1
|
Summer M, Hussain T, Ali S, Khan RRM, Muhammad G, Liaqat I. Exploring the underlying modes of organic nanoparticles in diagnosis, prevention, and treatment of cancer: a review from drug delivery to toxicity. INT J POLYM MATER PO 2025; 74:829-845. [DOI: 10.1080/00914037.2024.2375337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore
| | - Rana Rashad Mahmood Khan
- Department of Chemistry, Government College University Lahore, Faculty of Chemistry and Life Sciences
| | - Gulzar Muhammad
- Department of Chemistry, Government College University Lahore, Faculty of Chemistry and Life Sciences
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University Lahore
| |
Collapse
|
2
|
Sipos B, Rajab F, Katona G, Csóka I. Current insights into polymeric micelles for nasal drug delivery. Expert Opin Drug Deliv 2025:1-18. [PMID: 40420578 DOI: 10.1080/17425247.2025.2511962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/09/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
INTRODUCTION The nasal administration route has gained peak interest in recent literature and as a noninvasive alternative for efficient drug delivery and increasing bioavailability of active substances. Technological challenges arise from the drug's physicochemical properties and the nasal mucosal barrier for which innovative particle engineering techniques must be implemented, such as using polymeric nanocarriers. AREAS COVERED This review deals with the importance of the nasal administration route and its connection to polymeric micelles as innovative nanocarriers. The period between 2015-2025 up to date was chosen to search for original research articles where polymeric micelles were applied nasally. The first part demonstrates the utilization of polymeric micelles, followed by a summary of how drug release and permeability can be achieved in the nasal cavity and through the nasal epithelium. The second part reviews the studies conducted on this matter. EXPERT OPINION The nasal route could be superior to perform as a suitable alternative to conventional routes. Multiple studies have already demonstrated that the main advantages lie in the nose-to-brain drug delivery pathway, which can be conquered via adequately formulated polymeric micelles. As an innovative solution, vaccine delivery is also of great potential by combining the advantages of the delivery route and the polymeric nanocarriers.
Collapse
Affiliation(s)
- Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Fatima Rajab
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Antezana PE, Arana AGH, Municoy S, Desimone MF, Evelson P, Ferreira S. Development of a Liposome Nanoformulation for the Delivery of Lipoic Acid as a Potential Neuroprotective Therapy in Glaucoma. Pharmaceutics 2025; 17:664. [PMID: 40430954 PMCID: PMC12115065 DOI: 10.3390/pharmaceutics17050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Glaucoma is the leading cause of irreversible blindness worldwide and oxidative stress is considered to play a key role in its development. While antioxidants offer a promising approach to mitigating oxidative stress, their clinical application is often hindered by bioavailability and absorption challenges. Entrapment antioxidants within liposomes may overcome these issues, enhancing their stability and delivery. The aim of this study was to develop a novel composite liposomal formulation for glaucoma treatment, designed to enhance lipoic acid bioavailability and administration through its incorporation into the lipid bilayer. Methods: Liposomes were prepared via lipid film hydration and extrusion. To characterize them, the following analyses were performed: FTIR spectroscopy, liposomal bilayer melting temperature (Tm), TEM, DLS, Z-potential, antioxidant activity, and cytotoxicity assays. Results: The efficient incorporation of lipoic acid into the liposomes' lipid bilayer was confirmed by FTIR. This incorporation resulted in an increase in the Tm, from 37.0 °C for liposomes to 40.0 °C for liposomes with lipoic acid (L-LA). TEM images confirmed that the spherical morphology of the lipid vesicles remained unchanged following LA incorporation. Dynamic Light Scattering analysis revealed effective diameters of 423 ± 36 nm for L liposomes and 404 ± 62 nm for L-LA liposomes. Notably, the Z-potential shifted from +4.7 ± 0.4 mV (L) to -0.4 ± 0.3 mV (L-LA). Furthermore, L-LA exhibited significant antioxidant activity (31.6 ± 0.4%) compared with L (5.3 ± 0.3%) and biocompatibility, suggesting its potential for therapeutic applications. Conclusions: In summary, biocompatible composite liposomes with antioxidant capacity were successfully developed, resulting in promising candidates for neuroprotective glaucoma therapy.
Collapse
Affiliation(s)
- Pablo Edmundo Antezana
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Buenos Aires 1113, Argentina; (S.M.); (M.F.D.)
| | - Ailen Gala Hvozda Arana
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General e Inorgánica, Buenos Aires 1113, Argentina
| | - Sofia Municoy
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Buenos Aires 1113, Argentina; (S.M.); (M.F.D.)
- CONICET-Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires 1113, Argentina
| | - Martín Federico Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Buenos Aires 1113, Argentina; (S.M.); (M.F.D.)
- CONICET-Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires 1113, Argentina
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande—FURG, Rio Grande 473, Brazil
| | - Pablo Evelson
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General e Inorgánica, Buenos Aires 1113, Argentina
| | - Sandra Ferreira
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General e Inorgánica, Buenos Aires 1113, Argentina
| |
Collapse
|
4
|
Stępień M, Zajda J, Keppler BK, Timerbaev AR, Matczuk M. Cisplatin meets liposomes for a smarter delivery: A review. Talanta 2025; 295:128331. [PMID: 40382863 DOI: 10.1016/j.talanta.2025.128331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Effective treatment of tumors remains a significant clinical challenge even for approved anticancer drugs such as cisplatin, whose chemotherapy is hindered by inherent toxicity, rapidly acquired resistance, and nonselective mode of action. In the past years, nanodelivery systems have emerged as a key strategy to overcome these limitations due to their potential to improve drug safety, bioavailability, and efficacy. Among various nanostructures applied as carriers for the delivery of cisplatin, liposomes have undergone intensive testing, with the outcome of being advanced to clinical trials. This fact not only triggers further research endeavors toward developing improved liposomal formulations but also makes it timely to highlight recent trends and strategies, showcasing the evolution and application of cisplatin-liposome systems. The present review is aimed at a critical analysis of fabrication, encapsulation, stability testing, release, and cell/animal experimental procedures, focusing on the analytical methodology used to feature these essential practices and providing insights that may help enhance the efficacy of cisplatin chemotherapy.
Collapse
Affiliation(s)
- Marta Stępień
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664, Warsaw, Poland
| | - Joanna Zajda
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664, Warsaw, Poland.
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Andrei R Timerbaev
- Institute of Inorganic Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
5
|
Kim E, Jang J, Lim MJ, Kim SY, Yun SK, Song J, Seo HH, Lee JH, Moh SH. Effective release of Eryngium maritimum L. callus extract via encapsulation in multilayered liposomes for skin delivery. Ther Deliv 2025; 16:459-473. [PMID: 40019355 DOI: 10.1080/20415990.2025.2470614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
AIMS This study aimed to evaluate the potential of Eryngium maritimum L. (EM) callus media filtrate (ECMF) for enhanced skin delivery through multilayered liposomes (MLs). MATERIALS & METHODS ECMF was applied to human skin cells to assess its antioxidant, anti-inflammatory, and skin barrier-enhancing properties. ECMF was encapsulated in MLs to enhance delivery efficiency, creating a formulation called Cellbiome. Clinical trials involving human participants were conducted to compare its effects with traditional formulations, assessing parameters such as skin density, hydration, elasticity, and wrinkle reduction. RESULTS Cellbiome significantly improved skin density and moisturization, outperforming conventional formulations. ML encapsulation facilitated deeper penetration of active ingredients beyond the stratum corneum, leading to synchronized improvements in multiple skin parameters, including elasticity, wrinkle reduction, and overall skin health. Transcriptomic and metabolomic analyses further confirmed ECMF's bioactivity and its role in skin improvement. CONCLUSIONS ML-based formulations, such as Cellbiome, offer superior efficacy in skincare applications compared to conventional methods. This study underscores the importance of advanced delivery technologies in cosmetics and highlights the need for further research to optimize the benefits of natural extracts like EM for human skin, potentially advancing dermatological and cosmeceutical applications.
Collapse
Affiliation(s)
- Euihyun Kim
- Plant Cell Research Institute of BIO-FD&C Co. Ltd., Incheon, Korea
| | - Jihyeon Jang
- Plant Cell Research Institute of BIO-FD&C Co. Ltd., Incheon, Korea
| | - Myeong-Jin Lim
- Plant Cell Research Institute of BIO-FD&C Co. Ltd., Incheon, Korea
| | - Soo-Yun Kim
- Plant Cell Research Institute of BIO-FD&C Co. Ltd., Incheon, Korea
| | - Seon Kyu Yun
- Plant Cell Research Institute of BIO-FD&C Co. Ltd., Incheon, Korea
| | - Jihyeok Song
- Plant Cell Research Institute of BIO-FD&C Co. Ltd., Incheon, Korea
| | - Hyo Hyun Seo
- Plant Cell Research Institute of BIO-FD&C Co. Ltd., Incheon, Korea
| | - Jeong Hun Lee
- Plant Cell Research Institute of BIO-FD&C Co. Ltd., Incheon, Korea
| | - Sang Hyun Moh
- Plant Cell Research Institute of BIO-FD&C Co. Ltd., Incheon, Korea
| |
Collapse
|
6
|
Alrumaihi F, Babiker AY, Khan A. Lipid-Based Nanoformulations of [6]-Gingerol for the Chemoprevention of Benzo[a] Pyrene-Induced Lung Carcinogenesis: Preclinical Evidence. Pharmaceuticals (Basel) 2025; 18:574. [PMID: 40284009 PMCID: PMC12030401 DOI: 10.3390/ph18040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: [6]-Gingerol ([6]-G), a bioactive compound derived from Zingiber officinale (ginger), exhibits strong anticancer potential but is hindered by poor aqueous solubility and low bioavailability. This study aimed to develop and evaluate PEGylated liposomal [6]-G (6-G-Lip) to enhance its stability, bioavailability, and chemopreventive efficacy in benzo[a]pyrene (BaP)-induced lung carcinogenesis. Methods: 6-G-Lip was synthesized using a modified thin-film hydration technique and characterized for size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE%), and release kinetics. The chemopreventive effects were assessed in BaP-induced lung cancer in Swiss albino mice, with prophylactic 6-G-Lip administration from two weeks before BaP exposure through 21 weeks. Cancer biomarkers, antioxidant enzyme activity, reactive oxygen species (ROS) generation, induction of apoptosis, and histopathological alterations were analyzed. Results: 6-G-Lip exhibited a particle size of 129.7 nm, a polydispersity index (PDI) of 0.16, a zeta potential of -18.2 mV, and an encapsulation efficiency (EE%) of 91%, ensuring stability and effective drug loading. The formulation exhibited a controlled release profile, with 26.5% and 47.5% of [6]-G released in PBS and serum, respectively, at 72 h. 6-G-Lip significantly lowered cancer biomarkers, restored antioxidant defenses (SOD: 5.60 U/min/mg protein; CAT: 166.66 μm H2O2/min/mg protein), reduced lipid peroxidation (MDA: 3.3 nm/min/mg protein), and induced apoptosis (42.2%), highlighting its chemopreventive efficacy. Conclusions: This study is the first to prepare, characterize, and evaluate PEGylated [6]-G-Lip for the chemoprevention of lung cancer. It modulates oxidative stress, restores biochemical homeostasis, and selectively induces apoptosis. These findings support 6-G-Lip as a promising nanotherapeutic strategy for cancer prevention.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.)
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.)
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
7
|
Nordin NA, Sadikan MZ, Lambuk L, Hashim S, Airuddin S, Mohd Nasir NA, Mohamud R, Ibrahim J, Kadir R. Liposomal topical drug administration surpasses alternative methods in glaucoma therapeutics: a novel paradigm for enhanced treatment. J Pharm Pharmacol 2025; 77:475-491. [PMID: 39579384 DOI: 10.1093/jpp/rgae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/01/2024] [Indexed: 11/25/2024]
Abstract
OBJECTIVES Glaucoma is a leading cause of permanent blindness. Despite therapeutic advancements, glaucoma management remains challenging due to limitations of conventional drug delivery, primarily topical eye drops, resulting in suboptimal outcomes and a global surge in cases. To address these issues, liposomal drug delivery has emerged as a promising approach. KEY FINDINGS This review explores the potential of liposomal-based medications, with a particular focus on topical administration as a superior alternative to enhance therapeutic efficacy and improve patient compliance compared to existing treatments. This writing delves into the therapeutic prospects of liposomal formulations across different administration routes, as evidenced by ongoing clinical trials. Additionally, critical aspects of liposomal production and market strategies are discussed herein. SUMMARY By overcoming ocular barriers and optimizing drug delivery, liposomal topical administration holds the key to significantly improving glaucoma treatment outcomes.
Collapse
Affiliation(s)
- Nor Asyikin Nordin
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia (MUCM), 75150 Bukit Baru, Melaka, Malaysia
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Sabarisah Hashim
- Department of Neurosciences, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
| | - Syahira Airuddin
- Reconstructive Science Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Nur-Azida Mohd Nasir
- Reconstructive Science Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Jamal Ibrahim
- Maths, Science and IT Curriculum Area, Oxford Sixth Form College, 12-13 King Edward St, Oxford, OX1 4HT, United Kingdom
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
8
|
Meier N, Berten‐Schunk L, Roger Y, Hänsch R, Hoffmann A, Bunjes H, Dempwolf W, Menzel H. Characterization of Thin Polymer Layer Prepared from Liposomes and Polyelectrolytes for TGF-β 3 Release in Tissue Engineering. Macromol Biosci 2025; 25:e2400447. [PMID: 39803844 PMCID: PMC11995839 DOI: 10.1002/mabi.202400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Indexed: 04/15/2025]
Abstract
Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors. Sustained release is desired for many in vivo applications. The layer-by-layer technique also allows for the addition of extra layers, which can serve as "barriers" to delay the release. Electrospun Polycaprolactone (PCL) fiber mats are modified with a Chitosan (CS) grafted with PCL sidechains (CS-g-PCL24) and coated with transforming growth factor beta 3 (TGF-β3) loaded Chitosan/tripolyphosphate nanoparticles as a drug delivery system. Additional layers including polystyrene sulfonate, alginate, carboxymethyl cellulose, and liposomes (phosphatidylcholine) are applied. Streaming potential and X-ray photoelectron spectroscopy (XPS) measurements indicated a strong interpenetration of the chitosan and polyanion layers, while liposomes formed separate layers, which are more promising for sustained release. All samples release TGF-β3 at different cumulative levels without altering release kinetics. Variations in layer structure, interpenetration, and stability depending on the chitosan used are observed, which ultimately has minimal impact on the release kinetics. Polyelectrolyte layers strongly interpenetrated the active layers and therefore do not act as effective diffusion barriers, while the liposome layer, though separated, lacked sufficient stability.
Collapse
Affiliation(s)
- Nils Meier
- Institute for Technical ChemistryMacromolecular ChemistryTU BraunschweigHagenring 3038106BraunschweigGermany
| | - Leonie Berten‐Schunk
- Institute of Pharmaceutical Technology and BiopharmaceuticsTU BraunschweigMendelssohnstrasse 138106BraunschweigGermany
| | - Yvonne Roger
- Department of Orthopedic SurgeryHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
- Graded Implants and Regenerative StrategiesNiedersächsisches Zentrum für BiomedizintechnikImplantatforschung und Entwicklung (NIFE)Stadtfelddamm 3430625HannoverGermany
| | - Robert Hänsch
- Institute of Plant BiologyTU BraunschweigHumboldtstraße 138106BraunschweigGermany
| | - Andrea Hoffmann
- Department of Orthopedic SurgeryHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
- Graded Implants and Regenerative StrategiesNiedersächsisches Zentrum für BiomedizintechnikImplantatforschung und Entwicklung (NIFE)Stadtfelddamm 3430625HannoverGermany
| | - Heike Bunjes
- Institute of Pharmaceutical Technology and BiopharmaceuticsTU BraunschweigMendelssohnstrasse 138106BraunschweigGermany
| | - Wibke Dempwolf
- Institute for Technical ChemistryMacromolecular ChemistryTU BraunschweigHagenring 3038106BraunschweigGermany
| | - Henning Menzel
- Institute for Technical ChemistryMacromolecular ChemistryTU BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
9
|
Li W, Antoniadi L, Zhou H, Chen H, Angelis A, Halabalaki M, Skaltsounis LA, Qi Z, Wang C. Sodium cholate-coated Olea europaea polyphenol nanoliposomes: Preparation, stability, release, and bioactivity. Food Chem 2025; 469:142580. [PMID: 39721438 DOI: 10.1016/j.foodchem.2024.142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Ultra-flexible nanoliposomes (UNL) coated with sodium cholate were fabricated using the thin film hydration technique to encapsulate oleocanthal (OLEO), oleacein (OLEA), oleuropein (OLEU), and hydroxytyrosol (HT) for improving their stability and bioactivity. Their physicochemical properties were further validated through DLS, FTIR, XRD, TGA, and DSC analyses. Negative-staining TEM imaging revealed well-dispersed UNL with laminar vesicles inside. Additionally, their transdermal studies in vitro demonstrated that UNL enhanced the cumulative release of OLEO, OLEA, OLEU, and HT by 3.13, 2.76, 2.59, and 2.83 times, respectively. Furthermore, their release mechanisms were better approximated the Peppas-Sahlin model rather than the Korsmeyer-Peppas and Higuchi models, which governed by Fickian diffusion. Moreover, comparing to their compounds, UNL structure exhibited improved their antioxidant and cytotoxicity properties, highlighting their potential as effective delivery agents in humans. These results offer a novel approach for stabilizing biologically active polyphenols from Olea europaea, paving the way for enhanced human health applications.
Collapse
Affiliation(s)
- Wenjun Li
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China
| | - Lemonia Antoniadi
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece; Pharmagnose S.A., 57th km Athens-lamia National Road, Oinofyta 32011, Greece
| | - Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China
| | - Hongxia Chen
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China
| | - Apostolis Angelis
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece
| | - Leandros A Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China.
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
10
|
Wei Z, Zhang S, Wang X, Xue Y, Dang S, Zhai J. Technological breakthroughs and advancements in the application of mRNA vaccines: a comprehensive exploration and future prospects. Front Immunol 2025; 16:1524317. [PMID: 40103818 PMCID: PMC11913674 DOI: 10.3389/fimmu.2025.1524317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
mRNA vaccines utilize single-stranded linear DNA as a template for in vitro transcription. The mRNA is introduced into the cytoplasm via the corresponding delivery system to express the target protein, which then performs its relevant biological function. mRNA vaccines are beneficial in various fields, including cancer vaccines, infectious disease vaccines, protein replacement therapy, and treatment of rare diseases. They offer advantages such as a simple manufacturing process, a quick development cycle, and ease of industrialization. Additionally, mRNA vaccines afford flexibility in adjusting antigen designs and combining sequences of multiple variants, thereby addressing the issue of frequent mutations in pathogenic microorganisms. This paper aims to provide an extensive review of the global development and current research status of mRNA vaccines, with a focus on immunogenicity, classification, design, delivery vector development, stability, and biomedical application. Moreover, the study highlights current challenges and offers insights into future directions for development.
Collapse
Affiliation(s)
- Zhimeng Wei
- School of Basic Medical Sciences, Inner Mongolia Minzu University, Tongliao, China
- Keerqin District First People’s Hospital, Tongliao, China
| | - Shuai Zhang
- School of Basic Medical Sciences, Inner Mongolia Minzu University, Tongliao, China
| | - Xingya Wang
- School of Basic Medical Sciences, Inner Mongolia Minzu University, Tongliao, China
| | - Ying Xue
- Keerqin District First People’s Hospital, Tongliao, China
| | - Sheng Dang
- Keerqin District First People’s Hospital, Tongliao, China
| | - Jingbo Zhai
- School of Basic Medical Sciences, Inner Mongolia Minzu University, Tongliao, China
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
11
|
Wang J, Gu X, Gao X, Chen J, Lv Z, Zhang S, Ni S, Shi F, Chen X, Cao L, Wang Z, Xiao W. Formulation and optimization of glycyrrhetinic acid-modified pH-sensitive curcumin liposomes for anti-hepatocellular carcinoma. Pharm Dev Technol 2025; 30:233-245. [PMID: 39935270 DOI: 10.1080/10837450.2025.2465549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
In order to enhance the therapeutic value of curcumin in liver cancer treatment, glycyrrhetinic acid-modified pH-sensitive curcumin liposomes (GA-pH-Lip@Cur) was developed.GA-pH-Lip@Cur was prepared using a thin film dispersion ultrasonication method, and the optimal formulation process was selected through single-factor experiments and a Box-Behnken design-response surface methodology. The liposomes were evaluated for their morphological appearance, particle size, in vitro release at different pH levels, and biocompatibility. The anti-tumor effect of GA-pH-Lip@Cur was assessed using cell viability assays (CCK-8). The in vivo hepatic targeting and anti-liver tumor efficacy of GA-pH-Lip@Cur were evaluated through pharmacokinetic and pharmacological experiments. The results indicated that optimized GA-pH-Lip@Cur exhibited uniform particle size distribution, good stability, pH-sensitive in vitro release with sustained behavior. Compared to conventional liposomes, GA-pH-Lip@Cur showed prolonged average retention time in vivo and significantly increased curcumin distribution in liver tissues, indicating excellent liver targeting. Both in vitro and in vivo evaluations demonstrated the effectiveness of GA-pH-Lip@Cur in inhibiting liver cancer cell proliferation and suppressing liver tumor growth in tumor-bearing mice. In conclusion, GA-pH-Lip@Cur, by leveraging the acidic tumor microenvironment and overexpression of glycyrrhetinic acid receptors in liver cells, encapsulates curcumin to improve its bioavailability, and target its delivery to the liver tumor sites.
Collapse
Affiliation(s)
- Jie Wang
- Nanjing University of Chinese Medicine, Nanjing, China
- Hanlin College of Nanjing University of Chinese Medicine, Taizhou, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Xuemei Gu
- Hanlin College of Nanjing University of Chinese Medicine, Taizhou, China
| | - Xia Gao
- Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Jing Chen
- Hanlin College of Nanjing University of Chinese Medicine, Taizhou, China
| | - Zhiyang Lv
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyu Zhang
- Hanlin College of Nanjing University of Chinese Medicine, Taizhou, China
| | - Siyu Ni
- Hanlin College of Nanjing University of Chinese Medicine, Taizhou, China
| | - Fei Shi
- Hanlin College of Nanjing University of Chinese Medicine, Taizhou, China
| | - Xialin Chen
- Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Liang Cao
- Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Zhenzhong Wang
- Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Wei Xiao
- Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| |
Collapse
|
12
|
Wang K, Chen X. Protective effect of flavonoids on oxidative stress injury in Alzheimer's disease. Nat Prod Res 2025; 39:1272-1299. [PMID: 38910339 DOI: 10.1080/14786419.2024.2345760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which is mainly caused by the damage of the structure and function of the central nervous system. At present, there are many adverse reactions in market-available drugs, which can't significantly inhibit the occurrence of AD. Therefore, the current focus of research is to find safe and effective therapeutic drugs to improve the clinical treatment of AD. Oxidative stress bridges different mechanism hypotheses of AD and plays a key role in AD. Numerous studies have shown that natural flavonoids have good antioxidant effects. They can directly or indirectly resist -oxidative stress, inhibit Aβ aggregation and Tau protein hyperphosphorylation by activating Nrf2 and other oxidation-antioxidation-related signals, regulating synaptic function-related pathways, promoting mitochondrial autophagy, etc., and play a neuroprotective role in AD. In this review, we summarised the mechanism of flavonoids inhibiting oxidative stress injury in AD in recent years. Moreover, because of the shortcomings of poor biofilm permeability and low bioavailability of flavonoids, the advantages and recent research progress of nano-drug delivery systems such as liposomes and solid lipid nanoparticles were highlighted. We hope this review provides a useful way to explore safe and effective AD treatments.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinmei Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
13
|
Cheng Z, Huang H, Yin M, Liu H. Applications of liposomes and lipid nanoparticles in cancer therapy: current advances and prospects. Exp Hematol Oncol 2025; 14:11. [PMID: 39891180 PMCID: PMC11786384 DOI: 10.1186/s40164-025-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Liposomes and lipid nanoparticles are common lipid-based drug delivery systems and play important roles in cancer treatment and vaccine manufacture. Although significant progress has been made with these lipid-based nanocarriers in recent years, efficient clinical translation of active targeted liposomal nanocarriers remains extremely challenging. In this review, we focus on targeted liposomes, stimuli-responsive strategy and combined therapy in cancer treatment. We also summarize advances of liposome and lipid nanoparticle applications in nucleic acid delivery and tumor vaccination. In addition, we discuss limitations and challenges in the clinical translation of these lipid nanomaterials and make recommendations for the future research in cancer therapy.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Huichao Huang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Infectious Disease, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Meilong Yin
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Huaizheng Liu
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
14
|
Azimizonuzi H, Ghayourvahdat A, Ahmed MH, Kareem RA, Zrzor AJ, Mansoor AS, Athab ZH, Kalavi S. A state-of-the-art review of the recent advances of theranostic liposome hybrid nanoparticles in cancer treatment and diagnosis. Cancer Cell Int 2025; 25:26. [PMID: 39871316 PMCID: PMC11773959 DOI: 10.1186/s12935-024-03610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025] Open
Abstract
Theranostics is a way of treating illness that blends medicine with testing. Specific characteristics should be present in the best theranostic agents for cancer: (1) the drugs should be safe and non-toxic; (2) they should be able to treat cancer selectively; and (3) they should be able to build up only in the cancerous tissue. Liposomes (LPs) are one of the most efficient drug delivery methods based on nanotechnology. Stealth LPs and commercial LPs have recently had an impact on cancer treatment. Using the valuable information from each imaging technique, along with the multimodality imaging functionality of liposomal therapeutic agents, makes them very appealing for personalized monitoring of how well therapeutic drugs are working against cancer in vivo and for predicting how well therapies will work. On the other hand, their use as nanoparticle delivery systems is currently in the research and development phase. Nanoscale delivery system innovation has made LP-nanoparticle hybrid structures very useful for combining therapeutic and imaging methods. LP-hybrid nanoparticles are better at killing cancer cells than their LP counterparts, making them excellent options for in vivo and in vitro drug delivery applications. Hybrid liposomes (HLs) could be used in the future as theranostic carriers to find and treat cancer targets. This would combine the best features of synthetic and biological drug delivery systems. Overarchingly, this article provided a comprehensive overview of the many LP types used in cancer detection, therapy, and theranostic analysis. An evaluation of the pros and cons of the many HLs types used in cancer detection and treatment has also been conducted. The study also included recent and significant research on HLs for cancer theranostic applications. We conclude by outlining the potential benefits and drawbacks of this theranostic approach to the concurrent detection and treatment of different malignancies, as well as its prospects.
Collapse
Affiliation(s)
- Hannaneh Azimizonuzi
- Inventor Member of International Federation of Inventors Associations, Geneva, Switzerland
| | - Arman Ghayourvahdat
- Inventor Member of International Federation of Inventors Associations, Geneva, Switzerland
| | | | | | - Athmar Jaber Zrzor
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Zhao H, Bao S, Chen S, Yang Q, Lou K, Gai Y, Lin J, Liu C, Liu H, Zhang C, Yang R. Phytosomes Loaded with Mastoparan-M Represent a Novel Strategy for Breast Cancer Treatment. Int J Nanomedicine 2025; 20:109-124. [PMID: 39816377 PMCID: PMC11733207 DOI: 10.2147/ijn.s481871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose Mastoparan-M (Mast-M) has cytotoxic effects on various tumor cells in vitro, including liver cancer and colorectal cancer. However, the anti-tumor mechanism of Mast-M remains unclear and its potential for anti-tumor therapy has not been investigated. Herein, we aimed to develop a novel phytosome formulation loaded with Mast-M and evaluate its efficacy against breast cancer both in vitro and in vivo. Furthermore, we investigated the underlying anti-tumor mechanisms of Mast-M. Methods The synthesis of Phy-Mast-M involved a co-solvent technique, followed by solvent evaporation. Its anti-tumor mechanism was investigated using CCK-8, clone formation, and apoptosis assays. Subsequently, the biodistribution and anti-tumor efficacy of Phy-Mast-M were assessed in vivo using the 4T1 tumor-bearing mouse model. Finally, the safety of Phy-Mast-M was evaluated in vivo. Results The prepared Phy-Mast-M demonstrated an exceptional monodisperse size distribution (125.67 ± 45.79 nm), and exhibited excellent stability under different physiological conditions. Phy-Mast-M could inhibit 4T1 cells growth through multiple channels, including arresting cell growth cycle and disturbing mitochondrial membrane integrity. Phy-Mast-M proved significantly higher accumulation at tumor sites in a tumor-bearing mouse model as compared to free Mast-M. Moreover, in vivo anti-tumor studies demonstrated that Phy-Mast-M exhibited superior curative inhibitory effects on tumor growth and favorable biocompatibility. Conclusion Phy-Mast-M demonstrates significant anti-tumor activity both in vitro and in vivo. Moreover, its potential for clinical translation suggests promising prospects for cancer therapy, offering more drug options for breast cancer patients.
Collapse
Affiliation(s)
- Hairong Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Shuangyan Bao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Shuanglong Chen
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Qingmo Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Kangliang Lou
- School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Yating Gai
- Xiamen Research Institute of Food and Drug Quality Inspection, Xiamen, People’s Republic of China
| | - Jinyan Lin
- School of Public Health, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Chaojie Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Ruiqin Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| |
Collapse
|
16
|
Matalqah S, Lafi Z, Mhaidat Q, Asha N, Yousef Asha S. 'Applications of machine learning in liposomal formulation and development'. Pharm Dev Technol 2025; 30:126-136. [PMID: 39780760 DOI: 10.1080/10837450.2024.2448777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Machine learning (ML) has emerged as a transformative tool in drug delivery, particularly in the design and optimization of liposomal formulations. This review focuses on the intersection of ML and liposomal technology, highlighting how advanced algorithms are accelerating formulation processes, predicting key parameters, and enabling personalized therapies. ML-driven approaches are restructuring formulation development by optimizing liposome size, stability, and encapsulation efficiency while refining drug release profiles. Additionally, the integration of ML enhances therapeutic outcomes by enabling precision-targeted delivery and minimizing side effects. This review presents current breakthroughs, challenges, and future opportunities in applying ML to liposomal systems, aiming to improve therapeutic efficacy and patient outcomes in various disease treatments.
Collapse
Affiliation(s)
- Sina Matalqah
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | | | | | | |
Collapse
|
17
|
Abawi A, Trunfio-Sfarghiu AM, Thomann C, Petiot E, Lollo G, Granjon T, Girard-Egrot A, Maniti O. Tailor-made vincristine-liposomes for tumor targeting. Biochimie 2024; 227:35-46. [PMID: 39094823 DOI: 10.1016/j.biochi.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
To ensure selective targeting based on membrane fluidity and physico-chemical compatibility between the biological membrane of the target cell and the lipid membrane of the liposomes carriers. Lipid-based carriers as liposomes with varying membrane fluidities were designed for delivering vincristine, an anti-tumor compound derived from Madagascar's periwinkle. Liposomes, loaded with vincristine, were tested on prostate, colon, and breast cancer cell lines alongside non-tumor controls. Results showed that vincristine-loaded liposomes with fluid membranes significantly decreased the viability of cancer cell lines compared to controls. Confocal microscopy revealed the intracellular release of vincristine, evidenced by disrupted mitosis-specific labeling of actin filaments in metastatic prostate cell lines. This highlights the crucial role of membrane fluidity in the development of lipid-based drug carriers, offering a promising and cost-effective option for targeting cancer cells as an alternative to conventional strategies.
Collapse
Affiliation(s)
- Ariana Abawi
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| | | | - Céline Thomann
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| | - Emma Petiot
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| | - Giovanna Lollo
- Laboratoire D'Automatique, de Génie des Procédés et de Génie Pharmaceutique, LAGEPP UMR 5007, University Lyon 1, CNRS, 69622, Lyon, France.
| | - Thierry Granjon
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| | - Agnès Girard-Egrot
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| | - Ofelia Maniti
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| |
Collapse
|
18
|
Alfutaimani AS, Alharbi NK, S. Alahmari A, A. Alqabbani A, Aldayel AM. Exploring the landscape of Lipid Nanoparticles (LNPs): A comprehensive review of LNPs types and biological sources of lipids. Int J Pharm X 2024; 8:100305. [PMID: 39669003 PMCID: PMC11635012 DOI: 10.1016/j.ijpx.2024.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Lipid nanoparticles (LNPs) have emerged as promising carriers for delivering therapeutic agents, including mRNA-based immunotherapies, in various biomedical applications. The use of LNPs allows for efficient delivery of drugs, resulting in enhanced targeted delivery to specific tissues or cells. These LNPs can be categorized into several types, including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-polymer hybrid nanoparticles. The preparation of LNPs involves the manipulation of their structural, dimensional, compositional, and physical characteristics via the use of different methods in the industry. Lipids used to construct LNPs can also be derived from various biological sources, such as natural lipids extracted from plants, animals, or microorganisms. This review dives into the different types of LNPs and their preparation methods. More importantly, it discusses all possible biological sources that are known to supply lipids for the creation of LNPs. Natural lipid reservoirs have surfaced as promising sources for generating LNPs. The use of LNPs in drug delivery is expected to increase significantly in the coming years. Herein, we suggest some environmentally friendly and biocompatible sources that can produce lipids for future LNPs production.
Collapse
Affiliation(s)
- Alanood S. Alfutaimani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University (PNU), P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Nouf K. Alharbi
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
| | - Amirah S. Alahmari
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University (PNU), P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Almaha A. Alqabbani
- The Ear, Nose, and Throat (ENT) Department at King Salman Hospital, Riyadh 12769, Saudi Arabia
| | - Abdulaziz M. Aldayel
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Riyadh 11426, Saudi Arabia
| |
Collapse
|
19
|
Huang Z, Meng H, Xu L, Pei X, Xiong J, Wang Y, Zhan X, Li S, He Y. Liposomes in the cosmetics: present and outlook. J Liposome Res 2024; 34:715-727. [PMID: 38712581 DOI: 10.1080/08982104.2024.2341139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Abstract
Liposomes are small spherical vesicles composed of phospholipid bilayers capable of encapsulating a variety of ingredients, including water- and oil-soluble compound, which are one of the most commonly used piggybacking and delivery techniques for many active ingredients and different compounds in biology, medicine and cosmetics. With the increasing number of active cosmetic ingredients, the concomitant challenge is to effectively protect, transport, and utilize these substances in a judicious manner. Many cosmetic ingredients are ineffective both topically and systemically when applied to the skin, thus changing the method of delivery and interaction with the skin of the active ingredients is a crucial step toward improving their effectiveness. Liposomes can improve the delivery of active ingredients to the skin, enhance their stability, and ultimately, improve the efficacy of cosmetics and and pharmaceuticals. In this review, we summarized the basic properties of liposomes and their recent advances of functionalities in cosmetics and and pharmaceuticals. Also, the current state of the art in the field is discussed and the prospects for future research areas are highlighted. We hope that this review will provide ideas and inspiration on the application and development of cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Zhaohe Huang
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Hong Meng
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Li Xu
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Xiaojing Pei
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Jie Xiong
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Yanan Wang
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Xin Zhan
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Shujing Li
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Yifan He
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| |
Collapse
|
20
|
Soto-Arriaza M, Cena Ahumada E, Bonardd S, Melendez J. Calcein release from DPPC liposomes by phospholipase A2 activity: Effect of cholesterol and amphipathic copolymers. J Liposome Res 2024; 34:617-629. [PMID: 38850012 DOI: 10.1080/08982104.2024.2361610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 06/09/2024]
Abstract
In this study, we evaluated the impact of incorporating diblock and triblock amphiphilic copolymers, as well as cholesterol into DPPC liposomes on the release of a model molecule, calcein, mediated by exogenous phospholipase A2 activity. Our findings show that calcein release slows down in the presence of copolymers at low concentration, while at high concentration, the calcein release profile resembles that of the DPPC control. Additionally, calcein release mediated by exogenous PLA2 decreases as the amount of solubilized cholesterol increases, with a maximum between 18 mol% and 20 mol%. At concentrations higher than 24 mol%, no calcein release was observed. Studies conducted on HEK-293 and HeLa cells revealed that DPPC liposomes reduced viability by only 5% and 12%, respectively, after 3 hours of incubation, while DPPC liposome in presence of 33 mol% of Cholesterol reduced viability by approximately 11% and 23%, respectively, during the same incubation period. For formulations containing copolymers at low and high concentrations, cell viability decreased by approximately 20% and 40%, respectively, after 3 hours of incubation. Based on these preliminary results, we can conclude that the presence of amphiphilic copolymers at low concentration can be used in the design of new DPPC liposomes, and together with cholesterol, they can modulate liposome stabilization. The new formulations showed low cytotoxicity in HEK-293 cells, and it was observed that calcein release depended entirely on PLA2 activity and the presence of calcium ions.
Collapse
Affiliation(s)
- Marco Soto-Arriaza
- Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Eduardo Cena Ahumada
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Bonardd
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), Donostia-San Sebastían, Spain
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain
| | | |
Collapse
|
21
|
Zou B, Long Y, Gao R, Liu Q, Tian X, Liu B, Zhou Q. Nanodelivery system of traditional Chinese medicine bioactive compounds: Application in the treatment of prostate cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155554. [PMID: 39341127 DOI: 10.1016/j.phymed.2024.155554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND The long history of clinical experience in China have confirmed the effectiveness of traditional Chinese medicine (TCM) in treating prostate cancer (PCa). Until now, several bioactive compounds with anti-PCa potential, such as curcumin, gallic acid, and quercetin, have been extracted from TCM. Recent studies have shown that encapsulating these TCM bioactive compounds into nano-delivery system enhanced their bioavailability and improved their ability to target PCa tumors. PURPOSE This review aims to summarize the anti-PCa effects and molecular mechanisms of TCM bioactive compounds and discuss the clinical application prospects and future research trends of nano-delivery system based on these compounds. METHODS Literatures focusing on the treatment of PCa using traditional Chinese medicine compounds via nano-drug delivery system were searched from Electronic databases, including PubMed, Web of Science, and Scopus until December 2023. RESULTS Polyphenols, alkaloids, terpenes, and quinones exhibit anti-PCa effects through various pathways. Notably, compounds like curcumin, gallic acid, quercetin, and tanshinone have been extensively studied in nano-delivery systems for anti-PCa purpose. Nano-delivery systems enhance the biological activity of free compounds and reduce toxic side effects, as well. Commonly used nanomaterials for delivering TCM compounds include polymer nanomaterials, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and niosomes. CONCLUSION Research on nano-delivery systems for TCM bioactive compounds holds promising prospects for anti-PCa therapy. However, extensive clinical trials are necessary to evaluate the effectiveness and safety of these nanodrugs.
Collapse
Affiliation(s)
- Bo Zou
- The First Hospital of Hunan University of Chinese Medicine, 95, Changsha 410007, Hunan, China
| | - Yan Long
- The First Hospital of Hunan University of Chinese Medicine, 95, Changsha 410007, Hunan, China
| | - Ruisong Gao
- The First Hospital of Hunan University of Chinese Medicine, 95, Changsha 410007, Hunan, China
| | - Qizhi Liu
- Hunan University of Chinese Medicine, 300, Changsha 410208, Hunan, China
| | - Xuefei Tian
- Hunan University of Chinese Medicine, 300, Changsha 410208, Hunan, China
| | - Bin Liu
- College of Biology of Hunan University, Changsha 410208, Hunan, China.
| | - Qing Zhou
- The First Hospital of Hunan University of Chinese Medicine, 95, Changsha 410007, Hunan, China.
| |
Collapse
|
22
|
Farinha D, Sarmento-Ribeiro AB, Faneca H. Combination of Gene Therapy and Chemotherapy in a New Targeted Hybrid Nanosystem to Hepatocellular Carcinoma. Int J Nanomedicine 2024; 19:12505-12527. [PMID: 39606562 PMCID: PMC11598603 DOI: 10.2147/ijn.s474665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose Hepatocellular carcinoma is the most frequent liver cancer and constitutes one of the main causes of cancer mortality. The combination of targeted therapy drugs, such as selumetinib and perifosine that inhibit cell signaling pathways involved in cell survival and proliferation, with the expression of tumor suppressor transgenes, such as PTEN, may result in an efficient therapeutic approach against HCC. Thus, the main objective of this work was to develop a new lipid-polymer hybrid nanosystem (HNP), composed of a PLGA core coated with a pH-sensitive lipid bilayer functionalized with the targeting ligand GalNAc, in order to specifically and efficiently deliver this novel combination of therapeutic agents in HCC cells. Methods Transmission electron microscopy, zeta potential, Fourier transform infrared spectroscopy, and dynamic light scattering were used to determine the physicochemical properties of hybrid nanosystems and their components. The biological activity and specificity of nanosystems were evaluated using luminescence and flow cytometry. A variety of techniques were used to assess the therapeutic activity of hybrid nanosystems, including the Alamar Blue assay for cell viability; flow cytometry for cell death mechanisms, mitochondrial membrane potential and cell cycle; luminescence for caspase activity; flow cytometry and fluorescence microscopy for cell proliferation; and Western blot for molecular targets levels. Results The obtained results showed that this new hybrid nanosystem not only has a high loading capacity of both drugs, but also allows for substantial expression of the PTEN transgene. In addition, the developed formulation has high stability, adequate physicochemical properties and high specificity to HCC cells. Moreover, the achieved data revealed that this innovative nanosystem presents a high antitumor effect, demonstrated not only by the enhancement on the programmed cell death, but also by the reduction in cell proliferation capacity. Conclusion The generated formulation shows a high anticancer effect, demonstrating a high translational potential for future clinical application in HCC treatment.
Collapse
Affiliation(s)
- Dina Farinha
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Henrique Faneca
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
23
|
Radmand F, Baseri M, Memar MY, Ebrahimi A, Hamishehkar H, Asnaashari S, Naseri A, Kouhsoltani M. Anti-biofilm and anti-glucosyltransferase effects of nano liposomal plant extracts against Streptococcus mutans. Sci Rep 2024; 14:27304. [PMID: 39516577 PMCID: PMC11549430 DOI: 10.1038/s41598-024-78728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The role of Streptococcus mutans in the initiation of caries is related to its acidogenicity, aciduricity, and polysaccharides extracellular layer production by glucosyltransferases in dental biofilms. Therefore, inhibition of glucosyltransferase activity impairs the virulence of cariogenic biofilms, which can be used to prevent dental caries. We evaluated the anti-bacterial, anti-biofilm, and anti-glucosyltransferases effects of nanoliposomal herbal aqueous extracts of Liquorice (Glycyrrhiza glabra; G. glabra), Ginger (Zingiber officinale; Z. officinale), Pomegranate (Punica granatum; P. granatum), and Rose (Rosa damascene; R. damascene) via minimum bactericidal concentration and minimum inhibitory concentration against Streptococcus mutans strain ATCC 35,668. An anti-biofilm assay was performed using a minimum biofilm inhibitory concentration test. Among herbs, only P. granatum showed an antibacterial effect. Therefore, a nanoliposomal formulation of P. granatum was developed and characterized. Its effect on S.mutans glucosyltransferases was assessed by measuring glucan amount. The nanoliposomal formulation of P.granatum showed a significantly higher anti-biofilm effect than P. granatum aqueous extract. Their similar potential in blocking glucosyltransferases showed that the nanoliposomal formulation of P.granatum blocked other pathways rather than blocking glucosyltransferases for its anti-biofilm effect. Collectively, the nanoliposomal formulation of P.granatum, due to its anti- Streptococcus mutans characteristics, would be a production which open a new horizon for the oral pharmaceutical industry.
Collapse
Affiliation(s)
- Faraz Radmand
- Student Research Committee, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Baseri
- Student Research Committee, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ebrahimi
- Student Research Committee, Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Naseri
- Faculty of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Kouhsoltani
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Li Q, Lv L, Liang W, Chen Z, Deng Q, Sun L, Wang Y, Liu Y. Screening, characterization and mechanism of a potential stabiliser for nisin nanoliposomes with high encapsulation efficiency. Food Chem 2024; 457:140185. [PMID: 38936128 DOI: 10.1016/j.foodchem.2024.140185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The encapsulation efficiency (EE%) reflects the amount of bioactive components that can be loaded into nanoliposomes. Obtaining a suitable nanoliposome stabiliser may be the key to improving their EE%. In this study, three polyphenols were screened as stabilisers of nanoliposomes with high nisin EE%, with curcumin nanoliposomes (Cu-NLs) exhibiting the best performance (EE% = 95.94%). Characterizations of particle size, PDI and zeta potential indicate that the Cu-NLs had good uniformity and stability. TEM found that nisin accumulated at the edges of the Cu-NLs' phospholipid layer. DSC and FT-IR revealed that curcumin was involved in the formation of the phospholipid layer and altered its structure. FT-IR and molecular docking simulations indicate that the interactions between curcumin and nisin are mainly hydrogen bonding and hydrophobic. In whole milk, Cu-NLs effectively protected nisin activity. This study provides an effective strategy for improving the EE% of nanoliposomes loaded with nisin and other bacteriocins.
Collapse
Affiliation(s)
- Qibin Li
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Linao Lv
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Weiqi Liang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhibao Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ying Liu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
25
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
26
|
Pramanik R, Dey A, Chakrabarty AK, Banerjee D, Narwaria A, Sharma S, Rai RK, Katiyar CK, Dubey SK. Diabetes mellitus and Alzheimer's disease: Understanding disease mechanisms, their correlation, and promising dual activity of selected herbs. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118402. [PMID: 38821139 DOI: 10.1016/j.jep.2024.118402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This review explores the link between Type 2 Diabetes Mellitus (T2DM) and diabetes-induced Alzheimer's disease (AD). It emphasizes the shared pathophysiological links and mechanisms between the two conditions, focusing on reduced insulin levels and receptors, impaired glucose metabolism, insulin resistance, mitochondrial dysfunction, and oxidative damage in AD-affected brains-paralleling aspects of T2DM. The review suggests AD as a "diabetes of the brain," supported by cognitive enhancement through antidiabetic interventions. It focuses on the traditionally used Indian herbs as a means to manage both conditions while addressing developmental challenges. AIM OF THE STUDY This study explores the DM-AD connection, reviewing medicinal herbs with protective potential for both ailments, considering traditional uses and developmental challenges. MATERIALS AND METHODS Studied research, reviews, and ethnobotanical and scientific data from electronic databases and traditional books. RESULTS The study analyzes the pathophysiological links between DM and AD, emphasizing their interconnected factors. Eight Ayurvedic plants with dual protective effects against T2DM and AD are thoroughly reviewed with preclinical/clinical evidence. Historical context, phytoconstituents, and traditional applications are explored. Innovative formulations using these plants are examined. Challenges stemming from phytoconstituents' physicochemical properties are highlighted, prompting novel formulation development, including nanotechnology-based delivery systems. The study uncovers obstacles in formulating treatments for these diseases. CONCLUSION The review showcases the dual potential of chosen medicinal herbs against both diseases, along with their traditional applications, endorsing their use. It addresses formulation obstacles, proposing innovative delivery technologies for herbal therapies, while acknowledging their constraints. The review suggests the need for heightened investment and research in this area.
Collapse
Affiliation(s)
- Rima Pramanik
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Anuradha Dey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | | | - Dipankar Banerjee
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Avinash Narwaria
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Rajiva Kumar Rai
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Chandra Kant Katiyar
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India.
| |
Collapse
|
27
|
Sabet FS, Dabirmanesh B, Sabet HS, Zarei P, Hosseini M, Fathollahi Y, Khajeh K. The electro-responsive nanoliposome as an on-demand drug delivery platform for epilepsy treatment. Int J Pharm 2024; 664:124610. [PMID: 39168285 DOI: 10.1016/j.ijpharm.2024.124610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Nano-based drug delivery systems are regarded as a promising tool for efficient epilepsy treatment and seizure medication with the least general side effects and socioeconomic challenges. In the current study, we have designed a smart nanoscale drug delivery platform and applied it in the kindling model of epilepsy that is triggered rapidly by epileptic discharges and releases anticonvulsant drugs in situ, such as carbamazepine (CBZ). The CBZ-loaded electroactive ferrocene nanoliposomes had an average diameter of 100.6 nm, a surface charge of -7.08 mV, and high drug encapsulation efficiency (85.4 %). A significant increase in liposome size was observed in response to direct current (50-500 μA) application. This liposome-based drug delivery system can release CBZ at a fast rate in response to both direct current and pulsatile electrical stimulation in vitro. The CBZ-liposome can release the anticonvulsant drug upon epileptiform activity in the kindled rat model and can decline electrographic and behavioral seizure activity in response to electrical stimulation of the hippocampus with an initially subconvulsive current. With satisfactory biosafety results, this "smart" nanocarrier has promising potential as an effective and safe drug delivery system to improve the therapeutic index of antiepileptic drugs.
Collapse
Affiliation(s)
- Fereshte Sadat Sabet
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Hoorie Sadat Sabet
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Parisa Zarei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Khosro Khajeh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran; Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
28
|
Tikhonov A, Kachanov A, Yudaeva A, Danilik O, Ponomareva N, Karandashov I, Kostyusheva A, Zamyatnin AA, Parodi A, Chulanov V, Brezgin S, Kostyushev D. Biomimetic Nanoparticles for Basic Drug Delivery. Pharmaceutics 2024; 16:1306. [PMID: 39458635 PMCID: PMC11510494 DOI: 10.3390/pharmaceutics16101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Biomimetic nanoparticles (BMNPs) are innovative nanovehicles that replicate the properties of naturally occurring extracellular vesicles, facilitating highly efficient drug delivery across biological barriers to target organs and tissues while ensuring maximal biocompatibility and minimal-to-no toxicity. BMNPs can be utilized for the delivery of therapeutic payloads and for imparting novel properties to other nanotechnologies based on organic and inorganic materials. The application of specifically modified biological membranes for coating organic and inorganic nanoparticles has the potential to enhance their therapeutic efficacy and biocompatibility, presenting a promising pathway for the advancement of drug delivery technologies. This manuscript is grounded in the fundamentals of biomimetic technologies, offering a comprehensive overview and analytical perspective on the preparation and functionalization of BMNPs, which include cell membrane-coated nanoparticles (CMCNPs), artificial cell-derived vesicles (ACDVs), and fully synthetic vesicles (fSVs). This review examines both "top-down" and "bottom-up" approaches for nanoparticle preparation, with a particular focus on techniques such as cell membrane coating, cargo loading, and microfluidic fabrication. Additionally, it addresses the technological challenges and potential solutions associated with the large-scale production and clinical application of BMNPs and related technologies.
Collapse
Affiliation(s)
- Andrey Tikhonov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Oleg Danilik
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
29
|
Brugnera M, Vicario-de-la-Torre M, González-Cela Casamayor MA, López-Cano JJ, Bravo-Osuna I, Huete-Toral F, González Rubio ML, Carracedo G, Molina-Martínez IT, Andrés-Guerrero V, Herrero-Vanrell R. Enhancing the hypotensive effect of latanoprost by combining synthetic phosphatidylcholine liposomes with hyaluronic acid and osmoprotective agents. Drug Deliv Transl Res 2024; 14:2804-2822. [PMID: 38602615 PMCID: PMC11385046 DOI: 10.1007/s13346-024-01584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
The first line of glaucoma treatment focuses on reducing intraocular pressure (IOP) through the prescription of topical prostaglandin analogues, such as latanoprost (LAT). Topical ophthalmic medicines have low bioavailability due to their rapid elimination from the ocular surface. Nanotechnology offers innovative ways of enhancing the ocular bioavailability of antiglaucoma agents while reducing administration frequency. This study aims to combine LAT-loaded synthetic phosphatidylcholine liposomes with hyaluronic acid (0.2% w/v) and the osmoprotectants betaine (0.40% w/v) and leucine (0.90% w/v) (LAT-HA-LIP) to extend the hypotensive effect of LAT while protecting the ocular surface. LAT-HA-LIP was prepared as a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphocholine, cholesterol and α-tocopherol acetate. LAT-HA-LIP exhibited high drug-loading capacity (104.52 ± 4.10%), unimodal vesicle sizes (195.14 ± 14.34 nm) and a zeta potential of -13.96 ± 0.78 mV. LAT-HA-LIP was isotonic (284.00 ± 1.41 mOsm L-1), had neutral pH (7.63 ± 0.01) and had suitable surface tension (44.07 ± 2.70 mN m-1) and viscosity (2.69 ± 0.15 mPa s-1) for topical ophthalmic administration. LAT-HA-LIP exhibited optimal in vitro tolerance in human corneal and conjunctival epithelial cells. No signs of ocular alteration or discomfort were observed when LAT-HA-LIP was instilled in albino male New Zealand rabbits. Hypotensive studies revealed that, after a single eye drop, the effect of LAT-HA-LIP lasted 24 h longer than that of a marketed formulation and that relative ocular bioavailability was almost three times higher (p < 0.001). These findings indicate the potential ocular protection and hypotensive effect LAT-HA-LIP offers in glaucoma treatment.
Collapse
Affiliation(s)
- Marco Brugnera
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain
| | - Marta Vicario-de-la-Torre
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain
| | - Miriam Ana González-Cela Casamayor
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
| | - José Javier López-Cano
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain
| | - Fernando Huete-Toral
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, UCM, Madrid, Spain
| | - María Luisa González Rubio
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, UCM, Madrid, Spain
| | - Gonzalo Carracedo
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, UCM, Madrid, Spain
| | - Irene Teresa Molina-Martínez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain.
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain.
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain.
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain.
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain.
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain.
| |
Collapse
|
30
|
Saleem M, Syed Khaja AS, Moursi S, Altamimi TA, Alharbi MS, Usman K, Khan MS, Alaskar A, Alam MJ. Narrative review on nanoparticles based on current evidence: therapeutic agents for diabetic foot infection. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6275-6297. [PMID: 38639898 DOI: 10.1007/s00210-024-03094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Diabetes's effects on wound healing present a major treatment challenge and increase the risk of amputation. When traditional therapies fail, new approaches must be investigated. With their submicron size and improved cellular internalisation, nanoparticles present a viable way to improve diabetic wound healing. They are attractive options because of their innate antibacterial qualities, biocompatibility, and biodegradability. Nanoparticles loaded with organic or inorganic compounds, or embedded in biomimetic matrices such as hydrogels, chitosan, and hyaluronic acid, exhibit excellent anti-inflammatory, antibacterial, and antioxidant properties. Drug delivery systems (DDSs)-more precisely, nanodrug delivery systems (NDDSs)-use the advantages of nanotechnology to get around some of the drawbacks of traditional DDSs. Recent developments show how expertly designed nanocarriers can carry a variety of chemicals, transforming the treatment of diabetic wounds. Biomaterials that deliver customised medications to the wound microenvironment demonstrate potential. Delivery techniques for nanomedicines become more potent than ever, overcoming conventional constraints. Therapeutics for diabetes-induced non-healing wounds are entering a revolutionary era thanks to precisely calibrated nanocarriers that effectively distribute chemicals. This review highlights the therapeutic potential of nanoparticles and outlines the multifunctional nanoparticles of the future that will be used for complete wound healing in diabetics. The investigation of novel nanodrug delivery systems has the potential to revolutionise diabetic wound therapy and provide hope for more efficient and focused therapeutic approaches.
Collapse
Affiliation(s)
- Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia.
| | | | - Soha Moursi
- Department of Pathology, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Tahani Almofeed Altamimi
- Department of Family Medicine, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Mohammed Salem Alharbi
- Department of Internal Medicine, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Kauser Usman
- Department of Internal Medicine, King George's Medical University, Lucknow, India
| | - Mohd Shahid Khan
- Department of Microbiology, Integral Institute of Medical Sciences and Research, Lucknow, India
| | - Alwaleed Alaskar
- Department of Diabetes and Endocrinology, King Salman Specialist Hospital, 55211, Hail, Saudi Arabia
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Hail, 55211, Hail, Saudi Arabia
| |
Collapse
|
31
|
Akl MA, Eldeen MA, Kassem AM. Beyond Skin Deep: Phospholipid-Based Nanovesicles as Game-Changers in Transdermal Drug Delivery. AAPS PharmSciTech 2024; 25:184. [PMID: 39138693 DOI: 10.1208/s12249-024-02896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Transdermal administration techniques have gained popularity due to their advantages over oral and parenteral methods. Noninvasive, self-administered delivery devices improve patient compliance and control drug release. Transdermal delivery devices struggle with the skin's barrier function. Molecules over 500 Dalton (Da) and ionized compounds don't permeate through the skin. Drug encapsulation in phospholipid-based vesicular systems is the most effective skin delivery technique. Vesicular carriers include bi-layered liposomes, ultra-deformable liposomes, ethanolic liposomes, transethosomes, and invasomes. These technologies enhance skin drug permeation by increasing formula solubilization, partitioning into the skin, and fluidizing the lipid barrier. Phospholipid-based delivery systems are safe and efficient, making them a promising pharmaceutical and cosmeceutical drug delivery technique. Still, making delivery systems requires knowledge about the physicochemical properties of the drug and carrier, manufacturing and process variables, skin delivery mechanisms, technological advances, constraints, and regulatory requirements. Consequently, this review covers recent research achievements addressing the mentioned concerns.
Collapse
Affiliation(s)
- Mohamed A Akl
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
- Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf, 54001, Iraq.
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology, & Genetics Division, Zoology Department, Faculty of Science, Zagazig University, Alsharquia, 7120001, Egypt
| | - Abdulsalam M Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
32
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
33
|
Li X, Zhang H, Mao X. Liposomes delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:257-300. [PMID: 39218504 DOI: 10.1016/bs.afnr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Natural bioactive compounds with antioxidant, antimicrobial, anticancer, and other biological activities are vital for maintaining the body's physiological functions and enhancing immunity. These compounds have great potential as nutritional therapeutic agents, but they can be limited due to their poor flavor, color, unstable nature, and poor water solubility, and degradation by gastrointestinal enzymes. Liposomes, as ideal carriers, can encapsulate both water-soluble and fat-soluble nutrients, enhance the bioavailability of functional substances, promote the biological activity of functional substances, and control the release of nutrients. Despite their potential, liposomes still face obstacles in nutrient delivery. Therefore, the design of liposomes for special needs, optimization of the liposome preparation process, enhancement of liposome encapsulation efficiency, and industrial production are key issues that must be addressed in order to develop food-grade liposomes. Moreover, the research on surface-targeted modification and surface functionalization of liposomes is valuable for expanding the scope of application of liposomes and achieving the release of functional substances from liposomes at the appropriate time and site. The establishment of in vivo and in vitro digestion models of nutrient-loaded liposomes, in-depth study of gastrointestinal digestive behavior after liposome ingestion, targeted nutrient release, and deciphering the nutritional intervention of human diseases and positive health promotion are promising fields with broad development prospects.
Collapse
Affiliation(s)
- Xuehan Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China
| | - Haiyang Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P.R. China.
| |
Collapse
|
34
|
Li W, Wang C, Zhang Y, Lu Y. Lipid Nanocarrier-Based mRNA Therapy: Challenges and Promise for Clinical Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310531. [PMID: 38287729 DOI: 10.1002/smll.202310531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Due to the outbreak of novel coronavirus pneumonia, messenger RNA (mRNA) technology has attracted heated attention. A specific, safe, and efficient mRNA delivery system is needed. Lipid nanocarriers have become attractive carriers for mRNA delivery due to their high delivery efficiency, few side effects, and easy modification to change their structures and functions. To achieve the desired biological effect, lipid nanocarriers must reach the designated location for effective drug delivery. Therefore, the effects of the composition of lipid nanocarriers on their key properties are briefly reviewed. In addition, the progress of smart drug delivery by changing the composition of lipid nanocarriers is summarized, and the importance of component design and structure is emphasized. Subsequently, this review summarizes the latest progress in lipid nanocarrier-based mRNA technology and provides corresponding strategies for its current challenges, putting forward valuable information for the future design of lipid nanocarriers and mRNA.
Collapse
Affiliation(s)
- Wenchao Li
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chen Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Yifei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
35
|
Lei L, Pan W, Shou X, Shao Y, Ye S, Zhang J, Kolliputi N, Shi L. Nanomaterials-assisted gene editing and synthetic biology for optimizing the treatment of pulmonary diseases. J Nanobiotechnology 2024; 22:343. [PMID: 38890749 PMCID: PMC11186260 DOI: 10.1186/s12951-024-02627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
The use of nanomaterials in gene editing and synthetic biology has emerged as a pivotal strategy in the pursuit of refined treatment methodologies for pulmonary disorders. This review discusses the utilization of nanomaterial-assisted gene editing tools and synthetic biology techniques to promote the development of more precise and efficient treatments for pulmonary diseases. First, we briefly outline the characterization of the respiratory system and succinctly describe the principal applications of diverse nanomaterials in lung ailment treatment. Second, we elaborate on gene-editing tools, their configurations, and assorted delivery methods, while delving into the present state of nanomaterial-facilitated gene-editing interventions for a spectrum of pulmonary diseases. Subsequently, we briefly expound on synthetic biology and its deployment in biomedicine, focusing on research advances in the diagnosis and treatment of pulmonary conditions against the backdrop of the coronavirus disease 2019 pandemic. Finally, we summarize the extant lacunae in current research and delineate prospects for advancement in this domain. This holistic approach augments the development of pioneering solutions in lung disease treatment, thereby endowing patients with more efficacious and personalized therapeutic alternatives.
Collapse
Affiliation(s)
- Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Wenjie Pan
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xin Shou
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Shuxuan Ye
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Junfeng Zhang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Liyun Shi
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| |
Collapse
|
36
|
Lopez A, Holbrook JH, Kemper GE, Lukowski JK, Andrews WT, Hummon AB. Tracking Drugs and Lipids: Quantitative Mass Spectrometry Imaging of Liposomal Doxorubicin Delivery and Bilayer Fate in Three-Dimensional Tumor Models. Anal Chem 2024; 96:9254-9261. [PMID: 38778440 PMCID: PMC11646454 DOI: 10.1021/acs.analchem.4c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Targeted therapy to the tumor would greatly advance precision medicine. Many drug delivery vehicles have emerged, but liposomes are cited as the most successful to date. Recent efforts to develop liposomal drug delivery systems focus on drug distribution in tissues and ignore liposomal fate. In this study, we developed a novel method to elucidate both drug and liposomal bilayer distribution in a three-dimensional cell culture model using quantitative matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI qMSI) alongside fluorescence microscopy. Imaging liposomal distribution in a cell culture model is challenging, as lipids forming the bilayer are endogenous to the model system. To resolve this issue, we functionalized the bilayer by chemically cross-linking a fluorescent tag to the alkyne-containing lipid hexynoyl phosphoethanolamine (HPE). We synthesized liposomes incorporating the tagged HPE lipid and encapsulated within them doxorubicin, yielding a theranostic liposome capable of both drug delivery and monitoring liposomal uptake. We employed an "in-tissue" MALDI qMSI approach to generate a calibration curve with R2 = 0.9687, allowing for quantification of doxorubicin within spheroid sections at multiple time points. After 72 h of treatment with the theranostic liposomes, full doxorubicin penetration was observed. The metabolites doxorubicinone and 7-deoxydoxorubicinone were also detected after 48 h. Modification of the bilayer allowed for fluorescence microscopy tracking of liposomes, while MALDI MSI simultaneously permitted the imaging of drugs and metabolites. While we demonstrated the utility of our method with doxorubicin, this system could be applied to examine the uptake, release, and metabolism of many other liposome-encapsulated drugs.
Collapse
Affiliation(s)
- Arbil Lopez
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joseph H Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gabrielle E Kemper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jessica K Lukowski
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - William T Andrews
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
37
|
Fang Q, Li Y, Xiong F, Hu X, Song Y, Shen W, Dong H, Shi X, Wang H. Formulation and Characterization of Ethosomes for Transdermal Delivery of Prinsepia Utilis Rogle Seed Oil with Ameliorative Effects against UVB-Induced Skin Damage. AAPS PharmSciTech 2024; 25:122. [PMID: 38816546 DOI: 10.1208/s12249-024-02822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Prinsepia utilis seed oil (PUSO) is a natural medication obtained from Prinsepia utilis Rogle seed, which has been used for the treatment of skin diseases. The study aims to prepare ethosomes with high drug loading as a water-soluble transdermal vehicle to enhance the transdermal delivery of PUSO. PUSO-loaded ethosomes (PEs) were prepared using a cold method, and optimized by an orthogonal experimental design with entrapment efficiency (EE) as the dependent variable. The PEs prepared with the optimized formulation showed good stability, with a spherical shape under transmission electron microscopy (TEM), average particle size of 39.12 ± 0.85 nm, PDI of 0.270 ± 0.01, zeta potential of -11.3 ± 0.24 mV, and EE of 95.93 ± 0.43%. PEs significantly increased the skin deposition of PUSO compared to the PUSO suspension (P < 0.001). Moreover, the optimum formula showed significant ameliorative effects on ultraviolet B (UVB) irradiation-associated macroscopic and histopathological changes in mice skin. Therefore, PEs represent a promising therapeutic approach for the treatment of UVB-induced skin inflammation, with the potential for industrialization.
Collapse
Affiliation(s)
- Qianqian Fang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - You Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ying Song
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Wenbing Shen
- Instrumental Analysis Center, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Haijuan Dong
- Instrumental Analysis Center, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xinhong Shi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Hao Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
38
|
Kumar M, Kumar D, Kumar D, Garg Y, Chopra S, Bhatia A. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 2024; 25:108. [PMID: 38730090 DOI: 10.1208/s12249-024-02827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Dikshant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
39
|
Xu Y, Lv L, Wang Q, Yao Q, Kou L, Zhang H. Emerging application of nanomedicine-based therapy in acute respiratory distress syndrome. Colloids Surf B Biointerfaces 2024; 237:113869. [PMID: 38522285 DOI: 10.1016/j.colsurfb.2024.113869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are serious lung injuries caused by various factors, leading to increased permeability of the alveolar-capillary barrier, reduced stability of the alveoli, inflammatory response, and hypoxemia. Despite several decades of research since ARDS was first formally described in 1967, reliable clinical treatment options are still lacking. Currently, supportive therapy and mechanical ventilation are prioritized, and there is no medication that can be completely effective in clinical treatment. In recent years, nanomedicine has developed rapidly and has exciting preclinical treatment capabilities. Using a drug delivery system based on nanobiotechnology, local drugs can be continuously released in lung tissue at therapeutic levels, reducing the frequency of administration and improving patient compliance. Furthermore, this novel drug delivery system can target specific sites and reduce systemic side effects. Currently, many nanomedicine treatment options for ARDS have demonstrated efficacy. This review briefly introduces the pathophysiology of ARDS, discusses various research progress on using nanomedicine to treat ARDS, and anticipates future developments in related fields.
Collapse
Affiliation(s)
- Yitianhe Xu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Leyao Lv
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| | - Hailin Zhang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
40
|
Das S, Tinguely JC, Obuobi SAO, Škalko-Basnet N, Saxena K, Ahluwalia BS, Mehta DS. Plasmonic nano-bowls for monitoring intra-membrane changes in liposomes, and DNA-based nanocarriers in suspension. BIOMEDICAL OPTICS EXPRESS 2024; 15:2293-2307. [PMID: 38633091 PMCID: PMC11019686 DOI: 10.1364/boe.517471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/10/2024] [Indexed: 04/19/2024]
Abstract
Programmable nanoscale carriers, such as liposomes and DNA, are readily being explored for personalized medicine or disease prediction and diagnostics. The characterization of these nanocarriers is limited and challenging due to their complex chemical composition. Here, we demonstrate the utilization of surface-enhanced Raman spectroscopy (SERS), which provides a unique molecular fingerprint of the analytes while reducing the detection limit. In this paper, we utilize a silver coated nano-bowl shaped polydimethylsiloxane (PDMS) SERS substrate. The utilization of nano-bowl surface topology enabled the passive trapping of particles by reducing mobility, which results in reproducible SERS signal enhancement. The biological nanoparticles' dwell time in the nano-trap was in the order of minutes, thus allowing SERS spectra to remain in their natural aqueous medium without the need for drying. First, the geometry of the nano-traps was designed considering nanosized bioparticles of 50-150 nm diameter. Further, the systematic investigation of maximum SERS activity was performed using rhodamine 6 G as a probe molecule. The potential of the optimized SERS nano-bowl is shown through distinct spectral features following surface- (polyethylene glycol) and bilayer- (cholesterol) modification of empty liposomes of around 140 nm diameter. Apart from liposomes, the characterization of the highly crosslinked DNA specimens of only 60 nm in diameter was performed. The modification of DNA gel by liposome coating exhibited unique signatures for nitrogenous bases, sugar, and phosphate groups. Further, the unique sensitivity of the proposed SERS substrate displayed distinct spectral signatures for DNA micelles and drug-loaded DNA micelles, carrying valuable information to monitor drug release. In conclusion, the findings of the spectral signatures of a wide range of molecular complexes and chemical morphology of intra-membranes in their natural state highlight the possibilities of using SERS as a sensitive and instantaneous characterization alternative.
Collapse
Affiliation(s)
- Sathi Das
- Bio-photonics and Green Photonics Laboratory, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi 110016, India
| | - Jean-Claude Tinguely
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Sybil Akua Okyerewa Obuobi
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - Kanchan Saxena
- Amity Institute of Renewable and Alternative Energy, Amity University Uttar Pradesh, Sector 125 Noida, U.P., India
| | - Balpreet Singh Ahluwalia
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - Dalip Singh Mehta
- Bio-photonics and Green Photonics Laboratory, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi 110016, India
| |
Collapse
|
41
|
Zhou J, Gu J, Sun X, Ye Q, Wu X, Xi J, Han J, Liu Y. Supramolecular Chiral Binding Affinity-Achieved Efficient Synergistic Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308493. [PMID: 38380492 DOI: 10.1002/advs.202308493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/03/2024] [Indexed: 02/22/2024]
Abstract
Supramolecular chirality-mediated selective interaction among native assemblies is essential for precise disease diagnosis and treatment. Herein, to fully understand the supramolecular chiral binding affinity-achieved therapeutic efficiency, supramolecular chiral nanoparticles (WP5⊃D/L-Arg+DOX+ICG) with the chirality transfer from chiral arginine (D/L-Arg) to water-soluble pillar[5]arene (WP5) are developed through non-covalent interactions, in which an anticancer drug (DOX, doxorubicin hydrochloride) and a photothermal agent (ICG, indocyanine green) are successfully loaded. Interestingly, the WP5⊃D-Arg nanoparticles show 107 folds stronger binding capability toward phospholipid-composed liposomes compared with WP5⊃L-Arg. The enantioselective interaction further triggers the supramolecular chirality-specific drug accumulation in cancer cells. As a consequence, WP5⊃D-Arg+DOX+ICG exhibits extremely enhanced chemo-photothermal synergistic therapeutic efficacy (tumor inhibition rate of 99.4%) than that of WP5⊃L-Arg+DOX+ICG (tumor inhibition rate of 56.4%) under the same condition. This work reveals the breakthrough that supramolecular chiral assemblies can induce surprisingly large difference in cancer therapy, providing strong support for the significance of supramolecular chirality in bio-application.
Collapse
Affiliation(s)
- Jinfeng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jiake Gu
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Qianyun Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Xuan Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Juqun Xi
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
42
|
García-Cambrón JB, Cerriteño-Sánchez JL, Lara-Romero R, Quintanar-Guerrero D, Blancas-Flores G, Sánchez-Gaytán BL, Herrera-Camacho I, Cuevas-Romero JS. Development of Glycyrrhizinic Acid-Based Lipid Nanoparticle (LNP-GA) as An Adjuvant That Improves the Immune Response to Porcine Epidemic Diarrhea Virus Spike Recombinant Protein. Viruses 2024; 16:431. [PMID: 38543796 PMCID: PMC10974312 DOI: 10.3390/v16030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 05/23/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has affected the pork industry worldwide and during outbreaks the mortality of piglets has reached 100%. Lipid nanocarriers are commonly used in the development of immunostimulatory particles due to their biocompatibility and slow-release delivery properties. In this study, we developed a lipid nanoparticle (LNP) complex based on glycyrrhizinic acid (GA) and tested its efficacy as an adjuvant in mice immunized with the recombinant N-terminal domain (NTD) of porcine epidemic diarrhea virus (PEDV) spike (S) protein (rNTD-S). The dispersion stability analysis (Z-potential -27.6 mV) confirmed the size and charge stability of the LNP-GA, demonstrating that the particles were homogeneously dispersed and strongly anionic, which favors nanoparticles binding with the rNTD-S protein, which showed a slightly positive charge (2.11 mV) by in silico analysis. TEM image of LNP-GA revealed nanostructures with a spherical-bilayer lipid vesicle (~100 nm). The immunogenicity of the LNP-GA-rNTD-S complex induced an efficient humoral response 14 days after the first immunization (p < 0.05) as well as an influence on the cellular immune response by decreasing serum TNF-α and IL-1β concentrations, which was associated with an anti-inflammatory effect.
Collapse
Affiliation(s)
- José Bryan García-Cambrón
- Programa de Doctorado en Biología Experimental, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09089, Mexico;
| | - José Luis Cerriteño-Sánchez
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Cuajimalpa, Ciudad de México 05110, Mexico
| | - Rocío Lara-Romero
- Programa de Estancia Posdoctoral, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - David Quintanar-Guerrero
- División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México 54740, Mexico;
| | - Gerardo Blancas-Flores
- Laboratorio de Farmacología, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09089, Mexico;
| | - Brenda L. Sánchez-Gaytán
- Centro de Química ICUAP, Laboratorio de Bioinorgánica Aplicada, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
| | - Irma Herrera-Camacho
- Centro de Química ICUAP, Laboratorio de Bioquímica y Biología Molecular, Edificio IC7, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
| | - Julieta Sandra Cuevas-Romero
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Cuajimalpa, Ciudad de México 05110, Mexico
| |
Collapse
|
43
|
Meeus EJ, Álvarez M, Koelman E, Pérez PJ, Reek JNH, de Bruin B. Copper-Catalyzed Sulfimidation in Aqueous Media: a Fast, Chemoselective and Biomolecule-Compatible Reaction. Chemistry 2024; 30:e202303939. [PMID: 38116945 DOI: 10.1002/chem.202303939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
Performing transition metal-catalyzed reactions in cells and living systems has equipped scientists with a toolbox to study biological processes and release drugs on demand. Thus far, an impressive scope of reactions has been performed in these settings, but many are yet to be introduced. Nitrene transfer presents a rather unexplored new-to-nature reaction. The reaction products are frequently encountered motifs in pharmaceuticals, presenting opportunities for the controlled, intracellular synthesis of drugs. Hence, we explored the transition metal-catalyzed sulfimidation reaction in water for future in vivo application. Two Cu(I) complexes containing trispyrazolylborate ligands (Tpx ) were selected, and the catalytic system was evaluated with the aid of three fitness factors. The excellent nitrene transfer reactivity and high chemoselectivity of the catalysts, coupled with good biomolecule compatibility, successfully enabled the sulfimidation of thioethers in aqueous media. We envision that this copper-catalyzed sulfimidation reaction could be an interesting starting point to unlock the potential of nitrene transfer catalysis in vivo.
Collapse
Affiliation(s)
- Eva J Meeus
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - María Álvarez
- CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Carmen, 21007, Huelva, Spain
| | - Emma Koelman
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Pedro J Pérez
- CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Carmen, 21007, Huelva, Spain
| | - Joost N H Reek
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Nsairat H, Ibrahim AA, Jaber AM, Abdelghany S, Atwan R, Shalan N, Abdelnabi H, Odeh F, El-Tanani M, Alshaer W. Liposome bilayer stability: emphasis on cholesterol and its alternatives. J Liposome Res 2024; 34:178-202. [PMID: 37378553 DOI: 10.1080/08982104.2023.2226216] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Liposomes are spherical lipidic nanocarriers composed of natural or synthetic phospholipids with a hydrophobic bilayer and aqueous core, which are arranged into a polar head and a long hydrophobic tail, forming an amphipathic nano/micro-particle. Despite numerous liposomal applications, their use encounters many challenges related to the physicochemical properties strongly affected by their constituents, colloidal stability, and interactions with the biological environment. This review aims to provide a perspective and a clear idea about the main factors that regulate the liposomes' colloidal and bilayer stability, emphasising the roles of cholesterol and its possible alternatives. Moreover, this review will analyse strategies that offer possible approaches to provide more stable in vitro and in vivo liposomes with enhanced drug release and encapsulation efficiencies.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Randa Atwan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Naeem Shalan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Hiba Abdelnabi
- Faculty of Pharmacy, The University of Jordan, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
45
|
Babaei M, Youssefi MR, Nasrabadi NT. In vitro evaluation of antileishmanial activity of Boswellia serrata essential oil nanoliposome. Vet Med Sci 2024; 10:e1400. [PMID: 38379363 PMCID: PMC10879719 DOI: 10.1002/vms3.1400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Leishmaniasis poses a significant health risk. OBJECTIVES This study aimed to evaluate the effects of Boswellia serrata (B. serrata) essential oil nanoliposomes on Leishmania tropica (L. tropica) in vitro. METHODS A mixture of B. serrata essential oil, phosphatidylcholine and Tween 80 were used to prepare B. serrata essential oil nanoliposomes, followed by drying, hydration and size characterisation. The promastigotes of L. tropica were cultured in Roswell Park Memorial Institute medium (RPMI-1640) containing streptomycin, penicillin and fetal bovine serum. Different concentrations of B. serrata essential and nanoliposomes were tested for their antileishmanial properties by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide tests (MTT). RESULTS Results of Dynamic Light Scattering (DLS) for B. serrata nanoliposomes indicate that they are successful at producing nanoliposomes with dimensions of 74.8 nm. At 1 μg/mL dose, B. serrata essence caused 17 ± 1.73% mortality, while B. serrata nanoliposomes induced 26 ± 1.15% mortality. B. serrata essence achieved a mortality of 55 ± 2.88% at 10 μg/mL, whereas B. serrata nanoliposomes demonstrated a mortality of 63.66±0.88% at 10 μg/mL. Furthermore, there was a significant difference between similar concentrations of B. serrata and B. serrata nanoliposomes. The LC50 of B. serrata essential oil is 7.26 μg/mL in the 95% confidence interval (12.13-5.25). The LC90 value of B. serrata essential oil is 129.37 μg/mL in the 95% confidence interval (50.07-852.58). The LC50 value of B. serrata nanoliposome is 4.20 μg/mL in the 95% confidence interval (6.13-3.10). LC90 value for B. serrata nanoliposome is calculated as 91.89 μg/mL in the 95% confidence interval (37.09-583.29). CONCLUSIONS In vitro experiments have shown that B. serrata oil and the nanoliposome suppress the proliferation of L. tropica promastigotes, which suggests it may be a promising option for treating leishmaniasis.
Collapse
Affiliation(s)
- Mohaddeseh Babaei
- Department of Veterinary Medicine, Babol BranchIslamic Azad UniversityBabolIran
| | | | | |
Collapse
|
46
|
Eftekhari K, Parakhonskiy BV, Grigoriev D, Skirtach AG. Advances in Nanoarchitectonics: A Review of "Static" and "Dynamic" Particle Assembly Methods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1051. [PMID: 38473523 PMCID: PMC10935451 DOI: 10.3390/ma17051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Particle assembly is a promising technique to create functional materials and devices from nanoscale building blocks. However, the control of particle arrangement and orientation is challenging and requires careful design of the assembly methods and conditions. In this study, the static and dynamic methods of particle assembly are reviewed, focusing on their applications in biomaterial sciences. Static methods rely on the equilibrium interactions between particles and substrates, such as electrostatic, magnetic, or capillary forces. Dynamic methods can be associated with the application of external stimuli, such as electric fields, magnetic fields, light, or sound, to manipulate the particles in a non-equilibrium state. This study discusses the advantages and limitations of such methods as well as nanoarchitectonic principles that guide the formation of desired structures and functions. It also highlights some examples of biomaterials and devices that have been fabricated by particle assembly, such as biosensors, drug delivery systems, tissue engineering scaffolds, and artificial organs. It concludes by outlining the future challenges and opportunities of particle assembly for biomaterial sciences. This review stands as a crucial guide for scholars and professionals in the field, fostering further investigation and innovation. It also highlights the necessity for continuous research to refine these methodologies and devise more efficient techniques for nanomaterial synthesis. The potential ramifications on healthcare and technology are substantial, with implications for drug delivery systems, diagnostic tools, disease treatments, energy storage, environmental science, and electronics.
Collapse
Affiliation(s)
- Karaneh Eftekhari
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Bogdan V. Parakhonskiy
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Dmitry Grigoriev
- Multifunctional Colloids and Coatings, Division Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam-Golm, Germany;
| | - Andre G. Skirtach
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
47
|
Koo J, Lim C, Oh KT. Recent Advances in Intranasal Administration for Brain-Targeting Delivery: A Comprehensive Review of Lipid-Based Nanoparticles and Stimuli-Responsive Gel Formulations. Int J Nanomedicine 2024; 19:1767-1807. [PMID: 38414526 PMCID: PMC10898487 DOI: 10.2147/ijn.s439181] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Addressing disorders related to the central nervous system (CNS) remains a complex challenge because of the presence of the blood-brain barrier (BBB), which restricts the entry of external substances into the brain tissue. Consequently, finding ways to overcome the limited therapeutic effect imposed by the BBB has become a central goal in advancing delivery systems targeted to the brain. In this context, the intranasal route has emerged as a promising solution for delivering treatments directly from the nose to the brain through the olfactory and trigeminal nerve pathways and thus, bypassing the BBB. The use of lipid-based nanoparticles, including nano/microemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers, has shown promise in enhancing the efficiency of nose-to-brain delivery. These nanoparticles facilitate drug absorption from the nasal membrane. Additionally, the in situ gel (ISG) system has gained attention owing to its ability to extend the retention time of administered formulations within the nasal cavity. When combined with lipid-based nanoparticles, the ISG system creates a synergistic effect, further enhancing the overall effectiveness of brain-targeted delivery strategies. This comprehensive review provides a thorough investigation of intranasal administration. It delves into the strengths and limitations of this specific delivery route by considering the anatomical complexities and influential factors that play a role during dosing. Furthermore, this study introduces strategic approaches for incorporating nanoparticles and ISG delivery within the framework of intranasal applications. Finally, the review provides recent information on approved products and the clinical trial status of products related to intranasal administration, along with the inclusion of quality-by-design-related insights.
Collapse
Affiliation(s)
- Jain Koo
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, Republic of Korea
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Chaemin Lim
- College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, Republic of Korea
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Herianto S, Subramani B, Chen BR, Chen CS. Recent advances in liposome development for studying protein-lipid interactions. Crit Rev Biotechnol 2024; 44:1-14. [PMID: 36170980 DOI: 10.1080/07388551.2022.2111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
Protein-lipid interactions are crucial for various cellular biological processes like intracellular signaling, membrane transport, and cytoskeletal dynamics. Therefore, studying these interactions is essential to understand and unravel their specific functions. Nevertheless, the interacting proteins of many lipids are poorly understood and still require systematic study. Liposomes are the most well-known and familiar biomimetic systems used to study protein-lipid interactions. Although liposomes have been widely used for studying protein-lipid interactions in classical methods such as the co-flotation assay (CFA), co-sedimentation assay (CSA), and flow cytometric assay (FCA), an overview of their current applications and developments in high-throughput methods is not yet available. Here, we summarize the liposome development in low and high-throughput methods to study protein-lipid interactions. Besides, a constructive comment for each platform is presented to stimulate the advancement of these technologies in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry (Chemical Biology Division), College of Science, National Taiwan University, Taipei, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Boopathi Subramani
- Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Ruei Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
49
|
Fu N, Li A, Zhang J, Zhang P, Zhang H, Yang S, Zhang J. Liposome-camouflaged iodinated mesoporous silica nanoparticles with high loading capacity, high hemodynamic stability, high biocompatibility and high radiopacity. Int J Pharm 2024; 650:123700. [PMID: 38086493 DOI: 10.1016/j.ijpharm.2023.123700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Due to their low osmolality and high tolerability, the highly water-soluble nonionic iodinated contrast agents, such as Ioversol (IV), are widely used as clinical agents for CT imaging. However, their clinical applications still are severely limited by the rapid renal excretion, serious adverse effects especially contrast-induced nephropathy and inefficient targetability. Various nanocarriers have demonstrated tremendous potential for achieving high imaging efficiency and low side effects. However, few nanoparticulate contrast agents can simultaneously integrate the desirable functions for imaging, including high loading capacity of iodine, high structure stability for systemic circulation, high biocompatibility and high radiopacity. Herein, we designed and prepared a kind of new radiopaque liposome-camouflaged iodinated mesoporous silica nanoparticles (OIV-MSNs@Liposomes) as contrast agents in CT imaging. Their composition, structure, morphology, biocompatibility and physicochemical properties as well as in vitro radiopacity were investigated in detail. The results indicated that OIV-MSNs@Liposomes can integrate their individual advantages of liposomes and MSNs, thus exhibiting great potential for use in the CT imaging. Considering the simple preparation process and readily available starting materials as well as enhanced biosafety and high performance in X-ray attenuation, the strategy reported here offers a versatile route to efficiently deliver highly water-soluble nonionic iodinated contrast agents for enhanced CT imaging, which are unattainable by traditional means.
Collapse
Affiliation(s)
- Naikuan Fu
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China; Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Ao Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jing Zhang
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China; Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Peng Zhang
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China; Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Hong Zhang
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China; Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Shicheng Yang
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China; Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
50
|
Sanati M, Afshari AR, Ahmadi SS, Kesharwani P, Sahebkar A. Advances in liposome-based delivery of RNA therapeutics for cancer treatment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:177-218. [PMID: 38458738 DOI: 10.1016/bs.pmbts.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Liposomal drug delivery systems stand as versatile therapeutic platforms for precisely targeting related elements in cancerous tissues owing to their intrinsic passive and acquired active targeting capabilities and exceptional compatibility with physiologic environments. When the capacity of liposomes as nanocarriers is combined with the revolutionary potential of RNA therapies in affecting undruggable targets, the outcome would be promising drug candidates as game-changers in the cancer treatment arena. However, optimizing liposome composition, physicochemical properties, and surface chemistry is paramount to maximizing their pharmacokinetic and pharmacodynamic attributes. This review highlighted the potential of liposomes as nanovehicles for RNA therapeutics through a literature review and looked at the most recent preclinical and clinical advancements in utilizing liposomal RNA therapeutics for cancer management. Notably, the discovery of novel targets, advancements in liposome engineering, and organizing well-planned clinical trials would help uncover the incredible potential of these nanotherapeutics in cancer patients.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|