1
|
Li X, Zhao Y, Liu M, Zhang M, Zhu Z, Liao A, Pan L, Lv X, Liu F, Huang J. Fermented Wheat Germ Ameliorates High-Fat Diet-Induced Maternal Obesity in Rats: Insights from Microbiome and Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12666-12678. [PMID: 40364743 DOI: 10.1021/acs.jafc.4c10847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Maternal obesity significantly increases the risk of adverse outcomes for the mother and fetus. Fermented wheat germ (FWG) has demonstrated the potential to improve metabolic disorders, yet its effects have not been explored in maternal obesity models. This study investigated the ameliorating impact of FWG in rats with maternal obesity, focusing on its mechanisms through biochemical, gut microbiome, and serum metabolomics analysis. The results demonstrated that FWG was more effective than wheat germ in reducing body weight gain and fat accumulation, improving glycolipid metabolism disorders, and alleviating inflammation. Specifically, FWG modulated the composition of gut microbiota by fostering the growth of beneficial bacteria (e.g., Corynebacterium) while suppressing genera associated with maternal obesity (e.g., Blautia, Akkermansia, Dorea_A, and Faecousia). Furthermore, FWG modified high-fat diet-induced metabolites, primarily affecting pyrimidine metabolism and amino acid metabolism. These findings suggest that FWG may serve as a promising dietary intervention for mitigating maternal obesity and improving pregnancy outcomes.
Collapse
Affiliation(s)
- Xiaolin Li
- College of Grain and Food Science, Henan University of Technology, Zhengzhou 450001, China
| | - Yingyu Zhao
- College of Grain and Food Science, Henan University of Technology, Zhengzhou 450001, China
| | - Ming Liu
- College of Grain and Food Science, Henan University of Technology, Zhengzhou 450001, China
| | - Mingyi Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhitong Zhu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Aimei Liao
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Long Pan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xin Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Feng Liu
- Baolingbao Biology Co., Ltd., Dezhou, 253000, China
| | - Jihong Huang
- College of Grain and Food Science, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
2
|
Kumar M, Yan Y, Jiang L, Sze CH, Kodithuwakku SP, Yeung WSB, Lee KF. Microbiome-Maternal Tract Interactions in Women with Recurrent Implantation Failure. Microorganisms 2025; 13:844. [PMID: 40284680 PMCID: PMC12029794 DOI: 10.3390/microorganisms13040844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Microorganisms play an important role in regulating various biological processes in our bodies. In women, abnormal changes in the reproductive tract microbiome are associated with various gynecological diseases and infertility. Recent studies suggest that patients with recurrent implantation failure (RIF) have a reduced genus Lactobacillus population, a predominant bacterial species in the vagina and uterus that protects the reproductive tract from pathogenic bacterial growth via the production of various metabolites (e.g., lactic acid, bacteriocin, and H2O2). Moreover, a higher percentage of pathogenic bacteria genera, including Atopobium, Gardnerella, Prevotella, Pseudomonas, and Streptococcus, was found in the uterus of RIF patients. This review aimed to examine the role of pathogenic bacteria in RIF, determine the factors altering the endometrial microbiome, and assess the impact of the microbiome on embryo implantation in RIF. Several factors can influence microbial balance, including the impact of extrinsic elements such as semen and antibiotics, which can lead to dysbiosis in the female reproductive tract and affect implantation. Additionally, probiotics such as Lacticaseibacillus rhamnosus were reported to have clinical potential in RIF patients. Future studies are needed to develop targeted probiotic therapies to restore microbial balance and enhance fertility outcomes. Research should also focus on understanding the mechanisms by which microorganisms generate metabolites to suppress pathogenic bacteria for embryo implantation. Identifying these interactions may contribute to innovative microbiome-based interventions for reproductive health.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.K.); (L.J.); (C.-H.S.); (W.S.B.Y.)
| | - Yang Yan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynaecology Hospital, Fudan University, Shanghai 200032, China;
| | - Luhan Jiang
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.K.); (L.J.); (C.-H.S.); (W.S.B.Y.)
| | - Ching-Ho Sze
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.K.); (L.J.); (C.-H.S.); (W.S.B.Y.)
| | - Suranga P. Kodithuwakku
- Department of Animal Science, Faculty of Agriculture, The University of Peradeniya, Peradeniya 20400, Sri Lanka;
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Science, 51014 Tartu, Estonia
| | - William S. B. Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.K.); (L.J.); (C.-H.S.); (W.S.B.Y.)
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong, Shenzhen Hospital, Shenzhen 518053, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.K.); (L.J.); (C.-H.S.); (W.S.B.Y.)
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong, Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
3
|
Orchanian SB, Hsiao EY. The microbiome as a modulator of neurological health across the maternal-offspring interface. J Clin Invest 2025; 135:e184314. [PMID: 39959974 PMCID: PMC11827852 DOI: 10.1172/jci184314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
The maternal microbiome is emerging as an important factor that influences the neurological health of mothers and their children. Recent studies highlight how microbial communities in the maternal gut can shape early-life development in ways that inform long-term health trajectories. Research on the neurodevelopmental effects of maternal microbiomes is expanding our understanding of the microbiome-gut-brain axis to include signaling across the maternal-offspring unit during the perinatal period. In this Review, we synthesize existing literature on how the maternal microbiome modulates brain function and behavior in both mothers and their developing offspring. We present evidence from human and animal studies showing that the maternal microbiome interacts with environmental factors to impact risk for neurodevelopmental abnormalities. We further discuss molecular and cellular mechanisms that facilitate maternal-offspring crosstalk for neuromodulation. Finally, we consider how advancing understanding of these complex interactions could lead to microbiome-based interventions for promoting maternal and offspring health.
Collapse
Affiliation(s)
| | - Elaine Y. Hsiao
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
- UCLA Goodman-Luskin Microbiome Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
4
|
Mousavi SN, Momeni N, Chiti H, Mahmoodnasab H, Ahmadi M, Heidarzadeh S. Higher gut Bacteroidetes and Actinobacteria population in early pregnancy is associated with lower risk of gestational diabetes in the second trimester. BMC Pregnancy Childbirth 2025; 25:106. [PMID: 39901086 PMCID: PMC11789361 DOI: 10.1186/s12884-025-07192-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Despite the association between the gut dysbiosis and metabolic disorders, the main bacterial phylum in the first trimester of pregnancy that predisposes mothers to gestational diabetes mellitus (GDM) in the second trimester is not clear around the world. MATERIALS AND METHODS Three-hundred healthy women aged 18-40 years who were in the first trimester were participated in this cohort study and followed to the screening time for GDM diagnosis (in 24-28 weeks of pregnancy). Stool samples were gathered in the first trimester. GDM was diagnosed based on the International Association of Diabetes and Pregnancy Groups. In total, thirty mothers were diagnosed with GDM. Controls (N = 60) were selected from non-GDM participants matching to the GDM in terms of pre-pregnancy weight, weight gain, dietary intake and familial history of diabetes. The dominant phylum population was determined based on 16SrRNA gene expression. RESULTS Mothers with lower Bacteroidetes and Actinobacteria population in the first trimester were more susceptible to GDM in the screening time (p < 0.001 and p < 0.001). The Firmicutes to Bacteroidetes ratio was significantly higher in mothers with GDM than the controls (p < 0.001). A significant negative correlation was observed between the gut Bacteroidetes (p < 0.001, p < 0.001, p < 0.001) and Actinobacteria (p = 0.004, p < 0.001, p = 0.02) population in the first trimester with the the serum FBS, 1 h-PG and 2 h-PG levels in the screening time. However, the gut Firmicutes to Bacteroidetes ratio (p = 0.003, p = 0.01) showed a significant positive correlation with serum FBS and 1 h-PG levels. CONCLUSIONS A higher Bacteroidetes and Actinobacteria population in the gut of mothers at the first trimester was associated with lower risk of GDM in the screening time. Higher Firmicutes to Bacteroidetes ratio in the gut of mothers was associated with fasting and 1-h glucose intolerance in the screening time.
Collapse
Affiliation(s)
- Seyedeh Neda Mousavi
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute , Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Navid Momeni
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute , Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Chiti
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute , Zanjan University of Medical Sciences, Zanjan, Iran
| | - Howra Mahmoodnasab
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Ahmadi
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Siamak Heidarzadeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Yavorov-Dayliev D, Milagro FI, Ayo J, Oneca M, Goyache I, López-Yoldi M, FitzGerald JA, Crispie F, Cotter PD, Aranaz P. Pediococcus acidilactici CECT 9879 (pA1c®) and heat inactivated pA1c® (pA1c® HI) ameliorate gestational diabetes mellitus in mice. Life Sci 2025; 362:123359. [PMID: 39761739 DOI: 10.1016/j.lfs.2024.123359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/14/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
AIMS Gestational diabetes mellitus (GDM) is the most common complication of pregnancy and is known to be associated with an increased risk of postpartum metabolic disease. Based on the important role that the intestinal microbiota plays in blood glucose regulation and insulin sensitivity, supplementation of probiotic and postbiotic strains could improve glucose metabolism and tolerance in GDM. MAIN METHODS 56 4-week-old female C57BL/6J-mice were divided into 4 groups (n = 14 animals/group): control (CNT), high-fat/high-sucrose (HFS), pA1c® alive (pA1c®) and heat-inactivated pA1c® (pA1c®HI). Serum biochemical parameters were analyzed, gene expression analyses were conducted, and fecal microbiota composition was evaluated by shot-gun sequencing. KEY FINDINGS pA1c®- and pA1c® HI-supplemented groups presented reduced fasting blood glucose levels and reduced insulin resistance during gestation and exhibited lower visceral adiposity and increased muscle tissue, together with an improvement in intrahepatic TGs content and ALT levels. Liver gene expression analyses demonstrated that pA1c® and pA1c® HI activities were mediated by modulation of the insulin receptor, but also by an overexpression of beta-oxidation genes, and downregulation of fatty acid biosynthesis genes. Shot-gun metagenomics demonstrated that Pediococcus acidilactici was detected in the feces of all the pA1c® and pA1c® HI-group after the supplementation period (75 % of the microbial profile was Pediococcus acidilactici) in only nine weeks of supplementation, and modulated gut microbiota composition. SIGNIFICANCE These results may be considered as future perspectives for the development of preventive, even therapeutic options for GDM based on hyperglycemia reduction, blood glucose regulation, hepatic steatosis attenuation and insulin resistance alleviation.
Collapse
Affiliation(s)
- Deyan Yavorov-Dayliev
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, Esquíroz, Navarra, Spain; University of Navarra, Faculty of Pharmacy & Nutrition, Department of Nutrition, Food Science & Physiology, 31008 Pamplona, Spain; University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Fermín I Milagro
- University of Navarra, Faculty of Pharmacy & Nutrition, Department of Nutrition, Food Science & Physiology, 31008 Pamplona, Spain; University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Josune Ayo
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, Esquíroz, Navarra, Spain
| | - María Oneca
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, Esquíroz, Navarra, Spain
| | - Ignacio Goyache
- University of Navarra, Faculty of Pharmacy & Nutrition, Department of Nutrition, Food Science & Physiology, 31008 Pamplona, Spain; University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Miguel López-Yoldi
- University of Navarra, Faculty of Pharmacy & Nutrition, Department of Nutrition, Food Science & Physiology, 31008 Pamplona, Spain; University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Jamie A FitzGerald
- Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland; APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland; APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland; APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland
| | - Paula Aranaz
- University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
6
|
Faas MM, Smink AM. Shaping immunity: the influence of the maternal gut bacteria on fetal immune development. Semin Immunopathol 2025; 47:13. [PMID: 39891756 PMCID: PMC11787218 DOI: 10.1007/s00281-025-01039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
The development of the fetal immune response is a highly complex process. In the present review, we describe the development of the fetal immune response and the role of the maternal gut bacteria in this process. In contrast to the previous belief that the fetal immune response is inert, it is now thought that the fetal immune response is uniquely tolerant to maternal and allo-antigens, but able to respond to infectious agents, such as bacteria. This is accomplished by the development of T cells toward regulatory T cells rather than toward effector T cells, but also by the presence of functional innate immune cells, such as monocytes and NK cells. Moreover, in fetuses there is different programming of CD8 + T cells and memory T cells toward innate immune cells rather than to adaptive immune cells. The maternal gut bacteria are important in shaping the fetal immune response by producing bacterial products and metabolites that pass the placenta into the fetus and influence development of the fetal immune response. Insight into how and when these products affect the fetal immune response may open new treatment options with pre- or probiotics to affect the maternal gut bacteria and therewith the fetal immune response.
Collapse
Affiliation(s)
- Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands.
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands
| |
Collapse
|
7
|
Su Z, Liu L, Zhang J, Guo J, Wang G, Zeng X. A scientometric visualization analysis of the gut microbiota and gestational diabetes mellitus. Front Microbiol 2025; 16:1485560. [PMID: 39980689 PMCID: PMC11841407 DOI: 10.3389/fmicb.2025.1485560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025] Open
Abstract
Background The prevalence of gestational diabetes mellitus (GDM), a condition that is widespread globally, is increasing. The relationship between the gut microbiota and GDM has been a subject of research for nearly two decades, yet there has been no bibliometric analysis of this correlation. This study aimed to use bibliometrics to explore the relationship between the gut microbiota and GDM, highlighting emerging trends and current research hotspots in this field. Results A total of 394 papers were included in the analysis. China emerged as the preeminent nation in terms of the number of publications on the subject, with 128 papers (32.49%), whereas the United States had the most significant impact, with 4,874 citations. The University of Queensland emerged as the most prolific institution, contributing 18 publications. Marloes Dekker Nitert was the most active author with 16 publications, and Omry Koren garnered the most citations, totaling 154. The journal Nutrients published the most studies (28 publications, 7.11%), whereas PLoS One was the most commonly co-cited journal, with a total of 805 citations. With respect to keywords, research focuses can be divided into 4 clusters, namely, "the interrelationship between the gut microbiota and pregnancy, childbirth," "the relationship between adverse metabolic outcomes and GDM," "the gut microbiota composition and metabolic mechanisms" and "microbiota and ecological imbalance." Key areas of focus include the interactions between the gut microbiota and individuals with GDM, as well as the formation and inheritance of the gut microbiota. Increasing attention has been given to the impact of probiotic supplementation on metabolism and pregnancy outcomes in GDM patients. Moreover, ongoing research is exploring the potential of the gut microbiota as a biomarker for GDM. These topics represent both current and future directions in this field. Conclusion This study provides a comprehensive knowledge map of the gut microbiota and GDM, highlights key research areas, and outlines potential future directions.
Collapse
Affiliation(s)
- Zehao Su
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Lina Liu
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Jingjing Guo
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Guan Wang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Jin R, Pei H, Yue F, Zhang X, Zhang Z, Xu Y, Li J. Network Pharmacology Combined With Metabolomics Reveals the Mechanism of Yangxuerongjin Pill Against Type 2 Diabetic Peripheral Neuropathy in Rats. Drug Des Devel Ther 2025; 19:325-347. [PMID: 39834645 PMCID: PMC11745066 DOI: 10.2147/dddt.s473146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose This study aims to explore the mechanism of Yangxuerongjin pill (YXRJP) in the treatment of diabetic peripheral neuropathy (DPN) by network pharmacology and metabolomics technology combined with animal experiments, and to provide scientific basis for the treatment of DPN. Methods In this study, network pharmacology analysis was applied to identify the active compounds, core targets and signal pathways, which might be responsible for the effect of DPN. The DPN model was established by high-fat diet combined with streptozotocin (STZ) injection, and the rats were given administration for 12 weeks. The body weight, thermal withdrawal latency (TWL), sciatic motor nerve conduction velocity (MNCV), biochemical indexes, pathological sections of sciatic nerve, oxidative stress factors and the expression levels of neuroprotection-related proteins were detected. Metabolomics technology was used to analyze the potential biomarkers and potential metabolic pathways in DPN treated with YXRJP. Results The results of network pharmacology showed that YXRJP could treat DPN through baicalin, β-sitosterol, 7-methoxy-2-methylisoflavone, aloe-emodin and luteolin on insulin resistance, Toll-like receptor (TLR), tumor necrosis factor (TNF) and other signaling pathways. YXRJP can prolong the TWL, increase the MNCV of the sciatic nerve, alleviate the injury of the sciatic nerve, reduce the levels of triglyceride (TG), improve the expression of Insulin-like growth factor 1 (IGF-1) protein in the sciatic nerve, and reduce the expression of protein kinase B (AKT) protein. Metabolomics results showed that the potential metabolic pathways of YXRJP in the treatment of DPN mainly involved amino acid metabolism such as arginine, alanine, aspartic acid, lipid metabolism and nucleotide metabolism. Conclusion YXRJP can effectively improve the symptoms of DPN rats and reduce nerve damage. The effects are mainly related to reducing oxidative stress injury, promoting the expression of neuroprotection-related proteins, reducing the expression of inflammation-related proteins, and affecting amino acid metabolism, lipid metabolism, and nucleotide metabolism pathways. Our findings revealed that YXRJP has a good therapeutic potential for DPN, which provides a reference for further studies on YXRJP.
Collapse
Affiliation(s)
- Ran Jin
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Hailuan Pei
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Feng Yue
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Xiaodi Zhang
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Zhicong Zhang
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Yi Xu
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Jinsheng Li
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| |
Collapse
|
9
|
Ren J, Zhou L, Li S, Zhang Q, Xiao X. The roles of the gut microbiota, metabolites, and epigenetics in the effects of maternal exercise on offspring metabolism. Am J Physiol Endocrinol Metab 2024; 327:E760-E772. [PMID: 39535269 DOI: 10.1152/ajpendo.00200.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Metabolic diseases, including obesity, dyslipidemia, and type 2 diabetes, have become severe challenges worldwide. The Developmental Origins of Health and Disease (DOHaD) hypothesis suggests that an adverse intrauterine environment can increase the risk of metabolic disorders in offspring. Studies have demonstrated that maternal exercise is an effective intervention for improving the offspring metabolic health. However, the pathways through which exercise works are unclear. It has been reported that the gut microbiota mediates the effect of maternal exercise on offspring metabolism, and epigenetic modifications have also been proposed to be important molecular mechanisms. Microbial metabolites can influence epigenetics by providing substrates for DNA or histone modifications, binding to G-protein-coupled receptors to affect downstream pathways, or regulating the activity of epigenetic modifying enzymes. This review aims to summarize the intergenerational effect of maternal exercise and proposes that gut microbiota-metabolites-epigenetic regulation is an important mechanism by which maternal exercise improves offspring metabolism, which may yield novel targets for the early prevention and intervention of metabolic diseases.
Collapse
Affiliation(s)
- Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shunhua Li
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Dreisbach C, Nansel T, Peddada S, Nicholson W, Siega-Riz AM. Dietary Sugar and Saturated Fat Consumption Associated with the Gastrointestinal Microbiome during Pregnancy. J Nutr 2024; 154:3246-3254. [PMID: 39307280 PMCID: PMC11600114 DOI: 10.1016/j.tjnut.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/29/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Growing evidence supports changes in the gastrointestinal microbiome over the course of pregnancy may have an impact on the short- and long-term health of both the mother and the child. OBJECTIVE Our objective was to explore the association of diet quality, as measured by the Healthy Eating Index (HEI), with the composition and gene ontology (GO) representation of microbial function in the maternal gastrointestinal microbiome during pregnancy. METHODS We conducted a retrospective, observational analysis of n = 185 pregnant participants in the Pregnancy Eating Attributes Study. Maternal dietary intake was assessed in the first trimester using the automated self-administered 24-h recall method, from which the HEI 2015 was calculated. Rectal swabs were obtained in the second trimester and sequenced using the NovaSeq 6000 system shotgun platform. We used unsupervised clustering to identify microbial enterotypes representative of maternal taxa and GO functional term composition. Multivariable linear models were used to identify associations between taxa, functional terms, and food components while controlling for relevant covariates. Multinomial regression was then used to predict enterotype membership based on a participant's HEI food component score. RESULTS Those in the high diet quality tertile had a lower early pregnancy BMI [mean (M) = 23.48 kg/m2, SD = 3.38] compared with the middle (M = 27.35, SD = 6.01) and low (M = 27.49, SD = 6.99) diet quality tertiles (P < 0.01). There were no statistically significant associations between the HEI components or the total HEI score and the 4 alpha diversity measures. Differences in taxa and GO term enterotypes were found in participants with, but not limited to, a higher saturated fat component score (β = 1.35, P = 0.01), added sugar HEI component (β = 0.07, P < 0.001), and higher total dairy score (β = 1.58, P = 0.01). CONCLUSIONS Specific dietary components are associated with microbial composition and function in the second trimester of pregnancy. These findings provide a foundation for future testable hypotheses.
Collapse
Affiliation(s)
- Caitlin Dreisbach
- School of Nursing, University of Rochester, Rochester, NY, United States; Goergen Institute for Data Science, University of Rochester, Rochester, NY, United States.
| | - Tonja Nansel
- Social and Behavioral Sciences Branch, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Shyamal Peddada
- Biostatistics & Computational Biology Branch, National Institute for Environmental Health Sciences, Bethesda, MD, United States
| | - Wanda Nicholson
- Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Anna Maria Siega-Riz
- School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
11
|
Torres-Torres J, Monroy-Muñoz IE, Perez-Duran J, Solis-Paredes JM, Camacho-Martinez ZA, Baca D, Espino-Y-Sosa S, Martinez-Portilla R, Rojas-Zepeda L, Borboa-Olivares H, Reyes-Muñoz E. Cellular and Molecular Pathophysiology of Gestational Diabetes. Int J Mol Sci 2024; 25:11641. [PMID: 39519193 PMCID: PMC11546748 DOI: 10.3390/ijms252111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Gestational diabetes (GD) is a metabolic disorder characterized by glucose intolerance during pregnancy, significantly impacting maternal and fetal health. Its global prevalence is approximately 14%, with risk factors including obesity, family history of diabetes, advanced maternal age, and ethnicity, which are linked to cellular and molecular disruptions in glucose regulation and insulin resistance. GD is associated with short- and long-term complications for both the mother and the newborn. For mothers, GD increases the risk of developing type 2 diabetes, cardiovascular diseases, and metabolic syndrome. In the offspring, exposure to GD in utero predisposes them to obesity, glucose intolerance, and metabolic disorders later in life. This review aims to elucidate the complex cellular and molecular mechanisms underlying GD to inform the development of effective therapeutic strategies. A systematic review was conducted using medical subject headings (MeSH) terms related to GD's cellular and molecular pathophysiology. Inclusion criteria encompassed original studies, systematic reviews, and meta-analyses focusing on GD's impact on maternal and fetal health, adhering to PRISMA guidelines. Data extraction captured study characteristics, maternal and fetal outcomes, key findings, and conclusions. GD disrupts insulin signaling pathways, leading to impaired glucose uptake and insulin resistance. Mitochondrial dysfunction reduces ATP production and increases reactive oxygen species, exacerbating oxidative stress. Hormonal influences, chronic inflammation, and dysregulation of the mammalian target of rapamycin (mTOR) pathway further impair insulin signaling. Gut microbiota alterations, gene expression, and epigenetic modifications play significant roles in GD. Ferroptosis and placental dysfunction primarily contribute to intrauterine growth restriction. Conversely, fetal macrosomia arises from maternal hyperglycemia and subsequent fetal hyperinsulinemia, resulting in excessive fetal growth. The chronic inflammatory state and oxidative stress associated with GD exacerbate these complications, creating a hostile intrauterine environment. GD's complex pathophysiology involves multiple disruptions in insulin signaling, mitochondrial function, inflammation, and oxidative stress. Effective management requires early detection, preventive strategies, and international collaboration to standardize care and improve outcomes for mothers and babies.
Collapse
Affiliation(s)
- Johnatan Torres-Torres
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
- Obstetric and Gynecology Department, Hospital General de México Dr. Eduardo Liceaga, Mexico City 06720, Mexico
| | - Irma Eloisa Monroy-Muñoz
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Javier Perez-Duran
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Juan Mario Solis-Paredes
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | | | - Deyanira Baca
- Obstetric and Gynecology Department, Hospital General de México Dr. Eduardo Liceaga, Mexico City 06720, Mexico
| | - Salvador Espino-Y-Sosa
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
- Centro de Investigacion en Ciencias de la Salud, Universidad Anahuac Mexico, Campus Norte, Huixquilucan 52786, Mexico
| | - Raigam Martinez-Portilla
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Lourdes Rojas-Zepeda
- Maternal-Fetal Department, Instituto Materno Infantil del Estado de Mexico, Toluca 50170, Mexico
| | - Hector Borboa-Olivares
- Community Interventions Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Enrique Reyes-Muñoz
- Research Division, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| |
Collapse
|
12
|
Katimbwa DA, Kim Y, Kim MJ, Jeong M, Lim J. Solubilized β-Glucan Supplementation in C57BL/6J Mice Dams Augments Neurodevelopment and Cognition in the Offspring Driven by Gut Microbiome Remodeling. Foods 2024; 13:3102. [PMID: 39410136 PMCID: PMC11476385 DOI: 10.3390/foods13193102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
A maternal diet rich in dietary fiber, such as β-glucan, plays a crucial role in the offspring's acquisition of gut microbiota and the subsequent shaping of its microbiome profile and metabolome. This in turn has been shown to aid in neurodevelopmental processes, including early microglial maturation and immunomodulation via metabolites like short chain fatty acids (SCFAs). This study aimed to investigate the effects of oat β-glucan supplementation, solubilized by citric acid hydrolysis, from gestation to adulthood. Female C57BL/6J mice were orally supplemented with soluble oat β-glucan (ObG) or carboxymethyl cellulose (CMC) via drinking water at 200 mg/kg body weight during breeding while the control group received 50 mg/kg body weight of carboxymethyl cellulose. ObG supplementation increased butyrate production in the guts of both dams and 4-week-old pups, attributing to alterations in the gut microbiota profile. One-week-old pups from the ObG group showed increased neurodevelopmental markers similar to four-week-old pups that also exhibited alterations in serum markers of metabolism and anti-inflammatory cytokines. Notably, at 8 weeks, ObG-supplemented pups exhibited the highest levels of spatial memory and cognition compared to the control and CMC groups. These findings suggest a potential enhancement of neonatal neurodevelopment via shaping of early-life gut microbiome profile, and the subsequent increased later-life cognitive function.
Collapse
Affiliation(s)
- Dorsilla A. Katimbwa
- Department of Food Biomaterials, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinkyu Lim
- Department of Food Biomaterials, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
13
|
Ronen D, Rokach Y, Abedat S, Qadan A, Daana S, Amir O, Asleh R. Human Gut Microbiota in Cardiovascular Disease. Compr Physiol 2024; 14:5449-5490. [PMID: 39109979 DOI: 10.1002/cphy.c230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut ecosystem, termed microbiota, is composed of bacteria, archaea, viruses, protozoa, and fungi and is estimated to outnumber human cells. Microbiota can affect the host by multiple mechanisms, including the synthesis of metabolites and toxins, modulating inflammation and interaction with other organisms. Advances in understanding commensal organisms' effect on human conditions have also elucidated the importance of this community for cardiovascular disease (CVD). This effect is driven by both direct CV effects and conditions known to increase CV risk, such as obesity, diabetes mellitus (DM), hypertension, and renal and liver diseases. Cardioactive metabolites, such as trimethylamine N -oxide (TMAO), short-chain fatty acids (SCFA), lipopolysaccharides, bile acids, and uremic toxins, can affect atherosclerosis, platelet activation, and inflammation, resulting in increased CV incidence. Interestingly, this interaction is bidirectional with microbiota affected by multiple host conditions including diet, bile acid secretion, and multiple diseases affecting the gut barrier. This interdependence makes manipulating microbiota an attractive option to reduce CV risk. Indeed, evolving data suggest that the benefits observed from low red meat and Mediterranean diet consumption can be explained, at least partially, by the changes that these diets may have on the gut microbiota. In this article, we depict the current epidemiological and mechanistic understanding of the role of microbiota and CVD. Finally, we discuss the potential therapeutic approaches aimed at manipulating gut microbiota to improve CV outcomes. © 2024 American Physiological Society. Compr Physiol 14:5449-5490, 2024.
Collapse
Affiliation(s)
- Daniel Ronen
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Rokach
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abed Qadan
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samar Daana
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Ma G, Yan H, Tye KD, Tang X, Luo H, Li Z, Xiao X. Effect of probiotic administration during pregnancy on the functional diversity of the gut microbiota in healthy pregnant women. Microbiol Spectr 2024; 12:e0041324. [PMID: 38687069 PMCID: PMC11237737 DOI: 10.1128/spectrum.00413-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Our study aims to investigate the impact of probiotic consumption during pregnancy on gut microbiota functional diversity in healthy pregnant women. Thirty-two pregnant women were randomly assigned to two groups. The probiotic group (PG) consisted of pregnant women who consumed triple viable Bifidobacterium longum, Lactobacillus delbrueckii bulgaricus, and Streptococcus thermophilus tablets from the 32nd week of pregnancy until delivery. The functional profiles of the gut microbiota were predicted through high-throughput 16S rRNA sequencing results using PICRUSt software and referencing the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In the gut microbiota of the PG, the genera Blautia and Ruminococcus, as well as the species Subdoligranulum, showed significantly higher relative abundances compared to the control group (CG) (P < 0.05). At Level 1 of the KEGG signaling pathways, there was a significant reduction in the functional genes of the gut microbiota involved in Organismal Systems in the PG (P < 0.05). In Level 2 of the KEGG signaling pathways, there was a significant reduction in the functional genes of the gut microbiota involved in Infectious Disease in the PG (P < 0.05). In Level 3 of the KEGG signaling pathways, the PG exhibited a significant increase in the functional genes of the gut microbiota involved in ABC transporters, Oxidative phosphorylation, Folate biosynthesis, and Biotin metabolism (P < 0.05). The CG showed a significant increase in the functional genes related to Cysteine and methionine metabolism, Vitamin B6 metabolism, Tuberculosis, and Vibrio cholerae pathogenic cycle (P < 0.05). In conclusion, our findings suggest that probiotic supplementation during pregnancy has a significant impact on functional metabolism in healthy pregnant women. IMPORTANCE Probiotics are considered beneficial to human health. There is limited understanding of how probiotic consumption during pregnancy affects the functional diversity of the gut microbiota. The aim of our study is to investigate the impact of probiotic consumption during pregnancy on the functional diversity of the gut microbiota. Our findings suggest that probiotic supplementation during pregnancy has a significant impact on functional metabolism. This could potentially open up new avenues for preventing various pregnancy-related complications. This also provides new insights into the effects of probiotic consumption during pregnancy on the gut microbiota and offers a convenient method for exploring the potential mechanisms underlying the impact of probiotics on the gut microbiota of pregnant women.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hao Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kian Deng Tye
- Department of Obstetrics and Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhe Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Deady C, McCarthy FP, Barron A, McCarthy CM, O’Keeffe GW, O’Mahony SM. An altered gut microbiome in pre-eclampsia: cause or consequence. Front Cell Infect Microbiol 2024; 14:1352267. [PMID: 38774629 PMCID: PMC11106424 DOI: 10.3389/fcimb.2024.1352267] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Hypertensive disorders of pregnancy, including pre-eclampsia, are a leading cause of serious and debilitating complications that affect both the mother and the fetus. Despite the occurrence and the health implications of these disorders there is still relatively limited evidence on the molecular underpinnings of the pathophysiology. An area that has come to the fore with regard to its influence on health and disease is the microbiome. While there are several microbiome niches on and within the body, the distal end of the gut harbors the largest of these impacting on many different systems of the body including the central nervous system, the immune system, and the reproductive system. While the role of the microbiome in hypertensive disorders, including pre-eclampsia, has not been fully elucidated some studies have indicated that several of the symptoms of these disorders are linked to an altered gut microbiome. In this review, we examine both pre-eclampsia and microbiome literature to summarize the current knowledge on whether the microbiome drives the symptoms of pre-eclampsia or if the aberrant microbiome is a consequence of this condition. Despite the paucity of studies, obvious gut microbiome changes have been noted in women with pre-eclampsia and the individual symptoms associated with the condition. Yet further research is required to fully elucidate the role of the microbiome and the significance it plays in the development of the symptoms. Regardless of this, the literature highlights the potential for a microbiome targeted intervention such as dietary changes or prebiotic and probiotics to reduce the impact of some aspects of these disorders.
Collapse
Affiliation(s)
- Clara Deady
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
- The Infant Research Centre, University College Cork, Cork, Ireland
| | - Aaron Barron
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Gerard W. O’Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Siobhain M. O’Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Xie L, Pan L, Liu B, Cheng H, Mao X. Research progress on the association between trimethylamine/trimethylamine-N-oxide and neurological disorders. Postgrad Med J 2024; 100:283-288. [PMID: 38158712 DOI: 10.1093/postmj/qgad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Trimethylamine-N-oxide (TMAO) is a common intestinal metabolite. The Choline in the nutrient forms TMA under the action of the gut microbiota, which passes through the liver and eventually forms TMAO. Initial studies of TMAO focused on cardiovascular disease, but as research progressed, TAMO's effects were found to be multisystem and closely related to the development of neurological diseases. Intestinal tract is the organ with the largest concentration of bacteria in human body, and the composition and metabolism of gut microbiota affect human health. As a two-way communication axis connecting the central nervous system and the gastrointestinal tract, the brain-gut axis provides the structural basis for TMAO to play its role. This article will review the correlation between TMA/TMAO and neurological diseases in order to find new directions and new targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Lizheng Xie
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Li Pan
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Baiyun Liu
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xiang Mao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Department of Neurosurgery, The First People's Hospital of Tianshui, Tian Shui, Gansu, 741000, China
| |
Collapse
|
17
|
Alvernaz SA, Wenzel ES, Nagelli U, Pezley LB, LaBomascus B, Gilbert JA, Maki PM, Tussing-Humphreys L, Peñalver Bernabé B. Inflammatory Dietary Potential Is Associated with Vitamin Depletion and Gut Microbial Dysbiosis in Early Pregnancy. Nutrients 2024; 16:935. [PMID: 38612969 PMCID: PMC11013194 DOI: 10.3390/nu16070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Pregnancy alters many physiological systems, including the maternal gut microbiota. Diet is a key regulator of this system and can alter the host immune system to promote inflammation. Multiple perinatal disorders have been associated with inflammation, maternal metabolic alterations, and gut microbial dysbiosis, including gestational diabetes mellitus, pre-eclampsia, preterm birth, and mood disorders. However, the effects of high-inflammatory diets on the gut microbiota during pregnancy have yet to be fully explored. We aimed to address this gap using a system-based approach to characterize associations among dietary inflammatory potential, a measure of diet quality, and the gut microbiome during pregnancy. Forty-seven pregnant persons were recruited prior to 16 weeks of gestation. Participants completed a food frequency questionnaire (FFQ) and provided fecal samples. Dietary inflammatory potential was assessed using the Dietary Inflammatory Index (DII) from the FFQ data. Fecal samples were analyzed using 16S rRNA amplicon sequencing. Differential taxon abundances with respect to the DII score were identified, and the microbial metabolic potential was predicted using PICRUSt2. Inflammatory diets were associated with decreased vitamin and mineral intake and a dysbiotic gut microbiota structure and predicted metabolism. Gut microbial compositional differences revealed a decrease in short-chain fatty acid producers such as Faecalibacterium, and an increase in predicted vitamin B12 synthesis, methylglyoxal detoxification, galactose metabolism, and multidrug efflux systems in pregnant individuals with increased DII scores. Dietary inflammatory potential was associated with a reduction in the consumption of vitamins and minerals and predicted gut microbiota metabolic dysregulation.
Collapse
Affiliation(s)
- Suzanne A. Alvernaz
- Department of Biomedical Engineering, University of Illinois, Chicago, IL 60607, USA; (S.A.A.); (U.N.)
| | - Elizabeth S. Wenzel
- Department of Psychology, University of Illinois, Chicago, IL 60607, USA; (E.S.W.); (P.M.M.)
| | - Unnathi Nagelli
- Department of Biomedical Engineering, University of Illinois, Chicago, IL 60607, USA; (S.A.A.); (U.N.)
| | - Lacey B. Pezley
- Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL 60612, USA; (L.B.P.); (B.L.); (L.T.-H.)
| | - Bazil LaBomascus
- Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL 60612, USA; (L.B.P.); (B.L.); (L.T.-H.)
| | - Jack A. Gilbert
- Department of Pediatrics, University of California, San Diego, CA 92093, USA;
- Scripps Oceanographic Institute, University of California, San Diego, CA 92037, USA
| | - Pauline M. Maki
- Department of Psychology, University of Illinois, Chicago, IL 60607, USA; (E.S.W.); (P.M.M.)
- Department of Psychiatry, University of Illinois, Chicago, IL 60612, USA
- Department of Obstetrics and Gynecology, University of Illinois, Chicago, IL 60612, USA
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL 60612, USA; (L.B.P.); (B.L.); (L.T.-H.)
| | - Beatriz Peñalver Bernabé
- Department of Biomedical Engineering, University of Illinois, Chicago, IL 60607, USA; (S.A.A.); (U.N.)
- Center for Bioinformatics and Quantitative Biology, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
18
|
Mei X, Li Y, Zhang X, Zhai X, Yang Y, Li Z, Li L. Maternal Phlorizin Intake Protects Offspring from Maternal Obesity-Induced Metabolic Disorders in Mice via Targeting Gut Microbiota to Activate the SCFA-GPR43 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4703-4725. [PMID: 38349207 DOI: 10.1021/acs.jafc.3c06370] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Maternal obesity increases the risk of obesity and metabolic disorders (MDs) in offspring, which can be mediated by the gut microbiota. Phlorizin (PHZ) can improve gut dysbiosis and positively affect host health; however, its transgenerational metabolic benefits remain largely unclear. This study aimed to investigate the potential of maternal PHZ intake in attenuating the adverse impacts of a maternal high-fat diet on obesity-related MDs in dams and offspring. The results showed that maternal PHZ reduced HFD-induced body weight gain and fat accumulation and improved glucose intolerance and abnormal lipid profiles in both dams and offspring. PHZ improved gut dysbiosis by promoting expansion of SCFA-producing bacteria, Akkermansia and Blautia, while inhibiting LPS-producing and pro-inflammatory bacteria, resulting in significantly increased fecal SCFAs, especially butyric acid, and reduced serum lipopolysaccharide levels and intestinal inflammation. PHZ also promoted intestinal GLP-1/2 secretion and intestinal development and enhanced gut barrier function by activating G protein-coupled receptor 43 (GPR43) in the offspring. Antibiotic-treated mice receiving FMT from PHZ-regulated offspring could attenuate MDs induced by receiving FMT from HFD offspring through the gut microbiota to activate the GPR43 pathway. It can be regarded as a promising functional food ingredient for preventing intergenerational transmission of MDs and breaking the obesity cycle.
Collapse
Affiliation(s)
- Xueran Mei
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Yi Li
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia
| | - Xiaoyu Zhang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Xiwen Zhai
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia
| | - Yi Yang
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
| | - Zhengjuan Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Liping Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
19
|
Li Z, Zhang Y, Wang L, Deng TK, Chiu WH, Ming WK, Xu C, Xiao X. Microbiota of pregnancy, placenta and newborns in the third trimester: A randomized controlled study. Heliyon 2024; 10:e24698. [PMID: 38314279 PMCID: PMC10837503 DOI: 10.1016/j.heliyon.2024.e24698] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
Microbiota in pregnant time is vital to healthy of pregnant women and their offspring. However, few study evaluate the composition of the microbiota of health pregnancy, placenta and their newborns at different stages and the origin of the placental microbiota. Samples were obtained from a total of 31 pregnant individuals and their offspring, analyzing by 16S rRNA amplicon sequencing of the V4 region to evaluate the composition and variation of them. We found that the microbiota of pregnant individuals changes in the third trimester. The placental microbiota has its own specific dominant microbiota. The placental microbiota is correlated with the pregnancy microbiota in the gut and vagina at 32-34 weeks but not at full term. The gut microbiota in newborns changes over the first 14 days.
Collapse
Affiliation(s)
- Zhe Li
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiwen Zhang
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Wang
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tye Kian Deng
- Department of Obstetrics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei-Hsiu Chiu
- Department of Obstetrics and Gynecology, Chung Shan Hospital, Taipei, Taiwan, China
| | - Wai-kit Ming
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China
| | - Chengfang Xu
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology in the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Alvernaz SA, Wenzel ES, Nagelli U, Pezley LB, LaBomascus B, Gilbert JA, Maki PM, Tussing-Humphreys L, Peñalver Bernabé B. Inflammatory dietary potential is associated with vitamin depletion and gut microbial dysbiosis in early pregnancy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.12.02.23299325. [PMID: 38076865 PMCID: PMC10705629 DOI: 10.1101/2023.12.02.23299325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Background Pregnancy alters many physiological systems, including the maternal gut microbiota. Diet is a key regulator of this system and can alter the host immune system to promote inflammation. Multiple perinatal disorders have been associated with inflammation, maternal metabolic alterations, and gut microbial dysbiosis, including gestational diabetes mellitus, preeclampsia, preterm birth, and mood disorders. However, the effects of high inflammatory diets on the gut microbiota during pregnancy have yet to be fully explored. Objective To use a systems-based approach to characterize associations among dietary inflammatory potential, a measure of diet quality, and the gut microbiome during pregnancy. Methods Forty-nine pregnant persons were recruited prior to 16 weeks of gestation. Participants completed a food frequency questionnaire (FFQ) and provided fecal samples. Dietary inflammatory potential was assessed using the Dietary Inflammatory Index (DII) from FFQ data. Fecal samples were analyzed using 16S rRNA amplicon sequencing. Differential taxon abundance with respect to DII score were identified, and microbial metabolic potential was predicted using PICRUSt2. Results Inflammatory diets were associated with decreased vitamin and mineral intake and dysbiotic gut microbiota structure and predicted metabolism. Gut microbial compositional differences revealed a decrease in short chain fatty acid producers such as Faecalibacterium, and an increase in predicted vitamin B12 synthesis, methylglyoxal detoxification, galactose metabolism and multi drug efflux systems in pregnant individuals with increased DII scores. Conclusions Dietary inflammatory potential was associated with a reduction in the consumption of vitamins & minerals and predicted gut microbiota metabolic dysregulation.
Collapse
Affiliation(s)
- Suzanne A. Alvernaz
- Department of Biomedical Engineering, University of Illinois, Chicago, IL, USA
| | | | - Unnathi Nagelli
- Department of Biomedical Engineering, University of Illinois, Chicago, IL, USA
| | - Lacey B. Pezley
- Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL, USA
| | - Bazil LaBomascus
- Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL, USA
| | - Jack A. Gilbert
- Department of Pediatrics, University of California, San Diego, CA, USA
- Scripps Oceanographic Institute, University of California, San Diego, CA, USA
| | - Pauline M. Maki
- Department of Psychology, University of Illinois, Chicago, IL, USA
- Department of Psychiatry, University of Illinois, Chicago, IL, USA
- Department of Obstetrics and Gynecology, University of Illinois, Chicago, IL, USA
| | | | - Beatriz Peñalver Bernabé
- Department of Biomedical Engineering, University of Illinois, Chicago, IL, USA
- Center for Bioinformatics and Quantitative Biology, University of Illinois, Chicago, IL, USA
| |
Collapse
|
21
|
Amato KR, Pradhan P, Mallott EK, Shirola W, Lu A. Host-gut microbiota interactions during pregnancy. Evol Med Public Health 2024; 12:7-23. [PMID: 38288320 PMCID: PMC10824165 DOI: 10.1093/emph/eoae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/07/2023] [Indexed: 01/31/2024] Open
Abstract
Mammalian pregnancy is characterized by a well-known suite of physiological changes that support fetal growth and development, thereby positively affecting both maternal and offspring fitness. However, mothers also experience trade-offs between current and future maternal reproductive success, and maternal responses to these trade-offs can result in mother-offspring fitness conflicts. Knowledge of the mechanisms through which these trade-offs operate, as well as the contexts in which they operate, is critical for understanding the evolution of reproduction. Historically, hormonal changes during pregnancy have been thought to play a pivotal role in these conflicts since they directly and indirectly influence maternal metabolism, immunity, fetal growth and other aspects of offspring development. However, recent research suggests that gut microbiota may also play an important role. Here, we create a foundation for exploring this role by constructing a mechanistic model linking changes in maternal hormones, immunity and metabolism during pregnancy to changes in the gut microbiota. We posit that marked changes in hormones alter maternal gut microbiome composition and function both directly and indirectly via impacts on the immune system. The gut microbiota then feeds back to influence maternal immunity and metabolism. We posit that these dynamics are likely to be involved in mediating maternal and offspring fitness as well as trade-offs in different aspects of maternal and offspring health and fitness during pregnancy. We also predict that the interactions we describe are likely to vary across populations in response to maternal environments. Moving forward, empirical studies that combine microbial functional data and maternal physiological data with health and fitness outcomes for both mothers and infants will allow us to test the evolutionary and fitness implications of the gestational microbiota, enriching our understanding of the ecology and evolution of reproductive physiology.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
| | - Priyanka Pradhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Wesley Shirola
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
22
|
Barrientos G, Ronchi F, Conrad ML. Nutrition during pregnancy: Influence on the gut microbiome and fetal development. Am J Reprod Immunol 2024; 91:e13802. [PMID: 38282608 DOI: 10.1111/aji.13802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024] Open
Abstract
Pregnancy is a finely tuned process, with the health and well-being of the developing fetus determined by the metabolic status and dietary intake of the mother. The maternal gut microbiome is remodeled during pregnancy, and this, coupled with the maternal nutrient intake during gestation shapes the production of metabolites that can cross the placenta and affect fetal development. As posited by the Developmental Origins of Health and Disease Hypothesis, such environmental influences can have major effects on the developing organ systems. When occurring at particularly sensitive gestational time points, these developmental programming events can have long lasting effects on offspring adaptation to the postnatal environment, and major health implications later in life. This review will summarize current knowledge on how pregnancy and maternal dietary intake intrinsically and extrinsically modify maternal gut microbiota composition and metabolite production. Further, we will assess how these factors shape the fetal landscape and ultimately contribute to offspring health. DOHaD, fetal development, metabolites, microbiome, nutrition, pregnancy, short-chain fatty acids.
Collapse
Affiliation(s)
- Gabriela Barrientos
- Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Francesca Ronchi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Melanie L Conrad
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
23
|
Ostojic SM, Ratgeber L, Betlehem J, Acs P. Molecular nutrition in life course perspective: Pinpointing metabolic pathways to target during periconception. MATERNAL & CHILD NUTRITION 2024; 20 Suppl 2:e13474. [PMID: 36794361 PMCID: PMC10765360 DOI: 10.1111/mcn.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 01/05/2023] [Indexed: 02/17/2023]
Abstract
Lifecourse nutrition encompasses nourishment from early development into parenthood. From preconception and pregnancy to childhood, late adolescence, and reproductive years, life course nutrition explores links between dietary exposures and health outcomes in current and future generations from a public health perspective, usually addressing lifestyle behaviours, reproductive well-being and maternal-child health strategies. However, nutritional factors that play a role in conceiving and sustaining new life might also require a molecular perspective and recognition of critical interactions between specific nutrients and relevant biochemical pathways. The present perspective summarises evidence about the links between diet during periconception and next-generation health and outlines the main metabolic networks involved in nutritional biology of this sensitive time frame.
Collapse
Affiliation(s)
- Sergej M. Ostojic
- Department of Nutrition and Public HealthUniversity of AgderKristiansandNorway
- Faculty of Health SciencesUniversity of PécsPécsHungary
- Applied Bioenergetcis Lab, Faculty of Sport and Physical EducationUniversity of Novi SadNovi SadSerbia
| | | | | | - Pongrac Acs
- Faculty of Health SciencesUniversity of PécsPécsHungary
| |
Collapse
|
24
|
Han L, Li Q, Du M, Mao X. Bovine milk osteopontin improved intestinal health of pregnant rats fed a high-fat diet through improving bile acid metabolism. J Dairy Sci 2024; 107:24-39. [PMID: 37690710 DOI: 10.3168/jds.2023-23802] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
The main purpose of the current study was to investigate the ameliorative effects of bovine milk osteopontin (bmOPN) on the gut dysfunction of pregnant rats fed a high-fat diet (HFD). Bovine milk osteopontin was supplemented at a dose of 6 mg/kg body weight. Bovine milk osteopontin supplementation during pregnancy reduced colonic inflammation of HFD dams, and it also increased the colonic expression of ZO-1 and claudin-4 of HFD dams. Bovine milk osteopontin significantly enriched the relative abundance of Bacteroidetes, whereas it decreased Proteobacteria, Helicobacteraceae, and Desulfovibrionaceae in feces of HFD dams. The levels of isobutyric acid and pentanoic acid in the HFD + bmOPN group were higher than that of the HFD group. Functional predication analysis of microbial genomes revealed that bmOPN supplementation to HFD pregnancies changed 4 Kyoto Encyclopedia of Genes and Genomes pathways including bile acid biosynthesis. Further, bmOPN enriched hepatic taurochenodeoxycholic acid and tauroursodeoxycholic acid plus taurohyodeoxycholic acid in the gut of HFD maternal rats. Our findings suggested that bmOPN improved the gut health of HFD pregnant rats partially through modulating bile acid biosynthesis.
Collapse
Affiliation(s)
- Lihua Han
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiqi Li
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99163
| | - Xueying Mao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
25
|
Nachum Z, Perlitz Y, Shavit LY, Magril G, Vitner D, Zipori Y, Weiner E, Alon AS, Ganor-Paz Y, Nezer M, Harel N, Soltsman S, Yefet E. The effect of oral probiotics on glycemic control of women with gestational diabetes mellitus-a multicenter, randomized, double-blind, placebo-controlled trial. Am J Obstet Gynecol MFM 2024; 6:101224. [PMID: 37956906 DOI: 10.1016/j.ajogmf.2023.101224] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Gestational diabetes mellitus should be treated adequately to avoid maternal hyperglycemia-related complications. Previously, probiotic supplements were suggested to improve fasting blood glucose in women with gestational diabetes mellitus. However, a major limitation of previous studies was that preprandial and especially postprandial glucose values, which are important predictors of pregnancy outcomes, were not studied. OBJECTIVE This study aimed to examine the effect of a mixture of probiotic strains on maternal glycemic parameters, particularly preprandial and postprandial glucose values and pregnancy outcomes among women with gestational diabetes mellitus. STUDY DESIGN A multicenter prospective randomized, double-blind, placebo-controlled trial was conducted. Women newly diagnosed with gestational diabetes mellitus were randomly allocated into a research group, receiving 2 capsules of oral probiotic formula containing Bifidobacterium bifidum, B lactis, Lactobacillus acidophilus, L paracasei, L rhamnosus, and Streptococcus thermophilus (>6 × 109/capsule), and a control group, receiving a placebo (2 capsules/day) until delivery. Glycemic control was evaluated by daily glucose charts. After 2 weeks, pharmacotherapy was started in case of poor glycemic control. The primary outcomes were the rate of women requiring medications for glycemic control and mean daily glucose charts after 2 weeks of treatment with the study products. RESULTS Forty-one and 44 women were analyzed in the treatment and placebo cohorts, respectively. Mean daily glucose during the first 2 weeks in the probiotics and placebo groups was 99.7±7.9 and 98.0±9.3 mg/dL, respectively (P=.35). The rate of women needing pharmacotherapy because of poor glycemic control after 2 weeks of treatment in the probiotics and placebo groups was 24 (59%) and 18 (41%), respectively (P=.10). Mean preprandial and postprandial glucose levels throughout the study period were similar between the groups (P>.05). There were no differences in maternal and neonatal outcomes, including birthweight and adverse effect profile between the groups. CONCLUSION The oral probiotic product tested in this study did not affect glycemic control of women with gestational diabetes mellitus.
Collapse
Affiliation(s)
- Zohar Nachum
- Department of Obstetrics and Gynecology, Emek Medical Center, Afula, Israel (Dr Nachum); Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel (Drs Nachum, Vitner, and Zipori)
| | - Yuri Perlitz
- Department of Obstetrics and Gynecology, Tzafon Medical Center, Poriya, Israel (Drs Perlitz, Harel, Soltsman, and Yefet); Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel (Drs Perlitz and Yefet)
| | - Lilach Yacov Shavit
- Diabetes in Pregnancy Clinic, Tzafon Medical Center, Poriya, Israel (Ms Shavit)
| | - Galit Magril
- Nutrition Division, Tzafon Medical Center Poriya, Israel (Ms Magril)
| | - Dana Vitner
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel (Drs Nachum, Vitner, and Zipori); Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel (Drs Vitner and Zipori)
| | - Yaniv Zipori
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel (Drs Nachum, Vitner, and Zipori); Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel (Drs Vitner and Zipori)
| | - Eran Weiner
- Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel (Drs Weiner, Alon, and Ganor-Paz); Sackler Faculty of Medicine, Tel Aviv university, Tel Aviv, Israel (Drs Weiner, Alon, and Ganor-Paz)
| | - Ayala Shevach Alon
- Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel (Drs Weiner, Alon, and Ganor-Paz); Sackler Faculty of Medicine, Tel Aviv university, Tel Aviv, Israel (Drs Weiner, Alon, and Ganor-Paz)
| | - Yael Ganor-Paz
- Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel (Drs Weiner, Alon, and Ganor-Paz); Sackler Faculty of Medicine, Tel Aviv university, Tel Aviv, Israel (Drs Weiner, Alon, and Ganor-Paz)
| | - Meirav Nezer
- Department of Obstetrics and Gynecology, Samson Assuta Ashdod University Hospital, Ashdod, Israel (Dr Nezer)
| | - Noa Harel
- Department of Obstetrics and Gynecology, Tzafon Medical Center, Poriya, Israel (Drs Perlitz, Harel, Soltsman, and Yefet)
| | - Sofia Soltsman
- Department of Obstetrics and Gynecology, Tzafon Medical Center, Poriya, Israel (Drs Perlitz, Harel, Soltsman, and Yefet)
| | - Enav Yefet
- Department of Obstetrics and Gynecology, Tzafon Medical Center, Poriya, Israel (Drs Perlitz, Harel, Soltsman, and Yefet); Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel (Drs Perlitz and Yefet); Women's Health Center, Clalit Health Services, Afula, Israel (Dr Yefet).
| |
Collapse
|
26
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
27
|
Wu N, Liu J, Sun Y, Fan X, Zang T, Richardson BN, Bai J, Xianyu Y, Liu Y. Alterations of the gut microbiota and fecal short-chain fatty acids in women undergoing assisted reproduction. Reprod Fertil Dev 2024; 36:RD23096. [PMID: 38252939 DOI: 10.1071/rd23096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
CONTEXT The community structure of gut microbiota changes during pregnancy, which also affects the synthesis of short-chain fatty acids (SCFAs). However, the distribution of gut microbiota composition and metabolite SCFA levels are poorly understood in women undergoing assisted reproductive technology (ART). AIMS To evaluate the changes in gut microbiota composition and metabolic SCFAs in women who received assisted reproduction treatment. METHODS Sixty-three pregnant women with spontaneous pregnancy (SP) and nine with ART pregnancy were recruited to provide fecal samples. Gut microbiota abundance and SCFA levels were determined by 16S ribosomal RNA (rRNA) gene amplicon sequencing and gas chromatography-mass spectrometry (GC-MS). KEY RESULTS The ART group showed decreased alpha diversity (the species richness or evenness in a sample). The principal coordinates analysis (a method of analysing beta diversity) showed significant difference in gut microbiota between the ART group versus the SP group (unweighted UniFrac distance, R 2 =0.04, P =0.003). Proteobacteria , Blautia and Escherichia-Shigella were enriched in the ART group, whereas the relative abundance of beneficial intestinal bacteria Faecalibacterium was lower than in the SP group. Different modes of conception were associated with several SCFAs (valeric acid (r =-0.280; P =0.017); isocaproic acid (r =-0.330; P =0.005); caproic acid (r =-0.336; P =0.004)). Significantly different SCFAs between the two groups were synchronously associated with the differential gut microbiota. CONCLUSIONS The diversity and abundance of gut microbiota and the levels of SCFAs in women undergoing ART decreased. IMPLICATIONS The application of ART shaped the microbial composition and metabolism, which may provide critical information for understanding the biological changes that occur in women with assisted reproduction.
Collapse
Affiliation(s)
- Ni Wu
- Center for Women's and Children's Health, Wuhan University, Wuhan, China
| | - Jun Liu
- Center for Women's and Children's Health, Wuhan University, Wuhan, China
| | - Yu Sun
- Center for Women's and Children's Health, Wuhan University, Wuhan, China
| | - Xiaoxiao Fan
- Center for Women's and Children's Health, Wuhan University, Wuhan, China
| | - Tianzi Zang
- Center for Women's and Children's Health, Wuhan University, Wuhan, China
| | | | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | | | - Yanqun Liu
- Center for Women's and Children's Health, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Lin H, Peddada SD. Multigroup analysis of compositions of microbiomes with covariate adjustments and repeated measures. Nat Methods 2024; 21:83-91. [PMID: 38158428 PMCID: PMC10776411 DOI: 10.1038/s41592-023-02092-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/17/2023] [Indexed: 01/03/2024]
Abstract
Microbiome differential abundance analysis methods for two groups are well-established in the literature. However, many microbiome studies involve more than two groups, sometimes even ordered groups such as stages of a disease, and require different types of comparison. Standard pairwise comparisons are inefficient in terms of power and false discovery rates. In this Article, we propose a general framework, ANCOM-BC2, for performing a wide range of multigroup analyses with covariate adjustments and repeated measures. We illustrate our methodology through two real datasets. The first example explores the effects of aridity on the soil microbiome, and the second example investigates the effects of surgical interventions on the microbiome of patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Huang Lin
- Biostatistics and Computational Biology Branch, NIEHS, NIH, Research Triangle Park, NC, USA
- Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD, USA
| | - Shyamal Das Peddada
- Biostatistics and Computational Biology Branch, NIEHS, NIH, Research Triangle Park, NC, USA.
| |
Collapse
|
29
|
Cordero-Varela JA, Reyes-Corral M, Lao-Pérez M, Fernández-Santos B, Montenegro-Elvira F, Sempere L, Ybot-González P. Analysis of Gut Characteristics and Microbiota Changes with Maternal Supplementation in a Neural Tube Defect Mouse Model. Nutrients 2023; 15:4944. [PMID: 38068802 PMCID: PMC10708240 DOI: 10.3390/nu15234944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Adequate nutrient supply is crucial for the proper development of the embryo. Although nutrient supply is determined by maternal diet, the gut microbiota also influences nutrient availability. While currently there is no cure for neural tube defects (NTDs), their prevention is largely amenable to maternal folic acid and inositol supplementation. The gut microbiota also contributes to the production of these nutrients, which are absorbed by the host, but its role in this context remains largely unexplored. In this study, we performed a functional and morphological analysis of the intestinal tract of loop-tail mice (Vangl2 mutants), a mouse model of folate/inositol-resistant NTDs. In addition, we investigated the changes in gut microbiota using 16S rRNA gene sequencing regarding (1) the host genotype; (2) the sample source for metagenomics analysis; (3) the pregnancy status in the gestational window of neural tube closure; (4) folic acid and (5) D-chiro-inositol supplementation. We observed that Vangl2+/Lp mice showed no apparent changes in gastrointestinal transit time or fecal output, yet exhibited increased intestinal length and cecal weight and gut dysbiosis. Moreover, our results showed that the mice supplemented with folic acid and D-chiro-inositol had significant changes in their microbiota composition, which are changes that could have implications for nutrient absorption.
Collapse
Affiliation(s)
- Juan Antonio Cordero-Varela
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Marta Reyes-Corral
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Miguel Lao-Pérez
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Beatriz Fernández-Santos
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Fernando Montenegro-Elvira
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Lluis Sempere
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Patricia Ybot-González
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
- Consejo Superior de Investigaciones Científicas (CSIC), Spain
| |
Collapse
|
30
|
Beharry KD, Latkowska M, Valencia AM, Allana A, Soto J, Cai CL, Golombek S, Hand I, Aranda JV. Factors Influencing Neonatal Gut Microbiome and Health with a Focus on Necrotizing Enterocolitis. Microorganisms 2023; 11:2528. [PMID: 37894186 PMCID: PMC10608807 DOI: 10.3390/microorganisms11102528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Maturational changes in the gut start in utero and rapidly progress after birth, with some functions becoming fully developed several months or years post birth including the acquisition of a full gut microbiome, which is made up of trillions of bacteria of thousands of species. Many factors influence the normal development of the neonatal and infantile microbiome, resulting in dysbiosis, which is associated with various interventions used for neonatal morbidities and survival. Extremely low gestational age neonates (<28 weeks' gestation) frequently experience recurring arterial oxygen desaturations, or apneas, during the first few weeks of life. Apnea, or the cessation of breathing lasting 15-20 s or more, occurs due to immature respiratory control and is commonly associated with intermittent hypoxia (IH). Chronic IH induces oxygen radical diseases of the neonate, including necrotizing enterocolitis (NEC), the most common and devastating gastrointestinal disease in preterm infants. NEC is associated with an immature intestinal structure and function and involves dysbiosis of the gut microbiome, inflammation, and necrosis of the intestinal mucosal layer. This review describes the factors that influence the neonatal gut microbiome and dysbiosis, which predispose preterm infants to NEC. Current and future management and therapies, including the avoidance of dysbiosis, the use of a human milk diet, probiotics, prebiotics, synbiotics, restricted antibiotics, and fecal transplantation, for the prevention of NEC and the promotion of a healthy gut microbiome are also reviewed. Interventions directed at boosting endogenous and/or exogenous antioxidant supplementation may not only help with prevention, but may also lessen the severity or shorten the course of the disease.
Collapse
Affiliation(s)
- Kay D. Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Magdalena Latkowska
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Arwin M. Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Saddleback Memorial Medical Center, Laguna Hills, CA 92653, USA;
| | - Ahreen Allana
- Department of Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.A.); (J.S.)
| | - Jatnna Soto
- Department of Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.A.); (J.S.)
| | - Charles L. Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Sergio Golombek
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Ivan Hand
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Kings County Hospital Center, Brooklyn, NY 11203, USA;
| | - Jacob V. Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| |
Collapse
|
31
|
Weng TH, Huang KY, Jhong JH, Kao HJ, Chen CH, Chen YC, Weng SL. Microbiome analysis of maternal and neonatal microbial communities associated with the different delivery modes based on 16S rRNA gene amplicon sequencing. Taiwan J Obstet Gynecol 2023; 62:687-696. [PMID: 37678996 DOI: 10.1016/j.tjog.2023.07.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 09/09/2023] Open
Abstract
OBJECTIVE With the rising number of cases of non-vaginal delivery worldwide, scientists have been concerned about the influence of the different delivery modes on maternal and neonatal microbiomes. Although the birth rate trend is decreasing rapidly in Taiwan, more than 30 percent of newborns are delivered by caesarean section every year. However, it remains unclear whether the different delivery modes could have a certain impact on the postpartum maternal microbiome and whether it affects the mother-to-newborn vertical transmission of bacteria at birth. MATERIALS AND METHODS To address this, we recruited 30 mother-newborn pairs to participate in this study, including 23 pairs of vaginal delivery (VD) and seven pairs of caesarean section (CS). We here investigate the development of the maternal prenatal and postnatal microbiomes across multiple body habitats. Moreover, we also explore the early acquisition of neonatal gut microbiome through a vertical multi-body site microbiome analysis. RESULTS AND CONCLUSION The results indicate that no matter the delivery mode, it only slightly affects the maternal microbiome in multiple body habitats from pregnancy to postpartum. On the other hand, about 95% of species in the meconium microbiome were derived from one of the maternal body habitats; notably, the infants born by caesarean section acquire bacterial communities resembling their mother's oral microbiome. Consequently, the delivery modes play a crucial role in the initial colonization of the neonatal gut microbiome, potentially impacting children's health and development.
Collapse
Affiliation(s)
- Tzu-Hsiang Weng
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei City 104, Taiwan
| | - Kai-Yao Huang
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Jhih-Hua Jhong
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
| | - Hui-Ju Kao
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
| | - Chia-Hung Chen
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
| | - Yu-Chi Chen
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
| | - Shun-Long Weng
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan; Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei City 112, Taiwan.
| |
Collapse
|
32
|
Dias S, Pheiffer C, Adam S. The Maternal Microbiome and Gestational Diabetes Mellitus: Cause and Effect. Microorganisms 2023; 11:2217. [PMID: 37764061 PMCID: PMC10535124 DOI: 10.3390/microorganisms11092217] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a growing public health concern that affects many pregnancies globally. The condition is associated with adverse maternal and neonatal outcomes including gestational hypertension, preeclampsia, placental abruption, preterm birth, stillbirth, and fetal growth restriction. In the long-term, mothers and children have an increased risk of developing metabolic diseases such as type 2 diabetes and cardiovascular disease. Accumulating evidence suggest that alterations in the maternal microbiome may play a role in the pathogenesis of GDM and adverse pregnancy outcomes. This review describes changes in the maternal microbiome during the physiological adaptations of pregnancy, GDM and adverse maternal and neonatal outcomes. Findings from this review highlight the importance of understanding the link between the maternal microbiome and GDM. Furthermore, new therapeutic approaches to prevent or better manage GDM are discussed. Further research and clinical trials are necessary to fully realize the therapeutic potential of the maternal microbiome and translate these findings into clinical practice.
Collapse
Affiliation(s)
- Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.D.); (C.P.)
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.D.); (C.P.)
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Diabetes Research Centre, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
33
|
Suárez-Martínez C, Santaella-Pascual M, Yagüe-Guirao G, Martínez-Graciá C. Infant gut microbiota colonization: influence of prenatal and postnatal factors, focusing on diet. Front Microbiol 2023; 14:1236254. [PMID: 37675422 PMCID: PMC10478010 DOI: 10.3389/fmicb.2023.1236254] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
Maternal microbiota forms the first infant gut microbial inoculum, and perinatal factors (diet and use of antibiotics during pregnancy) and/or neonatal factors, like intra partum antibiotics, gestational age and mode of delivery, may influence microbial colonization. After birth, when the principal colonization occurs, the microbial diversity increases and converges toward a stable adult-like microbiota by the end of the first 3-5 years of life. However, during the early life, gut microbiota can be disrupted by other postnatal factors like mode of infant feeding, antibiotic usage, and various environmental factors generating a state of dysbiosis. Gut dysbiosis have been reported to increase the risk of necrotizing enterocolitis and some chronic diseases later in life, such as obesity, diabetes, cancer, allergies, and asthma. Therefore, understanding the impact of a correct maternal-to-infant microbial transfer and a good infant early colonization and maturation throughout life would reduce the risk of disease in early and late life. This paper reviews the published evidence on early-life gut microbiota development, as well as the different factors influencing its evolution before, at, and after birth, focusing on diet and nutrition during pregnancy and in the first months of life.
Collapse
Affiliation(s)
- Clara Suárez-Martínez
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Marina Santaella-Pascual
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Genoveva Yagüe-Guirao
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
- Microbiology Service, Virgen de La Arrixaca University Hospital, Murcia, Spain
| | - Carmen Martínez-Graciá
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
34
|
Ribeiro TA, Breznik JA, Kennedy KM, Yeo E, Kennelly BKE, Jazwiec PA, Patterson VS, Bellissimo CJ, Anhê FF, Schertzer JD, Bowdish DME, Sloboda DM. Intestinal permeability and peripheral immune cell composition are altered by pregnancy and adiposity at mid- and late-gestation in the mouse. PLoS One 2023; 18:e0284972. [PMID: 37549142 PMCID: PMC10406227 DOI: 10.1371/journal.pone.0284972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/13/2023] [Indexed: 08/09/2023] Open
Abstract
It is clear that the gastrointestinal tract influences metabolism and immune function. Most studies to date have used male test subjects, with a focus on effects of obesity and dietary challenges. Despite significant physiological maternal adaptations that occur across gestation, relatively few studies have examined pregnancy-related gut function. Moreover, it remains unknown how pregnancy and diet can interact to alter intestinal barrier function. In this study, we investigated the impacts of pregnancy and adiposity on maternal intestinal epithelium morphology, in vivo intestinal permeability, and peripheral blood immunophenotype, using control (CTL) and high-fat (HF) fed non-pregnant female mice and pregnant mice at mid- (embryonic day (E)14.5) and late (E18.5) gestation. We found that small intestine length increased between non-pregnant mice and dams at late-gestation, but ileum villus length, and ileum and colon crypt depths and goblet cell numbers remained similar. Compared to CTL-fed mice, HF-fed mice had reduced small intestine length, ileum crypt depth and villus length. Goblet cell numbers were only consistently reduced in HF-fed non-pregnant mice. Pregnancy increased in vivo gut permeability, with a greater effect at mid- versus late-gestation. Non-pregnant HF-fed mice had greater gut permeability, and permeability was also increased in HF-fed pregnant dams at mid but not late-gestation. The impaired maternal gut barrier in HF-fed dams at mid-gestation coincided with changes in maternal blood and bone marrow immune cell composition, including an expansion of circulating inflammatory Ly6Chigh monocytes. In summary, pregnancy has temporal effects on maternal intestinal structure and barrier function, and on peripheral immunophenotype, which are further modified by HF diet-induced maternal adiposity. Maternal adaptations in pregnancy are thus vulnerable to excess maternal adiposity, which may both affect maternal and child health.
Collapse
Affiliation(s)
- Tatiane A. Ribeiro
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
| | - Jessica A. Breznik
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M. Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Erica Yeo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Brianna K. E. Kennelly
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Patrycja A. Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Violet S. Patterson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Christian J. Bellissimo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Fernando F. Anhê
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Dawn M. E. Bowdish
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Deborah M. Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
35
|
Cui J, Wang J, Wang Y. The role of short-chain fatty acids produced by gut microbiota in the regulation of pre-eclampsia onset. Front Cell Infect Microbiol 2023; 13:1177768. [PMID: 37600950 PMCID: PMC10432828 DOI: 10.3389/fcimb.2023.1177768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background Preeclampsia (PE) is a common pregnancy-related disorder characterized by disrupted maternal-fetal immune tolerance, involving diffuse inflammatory responses and vascular endothelial damage. Alterations in the gut microbiota (GM) during pregnancy can affect intestinal barrier function and immune balance. Aims and purpose This comprehensive review aims to investigate the potential role of short-chain fatty acids (SCFAs), essential metabolites produced by the GM, in the development of PE. The purpose is to examine their impact on colonic peripheral regulatory T (Treg) cells, the pathogenic potential of antigen-specific helper T (Th) cells, and the inflammatory pathways associated with immune homeostasis. Key insights An increasing body of evidence suggests that dysbiosis in the GM can lead to alterations in SCFA levels, which may significantly contribute to the development of PE. SCFAs enhance the number and function of colonic Treg cells, mitigate the pathogenic potential of GM-specific Th cells, and inhibit inflammatory progression, thereby maintaining immune homeostasis. These insights highlight the potential significance of GM dysregulation and SCFAs produced by GM in the pathogenesis of PE. While the exact causes of PE remain elusive, and definitive clinical treatments are lacking, the GM and SCFAs present promising avenues for future clinical applications related to PE, offering a novel approach for prophylaxis and therapy.
Collapse
Affiliation(s)
| | - Jun Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Rupanagunta GP, Nandave M, Rawat D, Upadhyay J, Rashid S, Ansari MN. Postpartum depression: aetiology, pathogenesis and the role of nutrients and dietary supplements in prevention and management. Saudi Pharm J 2023; 31:1274-1293. [PMID: 37304359 PMCID: PMC10250836 DOI: 10.1016/j.jsps.2023.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Postpartum depression (PPD) is a challenging psychological disorder faced by 10-30% of mothers across the globe. In India, it occurs among 22% of mothers. Its aetiology and pathophysiology aren't fully understood as of today but multiple theories on the interplay of hormones, neurotransmitters, genetics, epigenetics, nutrients, socio-environmental factors, etc. exist. Nutrients are not only essential for the synthesis of neurotransmitters, but they may also indirectly influence genomic pathways that methylate DNA, and there is evidence for molecular associations between nutritional quality and psychological well-being. Increased behavioural disorders have been attributed to macro- and micronutrient deficiencies, and dietary supplementation has been effective in treating several neuropsychiatric illnesses. Nutritional deficiencies occur frequently in women, especially during pregnancy and breastfeeding. The aim of this study was to perform a comprehensive literature review of evidence-based research in order to identify, gather and summarize existing knowledge on PPD's aetiology, pathophysiology, and the role of nutrients in its prevention as well as management. The possible mechanisms of action of nutrients are also presented here. Study findings show that the risk of depression increases when omega-3 fatty acid levels are low. Both fish oil and folic acid supplements have been used to effectively treat depression. Antidepressant efficacy is lowered by folate insufficiency. Folate, vitamin B12, iron, etc. deficiencies are more prevalent in depressed people than in non-depressed people. Serum cholesterol levels and plasma tryptophan levels are found to be inversely correlated with PPD. Serum vitamin D levels were associated inversely with perinatal depression. These findings highlight the importance of adequate nutrition in the antepartum period. Given that nutritional therapies can be affordable, safe, simple to use, and are typically well-accepted by patients, more focus should be placed on dietary variables in PPD.
Collapse
Affiliation(s)
- Gnana Prasoona Rupanagunta
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres Campus, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), MB Road, Pushp Vihar, Sector 3, New Delhi 110017, India
| | - Divya Rawat
- Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres Campus, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres Campus, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
37
|
Hu R, Liu Z, Geng Y, Huang Y, Li F, Dong H, Ma W, Song K, Zhang M, Song Y. Gut Microbiota and Critical Metabolites: Potential Target in Preventing Gestational Diabetes Mellitus? Microorganisms 2023; 11:1725. [PMID: 37512897 PMCID: PMC10385493 DOI: 10.3390/microorganisms11071725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is an intractable issue that negatively impacts the quality of pregnancy. The incidence of GDM is on the rise, becoming a major health burden for both mothers and children. However, the specific etiology and pathophysiology of GDM remain unknown. Recently, the importance of gut microbiota and related metabolic molecules has gained prominence. Studies have indicated that women with GDM have significantly distinct gut microbiota and gut metabolites than healthy pregnant women. Given that the metabolic pathways of gut flora and related metabolites have a substantial impact on inflammation, insulin signaling, glucose, and lipid metabolism, and so on, gut microbiota or its metabolites, such as short-chain fatty acids, may play a significant role in both pathogenesis and progression of GDM. Whereas the role of intestinal flora during pregnancy is still in its infancy, this review aims to summarize the effects and mechanisms of gut microbiota and related metabolic molecules involved in GDM, thus providing potential intervention targets.
Collapse
Affiliation(s)
- Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haoxu Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
38
|
Singh P, Elhaj DAI, Ibrahim I, Abdullahi H, Al Khodor S. Maternal microbiota and gestational diabetes: impact on infant health. J Transl Med 2023; 21:364. [PMID: 37280680 PMCID: PMC10246335 DOI: 10.1186/s12967-023-04230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a common complication of pregnancy that has been associated with an increased risk of obesity and diabetes in the offspring. Pregnancy is accompanied by tightly regulated changes in the endocrine, metabolic, immune, and microbial systems, and deviations from these changes can alter the mother's metabolism resulting in adverse pregnancy outcomes and a negative impact on the health of her infant. Maternal microbiomes are significant drivers of mother and child health outcomes, and many microbial metabolites are likely to influence the host health. This review discusses the current understanding of how the microbiota and microbial metabolites may contribute to the development of GDM and how GDM-associated changes in the maternal microbiome can affect infant's health. We also describe microbiota-based interventions that aim to improve metabolic health and outline future directions for precision medicine research in this emerging field.
Collapse
Affiliation(s)
- Parul Singh
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Ibrahim Ibrahim
- Women's Department, Sidra Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Hala Abdullahi
- Women's Department, Sidra Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Souhaila Al Khodor
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
- Research Department, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
39
|
Amaral WZ, Lubach GR, Rendina DN, Phillips GJ, Lyte M, Coe CL. Significant Microbial Changes Are Evident in the Reproductive Tract of Pregnant Rhesus Monkeys at Mid-Gestation but Their Gut Microbiome Does Not Shift until Late Gestation. Microorganisms 2023; 11:1481. [PMID: 37374982 PMCID: PMC10304935 DOI: 10.3390/microorganisms11061481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Vaginal and rectal specimens were obtained from cycling, pregnant, and nursing rhesus monkeys to assess pregnancy-related changes in the commensal bacteria in their reproductive and intestinal tracts. Using 16S rRNA gene amplicon sequencing, significant differences were found only in the vagina at mid-gestation, not in the hindgut. To verify the apparent stability in gut bacterial composition at mid-gestation, the experiment was repeated with additional monkeys, and similar results were found with both 16S rRNA gene amplicon and metagenomic sequencing. A follow-up study investigated if bacterial changes in the hindgut might occur later in pregnancy. Gravid females were assessed closer to term and compared to nonpregnant females. By late pregnancy, significant differences in bacterial composition, including an increased abundance of 4 species of Lactobacillus and Bifidobacterium adolescentis, were detected, but without a shift in the overall community structure. Progesterone levels were assessed as a possible hormone mediator of bacterial change. The relative abundance of only some taxa (e.g., Bifidobacteriaceae) were specifically associated with progesterone. In summary, pregnancy changes the microbial profiles in monkeys, but the bacterial diversity in their lower reproductive tract is different from women, and the composition of their intestinal symbionts remains stable until late gestation when several Firmicutes become more prominent.
Collapse
Affiliation(s)
| | - Gabriele R. Lubach
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI 53715, USA; (G.R.L.); (D.N.R.)
| | - Danielle N. Rendina
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI 53715, USA; (G.R.L.); (D.N.R.)
- Health and Biosciences, International Flavors & Fragrances (IFF), Wilmington, DE 19803, USA
| | - Gregory J. Phillips
- College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.J.P.); (M.L.)
| | - Mark Lyte
- College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.J.P.); (M.L.)
| | - Christopher L. Coe
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI 53715, USA; (G.R.L.); (D.N.R.)
| |
Collapse
|
40
|
Lin H, Peddada SD. Multi-group Analysis of Compositions of Microbiomes with Covariate Adjustments and Repeated Measures. RESEARCH SQUARE 2023:rs.3.rs-2778207. [PMID: 37205444 PMCID: PMC10187376 DOI: 10.21203/rs.3.rs-2778207/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microbiome differential abundance analysis methods for a pair of groups are well established in the literature. However, many microbiome studies involve multiple groups, sometimes even ordered groups, such as stages of a disease, and require different types of comparisons. Standard pairwise comparisons are not only inefficient in terms of power and false discovery rates, but they may not address the scientific question of interest. In this paper, we propose a general framework for performing a wide range of multi-group analyses with covariate adjustments and repeated measures. We demonstrate the effectiveness of our methodology through two real data sets. The first example explores the effects of aridity on the soil microbiome, and the second example investigates the effects of surgical interventions on the microbiome of IBD patients.
Collapse
Affiliation(s)
- Huang Lin
- Biostatistics and Computational Biology Branch, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Shyamal Das Peddada
- Biostatistics and Computational Biology Branch, NIEHS, NIH, Research Triangle Park, NC, USA
| |
Collapse
|
41
|
Cowardin CA, Syed S, Iqbal N, Jamil Z, Sadiq K, Iqbal J, Ali SA, Moore SR. Environmental enteric dysfunction: gut and microbiota adaptation in pregnancy and infancy. Nat Rev Gastroenterol Hepatol 2023; 20:223-237. [PMID: 36526906 PMCID: PMC10065936 DOI: 10.1038/s41575-022-00714-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 03/31/2023]
Abstract
Environmental enteric dysfunction (EED) is a subclinical syndrome of intestinal inflammation, malabsorption and barrier disruption that is highly prevalent in low- and middle-income countries in which poverty, food insecurity and frequent exposure to enteric pathogens impair growth, immunity and neurodevelopment in children. In this Review, we discuss advances in our understanding of EED, intestinal adaptation and the gut microbiome over the 'first 1,000 days' of life, spanning pregnancy and early childhood. Data on maternal EED are emerging, and they mirror earlier findings of increased risks for preterm birth and fetal growth restriction in mothers with either active inflammatory bowel disease or coeliac disease. The intense metabolic demands of pregnancy and lactation drive gut adaptation, including dramatic changes in the composition, function and mother-to-child transmission of the gut microbiota. We urgently need to elucidate the mechanisms by which EED undermines these critical processes so that we can improve global strategies to prevent and reverse intergenerational cycles of undernutrition.
Collapse
Affiliation(s)
- Carrie A Cowardin
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA
| | - Sana Syed
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Najeeha Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Zehra Jamil
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Kamran Sadiq
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Junaid Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Syed Asad Ali
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sean R Moore
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
42
|
Yefet E, Bar L, Izhaki I, Iskander R, Massalha M, Younis JS, Nachum Z. Effects of Probiotics on Glycemic Control and Metabolic Parameters in Gestational Diabetes Mellitus: Systematic Review and Meta-Analysis. Nutrients 2023; 15:nu15071633. [PMID: 37049473 PMCID: PMC10097303 DOI: 10.3390/nu15071633] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Objectives: To assess the effects of probiotic supplements on glycemic control and metabolic parameters in women with gestational diabetes mellitus (GDM) by performing a systematic review and meta-analysis of randomized controlled trials. The primary outcome was glycemic control, i.e., serum glucose and insulin levels. Secondary outcomes were maternal weight gain, neonatal birth weight, and lipid parameters. Weighted mean difference (WMD) was used. Cochrane’s Q test of heterogeneity and I2 were used to assess heterogeneity. Results: Of the 843 papers retrieved, 14 (n = 854 women) met the inclusion criteria and were analyzed. When compared with placebo, women receiving probiotic supplements had significantly lower mean fasting serum glucose, fasting serum insulin, homeostatic model assessment for insulin resistance (HOMA-IR), triglycerides, total cholesterol, and VLDL levels. Decreased neonatal birth weight was witnessed in supplements containing Lactobacillus acidophilus. Conclusion: Probiotic supplements may improve glycemic control and lipid profile and reduce neonatal birth weight in women with GDM.
Collapse
|
43
|
Jia X, He Y, Kang Z, Chen S, Sun W, Wang J, Lai S. Comparison of Fecal Microbiota Communities between Primiparous and Multiparous Cows during Non-Pregnancy and Pregnancy. Animals (Basel) 2023; 13:ani13050869. [PMID: 36899725 PMCID: PMC10000135 DOI: 10.3390/ani13050869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Imbalances in the gut microbiota composition may lead to several reproductive disorders and diseases during pregnancy. This study investigates the fecal microbiome composition between primiparous and multiparous cows during non-pregnancy and pregnancy to analyze the host-microbial balance at different stages. The fecal samples obtained from six cows before their first pregnancy (BG), six cows during their first pregnancy (FT), six open cows with more than three lactations (DCNP), and six pregnant cows with more than three lactations (DCP) were subjected to 16S rRNA sequencing, and a differential analysis of the fecal microbiota composition was performed. The three most abundant phyla in fecal microbiota were Firmicutes (48.68%), Bacteroidetes (34.45%), and Euryarchaeota (15.42%). There are 11 genera with more than 1.0% abundance at the genus level. Both alpha diversity and beta diversity showed significant differences among the four groups (p < 0.05). Further, primiparous women were associated with a profound alteration of the fecal microbiota. The most representative taxa included Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG_003, Christensenellaceae_R_7_group, Ruminococcaceae UCG-005, Ruminococcaceae UCG-013, Ruminococcaceae UCG-014, Methanobrevibacter, and [Eubacterium] coprostanoligenes group, which were associated with energy metabolism and inflammation. The findings indicate that host-microbial interactions promote adaptation to pregnancy and will benefit the development of probiotics or fecal transplantation for treating dysbiosis and preventing disease development during pregnancy.
Collapse
|
44
|
Gut Microbial Succession Patterns and Metabolic Profiling during Pregnancy and Lactation in a Goat Model. Microbiol Spectr 2023; 11:e0295522. [PMID: 36700635 PMCID: PMC9927511 DOI: 10.1128/spectrum.02955-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The maternal gut microbiome affects the duration of pregnancy, delivery, and lactation. It also coordinates the stability of maternal metabolism by regulating and modulating inflammatory cytokines and reproductive hormones. This has been shown in several species; however, the situation in ruminants remains a black box. Here, we aimed to elucidate the relationship between the hindgut microbiota, metabolism, and reproductive hormones in domestic goats (Capra hircus) during nonpregnancy, pregnancy, and lactation stages. The hindgut microbiota was altered during these three stages, with a drastic decrease in the abundance of Family_XIII_AD3011_group in the second and third trimesters of pregnancy. Additionally, a decline in the abundance of Christensenellaceae_R-7_group and Turicibacter was observed from the nonpregnancy stage to late gestation. Family_XIII_AD3011_group and Paeniclostridium were strongly correlated with decreased fecal estradiol and progesterone. Furthermore, we generated a metabolome atlas of the gut and serum from nonpregnancy to lactation to reveal the specific metabolic fingerprints of each physiological stage. Several specific gut metabolites, including carnitine C8:1, γ-aminobutyric acid, and indole-3-carboxylic acid, were negatively correlated with the fecal and serum estradiol concentrations. In contrast, 2'-deoxyinosine, deoxyadenosine, and 5'-deoxyadenosine were positively correlated with the fecal and serum estradiol concentrations. The levels of 2'-deoxyinosine, deoxyadenosine, and 5'-deoxyadenosine in fecal samples were positively correlated with Family_XIII_AD3011_group. Other serum metabolites, such as (±)12-HEPE (hydroxy eicosapentaenoic acid), (±)15-HEPE, (±)18-HEPE, cytidine, uracil, and 5-hydroxyindole-3-acetic acid, were negatively correlated with the serum concentrations of estradiol and progesterone. Finally, Corynebacterium and Clostridium_sensu_stricto_1 in the fecal samples were positively correlated with the abundance of 11,12-EET (epoxy-eicosatrienoic acid), (±)18-HEPE, (±)15-HEPE, and (±)12-HEPE in the serum. IMPORTANCE Our findings revealed that the activity of Family_XIII_AD3011_group and Corynebacterium is strongly correlated with the beneficial regulation of physiological hormones and metabolic changes during pregnancy and lactation. These findings are key for guiding targeted microbial therapeutic approaches to modulate microbiomes in gestating and lactating mammals.
Collapse
|
45
|
Giannella L, Grelloni C, Quintili D, Fiorelli A, Montironi R, Alia S, Delli Carpini G, Di Giuseppe J, Vignini A, Ciavattini A. Microbiome Changes in Pregnancy Disorders. Antioxidants (Basel) 2023; 12:463. [PMID: 36830021 PMCID: PMC9952029 DOI: 10.3390/antiox12020463] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The human microbiota comprises all microorganisms, such as bacteria, fungi, and viruses, found within a specific environment that live on our bodies and inside us. The last few years have witnessed an explosion of information related to the role of microbiota changes in health and disease. Even though the gut microbiota is considered the most important in maintaining our health, other regions of the human body, such as the oral cavity, lungs, vagina, and skin, possess their own microbiota. Recent work suggests a correlation between the microbiota present during pregnancy and pregnancy complications. The aim of our literature review was to provide a broad overview of this growing and important topic. We focused on the most significant changes in the microbiota in the four more common obstetric diseases affecting women's health. Thus, our attention will be focused on hypertensive disorders, gestational diabetes mellitus, preterm birth, and recurrent miscarriage. Pregnancy is a unique period in a woman's life since the body undergoes different adaptations to provide an optimal environment for fetal growth. Such changes also involve all the microorganisms, which vary in composition and quantity during the three trimesters of gestation. In addition, special attention will be devoted to the potential and fundamental advances in developing clinical applications to prevent and treat those disorders by modulating the microbiota to develop personalized therapies for disease prevention and tailored treatments.
Collapse
Affiliation(s)
- Luca Giannella
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Camilla Grelloni
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Dayana Quintili
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Alessia Fiorelli
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Ramona Montironi
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Sonila Alia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Giovanni Delli Carpini
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Jacopo Di Giuseppe
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Andrea Ciavattini
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| |
Collapse
|
46
|
Chandiwana P, Munjoma PT, Mazhandu AJ, Li J, Baertschi I, Wyss J, Jordi SBU, Mazengera LR, Yilmaz B, Misselwitz B, Duri K. Antenatal gut microbiome profiles and effect on pregnancy outcome in HIV infected and HIV uninfected women in a resource limited setting. BMC Microbiol 2023; 23:4. [PMID: 36604616 PMCID: PMC9817306 DOI: 10.1186/s12866-022-02747-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) severely damages the epithelial cells of the gut lining leading to an inflamed leaky gut, translocation of microbial products, and dysbiosis resulting in systemic immune activation. Also, microbiota composition and maternal gut function can be altered in pregnancy through changes in the immune system and intestinal physiology. The aim of this study was to investigate the gut microbiota in HIV-infected and HIV-uninfected pregnant women and to compare and identify the association between gut microbial composition and adverse birth outcomes. RESULTS A total of 94 pregnant women (35 HIV-infected and 59 HIV-uninfected controls) were recruited in Harare from 4 polyclinics serving populations with relatively poor socioeconomic status. Women were of a median age of 28 years (interquartile range, IQR: 22.3-32.0) and 55% of women were 35 weeks gestational age at enrolment (median 35.0 weeks, IQR: 32.5-37.2). Microbiota profiling in these participants showed that species richness was significantly lower in the HIV-infected pregnant women compared to their HIV-uninfected peers and significant differences in β-diversity using Bray-Curtis dissimilarity were observed. In contrast, there was no significant difference in α-diversity between immune-compromised (CD4+ < 350 cells/µL) and immune-competent HIV-infected women (CD4+ ≥ 350 cells/µL) even after stratification by viral load suppression. HIV infection was significantly associated with a reduced abundance of Clostridium, Turicibacter, Ruminococcus, Parabacteroides, Bacteroides, Bifidobacterium, Treponema, Oscillospira, and Faecalibacterium and a higher abundance of Actinomyces, and Succinivibrio. Low infant birth weight (< 2500 g) was significantly associated with high abundances of the phylum Spirochaetes, the families Spirochaeteceae, Veillonellaceae, and the genus Treponema. CONCLUSION The results reported here show that the species richness and taxonomy composition of the gut microbiota is altered in HIV-infected pregnant women, possibly reflecting intestinal dysbiosis. Some of these taxa were also associated with low infant birth weight.
Collapse
Affiliation(s)
- Panashe Chandiwana
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Privilege Tendai Munjoma
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Arthur John Mazhandu
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Jiaqi Li
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Isabel Baertschi
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jacqueline Wyss
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland
| | - Sebastian Bruno Ulrich Jordi
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lovemore Ronald Mazengera
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Bahtiyar Yilmaz
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland
| | - Benjamin Misselwitz
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland
| | - Kerina Duri
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| |
Collapse
|
47
|
Jiang G, Zhou Z, Li X, Qian Y, Wang K. The Gut Microbiome During Pregnancy. MATERNAL-FETAL MEDICINE 2023; 5:36-43. [PMID: 40406538 PMCID: PMC12094337 DOI: 10.1097/fm9.0000000000000091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/16/2020] [Indexed: 11/25/2022] Open
Abstract
Gut microbiota is symbiotic and interdependent with human body. Intestinal probiotics are colonized in the human gastrointestinal tract, which can improve the host intestinal microenvironment and enhance the intestinal function and immune function of the human body. A small number of opportunistic pathogens exist in the intestinal tract. Once the number of pathogens exceeds the threshold of intestinal tolerance, the intestinal micro-ecological balance can be destroyed, and various diseases may thus develop. Pregnancy is a special status with different physiologic changing stages. In the meanwhile, alterations in the gut microbiome populations occur, which can promote the differentiation, development, and maturation of fetal organs by affecting maternal metabolism. Compared with normal pregnant women, great changes in the gastrointestinal function and gut microbiome may take place in pregnant women with pregnancy-related complications, in which these changes include the number, species, and intestinal translocation. The composition of the maternal gut microbiome could contribute to pregnancy and obstetric outcomes, and long-term health of mother and child. The relationships of pregnancy to gut microbiome have attracted an increasing attention in recent years. This article will provide a summary review of the research studies of gut microbiome in normal pregnant women versus abnormal pregnancy women with complications.
Collapse
Affiliation(s)
- Guoqing Jiang
- Department of Obstetrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Zhiyi Zhou
- Department of Obstetrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Xiaojuan Li
- Department of Obstetrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Yuan Qian
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan 650000, China
- Yunnan Institute of Experimental Diagnosis, Kunming, Yunnan 650000, China
| | - Kunhua Wang
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
- Yunnan Engineering Technology Center of Digestive disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| |
Collapse
|
48
|
Sah DK, Arjunan A, Park SY, Jung YD. Bile acids and microbes in metabolic disease. World J Gastroenterol 2022; 28:6846-6866. [PMID: 36632317 PMCID: PMC9827586 DOI: 10.3748/wjg.v28.i48.6846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022] Open
Abstract
Bile acids (BAs) serve as physiological detergents that enable the intestinal absorption and transportation of nutrients, lipids and vitamins. BAs are primarily produced by humans to catabolize cholesterol and play crucial roles in gut metabolism, microbiota habitat regulation and cell signaling. BA-activated nuclear receptors regulate the enterohepatic circulation of BAs which play a role in energy, lipid, glucose, and drug metabolism. The gut microbiota plays an essential role in the biotransformation of BAs and regulates BAs composition and metabolism. Therefore, altered gut microbial and BAs activity can affect human metabolism and thus result in the alteration of metabolic pathways and the occurrence of metabolic diseases/syndromes, such as diabetes mellitus, obesity/hypercholesterolemia, and cardiovascular diseases. BAs and their metabolites are used to treat altered gut microbiota and metabolic diseases. This review explores the increasing body of evidence that links alterations of gut microbial activity and BAs with the pathogenesis of metabolic diseases. Moreover, we summarize existing research on gut microbes and BAs in relation to intracellular pathways pertinent to metabolic disorders. Finally, we discuss how therapeutic interventions using BAs can facilitate microbiome functioning and ease metabolic diseases.
Collapse
Affiliation(s)
- Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| | - Archana Arjunan
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| | - Sun Young Park
- Department of Internal Medicine, Chonnam National University, Gwangju 501190, South Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| |
Collapse
|
49
|
Siddiqui R, Makhlouf Z, Alharbi AM, Alfahemi H, Khan NA. The Gut Microbiome and Female Health. BIOLOGY 2022; 11:1683. [PMID: 36421397 PMCID: PMC9687867 DOI: 10.3390/biology11111683] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 07/30/2023]
Abstract
The possession of two X chromosomes may come with the risk of various illnesses, females are more likely to be affected by osteoarthritis, heart disease, and anxiety. Given the reported correlations between gut microbiome dysbiosis and various illnesses, the female gut microbiome is worthy of exploration. Herein, we discuss the composition of the female gut microbiota and its dysbiosis in pathologies affecting the female population. Using PubMed, we performed a literature search, using key terms, namely: "gut microbiome", "estrogen", "menopause", "polycystic ovarian syndrome", "pregnancy", and "menstruation". In polycystic ovarian syndrome (PCOS), the abundance of Bacteroides vulgatus, Firmicutes, Streptococcus, and the ratio of Escherichia/Shigella was found to be increased while that of Tenericutes ML615J-28, Tenericutes 124-7, Akkermansia, Ruminococcaceae, and Bacteroidetes S24-7 was reduced. In breast cancer, the abundance of Clostridiales was enhanced, while in cervical cancer, Prevotella, Porphyromonas, and Dialister were enhanced but Bacteroides, Alistipes, and members of Lachnospiracea, were decreased. In ovarian cancer, Prevotella abundance was increased. Interestingly, the administration of Lactobacillus acidophilus, Bifidobacterium bifidum, Lactobacillus reuteri, and Lactobacillus fermentum ameliorated PCOS symptoms while that of a mix of Bifidobacterium lactis W51, Bifidobacterium bifidum W23, Lactobacillus brevis W63, Bifidobacterium lactis W52, Lactobacillus salivarius W24, Lactobacillus acidophilus W37, Lactococcus lactis W19, Lactobacillus casei W56, and Lactococcus lactis W58 alleviated vascular malfunction and arterial stiffness in obese postmenopausal women, and finally, while further research is needed, Prevotella maybe protective against postmenopausal bone mass loss. As several studies report the therapeutic potential of probiotics and since the gut microbiota of certain female pathological states has been relatively characterized, we speculate that the administration of certain bacterial species as probiotics is warranted, as novel independent or adjunct therapies for various female pathologies.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Zinb Makhlouf
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
50
|
Ionescu RF, Enache RM, Cretoiu SM, Gaspar BS. Gut Microbiome Changes in Gestational Diabetes. Int J Mol Sci 2022; 23:12839. [PMID: 36361626 PMCID: PMC9654708 DOI: 10.3390/ijms232112839] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 08/27/2023] Open
Abstract
Gestational diabetes mellitus (GDM), one of the most common endocrine pathologies during pregnancy, is defined as any degree of glucose intolerance with onset or first discovery in the perinatal period. Physiological changes that occur in pregnant women can lead to inflammation, which promotes insulin resistance. In the general context of worldwide increasing obesity in young females of reproductive age, GDM follows the same ascending trend. Changes in the intestinal microbiome play a decisive role in obesity and the development of insulin resistance and chronic inflammation, especially in patients with type 2 diabetes mellitus (T2D). To date, various studies have also associated intestinal dysbiosis with metabolic changes in women with GDM. Although host metabolism in women with GDM has not been fully elucidated, it is of particular importance to analyze the available data and to discuss the actual knowledge regarding microbiome changes with potential impact on the health of pregnant women and newborns. We analyzed peer-reviewed journal articles available in online databases in order to summarize the most recent findings regarding how variations in diet and metabolic status of GDM patients can contribute to alteration of the gut microbiome, in the same way that changes of the gut microbiota can lead to GDM. The most frequently observed alteration in the microbiome of patients with GDM was either an increase of the Firmicutes phylum, respectively, or a decrease of the Bacteroidetes and Actinobacteria phyla. Gut dysbiosis was still present postpartum and can impact the development of the newborn, as shown in several studies. In the evolution of GDM, probiotic supplementation and regular physical activity have the strongest evidence of proper blood glucose control, favoring fetal development and a healthy outcome for the postpartum period. The current review aims to summarize and discuss the most recent findings regarding the correlation between GDM and dysbiosis, and current and future methods for prevention and treatment (lifestyle changes, pre- and probiotics administration). To conclude, by highlighting the role of the gut microbiota, one can change perspectives about the development and progression of GDM and open up new avenues for the development of innovative therapeutic targets in this disease.
Collapse
Affiliation(s)
- Ruxandra Florentina Ionescu
- Department of Cardiology I, Central Military Emergency Hospital “Dr Carol Davila”, 030167 Bucharest, Romania
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Surgery Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|