1
|
Fuentes E, Arauna D, Araya-Maturana R. Regulation of mitochondrial function by hydroquinone derivatives as prevention of platelet activation. Thromb Res 2023; 230:55-63. [PMID: 37639783 DOI: 10.1016/j.thromres.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Platelet activation plays an essential role in the pathogenesis of thrombotic events in different diseases (e.g., cancer, type 2 diabetes, Alzheimer's, and cardiovascular diseases, and even in patients diagnosed with coronavirus disease 2019). Therefore, antiplatelet therapy is essential to reduce thrombus formation. However, the utility of current antiplatelet drugs is limited. Therefore, identifying novel antiplatelet compounds is very important in developing new drugs. In this context, the involvement of mitochondrial function as an efficient energy source required for platelet activation is currently accepted; however, its contribution as an antiplatelet target still has little been exploited. Regarding this, the intramolecular hydrogen bonding of hydroquinone derivatives has been described as a structural motif that allows the reach of small molecules at mitochondria, which can exert antiplatelet activity, among others. In this review, we describe the role of mitochondrial function in platelet activation and how hydroquinone derivatives exert antiplatelet activity through mitochondrial regulation.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3480094, Chile.
| | - Diego Arauna
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
2
|
Pecio Ł, Pecio S, Mroczek T, Oleszek W. Spiro-Flavonoids in Nature: A Critical Review of Structural Diversity and Bioactivity. Molecules 2023; 28:5420. [PMID: 37513292 PMCID: PMC10385819 DOI: 10.3390/molecules28145420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Based on the literature data from 1973 to 2022, this work summarizes reports on spiro-flavonoids with a spiro-carbon at the center of their structure and how this affects their isolation methods, stereochemistry, and biological activity. The review collects 65 unique structures, including spiro-biflavonoids, spiro-triflavonoids, spiro-tetraflavonoids, spiro-flavostilbenoids, and scillascillin-type homoisoflavonoids. Scillascillin-type homoisoflavonoids comprise spiro[bicyclo[4.2.0]octane-7,3'-chromane]-1(6),2,4-trien-4'-one, while the other spiro-flavonoids contain either 2H,2'H-3,3'-spirobi[benzofuran]-2-one or 2'H,3H-2,3'-spirobi[benzofuran]-3-one in the core of their structures. Spiro-flavonoids have been described in more than 40 species of eight families, including Asparagaceae, Cistaceae, Cupressaceae, Fabaceae, Pentaphylacaceae, Pinaceae, Thymelaeaceae, and Vitaceae. The possible biosynthetic pathways for each group of spiro-flavonoids are summarized in detail. Anti-inflammatory and anticancer activities are the most important biological activities of spiro-flavonoids, both in vitro and in vivo. Our work identifies the most promising natural sources, the existing challenges in assigning the stereochemistry of these compounds, and future research perspectives.
Collapse
Affiliation(s)
- Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, 8 Czartoryskich Street, 24-100 Puławy, Poland
- Department of Chemistry of Natural Products, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Solomiia Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, 8 Czartoryskich Street, 24-100 Puławy, Poland
| | - Tomasz Mroczek
- Department of Chemistry of Natural Products, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, 8 Czartoryskich Street, 24-100 Puławy, Poland
| |
Collapse
|
3
|
Pecio Ł, Alilou M, Kozachok S, Orhan IE, Eren G, Şenol Deniz FS, Stuppner H, Oleszek W. Absolute configuration of spiro-flavostilbenoids from Yucca schidigera Roezl ex Ortgies: First indication of (2R)-naringenin as the key building block. PHYTOCHEMISTRY 2023; 207:113584. [PMID: 36603655 DOI: 10.1016/j.phytochem.2022.113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The absolute configurations of the known but unusual spiro-flavostilbenoids found in the bark of Yucca schidigera Roezl ex Ortgies, were determined by applying time-dependent density functional theory simulation of electronic circular dichroism spectra. The absolute configurations obtained were as follows: (2S,3R) for yuccaol A, yuccaol D and yuccalide A; (2S,3S) for yuccaol B, yuccaol C and yuccaol E; (2S,3S,2'S,3'S) for gloriosaol A; (2S,3R,2'S,3'R) for gloriosaol C; (2S,3S,2'S,3'R) for gloriosaol D; (2S,3R,2'S,3'S) for gloriosaol E. These findings indicate that the compounds are all biosynthetic derivatives either of (2R)-naringenin and trans-resveratrol or of trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene. In contrast, gloriosaols are direct derivatives of yuccaols (note that substituting by stilbenoid changes the absolute configuration of C-2 naringenin carbon to 2S). A putative mechanism for their biosynthesis is proposed taking into account key aspects of regio- and stereoselectivity. Yuccaol B and gloriosaol A showed in vitro moderate inhibitory effects against acetyl-/butyrylcholinesterases (AChE/BChE) with IC50 values of 43/81 and 45/65 μM respectively. The selectivity index values calculated from the IC50 values of BChE and AChE were 1.9 and 1.4. Molecular docking simulations showed their interaction with the peripheral anionic site of human AChE and the catalytic site of the human BChE.
Collapse
Affiliation(s)
- Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Mostafa Alilou
- Institute of Pharmacy, Department of Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria.
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Gökçen Eren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | | | - Hermann Stuppner
- Institute of Pharmacy, Department of Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| |
Collapse
|
4
|
Calix[4]Resorcinarene Carboxybetaines and Carboxybetaine Esters: Synthesis, Investigation of In Vitro Toxicity, Anti-Platelet Effects, Anticoagulant Activity, and BSA Binding Affinities. Int J Mol Sci 2022; 23:ijms232315298. [PMID: 36499625 PMCID: PMC9740030 DOI: 10.3390/ijms232315298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
As a result of bright complexation properties, easy functionalization and the ability to self-organize in an aqueous solution, amphiphilic supramolecular macrocycles are being actively studied for their application in nanomedicine (drug delivery systems, therapeutic and theranostic agents, and others). In this regard, it is important to study their potential toxic effects. Here, the synthesis of amphiphilic calix[4]resorcinarene carboxybetaines and their esters and the study of a number of their microbiological properties are presented: cytotoxic effect on normal and tumor cells and effect on cellular and non-cellular components of blood (hemotoxicity, anti-platelet effect, and anticoagulant activity). Additionally, the interaction of macrocycles with bovine serum albumin as a model plasma protein is estimated by various methods (fluorescence spectroscopy, synchronous fluorescence spectroscopy, circular dichroic spectroscopy, and dynamic light scattering). The results demonstrate the low toxicity of the macrocycles, their anti-platelet effects at the level of acetylsalicylic acid, and weak anticoagulant activity. The study of BSA-macrocycle interactions demonstrates the dependence on macrocycle hydrophilic/hydrophobic group structure; in the case of carboxybetaines, the formation of complexes prevents self-aggregation of BSA molecules in solution. The present study demonstrates new data on potential drug delivery nanosystems based on amphiphilic calix[4]resorcinarenes for their cytotoxicity and effects on blood components.
Collapse
|
5
|
Liu WH, La Teng Zhu La A, Evans ACO, Gao ST, Yu ZT, Ma L, Bu DP. Supplementation with Yucca schidigera improves antioxidant capability and immune function and decreases fecal score of dairy calves before weaning. J Dairy Sci 2021; 104:4317-4325. [PMID: 33551165 DOI: 10.3168/jds.2020-18980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022]
Abstract
Yucca schidigera (YS) is a species of plant rich in antimicrobials, antioxidants, and immunomodulators. It has been used as feed additive to improve animal performance and decrease methane emissions in cattle. However, few studies have evaluated YS in dairy calves. In this study, we evaluated the effects of YS on the growth performance, antioxidant capacity, and immune function in dairy calves before weaning. We randomly assigned 40 newborn female Holstein calves (4 d old; 40 ± 5 kg of body weight) to 1 of 4 treatments (n = 10 per treatment), which were fed 0, 3, 6, or 9 g/d of YS powder. The YS allowance was mixed into milk or milk replacer and fed twice daily. Dry matter intake (both liquid and starter feed) and fecal score were recorded daily, and body weight, withers height, body length, and heart girth were measured at 4, 14, 28, 42, and 60 d of age. Blood was sampled from the jugular vein at 14, 42, and 60 d of age after the afternoon feeding for analysis of serum antioxidant capacity and immune function. Feeding YS did not affect dry matter intake, but decreased the feed-to-gain ratio with a quadratic dose effect. Over the whole study period, the average daily gain tended to linearly increase with the increasing YS doses, and it was 6.8% higher in diets supplemented with 9 g/d of YS than in the basal control diet without YS. The YS supplementation linearly decreased fecal score in a dose-dependent manner, and the frequency of diarrhea was significantly decreased as the YS supplementation increased throughout the whole study period. The YS supplementation also linearly decreased maleic dialdehyde concentration in the serum compared with the control group. The activity of catalase tended to linearly and quadratically increase, and that of glutathione peroxidase increased linearly with the increased YS supplementation. Serum concentrations of IgA and IgG increased linearly with the increased YS supplementation, and that of IgG tended to increase quadratically. To the best of our knowledge, this is the first study that demonstrated that feeding YS to young calves could improve growth, feed efficiency, and immunity, and decrease fecal score and diarrhea. The results of this study indicated that feeding YS at 9 g/d may be recommended to benefit dairy calves before weaning.
Collapse
Affiliation(s)
- W H Liu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - A La Teng Zhu La
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - A C O Evans
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - S T Gao
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Z T Yu
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - L Ma
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - D P Bu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR), and World Agroforestry Center (ICRAF), Beijing 100193, China.
| |
Collapse
|
6
|
Delmas D, Cornebise C, Courtaut F, Xiao J, Aires V. New Highlights of Resveratrol: A Review of Properties against Ocular Diseases. Int J Mol Sci 2021; 22:1295. [PMID: 33525499 PMCID: PMC7865717 DOI: 10.3390/ijms22031295] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Eye diseases are currently a major public health concern due to the growing number of cases resulting from both an aging of populations and exogenous factors linked to our lifestyles. Thus, many treatments including surgical pharmacological approaches have emerged, and special attention has been paid to prevention, where diet plays a preponderant role. Recently, potential antioxidants such as resveratrol have received much attention as potential tools against various ocular diseases. In this review, we focus on the mechanisms of resveratrol against ocular diseases, in particular age-related macular degeneration, glaucoma, cataract, diabetic retinopathy, and vitreoretinopathy. We analyze, in relation to the different steps of each disease, the resveratrol properties at multiple levels, such as cellular and molecular signaling as well as physiological effects. We show and discuss the relationship to reactive oxygen species, the regulation of inflammatory process, and how resveratrol can prevent ocular diseases through a potential epigenetic action by the activation of sirtuin-1. Lastly, various new forms of resveratrol delivery are emerging at the same time as some clinical trials are raising more questions about the future of resveratrol as a potential tool for prevention or in therapeutic strategies against ocular diseases. More preclinical studies are required to provide further insights into RSV's potential adjuvant activity.
Collapse
Affiliation(s)
- Dominique Delmas
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (V.A.)
- INSERM Research Center U1231, Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
- Centre Anticancéreux Georges François Leclerc, F-21000 Dijon, France
| | - Clarisse Cornebise
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (V.A.)
- INSERM Research Center U1231, Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| | - Flavie Courtaut
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (V.A.)
- INSERM Research Center U1231, Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain;
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Virginie Aires
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (V.A.)
- INSERM Research Center U1231, Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| |
Collapse
|
7
|
Tsibranska S, Tcholakova S, Golemanov K, Denkov N, Arnaudov L, Pelan E, Stoyanov SD. Origin of the extremely high elasticity of bulk emulsions, stabilized by Yucca Schidigera saponins. Food Chem 2020; 316:126365. [PMID: 32066072 DOI: 10.1016/j.foodchem.2020.126365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 11/18/2022]
Abstract
We found experimentally that the elasticity of sunflower oil-in-water emulsions (SFO-in-W) stabilized by Yucca Schidigera Roezl saponin extract, is by >50 times higher as compared to the elasticity of common emulsions. We revealed that strong specific interactions between the phytosterols from the non-purified oil and the saponins from the Yucca extract lead to the formation of nanostructured adsorption layers which are responsible for the very high elasticity of the oil-water interface and of the respective bulk emulsions. Remarkably, this extra high emulsion elasticity inhibits the emulsion syneresis even at 65 vol% of the oil drops - these emulsions remain homogeneous and stable even after 30 days of shelf-storage. These results demonstrate that the combination of saponin and phytosterols is a powerful new approach to structure oil-in-water emulsions with potential applications for formulating healthier functional food.
Collapse
Affiliation(s)
- Sonya Tsibranska
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria
| | - Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria.
| | - Konstantin Golemanov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria
| | - Nikolai Denkov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria
| | | | | | - Simeon D Stoyanov
- Unilever R&D, Vlaardingen, The Netherlands; Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands; Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
8
|
Mojave Yucca ( Yucca Schidigera Roezl) Effects on Female Reproduction a Review. FOLIA VETERINARIA 2018. [DOI: 10.2478/fv-2018-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Yucca is an important source of biologically active substances such as steroidal saponins and stilbenes providing many beneficial effects when administered to humans and other animals. These substances offer a great potential in the prevention and treatment of current civilized diseases as well as to their: antioxidant, hypocholesterolaemic, anti-inflammatory, phytoestrogenic, pro-apoptotic, anti-proliferative, and anti-carcinogenic properties. This review focuses on the roles of two main yucca constituent groups and their ability to modulate ovarian functions and female reproductive performance. Both the biological activity of yucca substances and the mechanisms of their actions on ovaries are still incompletely understood. Thus, the direct effects of yucca extract on ovarian cells in animal models under in vitro conditions, as well as actions after yucca consumption will be discussed.
Collapse
|
9
|
Vlčková R, Sopková D, Andrejčáková Z, Valocký I, Kádasi A, Harrath AH, Petrilla V, Sirotkin AV. Dietary supplementation of yucca (Yucca schidigera) affects ovine ovarian functions. Theriogenology 2016; 88:158-165. [PMID: 27746005 DOI: 10.1016/j.theriogenology.2016.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
Yucca (Yucca schidigera) is a popular medicinal plant due to its many positive effects on animal and human physiology, including their reproductive systems. To examine the effect of supplemental yucca feeding on sheep reproduction, including ovarian functions and their hormonal regulators, ewes were fed (or not fed, control) yucca powder (1.5 g/head/day, 30 days). Macromorphometric indexes of the oviduct, ovary, and ovarian folliculogenesis were measured. Reproductive hormone levels in the blood were measured using a radioimmunoassay. Granulosa cells were aspirated from the ovary, and their proliferation and apoptosis were detected using immunocytochemistry. To assess secretory activity and its response to gonadotropin, ovarian fragments of treated and control ewes were cultured with and without follicle-stimulating hormone (FSH; 0, 0.1, 1, 10, or 100 IU/mL), and the release of reproductive hormones into the culture medium was evaluated. Finally, to examine the direct action of yucca on the ovary, ovarian fragments from control ewes were cultured with and without yucca extract (1, 10, or 100 μg/mL), and the release of reproductive hormones was measured. Yucca supplementation significantly decreased the size of small antral follicles (2 to <5 mm in diameter), increased accumulation of the apoptosis marker bax, and decreased serum progesterone (P4) and estradiol (E2) levels. It inhibited the release of P4 (but not other hormones), to prevent the stimulatory action of FSH on P4 output and promoted insulin-like growth factor I (IGF-I) release by fragments cultured with FSH. However, yucca supplementation did not affect the size of larger follicles and number of follicles, volume and weight of ovaries, length and weight of oviducts, caspase 3 accumulation, cell proliferation, testosterone (T) or IGF-I serum levels, or T or E2 release by cultured ovarian fragments and their response to FSH. Yucca addition to culture medium inhibited P4 and IGF-I, but not T or E2 release at the lowest (1 μg/mL) dose, and stimulated P4, but not T, E2, or IGF-I release at the highest (100 μg/mL) dose. These data suggest that yucca supplementation can reduce small antral ovarian follicle development possibly via the stimulation of apoptosis of their granulosa cells, suppression of ovarian P4 and E2 release, and alteration of ovarian IGF-I output and ovarian response to gonadotropin. Thus, yucca can directly affect P4 and IGF-I release by ovine ovarian cells.
Collapse
Affiliation(s)
- Radoslava Vlčková
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic.
| | - Drahomíra Sopková
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Zuzana Andrejčáková
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Igor Valocký
- Clinic of Horses, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Attila Kádasi
- Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vladimír Petrilla
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Alexander V Sirotkin
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia; Research Institute of Animal Production, NAFC, Nitra, Slovak Republic; Faculty of Natural Sciences, Constantine the Philosopher University, Nitra, Slovak Republic
| |
Collapse
|
10
|
Alagawany M, Abd El-Hack ME, El-Kholy MS. Productive performance, egg quality, blood constituents, immune functions, and antioxidant parameters in laying hens fed diets with different levels of Yucca schidigera extract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6774-6782. [PMID: 26662788 DOI: 10.1007/s11356-015-5919-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
This study evaluated the effect of Yucca schidigera extract on productive performance, egg quality, blood metabolites, immune function, and antioxidant parameters in laying hens. A total of 96 36-week-old hens were allocated into four groups, the control diet or the diet supplemented with 50, 100, or 150 mg/kg of yucca extract, from 36 to 52 weeks of age. Hens were divided into four equal groups replicated six times with four hens per replicate. As a result of this study, there were no linearly or quadratically differences in body weight change (BWC), feed consumption (FC), feed conversion ratio (FCR), and egg weight (EW) due to yucca treatments at different ages, except FCR and EW that were improved with yucca supplementation during 36-40 weeks of age. Supplemental dietary yucca up to 100 mg/kg diet led to significant improvement in egg number (EN) and egg mass (EM). Egg qualities were not linearly or quadratically affected by yucca treatments except shell thickness was quadratically (P < 0.001) increased with increasing yucca level up to 100 mg/kg diet. Dietary supplementation of yucca exhibited a positive impact on albumin and immunoglobulin G (IgG). Comparing to the control group, yucca addition to laying hen diets resulted in a significant linear (P < 0.001) and quadratic (P = 0. 010) decrease in blood ammonia-N and urea-N, respectively. The activity of superoxide dismutase (SOD) and reduced glutathione (GSH) level in serum were quadratically improved in yucca groups. The malondialdehyde (MDA) concentration was decreased with yucca addition in comparison with the control group. In conclusion, yucca supplemented up to 100 mg/kg diet can be used as effective feed additive to improve productive performance, blood profile, and antioxidant enzyme activities in laying hens.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed S El-Kholy
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
11
|
Miao Y, Cui L, Chen Z, Zhang L. Gene expression profiling of DMU-212-induced apoptosis and anti-angiogenesis in vascular endothelial cells. PHARMACEUTICAL BIOLOGY 2015; 54:660-666. [PMID: 26428916 DOI: 10.3109/13880209.2015.1071414] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT trans-3,4,5,4'-Tetramethoxystilbene (DMU-212), an derivative of resveratrol, shows strong antiproliferative activities against many cancer cells. In our previous study, we demonstrated that DMU-212 possesses potent proapoptosis and antiangiogenesis effects on vascular endothelial cells (VECs), which made it a promising agent for the treatment of angiogenesis-related diseases. OBJECTIVE We studied the gene expression profile of DMU-212-treated VECs to gain further insight into the mechanisms by which DMU-212 exerts its potent pro-apoptosis and antiangiogenesis effects. MATERIALS AND METHODS The potential changes in the gene expression of VECs incubated with DMU-212 were identified and analyzed using the Affymetrix HG-U133 Plus 1.0 array. In addition, the gene expression profile was validated by quantitative real-time PCR (qRT-PCR) analysis for seven of those altered genes. RESULTS AND CONCLUSION DMU-212 was found to regulate a diverse range of genes, including cytokines (IL8, selectin E, MPZL2, EGR1, CCL20, ITGB8, CXCL1, VCAM1, KITLG, and AREG), transport proteins (TRPC4, SLC41A2, SLC17A5, and CREB5), metabolism (CYP1B1, CYP1A1, PDK4, CSNK1G1, MVK, TCEB3C, and CDKN3), enzymes (RAB23, SPHK1, CHSY3, PLAU, PLA2G4C, and MMP10), and genes involved in signal transduction (TMEM217, DUSP8, and SPRY4), chromosome organization (HIST1H2BH and GEM), cell migration and angiogenesis (ERRFI1, HBEGF, and NEDD9), and apoptosis (TNFSF15, TNFRSF9, CD274, BCL2L11, BIRC3, TNFAIP3, and TIFA), as well as other genes with unknown function (PGM5P2, SNORD1142, LOC151760, KRTAP5-2, C1orf110, SNORA14A, MIR31, C2CD4B, SCARNA4, C2orf66, SC4MOL, LOC644714, and LOC283392). This is the first application of microarray technique to investigate and analyze the profile of genes regulated by DMU-212 in VECs. Our results lead to an increased understanding of the signaling pathways involved in DMU-212-induced apoptosis and antiangiogenesis.
Collapse
Affiliation(s)
- YiMing Miao
- a College of Bioengineering, Henan University of Technology , Zhengzhou , China
| | - LiuQing Cui
- a College of Bioengineering, Henan University of Technology , Zhengzhou , China
| | - ZhiQiang Chen
- a College of Bioengineering, Henan University of Technology , Zhengzhou , China
| | - Lu Zhang
- a College of Bioengineering, Henan University of Technology , Zhengzhou , China
| |
Collapse
|
12
|
Ashour E, Alagawany M, Reda F, Abd El-Hac M. Effect of Supplementation of Yucca schidigera Extract to Growing
Rabbit Diets on Growth Performance, Carcass Characteristics, Serum Biochemistry
and Liver Oxidative Status. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ajava.2014.732.742] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Abstract
The ever-increasing emergence of the resistance of mammalian tumor cells to chemotherapy and its severe side effects reduces the clinical efficacy of a large variety of anticancer agents that are currently in use. Thus, despite the significant progress in cancer therapeutics in the last decades, the need to discover and to develop new, alternative, or synergistic anticancer agents remains. Cancer prevention or chemotherapy based on bioactive fractions or pure components derived from desert plants with known cancer-inhibiting properties suggests promising alternatives to current cancer therapy. Plants growing on low nutrient soils and/or under harsh climatic conditions, such as extreme temperatures, intense solar radiation, and water scarcity, are particularly susceptible to attack from reactive oxygen species and have evolved efficient antioxidation defense systems. The many examples of desert plants displaying anticancer effects as presented here indicates that the same defensive secondary metabolites protecting them against the harsh environment may also play a protective or a curative role against cancer, as they also do against diabetes, neurodegenerative, and other acute and chronic diseases. The present review highlights a plethora of studies focused on the antineoplastic properties of desert plants and their prinicipal phytochemicals, such as saponins, flavonoids, tannins, and terpenes. Although many desert plants have been investigated for their antitumor properties, there are many that still remain to be explored - a challenge for the prospective cancer therapy of the future.
Collapse
|
14
|
Abstract
CONTEXT Herbal remedies are used to treat a large variety of diseases, including blood-related disorders. However, a number of herbal preparations have been reported to cause variations in clotting time, this is mainly by disruption of the coagulation cascade. OBJECTIVE The compiling of plants investigated for effects on the coagulation cascade. METHODS Information was withdrawn from Google Scholar and the journal databases Scopus and PubMed. RESULTS Sixty-five herbal remedies were identified with antiplatelet, anticoagulant, or coagulating ability. Bioactive compounds included polyphenols, taxanes, coumarins, saponins, fucoidans, and polysaccharides. CONCLUSION Although research has been conducted on the effect of herbal remedies on coagulation, most information relies on in vitro assays. Contradictory evidence is present on bleeding risks with herbal uses, though herb-drug interactions pose a threat. As the safety of many herbals has not been proven, nor their effect on blood parameters determined, the use of herbal preparations before undergoing any surgical procedure should discontinued.
Collapse
Affiliation(s)
- Werner Cordier
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
15
|
Olas B, Wachowicz B, Stochmal A, Oleszek W. The polyphenol-rich extract from grape seeds inhibits platelet signaling pathways triggered by both proteolytic and non-proteolytic agonists. Platelets 2011; 23:282-9. [PMID: 21958130 DOI: 10.3109/09537104.2011.618562] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mechanisms involved in the reduction of blood platelet functions by various plant extract, including the grape seeds extract (rich in phenolic compounds, a mixture of about 95% oligomeric phenols; GSE) are still unclear. In the literature there are few papers describing studies on the effects of GSE on selected element of hemostasis. The aim of our study was to establish and compare the influence of GSE (at final dose of 0.625-50 µg/ml) and resveratrol (3,4',5 - trihydroxystilben), a phenolic compound synthesized in grapes and vegetables and presents in wine, which has been supposed to be beneficial for the prevention of cardiovascular events, on different steps of platelet activation. We measured the effects of GSE and resveratrol on platelet aggregation, the surface expression of P-selectin, platelet microparticle formation (PMP), and superoxide anion radicals ([Formula: see text]) production in blood platelets stimulated by TRAP and thrombin. P-selectin expression and PMP formation were measured by a flow cytometer. In gel-filtered platelets activated by thrombin or TRAP and treated with different concentrations of GSE (1.25-50 µg/ml) a significant decrease of P-selectin expression, PMP formation and platelet aggregation was observed. GSE caused also a dose-dependent reduction of [Formula: see text] produced in platelets activated by TRAP or thrombin. Our present results indicate that GSE inhibits platelet signaling pathways trigged by both proteolytic (thrombin) and non-proteolytic agonist (TRAP). In the comparative studies, GSE was found to be more effective antiplatelet factor, than the solution of pure resveratrol. Thus, the polyphenol-rich extract from grape seeds can be useful as the protecting factor against cardiovascular diseases.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | | | | | | |
Collapse
|
16
|
Abstract
The main purpose of this article is to provide an overview of the currently available evidence of antiplatelet properties of resveratrol (3,4('),5-trihydroxystilbene). Resveratrol, a phenolic compound found naturally in fruits, nuts, flowers, seeds and bark of different plants is integral part of human diet. It exhibits a wide range of biological effects, including antiplatelet, anti-inflammatory, anticancer, antimutagenic and antifungal properties. It is also a potent antioxidant, reactive oxygen species scavenger and metal chelators. Resveratrol reduces lipid peroxidation, oxidation and nitration of platelet and plasma proteins. This review article describes the chemical structure of resveratrol, its biological activity, the effects on blood platelet functions and the mechanisms involved in its action on blood platelets, the cells which play an important role not only in the haemostatic process, but also in pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Institute of Biochemistry, University of Łodź, Poland
| | | |
Collapse
|
17
|
Cigerci IH, Fidan AF, Konuk M, Yuksel H, Kucukkurt I, Eryavuz A, Sozbilir NB. The protective potential of Yucca schidigera (Sarsaponin 30) against nitrite-induced oxidative stress in rats. J Nat Med 2009; 63:311-7. [PMID: 19434470 DOI: 10.1007/s11418-009-0338-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 04/09/2009] [Indexed: 01/01/2023]
Abstract
The present study was designed to determine the protective effects of Yucca schidigera (Ys) against oxidative damage induced by acute nitrite intoxication as well as the histopathological evaluation of Ys in rats. The rats were divided into three groups each containing 12 rats: control (C); nitrite intoxication (N); Ys + nitrite intoxication (NY). C and N groups were fed standard rat feed (SRF). The NY group was fed SRF + 100 ppm Ys powder for 4 weeks. Acute nitrite intoxication was induced by subcutaneous (s.c.) administration of sodium nitrite (60 mg/kg) 1 day after the feeding period. Fifty minutes after sodium nitrite administration, blood samples and tissues including lung, liver, and kidney were collected for clinical biochemistry and histopathological investigations. Ys treatment was found to decrease methemoglobin, blood and tissue malondialdehyde, and tissue nitric oxide concentrations, and to increase the glutathione in blood and various tissues. However, plasma nitric oxide, total antioxidant activity, beta-carotene, and vitamin A did not differ between N and NY groups. While the N group rats showed distinct pathology in various tissues (compared with controls), the NY group had similar lung and liver pathology to the control. Only moderate or mild hemorrhage and hyperemia were seen in kidneys of NY group rats. Consequently, the natural compounds found in Ys, such as polyphenols, steroidal saponins, and other phytonutrients, could be used to substantially protect the organism from nitrite-induced oxidative damage and its complications.
Collapse
Affiliation(s)
- I Hakki Cigerci
- Biology Department, Faculty of Science and Literature, Afyon Kocatepe University, ANS Campus, Gazligol Yolu, 03200, Afyonkarahisar, Turkey
| | | | | | | | | | | | | |
Collapse
|
18
|
Wenzig EM, Oleszek W, Stochmal A, Kunert O, Bauer R. Influence of phenolic constituents from Yucca schidigera bark on arachidonate metabolism in vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:8885-8890. [PMID: 18778071 DOI: 10.1021/jf801289m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Yucca schidigera Roezl. (Agavaceae) has been traditionally used to treat a variety of diseases including arthritis and rheumatism. Phenolic constituents isolated from yucca bark, such as resveratrol, trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene, and the yuccaols, have been shown to possess various activities in vitro, such as antioxidant, radical scavenging, iNOS expression inhibitory, and platelet aggregation inhibitory effects. In the present study, the influence of a phenolic-rich fraction from yucca bark and of its main phenolic constituents on key enzymes of arachidonate metabolism was investigated. The fraction and the pure phenolics were shown to inhibit COX-1, COX-2, and LTB 4 formation by 5-LOX in vitro to different extents. The degree of COX-1 inhibition was found to be strongly dependent on the substitution pattern of ring B of the stilbenic moiety. The same trend was observed for the COX-2 inhibitory potential, which was, however, in general much lower for the yuccaols as compared with resveratrol. Resveratrol was also the only compound possessing an LTB 4 formation inhibitory activity. The inhibitory activity on key enzymes of arachidonate metabolism observed in this study might contribute to the explanation of the anti-inflammatory and antiplatelet effects observed for Y. schidigera and its phenolic constituents.
Collapse
Affiliation(s)
- Eva M Wenzig
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitaetsplatz 4, 8010 Graz, Austria
| | | | | | | | | |
Collapse
|
19
|
Olas B, Wachowicz B, Tomczak A, Erler J, Stochmal A, Oleszek W. Comparative anti-platelet and antioxidant properties of polyphenol-rich extracts from: berries of Aronia melanocarpa, seeds of grape and bark of Yucca schidigera in vitro. Platelets 2008; 19:70-7. [PMID: 18231940 DOI: 10.1080/09537100701708506] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of the present study was to investigate and compare the anti-platelet action of extracts from three different plants: bark of Yucca schidigera, seeds of grape and berries of Aronia melanocarpa (chokeberry). Anti-platelet action of tested extracts was compared with action of well characterized antioxidative and anti-platelet commercial monomeric polyphenol-resveratrol. The effects of extracts on platelet adhesion to collagen, collagen-induced platelet aggregation and on the production of O2-* in resting platelets and platelets stimulated by a strong platelet agonist-thrombin were studied. The in vitro experiments have shown that all three tested extracts (5-50 microg/ml) rich in polyphenols reduce platelet adhesion, aggregation and generation of O2-* in blood platelets. Comparative studies indicate that all three plant extracts were found to be more reactive in reduction of platelet processes than the solution of pure resveratrol. The tested extracts due to their anti-platelet effects may play an important role as components of human diet in prevention of cardiovascular or inflammatory diseases, where blood platelets are involved.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, University of Lodz, 90-237 Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
20
|
Montoro P, Skhirtladze A, Bassarello C, Perrone A, Kemertelidze E, Pizza C, Piacente S. Determination of phenolic compounds in Yucca gloriosa bark and root by LC-MS/MS. J Pharm Biomed Anal 2008; 47:854-9. [PMID: 18502074 DOI: 10.1016/j.jpba.2008.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/09/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
Abstract
On the basis of the biological activities shown by yuccaols and gloriosaols from Yucca schidigera and Yucca gloriosa, the content of yuccaols and gloriosaols in two different parts of Y. gloriosa (roots and bark), was determined for each single compound, and compared with phenolic determination in Y. schidigera bark, concluding that Y. gloriosa bark and roots are rich sources of phenolic derivatives structurally related to resveratrol. LC/ESIMS (liquid chromatography coupled to electrospray mass spectrometry) qualitative and an LC/ESIMS/MS (liquid chromatography coupled to tandem electrospray mass spectrometry) quantitative studies of the phenolic fraction of Y. gloriosa were performed. LC/ESIMS/MS multiple reaction monitoring (MRM) method previously described for yuccaols in Y. schidigera was applied and optimised for separation and determination of gloriosaols and yuccaols in Y. gloriosa. Due to the sensitivity and the repeatability of the assay, we suggest this method as suitable for industrial quality control of raw materials and final products.
Collapse
Affiliation(s)
- Paola Montoro
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, via Ponte Don Melillo, 84084 Fisciano (SA), Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Comparative studies of the antioxidant effects of a naturally occurring resveratrol analogue -- trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene and resveratrol -- against oxidation and nitration of biomolecules in blood platelets. Cell Biol Toxicol 2007; 24:331-40. [PMID: 17992572 DOI: 10.1007/s10565-007-9045-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 10/14/2007] [Indexed: 01/13/2023]
Abstract
The action of two phenolic compounds isolated from the bark of Yucca schidigera: trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene and its analogue -- resveratrol (trans-3,4',5-trihydroxystilbene, present also in grapes and wine) on oxidative/nitrative stress induced by peroxynitrite (ONOO(-), which is strong physiological oxidant and inflammatory mediator) in human blood platelets was compared. The trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene, like resveratrol, significantly inhibited protein carbonylation and nitration (measured by enzyme-linked immunosorbent assay method) in the blood platelets treated with peroxynitrite (0.1 mM) and markedly reduced an oxidation of thiol groups of proteins (estimated with 5,5'-dithio-bis(2-nitro-benzoic acid)] or glutathione (measured by high performance liquid chromatography method) in these cells. The trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene, like resveratrol, also caused a distinct reduction of platelet lipid peroxidation induced by peroxynitrite. The obtained results indicate that in vitro trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene and resveratrol have very similar protective effects against peroxynitrite-induced oxidative/nitrative damage to the human platelet proteins and lipids. Moreover, trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene proved to be even more potent than resveratrol in antioxidative tests. We conclude that the novel tested phenolic compound -- trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene isolated from Y. schidigera bark possessing Generally Recognized As Safe label given by the Food and Drug Administration and allows their human dietary use -- seems to be a promising candidate for future evaluations of its antioxidative activity and may be a good candidate for scavenging peroxynitrite.
Collapse
|
22
|
Olas B, Saluk-Juszczak J, Wachowicz B. d-glucaro 1,4-lactone and resveratrol as antioxidants in blood platelets. Cell Biol Toxicol 2007; 24:189-99. [PMID: 17846905 DOI: 10.1007/s10565-007-9028-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 06/07/2007] [Indexed: 11/28/2022]
Abstract
The aim of our work was to study the anti-aggregatory and antioxidative effects of natural dietary products, D-glucaro 1,4-lactone (1,4-GL) in combination with phenolic compound resveratrol (trans-3,4',5-trihydroxystilbene). Our results in vitro showed that 1,4-GL alone slightly inhibits platelet aggregation induced by thrombin. The combination of resveratrol (0.1 microM) with 0.5 mM of 1,4-GL caused a significant decrease of thrombin-induced platelet aggregation; however separately, neither of studied compound at used concentrations was not effective. When platelets were treated with 1,4-GL (at the concentration of 0.1 mM and higher) and resveratrol (0.1 microM), similar synergistic action of both tested compound on markers of oxidative stress formation was observed. We measured the levels of different specific markers of oxidative stress, e.g., superoxide anion radicals O(2)(-)*, thiobarbituric acid-reactive substances and carbonyl group formation. Both tested compounds inhibited also the generation of O(2)(-)* and malondialdehyde that represents enzymatical peroxidation of arachidonic acid leading to thromboxane A(2) (TXA(2)) formation in platelets after thrombin stimulation. The obtained in vitro results demonstrate that anti-platelet and antioxidative properties of resveratrol may be significantly augmented by another dietary agent such as 1,4-GL, but mechanism synergistic action of these compounds is not yet known.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Institute of Biochemistry, University of Lodz, Lodz, Poland.
| | | | | |
Collapse
|
23
|
Bassarello C, Bifulco G, Montoro P, Skhirtladze A, Benidze M, Kemertelidze E, Pizza C, Piacente S. Yucca gloriosa: a source of phenolic derivatives with strong antioxidant activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:6636-42. [PMID: 17625876 DOI: 10.1021/jf071131n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
On the basis of the biological activities exhibited by the phenolic constituents of Yucca schidigera, the antioxidant activity of the methanol extract of Yucca gloriosa roots was evaluated in the TEAC assay. The strong activity exerted by this extract prompted investigation of its phenolic constituents, yielding three new phenolic derivatives, gloriosaols C, D, and E, along with gloriosaols A and B previously isolated from Y. gloriosa roots and yuccaols C-E isolated from Y. schidigera. ESIMS and NMR data of gloriosaols C-E closely resembled those reported for gloriosaols A and B, two diasteroisomers characterized by unusual spirostructures. Careful inspection of ROESY spectra revealed that gloriosaols C-E are diastereoisomers of gloriosaols A and B. A possible assignment of the relative configuration of gloriosaols C-E, derived according to an integrated NMR-quantum mechanical (QM) approach, which was already applied to the determination of the stereostructures of gloriosaols A and B, is also proposed. Gloriosaols A-E exhibited potent antioxidant activity measured by the TEAC assay, showing the potential use of Y. gloriosa as a source of antioxidant principles.
Collapse
Affiliation(s)
- Carla Bassarello
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano, Salerno, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Nigro P, Bloise E, Turco MC, Skhirtladze A, Montoro P, Pizza C, Piacente S, Belisario MA. Antiproliferative and pro-apoptotic activity of novel phenolic derivatives of resveratrol. Life Sci 2007; 81:873-83. [PMID: 17764700 DOI: 10.1016/j.lfs.2007.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/21/2007] [Accepted: 07/12/2007] [Indexed: 11/27/2022]
Abstract
Gloriosaols A-C, isolated from Yucca gloriosa (Agavaceae), are novel phenolic compounds structurally related to resveratrol. In the present study, we show that gloriosaols possess antiproliferative and pro-apoptotic activity on tumor cells of different histogenetic origin and that their cell growth inhibition potential is higher than that of resveratrol. Despite the close similarities in their structure, gloriosaols A-C exhibited different antiproliferative potency, as the EC(50) ascending order is: gloriosaol C, gloriosaol A, gloriosaol B. Further mechanisms of gloriosaol C cytotoxicity were elucidated in detail in U937 cells, the most sensitive of the cell lines tested. The effect of gloriosaol C on cell growth turned out to be strongly dependent upon the concentration. Gloriosaol C doses lower than the EC(50) value (8 mu-icroM) blocked the cell cycle in G(0)/G(1), with a concurrent decrease in the number of cells in the G(2)/M phases of the cell cycle. At higher doses, this arrest overlaps with the occurrence of apoptosis and necrosis. In the 10-25 microM range of doses, gloriosaol C caused cell death mainly by apoptosis, as measured by hypodiploidia induction, phosphatidyl serine externalization and disruption of mitochondrial transmembrane potential. A switch in the mode of death from apoptosis to necrosis occurred at doses of gloriosaol C higher than 30 microM. Gloriosaol C was found to induce production of reactive species dose-dependently, but also to counteract their elevation in stressed cells. Thus, the different fate of cells, that is cell cycle arrest or cell death, in response to different doses of gloriosaol C might be related to the extent of induced oxidative stress.
Collapse
Affiliation(s)
- P Nigro
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salerno, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gloriosaols A and B, two novel phenolics from Yucca gloriosa: structural characterization and configurational assignment by a combined NMR-quantum mechanical strategy. Tetrahedron 2007. [DOI: 10.1016/j.tet.2006.10.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Olas B, Wachowicz B, Majsterek I, Blasiak J, Stochmal A, Oleszek W. Antioxidant properties of trans-3,3′,5,5′-tetrahydroxy-4′-methoxystilbene against modification of variety of biomolecules in human blood cells treated with platinum compounds. Nutrition 2006; 22:1202-9. [PMID: 17095406 DOI: 10.1016/j.nut.2006.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 06/22/2006] [Accepted: 06/30/2006] [Indexed: 12/01/2022]
Abstract
OBJECTIVE A diet rich in natural antioxidants in combination with anticancer therapy is important in reducing morbidity and mortality in addition to diminishing toxicity and side effects of chemotherapeutic agents. Cisplatin (cis-diamminedichloroplatinum II, cis-Pt) is a common chemotherapeutic agent, but it causes side effects, including hematologic toxicity with changes in the biological function of blood cells. METHODS We compared the action of two phenolic compounds isolated from the bark of Yucca schidigera: trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene and resveratrol (trans-3,4',5 - trihydroxystilbene, present also in grapes and wine) on oxidative stress induced by cisplatin (used in chemotherapy) and selenium-cisplatin conjugate ([NH(3)](2)Pt(SeO(3) [Se-Pt], with a slight toxic effect on blood cells) in human blood platelets and peripheral blood lymphocytes. RESULTS The trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene, like resveratrol, significantly inhibited protein carbonylation (measured by enzyme-linked immunosorbent assay and western blot analysis) in blood platelets treated with platinum compounds (10 microg/mL) and markedly reduced oxidation of thiol groups of proteins in these cells. The trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene, like resveratrol, caused a distinct reduction of platelet lipid peroxidation induced by platinum compounds. The combined action of the tested phenolic compounds with Se-Pt evoked a significant decrease in DNA damage (measured by the comet assay) in lymphocytes compared with cells treated with Se-Pt only. CONCLUSION We conclude that one promising natural product may be trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene, because it is a stronger antioxidant in the tested models in vitro compared with resveratrol (P < 0.05). The trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene can also be useful as a protective factor against platinum compounds during chemotherapy or cancer prophylaxis.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Institute of Biochemistry, University of Lodz, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Resveratrol, a constituent of red wine, has long been suspected to have cardioprotective effects. Interest in this compound has been renewed in recent years, first from its identification as a chemopreventive agent for skin cancer, and subsequently from reports that it activates sirtuin deacetylases and extends the lifespans of lower organisms. Despite scepticism concerning its bioavailability, a growing body of in vivo evidence indicates that resveratrol has protective effects in rodent models of stress and disease. Here, we provide a comprehensive and critical review of the in vivo data on resveratrol, and consider its potential as a therapeutic for humans.
Collapse
Affiliation(s)
- Joseph A Baur
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
28
|
Cheeke PR, Piacente S, Oleszek W. Anti-inflammatory and anti-arthritic effects of Yucca schidigera: a review. J Inflamm (Lond) 2006; 3:6. [PMID: 16571135 PMCID: PMC1440857 DOI: 10.1186/1476-9255-3-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 03/29/2006] [Indexed: 11/10/2022] Open
Abstract
Yucca schidigera is a medicinal plant native to Mexico. According to folk medicine, yucca extracts have anti-arthritic and anti-inflammatory effects. The plant contains several physiologically active phytochemicals. It is a rich source of steroidal saponins, and is used commercially as a saponin source. Saponins have diverse biological effects, including anti-protozoal activity. It has been postulated that saponins may have anti-arthritic properties by suppressing intestinal protozoa which may have a role in joint inflammation. Yucca is also a rich source of polyphenolics, including resveratrol and a number of other stilbenes (yuccaols A, B, C, D and E). These phenolics have anti-inflammatory activity. They are inhibitors of the nuclear transcription factor NFkappaB. NFkB stimulates synthesis of inducible nitric oxide synthase (iNOS), which causes formation of the inflammatory agent nitric oxide. Yucca phenolics are also anti-oxidants and free-radical scavengers, which may aid in suppressing reactive oxygen species that stimulate inflammatory responses. Based on these findings, further studies on the anti-arthritic effects of Yucca schidigera are warranted.
Collapse
Affiliation(s)
- PR Cheeke
- Department of Animal Sciences, Oregon State University, Corvallis, OR 97333, USA
- Desert King International, 7024 Manya Circle, San Diego, CA 92154, USA
| | - S Piacente
- Department of Pharmaceutical Sciences, University of Salerno, via Ponte Don Melillo-84084, Fisciano, Salerno, Italy
| | - W Oleszek
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, ul. Czartoryskich 8, 24100 Pulawy, Poland
| |
Collapse
|
29
|
Fukuhara K, Nagakawa M, Nakanishi I, Ohkubo K, Imai K, Urano S, Fukuzumi S, Ozawa T, Ikota N, Mochizuki M, Miyata N, Okuda H. Structural basis for DNA-cleaving activity of resveratrol in the presence of Cu(II). Bioorg Med Chem 2005; 14:1437-43. [PMID: 16249091 DOI: 10.1016/j.bmc.2005.09.070] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 09/27/2005] [Accepted: 09/27/2005] [Indexed: 11/19/2022]
Abstract
Resveratrol (1, 3,5,4'-trihydroxy-trans-stilbene), a polyphenol found in grapes and other food products, is known as an antioxidant and cancer chemopreventive agent. However, 1 was shown to induce genotoxicity through a high frequency of micronucleus and sister chromatid exchange in vitro and DNA-cleaving activity in the presence of Cu(II). The present study was designed to explore the structure-activity relationship of 1 in DNA strand scission and to characterize the substrate specificity for Cu(II) and DNA binding. When pBR322DNA was incubated with 1 or its analogues differing in the number and positions of hydroxyl groups in the presence of Cu(II), the ability of 4-hydroxystilbene analogues to induce DNA strand scission is much stronger than that of 3-hydroxy analogues. The high binding affinity with both Cu(II) and DNA was also observed by 4-hydroxystilbene analogues. The reduction of Cu(II) which is essential for activation of molecular oxygen proceeded by addition of 1 to the solution of the Cu(II)-DNA complex, while such reduction was not observed with the addition of isoresveratrol, in which the 4-hydroxy group of 1 is changed to the 3-position. The results show that the 4-hydroxystilbene structure of 1 is a major determinant of generation of reactive oxygen species that was responsible for DNA strand scission.
Collapse
Affiliation(s)
- Kiyoshi Fukuhara
- Division of Organic Chemistry, National Institute of Health Sciences, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Olas B, Wachowicz B, Stochmal A, Oleszek W. Inhibition of blood platelet adhesion and secretion by different phenolics from Yucca schidigera Roezl. bark. Nutrition 2005; 21:199-206. [PMID: 15723749 DOI: 10.1016/j.nut.2004.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 08/27/2003] [Accepted: 03/09/2004] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Yucca schidigera is a plant that grows in Mexico, and it has a very high level of saponins and phenolic compounds with antioxidant action. The products of Y. schidigera are used as food additives and have a generally recognized as safe label. This study investigated the antiplatelet mechanisms of four phenolic compounds. METHODS We investigated antiplatelet mechanisms of the phenolic compounds trans-3,4',5-trihydroxystilbene (trans-resveratrol), trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene, and yuccaols A and C that had been isolated from the bark of Y. schidigera by studying their effects on the first step of platelet activation, i.e., platelet adhesion to collagen and fibrinogen. The effects of these compounds on the release of adenine nucleotides, proteins, and beta-N-acetyl-glycosaminidase (a marker of lysosomal secretion) from blood platelets activated by thrombin were also studied. RESULTS These different phenolic compounds (1 to 25 microg/mL) and their extracts decreased platelet adhesion and secretion. CONCLUSIONS Resveratrol and yucca extract were more reactive in decreasing these processes than were other tested phenolic compounds.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Institute of Biochemistry, University of Lodz, Lodz, Poland
| | | | | | | |
Collapse
|
31
|
Delmas D, Jannin B, Latruffe N. Resveratrol: Preventing properties against vascular alterations and ageing. Mol Nutr Food Res 2005; 49:377-95. [PMID: 15830334 DOI: 10.1002/mnfr.200400098] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cardiovascular diseases are the leading cause of death in developed countries where the common pathological substrate underlying this process is atherosclerosis. Several new concepts have emerged in relation to mechanisms that contribute to the regulation of the vascular diseases and associated inflammatory effects. Recently, potential antioxidants (vitamin E, polyphenols) have received much attention as potential anti-atherosclerotic agents. Among the polyphenols with health benefic properties, resveratrol, a phytoalexin of grape, seem to be a good candidate protecting the vascular walls from oxidation, inflammation, platelet aggregation, and thrombus formation. In this review, we focus on the mechanism of resveratrol cardiovascular benefic effects. We analyze, in relation with the different steps of atherosclerotic process, the resveratrol properties at multiple levels, such as cellular signaling, enzymatic pathways, apoptosis, and gene expression. We show and discuss the relationship with reactive oxygen species, regulation of pro-inflammatory genes including cycloxygenases and cytokines in molecular inflammatory and aging processes, and how the regulation of these activites by resveratrol can lead to a prevention of vascular diseases.
Collapse
Affiliation(s)
- Dominique Delmas
- University of Burgundy, Laboratory of Molecular and Cell Biology, Dijon, France
| | | | | |
Collapse
|
32
|
Meng Y, Zhang M, Xu J, Liu XM, Ma QY. Effect of resveratrol on microcirculation disorder and lung injury following severe acute pancreatitis in rats. World J Gastroenterol 2005; 11:433-435. [PMID: 15637762 PMCID: PMC4205356 DOI: 10.3748/wjg.v11.i3.433] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 04/24/2004] [Accepted: 04/29/2004] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the mechanism of resveratrol underlying the microcirculation disorder and lung injury following severe acute pancreatitis (SAP). METHODS Twenty-four rats were divided into 3 groups (SAP, sham and resveratrol groups) randomly. SAP model was established by injecting 4% sodium taurocholate 1 mL/kg through puncturing pancreatic ducts. Sham (control) group (8 rats) was established by turning over the duodenum. Resveratrol was given at 0.1 mg/kg b.m. intraperitoneally. Rats were sacrificed 9 h after SAP was induced. Blood samples were obtained for hemorrheological examination. Lung tissues were used for pathological observation, and examination of microvascular permeability, dry/wet ratio and myeloperoxidase (MPO) activity. Gene expression of intercellular adhesion molecule-1 (ICAM-1) was detected by RT-PCR. RESULTS Compared with SAP group, resveratrol relieved the edema and infiltration of leukocytes in the lungs. Resveratrol improved markers of hemorrheology: high VTB (5.77+/-1.18 mPas vs 9.49+/-1.34 mPas), low VTB (16.12+/-3.20 mPas vs 30.91+/-7.28 mPas), PV (4.69+/-1.68 mPas vs 8.00+/-1.34 mPas), BSR (1.25+/-0.42 mm/h vs 0.03+/-0.03 mm/h), VPC (54.67+/-3.08% vs 62.17+/-3.39%), fibrinogen (203.2+/-87.8 g/ L vs 51.3+/-19.1 g/L), original hemolysis (0.45+/-0.02 vs 0.49+/-0.02), and complete hemolysis (0.41+/-0.02 vs 0.43+/-0.02) (P<0.05). Resveratrol decreased the OD ratio of ICAM-1 gene (0.800+/-0.03 vs 1.188+/-0.10), dry/wet ratio (0.74+/-0.02 vs 0.77+/-0.03), microvascular permeability (0.079+/-0.006 vs 0.112+/-0.004) and MPO activity (4.42+/-0.32 vs 5.03+/-0.51) significantly (P<0.05). CONCLUSION Resveratrol can improve the microcirculation disorder of the lung by decreasing leukocyte-endothelial interaction, reducing blood viscosity, improving the decrease of blood flow, and stabilizing erythrocytes in SAP rats. It may be a potential candidate to treat SAP and its severe complications (ALI).
Collapse
Affiliation(s)
- Yong Meng
- Department of Hepatobiliary Surgery, First Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Platelets participate not only in thrombus formation but also in the regulation of vessel tone, the development of atherosclerosis, angiogenesis, and in neointima formation after vessel wall injury. It is not surprising, therefore, that the platelet activation cascade (including receptor-mediated tethering to the endothelium, rolling, firm adhesion, aggregation, and thrombus formation) is tightly regulated. In addition to already well-defined platelet regulatory factors, such as nitric oxide (NO), prostacyclin (PGI2), and adenosine, reactive oxygen species (ROS) participate in the regulation of platelet activation. Although exogenously derived ROS are known to affect the regulation of platelet activation, recent data suggest that the platelets themselves generate ROS. Intracellular ROS signaling in activated platelets could be of significant relevance after transient platelet contact with the vessel wall, during the recruitment of additional platelets, and in thrombus formation. This review discusses the potential cellular and enzymatic sources of ROS in platelets, their molecular mechanisms of action in platelet activation, and summarizes in vitro and in vivo evidence for their physiological and potential therapeutic relevance.
Collapse
Affiliation(s)
- Florian Krötz
- Institute of Physiology, Cardiology Division, Medizinische Poliklinik-Innenstadt, Ludwig-Maximilians-University, Ziemssenstr. 1, 80336 Munich, Germany.
| | | | | |
Collapse
|
34
|
Marzocco S, Piacente S, Pizza C, Oleszek W, Stochmal A, Pinto A, Sorrentino R, Autore G. Inhibition of inducible nitric oxide synthase expression by yuccaol C from Yucca schidigera roezl. Life Sci 2004; 75:1491-501. [PMID: 15240183 DOI: 10.1016/j.lfs.2004.03.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 03/17/2004] [Indexed: 01/04/2023]
Abstract
Yucca schidigera extract finds wide commercial application in foods, cosmetics and pharmaceuticals. In a previous paper we have found as the main constituents of yucca bark, yuccaol A, B and C, new and very unusual spiro-derivatives made up of a C15 unit and a stilbenic portion closely related to resveratrol. This study was performed to examine whether yuccaol A, B or C (0.01-100 microM) could affect cytosolic inducible nitric oxide synthase (iNOS) protein expression and nitric oxide (NO) generation in vitro in Escherichia coli lipopolysaccharide (LPS)-activated J774.A1 macrophage cell line. NO production, detected as NO2-, increased significantly in LPS treated J774.A1 cells from 0.05 +/- 0.03 microM to 16.64 +/- 0.58 microM (P < 0.001). Yuccaol C (0.01-100 microM), added to the culture medium 1 h before LPS-stimulation, significantly (P < 0.001) and in a concentration related manner reduced NO release (P < 0.001) and iNOS protein expression (P < 0.05). In contrast, no inhibitory effect either on iNOS protein expression or on NO release was observed when yuccaol C was added after LPS stimulation. In contrast yuccaol A inhibited significantly (P < 0.001) only NO release at the highest concentration tested (100 microM) while yuccaol B did not reduce either NO release or iNOS expression. Yuccaol C was demonstrated to reduce iNOS protein expression via the transcription factor NF-kappaB. These results indicated that the empirical use of Y. schidigera as anti-inflammatory remedy could be addressed not only to the resveratrol content but also to the presence of yuccaol C.
Collapse
Affiliation(s)
- Stefania Marzocco
- Department of Pharmaceutical Sciences, University of Salerno, via Ponte Don Melillo-84084, Fisciano, Salerno, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Olas B, Wachowicz B, Stochmal A, Oleszek W. Inhibition of oxidative stress in blood platelets by different phenolics from Yucca schidigera Roezl. bark. Nutrition 2003; 19:633-40. [PMID: 12831950 DOI: 10.1016/s0899-9007(03)00036-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We investigated the comparative effects of resveratrol (trans-3,4',5-trihydroxystilbene), trans-3,3',5,5'tetrahydroxy-4'-methoxystilbene, and yuccaols A and C isolated from the bark of Yucca schidigera on oxidative stress in resting blood platelets and blood platelets activated by different agonists (thrombin or thrombin receptor activating peptide). METHODS AND RESULTS Tested phenolics (1-25 microgram/mL) reduced, to different degrees, the level of reactive oxygen species measured by the luminol-dependent chemiluminescence and changed the production of O(2)(-) measured by the reduction of cytochrome c in resting blood platelets. They also inhibited the generation of free radicals in blood platelets activated by thrombin (P < 0.05) or thrombin receptor activating peptide (P < 0.05). Treatment of platelets with resveratrol or yuccaols A and C at the concentration of 25 microgram/mL increased (statistically non-significant) the level of thiobarbituric acid reactive substances in these cells (P > 0.05), whereas trans-3,3',5,5'tetrahydroxy-4'-methoxystilbene and the alcohol yucca extract reduced lipid peroxidation in blood platelets (P < 0.05). CONCLUSIONS Resveratrol and other phenolic compounds from the bark of Yucca schidigera inhibiting free radical generation in blood platelets may be beneficial in protecting against cardiovascular diseases when hyperactivity of platelets is observed.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Institute of Biochemistry, University of Lodz, Lodz, Poland.
| | | | | | | |
Collapse
|