1
|
Zhang X, Fu C, Yang Z, Tan Y, Li H, Zhang X, Chen M, Peng F, Li N. Bioinformatics-Guided Experimental Validation Identifies NQO1 as a Senescence-Ferroptosis Hub in Liver Fibrosis. Biomedicines 2025; 13:1249. [PMID: 40427075 PMCID: PMC12108982 DOI: 10.3390/biomedicines13051249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/27/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background: As a pivotal point for the development of liver diseases, liver fibrosis (LF) is closely associated with cellular senescence and ferroptosis. However, there is a lack of effective markers that accurately predict LF status. This study aims to identify key genes involved in LF through bioinformatics analysis and experimental validation. Methods: We used bioinformatics analysis of Gene Expression Omnibus (GEO) data to investigate the gene functions, prognostic value, and immune associations of characteristic genes in LF. Functional enrichment analysis of DEGs was performed using GO and KEGG. Immune cell types and their proportions were estimated with CIBERSORTx. In addition, we analyzed the role of NQO1 in LF using IHC, WB, PCR, and flow cytometry. Results: Bioinformatics analysis identified 10 hub genes, including AR, CDKN1A, GJA1, CTSB, HIF1A, HMGB1, NQO1, PARP1, PTEN, and TXN. Among them, NQO1 was strongly correlated with immune cell activity. Experimental validation confirmed that NQO1 is upregulated and promotes αSMA and COL1A1 expression in hepatic stellate cells (HSCs). Knockdown of NQO1 significantly affected the proliferation of HSCs. Conclusions: NQO1 plays a critical role in HSC senescence and ferroptosis, promoting HSC activation and contributing to LF progression. Our findings suggest that NQO1 may serve as a potential biomarker for LF.
Collapse
Affiliation(s)
- Xinying Zhang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha 410008, China; (X.Z.)
- Clinical Transfusion Research Centre, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Chunmeng Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ziyue Yang
- Department of Hepatobiliary Surgery, Liver Transplantation Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yue Tan
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Huan Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha 410008, China; (X.Z.)
- Clinical Transfusion Research Centre, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiangqian Zhang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha 410008, China; (X.Z.)
- Clinical Transfusion Research Centre, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Mengru Chen
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fang Peng
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha 410008, China; (X.Z.)
| |
Collapse
|
2
|
Shi Y, Hong R, Fan Z, Huan R, Gao Y, Ma M, Liu T, Pan C. Chronic environmental exposure to polystyrene microplastics increases the risk of nonalcoholic fatty liver disease. Toxicology 2025; 511:154067. [PMID: 39864238 DOI: 10.1016/j.tox.2025.154067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 01/28/2025]
Abstract
Microplastics (MPs), as the crucial environmental pollutants, can be easily transported into the human body and accumulate in the liver. However, current studies mainly focus on acute exposure to MPs, investigations on long-term interactions with MPs alone remain limited. Thereby, we examined noxious properties of MPs and selected the most common polystyrene (PS) MPs as the research object, including unmodified PS MPs (PS-MPs) and positive-charged PS MPs (PS-NH2) at 10 mg/L employing oral drinking water methods in mice for six consecutive months in vivo. In vitro, we treated the human hepatocyte cells with MPs at 25 μg/mL to explore involved mechanisms. The results revealed that six-month MPs exposure led to nonalcoholic fatty liver disease (NAFLD) including impaired liver functions, extensive lipid depositions accompanied by abnormal levels of metabolic genes and PS-NH2 MPs exerted a stronger effect than PS-MPs. Concurrently, mice treated with MPs revealed the accumulation of senescent hepatocytes, leading to increased secretions of senescent phenotypes in the liver. We also discovered that MPs initiated the HO-1/Nrf2 axis consequently inducing ferroptosis in vivo and in vitro, as shown by massive iron deposition, extensive lipid peroxidation along with significant protein expressions in ferroptosis-related markers. Additionally, targeting the HO-1/Nrf2 pathway to further alleviate ferroptosis with corresponding inhibitors could efficiently alleviate cell senescence. Therefore, our study reveals new evidence of the relationship between chronic exposure to MPs and NAFLD and furthers the understanding of how plastic pollution affects human health.
Collapse
Affiliation(s)
- Yujie Shi
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Runyang Hong
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Zhencheng Fan
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Ran Huan
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yajie Gao
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Min Ma
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Department of Obstetrics and Gynecology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225001, China; Jiangsu Key Laboratory of Non coding RNA Basic and Clinical Transformation, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Tingting Liu
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Chun Pan
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Jiangsu Key Laboratory of Non coding RNA Basic and Clinical Transformation, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| |
Collapse
|
3
|
Sun YW, Zhao BW, Li HF, Zhang GX. Overview of ferroptosis and pyroptosis in acute liver failure. World J Gastroenterol 2024; 30:3856-3861. [PMID: 39350783 PMCID: PMC11438646 DOI: 10.3748/wjg.v30.i34.3856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024] Open
Abstract
In this editorial, we comment on the article by Zhou et al published in a recent issue. We specifically focus on the crucial roles of ferroptosis and pyroptosis in acute liver failure (ALF), a disease with high mortality rates. Ferroptosis is the result of increased intracellular reactive oxygen species due to iron accumulation, glutathione (GSH) depletion, and decreased GSH peroxidase 4 activity, while pyroptosis is a procedural cell death mediated by gasdermin D which initiates a sustained inflammatory process. In this review, we describe the characteristics of ferroptosis and pyroptosis, and discuss the involvement of the two cell death modes in the onset and development of ALF. Furthermore, we summarize several interfering methods from the perspective of ferroptosis and pyroptosis for the alleviation of ALF. These observations might provide new targets and a theoretical basis for the treatment of ALF, which are also crucial for improving the prognosis of patients with ALF.
Collapse
Affiliation(s)
- Ya-Wen Sun
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, Shandong Province, China
| | - Bo-Wen Zhao
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, Shandong Province, China
| | - Hai-Fang Li
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, Shandong Province, China
| | - Guang-Xiao Zhang
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, Shandong Province, China
| |
Collapse
|
4
|
Xing ZY, Zhang CJ, Liu LJ. Targeting both ferroptosis and pyroptosis may represent potential therapies for acute liver failure. World J Gastroenterol 2024; 30:3791-3798. [PMID: 39351426 PMCID: PMC11438622 DOI: 10.3748/wjg.v30.i33.3791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
In this editorial, we comment on the article published in the recent issue of the World Journal of Gastroenterology. Acute liver failure (ALF) is a fatal disease that causes uncontrolled massive hepatocyte death and rapid loss of liver function. Ferroptosis and pyroptosis, cell death forms that can be initiated or blocked concurrently, can play significant roles in developing inflammation and various malignancies. However, their roles in ALF remain unclear. The article discovered the positive feedback between ferroptosis and pyroptosis in the progression of ALF, and revealed that the silent information regulator sirtuin 1 (SIRT1) inhibits both pathways through p53, dramatically reducing inflammation and protecting hepatocytes. This suggests the potential use of SIRT1 and its downstream molecules as therapeutics for ALF. Thus, we will discuss the role of ferroptosis and pyroptosis in ALF and the crosstalk between these cell death mechanisms. Additionally, we address potential treatments that could alleviate ALF by simultaneously inhibiting both cell death pathways, as well as examples of SIRT1 activators being used as disease treatment strategies, providing new insights into the therapy of ALF.
Collapse
Affiliation(s)
- Zhong-Yuan Xing
- Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Chuan-Jie Zhang
- Department of Children Health Care, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430061, Hubei Province, China
| | - Li-Juan Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
5
|
Liu Y, Feng D, Shui L, Wang YJ, Yu L, Liu YQ, Tian JY. The research landscape of ferroptosis in neurodegenerative disease: a bibliometric analysis. Front Aging Neurosci 2024; 16:1417989. [PMID: 38962561 PMCID: PMC11221830 DOI: 10.3389/fnagi.2024.1417989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Background Ferroptosis, a newly proposed concept of programmed cell death, has garnered significant attention in research across different diseases in the last decade. Despite thorough citation analyses in neuroscience, there is a scarcity of information on ferroptosis research specifically related to neurodegenerative diseases. Method The Web of Science Core Collection database retrieved relevant articles and reviews. Data on publications, countries, institutions, authors, journals, citations, and keywords in the included studies were systematically analyzed using Microsoft Excel 2019 and CiteSpace 6.2.R7 software. Result A comprehensive analysis and visualization of 563 research papers on ferroptosis in neurodegenerative diseases from 2014 to 2023 revealed emerging research hotspots and trends. The number of annual publications in this field of study has displayed a pattern of stabilization in the early years of the decade, followed by a notable increase in the later years and peaking in 2023 with 196 publications. Regarding publication volume and total citations, notable research contributions were observed from countries, institutions, and authors in North America, Western Europe, and China. Current research endeavors primarily focus on understanding the intervention mechanisms of neurodegenerative diseases through the ferroptosis pathway and exploring and identifying potential therapeutic targets. Conclusion The study highlights key areas of interest and emerging trends in ferroptosis research on neurodegenerative diseases, offering valuable insights for further exploration and potential directions for diagnosing and treating such conditions.
Collapse
Affiliation(s)
- Yun Liu
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dan Feng
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ling Shui
- Department of General Practice, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yu-jie Wang
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Li Yu
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yu-qi Liu
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jin-yong Tian
- Department of General Practice, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
6
|
Wang Y, Hu J, Wu S, Fleishman JS, Li Y, Xu Y, Zou W, Wang J, Feng Y, Chen J, Wang H. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct Target Ther 2023; 8:449. [PMID: 38072908 PMCID: PMC10711040 DOI: 10.1038/s41392-023-01720-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Ferroptosis, a unique modality of cell death with mechanistic and morphological differences from other cell death modes, plays a pivotal role in regulating tumorigenesis and offers a new opportunity for modulating anticancer drug resistance. Aberrant epigenetic modifications and posttranslational modifications (PTMs) promote anticancer drug resistance, cancer progression, and metastasis. Accumulating studies indicate that epigenetic modifications can transcriptionally and translationally determine cancer cell vulnerability to ferroptosis and that ferroptosis functions as a driver in nervous system diseases (NSDs), cardiovascular diseases (CVDs), liver diseases, lung diseases, and kidney diseases. In this review, we first summarize the core molecular mechanisms of ferroptosis. Then, the roles of epigenetic processes, including histone PTMs, DNA methylation, and noncoding RNA regulation and PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, and ADP-ribosylation, are concisely discussed. The roles of epigenetic modifications and PTMs in ferroptosis regulation in the genesis of diseases, including cancers, NSD, CVDs, liver diseases, lung diseases, and kidney diseases, as well as the application of epigenetic and PTM modulators in the therapy of these diseases, are then discussed in detail. Elucidating the mechanisms of ferroptosis regulation mediated by epigenetic modifications and PTMs in cancer and other diseases will facilitate the development of promising combination therapeutic regimens containing epigenetic or PTM-targeting agents and ferroptosis inducers that can be used to overcome chemotherapeutic resistance in cancer and could be used to prevent other diseases. In addition, these mechanisms highlight potential therapeutic approaches to overcome chemoresistance in cancer or halt the genesis of other diseases.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jing Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, PR China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Yinshi Xu
- Department of Outpatient, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Wailong Zou
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| |
Collapse
|