoV-2 Envelope (E) protein contributes to virus assembly/egress, and as a membrane protein, also possesses viroporin channel properties that may contribute to epithelial barrier damage, pathogenesis, and disease severity. The extreme C-terminal (ECT) sequence of E also contains a putative PDZ-domain binding motif (PBM), similar to that identified in the E protein of SARS-CoV-1. Here, we screened an array of GST-PDZ domain fusion proteins using either a biotin-labeled WT or mutant ECT peptide from the SARS-CoV-2 E protein. Notably, we identified a singular specific interaction between the WT E peptide and the second PDZ domain of human Zona Occludens-1 (ZO1), one of the key regulators of TJ formation/integrity in all epithelial tissues. We used homogenous time resolve fluorescence (HTRF) as a second complementary approach to further validate this novel modular E-ZO1 interaction. We postulate that SARS-CoV-2 E interacts with ZO1 in infected epithelial cells, and this interaction may contribute, in part, to tight junction damage and epithelial barrier compromise in these cell layers leading to enhanced virus spread and severe dysfunction that leads to morbidity. Prophylactic/therapeutic intervention targeting this virus-host interaction may effectively reduce airway and/or gastrointestinal barrier damage and mitigate virus spread.
Collapse
Affiliation(s)
- Ariel Shepley-McTaggart
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cari A. Sagum
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, Texas, United States of America
| | - Isabela Oliva
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth Rybakovsky
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Katie DiGuilio
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Jingjing Liang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, Texas, United States of America
| | - Joel Cassel
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Marius Sudol
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - James M. Mullin
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Ronald N. Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
50
|
Park SY, Jang H, Kim SY, Kim D, Park Y, Kee SH. Expression of E-Cadherin in Epithelial Cancer Cells Increases Cell Motility and Directionality through the Localization of ZO-1 during Collective Cell Migration. Bioengineering (Basel) 2021; 8:bioengineering8050065. [PMID: 34064908 PMCID: PMC8151941 DOI: 10.3390/bioengineering8050065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/01/2023] Open
Abstract
Collective cell migration of epithelial tumor cells is one of the important factors for elucidating cancer metastasis and developing novel drugs for cancer treatment. Especially, new roles of E-cadherin in cancer migration and metastasis, beyond the epithelial–mesenchymal transition, have recently been unveiled. Here, we quantitatively examined cell motility using micropatterned free edge migration model with E-cadherin re-expressing EC96 cells derived from adenocarcinoma gastric (AGS) cell line. EC96 cells showed increased migration features such as the expansion of cell islands and straightforward movement compared to AGS cells. The function of tight junction proteins known to E-cadherin expression were evaluated for cell migration by knockdown using sh-RNA. Cell migration and straight movement of EC96 cells were reduced by knockdown of ZO-1 and claudin-7, to a lesser degree. Analysis of the migratory activity of boundary cells and inner cells shows that EC96 cell migration was primarily conducted by boundary cells, similar to leader cells in collective migration. Immunofluorescence analysis showed that tight junctions (TJs) of EC96 cells might play important roles in intracellular communication among boundary cells. ZO-1 is localized to the base of protruding lamellipodia and cell contact sites at the rear of cells, indicating that ZO-1 might be important for the interaction between traction and tensile forces. Overall, dynamic regulation of E-cadherin expression and localization by interaction with ZO-1 protein is one of the targets for elucidating the mechanism of collective migration of cancer metastasis.
Collapse
Affiliation(s)
- Song-Yi Park
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea; (S.-Y.P.); (S.-Y.K.); (D.K.)
| | - Hwanseok Jang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; or
| | - Seon-Young Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea; (S.-Y.P.); (S.-Y.K.); (D.K.)
| | - Dasarang Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea; (S.-Y.P.); (S.-Y.K.); (D.K.)
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; or
- Correspondence: (Y.P.); (S.-H.K.); Tel.: +82-2-2286-1460 (Y.P.); +82-2-2286-1165 (S.-H.K.)
| | - Sun-Ho Kee
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea; (S.-Y.P.); (S.-Y.K.); (D.K.)
- Correspondence: (Y.P.); (S.-H.K.); Tel.: +82-2-2286-1460 (Y.P.); +82-2-2286-1165 (S.-H.K.)
| |
Collapse
|