1
|
Dobelmann V, Roos A, Hentschel A, Della Marina A, Leo M, Schmitt LI, Maggi L, Schara-Schmidt U, Hagenacker T, Ruck T, Kölbel H. Thrombospondin-4 as potential cerebrospinal fluid biomarker for therapy response in pediatric spinal muscular atrophy. J Neurol 2024; 271:7000-7011. [PMID: 39240344 PMCID: PMC11446971 DOI: 10.1007/s00415-024-12670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND AND PURPOSE Spinal muscular atrophy (SMA) as the second most common neurodegenerative disorder in childhood is characterized by the deficiency of survival of motor neuron (SMN) protein leading predominantly to degeneration of alpha motor neurons and consequently to progressive muscle weakness and atrophy. Besides some biomarkers like SMN2 copy number therapeutic biomarkers for SMA with known relevance for neuromuscular transmission are lacking. Here, we examined the potential of Thrombospondin-4 (TSP4) to serve as a cerebrospinal fluid (CSF) biomarker, which may also indicate treatment response. METHODS We used untargeted proteomic analyses to determine biomarkers in CSF samples derived from pediatric pre-symptomatic (n = 6) and symptomatic (n = 4) SMA patients. The identified biomarker TSP4 was then validated in additional 68 CSF samples (9 adult and 24 pediatric SMA patients, 5 adult and 13 pediatric non-disease controls in addition to 17 pediatric disease controls) by enzyme-linked immunosorbent assay (ELISA) as an additional analytical approach. RESULTS Untargeted proteomic analyses of CSF identified a dysregulation of TSP4 and revealed a difference between pre-symptomatic SMA patients and patients identified after the onset of first symptoms. Subsequent ELISA-analyses showed that TSP4 is decreased in pediatric but not adult SMA patients. CSF of pediatric patients with other neurological disorders demonstrated no alteration of TSP4 levels. Furthermore, CSF TSP4 levels of pediatric SMA patients increased after first dose of Nusinersen. CONCLUSIONS We found that TSP4 levels are exclusively reduced in CSF of pediatric SMA patients and increase after treatment, leading us to the hypothesis that TSP4 could serve as a CSF biomarker with the potential to monitor treatment response in pediatric SMA patients. Moreover, TSP4 enable to distinguish pre-symptomatic and symptomatic patients suggesting a potential to serve as a stratification marker.
Collapse
Affiliation(s)
- Vera Dobelmann
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Andreas Roos
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
- Department of Pediatric Neurology, Developmental Neurology, and Social Pediatrics, Center for Neuromuscular Disorders in Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, K1H 5B2, Canada
| | | | - Adela Della Marina
- Department of Pediatric Neurology, Developmental Neurology, and Social Pediatrics, Center for Neuromuscular Disorders in Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Markus Leo
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Linda-Isabell Schmitt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Developmental Neurology, and Social Pediatrics, Center for Neuromuscular Disorders in Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Tim Hagenacker
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.
| | - Heike Kölbel
- Department of Pediatric Neurology, Developmental Neurology, and Social Pediatrics, Center for Neuromuscular Disorders in Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
2
|
Adams JC. Thrombospondins: Conserved mediators and modulators of metazoan extracellular matrix. Int J Exp Pathol 2024; 105:136-169. [PMID: 39267379 PMCID: PMC11574667 DOI: 10.1111/iep.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024] Open
Abstract
This review provides a personal overview of significant scientific developments in the thrombospondin field during the course of my career. Thrombospondins are multidomain, multimeric, calcium-binding extracellular glycoproteins with context-specific roles in tissue organisation. They act at cell surfaces and within ECM to regulate cell phenotype and signalling, differentiation and assembly of collagenous ECM, along with tissue-specific roles in cartilage, angiogenesis and synaptic function. More recently, intracellular, homeostatic roles have also been identified. Resolution of structures for the major domains of mammalian thrombospondins has facilitated major advances in understanding thrombospondin biology from molecule to tissue; for example, in illuminating molecular consequences of disease-causing coding mutations in human pseudoachrondroplasia. Although principally studied in vertebrates, thrombospondins are amongst the most ancient of animal ECM proteins, with many invertebrates encoding a single thrombospondin and the thrombospondin gene family of vertebrates originating through gene duplications. Moreover, thrombospondins form one branch of a thrombospondin superfamily that debuted at the origin of metazoans. The super-family includes additional sub-groups, present only in invertebrates, that differ in N-terminal domain organisation, share the distinctive TSP C-terminal region domain architecture and, to the limited extent studied to date, apparently contribute to tissue development and organisation. Finally, major lines of translational research are discussed, related to fibrosis; TSP1, TSP2 and inhibition of angiogenesis; and the alleviation of chronic cartilage tissue pathologies in pseudoachrondroplasia.
Collapse
|
3
|
Zarén P, Gawlik KI. Thrombospondin-4 deletion does not exacerbate muscular dystrophy in β-sarcoglycan-deficient and laminin α2 chain-deficient mice. Sci Rep 2024; 14:14757. [PMID: 38926599 PMCID: PMC11208443 DOI: 10.1038/s41598-024-65473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Muscular dystrophy is a group of genetic disorders that lead to muscle wasting and loss of muscle function. Identifying genetic modifiers that alleviate symptoms or enhance the severity of a primary disease helps to understand mechanisms behind disease pathology and facilitates discovery of molecular targets for therapy. Several muscular dystrophies are caused by genetic defects in the components of the dystrophin-glycoprotein adhesion complex (DGC). Thrombospondin-4 overexpression has been shown to mitigate dystrophic disease in mouse models for Duchenne muscular dystrophy (dystrophin deficiency) and limb-girdle muscular dystrophy type 2F (LGMD2F, δ-sarcoglycan deficiency), while deletion of the thrombospondin-4 gene exacerbated the diseases. Hence, thrombospondin-4 has been considered a candidate molecule for therapy of muscular dystrophies involving the DGC. We have investigated whether thrombospondin-4 could act as a genetic modifier for other DGC-associated diseases: limb-girdle muscular dystrophy type 2E (LGMD2E, β-sarcoglycan deficiency) and laminin α2 chain-deficient muscular dystrophy (LAMA2-RD). Deletion of the thrombospondin-4 gene in mouse models for LGMD2E and LAMA2-RD, respectively, did not result in worsening of the dystrophic phenotype. Loss of thrombospondin-4 did not enhance sarcolemma damage and did not impair trafficking of transmembrane receptors integrin α7β1 and dystroglycan in double knockout muscles. Our results suggest that thrombospondin-4 might not be a relevant therapeutic target for all muscular dystrophies involving the DGC. This data also demonstrates that molecular pathology between very similar diseases like LGMD2E and 2F can differ significantly.
Collapse
Affiliation(s)
- Paula Zarén
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, BMC C12, 221 84, Lund, Sweden
| | - Kinga I Gawlik
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, BMC C12, 221 84, Lund, Sweden.
| |
Collapse
|
4
|
Wu Y, Yang M, Xu X, Gao Y, Li X, Li Y, Su S, Xie X, Yang Z, Ke C. Thrombospondin 4, a mediator and candidate indicator of pain. Eur J Cell Biol 2024; 103:151395. [PMID: 38340499 DOI: 10.1016/j.ejcb.2024.151395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Pain is the most common symptom for which patients seek medical attention. Existing treatments for pain control are largely ineffective due to the lack of an accurate way to objectively measure pain intensity and a poor understanding of the etiology of pain. Thrombospondin 4(TSP4), a member of the thrombospondin gene family, is expressed in neurons and astrocytes and induces pain by interacting with the calcium channel alpha-2-delta-1 subunit (Cavα2δ1). In the present study we show that TSP4 expression level correlates positively with pain intensity, suggesting that TSP4 could be a novel candidate of pain indicator. Using RNAi-lentivirus (RNAi-LV) to knock down TSP4 both in vivo and in vitro, together with electrophysiological experiments involving paired patch-clamp recordings of evoked action potentials and post-synaptic currents in cultured neurons, we found that TSP4 contributes to the development of bone cancer pain, neuropathic pain, and inflammatory pain. This effect is mediated by regulation of neuron excitability via inhibition of synapsin I (Syn I) and modulation of excitatory and inhibitory presynaptic transmission via regulation of vesicular glutamate transporter 2(Vglut2), vesicular GABA transporter (VGAT), and glutamate decarboxylase (GAD) expression. The present study provides a replicable, predictive, valid indicator of pain and demonstrated the underlying molecular and electrophysiological mechanisms by which TSP4 contributes to pain.
Collapse
Affiliation(s)
- Yanqiong Wu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China; Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Yang
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Xueqin Xu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Yan Gao
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Xiaohui Li
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Yang Li
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Shanchun Su
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Xianqiao Xie
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Zeyong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai JiaoTong University School of Medicine, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Municipal Key Clinical Specialty, Huashan Rd. 1961, Shanghai 200030, China.
| | - Changbin Ke
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China.
| |
Collapse
|
5
|
Genaro K, Luo ZD. Pathophysiological roles of thrombospondin-4 in disease development. Semin Cell Dev Biol 2024; 155:66-73. [PMID: 37391348 PMCID: PMC10753034 DOI: 10.1016/j.semcdb.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Thrombospondin-4 (TSP-4) belongs to the extracellular matrix glycoprotein family of thrombospondins (TSPs). The multidomain, pentameric structure of TSP-4 allows its interactions with numerous extracellular matrix components, proteins and signaling molecules that enable its modulation to various physiological and pathological processes. Characterization of TSP-4 expression under development and pathogenesis of disorders has yielded important insights into mechanisms underlying the unique role of TSP-4 in mediating various processes including cell-cell, cell-extracellular matrix interactions, cell migration, proliferation, tissue remodeling, angiogenesis, and synaptogenesis. Maladaptation of these processes in response to pathological insults and stress can accelerate the development of disorders including skeletal dysplasia, osteoporosis, degenerative joint disease, cardiovascular diseases, tumor progression/metastasis and neurological disorders. Overall, the diverse functions of TSP-4 suggest that it may be a potential marker or therapeutic target for prognosis, diagnosis, and treatment of various pathological conditions upon further investigations. This review article highlights recent findings on the role of TSP-4 in both physiological and pathological conditions with a focus on what sets it apart from other TSPs.
Collapse
Affiliation(s)
- Karina Genaro
- Department of Anesthesiology & Perioperative Care, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Z David Luo
- Department of Anesthesiology & Perioperative Care, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
6
|
Wies Mancini VSB, Mattera VS, Pasquini JM, Pasquini LA, Correale JD. Microglia-derived extracellular vesicles in homeostasis and demyelination/remyelination processes. J Neurochem 2024; 168:3-25. [PMID: 38055776 DOI: 10.1111/jnc.16011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Microglia (MG) play a crucial role as the predominant myeloid cells in the central nervous system and are commonly activated in multiple sclerosis. They perform essential functions under normal conditions, such as actively surveying the surrounding parenchyma, facilitating synaptic remodeling, engulfing dead cells and debris, and protecting the brain against infectious pathogens and harmful self-proteins. Extracellular vesicles (EVs) are diverse structures enclosed by a lipid bilayer that originate from intracellular endocytic trafficking or the plasma membrane. They are released by cells into the extracellular space and can be found in various bodily fluids. EVs have recently emerged as a communication mechanism between cells, enabling the transfer of functional proteins, lipids, different RNA species, and even fragments of DNA from donor cells. MG act as both source and recipient of EVs. Consequently, MG-derived EVs are involved in regulating synapse development and maintaining homeostasis. These EVs also directly influence astrocytes, significantly increasing the release of inflammatory cytokines like IL-1β, IL-6, and TNF-α, resulting in a robust inflammatory response. Furthermore, EVs derived from inflammatory MG have been found to inhibit remyelination, whereas Evs produced by pro-regenerative MG effectively promote myelin repair. This review aims to provide an overview of the current understanding of MG-derived Evs, their impact on neighboring cells, and the cellular microenvironment in normal conditions and pathological states, specifically focusing on demyelination and remyelination processes.
Collapse
Affiliation(s)
- V S B Wies Mancini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - V S Mattera
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - J M Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - L A Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - J D Correale
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Neurología, Fleni, Buenos Aires, Argentina
| |
Collapse
|
7
|
Hosseini L, Shahabi P, Fakhari A, Zangbar HS, Seyedaghamiri F, Sadeghzadeh J, Abolhasanpour N. Aging and age-related diseases with a focus on therapeutic potentials of young blood/plasma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1-13. [PMID: 37552316 DOI: 10.1007/s00210-023-02657-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Aging is accompanied by alterations in the body with time-related to decline of physiological integrity and functionality process, responsible for increasing diseases and vulnerability to death. Several ages associated with biomarkers were observed in red blood cells, and consequently plasma proteins have a critical rejuvenating role in the aging process and age-related disorders. Advanced age is a risk factor for a broad spectrum of diseases and disorders such as cardiovascular diseases, musculoskeletal disorders and liver, chronic kidney disease, neurodegenerative diseases, and cancer because of loss of regenerative capacity, correlated to reduced systemic factors and raise of pro-inflammatory cytokines. Most studies have shown that systemic factors in young blood/plasma can strongly protect against age-related diseases in various tissues by restoring autophagy, increasing neurogenesis, and reducing oxidative stress, inflammation, and apoptosis. Here, we focus on the current advances in using young plasma or blood to combat aging and age-related diseases and summarize the experimental and clinical evidence supporting this approach. Based on reports, young plasma or blood is new a therapeutic approach to aging and age-associated diseases.
Collapse
Affiliation(s)
- Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemehsadat Seyedaghamiri
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Sadeghzadeh
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Abolhasanpour
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Unger A, Roos A, Gangfuß A, Hentschel A, Gläser D, Krause K, Doering K, Schara-Schmidt U, Hoffjan S, Vorgerd M, Güttsches AK. Microscopic and Biochemical Hallmarks of BICD2-Associated Muscle Pathology toward the Evaluation of Novel Variants. Int J Mol Sci 2023; 24:ijms24076808. [PMID: 37047781 PMCID: PMC10095373 DOI: 10.3390/ijms24076808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
BICD2 variants have been linked to neurodegenerative disorders like spinal muscular atrophy with lower extremity predominance (SMALED2) or hereditary spastic paraplegia (HSP). Recently, mutations in BICD2 were implicated in myopathies. Here, we present one patient with a known and six patients with novel BICD2 missense variants, further characterizing the molecular landscape of this heterogenous neurological disorder. A total of seven patients were genotyped and phenotyped. Skeletal muscle biopsies were analyzed by histology, electron microscopy, and protein profiling to define pathological hallmarks and pathogenicity markers with consecutive validation using fluorescence microscopy. Clinical and MRI-features revealed a typical pattern of distal paresis of the lower extremities as characteristic features of a BICD2-associated disorder. Histological evaluation showed myopathic features of varying severity including fiber size variation, lipofibromatosis, and fiber splittings. Proteomic analysis with subsequent fluorescence analysis revealed an altered abundance and localization of thrombospondin-4 and biglycan. Our combined clinical, histopathological, and proteomic approaches provide new insights into the pathophysiology of BICD2-associated disorders, confirming a primary muscle cell vulnerability. In this context, biglycan and thrombospondin-4 have been identified, may serve as tissue pathogenicity markers, and might be linked to perturbed protein secretion based on an impaired vesicular transportation.
Collapse
Affiliation(s)
- Andreas Unger
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Disease (IfGH), University Hospital Münster, 48149 Münster, Germany
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Andreas Roos
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Andrea Gangfuß
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| | - Dieter Gläser
- Genetikum, Center for Human Genetics, 89231 Neu-Ulm, Germany
| | - Karsten Krause
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Kristina Doering
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Anne-Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| |
Collapse
|
9
|
Chai R, Su Z, Zhao Y, Liang W. Extracellular matrix-based gene signature for predicting prognosis in colon cancer and immune microenvironment. Transl Cancer Res 2023; 12:321-339. [PMID: 36915600 PMCID: PMC10007896 DOI: 10.21037/tcr-22-2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/08/2022] [Indexed: 02/17/2023]
Abstract
Background The extracellular matrix (ECM) plays a vital role in progression, expansion, and prognosis of malignancies. In this study, we aimed to explore a novel ECM-based prognostic model for patients with colon cancer (CC). Methods ECM-related genes were obtained from Molecular Signatures database. Differential expression analysis was performed using the CC dataset from The Cancer Genome Atlas (TCGA) database. Four ECM-related genes related to overall survival were identified using the Cox regression and LASSO analysis. Then an ECM-related signature was developed and verified in three independent CC cohorts (GSE33882, GSE39582 and GSE29621) from the Gene Expression Omnibus (GEO). A prognostic nomogram was developed incorporating the ECM-related gene signature with clinical risk factors. CIBERSORT was used to explore the immune cell infiltration level. Human Protein Atlas (HPA) database was utilized to validate the expression levels of identified prognostic ECM genes. Results Four ECM-related genes (CXCL13, CXCL14, SFRP5 and THBS4) were identified to develop an ECM-based gene signature and demarcated CC patients into the high- and low-risk groups. In training and validation datasets, patients in the low-risk group had better overall survival outcomes than those in the high-risk group (log-rank P<0.001). In addition, ECM-related signature was significantly associated with consensus molecular subtype 4 (CMS4) as well as other known clinical risk factors such as a higher Tumor, Nodal Involvement, Metastasis (TNM) stage. Moreover, the risk score derived from the ECM-based gene signature could be utilized as an independent prognostic factor for CC patients. A nomogram including the ECM-related gene signature, age and stage was developed to serve clinical practice. CIBERSORT analysis showed immune cell infiltration was different between high- and low-risk groups. The immunohistochemical results derived from HPA indicated differential expression of prognosis-related ECM genes in CC and normal tissues. Conclusions In the present study, a novel risk model based on ECM-signature could effectively reflect individual risk classification and provide potential therapeutic targets for CC patients. Moreover, the prognostic nomogram may help predict individualized survival.
Collapse
Affiliation(s)
- Ruoyang Chai
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengjia Su
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajie Zhao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Mäemets-Allas K, Klaas M, Cárdenas-León CG, Arak T, Kankuri E, Jaks V. Stimulation with THBS4 activates pathways that regulate proliferation, migration and inflammation in primary human keratinocytes. Biochem Biophys Res Commun 2023; 642:97-106. [PMID: 36566568 DOI: 10.1016/j.bbrc.2022.12.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
As in other mammalian tissues, the extracellular matrix (ECM) of skin functions as mechanical support and regulative environment that guides the behavior of the cells. ECM is a gel-like structure that is primarily composed of structural and nonstructural proteins. While the content of structural proteins is stable, the level of nonstructural ECM proteins, such as thrombospondin-4 (THBS4), is dynamically regulated. In a previous work we demonstrated that THBS4 stimulated cutaneous wound healing. In this work we discovered that in addition to proliferation, THBS4 stimulated the migration of primary keratinocytes in 3D. By using a proteotransciptomic approach we found that stimulation of keratinocytes with THBS4 regulated the activity of signaling pathways linked to proliferation, migration, inflammation and differentiation. Interestingly, some of the regulated genes (eg IL37, TSLP) have been associated with the pathogenesis of atopic dermatitis (AD). We concluded that THBS4 is a promising candidate for novel wound healing therapies and suggest that there is a potential convergence of pathways that stimulate cutaneous wound healing with those active in the pathogenesis of inflammatory skin diseases.
Collapse
Affiliation(s)
- Kristina Mäemets-Allas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Mariliis Klaas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | | | - Terje Arak
- Tartu University Hospital, Surgery Clinic, Puusepa 8, 50406, Tartu, Estonia
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia; Tartu University Hospital, Dermatology Clinic, Raja 31, 50417, Tartu, Estonia.
| |
Collapse
|
11
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
12
|
Fu Q, Li Y, Zhang H, Cao M, Zhang L, Gao C, Cai X, Chen D, Yang Z, Li J, Yang N, Li C. Comparative Transcriptome Analysis of Spleen Reveals Potential Regulation of Genes and Immune Pathways Following Administration of Aeromonas salmonicida subsp. masoucida Vaccine in Atlantic Salmon (Salmo salar). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:97-115. [PMID: 35084599 PMCID: PMC8792528 DOI: 10.1007/s10126-021-10089-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Aeromonas salmonicida is a global fish pathogen. Aeromonas salmonicida subsp. masoucida (ASM) is classified as atypical A. salmonicida and caused huge losses to salmonid industry in China. Hence, it is of great significance to develop ASM vaccine and explore its protection mechanism in salmonids. In this regard, we conducted RNA-seq analysis with spleen tissue of Atlantic salmon after ASM vaccination to reveal genes, their expression patterns, and pathways involved in immune protections. In our results, a total of 441.63 million clean reads were obtained, and 389.37 million reads were mapped onto the Atlantic salmon reference genome. In addition, 1125, 2126, 1098, 820, and 1351 genes were significantly up-regulated, and 747, 2626, 818, 254, and 908 genes were significantly down-regulated post-ASM vaccination at 12 h, 24 h, 1 month, 2 months, and 3 months, respectively. Subsequent pathway analysis revealed that many differentially expressed genes (DEGs) following ASM vaccination were involved in cytokine-cytokine receptor interaction (TNFRSF11b, IL-17RA, CCR9, and CXCL11), HTLV-I infection (MR1 and HTLV-1), MAPK signaling pathway (MAPK, IL8, and TNF-α-1), PI3K-Akt signaling pathway (PIK3R3, THBS4, and COL2A1), and TNF signaling pathway (PTGS2, TNFRSF21-l, and CXCL10). Finally, the results of qRT-PCR showed a significant correlation with RNA-seq results, suggesting the reliability of RNA-seq for gene expression analysis. This study provided insights into regulation of gene expression and their involved pathways in Atlantic salmon spleen in responses to vaccine, and set the foundation for further study on the vaccine protective mechanism in Atlantic salmon as well as other teleost species.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hao Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Zhang
- Shandong Sinder Technology Co., Ltd, Zhucheng, 262200, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Defeng Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ziying Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Li
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
13
|
Guadagnin E, Mohassel P, Johnson KR, Yang L, Santi M, Uapinyoying P, Dastgir J, Hu Y, Dillmann A, Cookson MR, Foley AR, Bönnemann CG. Transcriptome analysis of collagen VI-related muscular dystrophy muscle biopsies. Ann Clin Transl Neurol 2021; 8:2184-2198. [PMID: 34729958 PMCID: PMC8607456 DOI: 10.1002/acn3.51450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Objective To define the transcriptomic changes responsible for the histologic alterations in skeletal muscle and their progression in collagen VI‐related muscular dystrophy (COL6‐RD). Methods COL6‐RD patient muscle biopsies were stratified into three groups based on the overall level of pathologic severity considering degrees of fibrosis, muscle fiber atrophy, and fatty replacement of muscle tissue. Using microarray and RNA‐Seq, we then performed global gene expression profiling on the same muscle biopsies and compared their transcriptome with age‐ and sex‐matched controls. Results COL6‐RD muscle biopsy transcriptomes as a group revealed prominent upregulation of muscle extracellular matrix component genes and the downregulation of skeletal muscle and mitochondrion‐specific genes. Upregulation of the TGFβ pathway was the most conspicuous change across all biopsies and was fully evident even in the mildest/earliest histological group. There was no difference in the overall transcriptional signature between the different histologic groups but polyserial analysis identified relative changes along with COL6‐RD histological severity. Interpretation Overall, our study establishes the prominent dysregulation of extracellular matrix genes, TGFβ signaling, and its downstream cellular pathways at the transcriptomic level in COL6‐RD muscle.
Collapse
Affiliation(s)
- Eleonora Guadagnin
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| | - Kory R Johnson
- Bioinformatics Section, Intramural Information Technology & Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, BG 10 RM 5S223, Bethesda, Maryland, 20892, USA
| | - Lin Yang
- Division of Biomedical Informatics, Department of Biomedical Engineering, University of Florida, 1064 Center Drive, NEB 364, Gainsville, Florida, 32611, USA
| | - Mariarita Santi
- Department of Pathology, Children's Hospital of Philadelphia, 324 South 34th Street, Philadelphia, Pennsylvania, 19104, USA
| | - Prech Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA.,Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Jahannaz Dastgir
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA.,Atlantic Health System, Goryeb Children's Hospital, Morristown, New Jersey, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| | - Allissa Dillmann
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 35 Convent Drive, BG 35 RM 1A116, Bethesda, Maryland, 20892, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 35 Convent Drive, BG 35 RM 1A116, Bethesda, Maryland, 20892, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| |
Collapse
|
14
|
Andrés Sastre E, Maly K, Zhu M, Witte-Bouma J, Trompet D, Böhm AM, Brachvogel B, van Nieuwenhoven CA, Maes C, van Osch GJVM, Zaucke F, Farrell E. Spatiotemporal distribution of thrombospondin-4 and -5 in cartilage during endochondral bone formation and repair. Bone 2021; 150:115999. [PMID: 33971315 DOI: 10.1016/j.bone.2021.115999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
During skeletal development most bones are first formed as cartilage templates, which are gradually replaced by bone. If later in life those bones break, temporary cartilage structures emerge to bridge the fractured ends, guiding the regenerative process. This bone formation process, known as endochondral ossification (EO), has been widely studied for its potential to reveal factors that might be used to treat patients with large bone defects. The extracellular matrix of cartilage consists of different types of collagens, proteoglycans and a variety of non-collagenous proteins that organise the collagen fibers in complex networks. Thrombospondin-5, also known as cartilage oligomeric matrix protein (TSP-5/COMP) is abundant in cartilage, where it has been described to enhance collagen fibrillogenesis and to interact with a variety of growth factors, matrix proteins and cellular receptors. However, very little is known about the skeletal distribution of its homologue thrombospondin-4 (TSP-4). In our study, we compared the spatiotemporal expression of TSP-5 and TSP-4 during postnatal bone formation and fracture healing. Our results indicate that in both these settings, TSP-5 distributes across all layers of the transient cartilage, while the localisation of TSP-4 is restricted to the population of hypertrophic chondrocytes. Furthermore, in fractured bones we observed TSP-4 sparsely distributed in the periosteum, while TSP-5 was absent. Last, we analysed the chemoattractant effects of the two proteins on endothelial cells and bone marrow stem cells and hypothesised that, of the two thrombospondins, only TSP-4 might promote blood vessel invasion during ossification. We conclude that TSP-4 is a novel factor involved in bone formation. These findings reveal TSP-4 as an attractive candidate to be evaluated for bone tissue engineering purposes.
Collapse
Affiliation(s)
- E Andrés Sastre
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - K Maly
- Dr. Rolf Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt, Germany
| | - M Zhu
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Germany
| | - J Witte-Bouma
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - D Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Belgium
| | - A M Böhm
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Belgium
| | - B Brachvogel
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Germany
| | - C A van Nieuwenhoven
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC-Sophia, University Medical Center, Rotterdam, the Netherlands
| | - C Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Belgium
| | - G J V M van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Otorhinolaryngology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - F Zaucke
- Dr. Rolf Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt, Germany
| | - E Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands.
| |
Collapse
|
15
|
Kang JS, Yang YR. Circulating plasma factors involved in rejuvenation. Aging (Albany NY) 2020; 12:23394-23408. [PMID: 33197235 PMCID: PMC7746393 DOI: 10.18632/aging.103933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022]
Abstract
Aging is defined as a time-dependent functional decline that occurs in many physiological systems. This decline is the primary risk factor for prominent human pathologies such as cancer, metabolic disorders, cardiovascular disorders, and neurodegenerative diseases. Aging and age-related diseases have multiple causes. Parabiosis experiments, in which the circulatory systems of young and old mice were surgically joined, revealed that young plasma counteracts aging and rejuvenates organs in old mice, suggesting the existence of rejuvenating factors that become less abundant with aging. Diverse approaches have identified a large number of plasma proteins whose levels differ significantly between young and old mice, as well as numerous rejuvenating factors that reverse aged-related impairments in multiple tissues. These observations suggest that increasing the levels of key rejuvenating factors could promote restorative biological processes or inhibit pathological degeneration. Inspired by such findings, several companies have begun selling “young blood transfusions,” and others have tested young plasma as a treatment for Alzheimer’s disease. Here, we summarize the current findings regarding rejuvenating factors.
Collapse
Affiliation(s)
- Jae Sook Kang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
16
|
Hisaoka-Nakashima K, Yokoe T, Watanabe S, Nakamura Y, Kajitani N, Okada-Tsuchioka M, Takebayashi M, Nakata Y, Morioka N. Lysophosphatidic acid induces thrombospondin-1 production in primary cultured rat cortical astrocytes. J Neurochem 2020; 158:849-864. [PMID: 33118159 DOI: 10.1111/jnc.15227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/09/2020] [Accepted: 10/25/2020] [Indexed: 11/25/2022]
Abstract
Lysophosphatidic acid (LPA), a brain membrane-derived lipid mediator, plays important roles including neural development, function, and behavior. In the present study, the effects of LPA on astrocyte-derived synaptogenesis factor thrombospondins (TSPs) production were examined by real-time PCR and western blotting, and the mechanism underlying this event was examined by pharmacological approaches in primary cultured rat cortical astrocytes. Treatment of astrocytes with LPA increased TSP-1 mRNA, and TSP-2 mRNA, but not TSP-4 mRNA expression. TSP-1 protein expression and release were also increased by LPA. LPA-induced TSP-1 production were inhibited by AM966 a LPA1 receptor antagonist, and Ki16425, LPA1/3 receptors antagonist, but not by H2L5146303, LPA2 receptor antagonist. Pertussis toxin, Gi/o inhibitor, but not YM-254890, Gq inhibitor, and NF499, Gs inhibitor, inhibited LPA-induced TSP-1 production, indicating that LPA increases TSP-1 production through Gi/o-coupled LPA1 and LPA3 receptors. LPA treatment increased phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK). LPA-induced TSP-1 mRNA expression was inhibited by U0126, MAPK/ERK kinase (MEK) inhibitor, but not SB202190, p38 MAPK inhibitor, or SP600125, JNK inhibitor. However, LPA-induced TSP-1 protein expression was diminished with inhibition of all three MAPKs, indicating that these signaling molecules are involved in TSP-1 protein production. Treatment with antidepressants, which bind to astrocytic LPA1 receptors, increased TSP-1 mRNA and protein production. The current findings show that LPA/LPA1/3 receptors signaling increases TSP-1 production in astrocytes, which could be important in the pathogenesis of affective disorders and could potentially be a target for the treatment of affective disorders.
Collapse
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshiki Yokoe
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shintaro Watanabe
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoto Kajitani
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
Kim MS, Choi HS, Wu M, Myung J, Kim EJ, Kim YS, Ro S, Ha SE, Bartlett A, Wei L, Ryu HS, Choi SC, Park WC, Kim KY, Lee MY. Potential Role of PDGFRβ-Associated THBS4 in Colorectal Cancer Development. Cancers (Basel) 2020; 12:2533. [PMID: 32899998 PMCID: PMC7564555 DOI: 10.3390/cancers12092533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer is a significant cause of death since it frequently metastasizes to several organs such as the lung or liver. Tumor development is affected by various factors, including a tumor microenvironment, which may be an essential factor that leads to tumor growth, proliferation, invasion, and metastasis. In the tumor microenvironment, abnormal changes in various growth factors, enzymes, and cytokines can wield a strong influence on cancer. Thrombospondin-4 (THBS4), which is an extracellular matrix protein, also plays essential roles in the tumor microenvironment and mediates angiogenesis by transforming growth factor-β (TGFβ) signaling. Platelet-derived growth factor receptor β (PDGFRβ), which is a receptor tyrosine kinase and is also a downstream signal of TGFβ, is associated with invasion and metastasis in colorectal cancer. We identified that PDGFRβ and THBS4 are overexpressed in tumor tissues of colorectal cancer patients, and that PDGF-D expression increased after TGFβ treatment in the colon cancer cell line DLD-1. TGFβ and PDGF-D increased cellular THBS4 protein levels and secretion but did not increase THBS4 mRNA levels. This response was further confirmed by the inositol 1,4,5-triphosphate receptor (IP3R) and stromal interaction molecule 1 (STIM1) blockade as well as the PDGFRβ blockade. We propose that the PDGFRβ signal leads to a modification of the incomplete form of THBS4 to its complete form through IP3R, STIM1, and Ca2+-signal proteins, which further induces THBS4 secretion. Additionally, we identified that DLD-1 cell-conditioned medium stimulated with PDGF-D promotes adhesion, migration, and proliferation of colon myofibroblast CCD-18co cells, and this effect was intensified in the presence of thrombin. These findings suggest that excessive PDGFRβ signaling due to increased TGFβ and PDGF-D in colorectal tumors leads to over-secretion of THBS4 and proliferative tumor development.
Collapse
Affiliation(s)
- Min Seob Kim
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| | - Hyun Seok Choi
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| | - Moxin Wu
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| | - JiYeon Myung
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| | - Eui Joong Kim
- Department of Gastroenterology, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (E.J.K.); (Y.S.K.); (H.-S.R.); (S.C.C.)
| | - Yong Sung Kim
- Department of Gastroenterology, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (E.J.K.); (Y.S.K.); (H.-S.R.); (S.C.C.)
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.R.); (S.E.H.); (A.B.); (L.W.)
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.R.); (S.E.H.); (A.B.); (L.W.)
| | - Allison Bartlett
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.R.); (S.E.H.); (A.B.); (L.W.)
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.R.); (S.E.H.); (A.B.); (L.W.)
| | - Han-Seung Ryu
- Department of Gastroenterology, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (E.J.K.); (Y.S.K.); (H.-S.R.); (S.C.C.)
| | - Suck Chei Choi
- Department of Gastroenterology, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (E.J.K.); (Y.S.K.); (H.-S.R.); (S.C.C.)
| | - Won Cheol Park
- Department of Surgery, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (W.C.P.); (K.Y.K.)
| | - Keun Young Kim
- Department of Surgery, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (W.C.P.); (K.Y.K.)
| | - Moon Young Lee
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| |
Collapse
|
18
|
Effects of thrombospondin-4 on pro-inflammatory phenotype differentiation and apoptosis in macrophages. Cell Death Dis 2020; 11:53. [PMID: 31974349 PMCID: PMC6978349 DOI: 10.1038/s41419-020-2237-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/25/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
Thrombospondin-4 (TSP-4) attracted renewed attention recently as a result of assignment of new functions to this matricellular protein in cardiovascular, muscular, and nervous systems. We have previously reported that TSP-4 promotes local vascular inflammation in a mouse atherosclerosis model. A common variant of TSP-4, P387-TSP-4, was associated with increased cardiovascular disease risk in human population studies. In a mouse atherosclerosis model, TSP-4 had profound effect on accumulation of macrophages in lesions, which prompted us to examine its effects on macrophages in more detail. We examined the effects of A387-TSP-4 and P387-TSP-4 on mouse macrophages in cell culture and in vivo in the model of LPS-induced peritonitis. In tissues and in cell culture, TSP-4 expression was associated with inflammation: TSP-4 expression was upregulated in peritoneal tissues in LPS-induced peritonitis, and pro-inflammatory signals, INFγ, GM-CSF, and LPS, induced TSP-4 expression in macrophages in vivo and in cell culture. Deficiency in TSP-4 in macrophages from Thbs4−/− mice reduced the expression of pro-inflammatory macrophage markers, suggesting that TSP-4 facilitates macrophage differentiation into a pro-inflammatory phenotype. Expression of TSP-4, especially more active P387-TSP-4, was associated with higher cellular apoptosis. Cultured macrophages displayed increased adhesion to TSP-4 and reduced migration in presence of TSP-4, and these responses were further increased with P387 variant. We concluded that TSP-4 expression in macrophages increases their accumulation in tissues during the acute inflammatory process and supports macrophage differentiation into a pro-inflammatory phenotype. In a model of acute inflammation, TSP-4 supports pro-inflammatory macrophage apoptosis, a response that is closely related to their pro-inflammatory activity and release of pro-inflammatory signals. P387-TSP-4 was found to be the more active form of TSP-4 in all examined functions.
Collapse
|
19
|
Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. Proc Natl Acad Sci U S A 2019; 116:12524-12533. [PMID: 31160442 DOI: 10.1073/pnas.1902672116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aging drives a progressive decline in cognition and decreases synapse numbers and synaptic function in the brain, thereby increasing the risk for neurodegenerative disease. Pioneering studies showed that introduction of blood from young mice into aged mice reversed age-associated cognitive impairments and increased synaptic connectivity in brain, suggesting that young blood contains specific factors that remediate age-associated decreases in brain function. However, whether such factors in blood from young animals act directly on neurons to enhance synaptic connectivity, or whether they act by an indirect mechanism remains unknown. Moreover, which factors in young blood mediate cognitive improvements in old mice is incompletely understood. Here, we show that serum extracted from the blood of young but not old mice, when applied to neurons transdifferentiated from human embryonic stem cells, directly increased dendritic arborization, augmented synapse numbers, doubled dendritic spine-like structures, and elevated synaptic N-methyl-d-aspartate (NMDA) receptors, thereby increasing synaptic connectivity. Mass spectrometry revealed that thrombospondin-4 (THBS4) and SPARC-like protein 1 (SPARCL1) were enriched in serum from young mice. Strikingly, recombinant THBS4 and SPARCL1 both increased dendritic arborization and doubled synapse numbers in cultured neurons. In addition, SPARCL1 but not THBS4 tripled NMDA receptor-mediated synaptic responses. Thus, at least two proteins enriched in young blood, THBS4 and SPARCL1, directly act on neurons as synaptogenic factors. These proteins may represent rejuvenation factors that enhance synaptic connectivity by increasing dendritic arborization, synapse formation, and synaptic transmission.
Collapse
|
20
|
Thrombospondin-4 expression as a prognostic marker in hepatocellular carcinoma. Gene 2019; 696:219-224. [PMID: 30802535 DOI: 10.1016/j.gene.2019.02.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/02/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS The extracellular calcium-binding protein family member thrombospondin-4 (THBS4) regulates cell migration, proliferation, attachment, adhesion, angiogenesis, neural development, tissue structure, organ development, pain signal transduction, and tumor growth. The aim of this study was to study THBS4 expression in hepatocellular carcinoma (HCC) and determine if it was a prognostic marker for this malignancy. METHODS We used immunohistochemistry and tissue microarrays to evaluate THBS4 expression in 84 HCC and matched para-cancerous tissues. Then, we assessed relationships between THBS4 expression and clinicopathological parameters. RESULTS THBS4 expression was higher in HCCs than in matched para-cancerous tissues (P < 0.001). There was a significant correlation between high THBS4 levels and preoperative serum alanine aminotransferase (P < 0.04). In HCC patients, high THBS4 expression was associated with shorter overall and disease-free survival compared with low THBS4 expression. Additionally, subgroup analysis showed that high THBS4 levels were only associated with poor overall survival for alpha-fetoprotein >40 ng/mL (P = 0.028) and cirrhosis (P = 0.002). Multivariate analysis showed that high THBS4 expression was an independent prognostic factor for both overall and disease-free survival. CONCLUSIONS Our data suggest that THBS4 may play a role in HCC development, and thus may be an independent prognostic marker and/or potential therapeutic target for HCC patients.
Collapse
|
21
|
Abstract
Voltage-gated calcium (CaV) channels are associated with β and α2δ auxiliary subunits. This review will concentrate on the function of the α2δ protein family, which has four members. The canonical role for α2δ subunits is to convey a variety of properties on the CaV1 and CaV2 channels, increasing the density of these channels in the plasma membrane and also enhancing their function. More recently, a diverse spectrum of non-canonical interactions for α2δ proteins has been proposed, some of which involve competition with calcium channels for α2δ or increase α2δ trafficking and others which mediate roles completely unrelated to their calcium channel function. The novel roles for α2δ proteins which will be discussed here include association with low-density lipoprotein receptor-related protein 1 (LRP1), thrombospondins, α-neurexins, prion proteins, large conductance (big) potassium (BK) channels, and N-methyl-d-aspartate (NMDA) receptors.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
22
|
Posey KL, Coustry F, Hecht JT. Cartilage oligomeric matrix protein: COMPopathies and beyond. Matrix Biol 2018; 71-72:161-173. [PMID: 29530484 PMCID: PMC6129439 DOI: 10.1016/j.matbio.2018.02.023] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023]
Abstract
Cartilage oligomeric matrix protein (COMP) is a large pentameric glycoprotein that interacts with multiple extracellular matrix proteins in cartilage and other tissues. While, COMP is known to play a role in collagen secretion and fibrillogenesis, chondrocyte proliferation and mechanical strength of tendons, the complete range of COMP functions remains to be defined. COMPopathies describe pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED), two skeletal dysplasias caused by autosomal dominant COMP mutations. The majority of the mutations are in the calcium binding domains and compromise protein folding. COMPopathies are ER storage disorders in which the retention of COMP in the chondrocyte ER stimulates overwhelming cellular stress. The retention causes oxidative and inflammation processes leading to chondrocyte death and loss of long bone growth. In contrast, dysregulation of wild-type COMP expression is found in numerous diseases including: fibrosis, cardiomyopathy and breast and prostate cancers. The most exciting clinical application is the use of COMP as a biomarker for idiopathic pulmonary fibrosis and cartilage degeneration associated osteoarthritis and rheumatoid and, as a prognostic marker for joint injury. The ever expanding roles of COMP in single gene disorders and multifactorial diseases will lead to a better understanding of its functions in ECM and tissue homeostasis towards the goal of developing new therapeutic avenues.
Collapse
Affiliation(s)
- Karen L Posey
- McGovern Medical School, UTHealth, Department of Pediatrics, United States.
| | - Francoise Coustry
- McGovern Medical School, UTHealth, Department of Pediatrics, United States
| | - Jacqueline T Hecht
- McGovern Medical School, UTHealth, Department of Pediatrics, United States; UTHealth, School of Dentistry, United States
| |
Collapse
|
23
|
Palao T, Medzikovic L, Rippe C, Wanga S, Al-Mardini C, van Weert A, de Vos J, van der Wel NN, van Veen HA, van Bavel ET, Swärd K, de Waard V, Bakker ENTP. Thrombospondin-4 mediates cardiovascular remodelling in angiotensin II-induced hypertension. Cardiovasc Pathol 2018; 35:12-19. [DOI: 10.1016/j.carpath.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022] Open
|
24
|
Ferrer-Ferrer M, Dityatev A. Shaping Synapses by the Neural Extracellular Matrix. Front Neuroanat 2018; 12:40. [PMID: 29867379 PMCID: PMC5962695 DOI: 10.3389/fnana.2018.00040] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Accumulating data support the importance of interactions between pre- and postsynaptic neuronal elements with astroglial processes and extracellular matrix (ECM) for formation and plasticity of chemical synapses, and thus validate the concept of a tetrapartite synapse. Here we outline the major mechanisms driving: (i) synaptogenesis by secreted extracellular scaffolding molecules, like thrombospondins (TSPs), neuronal pentraxins (NPs) and cerebellins, which respectively promote presynaptic, postsynaptic differentiation or both; (ii) maturation of synapses via reelin and integrin ligands-mediated signaling; and (iii) regulation of synaptic plasticity by ECM-dependent control of induction and consolidation of new synaptic configurations. Particularly, we focused on potential importance of activity-dependent concerted activation of multiple extracellular proteases, such as ADAMTS4/5/15, MMP9 and neurotrypsin, for permissive and instructive events in synaptic remodeling through localized degradation of perisynaptic ECM and generation of proteolytic fragments as inducers of synaptic plasticity.
Collapse
Affiliation(s)
- Maura Ferrer-Ferrer
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
25
|
Drago F, Lombardi M, Prada I, Gabrielli M, Joshi P, Cojoc D, Franck J, Fournier I, Vizioli J, Verderio C. ATP Modifies the Proteome of Extracellular Vesicles Released by Microglia and Influences Their Action on Astrocytes. Front Pharmacol 2017; 8:910. [PMID: 29321741 PMCID: PMC5733563 DOI: 10.3389/fphar.2017.00910] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
Extracellular ATP is among molecules promoting microglia activation and inducing the release of extracellular vesicles (EVs), which are potent mediators of intercellular communication between microglia and the microenvironment. We previously showed that EVs produced under ATP stimulation (ATP-EVs) propagate a robust inflammatory reaction among astrocytes and microglia in vitro and in mice with subclinical neuroinflammation (Verderio et al., 2012). However, the proteome of EVs released upon ATP stimulation has not yet been elucidated. In this study we applied a label free proteomic approach to characterize the proteome of EVs released constitutively and during microglia activation with ATP. We show that ATP drives sorting in EVs of a set of proteins implicated in cell adhesion/extracellular matrix organization, autophagy-lysosomal pathway and cellular metabolism, that may influence the response of recipient astrocytes to EVs. These data provide new clues to molecular mechanisms involved in microglia response to ATP and in microglia signaling to the environment via EVs.
Collapse
Affiliation(s)
- Francesco Drago
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France.,Fondazione Istituto Oncologico del Mediterraneo, Viagrande, Italy
| | | | | | | | - Pooja Joshi
- Institute of Neuroscience (CNR), Milan, Italy
| | - Dan Cojoc
- Institute of Materials (CNR), Trieste, Italy
| | - Julien Franck
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Isabelle Fournier
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Jacopo Vizioli
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Claudia Verderio
- IRCCS Humanitas, Rozzano, Italy.,Institute of Neuroscience (CNR), Milan, Italy
| |
Collapse
|
26
|
Stenina-Adognravi O, Plow EF. Thrombospondin-4 in tissue remodeling. Matrix Biol 2017; 75-76:300-313. [PMID: 29138119 DOI: 10.1016/j.matbio.2017.11.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023]
Abstract
Thrombospondin-4 (TSP-4) belongs to the thrombospondin protein family that consists of five highly homologous members. A number of novel functions have been recently assigned to TSP-4 in cardiovascular and nervous systems, inflammation, cancer, and the motor unit, which have attracted attention to this extracellular matrix (ECM) protein. These newly discovered functions set TSP-4 apart from other thrombospondins. For example, TSP-4 promotes angiogenesis while other TSPs either prevent it or have no effect on new blood vessel growth; TSP-4 reduces fibrosis and collagen production while TSP-1 and TSP-2 promote fibrosis in several organs; unlike other TSPs, TSP-4 appears to have some structural functions in ECM. The current information about TSP-4 functions in different organs and physiological systems suggests that this evolutionary conserved protein is a major regulator of the extracellular matrix (ECM) organization and production and tissue remodeling during the embryonic development and response to injury. In this review article, we summarize the properties and functions of TSP-4 and discuss its role in tissue remodeling.
Collapse
Affiliation(s)
- Olga Stenina-Adognravi
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| | - Edward F Plow
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| |
Collapse
|
27
|
Schulze J, Kaiser O, Paasche G, Lamm H, Pich A, Hoffmann A, Lenarz T, Warnecke A. Effect of hyperbaric oxygen on BDNF-release and neuroprotection: Investigations with human mesenchymal stem cells and genetically modified NIH3T3 fibroblasts as putative cell therapeutics. PLoS One 2017; 12:e0178182. [PMID: 28542481 PMCID: PMC5441643 DOI: 10.1371/journal.pone.0178182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/09/2017] [Indexed: 12/30/2022] Open
Abstract
Hyperbaric oxygen therapy (HBOT) is a noninvasive widely applied treatment that increases the oxygen pressure in tissues. In cochlear implant (CI) research, intracochlear application of neurotrophic factors (NTFs) is able to improve survival of spiral ganglion neurons (SGN) after deafness. Cell-based delivery of NTFs such as brain-derived neurotrophic factor (BDNF) may be realized by cell-coating of the surface of the CI electrode. Human mesenchymal stem cells (MSC) secrete a variety of different neurotrophic factors and may be used for the development of a biohybrid electrode in order to release endogenously-derived neuroprotective factors for the protection of residual SGN and for a guided outgrowth of dendrites in the direction of the CI electrode. HBOT could be used to influence cell behaviour after transplantation to the inner ear. The aim of this study was to investigate the effect of HBOT on the proliferation, BDNF-release and secretion of neuroprotective factors. Thus, model cells (an immortalized fibroblast cell line (NIH3T3)–native and genetically modified) and MSCs were repeatedly (3 x – 10 x) exposed to 100% oxygen at different pressures. The effects of HBO on cell proliferation were investigated in relation to normoxic and normobaric conditions (NOR). Moreover, the neuroprotective and neuroregenerative effects of HBO-treated cells were analysed by cultivation of SGN in conditioned medium. Both, the genetically modified NIH3T3/BDNF and native NIH3T3 fibroblasts, showed a highly significant increased proliferation after five days of HBOT in comparison to normoxic controls. By contrast, the number of MSCs was decreased in MSCs treated with 2.0 bar of HBO. Treating SGN cultures with supernatants of fibroblasts and MSCs significantly increased the survival rate of SGN. HBO treatment did not influence (increase / reduce) this effect. Secretome analysis showed that HBO treatment altered the protein expression pattern in MSCs.
Collapse
Affiliation(s)
- Jennifer Schulze
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover, Germany
- * E-mail:
| | - Odett Kaiser
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover, Germany
| | - Gerrit Paasche
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover, Germany
| | - Hans Lamm
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Core Facility Proteomics, Hannover Medical School, Hannover, Germany
| | - Andrea Hoffmann
- Department of Orthopaedic Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover, Germany
| |
Collapse
|
28
|
Campo C, da Silva Filho MI, Weinhold N, Mahmoudpour SH, Goldschmidt H, Hemminki K, Merz M, Försti A. Bortezomib-induced peripheral neuropathy: A genome-wide association study on multiple myeloma patients. Hematol Oncol 2017; 36:232-237. [PMID: 28317148 DOI: 10.1002/hon.2391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 01/02/2023]
Abstract
The proteasome-inhibitor bortezomib was introduced into the treatment of multiple myeloma more than a decade ago. It is clinically beneficial, but peripheral neuropathy (PNP) is a side effect that may limit its use in some patients. To examine the possible genetic predisposing factors to PNP, we performed a genome-wide association study on 646 bortezomib-treated German multiple myeloma patients. Our aim was to identify genetic risk variants associated with the development of PNP as a serious side effect of the treatment. We identified 4 new promising loci for bortezomib-induced PNP at 4q34.3 (rs6552496), 5q14.1 (rs12521798), 16q23.3 (rs8060632), and 18q21.2 (rs17748074). Even though the results did not reach genome-wide significance level, they support the idea of previous studies, suggesting a genetic basis for neurotoxicity. The identified single nucleotide polymorphisms map to genes or next to genes involved in the development and function of the nervous system (CDH13, DCC, and TENM3). As possible functional clues, 2 of the variants, rs12521798 and rs17748074, affect enhancer histone marks in the brain. The rs12521798 may also impact expression of THBS4, which affects specific signal trasduction pathways in the nervous system. Further research is needed to clarify the mechanism of action of the identified single nucleotide polymorphisms in the development of drug-induced PNP and to functionally validate our in silico predictions.
Collapse
Affiliation(s)
- Chiara Campo
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Niels Weinhold
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,National Centre of Tumor Diseases, Heidelberg, Germany
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Maximilian Merz
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Primary Health Care Research, Lund University, Malmö, Sweden
| |
Collapse
|
29
|
Guo Y, Zhang Z, Wu HE, Luo ZD, Hogan QH, Pan B. Increased thrombospondin-4 after nerve injury mediates disruption of intracellular calcium signaling in primary sensory neurons. Neuropharmacology 2017; 117:292-304. [PMID: 28232180 DOI: 10.1016/j.neuropharm.2017.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/31/2017] [Accepted: 02/18/2017] [Indexed: 12/14/2022]
Abstract
Painful nerve injury disrupts Ca2+ signaling in primary sensory neurons by elevating plasma membrane Ca2+-ATPase (PMCA) function and depressing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) function, which decreases endoplasmic reticulum (ER) Ca2+ stores and stimulates store-operated Ca2+ entry (SOCE). The extracellular matrix glycoprotein thrombospondin-4 (TSP4), which is increased after painful nerve injury, decreases Ca2+ current (ICa) through high-voltage-activated Ca2+ channels and increases ICa through low-voltage-activated Ca2+ channels in dorsal root ganglion neurons, which are events similar to the effect of nerve injury. We therefore examined whether TSP4 plays a critical role in injury-induced disruption of intracellular Ca2+ signaling. We found that TSP4 increases PMCA activity, inhibits SERCA, depletes ER Ca2+ stores, and enhances store-operated Ca2+ influx. Injury-induced changes of SERCA and PMCA function are attenuated in TSP4 knock-out mice. Effects of TSP4 on intracellular Ca2+ signaling are attenuated in voltage-gated Ca2+ channel α2δ1 subunit (Cavα2δ1) conditional knock-out mice and are also Protein Kinase C (PKC) signaling dependent. These findings suggest that TSP4 elevation may contribute to the pathogenesis of chronic pain following nerve injury by disrupting intracellular Ca2+ signaling via interacting with the Cavα2δ1 and the subsequent PKC signaling pathway. Controlling TSP4 mediated intracellular Ca2+ signaling in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Zhiyong Zhang
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Hsiang-En Wu
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Z David Luo
- Department of Anesthesiology & Perioperative Care, University of California Irvine, Irvine, CA 92697, United States; Department of Pharmacology, University of California Irvine, Irvine, CA 92697, United States
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| |
Collapse
|
30
|
Yang HJ, Ma SP, Ju F, Zhang YP, Li ZC, Zhang BB, Lian JJ, Wang L, Cheng BF, Wang M, Feng ZW. Thrombospondin-4 Promotes Neuronal Differentiation of NG2 Cells via the ERK/MAPK Pathway. J Mol Neurosci 2016; 60:517-524. [DOI: 10.1007/s12031-016-0845-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/13/2016] [Indexed: 11/29/2022]
|
31
|
Liu J, Cheng G, Yang H, Deng X, Qin C, Hua L, Yin C. Reciprocal regulation of long noncoding RNAs THBS4‑003 and THBS4 control migration and invasion in prostate cancer cell lines. Mol Med Rep 2016; 14:1451-8. [PMID: 27357608 PMCID: PMC4940078 DOI: 10.3892/mmr.2016.5443] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 02/18/2016] [Indexed: 01/21/2023] Open
Abstract
Increasing evidence implicates long noncoding RNAs (lncRNAs), a class of noncoding RNAs >200 nucleotides in length, in the development of cancer. However, the mechanism underlying the effects of lncRNAs in prostate cancer (PCa) remains to be elucidated. The present study aimed to investigate the role of lncRNA-THBS4-003 in the pathogensis of PCa. In the present study, a microarray containing 8,277 lncRNA probes and 32,207 mRNA probes were used to identify dysregulated mRNAs in three patients with PCa, and reverse transcription-quantitative polymerase chain reaction was used to determine the expression levels of thrombospondin 4 (THBS4) and lncRNA-THBS4-003 in 46 primary PCa and adjacent non-tumor tissue samples. The expression levels of THBS4 were determined in six samples of PCa and adjacent non-tumor tissues using Western blot analysis. The effects of forced THBS4 knockdown and lncRNA-THBS4-003 knockdown in the two PCa cell lines, DU145 and PC-3, were evaluated using cell migration and invasion assays, as well as using Western blot analysis. Of the 40,484 probes in the microarray, 354 were significantly upregulated (P<0.05; fold-change >2). The most significantly upregulated mRNA was THBS4. The expression levels of THBS4 and lncRNA-THBS4-003 in the 46 primary PCa samples was significantly higher, compared with that in the adjacent non-tumor tissue samples. Patients with Gleason scores >7 exhibited higher expression levels of lncRNA-THBS4-003, compared with patients with lower scores. Knockdown of THBS4 or lncRNA-THBS4-003 significantly reduced the migratory and invasive abilities of the PCa cells in vitro, and decreased the expression levels of p38 and matrix metal-loproteinase (MMP)-9. These findings suggested that the reciprocal regulation of lncRNA-THBS4-003 and THBS4 contributed to the pathogenesis of PCa. Therefore silencing lncRNA-THBS4-003 or THBS4 may inhibit PCa cell migration and invasion, and regulate the levels of MMP-9 through the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Jinliang Liu
- State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Gong Cheng
- State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Haiwei Yang
- State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaheng Deng
- State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chao Qin
- State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lixin Hua
- State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Changjun Yin
- State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
32
|
Park J, Yu YP, Zhou CY, Li KW, Wang D, Chang E, Kim DS, Vo B, Zhang X, Gong N, Sharp K, Steward O, Vitko I, Perez-Reyes E, Eroglu C, Barres B, Zaucke F, Feng G, Luo ZD. Central Mechanisms Mediating Thrombospondin-4-induced Pain States. J Biol Chem 2016; 291:13335-48. [PMID: 27129212 DOI: 10.1074/jbc.m116.723478] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 12/30/2022] Open
Abstract
Peripheral nerve injury induces increased expression of thrombospondin-4 (TSP4) in spinal cord and dorsal root ganglia that contributes to neuropathic pain states through unknown mechanisms. Here, we test the hypothesis that TSP4 activates its receptor, the voltage-gated calcium channel Cavα2δ1 subunit (Cavα2δ1), on sensory afferent terminals in dorsal spinal cord to promote excitatory synaptogenesis and central sensitization that contribute to neuropathic pain states. We show that there is a direct molecular interaction between TSP4 and Cavα2δ1 in the spinal cord in vivo and that TSP4/Cavα2δ1-dependent processes lead to increased behavioral sensitivities to stimuli. In dorsal spinal cord, TSP4/Cavα2δ1-dependent processes lead to increased frequency of miniature and amplitude of evoked excitatory post-synaptic currents in second-order neurons as well as increased VGlut2- and PSD95-positive puncta, indicative of increased excitatory synapses. Blockade of TSP4/Cavα2δ1-dependent processes with Cavα2δ1 ligand gabapentin or genetic Cavα2δ1 knockdown blocks TSP4 induced nociception and its pathological correlates. Conversely, TSP4 antibodies or genetic ablation blocks nociception and changes in synaptic transmission in mice overexpressing Cavα2δ1 Importantly, TSP4/Cavα2δ1-dependent processes also lead to similar behavioral and pathological changes in a neuropathic pain model of peripheral nerve injury. Thus, a TSP4/Cavα2δ1-dependent pathway activated by TSP4 or peripheral nerve injury promotes exaggerated presynaptic excitatory input and evoked sensory neuron hyperexcitability and excitatory synaptogenesis, which together lead to central sensitization and pain state development.
Collapse
Affiliation(s)
- John Park
- From the Department of Pharmacology and
| | | | | | - Kang-Wu Li
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Dongqing Wang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Eric Chang
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Doo-Sik Kim
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Benjamin Vo
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Xia Zhang
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Nian Gong
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Kelli Sharp
- Reeve-Irvine Research Center, University of California, Irvine, School of Medicine, Irvine, California 92697
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, Irvine, School of Medicine, Irvine, California 92697
| | - Iuliia Vitko
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Cagla Eroglu
- Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Ben Barres
- Department of Neurobiology, Stanford University, Stanford, California 94305, and
| | - Frank Zaucke
- Center for Biochemistry and Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, D50931 Cologne, Germany
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Z David Luo
- From the Department of Pharmacology and Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697, Reeve-Irvine Research Center, University of California, Irvine, School of Medicine, Irvine, California 92697,
| |
Collapse
|
33
|
Lana B, Page KM, Kadurin I, Ho S, Nieto-Rostro M, Dolphin AC. Thrombospondin-4 reduces binding affinity of [(3)H]-gabapentin to calcium-channel α2δ-1-subunit but does not interact with α2δ-1 on the cell-surface when co-expressed. Sci Rep 2016; 6:24531. [PMID: 27076051 PMCID: PMC4830977 DOI: 10.1038/srep24531] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/30/2016] [Indexed: 01/09/2023] Open
Abstract
The α2δ proteins are auxiliary subunits of voltage-gated calcium channels, and influence their trafficking and biophysical properties. The α2δ ligand gabapentin interacts with α2δ-1, and inhibits calcium channel trafficking. However, α2-1 has also been proposed to play a synaptogenic role, independent of calcium channel function. In this regard, α2δ-1 was identified as a ligand of thrombospondins, with the interaction involving the thrombospondin synaptogenic domain and the α2δ-1 von-Willebrand-factor domain. Co-immunoprecipitation between α2δ-1 and the synaptogenic domain of thrombospondin-2 was prevented by gabapentin. We therefore examined whether interaction of thrombospondin with α2δ-1 might reciprocally influence (3)H-gabapentin binding. We concentrated on thrombospondin-4, because, like α2δ-1, it is upregulated in neuropathic pain models. We found that in membranes from cells co-transfected with α2δ-1 and thrombospondin-4, there was a Mg(2+) -dependent reduction in affinity of (3)H-gabapentin binding to α2δ-1. This effect was lost for α2δ-1 with mutations in the von-Willebrand-factor-A domain. However, the effect on (3)H-gabapentin binding was not reproduced by the synaptogenic EGF-domain of thrombospondin-4. Partial co-immunoprecipitation could be demonstrated between thrombospondin-4 and α2δ-1 when co-transfected, but there was no co-immunoprecipitation with thrombospondin-4-EGF domain. Furthermore, we could not detect any association between these two proteins on the cell-surface, indicating the demonstrated interaction occurs intracellularly.
Collapse
Affiliation(s)
- Beatrice Lana
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Karen M Page
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Ivan Kadurin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Shuxian Ho
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Manuela Nieto-Rostro
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| |
Collapse
|
34
|
Dissection of Thrombospondin-4 Domains Involved in Intracellular Adaptive Endoplasmic Reticulum Stress-Responsive Signaling. Mol Cell Biol 2015; 36:2-12. [PMID: 26459760 DOI: 10.1128/mcb.00607-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/01/2015] [Indexed: 12/27/2022] Open
Abstract
Thrombospondins are a family of stress-inducible secreted glycoproteins that underlie tissue remodeling. We recently reported that thrombospondin-4 (Thbs4) has a critical intracellular function, regulating the adaptive endoplasmic reticulum (ER) stress pathway through activating transcription factor 6α (Atf6α). In the present study, we dissected the domains of Thbs4 that mediate interactions with ER proteins, such as BiP (Grp78) and Atf6α, and the domains mediating activation of the ER stress response. Functionally, Thbs4 localized to the ER and post-ER vesicles and was actively secreted from cardiomyocytes, as were the type III repeat (T3R) and TSP-C domains, while the LamG domain localized to the Golgi apparatus. We also mutated the major calcium-binding motifs within the T3R domain of full-length Thbs4, causing ER retention and secretion blockade. The T3R and TSP-C domains as well as wild-type Thbs4 and the calcium-binding mutant interacted with Atf6α, induced an adaptive ER stress response, and caused expansion of intracellular vesicles. In contrast, overexpression of a related secreted oligomeric glycoprotein, Nell2, which lacks only the T3R and TSP-C domains, did not cause these effects. Finally, deletion of Atf6α abrogated Thbs4-induced vesicular expansion. Taken together, these data identify the critical intracellular functional domains of Thbs4, which was formerly thought to have only extracellular functions.
Collapse
|
35
|
Li Q, Uygun BE, Geerts S, Ozer S, Scalf M, Gilpin SE, Ott HC, Yarmush ML, Smith LM, Welham NV, Frey BL. Proteomic analysis of naturally-sourced biological scaffolds. Biomaterials 2015; 75:37-46. [PMID: 26476196 DOI: 10.1016/j.biomaterials.2015.10.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022]
Abstract
A key challenge to the clinical implementation of decellularized scaffold-based tissue engineering lies in understanding the process of removing cells and immunogenic material from a donor tissue/organ while maintaining the biochemical and biophysical properties of the scaffold that will promote growth of newly seeded cells. Current criteria for evaluating whole organ decellularization are primarily based on nucleic acids, as they are easy to quantify and have been directly correlated to adverse host responses. However, numerous proteins cause immunogenic responses and thus should be measured directly to further understand and quantify the efficacy of decellularization. In addition, there has been increasing appreciation for the role of the various protein components of the extracellular matrix (ECM) in directing cell growth and regulating organ function. We performed in-depth proteomic analysis on four types of biological scaffolds and identified a large number of both remnant cellular and ECM proteins. Measurements of individual protein abundances during the decellularization process revealed significant removal of numerous cellular proteins, but preservation of most structural matrix proteins. The observation that decellularized scaffolds still contain many cellular proteins, although at decreased abundance, indicates that elimination of DNA does not assure adequate removal of all cellular material. Thus, proteomic analysis provides crucial characterization of the decellularization process to create biological scaffolds for future tissue/organ replacement therapies.
Collapse
Affiliation(s)
- Qiyao Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Sharon Geerts
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Sinan Ozer
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah E Gilpin
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nathan V Welham
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| | - Brian L Frey
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
36
|
Riwaldt S, Pietsch J, Sickmann A, Bauer J, Braun M, Segerer J, Schwarzwälder A, Aleshcheva G, Corydon TJ, Infanger M, Grimm D. Identification of proteins involved in inhibition of spheroid formation under microgravity. Proteomics 2015; 15:2945-52. [PMID: 25930030 DOI: 10.1002/pmic.201500067] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/27/2015] [Accepted: 04/24/2015] [Indexed: 12/23/2022]
Abstract
Many types of cells transit in vitro from a two- to a three-dimensional growth, when they are exposed to microgravity. The underlying mechanisms are not yet understood. Hence, we investigated the impact of microgravity on protein content and growth behavior. For this purpose, the human thyroid cancer cells FTC-133 were seeded either in recently developed cell containers that can endure enhanced physical forces and perform media changes and cell harvesting automatically or in T-25 culture flasks. All cells were cultured for five days at 1g. Afterwards, a part of the cell containers were flown to the International Space Station, while another part was kept on the ground. T-25 flasks were mounted on and next to a Random Positioning Machine. The cells were cultured for 12 days under the various conditions, before they were fixed with RNAlater. All fixed cultures showed monolayers, but three-dimensional aggregates were not detected. In a subsequent protein analysis, 180 proteins were identified by mass spectrometry. These proteins did not indicate significant differences between cells exposed to microgravity and their 1g controls. However, they suggest that an enhanced production of proteins related to the extracellular matrix could detain the cells from spheroid formation, while profilin-1 is phosphorylated.
Collapse
Affiliation(s)
- Stefan Riwaldt
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University-Magdeburg, Magdeburg, Germany
| | - Jessica Pietsch
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University-Magdeburg, Magdeburg, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V, Dortmund, Germany
| | - Johann Bauer
- Max-Planck Institute for Biochemistry, Martinsried, Germany
| | - Markus Braun
- Institute for Molecular Physiology and Biotechnology of Plants (IMBIO), Gravitational Biology Group, University of Bonn, Bonn, Germany
| | | | | | - Ganna Aleshcheva
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University-Magdeburg, Magdeburg, Germany
| | | | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University-Magdeburg, Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
37
|
Hippocampal Pruning as a New Theory of Schizophrenia Etiopathogenesis. Mol Neurobiol 2015; 53:2065-2081. [PMID: 25902861 DOI: 10.1007/s12035-015-9174-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/13/2015] [Indexed: 12/20/2022]
Abstract
Pruning in neurons has been suggested to be strongly involved in Schizophrenia's (SKZ) etiopathogenesis in recent biological, imaging, and genetic studies. We investigated the impact of protein-coding genes known to be involved in pruning, collected by a systematic literature research, in shaping the risk for SKZ in a case-control sample of 9,490 subjects (Psychiatric Genomics Consortium). Moreover, their modifications through evolution (humans, chimpanzees, and rats) and subcellular localization (as indicative of their biological function) were also investigated. We also performed a biological pathways (Gene Ontology) analysis. Genetics analyses found four genes (DLG1, NOS1, THBS4, and FADS1) and 17 pathways strongly involved in pruning and SKZ in previous literature findings to be significantly associated with the sample under analysis. The analysis of the subcellular localization found that secreted genes, and so regulatory ones, are the least conserved through evolution and also the most associated with SKZ. Their cell line and regional brain expression analysis found that their areas of primary expression are neuropil and the hippocampus, respectively. At the best of our knowledge, for the first time, we were able to describe the SKZ neurodevelopmental hypothesis starting from a single biological process. We can also hypothesize how alterations in pruning fine regulation and orchestration, strongly related with the evolutionary newest (and so more sensitive) secreted proteins, may be of particular relevance in the hippocampus. This early alteration may lead to a mis-structuration of neural connectivity, resulting in the different brain alteration that characterizes SKZ patients.
Collapse
|
38
|
Mitra A, Luo J, He Y, Gu Y, Zhang H, Zhao K, Cui K, Song J. Histone modifications induced by MDV infection at early cytolytic and latency phases. BMC Genomics 2015; 16:311. [PMID: 25896894 PMCID: PMC4404578 DOI: 10.1186/s12864-015-1492-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/27/2015] [Indexed: 12/19/2022] Open
Abstract
Background Marek’s disease (MD) is a highly contagious, lymphomatous disease of chickens induced by a herpesvirus, Marek’s disease virus (MDV) that is the cause of major annual losses to the poultry industry. MD pathogenesis involves multiple stages including an early cytolytic phase and latency, and transitions between these stages are governed by several host and environmental factors. The success of vaccination strategies has led to the increased virulence of MDV and selective breeding of naturally resistant chickens is seen as a viable alternative. While multiple gene expression studies have been performed in resistant and susceptible populations, little is known about the epigenetic effects of infection. Results In this study, we investigated temporal chromatin signatures induced by MDV by analyzing early cytolytic and latent phases of infection in the bursa of Fabricius of MD-resistant and –susceptible birds. Major global variations in chromatin marks were observed at different stages of MD in the two lines. Differential H3K27me3 marks were associated with immune-related pathways, such as MAP kinase signaling, focal adhesion and neuroactive ligand receptor interaction, and suggested varying degrees of silencing in response to infection. Immune-related microRNAs, e.g. gga-miR-155 and gga-miR-10b, bore chromatin signatures, which suggested their contribution to MD-susceptibility. Finally, several members of the focal adhesion pathway, e.g. THBS4 and ITGA1, showed marked concordance between gene expression and chromatin marks indicating putative epigenetic regulation in response to MDV infection. Conclusion Our comprehensive analysis of chromatin signatures, therefore, revealed further clues about the epigenetic effects of MDV infection although further studies are necessary to elucidate the functional implications of the observed variations in histone modifications. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1492-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Apratim Mitra
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| | - Juan Luo
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| | - Yanghua He
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| | - Yulan Gu
- Department of Animal Breeding and Genetics, College of Animal Sciences, China Agricultural University, Beijing, 100193, P.R. China.
| | - Huanmin Zhang
- USDA, ARS, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA.
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Kairong Cui
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
39
|
Wang B, Guo W, Huang Y. Thrombospondins and synaptogenesis. Neural Regen Res 2015; 7:1737-43. [PMID: 25624796 PMCID: PMC4302456 DOI: 10.3969/j.issn.1673-5374.2012.22.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/03/2012] [Indexed: 12/28/2022] Open
Abstract
Here, we review research on the mechanisms underlying the ability of thrombospondin to promote synaptogenesis and examine its role in central nervous system diseases and drug actions. Thrombospondin secreted by glial cells plays a critical role in synaptogenesis and maintains synapse stability. Thrombospondin regulates synaptogenesis through receptor α2δ-1 and neuroligin 1, and promotes the proliferation and differentiation of neural progenitor cells. It also participates in synaptic remodeling following injury and in the action of some nervous system drugs.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| | - Weitao Guo
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| | - Yun Huang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| |
Collapse
|
40
|
Crosby ND, Zaucke F, Kras JV, Dong L, Luo ZD, Winkelstein BA. Thrombospondin-4 and excitatory synaptogenesis promote spinal sensitization after painful mechanical joint injury. Exp Neurol 2014; 264:111-20. [PMID: 25483397 DOI: 10.1016/j.expneurol.2014.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 02/08/2023]
Abstract
Facet joint injury induces persistent pain that may be maintained by structural plasticity in the spinal cord. Astrocyte-derived thrombospondins, especially thrombospondin-4 (TSP4), have been implicated in synaptogenesis and spinal sensitization in neuropathic pain, but the TSP4 response and its relationship to synaptic changes in the spinal cord have not been investigated for painful joint injury. This study investigates the role of TSP4 in the development and maintenance of persistent pain following injurious facet joint distraction in rats and tests the hypothesis that excitatory synaptogenesis contributes to such pain. Painful facet joint loading induces dorsal horn excitatory synaptogenesis along with decreased TSP4 in the DRG and increased astrocytic release of TSP4 in the spinal cord, all of which parallel the time course of sustained tactile allodynia. Blocking injury-induced spinal TSP4 expression with antisense oligonucleotides or reducing TSP4 activity at its neuronal receptor in the spinal cord with gabapentin treatment both attenuate the allodynia and dorsal horn synaptogenesis that develop after painful facet joint loading. Increased spinal TSP4 also facilitates the development of allodynia and spinal hyperexcitability, even after non-painful physiological loading of the facet joint. These results suggest that spinal TSP4 plays an important role in the development and maintenance of persistent joint-mediated pain by inducing excitatory synaptogenesis and facilitating the transduction of mechanical loading of the facet joint that leads to spinal hyperexcitability.
Collapse
Affiliation(s)
- Nathan D Crosby
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Jeffrey V Kras
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ling Dong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Z David Luo
- Department of Anesthesiology and Perioperative Care, University of California Irvine Medical Center, Irvine, CA 92868, United States; Department of Pharmacology, University of California Irvine Medical Center, Irvine, CA 92868, United States
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
41
|
PEKNY T, ANDERSSON D, WILHELMSSON U, PEKNA M, PEKNY M. Short general anaesthesia induces prolonged changes in gene expression in the mouse hippocampus. Acta Anaesthesiol Scand 2014; 58:1127-33. [PMID: 25039928 DOI: 10.1111/aas.12369] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND The long-term molecular changes in the central nervous system constitute an important aspect of general anaesthesia, but little is known about to what extent these molecular changes are affected by anaesthesia duration. The aim of the present study was to evaluate the effects of short duration (20 min) general anaesthesia with isoflurane or avertin on the expression of 20 selected genes in the mouse hippocampus at 1 and 4 days after anaesthesia. METHODS Nine to eleven-weeks-old male mice received one of the following treatments: 20 min of avertin-induced anaesthesia (n=11), 20 min of isoflurane-induced anaesthesia (n=10) and no anaesthesia (n=5). One and four days after anaesthesia, gene expression in the hippocampus was determined with reverse transcription quantitative real-time polymerase chain reaction. RESULTS We found that anaesthesia led to the upregulation of six genes: Hspd1 (heat shock protein 1), Plat (tissue plasminogen activator) and Npr3 (natriuretic peptide receptor 3) were upregulated only 1 day after anaesthesia, whereas Thbs4 (thrombospondin 4) was upregulated only 4 days after anaesthesia. Syp (synaptophysin) and Mgst1 (microsomal glutathione S-transferase 1) were upregulated at both time points. Hspd1, Mgst1 and Syp expression was increased regardless of the anaesthetic used, Npr3 and Plat were increased only in mice exposed to avertin, and Thbs4 was upregulated only after isoflurane-induced anaesthesia. CONCLUSIONS This study shows that some of the effects of short general anaesthesia on gene expression in the mouse hippocampus persist for at least 4 days.
Collapse
Affiliation(s)
- T. PEKNY
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - D. ANDERSSON
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - U. WILHELMSSON
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - M. PEKNA
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
- Florey Institute of Neuroscience and Mental Health; Parkville Victoria Australia
| | - M. PEKNY
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
- Florey Institute of Neuroscience and Mental Health; Parkville Victoria Australia
| |
Collapse
|
42
|
Acharya C, Yik JHN, Kishore A, Van Dinh V, Di Cesare PE, Haudenschild DR. Cartilage oligomeric matrix protein and its binding partners in the cartilage extracellular matrix: interaction, regulation and role in chondrogenesis. Matrix Biol 2014; 37:102-11. [PMID: 24997222 DOI: 10.1016/j.matbio.2014.06.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
Thrombospondins (TSPs) are widely known as a family of five calcium-binding matricellular proteins. While these proteins belong to the same family, they are encoded by different genes, regulate different cellular functions and are localized to specific regions of the body. TSP-5 or Cartilage Oligomeric Matrix Protein (COMP) is the only TSP that has been associated with skeletal disorders in humans, including pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). The pentameric structure of COMP, the evidence that it interacts with multiple cellular proteins, and the recent reports of COMP acting as a 'lattice' to present growth factors to cells, inspired this review of COMP and its interacting partners. In our review, we have compiled the interactions of COMP with other proteins in the cartilage extracellular matrix and summarized their importance in maintaining the structural integrity of cartilage as well as in regulating cellular functions.
Collapse
Affiliation(s)
- Chitrangada Acharya
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Jasper H N Yik
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Ashleen Kishore
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Victoria Van Dinh
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Paul E Di Cesare
- Department of Orthopaedics and Rehabilitation, New York Hospital Queens, New York, NY 11355, USA
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| |
Collapse
|
43
|
Girard F, Eichenberger S, Celio MR. Thrombospondin 4 deficiency in mouse impairs neuronal migration in the early postnatal and adult brain. Mol Cell Neurosci 2014; 61:176-86. [PMID: 24983516 DOI: 10.1016/j.mcn.2014.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 04/24/2014] [Accepted: 06/20/2014] [Indexed: 01/10/2023] Open
Abstract
In the post-natal rodent brain, neuronal precursors originating from the sub-ventricular zone (SVZ) migrate over a long distance along the rostral migratory stream (RMS) to eventually integrate the olfactory bulb neuronal circuitry. In order to identify new genes specifically expressed in the RMS, we have screened the Allen Brain Atlas Database. We focused our attention on Thrombospondin 4 (Thbs4), one of the 5 members of the Thrombospondin family of large, multidomain, extracellular matrix proteins. In post-natal and adult brain Thbs4 mRNA and protein are specifically expressed in the neurogenic regions, including the SVZ and along the entire RMS. RMS cells expressing Thbs4 are GFAP (Glial Fibrillary Acidic Protein) positive astrocytes. Histological analysis in both wild-type and Thbs4 knock-out mice revealed no major abnormality in the general morphology of these neurogenic regions. Nevertheless, immunostaining for doublecortin demonstrates that in Thbs4-KO, migration of newly formed neurons along the RMS is somehow impaired, with several neurons migrating out of the RMS. This is further supported by a Bromodeoxyuridine-based in vivo approach showing a decrease in the number of newly born neuronal precursors reaching the olfactory bulb, while proliferation in the SVZ is not affected compared to wild-type, both in young animals (P15) and in adults (8 to 12 weeks of age). Corroborating this observation, the number of Parvalbumin- and Calbindin-immunoreactive interneurons in the olfactory bulb is also reduced in Thbs4-KO. Together, these observations support a role for the astrocyte-secreted protein Thbs4 in the migration of newly form neurons within the RMS to the olfactory bulb.
Collapse
Affiliation(s)
- F Girard
- Anatomy Unit and Program in Neuroscience, Department of Medicine, Faculty of Science, University of Fribourg, Route A. Gockel 1, CH1700 Fribourg, Switzerland.
| | - S Eichenberger
- Anatomy Unit and Program in Neuroscience, Department of Medicine, Faculty of Science, University of Fribourg, Route A. Gockel 1, CH1700 Fribourg, Switzerland
| | - M R Celio
- Anatomy Unit and Program in Neuroscience, Department of Medicine, Faculty of Science, University of Fribourg, Route A. Gockel 1, CH1700 Fribourg, Switzerland
| |
Collapse
|
44
|
Subramanian A, Schilling TF. Thrombospondin-4 controls matrix assembly during development and repair of myotendinous junctions. eLife 2014; 3. [PMID: 24941943 PMCID: PMC4096842 DOI: 10.7554/elife.02372] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022] Open
Abstract
Tendons are extracellular matrix (ECM)-rich structures that mediate muscle attachments with the skeleton, but surprisingly little is known about molecular mechanisms of attachment. Individual myofibers and tenocytes in Drosophila interact through integrin (Itg) ligands such as Thrombospondin (Tsp), while vertebrate muscles attach to complex ECM fibrils embedded with tenocytes. We show for the first time that a vertebrate thrombospondin, Tsp4b, is essential for muscle attachment and ECM assembly at myotendinous junctions (MTJs). Tsp4b depletion in zebrafish causes muscle detachment upon contraction due to defects in laminin localization and reduced Itg signaling at MTJs. Mutation of its oligomerization domain renders Tsp4b unable to rescue these defects, demonstrating that pentamerization is required for ECM assembly. Furthermore, injected human TSP4 localizes to zebrafish MTJs and rescues muscle detachment and ECM assembly in Tsp4b-deficient embryos. Thus Tsp4 functions as an ECM scaffold at MTJs, with potential therapeutic uses in tendon strengthening and repair. DOI:http://dx.doi.org/10.7554/eLife.02372.001 Tendons, the tough connective tissues that link muscles to bones, are essential for lifting, running and other movements in animals. A matrix of proteins, called the extracellular matrix, connects the cells in a tendon, giving it the strength it needs to prevent muscles from detaching from bones during strenuous activities. To achieve this strength, extracellular matrix proteins bind to one another and to receptors on the muscle cell surface that are linked to its internal scaffolding, thereby organizing other proteins into a structure called a myotendinous junction. However, despite the essential roles of tendons, scientists do not fully understand how this organization occurs, or how it can go awry. Subramanian and Schilling screened zebrafish for genes that are essential for proper muscle attachment, and zeroed in on a gene encoding a protein called Thrombospondin-4b (Tsp4b). A similar protein helps to connect muscle and tendon cells in fruit flies. Without Tsp4b, zebrafish are able to form connections between muscles and tendons, but the muscles detach easily during movement. This weakened connection is caused by disorganization of the proteins in the extracellular matrix, which results in reduced signaling from the muscle cell receptors. When a human form of this protein was injected into zebrafish embryos lacking Tsp4b, it settled into the junctions between muscle and tendon cells. The human protein repaired the detached muscles and restored the proper organization of the matrix. This improved the strength of the muscle-tendon attachment in the treated fish embryos, suggesting that similar injections could also help to strengthen and repair muscles and tendons in people. DOI:http://dx.doi.org/10.7554/eLife.02372.002
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| |
Collapse
|
45
|
Chen CD, Wang CL, Yu CJ, Chien KY, Chen YT, Chen MC, Chang YS, Wu CC, Yu JS. Targeted proteomics pipeline reveals potential biomarkers for the diagnosis of metastatic lung cancer in pleural effusion. J Proteome Res 2014; 13:2818-29. [PMID: 24787432 DOI: 10.1021/pr4012377] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability to discriminate lung cancer malignant pleural effusion (LC-MPE) from benign pleural effusion has profound implications for the therapy and prognosis of lung cancer. Here, we established a pipeline to verify potential biomarkers for this purpose. In the discovery phase, label-free quantification was performed for the proteome profiling of exudative pleural effusion in order to select 34 candidate biomarkers with significantly elevated levels in LC-MPE. In the verification phase, signature peptides for 34 candidates were first confirmed by accurate inclusion mass screening (AIMS). To quantify the candidates in PEs, multiple reaction monitoring mass spectrometry (MRM-MS) with stable isotope-labeled standards (SIS) peptides was performed for the 34 candidate biomarkers using the QconCAT approach for the generation of the SIS peptides. The results of the MRM assay were used to prioritize candidates based on their discriminatory power in 82 exudative PE samples. The five potential biomarkers (ALCAM, CDH1, MUC1, SPINT1, and THBS4; AUC > 0.7) and one three-marker panel (SPINT1/SVEP1/THBS4; AUC = 0.95) were able to effectively differentiate LC-MPE from benign PE. Collectively, these results demonstrate that our pipeline is a feasible platform for verifying potential biomarkers for human diseases.
Collapse
Affiliation(s)
- Chi-De Chen
- Graduate Institute of Biomedical Sciences, ‡Department of Cell and Molecular Biology, §Department of Biomedical Sciences, ∥Department of Public Health and Biostatistics Consulting Center, and ⊥Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Taoyuan 33302, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rienks M, Papageorgiou AP, Frangogiannis NG, Heymans S. Myocardial extracellular matrix: an ever-changing and diverse entity. Circ Res 2014; 114:872-88. [PMID: 24577967 DOI: 10.1161/circresaha.114.302533] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cardiac extracellular matrix (ECM) is a complex architectural network consisting of structural and nonstructural proteins, creating strength and plasticity. The nonstructural compartment of the ECM houses a variety of proteins, which are vital for ECM plasticity, and can be divided into 3 major groups: glycoproteins, proteoglycans, and glycosaminoglycans. The common denominator for these groups is glycosylation, which refers to the decoration of proteins or lipids with sugars. This review will discuss the fundamental role of the matrix in cardiac development, homeostasis, and remodeling, from a glycobiology point of view. Glycoproteins (eg, thrombospondins, secreted protein acidic and rich in cysteine, tenascins), proteoglycans (eg, versican, syndecans, biglycan), and glycosaminoglycans (eg, hyaluronan, heparan sulfate) are upregulated on cardiac injury and regulate key processes in the remodeling myocardium such as inflammation, fibrosis, and angiogenesis. Albeit some parallels can be made regarding the processes these proteins are involved in, their specific functions are extremely diverse. In fact, under varying conditions, individual proteins can even have opposing functions, making spatiotemporal contribution of these proteins in the rearrangement of multifaceted ECM very hard to grasp. Alterations of protein characteristics by the addition of sugars may explain the immense, yet tightly regulated, variability of the remodeling cardiac matrix. Understanding the role of glycosylation in altering the ultimate function of glycoproteins, proteoglycans, and glycosaminoglycans in the myocardium may lead to the development of new biochemical structures or compounds with great therapeutic potential for patients with heart disease.
Collapse
Affiliation(s)
- Marieke Rienks
- From Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
47
|
Frolova EG, Drazba J, Krukovets I, Kostenko V, Blech L, Harry C, Vasanji A, Drumm C, Sul P, Jenniskens GJ, Plow EF, Stenina-Adognravi O. Control of organization and function of muscle and tendon by thrombospondin-4. Matrix Biol 2014; 37:35-48. [PMID: 24589453 DOI: 10.1016/j.matbio.2014.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/01/2014] [Accepted: 02/01/2014] [Indexed: 01/28/2023]
Abstract
Thrombospondins (TSPs) are multifunctional proteins that are deposited in the extracellular matrix where they directly affect the function of vascular and other cell types. TSP-4, one of the 5 TSP family members, is expressed abundantly in tendon and muscle. We have examined the effect of TSP-4 deficiency on tendon collagen and skeletal muscle morphology and function. In Thbs4(-/-) mice, tendon collagen fibrils are significantly larger than in wild-type mice, and there is no compensatory over-expression of TSP-3 and TSP-5, the two TSPs most highly homologous to TSP-4, in the deficient mice. TSP-4 is expressed in skeletal muscle, and higher levels of TSP-4 protein are associated with the microvasculature of red skeletal muscle with high oxidative metabolism. Lack of TSP-4 in medial soleus, red skeletal muscle with predominant oxidative metabolism, is associated with decreased levels of several specific glycosaminoglycan modifications, decreased expression of a TGFβ receptor beta-glycan, decreased activity of lipoprotein lipase, which associates with vascular cell surfaces by binding to glycosaminoglycans, and decreased uptake of VLDL. The soleus muscle is smaller and hind- and fore-limb grip strength is reduced in Thbs4(-/-) mice compared to wild-type mice. These observations suggest that TSP-4 regulates the composition of the ECM at major sites of its deposition, tendon and muscle, and the absence of TSP-4 alters the organization, composition and physiological functions of these tissues.
Collapse
Affiliation(s)
- Ella G Frolova
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Judith Drazba
- Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Irene Krukovets
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Volodymyr Kostenko
- Department of Neurology, Neuromuscular Section, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Lauren Blech
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Christy Harry
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Amit Vasanji
- Biomedical Imaging and Analysis Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Carla Drumm
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Pavel Sul
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Guido J Jenniskens
- Department of Biochemistry 194, University Medical Center, NCMLS, Nijmegen, The Netherlands; ModiQuest Research BV, Nijmegen, The Netherlands
| | - Edward F Plow
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Olga Stenina-Adognravi
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States.
| |
Collapse
|
48
|
Stenina-Adognravi O. Invoking the power of thrombospondins: regulation of thrombospondins expression. Matrix Biol 2014; 37:69-82. [PMID: 24582666 DOI: 10.1016/j.matbio.2014.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/05/2014] [Accepted: 02/08/2014] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests critical functions of thrombospondins (TSPs) in a variety of physiological and pathological processes. With the growing understanding of the importance of these matricellular proteins, the need to understand the mechanisms of regulation of their expression and potential approaches to modulate their levels is also increasing. The regulation of TSP expression is multi-leveled, cell- and tissue-specific, and very precise. However, the knowledge of mechanisms modulating the levels of TSPs is fragmented and incomplete. This review discusses the known mechanisms of regulation of TSP levels and the gaps in our knowledge that prevent us from developing strategies to modulate the expression of these physiologically important proteins.
Collapse
Affiliation(s)
- Olga Stenina-Adognravi
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave NB50, Cleveland, OH 44195, United States.
| |
Collapse
|
49
|
Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease. Neural Plast 2014; 2014:321209. [PMID: 24551460 PMCID: PMC3914553 DOI: 10.1155/2014/321209] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022] Open
Abstract
Matricellular proteins are secreted, nonstructural proteins that regulate the extracellular matrix (ECM) and interactions between cells through modulation of growth factor signaling, cell adhesion, migration, and proliferation. Despite being well described in the context of nonneuronal tissues, recent studies have revealed that these molecules may also play instrumental roles in central nervous system (CNS) development and diseases. In this minireview, we discuss the matricellular protein families SPARC (secreted protein acidic and rich in cysteine), Hevin/SC1 (SPARC-like 1), TN-C (Tenascin C), TSP (Thrombospondin), and CCN (CYR61/CTGF/NOV), which are secreted by astrocytes during development. These proteins exhibit a reduced expression in adult CNS but are upregulated in reactive astrocytes following injury or disease, where they are well placed to modulate the repair processes such as tissue remodeling, axon regeneration, glial scar formation, angiogenesis, and rewiring of neural circuitry. Conversely, their reexpression in reactive astrocytes may also lead to detrimental effects and promote the progression of neurodegenerative diseases.
Collapse
|
50
|
Electroconvulsive seizure induces thrombospondin-1 in the adult rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:236-44. [PMID: 24121060 DOI: 10.1016/j.pnpbp.2013.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 01/29/2023]
Abstract
Synaptic dysfunction has recently gained attention for its involvement in mood disorders. Electroconvulsive therapy (ECT) possibly plays a role in synaptic repair. However, the underlying mechanisms remain uncertain. Thrombospondin-1 (TSP-1), a member of the TSP family, is reported to be secreted by astrocytes and to regulate synaptogenesis. We investigated the effects of electroconvulsive seizure (ECS) on the expression of TSPs in the adult rat hippocampus. Single and repeated ECS significantly increased TSP-1 mRNA expression after 2h and returned to sham levels at 24h. Conversely, the TSP-2 and -4 mRNA levels did not change. Only repeated ECS induced TSP-1 proteins. ECS also induced glial fibrillary acidic protein (GFAP) expression. The GFAP expression occurred later than the TSP-1 mRNA expression following single ECS; however, it occurred earlier and was more persistent following repeated ECS. ECS had no effect on the α2δ-1 or neuroligin-1 expressions, both of which are TSP-1 receptors. Furthermore, chronic treatment with antidepressants did not induce the expression of TSP-1 or GFAP. These findings suggest that repeated ECS, but not chronic treatment with antidepressants, induces TSP-1 expression partially via the activation of astrocytes. Therefore, TSP-1 is possibly involved in the synaptogenic effects of ECS.
Collapse
|