1
|
Wani TU, Kim HY, Lee GH, Lim YJ, Chae HJ, Kim JY, Yoon H. Mechanistic insights into epithelial-mesenchymal transition mediated cisplatin resistance in ovarian cancer. Sci Rep 2025; 15:3053. [PMID: 39856185 PMCID: PMC11760351 DOI: 10.1038/s41598-025-87388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is designated as one of the prime causes of chemoresistance in many cancers. In our previous study we established that cisplatin resistance in ovarian cancer (OC) is associated with EMT using sensitive OV90 cells and its resistant counterparts OV90CisR1 and OV90CisR2. In this study, we revealed through RNAseq analysis that ITGA1 can play essential part in EMT mediated cisplatin resistance in OC. We found large number of EMT related terms predominant in the top gene ontologies (GO). We also found Extracellular matrix (ECM) and actin cytoskeleton genes highly altered in the resistant cells. This was further confirmed by the protein-protein interaction (PPI) analysis where we identified that the core ECM components e.g., collagen, fibronectin, metalloproteases and integrins possessed most interactions. The pathway analysis revealed the Wnt signaling as the leading pathway. Since integrins have significant interaction with Wnt signaling, we focused our study on integrins among which, ITGA1, ITGA6, ITGA11 and ITGAV were primarily altered. We validated our results by western blotting and found that ITGA1 was highly expressed in resistant cells. Additionally, the high ABCA5 (efflux transporter) expression in resistant cells also supports the EMT proposition. The western blotting also revealed high β-catenin expression in resistant cells confirming the high Wnt signaling activity. Further, we induced xenograft tumors in nude mice. The histopathological analysis confirmed the aggressive nature of resistant tumors and showed the presence of necrotic core which could be implicated to EMT. Finally, the immunohistochemical staining confirmed the high protein expression in resistant tumor.
Collapse
Affiliation(s)
- Taha Umair Wani
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju-si, 52828, Gyeongnam, Republic of Korea.
| | - Hyun-Yi Kim
- NGeneS Inc, Ansan-si, 15495, Gyeonggi-do, Republic of Korea
| | - Geum-Hwa Lee
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju-si, 54907, Jeollabuk-do, Republic of Korea
| | - Young Je Lim
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju-si, 54907, Jeollabuk-do, Republic of Korea
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju-si, 54896, Jeollabuk-do, Republic of Korea
| | - Han-Jung Chae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju-si, 54896, Jeollabuk-do, Republic of Korea
| | - Ji-Ye Kim
- Department of Pathology, Ilsan Paik Hospital, Inje University, College of Medicine, Goyang-si, 10380, Gyeonggi-do, Republic of Korea.
| | - Hyonok Yoon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju-si, 52828, Gyeongnam, Republic of Korea.
- Department of Pharmacology and Physiology, Drexel University, College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
2
|
Sarangi AK, Salem MA, Younus MD, El-Haroun H, Mahal A, Tripathy L, Mishra R, Shabil M, Alhumaydhi FA, Khatib MN, Bushi G, Rustagi S, Dey D, Satapathy P, Ballal S, Bansal P, Bhopte K, Tomar BS, Mishra S, Alissa M, Mohapatra RK, El-Bahy ZM. Advanced biomaterials for regenerative medicine and their possible therapeutic significance in treating COVID-19: a critical overview. Int J Surg 2024; 110:7508-7527. [PMID: 39411890 PMCID: PMC11634172 DOI: 10.1097/js9.0000000000002110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/27/2024] [Indexed: 12/13/2024]
Abstract
The potential of biomaterials in medical sciences has attracted much interest, especially in promoting tissue regeneration and controlling immune responses. As the COVID-19 pandemic broke out, there was an increased interest in understanding more about how biomaterials could be employed to fight this dreaded disease, especially in the context of regenerative medicine. Out of the numerous regenerative medicine possibilities, stem cells and scaffolding (grafting) technology are two major areas in modern medicine and surgery. Mesenchymal stem cells are useful in tissue repair, tailored therapy and the treatment of COVID-19. Using biomaterials in COVID-19 treatment is intricate and needs multidisciplinary and cross-disciplinary research. Cell-based therapy and organ transplants pose immunological rejection challenges. Immunomodulation enhanced, tumorigenicity decreased, inflammation addressed and tissue damage restricted; bioengineered stem cells need clinical insights and validation. Advanced stem cell-based therapies should ideally be effective, safe and scalable. Cost and scalability shall dictate the dawn of techno-economically feasible regenerative medicine. A globally standard and uniform approval process could accelerate translational regenerative medicine. Researchers, patient advocacy organisations, regulators and biopharmaceutical stakeholders need to join hands for easy navigation of regulatory measures and expeditious market entry of regenerative medicine. This article summarises advances in biomaterials for regenerative medicine and their possible therapeutic benefits in managing infectious diseases like COVID-19. It highlights the significant recent developments in biomaterial design, scaffold construction, and stem cell-based therapies to treat tissue damage and COVID-19-linked immunological dysregulation. It also highlights the potential contribution of biomaterials towards creating novel treatment strategies to manage COVID-19.
Collapse
Affiliation(s)
- Ashish K. Sarangi
- Department of Chemistry, Centurion University of Technology and Management, Balangir, Odisha, India
| | - Mohamed A. Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Mustafa D. Younus
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Hala El-Haroun
- Basic Medical Science Department, Faculty of Dentistry, Al Ryada University for Science and Technology, Sadat City, Egypt
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Lizaranee Tripathy
- Department of Chemistry, Centurion University of Technology and Management, Balangir, Odisha, India
| | - Rajashree Mishra
- Department of Chemistry, Centurion University of Technology and Management, Balangir, Odisha, India
| | - Muhammed Shabil
- University Center for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mahalaqua N. Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Ganesh Bushi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Debankur Dey
- Medical College and Hospital Kolkata, Kolkata, India
| | - Prakasini Satapathy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Medical Laboratories Techniques Department, Al-Mustaqbal University, Hillah, Babil, Iraq
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Kiran Bhopte
- IES Institute of Pharmacy, IES University, Bhopal, Madhya Pradesh, India
| | - Balvir S. Tomar
- Institute of Pediatric Gastroenterology and Hepatology, NIMS University, Jaipur, India
| | - Snehasish Mishra
- School of Biotechnology, KIIT Deemed University, Bhubaneswar, Odisha, India
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
3
|
Murawska-Ciałowicz E, Ciałowicz M, Rosłanowski A, Kaczmarek A, Ratajczak-Wielgomas K, Kmiecik A, Partyńska A, Dzięgiel P, Andrzejewski W. Changes in BDNF Concentration in Men after Foam Roller Massage. Cells 2024; 13:1564. [PMID: 39329748 PMCID: PMC11430617 DOI: 10.3390/cells13181564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Massage is one of the oldest forms of therapy practiced since ancient times. Nowadays, it is used in sports practice, recovery from injury, or supportive therapy for various conditions. The practice of massage uses a variety of instruments that facilitate massaging while relieving the stress on the masseur. One of them is a foam roller. Although roller massage is widely used, there are still no scientific studies describing the biological mechanisms of its effects on the body. The purpose of our study was to analyze the effect of roller massage on BDNF levels in men undergoing self-massage 4x/week/7 weeks. The control group consisted of men who did not perform self-massage. Before the test and after the first, third, fifth, and seventh weeks of self-massage, the study participants' blood was drawn, the serum BDNF was determined, and the results were subjected to analysis of variance by ANOVA test. After the first week of self-massage, an increase in BDNF concentration was observed in the self-massage group compared to the control group (p = 0.023). Similarly, changes were observed in week five (p = 0.044) and week seven (p = 0.046). In the massaged group, BDNF concentrations were significantly higher after the first week of self-massage compared to baseline. In the third week of the study, BDNF decreased to a value comparable to the baseline study, then increased significantly in the fifth and seventh weeks compared to the value recorded in the third week (p = 0.049 and p = 0.029). It was significantly higher in week seven compared to week five (p = 0.03). Higher concentrations of BDNF in subjects undergoing roller self-massage may be one of the biological mechanisms justifying the therapeutic effects of massage in both sports and clinical practice. Studies analyzing the stimulation of BDNF synthesis through various massage techniques should be performed on a larger group of healthy individuals, patients after trauma of multiple origins, and sick people with indications for therapeutic massage.
Collapse
Affiliation(s)
- Eugenia Murawska-Ciałowicz
- Physiology and Biochemistry Department, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland;
| | - Maria Ciałowicz
- Physiotherapy Faculty, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland (P.D.); (W.A.)
| | - Adam Rosłanowski
- Physiotherapy Faculty, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland (P.D.); (W.A.)
| | - Agnieszka Kaczmarek
- Physiology and Biochemistry Department, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland;
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.R.-W.); (A.K.); (A.P.)
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.R.-W.); (A.K.); (A.P.)
| | - Aleksandra Partyńska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.R.-W.); (A.K.); (A.P.)
| | - Piotr Dzięgiel
- Physiotherapy Faculty, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland (P.D.); (W.A.)
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.R.-W.); (A.K.); (A.P.)
| | - Waldemar Andrzejewski
- Physiotherapy Faculty, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland (P.D.); (W.A.)
| |
Collapse
|
4
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
5
|
Iyer RR, Applegate CC, Arogundade OH, Bangru S, Berg IC, Emon B, Porras-Gomez M, Hsieh PH, Jeong Y, Kim Y, Knox HJ, Moghaddam AO, Renteria CA, Richard C, Santaliz-Casiano A, Sengupta S, Wang J, Zambuto SG, Zeballos MA, Pool M, Bhargava R, Gaskins HR. Inspiring a convergent engineering approach to measure and model the tissue microenvironment. Heliyon 2024; 10:e32546. [PMID: 38975228 PMCID: PMC11226808 DOI: 10.1016/j.heliyon.2024.e32546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Understanding the molecular and physical complexity of the tissue microenvironment (TiME) in the context of its spatiotemporal organization has remained an enduring challenge. Recent advances in engineering and data science are now promising the ability to study the structure, functions, and dynamics of the TiME in unprecedented detail; however, many advances still occur in silos that rarely integrate information to study the TiME in its full detail. This review provides an integrative overview of the engineering principles underlying chemical, optical, electrical, mechanical, and computational science to probe, sense, model, and fabricate the TiME. In individual sections, we first summarize the underlying principles, capabilities, and scope of emerging technologies, the breakthrough discoveries enabled by each technology and recent, promising innovations. We provide perspectives on the potential of these advances in answering critical questions about the TiME and its role in various disease and developmental processes. Finally, we present an integrative view that appreciates the major scientific and educational aspects in the study of the TiME.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine C. Applegate
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Opeyemi H. Arogundade
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ian C. Berg
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marilyn Porras-Gomez
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pei-Hsuan Hsieh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yoon Jeong
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yongdeok Kim
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hailey J. Knox
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amir Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Carlos A. Renteria
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Craig Richard
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sourya Sengupta
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Samantha G. Zambuto
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maria A. Zeballos
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marcia Pool
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rohit Bhargava
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biochemical Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - H. Rex Gaskins
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
6
|
Yang J, Wang Z, Liang X, Wang W, Wang S. Multifunctional polypeptide-based hydrogel bio-adhesives with pro-healing activities and their working principles. Adv Colloid Interface Sci 2024; 327:103155. [PMID: 38631096 DOI: 10.1016/j.cis.2024.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Wound healing is a complex physiological process involving hemostasis, inflammation, proliferation, and tissue remodeling. Therefore, there is an urgent need for suitable wound dressings for effective and systematical wound management. Polypeptide-based hydrogel bio-adhesives offer unique advantages and are ideal candidates. However, comprehensive reviews on polypeptide-based hydrogel bio-adhesives for wound healing are still lacking. In this review, the physiological mechanisms and evaluation parameters of wound healing were first described in detail. Then, the working principles of hydrogel bio-adhesives were summarized. Recent advances made in multifunctional polypeptide-based hydrogel bio-adhesives involving gelatin, silk fibroin, fibrin, keratin, poly-γ-glutamic acid, ɛ-poly-lysine, serum albumin, and elastin with pro-healing activities in wound healing and tissue repair were reviewed. Finally, the current status, challenges, developments, and future trends of polypeptide-based hydrogel bio-adhesives were discussed, hoping that further developments would be stimulated to meet the growing needs of their clinical applications.
Collapse
Affiliation(s)
- Jiahao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Zhengyue Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P. R. China
| | - Xiaoben Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, P. R. China
| | - Wenyi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P. R. China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China.
| |
Collapse
|
7
|
Gao K, Gao Z, Xia M, Li H, Di J. Role of plectin and its interacting molecules in cancer. Med Oncol 2023; 40:280. [PMID: 37632650 DOI: 10.1007/s12032-023-02132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/20/2023] [Indexed: 08/28/2023]
Abstract
Plectin, as the cytolinker and scaffolding protein, are widely expressed and abundant in many tissues, and has involved in various cellular activities contributing to tumorigenesis, such as cell adhesion, migration, and signal transduction. Due to the specific expression and differential localization of plectin in cancer, most researchers focus on the role of plectin in cancer, and it has emerged as a potent driver of malignant hallmarks in many human cancers, which provides the possibility for plectin to be widely used as a biomarker and therapeutic target in the early diagnosis and targeted drug delivery of the disease. However, there is still a lack of systematic review on the interaction molecules and mechanism of plectin. Herein, we summarized the structure, expression and function of plectin, and mainly focused on recent studies on the functional and physical interactions between plectin and its interacting molecules, shedding light on the potential of targeting plectin for cancer therapy.
Collapse
Affiliation(s)
- Keyu Gao
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Zhimin Gao
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Mingyi Xia
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Hailong Li
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
8
|
Hoque MA, Mahmood N, Ali KM, Sefat E, Huang Y, Petersen E, Harrington S, Fang X, Gluck JM. Development of a Pneumatic-Driven Fiber-Shaped Robot Scaffold for Use as a Complex 3D Dynamic Culture System. Biomimetics (Basel) 2023; 8:biomimetics8020170. [PMID: 37092422 PMCID: PMC10123682 DOI: 10.3390/biomimetics8020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Cells can sense and respond to different kinds of continuous mechanical strain in the human body. Mechanical stimulation needs to be included within the in vitro culture system to better mimic the existing complexity of in vivo biological systems. Existing commercial dynamic culture systems are generally two-dimensional (2D) which fail to mimic the three-dimensional (3D) native microenvironment. In this study, a pneumatically driven fiber robot has been developed as a platform for 3D dynamic cell culture. The fiber robot can generate tunable contractions upon stimulation. The surface of the fiber robot is formed by a braiding structure, which provides promising surface contact and adequate space for cell culture. An in-house dynamic stimulation using the fiber robot was set up to maintain NIH3T3 cells in a controlled environment. The biocompatibility of the developed dynamic culture systems was analyzed using LIVE/DEAD™ and alamarBlue™ assays. The results showed that the dynamic culture system was able to support cell proliferation with minimal cytotoxicity similar to static cultures. However, we observed a decrease in cell viability in the case of a high strain rate in dynamic cultures. Differences in cell arrangement and proliferation were observed between braided sleeves made of different materials (nylon and ultra-high molecular weight polyethylene). In summary, a simple and cost-effective 3D dynamic culture system has been proposed, which can be easily implemented to study complex biological phenomena in vitro.
Collapse
Affiliation(s)
- Muh Amdadul Hoque
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Nasif Mahmood
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Kiran M Ali
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Eelya Sefat
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Yihan Huang
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Emily Petersen
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Shane Harrington
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Xiaomeng Fang
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Jessica M Gluck
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
9
|
Tantiwong C, Dunster JL, Cavill R, Tomlinson MG, Wierling C, Heemskerk JWM, Gibbins JM. An agent-based approach for modelling and simulation of glycoprotein VI receptor diffusion, localisation and dimerisation in platelet lipid rafts. Sci Rep 2023; 13:3906. [PMID: 36890261 PMCID: PMC9994409 DOI: 10.1038/s41598-023-30884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
Receptor diffusion plays an essential role in cellular signalling via the plasma membrane microenvironment and receptor interactions, but the regulation is not well understood. To aid in understanding of the key determinants of receptor diffusion and signalling, we developed agent-based models (ABMs) to explore the extent of dimerisation of the platelet- and megakaryocyte-specific receptor for collagen glycoprotein VI (GPVI). This approach assessed the importance of glycolipid enriched raft-like domains within the plasma membrane that lower receptor diffusivity. Our model simulations demonstrated that GPVI dimers preferentially concentrate in confined domains and, if diffusivity within domains is decreased relative to outside of domains, dimerisation rates are increased. While an increased amount of confined domains resulted in further dimerisation, merging of domains, which may occur upon membrane rearrangements, was without effect. Modelling of the proportion of the cell membrane which constitutes lipid rafts indicated that dimerisation levels could not be explained by these alone. Crowding of receptors by other membrane proteins was also an important determinant of GPVI dimerisation. Together, these results demonstrate the value of ABM approaches in exploring the interactions on a cell surface, guiding the experimentation for new therapeutic avenues.
Collapse
Affiliation(s)
- Chukiat Tantiwong
- School of Biological Sciences, University of Reading, Reading, UK.,Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Joanne L Dunster
- School of Biological Sciences, University of Reading, Reading, UK
| | - Rachel Cavill
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | | | | | - Johan W M Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands.,Synapse Research Institute, Maastricht, The Netherlands
| | | |
Collapse
|
10
|
Recombinant Human Prolidase (rhPEPD) Induces Wound Healing in Experimental Model of Inflammation through Activation of EGFR Signalling in Fibroblasts. Molecules 2023; 28:molecules28020851. [PMID: 36677909 PMCID: PMC9867103 DOI: 10.3390/molecules28020851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
The potential of recombinant human prolidase (rhPEPD) to induce wound healing in an experimental model of IL-1β-induced inflammation in human fibroblasts was studied. It was found that rhPEPD significantly increased cell proliferation and viability, as well as the expression of the epidermal growth factor receptor (EGFR) and downstream signaling proteins, such as phosphorylated PI3K, AKT, and mTOR, in the studied model. Moreover, rhPEPD upregulated the expression of the β1 integrin receptor and its downstream signaling proteins, such as p-FAK, Grb2 and p-ERK 1/2. The inhibition of EGFR signaling by gefitinib abolished rhPEPD-dependent functions in an experimental model of inflammation. Subsequent studies showed that rhPEPD augmented collagen biosynthesis in IL-1β-treated fibroblasts as well as in a wound healing model (wound closure/scratch test). Although IL-1β treatment of fibroblasts increased cell migration, rhPEPD significantly enhanced this process. This effect was accompanied by an increase in the activity of MMP-2 and MMP-9, suggesting extracellular matrix (ECM) remodeling during the inflammatory process. The data suggest that rhPEPD may play an important role in EGFR-dependent cell growth in an experimental model of inflammation in human fibroblasts, and this knowledge may be useful for further approaches to the treatment of abnormalities of wound healing and other skin diseases.
Collapse
|
11
|
RANDHAWA AAYUSHI, DEB DUTTA SAYAN, GANGULY KEYA, V. PATIL TEJAL, LUTHFIKASARI RACHMI, LIM KITAEK. Understanding cell-extracellular matrix interactions for topology-guided tissue regeneration. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
12
|
Guo W, Ma Y, Hu L, Feng Y, Liu Y, Yi X, Zhang W, Tang F. Modification Strategies for Ionic Complementary Self-Assembling Peptides: Taking RADA16-I as an Example. Polymers (Basel) 2022; 14:5221. [PMID: 36501615 PMCID: PMC9739689 DOI: 10.3390/polym14235221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Ion-complementary self-assembling peptides have been studied in many fields for their distinct advantages, mainly due to their self-assembly properties. However, their shortcomings, such as insufficient specific activity and poor mechanical properties, also limited their application. For the better and wider application of these promising biomaterials, ion-complementary self-assembling peptides can be modified with their self-assembly properties not being destroyed to the greatest extent. The modification strategies were reviewed by taking RADA16-I as an example. For insufficient specific activity, RADA16-I can be structurally modified with active motifs derived from the active domain of the extracellular matrix or other related active factors. For weak mechanical properties, materials with strong mechanical properties or that can undergo chemical crosslinking were used to mix with RADA16-I to enhance the mechanical properties of RADA16-I. To improve the performance of RADA16-I as drug carriers, appropriate adjustment of the RADA16-I sequence and/or modification of the RADA16-I-related delivery system with polymer materials or specific molecules can be considered to achieve sustained and controlled release of specific drugs or active factors. The modification strategies reviewed in this paper may provide some references for further basic research and clinical application of ion-complementary self-assembling peptides and their derivatives.
Collapse
Affiliation(s)
- Weiwei Guo
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- The Key Laboratory of Clinical Pharmacy of Zuni City, Zunyi Medical University, Zunyi 563006, China
| | - Yinping Ma
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- The Key Laboratory of Clinical Pharmacy of Zuni City, Zunyi Medical University, Zunyi 563006, China
| | - Lei Hu
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- The Key Laboratory of Clinical Pharmacy of Zuni City, Zunyi Medical University, Zunyi 563006, China
| | - Yujie Feng
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- The Key Laboratory of Clinical Pharmacy of Zuni City, Zunyi Medical University, Zunyi 563006, China
| | - Yanmiao Liu
- The Key Laboratory of Clinical Pharmacy of Zuni City, Zunyi Medical University, Zunyi 563006, China
- School of Preclinical Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Xuedong Yi
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Wenzhi Zhang
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Fushan Tang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- The Key Laboratory of Clinical Pharmacy of Zuni City, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
13
|
How snake venom disintegrins affect platelet aggregation and cancer proliferation. Toxicon 2022; 221:106982. [DOI: 10.1016/j.toxicon.2022.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
|
14
|
Yu Z, Hao R, Du J, Wu X, Chen X, Zhang Y, Li W, Gu Z, Yang H. A human cornea-on-a-chip for the study of epithelial wound healing by extracellular vesicles. iScience 2022; 25:104200. [PMID: 35479406 PMCID: PMC9035703 DOI: 10.1016/j.isci.2022.104200] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Organs-on-chips are microfluidic devices for cell culturing to simulate tissue-level or organ-level physiology and recapitulate their microenvironment, providing new and significant solutions other than traditional animal tests. In vitro testing platforms for ocular biological studies have been increasingly used in preclinical efficacy and toxicity prediction. Here, we developed a microfluidic platform consisting of human corneal cells and porous membrane, replicating the multi-scale structural organization and biological phenotype. We verified the fully integrated human cornea's barrier effects on the chip. Moreover, we found that extracellular vesicles derived from bone marrow-derived mesenchymal stem cells can significantly accelerate the mild corneal epithelial wound healing, and the decreased expression of matrix metallopeptidase-2 protein indicated that this method effectively inhibits corneal inflammation and angiogenesis. This work improves our ability to simulate the interaction between the human cornea and the external world in vitro and contributes to the future development of new screening platforms for biopharmaceuticals.
Collapse
Affiliation(s)
- Zitong Yu
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rui Hao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Du
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoliang Wu
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xi Chen
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi Zhang
- Center for Medical AI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Li
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhongze Gu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Yang
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
15
|
Seleem M, Abulfadl YS, Hoffy N, Lotfy NM, Ewida HA. Promising role of topical caffeine mesoporous gel in collagen resynthesis and UV protection through proline assessment. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Caffeine, an alkaloid agent, has been globally used regularly in drinks, for the reduction in skin cancers and wrinkle formation. As a result of the previous, attempts have been carried out to use caffeine in cosmetology due to its antioxidant and UV ray protection effects. Our aim was to evaluate the effect of caffeine on collagen resynthesis via its effect on proline and prolidase biosynthesis on mice, orally and topically as mesoporous silica at three levels, and the influence on UV protection. In skin biopsies of orally and topically treated mice, the following was assessed using ELISA and Western blot techniques, the activity of prolidase, together with the concentrations of proline, beta integrin, insulin growth factor, protein kinases beta, and mitogen-activated protein kinase. Moreover, we loaded the caffeine on mesoporous silica and assessed the aforementioned parameters together with checkpoint kinase 1 and Rad3-related protein.
Results
Caffeine promoted collagen resynthesis in a dose-dependent manner. The mechanism of this process was found at the level of prolidase activity as caffeine significantly increased the enzyme activity. Caffeine also had a protective effect against UV exhibited by the over-expression of beta integrin, insulin growth factor together with the under-expression of protein kinases beta, mitogen-activated protein kinase, checkpoint kinase 1, and Rad3-related protein.
Conclusions
Our study revealed the superiority of SYL-C12 (mesoporous silica-loaded caffeine gel), compromising the high level of the three independent factors, in terms of the measured responses in mesoporous silica with caffeine. Moreover, caffeine promoted collagen resynthesis with significant protective effect against UV apoptotic damage.
Collapse
|
16
|
|
17
|
Saddow SE. Silicon Carbide Technology for Advanced Human Healthcare Applications. MICROMACHINES 2022; 13:346. [PMID: 35334637 PMCID: PMC8949526 DOI: 10.3390/mi13030346] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023]
Abstract
Silicon carbide (SiC) is a highly robust semiconductor material that has the potential to revolutionize implantable medical devices for human healthcare, such as biosensors and neuro-implants, to enable advanced biomedical therapeutic applications for humans. SiC is both bio and hemocompatible, and is already commercially used for long-term human in vivo applications ranging from heart stent coatings and dental implants to short-term diagnostic applications involving neural implants and sensors. One challenge facing the medical community today is the lack of biocompatible materials which are inherently smart or, in other words, capable of electronic functionality. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it does not directly interact with biological tissue or has a short lifetime due to instabilities in vivo. Long-term, permanently implanted devices such as glucose sensors, neural interfaces, smart bone and organ implants, etc., require a more robust material that does not degrade over time and is not recognized and rejected as a foreign object by the inflammatory response. SiC has displayed these exceptional material properties, which opens up a whole new host of applications and allows for the development of many advanced biomedical devices never before possible for long-term use in vivo. This paper is a review of the state-of-the art and discusses cutting-edge device applications where SiC medical devices are poised to translate to the commercial marketplace.
Collapse
Affiliation(s)
- Stephen E. Saddow
- Electrical Engineering Department, University of South Florida, Tampa, FL 33620, USA; ; Tel.: +1-813-974-4773
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
18
|
Jang MJ, Lim C, Lim B, Kim JM. Integrated multiple transcriptomes in oviductal tissue across the porcine estrous cycle reveal functional roles in oocyte maturation and transport. J Anim Sci 2022; 100:skab364. [PMID: 34918099 PMCID: PMC8846367 DOI: 10.1093/jas/skab364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/14/2021] [Indexed: 11/12/2022] Open
Abstract
Understanding the changes in the swine female reproductive system is important for solving issues related to reproductive failure and litter size. Elucidating the regulatory mechanisms of the natural estrous cycle in the oviduct under non-fertilisation conditions can improve our understanding of its role in the reproductive system. Herein, whole transcriptome RNA sequencing of oviduct tissue samples was performed. The differentially expressed genes (DEGs) were identified for each time point relative to day 0 and classified into three clusters based on their expression patterns. Clusters 1 and 2 included genes involved in the physiological changes through the estrous cycle. Cluster 1 genes were mainly involved in PI3K-Akt signaling and steroid hormone biosynthesis pathways. Cluster 2 genes were involved in extracellular matrix-receptor interactions and protein digestion pathways. In Cluster 3, the DEGs were downregulated in the luteal phase; they were strongly associated with cell cycle, calcium signaling, and oocyte meiosis. The gene expression in the oviduct during the estrous cycle influenced oocyte transport and fertilization. Our findings provide a basis for successfully breeding pigs and elucidating the mechanisms underlying the changes in the pig oviduct during the estrous cycle.
Collapse
Affiliation(s)
- Min-Jae Jang
- Department of Animal Science and Technology, Functional Genomics and Bioinformatics Laboratory, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Chiwoong Lim
- Department of Animal Science and Technology, Functional Genomics and Bioinformatics Laboratory, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Byeonghwi Lim
- Department of Animal Science and Technology, Functional Genomics and Bioinformatics Laboratory, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Functional Genomics and Bioinformatics Laboratory, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
19
|
Troy E, Tilbury MA, Power AM, Wall JG. Nature-Based Biomaterials and Their Application in Biomedicine. Polymers (Basel) 2021; 13:3321. [PMID: 34641137 PMCID: PMC8513057 DOI: 10.3390/polym13193321] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Natural polymers, based on proteins or polysaccharides, have attracted increasing interest in recent years due to their broad potential uses in biomedicine. The chemical stability, structural versatility, biocompatibility and high availability of these materials lend them to diverse applications in areas such as tissue engineering, drug delivery and wound healing. Biomaterials purified from animal or plant sources have also been engineered to improve their structural properties or promote interactions with surrounding cells and tissues for improved in vivo performance, leading to novel applications as implantable devices, in controlled drug release and as surface coatings. This review describes biomaterials derived from and inspired by natural proteins and polysaccharides and highlights their promise across diverse biomedical fields. We outline current therapeutic applications of these nature-based materials and consider expected future developments in identifying and utilising innovative biomaterials in new biomedical applications.
Collapse
Affiliation(s)
- Eoin Troy
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
| | - Maura A. Tilbury
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
- SFI Centre for Medical Devices (CÚRAM), NUI Galway, H91 TK33 Galway, Ireland
| | - Anne Marie Power
- Zoology, School of Natural Sciences, NUI Galway, H91 TK33 Galway, Ireland;
| | - J. Gerard Wall
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
- SFI Centre for Medical Devices (CÚRAM), NUI Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
20
|
Ratri MC, Brilian AI, Setiawati A, Nguyen HT, Soum V, Shin K. Recent Advances in Regenerative Tissue Fabrication: Tools, Materials, and Microenvironment in Hierarchical Aspects. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Monica Cahyaning Ratri
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
- Department of Chemistry Education Sanata Dharma University Yogyakarta 55281 Indonesia
| | - Albertus Ivan Brilian
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Agustina Setiawati
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
- Department of Life Science Sogang University Seoul 04107 Republic of Korea
- Faculty of Pharmacy Sanata Dharma University Yogyakarta 55281 Indonesia
| | - Huong Thanh Nguyen
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Veasna Soum
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| |
Collapse
|
21
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
22
|
Comparison of Fractional Picosecond 1064-nm Laser and Fractional Carbon Dioxide Laser for Treating Atrophic Acne Scars: A Randomized Split-Face Trial. Dermatol Surg 2021; 47:e58-e65. [PMID: 32910030 DOI: 10.1097/dss.0000000000002572] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND To date, no studies have compared the fractional picosecond 1064-nm laser (FxPico) and fractional carbon dioxide laser (FxCO2) for the treatment of acne scars. OBJECTIVE To compare the efficacy and safety between FxPico and FxCO2 for treating facial atrophic acne scars. MATERIALS AND METHODS Twenty-five Asian patients with mild to moderate atrophic acne scars underwent single sessions of randomized split-face treatment with FxPico and FxCO2. Clinical efficacy was assessed by photographs, skin imaging analysis, and patient satisfaction. The adverse events were recorded on every visit. Skin biopsies were performed immediately and 3 months after treatment. RESULTS The physician improvement scores for skin texture and atrophy significantly increased on the FxPico sides, but no significant difference was observed between FxPico and FxCO2. Skin imaging also showed significant improvement on both sides for scar volume. Postinflammatory hyperpigmentation (PIH) was not reported on FxPico sides, whereas 6 patients (24%) experienced mild PIH on FxCO2 sides. Immediate post-FxPico skin biopsy revealed laser-induced optical breakdown with photoacoustic columns. Collagen and elastic fibers increased at 3 months after both treatments. CONCLUSION FxPico was as effective as FxCO2 in treating atrophic acne scars, correlating with evidence of tissue remodeling with more safety profiles.
Collapse
|
23
|
Bonet IJM, Green PG, Levine JD. Sexual dimorphism in the nociceptive effects of hyaluronan. Pain 2021; 162:1116-1125. [PMID: 33065736 PMCID: PMC7969372 DOI: 10.1097/j.pain.0000000000002116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
ABSTRACT Intradermal administration of low-molecular-weight hyaluronan (LMWH) in the hind paw induced dose-dependent (0.1, 1, or 10 µg) mechanical hyperalgesia of similar magnitude in male and female rats. However, the duration of LMWH hyperalgesia was greater in females. This sexual dimorphism was eliminated by bilateral ovariectomy and by intrathecal administration of an oligodeoxynucleotide (ODN) antisense to the G-protein-coupled estrogen receptor (GPR30) mRNA in females, indicating estrogen dependence. To assess the receptors at which LMWH acts to induce hyperalgesia, LMWH was administered to groups of male and female rats that had been pretreated with ODN antisense (or mismatch) to the mRNA for 1 of 3 hyaluronan receptors, cluster of differentiation 44 (CD44), toll-like receptor 4, or receptor for hyaluronan-mediated motility (RHAMM). Although LMWH-induced hyperalgesia was attenuated in both male and female rats pretreated with ODN antisense for CD44 and toll-like receptor 4 mRNA, RHAMM antisense pretreatment only attenuated LMWH-induced hyperalgesia in males. Oligodeoxynucleotide antisense for RHAMM, however, attenuated LMWH-induced hyperalgesia in female rats treated with ODN antisense to GPR30, as well as in ovariectomized females. Low-molecular-weight hyaluronan-induced hyperalgesia was significantly attenuated by pretreatment with high-molecular-weight hyaluronan (HMWH) in male, but not in female rats. After gonadectomy or treatment with ODN antisense to GPR30 expression in females, HMWH produced similar attenuation of LMWH-induced hyperalgesia to that seen in males. These experiments identify nociceptors at which LMWH acts to produce mechanical hyperalgesia, establishes estrogen dependence in the role of RHAMM in female rats, and establishes estrogen dependence in the inhibition of LMWH-induced hyperalgesia by HMWH.
Collapse
Affiliation(s)
- Ivan J. M. Bonet
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
24
|
Platelet-Rich Plasma Promotes the Proliferation of Human Keratinocytes via a Progression of the Cell Cycle. A Role of Prolidase. Int J Mol Sci 2021; 22:ijms22020936. [PMID: 33477820 PMCID: PMC7832888 DOI: 10.3390/ijms22020936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Although the role of platelet-rich plasma (PRP) in tissue regeneration has been confirmed in many studies, the mechanism of this process is still not fully understood. Human keratinocytes (HaCaT) cells were used as an experimental model for studies on the effects of PRP on cell proliferation, migration, collagen biosynthesis, prolidase activity, and its expression and anabolic signaling. The activation of epidermal growth factor receptor (EGFR), β1-integrin, and insulin-like growth factor-1 receptor (IGF-1R) by PRP were investigated by western blot and immunocytochemistry. It has been found that PRP induced keratinocytes migration and proliferation through activation of cell cycle progression and EGFR downstream signaling. Similar biological effects were achieved by an addition to the culture medium of prolidase (PEPD), a ligand of EGFR (PRP is a rich source of PEPD–2 ng/mL). PRP-dependent stimulation of collagen biosynthesis was accompanied by an increase in the expression of NF-κβ, IGF-1R-downstream signaling proteins, and PEPD activity. The data suggest that PRP activates a complex of growth factors and adhesion receptors that stimulate cell proliferation, migration, and collagen biosynthesis. PRP induces PEPD-dependent human keratinocyte proliferation through activation of the EGFR receptor. Our study provides a novel mechanism of PRP-dependent wound healing.
Collapse
|
25
|
Extracellular Prolidase (PEPD) Induces Anabolic Processes through EGFR, β 1-integrin, and IGF-1R Signaling Pathways in an Experimental Model of Wounded Fibroblasts. Int J Mol Sci 2021; 22:ijms22020942. [PMID: 33477899 PMCID: PMC7833428 DOI: 10.3390/ijms22020942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022] Open
Abstract
The role of prolidase (PEPD) as a ligand of the epidermal growth factor receptor (EGFR) was studied in an experimental model of wound healing in cultured fibroblasts. The cells were treated with PEPD (1-100 nM) and analysis of cell viability, proliferation, migration, collagen biosynthesis, PEPD activity, and the expressions of EGFR, insulin-like growth factor 1 (IGF-1), and β1-integrin receptor including downstream signaling proteins were performed. It has been found that PEPD stimulated proliferation and migration of fibroblasts via activation of the EGFR-downstream PI3K/Akt/mTOR signaling pathway. Simultaneously, PEPD stimulated the expression of β1-integrin and IGF-1 receptors and proteins downstream to these receptors such as FAK, Grb2, and ERK1/2. Collagen biosynthesis was increased in control and "wounded" fibroblasts under PEPD treatment. The data suggest that PEPD-induced EGFR signaling may serve as a new attempt to therapy wound healing.
Collapse
|
26
|
Tissue Engineering of Cartilage Using a Random Positioning Machine. Int J Mol Sci 2020; 21:ijms21249596. [PMID: 33339388 PMCID: PMC7765923 DOI: 10.3390/ijms21249596] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Articular cartilage is a skeletal tissue of avascular nature and limited self-repair capacity. Cartilage-degenerative diseases, such as osteoarthritis (OA), are difficult to treat and often necessitate joint replacement surgery. Cartilage is a tough but flexible material and relatively easy to damage. It is, therefore, of high interest to develop methods allowing chondrocytes to recolonize, to rebuild the cartilage and to restore joint functionality. Here we studied the in vitro production of cartilage-like tissue using human articular chondrocytes exposed to the Random Positioning Machine (RPM), a device to simulate certain aspects of microgravity on Earth. To screen early adoption reactions of chondrocytes exposed to the RPM, we performed quantitative real-time PCR analyses after 24 h on chondrocytes cultured in DMEM/F-12. A significant up-regulation in the gene expression of IL6, RUNX2, RUNX3, SPP1, SOX6, SOX9, and MMP13 was detected, while the levels of IL8, ACAN, PRG4, ITGB1, TGFB1, COL1A1, COL2A1, COL10A1, SOD3, SOX5, MMP1, and MMP2 mRNAs remained unchanged. The STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) analysis demonstrated among others the importance of these differentially regulated genes for cartilage formation. Chondrocytes grown in DMEM/F-12 medium produced three-dimensional (3D) spheroids after five days without the addition of scaffolds. On day 28, the produced tissue constructs reached up to 2 mm in diameter. Using specific chondrocyte growth medium, similar results were achieved within 14 days. Spheroids from both types of culture media showed the typical cartilage morphology with aggrecan positivity. Intermediate filaments form clusters under RPM conditions as detected by vimentin staining after 7 d and 14 d. Larger meshes appear in the network in 28-day samples. Furthermore, they were able to form a confluent chondrocyte monolayer after being transferred back into cell culture flasks in 1 g conditions showing their suitability for transplantation into joints. Our results demonstrate that the cultivation medium has a direct influence on the velocity of tissue formation and tissue composition. The spheroids show properties that make them interesting candidates for cellular cartilage regeneration approaches in trauma and OA therapy.
Collapse
|
27
|
Prolidase Stimulates Proliferation and Migration through Activation of the PI3K/Akt/mTOR Signaling Pathway in Human Keratinocytes. Int J Mol Sci 2020; 21:ijms21239243. [PMID: 33287453 PMCID: PMC7730528 DOI: 10.3390/ijms21239243] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/15/2023] Open
Abstract
Recent reports have indicated prolidase (PEPD) as a ligand of the epidermal growth factor receptor (EGFR). Since this receptor is involved in the promotion of cell proliferation, growth, and migration, we aimed to investigate whether prolidase may participate in wound healing in vitro. All experiments were performed in prolidase-treated human keratinocytes assessing cell vitality, proliferation, and migration. The expression of downstream signaling proteins induced by EGFR, insulin-like growth factor 1 (IGF-1), transforming growth factor β1 (TGF-β1), and β1-integrin receptors were evaluated by Western immunoblotting and immunocytochemical staining. To determine collagen biosynthesis and prolidase activity radiometric and colorimetric methods were used, respectively. Proline content was determined by applying the liquid chromatography coupled with mass spectrometry. We found that prolidase promoted the proliferation and migration of keratinocytes through stimulation of EGFR-downstream signaling pathways in which the PI3K/Akt/mTOR axis was involved. Moreover, PEPD upregulated the expression of β1-integrin and IGF-1 receptors and their downstream proteins. Proline concentration and collagen biosynthesis were increased in HaCaT cells under prolidase treatment. Since extracellular prolidase as a ligand of EGFR induced cell growth, migration, and collagen biosynthesis in keratinocytes, it may represent a potential therapeutic approach for the treatment of skin wounds.
Collapse
|
28
|
Ma Z, Zheng X, Fu Z, Lin S, Yu G, Qin JG. Transcriptional analysis reveals physiological response to acute acidification stress of barramundi Lates calcarifer (Bloch) in coastal areas. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1729-1741. [PMID: 32533395 DOI: 10.1007/s10695-020-00824-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
To understand the physiological response of estuarine fish to acidification, barramundi (Lates calcarifer) juveniles were exposed to acidified seawater in experimental conditions. The molecular response of barramundi to acidification stress was assessed by RNA-seq analysis. A total of 2188 genes were identified as differential expression genes. The gene ontology classification system and Kyoto Encyclopedia of Genes and Genomes database analysis showed that acidification caused differential expressions of genes and pathways in the gills of barramundi. Acidification had a great influence on the signal transduction pathway in cell process. Furthermore, we detected that numerous unigenes involved in the pathways associated with lipid metabolism, carbohydrate metabolism, amino acid metabolism, glycan biosynthesis and metabolism specific and non-specific immunity were changed. This study indicates that the physiological responses in barramundi especially the immune system and energy allocation correspond to the variation of environmental pH. This study reveals the necessity for assessment of the potential of estuarine fishes to cope with acidification of the environment and the need to develop strategies for fish conservation in coastal areas.
Collapse
Affiliation(s)
- Zhenhua Ma
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Xing Zheng
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Zhengyi Fu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Siqi Lin
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Gang Yu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
| |
Collapse
|
29
|
Cha B, Kim J, Bello A, Lee G, Kim D, Kim BJ, Arai Y, Choi B, Park H, Lee S. Efficient Isolation and Enrichment of Mesenchymal Stem Cells from Human Embryonic Stem Cells by Utilizing the Interaction between Integrin α5 β1 and Fibronectin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001365. [PMID: 32995130 PMCID: PMC7507081 DOI: 10.1002/advs.202001365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Indexed: 05/09/2023]
Abstract
Human pluripotent stem cells (hPSCs) are a potent source of clinically relevant mesenchymal stem cells (MSCs) that confer functional and structural benefits in cell therapy and tissue regeneration. Obtaining sufficient numbers of MSCs in a short period of time and enhancing the differentiation potential of MSCs can be offered the potential to improve the regenerative activity of MSCs therapy. In addition, the underlying processes in the isolation and derivation of MSCs from hPSCs are still poorly understood and controlled. To overcome these clinical needs, an efficient and simplified technique on the isolation of MSCs from spontaneously differentiated human embryonic stem cells (hESCs) via integrin α5β1 (fibronectin (FN) receptor)-to-FN interactions (hESC-FN-MSCs) is successfully developed. It is demonstrated that hESC-FN-MSCs exhibit a typical MSC surface phenotype, cellular morphology, with the whole transcriptome similar to conventional adult MSCs; but show higher proliferative capacity, more efficient trilineage differentiation, enhanced cytokine secretion, and attenuated cellular senescence. In addition, the therapeutic potential and regenerative capacity of the isolated hESC-FN-MSCs are confirmed by in vitro and in vivo multilineage differentiation. This novel method will be useful in the generation of abundant amounts of clinically relevant MSCs for stem cell therapeutics and regenerative medicine.
Collapse
Affiliation(s)
- Byung‐Hyun Cha
- Division of Cardio‐Thoracic SurgeryDepartment of SurgeryCollege of MedicineUniversity of ArizonaTucsonAZ85724USA
| | - Jin‐Su Kim
- CellenGene R&D CenterOpen Innovation BuildingSeoul02455Republic of Korea
- Department of Biomedical ScienceCHA UniversityCHA BiocomplexSeongnam‐siGyeonggi‐do13488Republic of Korea
| | - Alvin Bello
- Department of Integrative EngineeringChung‐Ang UniversitySeoul06974Republic of Korea
| | - Geun‐Hui Lee
- Department of Biomedical ScienceCHA UniversityCHA BiocomplexSeongnam‐siGyeonggi‐do13488Republic of Korea
| | - Do‐Hyun Kim
- Department of Medical BiotechnologyDongguk University32 Dongguk‐ro, Ilsandong‐guGoyangGyeonggi10326Republic of Korea
| | - Byoung Ju Kim
- Department of Medical BiotechnologyDongguk University32 Dongguk‐ro, Ilsandong‐guGoyangGyeonggi10326Republic of Korea
| | - Yoshie Arai
- Department of Medical BiotechnologyDongguk University32 Dongguk‐ro, Ilsandong‐guGoyangGyeonggi10326Republic of Korea
| | - Bogyu Choi
- Department of Biomedical ScienceCHA UniversityCHA BiocomplexSeongnam‐siGyeonggi‐do13488Republic of Korea
| | - Hansoo Park
- Department of Integrative EngineeringChung‐Ang UniversitySeoul06974Republic of Korea
| | - Soo‐Hong Lee
- Department of Medical BiotechnologyDongguk University32 Dongguk‐ro, Ilsandong‐guGoyangGyeonggi10326Republic of Korea
| |
Collapse
|
30
|
Fernandes NRJ, Reilly NS, Schrock DC, Hocking DC, Oakes PW, Fowell DJ. CD4 + T Cell Interstitial Migration Controlled by Fibronectin in the Inflamed Skin. Front Immunol 2020; 11:1501. [PMID: 32793204 PMCID: PMC7393769 DOI: 10.3389/fimmu.2020.01501] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/09/2020] [Indexed: 01/21/2023] Open
Abstract
The extracellular matrix (ECM) is extensively remodeled during inflammation providing essential guidance cues for immune cell migration and signals for cell activation and survival. There is increasing interest in the therapeutic targeting of ECM to mitigate chronic inflammatory diseases and enhance access to the tumor microenvironment. T cells utilize the ECM as a scaffold for interstitial migration, dependent on T cell expression of matrix-binding integrins αVβ1/αVβ3 and tissue display of the respective RGD-containing ligands. The specific ECM components that control T cell migration are unclear. Fibronectin (FN), a canonical RGD-containing matrix component, is heavily upregulated in inflamed tissues and in vitro can serve as a substrate for leukocyte migration. However, limited by lack of tools to intravitally visualize and manipulate FN, the specific role of FN in effector T cell migration in vivo is unknown. Here, we utilize fluorescently-tagged FN to probe for FN deposition, and intravital multiphoton microscopy to visualize T cell migration relative to FN in the inflamed ear dermis. Th1 cells were found to migrate along FN fibers, with T cells appearing to actively push or pull against flexible FN fibers. To determine the importance of T cell interactions with FN, we used a specific inhibitor of FN polymerization, pUR4. Intradermal delivery of pUR4 (but not the control peptide) to the inflamed skin resulted in a local reduction in FN deposition. We also saw a striking attenuation of Th1 effector T cell movement at the pUR4 injection site, suggesting FN plays a key role in T cell interstitial migration. In mechanistic studies, pUR4 incubation with FN in vitro resulted in enhanced tethering of T cells to FN matrix, limiting productive migration. In vivo, such tethering led to increased Th1 accumulation in the inflamed dermis. Enhanced Th1 accumulation exacerbated inflammation with increased Th1 activation and IFNγ cytokine production. Thus, our studies highlight the importance of ECM FN fibrils for T cell migration in inflamed tissues and suggest that manipulating local levels of ECM FN may prove beneficial in promoting T cell accumulation in tissues and enhancing local immunity to infection or cancer.
Collapse
Affiliation(s)
- Ninoshka R. J. Fernandes
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Nicholas S. Reilly
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States
| | - Dillon C. Schrock
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Denise C. Hocking
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| | - Patrick W. Oakes
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Deborah J. Fowell
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
31
|
Dual functionality of the amyloid protein TasA in Bacillus physiology and fitness on the phylloplane. Nat Commun 2020; 11:1859. [PMID: 32313019 PMCID: PMC7171179 DOI: 10.1038/s41467-020-15758-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteria can form biofilms that consist of multicellular communities embedded in an extracellular matrix (ECM). In Bacillus subtilis, the main protein component of the ECM is the functional amyloid TasA. Here, we study further the roles played by TasA in B. subtilis physiology and biofilm formation on plant leaves and in vitro. We show that ΔtasA cells exhibit a range of cytological symptoms indicative of excessive cellular stress leading to increased cell death. TasA associates to the detergent-resistant fraction of the cell membrane, and the distribution of the flotillin-like protein FloT is altered in ΔtasA cells. We propose that, in addition to a structural function during ECM assembly and interactions with plants, TasA contributes to the stabilization of membrane dynamics as cells enter stationary phase. The amyloid protein TasA is a main component of the extracellular matrix in Bacillus subtilis biofilms. Here the authors show that, in addition to a structural function during biofilm assembly and interactions with plants, TasA contributes to the stabilization of membrane dynamics during stationary phase.
Collapse
|
32
|
Kwon S, Kim KS. Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity. Cell Mol Life Sci 2020; 77:1345-1355. [PMID: 31605149 PMCID: PMC11105102 DOI: 10.1007/s00018-019-03328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Cells are dynamic structures that continually generate and sustain mechanical forces within their environments. Cells respond to mechanical forces by changing their shape, moving, and differentiating. These reactions are caused by intracellular skeletal changes, which induce changes in cellular mechanical properties such as stiffness, elasticity, viscoelasticity, and adhesiveness. Interdisciplinary research combining molecular biology with physics and mechanical engineering has been conducted to characterize cellular mechanical properties and understand the fundamental mechanisms of mechanotransduction. In this review, we focus on the role of cytoskeletal proteins in cellular mechanics. The specific role of each cytoskeletal protein, including actin, intermediate filaments, and microtubules, on cellular elasticity is summarized along with the effects of interactions between the fibers.
Collapse
Affiliation(s)
- Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
33
|
Wofford A, Bow A, Newby S, Brooks S, Rodriguez R, Masi T, Stephenson S, Gotcher J, Anderson DE, Campbell J, Dhar M. Human Fat-Derived Mesenchymal Stem Cells Xenogenically Implanted in a Rat Model Show Enhanced New Bone Formation in Maxillary Alveolar Tooth Defects. Stem Cells Int 2020; 2020:8142938. [PMID: 32399052 PMCID: PMC7201503 DOI: 10.1155/2020/8142938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Due to restorative concerns, bone regenerative therapies have garnered much attention in the field of human oral/maxillofacial surgery. Current treatments using autologous and allogenic bone grafts suffer from inherent challenges, hence the ideal bone replacement therapy is yet to be found. Establishing a model by which MSCs can be placed in a clinically acceptable bone defect to promote bone healing will prove valuable to oral/maxillofacial surgeons. METHODS Human adipose tissue-derived MSCs were seeded onto Gelfoam® and their viability, proliferation, and osteogenic differentiation was evaluated in vitro. Subsequently, the construct was implanted in a rat maxillary alveolar bone defect to assess in vivo bone healing and regeneration. RESULTS Human MSCs were adhered, proliferated, and uniformly distributed, and underwent osteogenic differentiation on Gelfoam®, comparable with the tissue culture surface. Data confirmed that Gelfoam® could be used as a scaffold for cell attachment and a delivery vehicle to implant MSCs in vivo. Histomorphometric analyses of bones harvested from rats treated with hMSCs showed statistically significant increase in collagen/early bone formation, with cells positive for osteogenic and angiogenic markers in the defect site. This pattern was visible as early as 4 weeks post treatment. CONCLUSIONS Xenogenically implanted human MSCs have the potential to heal an alveolar tooth defect in rats. Gelfoam®, a commonly used clinical biomaterial, can serve as a scaffold to deliver and maintain MSCs to the defect site. Translating this strategy to preclinical animal models provides hope for bone tissue engineering.
Collapse
Affiliation(s)
- Andrew Wofford
- Department of Biochemistry and Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, Knoxville, TN 37916, USA
| | - Austin Bow
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Steven Newby
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Seth Brooks
- Department of Oral and Maxillofacial Surgery, University of Tennessee Medical Center, Knoxville, TN 37920, USA
| | - Rachel Rodriguez
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Tom Masi
- Graduate School of Medicine, Department of Surgery, University of Tennessee, Knoxville, TN 37920, USA
| | - Stacy Stephenson
- Graduate School of Medicine, Department of Surgery, University of Tennessee, Knoxville, TN 37920, USA
| | - Jack Gotcher
- Department of Oral and Maxillofacial Surgery, University of Tennessee Medical Center, Knoxville, TN 37920, USA
| | - David E. Anderson
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Josh Campbell
- Department of Oral and Maxillofacial Surgery, University of Tennessee Medical Center, Knoxville, TN 37920, USA
| | - Madhu Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
34
|
Nam GH, Kawk HW, Kim SY, Kim YM. Solvent fractions of fermented Trapa japonica fruit extract stimulate collagen synthesis through TGF-β1/GSK-3β/β-catenin pathway in human dermal fibroblasts. J Cosmet Dermatol 2020; 19:226-233. [PMID: 31904184 DOI: 10.1111/jocd.13253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/27/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND The dermis, composed predominantly of dermal fibroblasts and extracellular matrix (ECM), consists of fibrous proteins such as collagen and elastin and is associated with wrinkle formation and dermal elasticity. As the major constituent of the dermal matrix, collagen strengthens the skin, enhances its elasticity and protects it from external factors, such as ultraviolet (UV) rays, skin inflammation, intracellular metabolites, and aging. AIMS Economic growth and long-life expectancy have increased the interest in beauty, with extensive studies conducted to evaluate the anti-aging and health-promoting benefits of bioactive substances. METHODS In this study, we used natural ingredients, Trapa japonica fruit is a hard, aquatic plant that grows in ponds or marshes and contains protein and starch. To develop the ingredients for comprehensive skin improvement, this study investigated the effects of the trapa japonica fruit extract on the improvement of skin cells. CONCLUSION We investigated the role of the fermented hot-water trapa japonica fruit extract to isolate the active ingredients with antiwrinkle effects in vitro and ex vivo situation through human dermal fibroblast cell proliferation via activating TGF-β1/GSK-3β/β-catenin pathway.
Collapse
Affiliation(s)
- Gun-He Nam
- Department of Biological science and Biotechnology, College of Life science and Nano technology, Hannam University, Daejeon, South Korea
| | - Hye Won Kawk
- Department of Biological science and Biotechnology, College of Life science and Nano technology, Hannam University, Daejeon, South Korea
| | - Sang-Yong Kim
- Department of Food Science & Bio Technology, Shinansan University, Ansan-city, South Korea
| | - Young-Min Kim
- Department of Biological science and Biotechnology, College of Life science and Nano technology, Hannam University, Daejeon, South Korea
| |
Collapse
|
35
|
Bildyug N. Extracellular Matrix in Regulation of Contractile System in Cardiomyocytes. Int J Mol Sci 2019; 20:E5054. [PMID: 31614676 PMCID: PMC6834325 DOI: 10.3390/ijms20205054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
The contractile apparatus of cardiomyocytes is considered to be a stable system. However, it undergoes strong rearrangements during heart development as cells progress from their non-muscle precursors. Long-term culturing of mature cardiomyocytes is also accompanied by the reorganization of their contractile apparatus with the conversion of typical myofibrils into structures of non-muscle type. Processes of heart development as well as cell adaptation to culture conditions in cardiomyocytes both involve extracellular matrix changes, which appear to be crucial for the maturation of contractile apparatus. The aim of this review is to analyze the role of extracellular matrix in the regulation of contractile system dynamics in cardiomyocytes. Here, the remodeling of actin contractile structures and the expression of actin isoforms in cardiomyocytes during differentiation and adaptation to the culture system are described along with the extracellular matrix alterations. The data supporting the regulation of actin dynamics by extracellular matrix are highlighted and the possible mechanisms of such regulation are discussed.
Collapse
Affiliation(s)
- Natalya Bildyug
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia.
| |
Collapse
|
36
|
Liang Y, Wang Y, Ma L, Zhong Z, Yang X, Tao X, Chen X, He Z, Yang Y, Zeng K, Kang R, Gong J, Ying S, Lei Y, Pang J, Lv X, Gu Y. Comparison of microRNAs in adipose and muscle tissue from seven indigenous Chinese breeds and Yorkshire pigs. Anim Genet 2019; 50:439-448. [PMID: 31328299 DOI: 10.1111/age.12826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 01/29/2023]
Abstract
Elucidation of the pig microRNAome is essential for interpreting functional elements of the genome and understanding the genetic architecture of complex traits. Here, we extracted small RNAs from skeletal muscle and adipose tissue, and we compared their expression levels between one Western breed (Yorkshire) and seven indigenous Chinese breeds. We detected the expression of 172 known porcine microRNAs (miRNAs) and 181 novel miRNAs. Differential expression analysis found 92 and 12 differentially expressed miRNAs in adipose and muscle tissue respectively. We found that different Chinese breeds shared common directional miRNA expression changes compared to Yorkshire pigs. Some miRNAs differentially expressed across multiple Chinese breeds, including ssc-miR-129-5p, ssc-miR-30 and ssc-miR-150, are involved in adipose tissue function. Functional enrichment analysis revealed that the target genes of the differentially expressed miRNAs are associated mainly with signaling pathways rather than metabolic and biosynthetic processes. The miRNA-target gene and miRNA-phenotypic traits networks identified many hub miRNAs that regulate a large number of target genes or phenotypic traits. Specifically, we found that intramuscular fat content is regulated by the greatest number of miRNAs in muscle tissue. This study provides valuable new candidate miRNAs that will aid in the improvement of meat quality and production.
Collapse
Affiliation(s)
- Y Liang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - Y Wang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - L Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, 610052, Sichuan Province China
| | - Z Zhong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - X Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - X Tao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - X Chen
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - Z He
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - Y Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - K Zeng
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - R Kang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - J Gong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - S Ying
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - Y Lei
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - J Pang
- Chengdu Biotechservice Institute, Chengdu, 610041, Sichuan Province China
| | - X Lv
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - Y Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| |
Collapse
|
37
|
Yosef A, Kossover O, Mironi‐Harpaz I, Mauretti A, Melino S, Mizrahi J, Seliktar D. Fibrinogen-Based Hydrogel Modulus and Ligand Density Effects on Cell Morphogenesis in Two-Dimensional and Three-Dimensional Cell Cultures. Adv Healthc Mater 2019; 8:e1801436. [PMID: 31081289 DOI: 10.1002/adhm.201801436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/08/2019] [Indexed: 12/15/2022]
Abstract
There is a need to further explore the convergence of mechanobiology and dimensionality with systematic investigations of cellular response to matrix mechanics in 2D and 3D cultures. Here, a semisynthetic hydrogel capable of supporting both 2D and 3D cell culture is applied to investigate cell response to matrix modulus and ligand density. The culture materials are fabricated from adducts of polyethylene glycol (PEG) or PluronicF127 and fibrinogen fragments, formed into hydrogels by free-radical polymerization, and characterized by shear rheology. Control over the modulus of the materials is accomplished by changing the concentration of synthetic PEG-diacrylate crosslinker (0.5% w/v), and by altering the molecular length of the PEG (10 and 20 kDa). Control over ligand density is accomplished by changing fibrinogen concentrations from 3 to 12 mg mL-1 . In 2D culture, cell motility parameters, including cell speed and persistence time are significantly increased with increasing modulus. In both 2D and 3D culture, cells express vinculin and there is evidence of focal adhesion formation in the high stiffness materials. The modulus- and ligand-dependent morphogenesis response from the cells in 2D culture is contradictory to the same measured response in 3D culture. In 2D culture, anchorage-dependent cells become more elongated and significantly increase their size with increasing ligand density and matrix modulus. In 3D culture, the same anchorage-dependent cells become less spindled and significantly reduce their size in response to increasing ligand density and matrix modulus. These differences arise from dimensionality constraints, most notably the encapsulation of cells in a non-porous hydrogel matrix. These insights underscore the importance of mechanical properties in regulating cell morphogenesis in a 3D culture milieu. The versatility of the hydrogel culture environment further highlights the significance of a modular approach when developing materials that aim to optimize the cell culture environment.
Collapse
Affiliation(s)
- Andrei Yosef
- Faculty of Biomedical EngineeringTechnion—Israel Institute of Technology Haifa 32000 Israel
| | - Olga Kossover
- Faculty of Biomedical EngineeringTechnion—Israel Institute of Technology Haifa 32000 Israel
| | - Iris Mironi‐Harpaz
- Faculty of Biomedical EngineeringTechnion—Israel Institute of Technology Haifa 32000 Israel
| | - Arianna Mauretti
- Department of Chemical Sciences and TechnologiesUniversity of Rome “Tor Vergata” Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Sonia Melino
- Department of Chemical Sciences and TechnologiesUniversity of Rome “Tor Vergata” Via della Ricerca Scientifica 1 00133 Rome Italy
- CIMER Center of Regenerative MedicineTor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Joseph Mizrahi
- Faculty of Biomedical EngineeringTechnion—Israel Institute of Technology Haifa 32000 Israel
| | - Dror Seliktar
- Faculty of Biomedical EngineeringTechnion—Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|
38
|
Svetlova A, Ellieroth J, Milos F, Maybeck V, Offenhäusser A. Composite Lipid Bilayers from Cell Membrane Extracts and Artificial Mixes as a Cell Culture Platform. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8076-8084. [PMID: 31055920 DOI: 10.1021/acs.langmuir.9b00763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An artificial lipid bilayer is the closest possible model for the cell membrane. Despite that, current methods of lipid bilayer assembly and functionalization do not provide a satisfactory mimic of the cell-cell contact due to the inability to recreate an asymmetrical multicomponent system. In the current work, a method to produce an integrated solid-supported lipid bilayer combining natural extracts from cell membranes and artificially made lipid vesicles is proposed. This simple method allows delivery of transmembrane proteins and components of the extracellular matrix into the substrate. Biocompatibility of the composite natural/artificial lipid bilayers is evaluated by their interactions with the cardiomyocyte-like HL-1 cell line. Compared with fully artificial mixes, composite lipid bilayers allow cells to adhere and develop a morphologically more normal cytoskeleton.
Collapse
Affiliation(s)
- Anastasia Svetlova
- Institute of Bioelectronics (ICS-8), Forschungszentrum Jülich GmbH , Wilhelm-Johnen Straße , 52425 Jülich , Germany
| | - Jana Ellieroth
- Institute of Bioelectronics (ICS-8), Forschungszentrum Jülich GmbH , Wilhelm-Johnen Straße , 52425 Jülich , Germany
| | - Frano Milos
- Institute of Bioelectronics (ICS-8), Forschungszentrum Jülich GmbH , Wilhelm-Johnen Straße , 52425 Jülich , Germany
| | - Vanessa Maybeck
- Institute of Bioelectronics (ICS-8), Forschungszentrum Jülich GmbH , Wilhelm-Johnen Straße , 52425 Jülich , Germany
| | - Andreas Offenhäusser
- Institute of Bioelectronics (ICS-8), Forschungszentrum Jülich GmbH , Wilhelm-Johnen Straße , 52425 Jülich , Germany
| |
Collapse
|
39
|
Zakiyanov O, Kalousová M, Zima T, Tesař V. Matrix Metalloproteinases in Renal Diseases: A Critical Appraisal. Kidney Blood Press Res 2019; 44:298-330. [PMID: 31185475 DOI: 10.1159/000499876] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/10/2019] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases within the metzincin protein family that not only cleave extracellular matrix (ECM) components, but also process the non-ECM molecules, including various growth factors and their binding proteins. MMPs participate in cell to ECM interactions, and MMPs are known to be involved in cell proliferation mechanisms and most probably apoptosis. These proteinases are grouped into six classes: collagenases, gelatinases, stromelysins, matrilysins, membrane type MMPs, and other MMPs. Various mechanisms regulate the activity of MMPs, inhibition by tissue inhibitors of metalloproteinases being the most important. In the kidney, intrinsic glomerular cells and tubular epithelial cells synthesize several MMPs. The measurement of circulating MMPs can provide valuable information in patients with kidney diseases. They play an important role in many renal diseases, both acute and chronic. This review attempts to summarize the current knowledge of MMPs in the kidney and discusses recent data from patient and animal studies with reference to specific diseases. A better understanding of the MMPs' role in renal remodeling may open the way to new interventions favoring deleterious renal changes in a number of kidney diseases.
Collapse
Affiliation(s)
- Oskar Zakiyanov
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia,
| | - Marta Kalousová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Vladimír Tesař
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| |
Collapse
|
40
|
Pratsinis H, Mavrogonatou E, Kletsas D. Scarless wound healing: From development to senescence. Adv Drug Deliv Rev 2019; 146:325-343. [PMID: 29654790 DOI: 10.1016/j.addr.2018.04.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
Abstract
An essential element of tissue homeostasis is the response to injuries, cutaneous wound healing being the most studied example. In the adults, wound healing aims at quickly restoring the barrier function of the skin, leading however to scar, a dysfunctional fibrotic tissue. On the other hand, in fetuses a scarless tissue regeneration takes place. During ageing, the wound healing capacity declines; however, in the absence of comorbidities a higher quality in tissue repair is observed. Senescent cells have been found to accumulate in chronic unhealed wounds, but more recent reports indicate that their transient presence may be beneficial for tissue repair. In this review data on skin wound healing and scarring are presented, covering the whole spectrum from early embryonic development to adulthood, and furthermore until ageing of the organism.
Collapse
|
41
|
Li J, Yang H, Lu Q, Chen D, Zhou M, Kuang Y, Ying S, Song J. Proteomics and N‐glycoproteomics analysis of an extracellular matrix‐based scaffold‐human treated dentin matrix. J Tissue Eng Regen Med 2019; 13:1164-1177. [DOI: 10.1002/term.2866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/07/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Li
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Hefeng Yang
- Department of Dental ResearchThe Affiliated Stomatological Hospital of Kunming Medical University Kunming China
| | - Qi Lu
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Duanjing Chen
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Mengjiao Zhou
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Yunchun Kuang
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Siqi Ying
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Jinlin Song
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| |
Collapse
|
42
|
Park J, Kim DH, Levchenko A. Topotaxis: A New Mechanism of Directed Cell Migration in Topographic ECM Gradients. Biophys J 2019; 114:1257-1263. [PMID: 29590582 DOI: 10.1016/j.bpj.2017.11.3813] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/20/2017] [Accepted: 11/20/2017] [Indexed: 02/03/2023] Open
Abstract
Living cells orient the cytoskeleton polarity and directional migration in response to spatial gradients of multiple types of cues. The resulting tactic behaviors are critical for the proper cell localization in the context of complex single-cell and tissue behaviors. In this perspective, we highlight the recent discovery of, to our knowledge, a new -taxis phenomenon, the topotaxis, which mediates directional cell migration in response to the gradients of such topographic features as the density of extracellular matrix fibers. The direction of topotactic migration critically depends on the effective stiffness of the cortical cytoskeleton, which is controlled by the balance between two parallel signaling pathways activated by the extracellular matrix input. Topotaxis can account for such striking cell behaviors as the opposite directionality of migration of benign and metastatic cancer cells and certain aspects of the wound-healing process. We anticipate that, in conjunction with other tactic phenomena, topotaxis can provide critical information for understanding and design of tissue structure and function.
Collapse
Affiliation(s)
- JinSeok Park
- Yale Systems Biology Institute and Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Andre Levchenko
- Yale Systems Biology Institute and Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| |
Collapse
|
43
|
Zheng Z, Hao R, Xiong X, Jiao Y, Deng Y, Du X. Developmental characteristics of pearl oyster Pinctada fucata martensii: insight into key molecular events related to shell formation, settlement and metamorphosis. BMC Genomics 2019; 20:122. [PMID: 30736747 PMCID: PMC6368781 DOI: 10.1186/s12864-019-5505-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/01/2019] [Indexed: 01/08/2023] Open
Abstract
Background Marine bivalves undergo complex development processes, such as shell morphology conversion and changes of anatomy and life habits. In this study, the transcriptomes of pearl oyster Pinctada fucata martensii and Pacific oyster Crassostrea gigas at different development stages were analyzed to determine the key molecular events related to shell formation, settlement and metamorphosis. Result According to the shell matrix proteome, biomineralization-related genes exhibited a consensus expression model with the critical stages of shell formation. Differential expression analysis of P. f. martensii, revealed the negative regulation and feedback of extracellular matrixs as well as growth factor pathways involved in shell formation of larvae, similar to that in C. gigas. Furthermore, neuroendocrine pathways in hormone receptors, neurotransmitters and neuropeptide receptors were involved in shell formation, settlement and metamorphosis. Conclusion Our research demonstrated the main clusters of regulation elements related to shell formation, settlement and metamorphosis. The regulation of shell formation and metamorphosis could be coupled forming the neuroendocrine-biomineralization crosstalk in metamorphosis. These findings could provide new insights into the regulation in bivalve development. Electronic supplementary material The online version of this article (10.1186/s12864-019-5505-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China.,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China
| | - Ruijuan Hao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China.,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China
| | - Xinwei Xiong
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China.,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China.,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China. .,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China.
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China. .,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China.
| |
Collapse
|
44
|
Sugimoto K, Ito T, Woo J, Tully E, Sato K, Orita H, Brock MV, Gabrielson E. Prognostic Impact of Phosphorylated Discoidin Domain Receptor-1 in Esophageal Cancer. J Surg Res 2018; 235:479-486. [PMID: 30691832 DOI: 10.1016/j.jss.2018.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/17/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is common in East Asia and also is often deadly. We sought to determine whether measuring the discoidin domain receptor-1 (DDR1)-both total and phosphorylated proteins-could improve our ability to predict recurrence in ESCC. MATERIALS AND METHODS Total DDR1 and phosphorylated DDR1 (pDDR1) were measured using semiquantitative immunohistochemistry in a cohort of 60 patients with ESCC. Association between these immunohistochemical measurements and standard clinical-pathological variables such as patient recurrence-free survival was examined using univariate and multivariate analyses. RESULTS Six patients (10.0%) had regional recurrence and eight patients (13.3%) had distant recurrence. In univariate analysis, early disease recurrence correlated with intense staining of total DDR1 (P = 0.03) as well as intense staining of pDDR1 (P < 0.001). On multivariate analysis, only regional lymph node metastasis (P = 0.04, HR = 4.20) and intensity of pDDR1 immunohistochemistry (P = 0.03, HR = 4.27) emerged as significant independent prognostic factors for recurrence. CONCLUSIONS This study suggests that immunohistochemical measurements of both the DDR1 protein and pDDR1 can provide prognostic value in ESCC, even when other clinical and pathological factors are also being considered.
Collapse
Affiliation(s)
- Kiichi Sugimoto
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tomoaki Ito
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Surgery, Juntendo University Shizuoka Hospital, Izunokuni-shi, Shizuoka, Japan
| | - Juhyung Woo
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ellen Tully
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Koichi Sato
- Department of Surgery, Juntendo University Shizuoka Hospital, Izunokuni-shi, Shizuoka, Japan
| | - Hajime Orita
- Department of Surgery, Juntendo University Shizuoka Hospital, Izunokuni-shi, Shizuoka, Japan
| | - Malcolm V Brock
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Edward Gabrielson
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
45
|
Tissue-Inspired Interfacial Coatings for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:415-420. [PMID: 30357701 DOI: 10.1007/978-981-13-0947-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Biomedical devices have come a long way since they were first introduced as a medically interventional methodology in treating various types of diseases. Different techniques were employed to make the devices more biocompatible and promote tissue repair; such as chemical surface modifications, using novel materials as the bulk of a device, physical topological manipulations and so forth. One of the strategies that recently gained a lot of attention is the use of tissue-inspired biomaterials that are coated on the surface of biomedical devices via different coating techniques, such as the use of extracellular matrix (ECM) coatings, extracted cell membrane coatings, and so on. In this chapter, we will give a general overview of the different types of tissue-inspired coatings along with a summary of recent studies reported in this scientific arena.
Collapse
|
46
|
ElMahmoudy M, Curto VF, Ferro M, Hama A, Malliaras GG, O'Connor RP, Sanaur S. Electrically controlled cellular migration on a periodically micropatterned PEDOT:PSS conducting polymer platform. J Appl Polym Sci 2018. [DOI: 10.1002/app.47029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M. ElMahmoudy
- IMT Mines Saint-Etienne, Provence Microelectronics Center, Department of Bioelectronics; F-13541 Gardanne France
| | - V. F. Curto
- IMT Mines Saint-Etienne, Provence Microelectronics Center, Department of Bioelectronics; F-13541 Gardanne France
| | - M. Ferro
- IMT Mines Saint-Etienne, Provence Microelectronics Center, Department of Bioelectronics; F-13541 Gardanne France
| | - A. Hama
- IMT Mines Saint-Etienne, Provence Microelectronics Center, Department of Bioelectronics; F-13541 Gardanne France
| | - G. G. Malliaras
- IMT Mines Saint-Etienne, Provence Microelectronics Center, Department of Bioelectronics; F-13541 Gardanne France
| | - R. P. O'Connor
- IMT Mines Saint-Etienne, Provence Microelectronics Center, Department of Bioelectronics; F-13541 Gardanne France
| | - S. Sanaur
- IMT Mines Saint-Etienne, Provence Microelectronics Center, Department of Flexible Electronics; F-13541 Gardanne France
| |
Collapse
|
47
|
Zarkoob H, Chinnathambi S, Selby JC, Sander EA. Substrate deformations induce directed keratinocyte migration. J R Soc Interface 2018; 15:20180133. [PMID: 29899159 PMCID: PMC6030620 DOI: 10.1098/rsif.2018.0133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Cell migration is an essential part of many (patho)physiological processes, including keratinocyte re-epithelialization of healing wounds. Physical forces and mechanical cues from the wound bed (in addition to biochemical signals) may also play an important role in the healing process. Previously, we explored this possibility and found that polyacrylamide (PA) gel stiffness affected human keratinocyte behaviour and that mechanical deformations in soft (approx. 1.2 kPa) PA gels produced by neighbouring cells appeared to influence the process of de novo epithelial sheet formation. To clearly demonstrate that keratinocytes do respond to such deformations, we conducted a series of experiments where we observed the response of single keratinocytes to a prescribed local substrate deformation that mimicked a neighbouring cell or evolving multicellular aggregate via a servo-controlled microneedle. We also examined the effect of adding either Y27632 or blebbistatin on cell response. Our results indicate that keratinocytes do sense and respond to mechanical signals comparable to those that originate from substrate deformations imposed by neighbouring cells, a finding that could have important implications for the process of keratinocyte re-epithelialization that takes place during wound healing. Furthermore, the Rho/ROCK pathway and the engagement of NM II are both essential to substrate deformation-directed keratinocyte migration.
Collapse
Affiliation(s)
- Hoda Zarkoob
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Sathivel Chinnathambi
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - John C Selby
- Department of Dermatology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Edward A Sander
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
48
|
Guo T, Ringel JP, Lim CG, Bracaglia LG, Noshin M, Baker HB, Powell DA, Fisher JP. Three dimensional extrusion printing induces polymer molecule alignment and cell organization within engineered cartilage. J Biomed Mater Res A 2018; 106:2190-2199. [PMID: 29659132 DOI: 10.1002/jbm.a.36426] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022]
Abstract
Proper cell-material interactions are critical to remain cell function and thus successful tissue regeneration. Many fabrication processes have been developed to create microenvironments to control cell attachment and organization on a three-dimensional (3D) scaffold. However, these approaches often involve heavy engineering and only the surface layer can be patterned. We found that 3D extrusion based printing at high temperature and pressure will result an aligned effect on the polymer molecules, and this molecular arrangement will further induce the cell alignment and different differentiation capacities. In particular, articular cartilage tissue is known to have zonal collagen fiber and cell orientation to support different functions, where collagen fibers and chondrocytes align parallel, randomly, and perpendicular, respectively, to the surface of the joint. Therefore, cell alignment was evaluated in a cartilage model in this study. We used small angle X-ray scattering analysis to substantiate the polymer molecule alignment phenomenon. The cellular response was evaluated both in vitro and in vivo. Seeded mesenchymal stem cells (MSCs) showed different morphology and orientation on scaffolds, as a combined result of polymer molecule alignment and printed scaffold patterns. Gene expression results showed improved superficial zonal chondrogenic marker expression in parallel-aligned group. The cell alignment was successfully maintained in the animal model after 7 days with distinct MSC morphology between the casted and parallel printed scaffolds. This 3D printing induced polymer and cell alignment will have a significant impact on developing scaffold with controlled cell-material interactions for complex tissue engineering while avoiding complicated surface treatment, and therefore provides new concept for effective tissue repairing in future clinical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2190-2199, 2018.
Collapse
Affiliation(s)
- Ting Guo
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, 20742.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, 20742
| | - Julia P Ringel
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, 20742.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, 20742
| | - Casey G Lim
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, 20742.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, 20742
| | - Laura G Bracaglia
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, 20742.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, 20742
| | - Maeesha Noshin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, 20742.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, 20742
| | - Hannah B Baker
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, 20742.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, 20742
| | - Douglas A Powell
- Department of Laboratory Animal Resources, Division of Research, University of Maryland, College Park, Maryland, 20742
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, 20742.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
49
|
Heher P, Mühleder S, Mittermayr R, Redl H, Slezak P. Fibrin-based delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev 2018; 129:134-147. [PMID: 29247766 DOI: 10.1016/j.addr.2017.12.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 12/09/2017] [Indexed: 12/17/2022]
Abstract
Fibrin, a natural hydrogel, is the end product of the physiological blood coagulation cascade and naturally involved in wound healing. Beyond its role in hemostasis, it acts as a local reservoir for growth factors and as a provisional matrix for invading cells that drive the regenerative process. Its unique intrinsic features do not only promote wound healing directly via modulation of cell behavior but it can also be fine-tuned to evolve into a delivery system for sustained release of therapeutic biomolecules, cells and gene vectors. To further augment tissue regeneration potential, current strategies exploit and modify the chemical and physical characteristics of fibrin to employ combined incorporation of several factors and their timed release. In this work we show advanced therapeutic approaches employing fibrin matrices in wound healing and cover the many possibilities fibrin offers to the field of regenerative medicine.
Collapse
|
50
|
Vafaei S, Tabaei SR, Guneta V, Choong C, Cho NJ. Hybrid Biomimetic Interfaces Integrating Supported Lipid Bilayers with Decellularized Extracellular Matrix Components. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3507-3516. [PMID: 29489371 DOI: 10.1021/acs.langmuir.7b03265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper describes the functionalization of solid supported phospholipid bilayer with decellularized extracellular matrix (dECM) components, toward the development of biomimetic platforms that more closely mimic the cell surface environment. The dECM was obtained through a combination of chemical and enzymatic treatments of mouse adipose tissue that contains collagen, fibronectin, and glycosaminoglycans (GAGs). Using amine coupling chemistry, the dECM components were attached covalently to the surface of a supported lipid bilayer containing phospholipids with reactive carboxylic acid headgroups. The bilayer formation and the kinetics of subsequent dECM conjugation were monitored by quartz crystal microbalance with dissipation (QCM-D). Fluorescence recovery after photobleaching (FRAP) confirmed the fluidity of the membrane after functionalization with dECM. The resulting hybrid biomimetic interface supports the attachment and survival of the human hepatocyte Huh 7.5 and maintains the representative hepatocellular function. Importantly, the platform is suitable for monitoring the lateral organization and clustering of cell-binding ligands and growth factor receptors in the presence of the rich biochemical profile of tissue-derived ECM components.
Collapse
Affiliation(s)
- Setareh Vafaei
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive , 637553 Singapore
| | - Seyed R Tabaei
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive , 637553 Singapore
| | - Vipra Guneta
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| | - Cleo Choong
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
- KK Research Centre , KK Women's and Children's Hospital , 100 Bukit Timah Road , 229899 Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive , 637553 Singapore
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , 637459 Singapore
| |
Collapse
|