1
|
Yoladi FB, Palabiyik-Yucelik SS, Bahador Zirh E, Halici Z, Baydar T. Effects of idebenone and coenzyme Q10 on NLRP3/caspase-1/IL-1β pathway regulation on ethanol-induced hepatotoxicity in rats. Drug Chem Toxicol 2024; 47:1205-1217. [PMID: 38804209 DOI: 10.1080/01480545.2024.2351191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Chronic and excessive alcohol consumption leads to liver toxicity. There is a need to investigate effective therapeutic strategies to alleviate alcohol-induced liver injury, which remains the leading cause of liver-related morbidity and mortality worldwide. Therefore here, we looked into and evaluated how ethanol-induced hepatotoxicity was affected by coenzyme Q10 (CoQ10) and its analog, idebenone (IDE), on the NLRP3/caspase-1/IL-1 pathway. Hepatotoxicity induced in rats through the oral administration of gradually increasing dosages of ethanol (from 2 to 6 g/kg/day) over 30 days and the effect of CoQ10 (10 or 20 mg/kg) and IDE (50 or 100 mg/kg) were evaluated. Serum hepatotoxicity markers (ALT, AST, GGT, ALP, and TBIL), tissue oxidative stress markers and the mRNA expressions of IL-1β, IL-18, TGF-β, NF-κB, NLRP3, and caspase-1 were evaluated. Masson's trichrome staining was also used to visualize fibrosis in the liver tissue. The results indicated that ethanol exposure led to hepatotoxicity as well as considerable NLRP3/caspase-1/IL-1β pathway activation. Moreover, CoQ10 or IDE treatment reduced measured parameters in a dosage-dependent manner. Thus, by inhibiting the NLRP3/caspase-1/IL-1 pathway, CoQ10 and IDE can prevent the hepatotoxicity caused by ethanol, although CoQ10 is more effective than IDE. This study will provide insight into new therapeutic avenues that take advantage of the anti-inflammatory and antioxidant properties of CoQ10 and IDE in ethanol-induced liver diseases.
Collapse
Affiliation(s)
- Fatma Betül Yoladi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Saziye Sezin Palabiyik-Yucelik
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Atatürk University, Erzurum, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, Turkey
| | - Elham Bahador Zirh
- Department of Histology and Embryology, Faculty of Medicine, TOBB University of Economics and Technology, Ankara, Turkey
| | - Zekai Halici
- Clinical Research, Development and Design Application and Research Center, Atatürk University, Erzurum, Turkey
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Terken Baydar
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Liu PC, Song YT, Zhao LM, Jiang YL, Hu JG, Dong L, Zhou XL, Zhou L, Li Y, Li-Ling J, Xie HQ. Establishment and comparison of different procedures for modeling intrauterine adhesion in rats: A preliminary study. Heliyon 2024; 10:e25365. [PMID: 38322868 PMCID: PMC10844578 DOI: 10.1016/j.heliyon.2024.e25365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
The establishment of a stable animal model for intrauterine adhesion (IUA) can significantly enhance research on the pathogenesis and pathological changes of this disease, as well as on the development of innovative therapeutic approaches. In this study, three different modeling methods, including phenol mucilage combined mechanical scraping, ethanol combined mechanical scraping and ethanol modeling alone were designed. The morphological characteristics of the models were evaluated. The underlying mechanisms and fertility capacity of the ethanol modeling group were analyzed and compared to those of the sham surgery group. All three methods resulted in severe intrauterine adhesions, with ethanol being identified as a reliable modeling agent and was subsequently subjected to further evaluation. Immunohistochemistry and RT-PCR results indicated that the ethanol modeling group exhibited an increase in the degree of fibrosis and inflammation, as well as a significant reduction in endometrial thickness, gland number, vascularization, and endometrial receptivity, ultimately resulting in the loss of fertility capacity. The aforementioned findings indicate that the intrauterine perfusion of 95 % ethanol is efficacious in inducing the development of intrauterine adhesions in rats. Given its cost-effectiveness, efficacy, and stability in IUA formation, the use of 95 % ethanol intrauterine perfusion may serve as a novel platform for evaluating innovative anti-adhesion materials and bioengineered therapies.
Collapse
Affiliation(s)
- Peng-Cheng Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Yu-Ting Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Long-Mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Yan-Ling Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Jun-Gen Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Dong
- Regenerative Medicine Research Center of Topregmed, Chengdu, Sichuan, China
| | - Xing-li Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Li Zhou
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaxing Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Jesse Li-Ling
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Stalla F, Armandi A, Marinoni C, Fagoonee S, Pellicano R, Caviglia GP. Chronic hepatitis B virus infection and fibrosis: novel non-invasive approaches for diagnosis and risk stratification. Minerva Gastroenterol (Torino) 2022; 68:306-318. [PMID: 33871225 DOI: 10.23736/s2724-5985.21.02911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite the availability of an effective vaccination, chronic hepatitis B virus (HBV) infection is still a major health concern worldwide. Chronic HBV infection can lead to fibrosis accumulation and overtime to cirrhosis, the principal risk factor for liver failure and hepatocellular carcinoma development. Liver biopsy is still considered the gold standard for fibrosis assessment, even though it is invasive and not exempt of complications. Overtime, several non-invasive methods for the detection of liver fibrosis have been developed and gradually introduced into clinical practice. However, their main limitation is the poor performance for the detection of intermediate stages of fibrosis. Finally, novel serological biomarkers, polygenic risk scores and imaging methods have been proposed in last years as novel promising tools to correctly identify the degree of liver fibrosis and to monitor liver disease progression. In this narrative review, we provide an overview on the novel non-invasive approaches for the evaluation of liver fibrosis and risk stratification of patients with chronic hepatitis B.
Collapse
Affiliation(s)
- Francesco Stalla
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Chiara Marinoni
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Turin, Italy
| | - Rinaldo Pellicano
- Division of Gastroenterology, Molinette Hospital, Città della Salute e della Scienza, Turin, Italy
| | - Gian P Caviglia
- Department of Medical Sciences, University of Turin, Turin, Italy -
| |
Collapse
|
4
|
Charchanti A, Kanavaros P, Koniaris E, Kataki A, Glantzounis G, Agnantis NJ, Goussia AC. Expression of Syndecan-1 in Chronic Liver Diseases: Correlation With Hepatic Fibrosis. In Vivo 2021; 35:333-339. [PMID: 33402482 DOI: 10.21873/invivo.12264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM The mechanisms underlying the contribution of the heparan sulfate proteoglycan syndecan-1 to liver tissue injury and to crucial biological processes, such as fibrogenesis, remain to be elucidated. Therefore, we investigated the immunohistochemical expression of syndecan-1 in chronic liver diseases (CLDs) and its probable role in hepatic fibrosis. MATERIALS AND METHODS Immunohistochemistry was performed on formalin-fixed, paraffin-embedded tissue sections of biopsy material obtained from 128 patients diagnosed with CLDs. The correlation between syndecan-1 expression and the stage of fibrosis was investigated. RESULTS According to the severity of fibrosis, cases were categorized into three groups: early fibrosis; intermediate fibrosis; advanced fibrosis. Syndecan-1 expression was significantly enhanced in advanced fibrosis compared to early (p<0.012) and intermediate (p<0.003) fibrosis. CONCLUSION In CLDs, syndecan-1 immunohisto-chemical overexpression was found to be positively correlated with the severity of fibrosis, suggesting its probable role in hepatic fibrogenesis.
Collapse
Affiliation(s)
- Antonia Charchanti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece;
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Efthymios Koniaris
- Department of Pathology-Anatomy, Hippocration Hospital of Athens, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Agapi Kataki
- Laboratory of Surgical Research, First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Glantzounis
- Department of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Niki J Agnantis
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Anna C Goussia
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
5
|
Ouyang X, You S, Zhang Y, Zhang C, Zhang G, Shao X, He F, Hu L. Transplantation of Human Amnion Epithelial Cells Improves Endometrial Regeneration in Rat Model of Intrauterine Adhesions. Stem Cells Dev 2020; 29:1346-1362. [PMID: 32772798 DOI: 10.1089/scd.2019.0246] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrauterine adhesions (IUAs) are characterized by the injury of endometrium due to curettage and/or endometritis. The loss of functional endometrium in uterine cavity usually results in hypomenorrhea, amenorrhea, infertility, and/or recurrent pregnancy loss. Recently, stem cell transplantation has been applied to promote the endometrial regeneration. Human amnion epithelial cells (hAECs) have been shown to have stem cell characteristics. In this study, we found that PKH26-labeled hAECs were mainly distributed in the basal layer of endometrium after transplantation, and hAEC transplantation, including uterine injection and tail vein injection, could increase pregnancy rate and the number of embryos in rat model of IUAs. Moreover, hAEC transplantation was demonstrated to increase the endometrial thickness, promote the proliferation of glands and blood vessels, and decrease fibrotic areas in the endometrium. The immunohistochemical and quantitative polymerase chain reaction analysis showed the upregulated expression of growth factors, such as basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1) after hAEC transplantation; and the downregulated expression of collagen type I alpha 1 (COL1A1), tissue inhibitor of metalloproteinase-1 (TIMP-1), and transforming growth factor-β (TGF-β), all of which are associated with the extracellular matrix (ECM) deposition after hAEC transplantation. The mRNA sequencing indicated that platelet-derived growth factor-C (PDGF-C), thrombospondin-1 (THBS1), connective tissue growth factor (CTGF), Wnt5a, and Snai2 were significantly modulated in treatment groups. These results indicate that hAEC transplantation promotes endometrial regeneration and the restoration of fertility in rat model of IUAs.
Collapse
Affiliation(s)
- Xiaolan Ouyang
- The Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang You
- The Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yulin Zhang
- The Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chanyu Zhang
- The Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing, China.,Joint International Research Laboratory for Reproduction and Development, Ministry of Education, Chongqing, China
| | - Guanghui Zhang
- Chongqing Engineering Technology Research Center of Stem Cell and Neural Regeneration, Chongqing, China.,Chongqing Guolian Stem Cell Technology Co. Ltd., Chongqing, China
| | - Xiaoyan Shao
- Shanghai iCELL Biotechnology Co. Ltd., Shanghai, China
| | - Fan He
- The Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing, China.,Joint International Research Laboratory for Reproduction and Development, Ministry of Education, Chongqing, China
| | - Lina Hu
- The Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing, China.,Joint International Research Laboratory for Reproduction and Development, Ministry of Education, Chongqing, China
| |
Collapse
|
6
|
Liao Y, Gong J, Zhou W, Dong H, Liang J, Luo M, Hu B. Serum liver fibrosis markers discriminate significant liver inflammation in chronic hepatitis B patients with normal or near-normal alanine aminotransferase. J Med Virol 2018; 91:642-649. [PMID: 30537157 DOI: 10.1002/jmv.25364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/18/2018] [Indexed: 12/30/2022]
Abstract
Chronic liver inflammation caused by chronic hepatitis B virus (CHB) infection leads to liver cirrhosis and hepatocellular carcinoma. Recently, the role of alanine aminotransferase (ALT) as a predictor of liver inflammation has been questioned. The aim of this study was to investigate the utility of noninvasive fibrosis markers including hyaluronic acid (HA), collagen type IV (CIV), N-terminal propeptide of type III procollagen (PIIINP), and laminin (LN) in identifying significant liver inflammation in patients with CHB, especially in patients with normal or near-normal ALT. A total of 242 CHB patients who underwent liver biopsy were enrolled. The serum levels of ALT, aspartate aminotransferase, HA, CIV, PIIINP, and LN were quantified and the relationship between histological staging and serum markers was systematically analyzed. Serum CIV, PIIINP, HA, and LN levels increased significantly along with the increasing severity of liver inflammation. Multivariate analysis showed that CIV and LN were independently associated with significant inflammation. CIV, PIIINP, HA, and LN levels were found to have high diagnostic values for predicting significant inflammation in patients with CHB (area under the curve, AUC = 0.807, 0.795, 0.767, and 0.703, respectively). The combined index for the identification of significant inflammation, including CIV, PIIINP, HA, and LN levels, significantly improved diagnostic performance (AUC = 0.851). Moreover, the combined index also achieved excellent diagnostic accuracy (AUC = 0.861) in patients with CHB with normal or near-normal ALT. In conclusion, the combined index may be a strong indicator for discriminating significant liver inflammation, especially in patients with CHB with normal or near-normal ALT.
Collapse
Affiliation(s)
- Yuan Liao
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenying Zhou
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huimin Dong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiayin Liang
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Minqi Luo
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bo Hu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Kumar P, Smith T, Raeman R, Chopyk DM, Brink H, Liu Y, Sulchek T, Anania FA. Periostin promotes liver fibrogenesis by activating lysyl oxidase in hepatic stellate cells. J Biol Chem 2018; 293:12781-12792. [PMID: 29941453 DOI: 10.1074/jbc.ra117.001601] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/20/2018] [Indexed: 12/29/2022] Open
Abstract
Liver fibrosis arises from dysregulated wound healing due to persistent inflammatory hepatic injury. Periostin is a nonstructural extracellular matrix protein that promotes organ fibrosis in adults. Here, we sought to identify the molecular mechanisms in periostin-mediated hepatic fibrosis. Hepatic fibrosis in periostin-/- mice was attenuated as evidenced by significantly reduced collagen fibril density and liver stiffness compared with those in WT controls. A single dose of carbon tetrachloride caused similar acute liver injury in periostin-/- and WT littermates, and we did not detect significant differences in transaminases and major fibrosis-related hepatic gene expression between these two genotypes. Activated hepatic stellate cells (HSCs) are the major periostin-producing liver cell type. We found that in primary rat HSCs in vitro, periostin significantly increases the expression levels and activities of lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) isoforms 1-3. Periostin also induced expression of intra- and extracellular collagen type 1 and fibronectin in HSCs. Interestingly, periostin stimulated phosphorylation of SMAD2/3, which was sustained despite short hairpin RNA-mediated knockdown of transforming growth factor β (TGFβ) receptor I and II, indicating that periostin-mediated SMAD2/3 phosphorylation is independent of TGFβ receptors. Moreover, periostin induced the phosphorylation of focal adhesion kinase (FAK) and AKT in HSCs. Notably, siRNA-mediated FAK knockdown failed to block periostin-induced SMAD2/3 phosphorylation. These results suggest that periostin promotes enhanced matrix stiffness in chronic liver disease by activating LOX and LOXL, independently of TGFβ receptors. Hence, targeting periostin may be of therapeutic benefit in combating hepatic fibrosis.
Collapse
Affiliation(s)
- Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322.
| | - Tekla Smith
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Reben Raeman
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Daniel M Chopyk
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Hannah Brink
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Yunshan Liu
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Todd Sulchek
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Frank A Anania
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
8
|
Kawaratani H, Moriya K, Namisaki T, Uejima M, Kitade M, Takeda K, Okura Y, Kaji K, Takaya H, Nishimura N, Sato S, Sawada Y, Seki K, Kubo T, Mitoro A, Yamao J, Yoshiji H. Therapeutic strategies for alcoholic liver disease: Focusing on inflammation and fibrosis (Review). Int J Mol Med 2017; 40:263-270. [PMID: 28627645 DOI: 10.3892/ijmm.2017.3015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/30/2017] [Indexed: 11/06/2022] Open
Abstract
Excessive alcohol consumption is the most common cause of liver disease in the world. Chronic alcohol abuse leads to liver damage, liver inflammation, fibrosis and hepatocellular carcinoma. Inflammatory cytokines, such as tumor necrosis factor-α and interferon-γ, induce liver injury, which leads to the develo-pment of alcoholic liver disease (ALD). Hepatoprotective cytokines, such as interleukin (IL)-6 and IL-10, are also associated with ALD. IL-6 improves ALD via the activation of STAT3 and the subsequent induction of a variety of hepatoprotective genes in hepatocytes. Alcohol consumption promotes liver inflammation by incre-asing the translocation of gut-derived endotoxins to the portal circulation and by activating Kupffer cells through the lipopolysaccharide/Toll-like receptor 4 pathways. Oxidative stress and microflora products are also associated with ALD. Hepatic stellate cells play an important role in angiogenesis and liver fibrosis. Anti-angiogenic therapy has been found to be effective in the prevention of fibrosis. This suggests that blocking angiogenesis could be a promising therapeutic option for patients with advanced fibrosis. This review discusses the main pathways associated with liver inflammation and liver fibrosis as well as new therapeutic strategies.
Collapse
Affiliation(s)
- Hideto Kawaratani
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kei Moriya
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Tadashi Namisaki
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Masakazu Uejima
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Mitsuteru Kitade
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kousuke Takeda
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yasushi Okura
- Department of Endoscopy and Ultrasound, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kousuke Kaji
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroaki Takaya
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Norihisa Nishimura
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Shinya Sato
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yasuhiko Sawada
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kenichiro Seki
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Takuya Kubo
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Akira Mitoro
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Junichi Yamao
- Department of Endoscopy and Ultrasound, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hitoshi Yoshiji
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
9
|
de Souza VCA, Pereira TA, Teixeira VW, Carvalho H, de Castro MCAB, D’assunção CG, de Barros AF, Carvalho CL, de Lorena VMB, Costa VMA, Teixeira ÁAC, Figueiredo RCBQ, de Oliveira SA. Bone marrow-derived monocyte infusion improves hepatic fibrosis by decreasing osteopontin, TGF-β1, IL-13 and oxidative stress. World J Gastroenterol 2017; 23:5146-5157. [PMID: 28811709 PMCID: PMC5537181 DOI: 10.3748/wjg.v23.i28.5146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/25/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the therapeutic effects of bone marrow-derived CD11b+CD14+ monocytes in a murine model of chronic liver damage.
METHODS Chronic liver damage was induced in C57BL/6 mice by administration of carbon tetrachloride and ethanol for 6 mo. Bone marrow-derived monocytes isolated by immunomagnetic separation were used for therapy. The cell transplantation effects were evaluated by morphometry, biochemical assessment, immunohistochemistry and enzyme-linked immunosorbent assay.
RESULTS CD11b+CD14+ monocyte therapy significantly reduced liver fibrosis and increased hepatic glutathione levels. Levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-6 and IL-1β, in addition to pro-fibrotic factors, such as IL-13, transforming growth factor-β1 and tissue inhibitor of metalloproteinase-1 also decreased, while IL-10 and matrix metalloproteinase-9 increased in the monocyte-treated group. CD11b+CD14+ monocyte transplantation caused significant changes in the hepatic expression of α-smooth muscle actin and osteopontin.
CONCLUSION Monocyte therapy is capable of bringing about improvement of liver fibrosis by reducing oxidative stress and inflammation, as well as increasing anti-fibrogenic factors.
Collapse
|
10
|
Exosome-Mediated Intercellular Communication between Hepatitis C Virus-Infected Hepatocytes and Hepatic Stellate Cells. J Virol 2017; 91:JVI.02225-16. [PMID: 28077652 DOI: 10.1128/jvi.02225-16] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022] Open
Abstract
Fibrogenic pathways in the liver are principally regulated by activation of hepatic stellate cells (HSC). Fibrosis is associated with chronic hepatitis C virus (HCV) infection, although the mechanism is poorly understood. HSC comprise the major population of nonparenchymal cells in the liver. Since HCV does not replicate in HSC, we hypothesized that exosomes secreted from HCV-infected hepatocytes activate HSC. Primary or immortalized human hepatic stellate (LX2) cells were exposed to exosomes derived from HCV-infected hepatocytes (HCV-exo), and the expression of fibrosis-related genes was examined. Our results demonstrated that HCV-exo internalized to HSC and increased the expression of profibrotic markers. Further analysis suggested that HCV-exo carry miR-19a and target SOCS3 in HSC, which in turn activates the STAT3-mediated transforming growth factor β (TGF-β) signaling pathway and enhances fibrosis marker genes. The higher expression of miR-19a in exosomes was also observed from HCV-infected hepatocytes and in sera of chronic HCV patients with fibrosis compared to healthy volunteers and non-HCV-related liver disease patients with fibrosis. Together, our results demonstrated that miR-19a carried through the exosomes from HCV-infected hepatocytes activates HSC by modulating the SOCS-STAT3 axis. Our results implicated a novel mechanism of exosome-mediated intercellular communication in the activation of HSC for liver fibrosis in HCV infection.IMPORTANCE HCV-associated liver fibrosis is a critical step for end-stage liver disease progression. However, the molecular mechanisms for hepatic stellate-cell activation by HCV-infected hepatocytes are underexplored. Here, we provide a role for miR-19a carried through the exosomes in intercellular communication between HCV-infected hepatocytes and HSC in fibrogenic activation. Furthermore, we demonstrate the role of exosomal miR-19a in activation of the STAT3-TGF-β pathway in HSC. This study contributes to the understanding of intercellular communication in the pathogenesis of liver disease during HCV infection.
Collapse
|
11
|
Campa A, Martinez SS, Sherman KE, Greer JP, Li Y, Garcia S, Stewart T, Ibrahimou B, Williams OD, Baum MK. Cocaine Use and Liver Disease are Associated with All-Cause Mortality in the Miami Adult Studies in HIV (MASH) Cohort. JOURNAL OF DRUG ABUSE 2016; 2:27. [PMID: 28540368 PMCID: PMC5439351 DOI: 10.21767/2471-853x.100036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Liver disease is a frequent cause of morbidity and mortality in HIV infection. We examined the relationship of cocaine use, liver disease progression and mortality in an HIV-infected cohort. METHODS Consent was obtained from 487 HIV+ participants, a subset of the Miami Adult Studies on HIV (MASH) cohort. Participants were eligible if they were followed for at least two years, completed questionnaires on demographics and illicit drug use and had complete metabolic panels, CD4 cell counts and HIV-viral loads. FIB-4 was calculated and cut-off points were used for staging liver fibrosis. Death certificates were obtained. RESULTS Participants were 65% men, 69% Black and 81% were on ART at recruitment. Cocaine was used by 32% of participants and 29% were HIV/HCV co-infected. Mean age was 46.9 ± 7.7 years, mean CD4 cell count was 501.9 ± 346.7 cells/μL and mean viral load was 2.75 ± 1.3 log10 copies/mL at baseline. During the follow-up, 27 patients died, with a mortality rate of 28.2/1000 person-year. Cocaine was used by 48% of those who died (specific mortality rate was 13/1000 person-year). Those who died were more likely to use cocaine (HR=3.8, P=0.006) and have more advanced liver fibrosis (HR=1.34, P<0.0001), adjusting for age, gender, CD4 cell count and HIV-viral load at baseline and over time. Among the HIV mono-infected participants, cocaine users were 5 times more likely to die (OR=5.09, P=0.006) than participants who did not use cocaine. CONCLUSION Cocaine use and liver fibrosis are strong and independent predictors of mortality in HIV infected and HIV/HCV co-infected adults. Effective interventions to reduce cocaine use among people living with HIV (PHLW) are needed.
Collapse
Affiliation(s)
- Adriana Campa
- Florida International University, R Stempel College of Public Health and Social Work, Miami, FL, USA
| | - Sabrina Sales Martinez
- Florida International University, R Stempel College of Public Health and Social Work, Miami, FL, USA
| | - Kenneth E Sherman
- University of Cincinnati, College of Medicine, Department of Internal Medicine, Cincinnati, Ohio, USA
| | - Joe Pedro Greer
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Yinghui Li
- Florida International University, R Stempel College of Public Health and Social Work, Miami, FL, USA
| | - Stephanie Garcia
- Florida International University, R Stempel College of Public Health and Social Work, Miami, FL, USA
| | - Tiffanie Stewart
- Florida International University, R Stempel College of Public Health and Social Work, Miami, FL, USA
| | - Boubakari Ibrahimou
- Florida International University, R Stempel College of Public Health and Social Work, Miami, FL, USA
| | - O. Dale Williams
- Florida International University, R Stempel College of Public Health and Social Work, Miami, FL, USA
| | - Marianna K. Baum
- Florida International University, R Stempel College of Public Health and Social Work, Miami, FL, USA
| |
Collapse
|
12
|
Li S, Wang Q, Tao Y, Liu C. Swertiamarin Attenuates Experimental Rat Hepatic Fibrosis by Suppressing Angiotensin II-Angiotensin Type 1 Receptor-Extracellular Signal-Regulated Kinase Signaling. J Pharmacol Exp Ther 2016; 359:247-255. [PMID: 27543328 DOI: 10.1124/jpet.116.234179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/17/2016] [Indexed: 03/08/2025] Open
Abstract
The rennin-angiotensin system (RAS) is crucial in hepatic fibrosis development, and therapies targeting this system may be a promising treatment for hepatic fibrosis. In this study, we investigated the effects of swertiamarin (Swe), an ethanol extract of Gentiana manshurica Kitag, on hepatic fibrosis and its underlying mechanisms through regulating RAS. Primary rat hepatic stellate cells (HSCs) were isolated and treated with angiotensin II (Ang II) with or without Swe and losartan. The proliferation and activation of HSCs were measured. Rat hepatic fibrosis was induced by intraperitoneal dimethylnitrosamine (DMN) injection for 4 weeks. Rats were treated with Swe or losartan from the third week until the end of the experiment. Hydroxyproline content in liver tissue was assayed with Jamall's method, and liver collagen deposition was visualized using Sirius red staining. RAS components were analyzed by Western blot, immunofluorescent staining, and real-time reverse-transcription polymerase chain reaction. The results showed that Swe significantly inhibited Ang II-induced HSC proliferation and activation. Swe also significantly suppressed DMN-induced α-smooth muscle actin production in rat livers and improved liver function. Swe partially inhibited Ang II-induced angiotensin type 1 receptor (AT1R) up-regulation and suppressed Ang II-induced extracellular signal-regulated kinase (ERK) and c-jun phosphorylation in HSCs. In the DMN-treated rats, Swe treatment significantly inhibited the plasma Ang II levels. DMN-induced AT1R up-regulation, and phosphorylation of ERK and c-jun in rat liver were also inhibited by Swe. In conclusion, Swe may attenuate hepatic fibrosis through inhibiting HSC activation by regulating the RAS.
Collapse
Affiliation(s)
- Shu Li
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (S.L., Q.W., Y.T., C.L.); Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (S.L.); Shanghai Clinical Key Laboratory of Traditional Chinese Medicine (C.L.); E-Institute of TCM Internal Medicine, Shanghai Municipal Education Commission (C.L.), Shanghai, People's Republic of China
| | - Qinglan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (S.L., Q.W., Y.T., C.L.); Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (S.L.); Shanghai Clinical Key Laboratory of Traditional Chinese Medicine (C.L.); E-Institute of TCM Internal Medicine, Shanghai Municipal Education Commission (C.L.), Shanghai, People's Republic of China
| | - Yanyan Tao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (S.L., Q.W., Y.T., C.L.); Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (S.L.); Shanghai Clinical Key Laboratory of Traditional Chinese Medicine (C.L.); E-Institute of TCM Internal Medicine, Shanghai Municipal Education Commission (C.L.), Shanghai, People's Republic of China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (S.L., Q.W., Y.T., C.L.); Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (S.L.); Shanghai Clinical Key Laboratory of Traditional Chinese Medicine (C.L.); E-Institute of TCM Internal Medicine, Shanghai Municipal Education Commission (C.L.), Shanghai, People's Republic of China
| |
Collapse
|
13
|
Subramanian SR, Singam ERA, Berinski M, Subramanian V, Wade RC. Identification of an Electrostatic Ruler Motif for Sequence-Specific Binding of Collagenase to Collagen. J Phys Chem B 2016; 120:8580-9. [PMID: 27245212 DOI: 10.1021/acs.jpcb.6b02573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sequence-specific cleavage of collagen by mammalian collagenase plays a pivotal role in cell function. Collagenases are matrix metalloproteinases that cleave the peptide bond at a specific position on fibrillar collagen. The collagenase Hemopexin-like (HPX) domain has been proposed to be responsible for substrate recognition, but the mechanism by which collagenases identify the cleavage site on fibrillar collagen is not clearly understood. In this study, Brownian dynamics simulations coupled with atomic-detail and coarse-grained molecular dynamics simulations were performed to dock matrix metalloproteinase-1 (MMP-1) on a collagen IIIα1 triple helical peptide. We find that the HPX domain recognizes the collagen triple helix at a conserved R-X11-R motif C-terminal to the cleavage site to which the HPX domain of collagen is guided electrostatically. The binding of the HPX domain between the two arginine residues is energetically stabilized by hydrophobic contacts with collagen. From the simulations and analysis of the sequences and structural flexibility of collagen and collagenase, a mechanistic scheme by which MMP-1 can recognize and bind collagen for proteolysis is proposed.
Collapse
Affiliation(s)
- Sundar Raman Subramanian
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35, 69117 Heidelberg, Germany.,Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai, India
| | - Ettayapuram Ramaprasad Azhagiya Singam
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35, 69117 Heidelberg, Germany.,Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai, India
| | - Michael Berinski
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35, 69117 Heidelberg, Germany.,Edinburgh Genomics, The University of Edinburgh , Edinburgh, Scotland
| | - Venkatesan Subramanian
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai, India
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35, 69117 Heidelberg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg , Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University , Heidelberg, Germany
| |
Collapse
|
14
|
New Mechanism of Hepatic Fibrogenesis: Hepatitis C Virus Infection Induces Transforming Growth Factor β1 Production through Glucose-Regulated Protein 94. J Virol 2015; 90:3044-55. [PMID: 26719248 DOI: 10.1128/jvi.02976-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 12/23/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) is one of the leading causes of chronic liver inflammatory disease (hepatitis), which often leads to more severe diseases, such as liver fibrosis, cirrhosis, and hepatocellular carcinoma. Liver fibrosis, in particular, is a major pathogenic consequence of HCV infection, and transforming growth factor β1 (TGF-β1) plays a key role in its pathogenesis. Several HCV proteins have been suggested to either augment or suppress the expression of TGF-β1 by HCV-infected cells. Here, we report that TGF-β1 levels are elevated in HCV-infected hepatocytes cultured in vitro and in liver tissue of HCV patients. Notably, the level of TGF-β1 in media from in vitro-cultured HCV-infected hepatocytes was high enough to activate primary hepatic stellate cells isolated from rats. This indicates that TGF-β1 secreted by HCV-infected hepatocytes is likely to play a key role in the liver fibrosis observed in HCV patients. Moreover, we showed that HCV E2 protein triggers the production of TGF-β1 by HCV-infected cells through overproduction of glucose-regulated protein 94 (GRP94). IMPORTANCE Hepatic fibrosis is a critical step in liver cirrhosis caused by hepatitis C virus infection. It is already known that immune cells, including Kupffer cells, mediate liver fibrosis. Recently, several papers have suggested that HCV-infected hepatocytes also significantly produce TGF-β1. Here, we provide the first examination of TGF-β1 levels in the hepatocytes of HCV patients. Using an HCV culture system, we showed that HCV infection increases TGF-β1 production in hepatocytes. Furthermore, we confirmed that the amount of TGF-β1 secreted by HCV-infected hepatocytes was sufficient to activate primary hepatic stellate cells. To understand the molecular basis of TGF-β1 production in HCV-infected hepatocytes, we used HCV replicons and various stable cell lines. Finally, we elucidated that HCV E2 triggered TGF-β1 secretion via GRP94 mediated NF-κB activation. This study contributes to the understanding of liver fibrosis by HCV and suggests a new potential target (GRP94) for blocking liver cirrhosis in HCV patients.
Collapse
|
15
|
Beilfuss A, Sowa JP, Sydor S, Beste M, Bechmann LP, Schlattjan M, Syn WK, Wedemeyer I, Mathé Z, Jochum C, Gerken G, Gieseler RK, Canbay A. Vitamin D counteracts fibrogenic TGF-β signalling in human hepatic stellate cells both receptor-dependently and independently. Gut 2015; 64:791-9. [PMID: 25134788 DOI: 10.1136/gutjnl-2014-307024] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/31/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is closely linked to obesity and constitutes part of the metabolic syndrome, which have been associated with low serum vitamin D (VD). Due to known crosstalk between VD and transforming growth factor (TGF)-β signalling, VD has been proposed as an antifibrotic treatment. DESIGN We evaluated the association between VD, the vitamin D receptor (VDR) and liver fibrosis in primary human hepatic stellate cells (phHSC) and 106 morbidly obese patients with NAFLD. RESULTS Treating phHSC with VD ameliorated TGF-β-induced fibrogenesis via both VDR-dependent and VDR-independent mechanisms. Reduction of fibrogenic response was abolished in cells homozygous for GG at the A1012G single nucleotide polymorphisms within the VDR gene. Compared with healthy livers, NAFLD livers expressed higher levels of VDR mRNA and VDR fragments. VDR mRNA was lower in patients homozygous for GG at A1012G and expression of pro-fibrogenic genes was higher in patients carrying the G allele. CONCLUSIONS VD may be an antifibrotic treatment option early in the onset of fibrosis in specific genotypes for VDR. Known polymorphisms of the VDR may influence the response to VD treatment.
Collapse
Affiliation(s)
- Anja Beilfuss
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Jan-Peter Sowa
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Svenja Sydor
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Mechthild Beste
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Lars P Bechmann
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Martin Schlattjan
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Wing-Kin Syn
- The Institute of Hepatology, Regeneration and Repair Group, London, UK
| | - Inga Wedemeyer
- Institute for Pathology, University Hospital Cologne, Cologne, Germany
| | - Zoltan Mathé
- Department of General, Visceral and Transplantation Surgery, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Christoph Jochum
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Robert K Gieseler
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany Rodos BioTarget GmbH, Medical Park Hannover, Hannover, Germany
| | - Ali Canbay
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
16
|
Elpek G&O. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World J Gastroenterol 2014; 20:7260-7276. [PMID: 24966597 PMCID: PMC4064072 DOI: 10.3748/wjg.v20.i23.7260] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 02/08/2014] [Accepted: 05/23/2014] [Indexed: 02/06/2023] Open
Abstract
There have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying liver fibrogenesis. Recent data indicate that the termination of fibrogenic processes and the restoration of deficient fibrolytic pathways may allow the reversal of advanced fibrosis and even cirrhosis. Therefore, efforts have been made to better clarify the cellular and molecular mechanisms that are involved in liver fibrosis. Activation of hepatic stellate cells (HSCs) remains a central event in fibrosis, complemented by other sources of matrix-producing cells, including portal fibroblasts, fibrocytes and bone marrow-derived myofibroblasts. These cells converge in a complex interaction with neighboring cells to provoke scarring in response to persistent injury. Defining the interaction of different cell types, revealing the effects of cytokines on these cells and characterizing the regulatory mechanisms that control gene expression in activated HSCs will enable the discovery of new therapeutic targets. Moreover, the characterization of different pathways associated with different etiologies aid in the development of disease-specific therapies. This article outlines recent advances regarding the cellular and molecular mechanisms involved in liver fibrosis that may be translated into future therapies. The pathogenesis of liver fibrosis associated with alcoholic liver disease, non-alcoholic fatty liver disease and viral hepatitis are also discussed to emphasize the various mechanisms involved in liver fibrosis.
Collapse
|
17
|
Yaping Z, Ying W, Luqin D, Ning T, Xuemei A, Xixian Y. Mechanism of interleukin-1β-induced proliferation in rat hepatic stellate cells from different levels of signal transduction. APMIS 2013; 122:392-8. [PMID: 23992404 DOI: 10.1111/apm.12155] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/04/2013] [Indexed: 12/18/2022]
Abstract
Hepatic stellate cells (HSCs) are the major producers of collagen in the liver. Their conversion from resting cells to proliferative, contractile, and activated cells is a critical step leading to liver fibrosis that is characterized by the deposition of excessive extracellular matrix. Interleukin-1 (IL-1) may play a role in maintaining HSC in a proliferative state that is responsible for hepatic fibrogenesis. The aim of this study was to study the roles of the IL-1 type I receptor (IL-1R1), c-Jun N-terminal kinase (JNK), and activation protein-1 (AP-1) in IL-1β-mediated proliferation in rat HSCs. We showed that IL-1β can upregulate proliferation in rat HSCs; however, inhibition of the JNK pathway could inhibit HSCs proliferation. Furthermore, IL-1β activated IL-1R1 expression, the JNK signaling pathway, and AP-1 activity in a time-dependent manner in rat HSCs. These data demonstrate that IL-1β could promote the proliferation of rat HSCs and that the IL-1R1, JNK, and AP-1 pathways were involved in this process. In summary, IL-1β-induced proliferation is possibly mediated by the IL-1R1, JNK, and AP-1 pathways in rat HSCs. Therefore, drugs that block these pathways may inhibit the proliferation of HSCs and suppress liver fibrosis.
Collapse
Affiliation(s)
- Zhang Yaping
- Department of Pediatrics, Third Hospital of Hebei Medical University
| | | | | | | | | | | |
Collapse
|
18
|
Depner CM, Philbrick KA, Jump DB. Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis. J Nutr 2013; 143:315-23. [PMID: 23303872 PMCID: PMC3713021 DOI: 10.3945/jn.112.171322] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) has increased in parallel with the incidence of obesity. While both NAFLD and NASH are characterized by hepatosteatosis, NASH is characterized by hepatic damage, inflammation, oxidative stress, and fibrosis. We previously reported that feeding Ldlr(-/-) mice a high-fat, high-cholesterol diet containing menhaden oil attenuated several markers of NASH, including hepatosteatosis, inflammation, and fibrosis. Herein, we test the hypothesis that DHA [22:6 (n-3)] is more effective than EPA [20:5 (n-3)] at preventing Western diet (WD)-induced NASH in Ldlr(-/-) mice. Mice were fed the WD supplemented with either olive oil (OO), EPA, DHA, or EPA + DHA for 16 wk. WD + OO feeding induced a severe NASH phenotype, characterized by robust hepatosteatosis, inflammation, oxidative stress, and fibrosis. Whereas none of the C20-22 (n-3) fatty acid treatments prevented WD-induced hepatosteatosis, all 3 (n-3) PUFA-containing diets significantly attenuated WD-induced inflammation, fibrosis, and hepatic damage. The capacity of dietary DHA to suppress hepatic markers of inflammation (Clec4F, F4/80, Trl4, Trl9, CD14, Myd88), fibrosis (Procol1α1, Tgfβ1), and oxidative stress (NADPH oxidase subunits Nox2, p22phox, p40phox, p47phox, p67phox) was significantly greater than dietary EPA. The effects of DHA on these markers paralleled DHA-mediated suppression of hepatic Fads1 mRNA abundance and hepatic arachidonic acid content. Because DHA suppression of NASH markers does not require a reduction in hepatosteatosis, dietary DHA may be useful in combating NASH in obese humans.
Collapse
Affiliation(s)
- Christopher M. Depner
- The Nutrition Program, School of Biological and Population Health Sciences, and,The Linus Pauling Institute, Oregon State University, Corvallis, OR
| | | | - Donald B. Jump
- The Nutrition Program, School of Biological and Population Health Sciences, and,The Linus Pauling Institute, Oregon State University, Corvallis, OR,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Salvianolic Acid B Attenuates Rat Hepatic Fibrosis via Downregulating Angiotensin II Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:160726. [PMID: 23243430 PMCID: PMC3518291 DOI: 10.1155/2012/160726] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/30/2012] [Accepted: 10/10/2012] [Indexed: 01/03/2023]
Abstract
The renin-angiotensin system (RAS) plays an important role in hepatic fibrosis. Salvianolic acid B (Sal B), one of the water-soluble components from Radix Salviae miltiorrhizae, has been used to treat hepatic fibrosis, but it is still not clear whether the effect of Sal B is related to angiotensin II (Ang II) signaling pathway. In the present study, we studied Sal B effect on rat liver fibrosis and Ang-II related signaling mediators in dimethylnitrosamine-(DMN-) induced rat fibrotic model in vivo and Ang-II stimulated hepatic stellate cells (HSCs) in vitro, with perindopril or losartan as control drug, respectively. The results showed that Sal B and perindopril inhibited rat hepatic fibrosis and reduced expression of Ang II receptor type 1 (AT1R) and ERK activation in fibrotic liver. Sal B and losartan also inhibited Ang II-stimulated HSC activation including cell proliferation and expression of type I collagen I (Col-I) and α-smooth muscle actin (α-SMA) production in vitro, reduced the gene expression of transforming growth factor beta (TGF-β), and downregulated AT1R expression and ERK and c-Jun phosphorylation. In conclusion, our results indicate that Sal B may exert an antihepatic fibrosis effect via downregulating Ang II signaling in HSC activation.
Collapse
|
20
|
Hegazy SK, El-Bedewy M, Yagi A. Antifibrotic effect of aloe vera in viral infection-induced hepatic periportal fibrosis. World J Gastroenterol 2012; 18:2026-34. [PMID: 22563189 PMCID: PMC3342600 DOI: 10.3748/wjg.v18.i17.2026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 02/20/2012] [Accepted: 02/26/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the anti-oxidative and anti-fibrotic effects of aloe vera in patients with liver fibrosis.
METHODS: Aloe vera high molecular weight fractions (AHM) were processed by patented hyper-dry system in combination of freeze-dry technique with microwave and far infrared-ray radiation. Fifteen healthy volunteers as the control group and 40 patients were included. The patients were randomly subdivided into two equal groups: the conventional group was treated with placebo (starch), and AHM group was treated with 0.15 gm/d AHM, both for 12 consecutive weeks. The patients were investigated before and after treatment. Serum activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), hyaluronic acid (HA), transforming growth factor-β (TGF-β) and matrixmetalloproteinase-2 (MMP-2) were determined. The reduced glutathione (GSH) and malondialdehyde (MDA) levels in liver were assayed and the expression of hepatic α-smooth muscle actin (α-SMA) was identified by immunohistochemistry.
RESULTS: At the start of the study, the hematoxylin and eosin staining revealed fibro-proliferated bile ductules, thick fibrous septa and dense inflammatory cellular infiltration in the patients before treatment. The use of AHM for 12 wk significantly ameliorated the fibrosis, inhibited the inflammation, and resulted in minimal infiltration and minimal fibrosis compared to the conventional group. The enzyme activities of the liver (ALT, AST and ALP) were attenuated after treatment in both groups, and the decrease in the AHM group was more significant as compared with the conventional group. Similar to the AST, the MDA levels were significantly higher before treatment, and were attenuated after treatment in both groups. In contrast, the hepatic glutathione content in the patients were decreased significantly in the AHM group compared to the controls. The serum levels of the fibrosis markers (HA, TGF-β and MMP-2) were also reduced significantly after treatment. The expression of α-SMA was modified in patients before and after treatment as compared with the normal controls. In the conventional group, there was only thin and incomplete parenchymal α-SMA positive septum joining the thickened centrilobular veins, while in the AHM group, few α-SMA positive cells were present in sinusoid and lobule after treatment.
CONCLUSION: Oral supplementation with AHM could be helpful in alleviating the fibrosis and inflammation of hepatic fibrosis patients.
Collapse
|
21
|
Nishie A, Asayama Y, Ishigami K, Tajima T, Kakihara D, Nakayama T, Takayama Y, Okamoto D, Taketomi A, Shirabe K, Fujita N, Obara M, Yoshimitsu K, Honda H. MR prediction of liver fibrosis using a liver-specific contrast agent: Superparamagnetic iron oxide versus Gd-EOB-DTPA. J Magn Reson Imaging 2012; 36:664-71. [PMID: 22532503 DOI: 10.1002/jmri.23691] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/02/2011] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To examine whether the uptake of a liver-specific contrast agent in the liver parenchyma was correlated with the degree of liver fibrosis. MATERIALS AND METHODS This retrospective study included 54 and 63 patients who underwent superparamagnetic iron oxide (SPIO)- and gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI before liver surgery, respectively. For each patient, we calculated ΔR2* and ΔR2, which represent differences in R2* and R2 values of the liver parenchyma before and after administration of SPIO; and the increase rate of liver-to-spleen signal intensity ratio (LSR) on the hepatobiliary phase compared with the precontrast image. The correlation of each MR parameter with the degree of liver fibrosis (F0 to F4) was assessed using Spearman's rank correlation test. RESULTS The increase rate of LSR was best correlated with the degree of liver fibrosis and significantly decreased as the liver fibrosis progressed (rho = -0.641; P < 0.0001). It showed sensitivity of 76.9% and specificity of 83.3% in differentiating F3 or greater fibrosis when 1.126 or less was set up as a cut-off value. No significant correlation was obtained between ΔR2* or ΔR2 and the degree of liver fibrosis. CONCLUSION The uptake of Gd-EOB-DTPA in the liver parenchyma decreased as the liver fibrosis progressed. J. Magn. Reson. Imaging 2012;36:664-671. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Akihiro Nishie
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang Y, Yao X. Role of c-Jun N-terminal kinase and p38/activation protein-1 in interleukin-1β-mediated type I collagen synthesis in rat hepatic stellate cells. APMIS 2011; 120:101-7. [PMID: 22229265 DOI: 10.1111/j.1600-0463.2011.02816.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Interleukin-1 (IL-1) may play a role in maintaining hepatic stellate cell (HSC) in activated state that is responsible for hepatic fibrogenesis. However, the signal transduction pathway that is stimulated by IL-1 in HSC remains to be fully elucidated. The aims of this study were to investigate the role of c-Jun N-terminal kinase (JNK) and p38/activation protein (AP-1) in IL-1β-mediated type I collagen synthesis in rat HSCs. Here, we show that IL-1β could activate JNK and p38 in a time-dependent manner, and that inhibition of the JNK pathway could increase collagen synthesis; however, inhibition of the p38 pathway could inhibit collagen synthesis. Furthermore, IL-1β activated AP-1 in a time-dependent manner in rat HSCs. These data demonstrate that L-1β could promote the synthesis of type I collagen in rat HSCs, and the JNK and p38/AP-1 pathways were involved in this process. In summary, IL-1β-induced collagen synthesis is possibly mediated by cytoplasmic JNK and p38/AP-1 pathways. Therefore, drugs that block the p38/AP-1 pathway may inhibit liver extracellular matrix synthesis and suppress liver fibrosis.
Collapse
Affiliation(s)
- Yaping Zhang
- Department of Pediatrics, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | | |
Collapse
|
23
|
D'Ambrosio DN, Walewski JL, Clugston RD, Berk PD, Rippe RA, Blaner WS. Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage. PLoS One 2011; 6:e24993. [PMID: 21949825 PMCID: PMC3174979 DOI: 10.1371/journal.pone.0024993] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/22/2011] [Indexed: 01/18/2023] Open
Abstract
Hepatic stellate cell (HSC) lipid droplets are specialized organelles for the storage of retinoid, accounting for 50–60% of all retinoid present in the body. When HSCs activate, retinyl ester levels progressively decrease and the lipid droplets are lost. The objective of this study was to determine if the HSC population in a healthy, uninjured liver demonstrates heterogeneity in its capacity for retinoid and lipid storage in lipid droplets. To this end, we utilized two methods of HSC isolation, which leverage distinct properties of these cells, including their vitamin A content and collagen expression. HSCs were isolated either from wild type (WT) mice in the C57BL/6 genetic background by flotation in a Nycodenz density gradient, followed by fluorescence activated cell sorting (FACS) based on vitamin A autofluorescence, or from collagen-green fluorescent protein (GFP) mice by FACS based on GFP expression from a GFP transgene driven by the collagen I promoter. We show that GFP-HSCs have: (i) increased expression of typical markers of HSC activation; (ii) decreased retinyl ester levels, accompanied by reduced expression of the enzyme needed for hepatic retinyl ester synthesis (LRAT); (iii) decreased triglyceride levels; (iv) increased expression of genes associated with lipid catabolism; and (v) an increase in expression of the retinoid-catabolizing cytochrome, CYP2S1. Conclusion: Our observations suggest that the HSC population in a healthy, uninjured liver is heterogeneous. One subset of the total HSC population, which expresses early markers of HSC activation, may be “primed” and ready for rapid response to acute liver injury.
Collapse
Affiliation(s)
- Diana N. D'Ambrosio
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - José L. Walewski
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Robin D. Clugston
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Paul D. Berk
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Richard A. Rippe
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - William S. Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Wang XN, Tao Q, Feng Q, Peng JH, Liu P, Hu YY. [Effects of Chinese herbal medicine Yiguanjian Decoction on collagen metabolism of hepatic tissues in rats with CCl4-induced liver fibrosis]. ZHONG XI YI JIE HE XUE BAO = JOURNAL OF CHINESE INTEGRATIVE MEDICINE 2011; 9:651-657. [PMID: 21669170 DOI: 10.3736/jcim20110612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the effects of Yiguanjian Decoction, a compound traditional Chinese herbal medicine, on collagen metabolism of hepatic tissues in rats with carbon tetrachloride (CCl(4))-induced liver fibrosis. METHODS Liver fibrosis was induced in rats by intraperitoneal injection of 50% CCl(4)-olive oil solution at a dose of 1 mL/kg body weight, twice per week for 9 consecutive weeks. Six rats were sacrificed for dynamic observation at the end of the 3rd and 6th week respectively, and the other rats were divided into 9-week untreated group and Yiguanjian Decoction group which was given Yiguanjian Decoction intragastrically in the subsequent 3-week modeling period. Another 6 rats were used as normal group. Rats in the normal group and 9-week untreated group were treated with distilled water. At the end of the 9th week, all rats were sacrificed, and their blood serum and liver tissue were collected for measuring hepatic histology and expressions of α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase (TIMP)-1, TIMP-2, matrix metalloproteinase (MMP)-13, MMP-14, collagen type I (Col I), and activities of MMP-2 and -9. RESULTS Compared with the normal group, collagen fiber deposition, expressions of α-SMA, Col I, TIMP-1, TIMP-2, MMP-13 and MMP-14 and activities of MMP-2 and -9 in the liver tissues gradually increased in the untreated group (P<0.05, P<0.01). These changes were significantly suppressed by Yiguanjian Decoction. CONCLUSION Yiguanjian Decoction exerts inhibition on formation of CCl(4)-induced cirrhosis in rats. The therapeutic mechanism may be related to inhibiting hepatic stellate cell activation, collagen secretion, and promoting collagen fiber degradation.
Collapse
Affiliation(s)
- Xiao-ning Wang
- Institute of Liver Diseases, Shuguang Hospital, E-institute of Traditional Chinese Internal Medicine of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|
25
|
Csak T, Velayudham A, Hritz I, Petrasek J, Levin I, Lippai D, Catalano D, Mandrekar P, Dolganiuc A, Kurt-Jones E, Szabo G. Deficiency in myeloid differentiation factor-2 and toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice. Am J Physiol Gastrointest Liver Physiol 2011; 300:G433-41. [PMID: 21233280 PMCID: PMC3302188 DOI: 10.1152/ajpgi.00163.2009] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Toll-like receptor 4 (TLR4) and its coreceptor, myeloid differentiation factor-2 (MD-2), are key in recognition of lipopolysaccharide (LPS) and activation of proinflammatory pathways. Here we tested the hypothesis that TLR4 and its coreceptor MD-2 play a central role in nonalcoholic steatohepatitis (NASH) and liver fibrosis in nonalcoholic fatty liver disease. Mice of control genotypes and those deficient in MD-2 or TLR4 [knockout (KO)] received methionine choline-deficient (MCD) or methionine choline-supplemented (MCS) diet. In mice of control genotypes, MCD diet resulted in NASH, liver triglycerides accumulation, and increased thiobarbituric acid reactive substances, a marker of lipid peroxidation, compared with MCS diet. These features of NASH were significantly attenuated in MD-2 KO and TLR4 KO mice. Serum alanine aminotransferase, an indicator of liver injury, was increased in MCD diet-fed genotype controls but was attenuated in MD-2 KO and TLR4 KO mice. Inflammatory activation, indicated by serum TNF-α and nictoinamide adenine dinucleotide phosphate oxidase complex mRNA expression and activation, was significantly lower in MCD diet-fed MD-2 KO and TLR4 KO compared with corresponding genotype control mice. Markers of liver fibrosis [collagen by Sirius red and α-smooth muscle actin (SMA) staining, procollagen-I, transforming growth factor-β1, α-SMA, matrix metalloproteinase-2, and tissue inhibitor of matrix metalloproteinase-1 mRNA] were attenuated in MD-2 and TLR4 KO compared with their control genotype counterparts. In conclusion, our results demonstrate a novel, critical role for LPS recognition complex, including MD-2 and TLR4, through NADPH activation in liver steatosis, and fibrosis in a NASH model in mice.
Collapse
Affiliation(s)
- Timea Csak
- Department of Medicine, University of Massachusetts, Medical School, Worcester, Massachusetts
| | - Arumugam Velayudham
- Department of Medicine, University of Massachusetts, Medical School, Worcester, Massachusetts
| | - Istvan Hritz
- Department of Medicine, University of Massachusetts, Medical School, Worcester, Massachusetts
| | - Jan Petrasek
- Department of Medicine, University of Massachusetts, Medical School, Worcester, Massachusetts
| | - Ivan Levin
- Department of Medicine, University of Massachusetts, Medical School, Worcester, Massachusetts
| | - Dora Lippai
- Department of Medicine, University of Massachusetts, Medical School, Worcester, Massachusetts
| | - Donna Catalano
- Department of Medicine, University of Massachusetts, Medical School, Worcester, Massachusetts
| | - Pranoti Mandrekar
- Department of Medicine, University of Massachusetts, Medical School, Worcester, Massachusetts
| | - Angela Dolganiuc
- Department of Medicine, University of Massachusetts, Medical School, Worcester, Massachusetts
| | - Evelyn Kurt-Jones
- Department of Medicine, University of Massachusetts, Medical School, Worcester, Massachusetts
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts, Medical School, Worcester, Massachusetts
| |
Collapse
|
26
|
Wang XD, Gao ZH, Xue X, Cheng YN, Yue P, Fang XW, Qu XJ. N1-acetyl substituted pyrrolidine derivative CIP-A5: a novel compound that could ameliorate liver cirrhosis through modulation of hepatic stellate cell activity. Toxicol In Vitro 2011; 25:897-904. [PMID: 21349324 DOI: 10.1016/j.tiv.2011.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/30/2011] [Accepted: 02/16/2011] [Indexed: 01/16/2023]
Abstract
(2S,4R)-methyl 1-acetyl-4-(N-(4-bromophenyl)sulfamoyloxy)pyrrolidine-2-carboxylate (CIP-A5) is the N1-acetyl substituted pyrrolidine derivative which was designed against the structure of matrix metalloproteinase (MMP-2) and MMP-9. CIP-A5 has been considered as a candidate compound for treatment of liver cirrhosis. In this study, we evaluated the efficacy of CIP-A5 on the activity of hepatic stellate cells. CIP-A5 prevented the transforming growth factor β (TGF-β)-induced proliferation of hepatic stellate HSC-T6 cells as estimated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. CIP-A5 stimulated MMPs activity as evidenced by an increase of degradation of succinylated gelatin. Gelatin zymography analysis showed that CIP-A5 stimulated the secretion and activity of MMP-2 and MMP-9 in HSC-T6 cells. This stimulatory effect on MMPs was verified by the observation of increased expression of MMP-2 and MMP-9 as evaluated by Western blot assay. At the same time, a significant decrease of the expression of tissue inhibitors of matrix metalloproteinases-1 (TIMP-1) was observed, suggesting a modulation of the balance of MMPs/TIMPs in hepatic stellate cells. CIP-A5 treatment also resulted in suppression of the profibrogenic cytokines, such as TGF-β, tumor necrosis factor alpha (TNF-α) and connective tissue growth factor (CTGF) in HSC-T6 cells. CIP-A5 did not have cytotoxicity to human normal hepatic cells. These results implied that CIP-A5 could selectively ameliorate the process of liver cirrhosis through modulation of activated hepatic stellate cell activity, which offers hope for prevention and treatment of this devastating end-stage liver disease.
Collapse
Affiliation(s)
- Xiao-Dan Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Lv Z, Song Y, Xue D, Zhang W, Cheng Y, Xu L. Effect of salvianolic-acid B on inhibiting MAPK signaling induced by transforming growth factor-β1 in activated rat hepatic stellate cells. JOURNAL OF ETHNOPHARMACOLOGY 2010; 132:384-392. [PMID: 20599490 DOI: 10.1016/j.jep.2010.05.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/28/2010] [Accepted: 05/17/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY Salvianolic-acid B (SA-B) is an effective component of Radix Salviae miltiorrhizae for anti-hepatic fibrotic herbs. MAPK signaling pathway has been implicated in hepatic stellate cells (HSC) stimulated by TGF-(1. We have investigated the effect of SA-B on MAPK pathway in rat HSC. MATERIALS AND METHODS To observe the pharmacological effect of SA-B on HSC, SA-B was added into the medium of primary HSC. TGF-(1 was added during last 2h, and PD98059 (ERK inhibitor) and SB203580 (p38 inhibitor) were added just 30 min before adding TGF-(1. MEF2 and Col. I were measured by luciferase reporter gene assay and Western blot. (-SMA, MEF2, Raf, ERK, p-ERK, MEK, p-MEK, p38, p-p38, MKK3 and p-MKK3/6 were assayed by Western blot. Activity of MMP-2 and MMP-9 was analyzed by zymography. Each experiment was repeated for three times. RESULTS The expression of (-SMA and Col. I in HSC was inhibited by SA-B. There was no effect of SA-B on the activity of MMP-2 or MMP-9 in the media of cultured HSC. Phosphorylation of ERK1/2 in HSC stimulated with or without TGF-(1 was inhibited by SA-B. Specifically, phosphorylation of MEK (upstream kinase of ERK pathway) was inhibited by SA-B. SA-B also inhibited phosphorylation of MKK3/6 (upstream kinases of p38 pathway) and inhibited the synthesis of MEF2. CONCLUSIONS SA-B performs anti-hepatic fibrosis through inhibiting ERK and p38 MAPK pathway in HSC. SA-B inhibits ERK pathway via inhibiting phosphorylation of MEK and inhibits p38 MAPK pathway via blocking phosphorylation of MKK3/6 and inhibiting expression of MEF2 in HSC with or without TGF-(1 stimulation.
Collapse
|
28
|
Dechêne A, Sowa JP, Gieseler RK, Jochum C, Bechmann LP, El Fouly A, Schlattjan M, Saner F, Baba HA, Paul A, Dries V, Odenthal M, Gerken G, Friedman SL, Canbay A. Acute liver failure is associated with elevated liver stiffness and hepatic stellate cell activation. Hepatology 2010; 52:1008-16. [PMID: 20684020 DOI: 10.1002/hep.23754] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Acute liver failure (ALF) is associated with massive short-term cell death, whereas chronic liver injury is accompanied by continuous cell death. Hepatic stellate cells (HSCs) contribute to tissue repair and liver fibrosis in chronic liver injury, although their role in ALF remains unexplained. Twenty-nine patients (median age = 43 years, 17 females and 12 males) with ALF according to the Acute Liver Failure Study Group criteria were included. Upon the diagnosis of ALF and after 7 days, we determined liver stiffness (LS) with FibroScan, standard laboratory parameters, and serum levels of matrix metalloproteinase 1 (MMP-1), MMP-2, MMP-9, tissue inhibitor of metalloproteinases 1 (TIMP-1), TIMP-2, hyaluronic acid, and markers of overall cell death (M65) and apoptosis (M30). Stellate cell activation and progenitor response were analyzed immunohistochemically in biopsy samples of 12 patients with alpha-smooth muscle actin (alpha-SMA), keratin-17, and keratin-19 staining, respectively. Cell death markers (M30 level = 2243 +/- 559.6 U/L, M65 level = 3732 +/- 839.9 U/L) and fibrosis markers (TIMP-1 level = 629.9 +/- 69.4 U/mL, MMP-2 level = 264 +/- 32.5 U/mL, hyaluronic acid level = 438.5 +/- 69.3 microg/mL) were significantly increased in patients versus healthy controls. This was paralleled by collagen deposition, elevated alpha-SMA expression, and higher LS (25.6 +/- 3.0 kPa). ALF was associated with ductular progenitor proliferation. CONCLUSION Our results demonstrate HSC activation and a progenitor response in ALF. Positive correlations between LS, the degree of liver cell damage, and the intensity of HSC activation suggest that fibrosis is a response to ALF in an attempt to repair damaged tissue.
Collapse
Affiliation(s)
- Alexander Dechêne
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dong P, Yu F, Fan X, Lin Z, Chen Y, Li J. Inhibition of ATIR by shRNA prevents collagen synthesis in hepatic stellate cells. Mol Cell Biochem 2010; 344:195-202. [PMID: 20703514 DOI: 10.1007/s11010-010-0542-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/14/2010] [Indexed: 02/06/2023]
Abstract
Currently, strategies aimed at disrupting renin-angiotensin-aldosterone system (RAAS) are extensively investigated for treating liver fibrosis. However, the experiment results remain unsatisfactory, mainly due to excessive level of angiotensin II (AngII) in gene expression. In this article, we aim to investigate whether suppression of AngII-type I receptor (ATIR) expression by short hairpin RNA (shRNA) expression vectors decreases the level of collagen synthesis in hepatic stellate cells (HSCs). Three pairs of ATIR-targeted shRNA expression vectors were transfected into HSC-T6 cells. Compared with the control group, both mRNA and protein levels of ATIR expression were significiently decreased in shRNA-treated groups, and the inhibitory effect exhibited a dose- and time-dependent pattern. Accordingly, TGF-β1 mRNA expression in shRNA1 group was reduced by about 54% compared with the control group. The level of Procollagen type III, hyaluronic acid, and laminin declined by about 46.4, 52.6, and 42%, respectively. In conclusion, shRNA expression vectors targeting ATIR could attenuate collagen synthesis.
Collapse
Affiliation(s)
- Peihong Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
30
|
Deng Q, Zhang Y, Hu GX, Yuan K, Yuan F, Huang YQ. Optimum concentration of hydrocamptothecin for inhibiting proliferation of rat hepatic stellate cells. Shijie Huaren Xiaohua Zazhi 2009; 17:554-559. [DOI: 10.11569/wcjd.v17.i6.554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effects of hydrocamptothecin (HCPT) on proliferation of rat hepatic stellate cells (HSC) in vitro, and meanwhile, to investigate the cytotoxicity of HCPT on rat hepatocytes, then to determine the optimum concentration of HCPT for inhibiting proliferation of rat HSC.
METHODS: Rat HSC line (HSC-T6) and rat hepatocyte line (BRL-3A) were incubated with different concentrations of HCPT (0.008, 0.016, 0.031, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32 mg/L respectively) or without HCPT for 24, 48, 72 hours, respectively. The proliferation rates of the HSC-T6 and BRL-3A were determined by MTT assay. The optimum concentration of HCPT with highest inhibitory action on proliferation of HSC-T6 was examined. The morphological changes of the HSC-T6 were observed with light microscopy.
RESULTS: MTT assay indicated that the proliferation rates of HSC-T6 induced with different concentrations of HCPT were significantly reduced compared with the control group incubated in vitro for 24, 48, 72 h (t = 6.07-46.98, 10.98-63.97, 20.76-107.68, all P < 0.01). HCPT significantly inhibited the proliferation of HSC-T6 in a dose-dependent and time-dependent manner. On the other hand, HCPT also inhibited the proliferation of BRL-3A in a dose-dependent and time-dependent manner. When the concentration was higher than 0.5 mg/L, the cytotoxicity of HCPT on the BRL-3A had a significant raise (all P < 0.05). After stimulation of HSC-T6 by HCPT with the concentrations of 0.25, 0.5, 1 mg/L for 24 hours, light microscopy showed the morphological changes of HSC-T6, including cells shrinkage, karyorrhexis and karyopycnosis, and the changes were more significant as the concentration increased.
CONCLUSION: HCPT could significantly inhibit the proliferation of HSC-T6 in a dose-dependent and time-dependent manner; 0.5 mg/L is the optimum concentration of HCPT for inhibiting the proliferation of HSC-T6.
Collapse
|