1
|
Nair A, Khanna J, Kler J, Ragesh R, Sengupta K. Nuclear envelope and chromatin choreography direct cellular differentiation. Nucleus 2025; 16:2449520. [PMID: 39943681 PMCID: PMC11834525 DOI: 10.1080/19491034.2024.2449520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025] Open
Abstract
The nuclear envelope plays an indispensable role in the spatiotemporal organization of chromatin and transcriptional regulation during the intricate process of cell differentiation. This review outlines the distinct regulatory networks between nuclear envelope proteins, transcription factors and epigenetic modifications in controlling the expression of cell lineage-specific genes during differentiation. Nuclear lamina with its associated nuclear envelope proteins organize heterochromatin via Lamina-Associated Domains (LADs), proximal to the nuclear periphery. Since nuclear lamina is mechanosensitive, we critically examine the impact of extracellular forces on differentiation outcomes. The nuclear envelope is spanned by nuclear pore complexes which, in addition to their central role in transport, are associated with chromatin organization. Furthermore, mutations in the nuclear envelope proteins disrupt differentiation, resulting in developmental disorders. Investigating the underlying nuclear envelope controlled regulatory mechanisms of chromatin remodelling during lineage commitment will accelerate our fundamental understanding of developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Anjitha Nair
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Jayati Khanna
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Jashan Kler
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Rohith Ragesh
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| |
Collapse
|
2
|
Krings KS, Ritchie A, Schmitt L, Hatzfeld J, Totzke G, Lenz T, Mendiburo MJ, Stork B, Teusch N, Proksch P, Stühler K, Müller L, Wesselborg S. The Polybrominated Diphenyl Ether Bromoxib Disrupts Nuclear Import and Export by Affecting Nucleoporins of the Nuclear Pore Complex. Mar Drugs 2025; 23:108. [PMID: 40137294 DOI: 10.3390/md23030108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are natural products with potent antimicrobial and antineoplastic activity. We have previously shown that the polybrominated diphenyl ether bromoxib (4,5,6-tribromo-2-(2',4'-dibromophenoxy) phenol), isolated from the marine sponge Dysidea species, exhibits a strong cytotoxic potential in leukemia and lymphoma cells by targeting mitochondrial metabolism. Here, using a mass spectrometric thermal proteome profiling (TPP) approach, we observed that bromoxib induces a rapid reduction in the levels of 19 nucleoporins (NUPs) that are part of the nuclear pore complex (NPC). This apparently affected the functionality of the NPC, as evidenced by the bromoxib-mediated inhibition of the nuclear translocation and subsequent gene reporter activity of transcription factors such as nuclear factor of activated T cells (NFAT) and nuclear factor κB (NF-κB). In addition, bromoxib inhibited the nuclear export of the mRNA of the human immunodeficiency virus transactivator of transcription (HIV-Tat) and the subsequent import of the HIV-Tat protein into the nucleus as determined by the decrease in Tat-dependent gene reporter luciferase activity. Inhibition of nuclear mRNA-export also affected expression of the short-lived anti-apoptotic Bcl-2 protein Mcl-1, which has been shown to induce apoptosis. Thus, its ability to target both mitochondrial metabolism and the NPC renders bromoxib a promising anticancer agent.
Collapse
Affiliation(s)
- Karina S Krings
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Anastasia Ritchie
- Institute of Virology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Laura Schmitt
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Judith Hatzfeld
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Gudrun Totzke
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Thomas Lenz
- Molecular Proteomics Laboratory, Biological-Medical-Research Center (BMFZ), Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - María José Mendiburo
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Björn Stork
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Nicole Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological-Medical-Research Center (BMFZ), Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Sebastian Wesselborg
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), 40225 Duesseldorf, Germany
| |
Collapse
|
3
|
Kamel D, Sookdeo A, Ikenouchi A, Zhong H. Fission yeast essential nuclear pore protein Nup211 regulates the expression of genes involved in cytokinesis. PLoS One 2024; 19:e0312095. [PMID: 39666777 PMCID: PMC11637317 DOI: 10.1371/journal.pone.0312095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/01/2024] [Indexed: 12/14/2024] Open
Abstract
Nuclear pore proteins control nucleocytoplasmic transport; however, certain nucleoporins play regulatory roles in activities such as transcription and chromatin organization. The fission yeast basket nucleoporin Nup211 is implicated in mRNA export and is essential for cell viability. Nup211 preferentially associates with heterochromatin, however, it is unclear whether it plays a role in regulating transcription. To better understand its functions, we constructed a nup211 "shut-off" strain and observed that Nup211 depletion led to severe defects in cell cycle progression, including septation and cytokinesis. Using RNA-Seq and RT-qPCR, we revealed that loss of Nup211 significantly altered the mRNA levels of a set of genes crucial for cell division. Using domain analysis and CRISPR/cas9 technology, we determined that the first 655 residues of Nup211 are sufficient for viability. This truncated protein was detected at the nuclear periphery. Furthermore, exogenous expression of this domain in nup211 shut-off cells effectively restored both cell morphology and transcript abundance for some selected genes. Our findings unveil a novel role for Nup211 in regulating gene expression.
Collapse
Affiliation(s)
- Domenick Kamel
- Department of Biological Sciences, Hunter College, The City University of New York, New York, NY, United States of America
- The Graduate Center, The City University of New York, New York, NY, United States of America
| | - Ayisha Sookdeo
- The Graduate Center, The City University of New York, New York, NY, United States of America
- Department of Science and Mathematics, Guttman Community College, The City University of New York, New York, NY, United States of America
| | - Ayana Ikenouchi
- Department of Biological Sciences, Hunter College, The City University of New York, New York, NY, United States of America
| | - Hualin Zhong
- Department of Biological Sciences, Hunter College, The City University of New York, New York, NY, United States of America
- The Graduate Center, The City University of New York, New York, NY, United States of America
| |
Collapse
|
4
|
Kono Y, Shimi T. Crosstalk between mitotic reassembly and repair of the nuclear envelope. Nucleus 2024; 15:2352203. [PMID: 38780365 PMCID: PMC11123513 DOI: 10.1080/19491034.2024.2352203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
In eukaryotic cells, the nuclear envelope (NE) is a membrane partition between the nucleus and the cytoplasm to compartmentalize nuclear contents. It plays an important role in facilitating nuclear functions including transcription, DNA replication and repair. In mammalian cells, the NE breaks down and then reforms during cell division, and in interphase it is restored shortly after the NE rupture induced by mechanical force. In this way, the partitioning effect is regulated through dynamic processes throughout the cell cycle. A failure in rebuilding the NE structure triggers the mixing of nuclear and cytoplasmic contents, leading to catastrophic consequences for the nuclear functions. Whereas the precise details of molecular mechanisms for NE reformation during cell division and NE restoration in interphase are still being investigated, here, we mostly focus on mammalian cells to describe key aspects that have been identified and to discuss the crosstalk between them.
Collapse
Affiliation(s)
- Yohei Kono
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeshi Shimi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
5
|
Srivastava LK, Ehrlicher AJ. Sensing the squeeze: nuclear mechanotransduction in health and disease. Nucleus 2024; 15:2374854. [PMID: 38951951 PMCID: PMC11221475 DOI: 10.1080/19491034.2024.2374854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
The nucleus not only is a repository for DNA but also a center of cellular and nuclear mechanotransduction. From nuclear deformation to the interplay between mechanosensing components and genetic control, the nucleus is poised at the nexus of mechanical forces and cellular function. Understanding the stresses acting on the nucleus, its mechanical properties, and their effects on gene expression is therefore crucial to appreciate its mechanosensitive function. In this review, we examine many elements of nuclear mechanotransduction, and discuss the repercussions on the health of cells and states of illness. By describing the processes that underlie nuclear mechanosensation and analyzing its effects on gene regulation, the review endeavors to open new avenues for studying nuclear mechanics in physiology and diseases.
Collapse
Affiliation(s)
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Centre for Structural Biology, McGill University, Montreal, Canada
- Department of Mechanical Engineering, McGill University, Montreal, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| |
Collapse
|
6
|
Otto TA, Bergsma T, Dekker M, Mouton SN, Gallardo P, Wolters JC, Steen A, Onck PR, Veenhoff LM. Nucleoporin Nsp1 surveils the phase state of FG-Nups. Cell Rep 2024; 43:114793. [PMID: 39356635 DOI: 10.1016/j.celrep.2024.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024] Open
Abstract
Transport through the nuclear pore complex (NPC) relies on intrinsically disordered FG-nucleoporins (FG-Nups) forming a selective barrier. Away from the NPC, FG-Nups readily form condensates and aggregates, and we address how this behavior is surveilled in cells. FG-Nups, including Nsp1, together with the nuclear transport receptor Kap95, form a native daughter cell-specific cytosolic condensate in yeast. In aged cells, this condensate disappears as cytosolic Nsp1 levels decline. Biochemical assays and modeling show that Nsp1 is a modulator of FG-Nup condensates, promoting a liquid-like state. Nsp1's presence in the cytosol and condensates is critical, as a reduction of cytosolic levels in young cells induces NPC defects and a general decline in protein quality control that quantitatively mimics aging phenotypes. These phenotypes can be rescued by a cytosolic form of Nsp1. We conclude that Nsp1 is a phase state regulator that surveils FG-Nups and impacts general protein homeostasis.
Collapse
Affiliation(s)
- Tegan A Otto
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713AV Groningen, the Netherlands
| | - Tessa Bergsma
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713AV Groningen, the Netherlands
| | - Maurice Dekker
- Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands
| | - Sara N Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713AV Groningen, the Netherlands
| | - Paola Gallardo
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713AV Groningen, the Netherlands
| | - Justina C Wolters
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, 9713AV Groningen, the Netherlands
| | - Anton Steen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713AV Groningen, the Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713AV Groningen, the Netherlands.
| |
Collapse
|
7
|
Ewerling A, May-Simera HL. Evolutionary trajectory for nuclear functions of ciliary transport complex proteins. Microbiol Mol Biol Rev 2024; 88:e0000624. [PMID: 38995044 PMCID: PMC11426024 DOI: 10.1128/mmbr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and vice versa. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.
Collapse
Affiliation(s)
- Alexander Ewerling
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
8
|
Chen S, Jiang Q, Fan J, Cheng H. Nuclear mRNA export. Acta Biochim Biophys Sin (Shanghai) 2024; 57:84-100. [PMID: 39243141 PMCID: PMC11802349 DOI: 10.3724/abbs.2024145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 09/09/2024] Open
Abstract
In eukaryotic cells, gene expression begins with transcription in the nucleus, followed by the maturation of messenger RNAs (mRNAs). These mRNA molecules are then exported to the cytoplasm through the nuclear pore complex (NPC), a process that serves as a critical regulatory phase of gene expression. The export of mRNA is intricately linked to precursor mRNA (pre-mRNA) processing, ensuring that only properly processed mRNA reaches the cytoplasm. This coordination is essential, as recent studies have revealed that mRNA export factors not only assist in transport but also influence upstream processing steps, adding a layer of complexity to gene regulation. Furthermore, the export process competes with RNA processing and degradation pathways, maintaining a delicate balance vital for accurate gene expression. While these mechanisms are generally conserved across eukaryotes, significant differences exist between yeast and higher eukaryotic cells, particularly due to the more genome complexity of the latter. This review delves into the current research on mRNA export in higher eukaryotic cells, focusing on its role in the broader context of gene expression regulation and highlighting how it interacts with other gene expression processes to ensure precise and efficient gene functionality in complex organisms.
Collapse
Affiliation(s)
- Suli Chen
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Qingyi Jiang
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jing Fan
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- The Key Laboratory of Developmental Genes and Human DiseaseSchool of Life Science and TechnologySoutheast UniversityNanjing210096China
| | - Hong Cheng
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| |
Collapse
|
9
|
Kose S, Yoshioka S, Ogawa Y, Watanabe A, Imamoto N. The interaction between the import carrier Hikeshi and HSP70 is modulated by heat, facilitating the nuclear import of HSP70 under heat stress conditions. Genes Cells 2024; 29:782-791. [PMID: 38987995 DOI: 10.1111/gtc.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Heat stress strongly triggers the nuclear localization of the molecular chaperone HSP70. Hikeshi functions as a unique nuclear import carrier of HSP70. However, how the nuclear import of HSP70 is activated in response to heat stress remains unclear. Here, we investigated the effects of heat on the nuclear import of HSP70. In vitro transport assays revealed that pretreatment of the test samples with heat facilitated the nuclear import of HSP70. Furthermore, binding of Hikeshi to HSP70 increased when temperatures rose. These results indicated that heat is one of the factors that activates the nuclear import of HSP70. Previous studies showed that the F97A mutation in Hikeshi in an extended loop induced an opening in the hydrophobic pocket and facilitated the translocation of Hikeshi through the nuclear pore complex. We found that nuclear accumulation of HSP70 occurred at a lower temperature in cells expressing the Hikeshi-F97A mutant than in cells expressing wild-type Hikeshi. Collectively, our results show that the movement of the extended loop may play an important role in the interaction of Hikeshi with both FG (phenylalanine-glycine)-nucleoporins and HSP70 in a temperature-dependent manner, resulting in the activation of nuclear import of HSP70 in response to heat stress.
Collapse
Affiliation(s)
- Shingo Kose
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Sakie Yoshioka
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yutaka Ogawa
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Ai Watanabe
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
- Jikei University of Health Care Sciences, Graduate School of Medical Safety Management, Osaka, Japan
| |
Collapse
|
10
|
La Torre M, Burla R, Saggio I. Preserving Genome Integrity: Unveiling the Roles of ESCRT Machinery. Cells 2024; 13:1307. [PMID: 39120335 PMCID: PMC11311930 DOI: 10.3390/cells13151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the action site, involve the repair and fusion of membrane edges. In this review, we report on the data related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a significant role for the protection of genome integrity by contributing to the control of the abscission checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver of pathologies, such as laminopathies and cancer.
Collapse
Affiliation(s)
- Mattia La Torre
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| |
Collapse
|
11
|
Ramazi S, Dadzadi M, Darvazi M, Seddigh N, Allahverdi A. Protein modification in neurodegenerative diseases. MedComm (Beijing) 2024; 5:e674. [PMID: 39105197 PMCID: PMC11298556 DOI: 10.1002/mco2.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Posttranslational modifications play a crucial role in governing cellular functions and protein behavior. Researchers have implicated dysregulated posttranslational modifications in protein misfolding, which results in cytotoxicity, particularly in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease. These aberrant posttranslational modifications cause proteins to gather in certain parts of the brain that are linked to the development of the diseases. This leads to neuronal dysfunction and the start of neurodegenerative disease symptoms. Cognitive decline and neurological impairments commonly manifest in neurodegenerative disease patients, underscoring the urgency of comprehending the posttranslational modifications' impact on protein function for targeted therapeutic interventions. This review elucidates the critical link between neurodegenerative diseases and specific posttranslational modifications, focusing on Tau, APP, α-synuclein, Huntingtin protein, Parkin, DJ-1, and Drp1. By delineating the prominent aberrant posttranslational modifications within Alzheimer disease, Parkinson disease, and Huntington disease, the review underscores the significance of understanding the interplay among these modifications. Emphasizing 10 key abnormal posttranslational modifications, this study aims to provide a comprehensive framework for investigating neurodegenerative diseases holistically. The insights presented herein shed light on potential therapeutic avenues aimed at modulating posttranslational modifications to mitigate protein aggregation and retard neurodegenerative disease progression.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mona Darvazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Nasrin Seddigh
- Department of BiochemistryFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
12
|
Choi YJ, Min YK, Lee ST, Choi JR, Shin S. NUP214 Rearrangements in Leukemia Patients: A Case Series From a Single Institution. Ann Lab Med 2024; 44:335-342. [PMID: 38145892 PMCID: PMC10961622 DOI: 10.3343/alm.2023.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/16/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023] Open
Abstract
Background The three best-known NUP214 rearrangements found in leukemia (SET:: NUP214, NUP214::ABL1, and DEK::NUP214) are associated with treatment resistance and poor prognosis. Mouse experiments have shown that NUP214 rearrangements alone are insufficient for leukemogenesis; therefore, the identification of concurrent mutations is important for accurate assessment and tailored patient management. Here, we characterized the demographic characteristics and concurrent mutations in patients harboring NUP214 rearrangements. Methods To identify patients with NUP214 rearrangements, RNA-sequencing results of diagnostic bone marrow aspirates were retrospectively studied. Concurrent targeted next-generation sequencing results, patient demographics, karyotypes, and flow cytometry information were also reviewed. Results In total, 11 patients harboring NUP214 rearrangements were identified, among whom four had SET::NUP214, three had DEK::NUP214, and four had NUP214::ABL1. All DEK::NUP214-positive patients were diagnosed as having AML. In patients carrying SET::NUP214 and NUP214::ABL1, T-lymphoblastic leukemia was the most common diagnosis (50%, 4/8). Concurrent gene mutations were found in all cases. PFH6 mutations were the most common (45.5%, 5/11), followed by WT1 (27.3%, 3/11), NOTCH1 (27.3%, 3/11), FLT3-internal tandem duplication (27.3%, 3/11), NRAS (18.2%, 2/11), and EZH2 (18.2%, 2/11) mutations. Two patients represented the second and third reported cases of NUP214::ABL1-positive AML. Conclusions We examined the characteristics and concurrent test results, including gene mutations, of 11 leukemia patients with NUP214 rearrangement. We hope that the elucidation of the context in which they occurred will aid future research on tailored monitoring and treatment.
Collapse
Affiliation(s)
- Yu Jeong Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young Kyu Min
- Department of Laboratory Medicine, Severance Hospital, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Bergeron JJM. Proteomics Impact on Cell Biology to Resolve Cell Structure and Function. Mol Cell Proteomics 2024; 23:100758. [PMID: 38574860 PMCID: PMC11070594 DOI: 10.1016/j.mcpro.2024.100758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
The acceleration of advances in proteomics has enabled integration with imaging at the EM and light microscopy levels, cryo-EM of protein structures, and artificial intelligence with proteins comprehensively and accurately resolved for cell structures at nanometer to subnanometer resolution. Proteomics continues to outpace experimentally based structural imaging, but their ultimate integration is a path toward the goal of a compendium of all proteins to understand mechanistically cell structure and function.
Collapse
Affiliation(s)
- John J M Bergeron
- Department of Medicine, McGill University Hospital Research Institute, Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Ito N, Sakamoto T, Oko Y, Sato H, Hanamata S, Sakamoto Y, Matsunaga S. Nuclear pore complex proteins are involved in centromere distribution. iScience 2024; 27:108855. [PMID: 38318384 PMCID: PMC10839643 DOI: 10.1016/j.isci.2024.108855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/28/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
The subnuclear distribution of centromeres is cooperatively regulated by condensin II and the linker of nucleoskeleton and cytoskeleton (LINC) complex. However, other nuclear membrane structures and nuclear proteins are probably involved in centromere dynamics and distribution. Here, we focused on the nuclear pore complex (NPC), which is known to regulate gene expression, transcription memory, and chromatin structure in addition to transport between the cytoplasm and nucleoplasm. We report here that some nucleoporins (Nups), including Nup85, Nup133, CG1, Nup93b, and NUA, are involved in centromere scattering in Arabidopsis thaliana. In addition, the centromere dynamics after metaphase in nup mutants were found to be similar to that of the condensin II mutant. Furthermore, both biochemical and genetic approaches showed that the Nups interact with the LINC complex. These results suggest that Nups regulate centromere scattering cooperatively with condensin II and the LINC complex.
Collapse
Affiliation(s)
- Nanami Ito
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Takuya Sakamoto
- Department of Science, Faculty of Science, Kanagawa University, Yokohama, Kanagawa 221-8686, Japan
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuka Oko
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shigeru Hanamata
- Department of Science, Faculty of Science, Kanagawa University, Yokohama, Kanagawa 221-8686, Japan
| | - Yuki Sakamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sachihiro Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
15
|
Qiu Y, Sajidah ES, Kondo S, Narimatsu S, Sandira MI, Higashiguchi Y, Nishide G, Taoka A, Hazawa M, Inaba Y, Inoue H, Matsushima A, Okada Y, Nakada M, Ando T, Lim K, Wong RW. An Efficient Method for Isolating and Purifying Nuclei from Mice Brain for Single-Molecule Imaging Using High-Speed Atomic Force Microscopy. Cells 2024; 13:279. [PMID: 38334671 PMCID: PMC10855070 DOI: 10.3390/cells13030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Nuclear pore complexes (NPCs) on the nuclear membrane surface have a crucial function in controlling the movement of small molecules and macromolecules between the cell nucleus and cytoplasm through their intricate core channel resembling a spiderweb with several layers. Currently, there are few methods available to accurately measure the dynamics of nuclear pores on the nuclear membranes at the nanoscale. The limitation of traditional optical imaging is due to diffraction, which prevents achieving the required resolution for observing a diverse array of organelles and proteins within cells. Super-resolution techniques have effectively addressed this constraint by enabling the observation of subcellular components on the nanoscale. Nevertheless, it is crucial to acknowledge that these methods often need the use of fixed samples. This also raises the question of how closely a static image represents the real intracellular dynamic system. High-speed atomic force microscopy (HS-AFM) is a unique technique used in the field of dynamic structural biology, enabling the study of individual molecules in motion close to their native states. Establishing a reliable and repeatable technique for imaging mammalian tissue at the nanoscale using HS-AFM remains challenging due to inadequate sample preparation. This study presents the rapid strainer microfiltration (RSM) protocol for directly preparing high-quality nuclei from the mouse brain. Subsequently, we promptly utilize HS-AFM real-time imaging and cinematography approaches to record the spatiotemporal of nuclear pore nano-dynamics from the mouse brain.
Collapse
Affiliation(s)
- Yujia Qiu
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (Y.Q.); (M.I.S.)
| | - Elma Sakinatus Sajidah
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan (M.H.); (T.A.)
| | - Sota Kondo
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (Y.Q.); (M.I.S.)
| | - Shinnosuke Narimatsu
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (Y.Q.); (M.I.S.)
| | - Muhammad Isman Sandira
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (Y.Q.); (M.I.S.)
| | - Yoshiki Higashiguchi
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (Y.Q.); (M.I.S.)
| | - Goro Nishide
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (Y.Q.); (M.I.S.)
| | - Azuma Taoka
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan (M.H.); (T.A.)
| | - Masaharu Hazawa
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan (M.H.); (T.A.)
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-8641, Japan
| | - Ayami Matsushima
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan (M.H.); (T.A.)
| | - Keesiang Lim
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan (M.H.); (T.A.)
| | - Richard W. Wong
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (Y.Q.); (M.I.S.)
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan (M.H.); (T.A.)
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
16
|
Yu W, Tingey M, Kelich JM, Li Y, Yu J, Junod SL, Jiang Z, Hansen I, Good N, Yang W. Exploring Cellular Gateways: Unraveling the Secrets of Disordered Proteins within Live Nuclear Pores. RESEARCH SQUARE 2024:rs.3.rs-3504130. [PMID: 38260360 PMCID: PMC10802689 DOI: 10.21203/rs.3.rs-3504130/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Understanding the spatial organization of nucleoporins (Nups) with intrinsically disordered domains within the nuclear pore complex (NPC) is crucial for deciphering eukaryotic nucleocytoplasmic transport. Leveraging high-speed 2D single-molecule tracking and virtual 3D super-resolution microscopy in live HeLa cells, we investigated the spatial distribution of all eleven phenylalanine-glycine (FG)-rich Nups within individual NPCs. Our study reveals a nuanced landscape of FG-Nup conformations and arrangements. Five FG-Nups are steadfastly anchored at the NPC scaffold, collectively shaping a central doughnut-shaped channel, while six others exhibit heightened flexibility, extending towards the cytoplasmic and nucleoplasmic regions. Intriguingly, Nup214 and Nup153 contribute to cap-like structures that dynamically alternate between open and closed states along the nucleocytoplasmic transport axis, impacting the cytoplasmic and nuclear sides, respectively. Furthermore, Nup98, concentrated at the scaffold region, extends throughout the entire NPC while overlapping with other FG-Nups. Together, these eleven FG-Nups compose a versatile, capped trichoid channel spanning approximately 270 nm across the nuclear envelope. This adaptable trichoid channel facilitates a spectrum of pathways for passive diffusion and facilitated nucleocytoplasmic transport. Our comprehensive mapping of FG-Nup organization within live NPCs offers a unifying mechanism accommodating multiple transport pathways, thereby advancing our understanding of cellular transport processes.
Collapse
Affiliation(s)
- Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Joseph M. Kelich
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yichen Li
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Jingjie Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Samuel L. Junod
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Zecheng Jiang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Ian Hansen
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Nacef Good
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Keuenhof KS, Kohler V, Broeskamp F, Panagaki D, Speese SD, Büttner S, Höög JL. Nuclear envelope budding and its cellular functions. Nucleus 2023; 14:2178184. [PMID: 36814098 PMCID: PMC9980700 DOI: 10.1080/19491034.2023.2178184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
The nuclear pore complex (NPC) has long been assumed to be the sole route across the nuclear envelope, and under normal homeostatic conditions it is indeed the main mechanism of nucleo-cytoplasmic transport. However, it has also been known that e.g. herpesviruses cross the nuclear envelope utilizing a pathway entitled nuclear egress or envelopment/de-envelopment. Despite this, a thread of observations suggests that mechanisms similar to viral egress may be transiently used also in healthy cells. It has since been proposed that mechanisms like nuclear envelope budding (NEB) can facilitate the transport of RNA granules, aggregated proteins, inner nuclear membrane proteins, and mis-assembled NPCs. Herein, we will summarize the known roles of NEB as a physiological and intrinsic cellular feature and highlight the many unanswered questions surrounding these intriguing nuclear events.
Collapse
Affiliation(s)
| | - Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Filomena Broeskamp
- Department for Chemistry and Molecular biology, University of Gothenburg, Sweden
| | - Dimitra Panagaki
- Department for Chemistry and Molecular biology, University of Gothenburg, Sweden
| | - Sean D. Speese
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, 2720 S Moody Ave, Portland, OR, 97201, USA
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Johanna L. Höög
- Department for Chemistry and Molecular biology, University of Gothenburg, Sweden
| |
Collapse
|
18
|
Malik SC, Lin JD, Ziegler-Waldkirch S, Tholen S, Deshpande SS, Schwabenland M, Schilling O, Vlachos A, Meyer-Luehmann M, Schachtrup C. Tpr Misregulation in Hippocampal Neural Stem Cells in Mouse Models of Alzheimer's Disease. Cells 2023; 12:2757. [PMID: 38067185 PMCID: PMC10706632 DOI: 10.3390/cells12232757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Nuclear pore complexes (NPCs) are highly dynamic macromolecular protein structures that facilitate molecular exchange across the nuclear envelope. Aberrant NPC functioning has been implicated in neurodegeneration. The translocated promoter region (Tpr) is a critical scaffolding nucleoporin (Nup) of the nuclear basket, facing the interior of the NPC. However, the role of Tpr in adult neural stem/precursor cells (NSPCs) in Alzheimer's disease (AD) is unknown. Using super-resolution (SR) and electron microscopy, we defined the different subcellular localizations of Tpr and phospho-Tpr (P-Tpr) in NSPCs in vitro and in vivo. Elevated Tpr expression and reduced P-Tpr nuclear localization accompany NSPC differentiation along the neurogenic lineage. In 5xFAD mice, an animal model of AD, increased Tpr expression in DCX+ hippocampal neuroblasts precedes increased neurogenesis at an early stage, before the onset of amyloid-β plaque formation. Whereas nuclear basket Tpr interacts with chromatin modifiers and NSPC-related transcription factors, P-Tpr interacts and co-localizes with cyclin-dependent kinase 1 (Cdk1) at the nuclear chromatin of NSPCs. In hippocampal NSPCs in a mouse model of AD, aberrant Tpr expression was correlated with altered NPC morphology and counts, and Tpr was aberrantly expressed in postmortem human brain samples from patients with AD. Thus, we propose that altered levels and subcellular localization of Tpr in CNS disease affect Tpr functionality, which in turn regulates the architecture and number of NSPC NPCs, possibly leading to aberrant neurogenesis.
Collapse
Affiliation(s)
- Subash C. Malik
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jia-Di Lin
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Stephanie Ziegler-Waldkirch
- Department of Neurology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.Z.-W.); (M.M.-L.)
| | - Stefan Tholen
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (S.T.); (O.S.)
| | - Sachin S. Deshpande
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marius Schwabenland
- Institute of Neuropathology, University of Freiburg, 79106 Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (S.T.); (O.S.)
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Center BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.Z.-W.); (M.M.-L.)
- Center for Basics in Neuromodulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Center for Basics in Neuromodulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
19
|
Ruiz-Babot G, Eceiza A, Abollo-Jiménez F, Malyukov M, Carlone DL, Borges K, Da Costa AR, Qarin S, Matsumoto T, Morizane R, Skarnes WC, Ludwig B, Chapple PJ, Guasti L, Storr HL, Bornstein SR, Breault DT. Generation of glucocorticoid-producing cells derived from human pluripotent stem cells. CELL REPORTS METHODS 2023; 3:100627. [PMID: 37924815 PMCID: PMC10694497 DOI: 10.1016/j.crmeth.2023.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
Adrenal insufficiency is a life-threatening condition resulting from the inability to produce adrenal hormones in a dose- and time-dependent manner. Establishing a cell-based therapy would provide a physiologically responsive approach for the treatment of this condition. We report the generation of large numbers of human-induced steroidogenic cells (hiSCs) from human pluripotent stem cells (hPSCs). Directed differentiation of hPSCs into hiSCs recapitulates the initial stages of human adrenal development. Following expression of steroidogenic factor 1, activation of protein kinase A signaling drives a steroidogenic gene expression profile most comparable to human fetal adrenal cells, and leads to dynamic secretion of steroid hormones, in vitro. Moreover, expression of the adrenocorticotrophic hormone (ACTH) receptor/co-receptor (MC2R/MRAP) results in dose-dependent ACTH responsiveness. This protocol recapitulates adrenal insufficiency resulting from loss-of-function mutations in AAAS, which cause the enigmatic triple A syndrome. Our differentiation protocol generates sufficient numbers of hiSCs for cell-based therapy and offers a platform to study disorders causing adrenal insufficiency.
Collapse
Affiliation(s)
- Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Medicine, University Hospital Carl Gustav Carus, Dresden, Germany.
| | - Ariane Eceiza
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | - Maria Malyukov
- Department of Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Kleiton Borges
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Alexandra Rodrigues Da Costa
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shamma Qarin
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge, UK
| | - Takuya Matsumoto
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA; Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Ryuji Morizane
- Harvard Stem Cell Institute, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA; Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | - William C Skarnes
- Cellular Engineering, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Barbara Ludwig
- Department of Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Paul J Chapple
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stefan R Bornstein
- Department of Medicine, University Hospital Carl Gustav Carus, Dresden, Germany; Division of Endocrinology, Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
20
|
Jühlen R, Fahrenkrog B. From the sideline: Tissue-specific nucleoporin function in health and disease, an update. FEBS Lett 2023; 597:2750-2768. [PMID: 37873737 DOI: 10.1002/1873-3468.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
The subcellular compartmentalisation of eukaryotic cells requires selective exchange between the cytoplasm and the nucleus. Intact nucleocytoplasmic transport is vital for normal cell function and mutations in the executing machinery have been causally linked to human disease. Central players in nucleocytoplasmic exchange are nuclear pore complexes (NPCs), which are built from ~30 distinct proteins collectively termed nucleoporins. Aberrant nucleoporin expression was detected in human cancers and autoimmune diseases since quite some time, while it was through the increasing use of next generation sequencing that mutations in nucleoporin genes associated with mainly rare hereditary diseases were revealed. The number of newly identified mutations is steadily increasing, as is the number of diseases. Mutational hotspots have emerged: mutations in the scaffold nucleoporins seemingly affect primarily inner organs, such as heart, kidney, and ovaries, whereas genetic alterations in peripheral, cytoplasmic nucleoporins affect primarily the central nervous system and development. In this review, we summarise latest insights on altered nucleoporin function in the context of human hereditary disorders, with a focus on those where mechanistic insights are beginning to emerge.
Collapse
Affiliation(s)
- Ramona Jühlen
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
21
|
Fahrenkrog B, Gasser SM. Structure and function of the nuclear envelope and nuclear pores. FEBS Lett 2023; 597:2703-2704. [PMID: 38013590 DOI: 10.1002/1873-3468.14769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Affiliation(s)
- Birthe Fahrenkrog
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland
| | - Susan M Gasser
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
- ISREC Foundation, Agora Cancer Research Center, Rue du Bugnon 25A, Lausanne, 1005, Switzerland
| |
Collapse
|
22
|
Minasbekyan LA, Badalyan HG. Physical model of the nuclear membrane permeability mechanism. Biophys Rev 2023; 15:1195-1207. [PMID: 37974978 PMCID: PMC10643749 DOI: 10.1007/s12551-023-01136-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
Nuclear cytoplasmic transport is mediated by many receptors that recognize specific nuclear localization signals on proteins and RNA and transport these substrates through nuclear pore complexes. Facilitated diffusion through nuclear pore complexes requires the attachment of transport receptors. Despite the relatively large tunnel diameter, some even small proteins (less than 20-30 kDa), such as histones, pass through the nuclear pore complex only with transport receptors. Over several decades, considerable material has been accumulated on the structure, architecture, and amino acid composition of the proteins included in this complex and the sequence of many receptors. We consider the data available in the literature on the structure of the nuclear pore complex and possible mechanisms of nuclear-cytoplasmic transport, applying the theory of electrostatic interactions in the context of our data on changes in the electrokinetic potential of nuclei and our previously proposed physical model of the mechanism of facilitated diffusion through the nuclear pore complex (NPC). According to our data, the main contribution to the charge of the nuclear membrane is made by anionic phospholipids, which are part of both the nuclear membrane and the nuclear matrix, which creates a potential difference between them. The nuclear membrane is a four-layer phospholipid dielectric, so the potential vector can only pass through the NPC, creating an electrostatic funnel that "pulls in" the positively charged load-NLS-NTR trigger complexes. Considering the newly obtained data, an improved model of the previously proposed physical model of the mechanism of nuclear-cytoplasmic transport is proposed. This model considers the contribution of electrostatic fields to the transportation speed when changing the membrane's thickness in the NPC basket at a higher load.
Collapse
Affiliation(s)
- Liya A. Minasbekyan
- Scientific Research Institute of Biology, Yerevan State University, A. Manoogian St., 1, 0025 Yerevan, Armenia
| | - Hamlet G. Badalyan
- Chair of General Physics, Yerevan State University, A. Manoogian St., 1, 0025 Yerevan, Armenia
| |
Collapse
|
23
|
Minasbekyan LA, Badalyan HG. Physical model of the nuclear membrane permeability mechanism. Biophys Rev 2023; 15:1195-1207. [DOI: https:/doi.org/10.1007/s12551-023-01136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 02/27/2024] Open
|
24
|
Brown JC. Backup transcription factor binding sites protect human genes from mutations in the promoter. PLoS One 2023; 18:e0281569. [PMID: 37651425 PMCID: PMC10470901 DOI: 10.1371/journal.pone.0281569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
This study was designed to test the idea that the regulatory regions of human genes have evolved to be resistant to the effects of mutations in their primary function, the control of gene expression. It is proposed that the transcription factor/transcription factor binding site (TF/TFBS) pair having the greatest effect on control of a gene is the one with the highest abundance among the regulatory elements. Other pairs would have the same effect on gene expression and would predominate in the event of a mutation in the most abundant pair. It is expected that the overall regulatory design proposed here will be highly resistant to mutagenic change that would otherwise affect expression of the gene. The idea was tested beginning with a database of 42 human genes highly specific for expression in brain. For each gene, the five most abundant TF/TFBS pairs were identified and compared in their TFBS occupancy as measured by their ChIP-seq signal. A similar signal was observed and interpreted as evidence that the TF/TFBS pairs can substitute for one another. TF/TFBS pairs were also compared in their ability to substitute for one another in their effect on the level of gene expression. The study of brain specific genes was complemented with the same analysis performed with 31 human liver specific genes. Like the study of brain genes, the liver results supported the view that TF/TFBS pairs in liver specific genes can substitute for one another in the event of mutagenic damage. Finally, the TFBSs in the brain specific and liver specific gene populations were compared with each other with the goal of identifying any brain selective or liver selective TFBSs. Of the 89 TFBSs in the pooled population, 58 were found only in brain specific but not liver specific genes, 8 only in liver specific but not brain specific genes and 23 were found in both brain and liver specific genes. The results were interpreted to emphasize the large number of TFBS in brain specific genes.
Collapse
Affiliation(s)
- Jay C. Brown
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| |
Collapse
|
25
|
Yu W, Rush C, Tingey M, Junod S, Yang W. Application of Super-resolution SPEED Microscopy in the Study of Cellular Dynamics. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:356-371. [PMID: 37501792 PMCID: PMC10369678 DOI: 10.1021/cbmi.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023]
Abstract
Super-resolution imaging techniques have broken the diffraction-limited resolution of light microscopy. However, acquiring three-dimensional (3D) super-resolution information about structures and dynamic processes in live cells at high speed remains challenging. Recently, the development of high-speed single-point edge-excitation subdiffraction (SPEED) microscopy, along with its 2D-to-3D transformation algorithm, provides a practical and effective approach to achieving 3D subdiffraction-limit information in subcellular structures and organelles with rotational symmetry. One of the major benefits of SPEED microscopy is that it does not rely on complex optical components and can be implemented on a standard, inverted epifluorescence microscope, simplifying the process of sample preparation and the expertise requirement. SPEED microscopy is specifically designed to obtain 2D spatial locations of individual immobile or moving fluorescent molecules inside submicrometer biological channels or cavities at high spatiotemporal resolution. The collected data are then subjected to postlocalization 2D-to-3D transformation to obtain 3D super-resolution structural and dynamic information. In recent years, SPEED microscopy has provided significant insights into nucleocytoplasmic transport across the nuclear pore complex (NPC) and cytoplasm-cilium trafficking through the ciliary transition zone. This Review focuses on the applications of SPEED microscopy in studying the structure and function of nuclear pores.
Collapse
Affiliation(s)
- Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Coby Rush
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Samuel Junod
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
26
|
Bitetto G, Lopez G, Ronchi D, Pittaro A, Melzi V, Peverelli E, Cribiù FM, Comi GP, Mantovani G, Di Fonzo A. SCARB1 downregulation in adrenal insufficiency with Allgrove syndrome. Orphanet J Rare Dis 2023; 18:152. [PMID: 37331934 DOI: 10.1186/s13023-023-02763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/04/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Allgrove disease is a rare genetic syndrome characterized by adrenal insufficiency, alacrimia, achalasia and complex neurological involvement. Allgrove disease is due to recessive mutations in the AAAS gene, which encodes for the nucleoporin Aladin, implicated in the nucleocytoplasmic transport. The adrenal insufficiency has been suggested to rely on adrenal gland-ACTH resistance. However, the link between the molecular pathology affecting the nucleoporin Aladin and the glucocorticoid deficiency is still unknown. RESULTS By analyzing postmortem patient's adrenal gland, we identified a downregulation of Aladin transcript and protein. We found a downregulation of Scavenger receptor class B-1 (SCARB1), a key component of the steroidogenic pathway, and SCARB1 regulatory miRNAs (mir125a, mir455) in patient's tissues. With the hypothesis of an impairment in the nucleocytoplasmic transport of the SCARB1 transcription enhancer cyclic AMP-dependent protein kinase (PKA), we detected a reduction of nuclear Phospho-PKA and a cytoplasmic mislocalization in patient's samples. CONCLUSIONS These results shed a light on the possible mechanisms linking ACTH resistance, SCARB1 impairment, and defective nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Giacomo Bitetto
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Gianluca Lopez
- Division of Pathology, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Dario Ronchi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessandra Pittaro
- Division of Pathology, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Valentina Melzi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Fulvia Milena Cribiù
- Division of Pathology, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giacomo P Comi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessio Di Fonzo
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
27
|
Udi Y, Zhang W, Stein ME, Ricardo-Lax I, Pasolli HA, Chait BT, Rout MP. A general method for quantitative fractionation of mammalian cells. J Cell Biol 2023; 222:213941. [PMID: 36920247 PMCID: PMC10040634 DOI: 10.1083/jcb.202209062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/11/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Subcellular fractionation in combination with mass spectrometry-based proteomics is a powerful tool to study localization of key proteins in health and disease. Here we offered a reliable and rapid method for mammalian cell fractionation, tuned for such proteomic analyses. This method proves readily applicable to different cell lines in which all the cellular contents are accounted for, while maintaining nuclear and nuclear envelope integrity. We demonstrated the method's utility by quantifying the effects of a nuclear export inhibitor on nucleoplasmic and cytoplasmic proteomes.
Collapse
Affiliation(s)
- Yael Udi
- Laboratory of Cellular and Structural Biology, The Rockefeller University , New York, NY, USA
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University , New York, NY, USA
| | - Milana E Stein
- Laboratory of Cellular and Structural Biology, The Rockefeller University , New York, NY, USA
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University , New York, NY, USA
| | - Hilda A Pasolli
- Electron Microscopy Resource Center, The Rockefeller University , New York, NY, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University , New York, NY, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University , New York, NY, USA
| |
Collapse
|
28
|
Nong JS, Zhou X, Liu JQ, Luo JZ, Huang JM, Xie HX, Yang KJ, Wang J, Ye XP, Peng T. Nucleoporin 107 is a prognostic biomarker in hepatocellular carcinoma associated with immune infiltration. Cancer Med 2023; 12:10990-11009. [PMID: 36952458 DOI: 10.1002/cam4.5807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/25/2023] Open
Abstract
OBJECTIVE To assess the diagnostic value and clinical significance of nucleoporin 107 (NUP107) in hepatocellular carcinoma (HCC), and explore the possible mechanisms. METHODS The transcriptomic and clinical data of HCC patients were retrieved from The Cancer Genome Atlas (TCGA) and GEO databases. Tissue specimens were collected from HCC patients in the Guangxi area. According to the expression levels and prognostic characteristics of NUP107, ROC curves and nomogram models were constructed using the R package. RESULTS NUP107 was highly expressed in 26 human cancers including HCC, and was associated with advanced HCC staging and worse prognosis. NUP107 showed satisfactory ability to predict the prognosis of HCC patients (AUC >0.8). Results of gene set enrichment analysis (GSEA) further showed that NUP107 was mainly associated with cell cycle-related pathways such as the cell cycle, DNA replication, G2M checkpoint, E2F target, and mitotic spindle. In addition, NUP107 was also associated with immune infiltration in HCC and showed significant positive correlation with immune checkpoints (PD-L1 and TIM-3).
Collapse
Affiliation(s)
- Ju-Sen Nong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - Jun-Qi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - Jian-Zhu Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - Jia-Mi Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - Hai-Xiang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - Ke-Jian Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - Jing Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - Xin-Ping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
29
|
Tai L, Yin G, Sun F, Zhu Y. Cryo-electron microscopy reveals the structure of the nuclear pore complex. J Mol Biol 2023; 435:168051. [PMID: 36933820 DOI: 10.1016/j.jmb.2023.168051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
The nuclear pore complex (NPC) is a giant protein assembly that penetrates the double layers of the nuclear membrane. The overall structure of the NPC has approximately eightfold symmetry and is formed by approximately 30 nucleoporins. The great size and complexity of the NPC have hindered the study of its structure for many years until recent breakthroughs were achieved by integrating the latest high-resolution cryo-electron microscopy (cryo-EM), the emerging artificial intelligence-based modeling and all other available structural information from crystallography and mass spectrometry. Here, we review our latest knowledge of the NPC architecture and the history of its structural study from in vitro to in situ with progressively improved resolutions by cryo-EM, with a particular focus on the latest subnanometer-resolution structural studies. The future directions for structural studies of NPCs are also discussed.
Collapse
Affiliation(s)
- Linhua Tai
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Yin
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong 510005, China.
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
30
|
Zhang B, Powers JD, McCulloch AD, Chi NC. Nuclear mechanosignaling in striated muscle diseases. Front Physiol 2023; 14:1126111. [PMID: 36960155 PMCID: PMC10027932 DOI: 10.3389/fphys.2023.1126111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Mechanosignaling describes processes by which biomechanical stimuli are transduced into cellular responses. External biophysical forces can be transmitted via structural protein networks that span from the cellular membrane to the cytoskeleton and the nucleus, where they can regulate gene expression through a series of biomechanical and/or biochemical mechanosensitive mechanisms, including chromatin remodeling, translocation of transcriptional regulators, and epigenetic factors. Striated muscle cells, including cardiac and skeletal muscle myocytes, utilize these nuclear mechanosignaling mechanisms to respond to changes in their intracellular and extracellular mechanical environment and mediate gene expression and cell remodeling. In this brief review, we highlight and discuss recent experimental work focused on the pathway of biomechanical stimulus propagation at the nucleus-cytoskeleton interface of striated muscles, and the mechanisms by which these pathways regulate gene regulation, muscle structure, and function. Furthermore, we discuss nuclear protein mutations that affect mechanosignaling function in human and animal models of cardiomyopathy. Furthermore, current open questions and future challenges in investigating striated muscle nuclear mechanosignaling are further discussed.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Joseph D. Powers
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA, United States
| | - Neil C. Chi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA, United States
- Department of Medicine, Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, United States
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
31
|
Yıldırım R, Unal E, Tekmenuray-Unal A, Taş FF, Özalkak Ş, Çayır A, Özbek MN. The clinical and laboratory features of patients with triple A syndrome: a single-center experience in Turkey. Endocrine 2023; 79:376-383. [PMID: 36194344 DOI: 10.1007/s12020-022-03206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/19/2022] [Indexed: 02/04/2023]
Abstract
AIM Triple-A Syndrome (TAS) is a rare autosomal recessive disorder characterized by adrenal insufficiency, achalasia, and alacrimia. This disorder is caused by mutations in the AAAS gene. The aim of this study is to discuss the clinical, laboratory and molecular genetic analysis results of 12 patients with TAS. METHOD We evaluated 12 patients from 8 families. Clinical and laboratory data were retrospectively collected from the medical records of the patients in the database for the period 2015-2020. All exons and exon-intron junctions of the AAAS gene were evaluated by next-generation sequencing method. Detected variants were classified according to American Collage of Medical Genetics criteria. RESULTS Alacrimia was found in all patients (100%); achalasia was found in 10 patients (83.3%) and adrenal insufficiency was found in 10 patients (83.3%). In addition, hyperreflexia(6/12), learning disability(5/12), hypernasal speech(5/12), muscle weakness(8/12), delayed walking(7/12), delayed speech(6/12), excessive sweating(7/12), optic atrophy(1/12), epilepsy(1/12), palmoplantar hyperkeratosis(5/12), multiple dental caries(9/12), atrophy of the thenar/hypothenar muscles(4/12) and short stature(4/12) were detected. The DHEA-S levels were measured in 10 patients and were found to be low in 8 of them. In all patients, the sodium and potassium levels were found to be normal. AAAS gene sequencing revealed four previously reported c.1066_1067del (p.Leu356fs*8), c.1432 C > T (p.Arg478*), c.688 C > T (p.Arg230*), and c.1368_1372del (p.Gln456fs*38) variants and two novel homozygous c.1250-1 G > A and c.398_399 + 2del variants in the AAAS gene. CONCLUSION We detected two novel variants in the AAAS gene. While the classic triad is present in 66.7% of the cases, neurological dysfunction, skin and dental pathologies also occur quite frequently. The earliest and most common finding of TAS is alacrimia. Therefore, adrenal insufficiency should be investigated in all patients with alacrimia and if necessary, genetic analysis should be performed for TAS. In addition, TAS should be followed up with a multidisciplinary approach since it involves many systems.
Collapse
Affiliation(s)
- Ruken Yıldırım
- Department of Pediatric Endocrinology, Diyarbakir Children's Hospital, Diyarbakır, Turkey.
| | - Edip Unal
- Faculty of Medicine, Department of Pediatric Endocrinology, Dicle University, Diyarbakır, Turkey
| | - Aysel Tekmenuray-Unal
- Department of Medical Genetics, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | - Funda Feryal Taş
- Department of Pediatric Endocrinology, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - Şervan Özalkak
- Department of Pediatric Endocrinology, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - Atilla Çayır
- Department of Pediatric Endocrinology, Health Sciences University, Erzurum Training and Research Hospital, Erzurum, Turkey
| | - Mehmet Nuri Özbek
- Faculty of Medicine, Department of Pediatric Endocrinology, Artuklu University, Mardin, Turkey
| |
Collapse
|
32
|
Diez L, Kapinos LE, Lim RYH, Wegmann S. Analysis of Tau/Nucleoporin Interactions by Surface Plasmon Resonance Spectroscopy. Methods Mol Biol 2023; 2551:95-109. [PMID: 36310199 DOI: 10.1007/978-1-0716-2597-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tau, a soluble and predominantly neuronal protein, is best known for its microtubule (MT)-binding function in the cytosol, where it decisively contributes to stability as well as modulation of MT dynamics. In Alzheimer's disease and other tauopathies, Tau is altered into forming intracellular neurofibrillary tangles; additionally, also a mislocalization from the cytosol to the nucleus has been observed where interactions of Tau with the nucleus become possible. Using surface plasmon resonance (SPR), it was recently shown that Tau can directly interact with certain nucleoporins (e.g., Nup98), components of the nuclear pore complex (NPC). The NPC constitutes large regulated pores in the nuclear envelope that facilitate the bidirectional exchange of proteins, nucleic acids, and other biomolecules between the inner section of the nucleus and the cytosol, the nucleocytoplasmic transport. The mechanism of Tau/Nup interactions is as yet unknown, and a systematic interaction analysis of Tau with different Nups can be of high value to decipher the molecular binding mechanism of Tau to Nups. SPR is a useful tool to analyze binding affinities and kinetic parameters in a label-free environment. While one interaction partner is immobilized on a sensor chip, the second is supplied within a constant flow of buffer. Binding of mobile molecules to immobilized ones changes the refractive index of the medium close to the sensor surface with the signal being proportional to the bound mass. In this chapter, we describe the application of the SPR technique for the investigation of Tau binding to nucleoporins.
Collapse
Affiliation(s)
- Lisa Diez
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | | | | | - Susanne Wegmann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
| |
Collapse
|
33
|
Balaji AK, Saha S, Deshpande S, Poola D, Sengupta K. Nuclear envelope, chromatin organizers, histones, and DNA: The many achilles heels exploited across cancers. Front Cell Dev Biol 2022; 10:1068347. [PMID: 36589746 PMCID: PMC9800887 DOI: 10.3389/fcell.2022.1068347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
In eukaryotic cells, the genome is organized in the form of chromatin composed of DNA and histones that organize and regulate gene expression. The dysregulation of chromatin remodeling, including the aberrant incorporation of histone variants and their consequent post-translational modifications, is prevalent across cancers. Additionally, nuclear envelope proteins are often deregulated in cancers, which impacts the 3D organization of the genome. Altered nuclear morphology, genome organization, and gene expression are defining features of cancers. With advances in single-cell sequencing, imaging technologies, and high-end data mining approaches, we are now at the forefront of designing appropriate small molecules to selectively inhibit the growth and proliferation of cancer cells in a genome- and epigenome-specific manner. Here, we review recent advances and the emerging significance of aberrations in nuclear envelope proteins, histone variants, and oncohistones in deregulating chromatin organization and gene expression in oncogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
34
|
Dubey AK, Kumar P, Mandal D, Ravichandiran V, Singh SK. An introduction to dynamic nucleoporins in Leishmania species: Novel targets for tropical-therapeutics. J Parasit Dis 2022; 46:1176-1191. [PMID: 36457769 PMCID: PMC9606170 DOI: 10.1007/s12639-022-01515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
As an ailment, leishmaniasis is still an incessant challenge in neglected tropical diseases and neglected infections of poverty worldwide. At present, the diagnosis and treatment to combat Leishmania tropical infections are not substantial remedies and require advanced & specific research. Therefore, there is a need for a potential novel target to overcome established medicament modalities' limitations in pathogenicity. In this review, we proposed a few ab initio findings in nucleoporins of nuclear pore complex in Leishmania sp. concerning other infectious protists. So, through structural analysis and dynamics studies, we hypothesize the nuclear pore molecular machinery & functionality. The gatekeepers Nups, export of mRNA, mitotic spindle formation are salient features in cellular mechanics and this is regulated by dynamic nucleoporins. Here, diverse studies suggest that Nup93/NIC96, Nup155/Nup144, Mlp1/Mlp2/Tpr of Leishmania Species can be a picked out marker for diagnostic, immune-modulation, and novel drug targets. In silico prediction of nucleoporin-functional interactors such as NUP54/57, RNA helicase, Ubiquitin-protein ligase, Exportin 1, putative T-lymphocyte triggering factor, and 9 uncharacterized proteins suggest few more noble targets. The novel drug targeting to importins/exportins of Leishmania sp. and defining mechanism of Leptomycin-B, SINE compounds, Curcumins, Selinexor can be an arc-light in therapeutics. The essence of the review in Leishmania's nucleoporins is to refocus our research on noble molecular targets for tropical therapeutics. Supplementary Information The online version contains supplementary material available at 10.1007/s12639-022-01515-0.
Collapse
Affiliation(s)
- Amit Kumar Dubey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
- Parasite Immunology Lab, Microbiology Department, Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar 800007 India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - V. Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - Shubhankar Kumar Singh
- Parasite Immunology Lab, Microbiology Department, Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar 800007 India
| |
Collapse
|
35
|
Petrovic S, Mobbs GW, Bley CJ, Nie S, Patke A, Hoelz A. Structure and Function of the Nuclear Pore Complex. Cold Spring Harb Perspect Biol 2022; 14:a041264. [PMID: 36096637 PMCID: PMC9732903 DOI: 10.1101/cshperspect.a041264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleus, a genome-containing organelle eponymous of eukaryotes, is enclosed by a double membrane continuous with the endoplasmic reticulum. The nuclear pore complex (NPC) is an ∼110-MDa, ∼1000-protein channel that selectively transports macromolecules across the nuclear envelope and thus plays a central role in the regulated flow of genetic information from transcription to translation. Its size, complexity, and flexibility have hindered determination of atomistic structures of intact NPCs. Recent studies have overcome these hurdles by combining biochemical reconstitution and docking of high-resolution structures of NPC subcomplexes into cryo-electron tomographic reconstructions with biochemical and physiological validation. Here, we provide an overview of the near-atomic composite structure of the human NPC, a milestone toward unlocking a molecular understanding of mRNA export, NPC-associated diseases, and viral host-pathogen interactions, serving as a paradigm for studying similarly large complexes.
Collapse
Affiliation(s)
- Stefan Petrovic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - George W Mobbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Christopher J Bley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Si Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Alina Patke
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
36
|
Madheshiya PK, Shukla E, Singh J, Bawaria S, Ansari MY, Chauhan R. Insights into the role of Nup62 and Nup93 in assembling cytoplasmic ring and central transport channel of the nuclear pore complex. Mol Biol Cell 2022; 33:ar139. [PMID: 36222862 PMCID: PMC9727814 DOI: 10.1091/mbc.e22-01-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The nuclear pore complex (NPC) is a highly modular assembly of 34 distinct nucleoporins (Nups) to form a versatile transport channel between the nucleus and the cytoplasm. Among them, Nup62 is known as an essential component for nuclear transport, Nup93 for proper nuclear envelope assembly. These Nups constitute various NPC subcomplexes such as the central transport channel (CTC), the cytoplasmic ring (CR), and the inner ring (IR). However, how they play their roles in NPC assembly and transport activity is not clear. Here we delineated the interacting regions and conducted biochemical reconstitution and structural characterization of the mammalian CR complex to reveal its intrinsic dynamic behavior and a distinct "4"-shaped architecture resembling the CTC complex. Our in vitro reconstitution data demonstrate that the Nup62 coiled-coil domain is critical to form both Nup62322-525 •Nup88517-742 and Nup62322-525•Nup88517-742•Nup214693-926 heterotrimers and both can bind to Nup931-150. We therefore propose that Nup93 acts as a "sensor" to bind to Nup62 shared heterotrimers including the Nup62•Nup54 heterotrimer of the CTC, which was not shown previously to be an interacting partner. Altogether, our biochemical study suggests that Nup62 via its coiled-coil domain is central to form compositionally distinct yet structurally similar heterotrimers and Nup93 binds these diverse heterotrimers nonselectively.
Collapse
Affiliation(s)
| | - Ekta Shukla
- National Centre for Cell Science, Pune 411007, Maharashtra, India
| | - Jyotsana Singh
- National Centre for Cell Science, Pune 411007, Maharashtra, India
| | | | | | - Radha Chauhan
- National Centre for Cell Science, Pune 411007, Maharashtra, India,*Address correspondence to: Radha Chauhan ()
| |
Collapse
|
37
|
Tai L, Zhu Y, Ren H, Huang X, Zhang C, Sun F. 8 Å structure of the outer rings of the Xenopus laevis nuclear pore complex obtained by cryo-EM and AI. Protein Cell 2022; 13:760-777. [PMID: 35015240 PMCID: PMC9233733 DOI: 10.1007/s13238-021-00895-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022] Open
Abstract
The nuclear pore complex (NPC), one of the largest protein complexes in eukaryotes, serves as a physical gate to regulate nucleocytoplasmic transport. Here, we determined the 8 Å resolution cryo-electron microscopic (cryo-EM) structure of the outer rings containing nuclear ring (NR) and cytoplasmic ring (CR) from the Xenopus laevis NPC, with local resolutions reaching 4.9 Å. With the aid of AlphaFold2, we managed to build a pseudoatomic model of the outer rings, including the Y complexes and flanking components. In this most comprehensive and accurate model of outer rings to date, the almost complete Y complex structure exhibits much tighter interaction in the hub region. In addition to two copies of Y complexes, each asymmetric subunit in CR contains five copies of Nup358, two copies of the Nup214 complex, two copies of Nup205 and one copy of newly identified Nup93, while that in NR contains one copy of Nup205, one copy of ELYS and one copy of Nup93. These in-depth structural features represent a great advance in understanding the assembly of NPCs.
Collapse
Affiliation(s)
- Linhua Tai
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China
| | - He Ren
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaojun Huang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
38
|
De Mandal S, Jeon J. Nuclear Effectors in Plant Pathogenic Fungi. MYCOBIOLOGY 2022; 50:259-268. [PMID: 36404902 PMCID: PMC9645283 DOI: 10.1080/12298093.2022.2118928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 05/29/2023]
Abstract
The nuclear import of proteins is a fundamental process in the eukaryotes including plant. It has become evident that such basic process is exploited by nuclear effectors that contain nuclear localization signal (NLS) and are secreted into host cells by fungal pathogens of plants. However, only a handful of nuclear effectors have been known and characterized to date. Here, we first summarize the types of NLSs and prediction tools available, and then delineate examples of fungal nuclear effectors and their roles in pathogenesis. Based on the knowledge on NLSs and what has been gleaned from the known nuclear effectors, we point out the gaps in our understanding of fungal nuclear effectors that need to be filled in the future researches.
Collapse
Affiliation(s)
- Surajit De Mandal
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Korea
| | - Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
39
|
Nag N, Tripathi T. Tau-FG-nucleoporin98 interaction and impaired nucleocytoplasmic transport in Alzheimer's disease. Brief Funct Genomics 2022; 22:161-167. [PMID: 35923096 DOI: 10.1093/bfgp/elac022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
An emerging pathophysiology associated with the neurodegenerative Alzheimer's disease (AD) is the impairment of nucleocytoplasmic transport (NCT). The impairment can originate from damage to the nuclear pore complex (NPC) or other factors involved in NCT. The phenylalanine-glycine nucleoporins (FG-Nups) form a crucial component of the NPC, which is central to NCT. Recent discoveries have highlighted that the neuropathological protein tau is involved in direct interactions with the FG-Nups and impairment of the NCT process. Targeting such interactions may lead to the identification of novel interaction inhibitors and offer new therapeutic alternatives for the treatment of AD. This review highlights recent findings associated with impaired NCT in AD and the interaction between tau and the FG-Nups.
Collapse
Affiliation(s)
- Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Timir Tripathi
- Regional Director's Office, Indira Gandhi National Open University (IGNOU), Regional Centre Kohima, Kenuozou, Kohima 797001, India
| |
Collapse
|
40
|
Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. BIOLOGY 2022; 11:biology11071009. [PMID: 36101390 PMCID: PMC9311884 DOI: 10.3390/biology11071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on the LLPS of intrinsically disordered proteins and the role of NIRs in regulating LLPS in neurodegeneration. This review also discusses the implication of NIRs as therapeutic agents in neurogenerative diseases.
Collapse
|
41
|
Gleixner AM, Verdone BM, Otte CG, Anderson EN, Ramesh N, Shapiro OR, Gale JR, Mauna JC, Mann JR, Copley KE, Daley EL, Ortega JA, Cicardi ME, Kiskinis E, Kofler J, Pandey UB, Trotti D, Donnelly CJ. NUP62 localizes to ALS/FTLD pathological assemblies and contributes to TDP-43 insolubility. Nat Commun 2022; 13:3380. [PMID: 35697676 PMCID: PMC9192689 DOI: 10.1038/s41467-022-31098-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/03/2022] [Indexed: 01/12/2023] Open
Abstract
A G4C2 hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of ALS and FTLD (C9-ALS/FTLD) with cytoplasmic TDP-43 inclusions observed in regions of neurodegeneration. The accumulation of repetitive RNAs and dipeptide repeat protein (DPR) are two proposed mechanisms of toxicity in C9-ALS/FTLD and linked to impaired nucleocytoplasmic transport. Nucleocytoplasmic transport is regulated by the phenylalanine-glycine nucleoporins (FG nups) that comprise the nuclear pore complex (NPC) permeability barrier. However, the relationship between FG nups and TDP-43 pathology remains elusive. Our studies show that nuclear depletion and cytoplasmic mislocalization of one FG nup, NUP62, is linked to TDP-43 mislocalization in C9-ALS/FTLD iPSC neurons. Poly-glycine arginine (GR) DPR accumulation initiates the formation of cytoplasmic RNA granules that recruit NUP62 and TDP-43. Cytoplasmic NUP62 and TDP-43 interactions promotes their insolubility and NUP62:TDP-43 inclusions are frequently found in C9orf72 ALS/FTLD as well as sporadic ALS/FTLD postmortem CNS tissue. Our findings indicate NUP62 cytoplasmic mislocalization contributes to TDP-43 proteinopathy in ALS/FTLD.
Collapse
Affiliation(s)
- Amanda M Gleixner
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Brandie Morris Verdone
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Charlton G Otte
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nandini Ramesh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Olivia R Shapiro
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Jenna R Gale
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Jocelyn C Mauna
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Jacob R Mann
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katie E Copley
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Elizabeth L Daley
- The Ken & Ruth Davee Department of Neurology, Northwestern University of Feinberg School of Medicine, Chicago, IL, USA
| | - Juan A Ortega
- The Ken & Ruth Davee Department of Neurology, Northwestern University of Feinberg School of Medicine, Chicago, IL, USA
| | - Maria Elena Cicardi
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Northwestern University of Feinberg School of Medicine, Chicago, IL, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julia Kofler
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Udai B Pandey
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Davide Trotti
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
42
|
Zhu X, Huang G, Zeng C, Zhan X, Liang K, Xu Q, Zhao Y, Wang P, Wang Q, Zhou Q, Tao Q, Liu M, Lei J, Yan C, Shi Y. Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex. Science 2022; 376:eabl8280. [PMID: 35679404 DOI: 10.1126/science.abl8280] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The nuclear pore complex (NPC) resides on the nuclear envelope (NE) and mediates nucleocytoplasmic cargo transport. As one of the largest cellular machineries, a vertebrate NPC consists of cytoplasmic filaments, a cytoplasmic ring (CR), an inner ring, a nuclear ring, a nuclear basket, and a luminal ring. Each NPC has eight repeating subunits. Structure determination of NPC is a prerequisite for understanding its functional mechanism. In the past two decades, integrative modeling, which combines x-ray structures of individual nucleoporins and subcomplexes with cryo-electron tomography reconstructions, has played a crucial role in advancing our knowledge about the NPC. The CR has been a major focus of structural investigation. The CR subunit of human NPC was reconstructed by cryo-electron tomography through subtomogram averaging to an overall resolution of ~20 Å, with local resolution up to ~15 Å. Each CR subunit comprises two Y-shaped multicomponent complexes known as the inner and outer Y complexes. Eight inner and eight outer Y complexes assemble in a head-to-tail fashion to form the proximal and distal rings, respectively, constituting the CR scaffold. To achieve higher resolution of the CR, we used single-particle cryo-electron microscopy (cryo-EM) to image the intact NPC from the NE of Xenopus laevis oocytes. Reconstructions of the core region and the Nup358 region of the X. laevis CR subunit had been achieved at average resolutions of 5 to 8 Å, allowing identification of secondary structural elements. RATIONALE Packing interactions among the components of the CR subunit were poorly defined by all previous EM maps. Additional components of the CR subunit are strongly suggested by the EM maps of 5- to 8-Å resolution but remain to be identified. Addressing these issues requires improved resolution of the cryo-EM reconstruction. Therefore, we may need to enhance sample preparation, optimize image acquisition, and develop an effective data-processing strategy. RESULTS To reduce conformational heterogeneity of the sample, we spread the opened NE onto the grids with minimal force and used the chemical cross-linker glutaraldehyde to stabilize the NPC. To alleviate orientation bias of the NPC, we tilted sample grids and imaged the sample with higher electron dose at higher angles. We improved the image-processing protocol. With these efforts, the average resolutions for the core and the Nup358 regions have been improved to 3.7 and 4.7 Å, respectively. The highest local resolution of the core region reaches 3.3 Å. In addition, a cryo-EM structure of the N-terminal α-helical domain of Nup358 has been resolved at 3.0-Å resolution. These EM maps allow the identification of five copies of Nup358, two copies of Nup93, two copies of Nup205, and two copies of Y complexes in each CR subunit. Relying on the EM maps and facilitated by AlphaFold prediction, we have generated a final model for the CR of the X. laevis NPC. Our model of the CR subunit includes 19,037 amino acids in 30 nucleoporins. A previously unknown C-terminal fragment of Nup160 was found to constitute a key part of the vertex, in which the short arm, long arm, and stem of the Y complex meet. The Nup160 C-terminal fragment directly binds the β-propeller proteins Seh1 and Sec13. Two Nup205 molecules, which do not contact each other, bind the inner and outer Y complexes through distinct interfaces. Conformational elasticity of the two Nup205 molecules may underlie their versatility in binding to different nucleoporins in the proximal and distal CR rings. Two Nup93 molecules, each comprising an N-terminal extended helix and an ACE1 domain, bridge the Y complexes and Nup205. Nup93 and Nup205 together play a critical role in mediating the contacts between neighboring CR subunits. Five Nup358 molecules, each in the shape of a shrimp tail and named "the clamp," hold the stems of both Y complexes. The innate conformational elasticity allows each Nup358 clamp to adapt to a distinct local environment for optimal interactions with neighboring nucleoporins. In each CR subunit, the α-helical nucleoporins appear to provide the conformational elasticity; the 12 β-propellers may strengthen the scaffold. CONCLUSION Our EM map-based model of the X. laevis CR subunit substantially expands the molecular mass over the reported composite models of vertebrate CR subunit. In addition to the Y complexes, five Nup358, two Nup205, and two Nup93 molecules constitute the key components of the CR. The improved EM maps reveal insights into the interfaces among the nucleoporins of the CR. [Figure: see text].
Collapse
Affiliation(s)
- Xuechen Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 310024 Hangzhou, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024 Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, 310024 Hangzhou, China
| | - Gaoxingyu Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 310024 Hangzhou, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024 Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, 310024 Hangzhou, China
| | - Chao Zeng
- Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Tsinghua University, 100084 Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 310024 Hangzhou, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024 Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, 310024 Hangzhou, China
| | - Ke Liang
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 310024 Hangzhou, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024 Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, 310024 Hangzhou, China
| | - Qikui Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 310024 Hangzhou, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024 Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, 310024 Hangzhou, China
| | - Yanyu Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 310024 Hangzhou, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024 Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, 310024 Hangzhou, China
| | - Pan Wang
- Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Tsinghua University, 100084 Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Qifan Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 310024 Hangzhou, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024 Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, 310024 Hangzhou, China
| | - Qiang Zhou
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 310024 Hangzhou, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024 Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, 310024 Hangzhou, China
| | - Qinghua Tao
- Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Tsinghua University, 100084 Beijing, China
| | - Minhao Liu
- Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Tsinghua University, 100084 Beijing, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Tsinghua University, 100084 Beijing, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Tsinghua University, 100084 Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yigong Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 310024 Hangzhou, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024 Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, 310024 Hangzhou, China.,Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Tsinghua University, 100084 Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
43
|
Bley CJ, Nie S, Mobbs GW, Petrovic S, Gres AT, Liu X, Mukherjee S, Harvey S, Huber FM, Lin DH, Brown B, Tang AW, Rundlet EJ, Correia AR, Chen S, Regmi SG, Stevens TA, Jette CA, Dasso M, Patke A, Palazzo AF, Kossiakoff AA, Hoelz A. Architecture of the cytoplasmic face of the nuclear pore. Science 2022; 376:eabm9129. [PMID: 35679405 DOI: 10.1126/science.abm9129] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The subcellular compartmentalization of eukaryotic cells requires selective transport of folded proteins and protein-nucleic acid complexes. Embedded in nuclear envelope pores, which are generated by the circumscribed fusion of the inner and outer nuclear membranes, nuclear pore complexes (NPCs) are the sole bidirectional gateways for nucleocytoplasmic transport. The ~110-MDa human NPC is an ~1000-protein assembly that comprises multiple copies of ~34 different proteins, collectively termed nucleoporins. The symmetric core of the NPC is composed of an inner ring encircling the central transport channel and outer rings formed by Y‑shaped coat nucleoporin complexes (CNCs) anchored atop both sides of the nuclear envelope. The outer rings are decorated with compartment‑specific asymmetric nuclear basket and cytoplasmic filament nucleoporins, which establish transport directionality and provide docking sites for transport factors and the small guanosine triphosphatase Ran. The cytoplasmic filament nucleoporins also play an essential role in the irreversible remodeling of messenger ribonucleoprotein particles (mRNPs) as they exit the central transport channel. Unsurprisingly, the NPC's cytoplasmic face represents a hotspot for disease‑associated mutations and is commonly targeted by viral virulence factors. RATIONALE Previous studies established a near-atomic composite structure of the human NPC's symmetric core by combining (i) biochemical reconstitution to elucidate the interaction network between symmetric nucleoporins, (ii) crystal and single-particle cryo-electron microscopy structure determination of nucleoporins and nucleoporin complexes to reveal their three-dimensional shape and the molecular details of their interactions, (iii) quantitative docking in cryo-electron tomography (cryo-ET) maps of the intact human NPC to uncover nucleoporin stoichiometry and positioning, and (iv) cell‑based assays to validate the physiological relevance of the biochemical and structural findings. In this work, we extended our approach to the cytoplasmic filament nucleoporins to reveal the near-atomic architecture of the cytoplasmic face of the human NPC. RESULTS Using biochemical reconstitution, we elucidated the protein-protein and protein-RNA interaction networks of the human and Chaetomium thermophilum cytoplasmic filament nucleoporins, establishing an evolutionarily conserved heterohexameric cytoplasmic filament nucleoporin complex (CFNC) held together by a central heterotrimeric coiled‑coil hub that tethers two separate mRNP‑remodeling complexes. Further biochemical analysis and determination of a series of crystal structures revealed that the metazoan‑specific cytoplasmic filament nucleoporin NUP358 is composed of 16 distinct domains, including an N‑terminal S‑shaped α‑helical solenoid followed by a coiled‑coil oligomerization element, numerous Ran‑interacting domains, an E3 ligase domain, and a C‑terminal prolyl‑isomerase domain. Physiologically validated quantitative docking into cryo-ET maps of the intact human NPC revealed that pentameric NUP358 bundles, conjoined by the oligomerization element, are anchored through their N‑terminal domains to the central stalk regions of the CNC, projecting flexibly attached domains as far as ~600 Å into the cytoplasm. Using cell‑based assays, we demonstrated that NUP358 is dispensable for the architectural integrity of the assembled interphase NPC and RNA export but is required for efficient translation. After NUP358 assignment, the remaining 4-shaped cryo‑ET density matched the dimensions of the CFNC coiled‑coil hub, in close proximity to an outer-ring NUP93. Whereas the N-terminal NUP93 assembly sensor motif anchors the properly assembled related coiled‑coil channel nucleoporin heterotrimer to the inner ring, biochemical reconstitution confirmed that the NUP93 assembly sensor is reused in anchoring the CFNC to the cytoplasmic face of the human NPC. By contrast, two C. thermophilum CFNCs are anchored by a divergent mechanism that involves assembly sensors located in unstructured portions of two CNC nucleoporins. Whereas unassigned cryo‑ET density occupies the NUP358 and CFNC binding sites on the nuclear face, docking of the nuclear basket component ELYS established that the equivalent position on the cytoplasmic face is unoccupied, suggesting that mechanisms other than steric competition promote asymmetric distribution of nucleoporins. CONCLUSION We have substantially advanced the biochemical and structural characterization of the asymmetric nucleoporins' architecture and attachment at the cytoplasmic and nuclear faces of the NPC. Our near‑atomic composite structure of the human NPC's cytoplasmic face provides a biochemical and structural framework for elucidating the molecular basis of mRNP remodeling, viral virulence factor interference with NPC function, and the underlying mechanisms of nucleoporin diseases at the cytoplasmic face of the NPC. [Figure: see text].
Collapse
Affiliation(s)
- Christopher J Bley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Si Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - George W Mobbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Stefan Petrovic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Anna T Gres
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Xiaoyu Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sho Harvey
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ferdinand M Huber
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Bonnie Brown
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Aaron W Tang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Emily J Rundlet
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ana R Correia
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Shane Chen
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saroj G Regmi
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Taylor A Stevens
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Claudia A Jette
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alina Patke
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
44
|
Coyne AN, Rothstein JD. Nuclear pore complexes - a doorway to neural injury in neurodegeneration. Nat Rev Neurol 2022; 18:348-362. [PMID: 35488039 PMCID: PMC10015220 DOI: 10.1038/s41582-022-00653-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
Abstract
The genetic underpinnings and end-stage pathological hallmarks of neurodegenerative diseases are increasingly well defined, but the cellular pathophysiology of disease initiation and propagation remains poorly understood, especially in sporadic forms of these diseases. Altered nucleocytoplasmic transport is emerging as a prominent pathomechanism of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer disease, frontotemporal dementia and Huntington disease. The nuclear pore complex (NPC) and interactions between its individual nucleoporin components and nuclear transport receptors regulate nucleocytoplasmic transport, as well as genome organization and gene expression. Specific nucleoporin abnormalities have been identified in sporadic and familial forms of neurodegenerative disease, and these alterations are thought to contribute to disrupted nucleocytoplasmic transport. The specific nucleoporins and nucleocytoplasmic transport proteins that have been linked to different neurodegenerative diseases are partially distinct, suggesting that NPC injury contributes to the cellular specificity of neurodegenerative disease and could be an early initiator of the pathophysiological cascades that underlie neurodegenerative disease. This concept is consistent with the fact that rare genetic mutations in some nucleoporins cause cell-type-specific neurological disease. In this Review, we discuss nucleoporin and NPC disruptions and consider their impact on cellular function and the pathophysiology of neurodegenerative disease.
Collapse
Affiliation(s)
- Alyssa N Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
45
|
Liu T, Shi Y, Wang H, Shen H, Qu J. The Nuclear Pore Complex 62 Suppression Inhibits Coxsackievirus B Replication and Inflammatory Response. Viral Immunol 2022; 35:381-385. [PMID: 35605096 DOI: 10.1089/vim.2021.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Tingjun Liu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yi Shi
- Xuzhou Central Hospital, Xuzhou, China
| | - Hua Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hongxing Shen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Junyan Qu
- Center of Infectious Disease, West China Hospital Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Hegedűsová E, Maršalová V, Kulkarni S, Paris Z. Trafficking and/or division: Distinct roles of nucleoporins based on their location within the nuclear pore complex. RNA Biol 2022; 19:650-661. [PMID: 35491934 PMCID: PMC9067531 DOI: 10.1080/15476286.2022.2067711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The nuclear pore complex (NPC) facilitates the trafficking of proteins and RNA between the nucleus and cytoplasm. The role of nucleoporins (Nups) in transport in the context of the NPC is well established, yet their function in tRNA export has not been fully explored. We selected several nucleoporins from different parts of the NPC to investigate their potential role in tRNA trafficking in Trypanosoma brucei. We show that while all of the nucleoporins studied are essential for cell viability, only TbNup62 and TbNup53a function in tRNA export. In contrast to homologs in yeast TbNup144 and TbNup158, which are part of the inner and outer ring of the NPC, have no role in nuclear tRNA trafficking. Instead, TbNup144 plays a critical role in nuclear division, highlighting the role of nucleoporins beyond nucleocytoplasmic transport. These results suggest that the location of nucleoporins within the NPC is crucial to maintaining various cellular processes.
Collapse
Affiliation(s)
- Eva Hegedűsová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Veronika Maršalová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Sneha Kulkarni
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
47
|
Nag N, Sasidharan S, Uversky VN, Saudagar P, Tripathi T. Phase separation of FG-nucleoporins in nuclear pore complexes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119205. [PMID: 34995711 DOI: 10.1016/j.bbamcr.2021.119205] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
The nuclear envelope (NE) is a bilayer membrane that separates and physically isolates the genetic material from the cytoplasm. Nuclear pore complexes (NPCs) are cylindrical structures embedded in the NE and remain the sole channel of communication between the nucleus and the cytoplasm. The interior of NPCs contains densely packed intrinsically disordered FG-nucleoporins (FG-Nups), consequently forming a permeability barrier. This barrier facilitates the selection and specificity of the cargoes that are imported, exported, or shuttled through the NPCs. Recent studies have revealed that FG-Nups undergo the process of liquid-liquid phase separation into liquid droplets. Moreover, these liquid droplets mimic the permeability barrier observed in the interior of NPCs. This review highlights the phase separation of FG-Nups occurring inside the NPCs rooted in the NE. We discuss the phase separation of FG-Nups and compare the different aspects contributing to their phase separation. Furthermore, several diseases caused by the aberrant phase separation of the proteins are examined with respect to NEs. By understanding the fundamental process of phase separation at the nuclear membrane, the review seeks to explore the parameters influencing this phenomenon as well as its importance, ultimately paving the way for better research on the structure-function relationship of biomolecular condensates.
Collapse
Affiliation(s)
- Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, United States; Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, Moscow Region 141700, Russia
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India.
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
48
|
Raices M, D'Angelo MA. Structure, Maintenance, and Regulation of Nuclear Pore Complexes: The Gatekeepers of the Eukaryotic Genome. Cold Spring Harb Perspect Biol 2022; 14:a040691. [PMID: 34312247 PMCID: PMC8789946 DOI: 10.1101/cshperspect.a040691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the genetic material is segregated inside the nucleus. This compartmentalization of the genome requires a transport system that allows cells to move molecules across the nuclear envelope, the membrane-based barrier that surrounds the chromosomes. Nuclear pore complexes (NPCs) are the central component of the nuclear transport machinery. These large protein channels penetrate the nuclear envelope, creating a passage between the nucleus and the cytoplasm through which nucleocytoplasmic molecule exchange occurs. NPCs are one of the largest protein assemblies of eukaryotic cells and, in addition to their critical function in nuclear transport, these structures also play key roles in many cellular processes in a transport-independent manner. Here we will review the current knowledge of the NPC structure, the cellular mechanisms that regulate their formation and maintenance, and we will provide a brief description of a variety of processes that NPCs regulate.
Collapse
Affiliation(s)
- Marcela Raices
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Maximiliano A D'Angelo
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| |
Collapse
|
49
|
Christopher JA, Geladaki A, Dawson CS, Vennard OL, Lilley KS. Subcellular Transcriptomics and Proteomics: A Comparative Methods Review. Mol Cell Proteomics 2022; 21:100186. [PMID: 34922010 PMCID: PMC8864473 DOI: 10.1016/j.mcpro.2021.100186] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
The internal environment of cells is molecularly crowded, which requires spatial organization via subcellular compartmentalization. These compartments harbor specific conditions for molecules to perform their biological functions, such as coordination of the cell cycle, cell survival, and growth. This compartmentalization is also not static, with molecules trafficking between these subcellular neighborhoods to carry out their functions. For example, some biomolecules are multifunctional, requiring an environment with differing conditions or interacting partners, and others traffic to export such molecules. Aberrant localization of proteins or RNA species has been linked to many pathological conditions, such as neurological, cancer, and pulmonary diseases. Differential expression studies in transcriptomics and proteomics are relatively common, but the majority have overlooked the importance of subcellular information. In addition, subcellular transcriptomics and proteomics data do not always colocate because of the biochemical processes that occur during and after translation, highlighting the complementary nature of these fields. In this review, we discuss and directly compare the current methods in spatial proteomics and transcriptomics, which include sequencing- and imaging-based strategies, to give the reader an overview of the current tools available. We also discuss current limitations of these strategies as well as future developments in the field of spatial -omics.
Collapse
Affiliation(s)
- Josie A Christopher
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Aikaterini Geladaki
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Department of Genetics, University of Cambridge, Cambridge, UK
| | - Charlotte S Dawson
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Owen L Vennard
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
| |
Collapse
|
50
|
Haraguchi T, Osakada H, Iwamoto M. Live CLEM Imaging of Tetrahymena to Analyze the Dynamic Behavior of the Nuclear Pore Complex. Methods Mol Biol 2022; 2502:473-492. [PMID: 35412257 DOI: 10.1007/978-1-0716-2337-4_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tetrahymena is a fascinating organism for studying the nuclear pore complex because it has two structurally and functionally distinct nuclei (macronucleus and micronucleus) within a cell, and there are two compositionally distinct nuclear pore complexes (NPCs) with different functions in each nucleus. Therefore, it is possible to link the function of a specific constituent protein with the nuclear function of the macronucleus and micronucleus. Additionally, these NPCs undergo dynamic changes in their structures and compositions during nuclear differentiation. Live CLEM imaging, a method of correlative light and electron microscopy (CLEM) combined with live cell imaging, is a powerful tool for visualizing these dynamic changes of specific molecules/structures of interest at high resolution. Here, we describe Live CLEM that can be applied to the study of the dynamic behavior of NPCs in Tetrahymena cells undergoing nuclear differentiation.
Collapse
Affiliation(s)
- Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| | - Hiroko Osakada
- Laboratory of Molecular Cell Biology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaaki Iwamoto
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| |
Collapse
|