1
|
Wang D, Song J, Wang J, Quan R. Serum metabolic alterations in chickens upon infectious bursal disease virus infection. BMC Vet Res 2024; 20:569. [PMID: 39696379 DOI: 10.1186/s12917-024-04402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Infectious bursal disease virus (IBDV) is a highly contagious immunosuppressive virus of chickens. Chickens acquire infection by the oral route under natural conditions. Although the histological and pathological changes after IBDV infection are well described, the alterations in serum metabolome have not been reported. In this study, SPF chickens were infected with attenuated IBDV (atIBDV) strain LM and very virulent IBDV (vvIBDV) strain LX, respectively. On the seventh day after oral infection, serum samples of experimental chickens were identified using ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS). The serum metabolic profiles were analyzed by multivariate statistical methods. KEGG enrichment analysis was performed to evaluate the dysregulated biological pathways. RESULTS We identified 368 significantly altered metabolites in response to both atIBDV and vvIBDV infection. The metabolic disorder of amino acid and lipid was associated with IBDV infection, especially tryptophan, glycerophospholipid, lysine, and tyrosine metabolism. The differential metabolites enriched in the four metabolic pathways were PC(20:4(5Z,8Z,11Z,14Z)/18:0), PE(16:0/18:2(9Z,12Z)), PE(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE(18:0/20:4(5Z,8Z,11Z,14Z)), PE(18:0/20:4(8Z,11Z,14Z,17Z)), PE(18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE(20:3(8Z,11Z,14Z)/16:0), PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0), PE-NMe(20:5(5Z,8Z,11Z,14Z,17Z)/18:0), PS(20:3(5Z,8Z,11Z)/18:2(9Z,12Z)), 2-aminobenzoic acid, 4-(2-aminophenyl)-2,4-dioxobutanoic acid, N-acetylserotonin, 5-hydroxyindoleacetate, indole-3-acetaldehyde, indole-3-acetate, p-coumaric acid, L-tyrosine, homovanillin, and S-glutaryldihydrolipoamide. CONCLUSION The atIBDV and vvIBDV infection causes metabolic changes in chicken serum. The differential metabolites and dysregulated metabolic pathways reflect the host response to the IBDV infection.
Collapse
Affiliation(s)
- Dan Wang
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China.
| |
Collapse
|
2
|
Chen J, Wang W, Li S, Wang Z, Zuo W, Nong T, Li Y, Liu H, Wei P, He X. RNA-seq reveals role of cell-cycle regulating genes in the pathogenicity of a field very virulent infectious bursal disease virus. Front Vet Sci 2024; 11:1334586. [PMID: 38362295 PMCID: PMC10867150 DOI: 10.3389/fvets.2024.1334586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Infectious bursal disease virus (IBDV) infection causes highly contagious and immunosuppressive disease in poultry. The thymus, serving as the primary organ for T cell maturation and differentiation, plays an important role in the pathogenicity of IBDV in the infected chickens. However, there are no reports on the molecular pathogenesis of IBDV in the thymus currently. The aim of the study was to elucidate the molecular mechanisms underlying the pathogenicity of a field very virulent (vv) IBDV strain NN1172 in the thymus of SPF chickens using integrative transcriptomic and proteomic analyses. Our results showed that a total of 4,972 Differentially expressed genes (DEGs) in the thymus of NN1172-infected chickens by transcriptomic analysis, with 2,796 up-regulated and 2,176 down-regulated. Meanwhile, the proteomic analysis identified 726 differentially expressed proteins (DEPs) in the infected thymus, with 289 up-regulated and 437 down-regulated. Overall, a total of 359 genes exhibited differentially expression at both mRNA and protein levels, with 134 consistently up-regulated and 198 genes consistently down-regulated, as confirmed through a comparison of the RNA-seq and the proteomic datasets. The gene ontology (GO) analysis unveiled the involvement of both DEGs and DEPs in diverse categories encompassing cellular components, biological processes, and molecular functions in the pathological changes in IBDV-infected thymus. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the host mainly displayed severely disruption of cell survival/repair, proliferation and metabolism pathway, meanwhile, the infection triggers antiviral immune activation with a potential emphasis on the MDA5 pathway. Network inference analysis identified seven core hub genes, which include CDK1, TYMS, MCM5, KIF11, CCNB2, MAD2L1, and MCM4. These genes are all associated with cell-cycle regulating pathway and are likely key mediators in the pathogenesis induced by NN1172 infection in the thymus. This study discovered dominant pathways and genes which enhanced our understanding of the molecular mechanisms underlying IBDV pathogenesis in the thymus.
Collapse
Affiliation(s)
- Jinnan Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Shangquan Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Zhiyuan Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Wenbo Zuo
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Tingbin Nong
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Yihai Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Hongquan Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Xiumiao He
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
3
|
Deng T, Du L, Ding S, Peng X, Chen W, Yan Y, Hu B, Zhou J. Protein kinase Cdc7 supports viral replication by phosphorylating Avibirnavirus VP3 protein. J Virol 2023; 97:e0112523. [PMID: 37902398 PMCID: PMC10688373 DOI: 10.1128/jvi.01125-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The Avibirnavirus infectious bursal disease virus is still an important agent which largely threatens global poultry farming industry economics. VP3 is a multifunctional scaffold structural protein that is involved in virus morphogenesis and the regulation of diverse cellular signaling pathways. However, little is known about the roles of VP3 phosphorylation during the IBDV life cycle. In this study, we determined that IBDV infection induced the upregulation of Cdc7 expression and phosphorylated the VP3 Ser13 site to promote viral replication. Moreover, we confirmed that the negative charge addition of phosphoserine on VP3 at the S13 site was essential for IBDV proliferation. This study provides novel insight into the molecular mechanisms of VP3 phosphorylation-mediated regulation of IBDV replication.
Collapse
Affiliation(s)
- Tingjuan Deng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Liuyang Du
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Shuxiang Ding
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Xiran Peng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Wenjing Chen
- Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Boli Hu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Deng T, Hu B, Wang X, Ding S, Lin L, Yan Y, Peng X, Zheng X, Liao M, Jin Y, Dong W, Gu J, Zhou J. TRAF6 autophagic degradation by avibirnavirus VP3 inhibits antiviral innate immunity via blocking NFKB/NF-κB activation. Autophagy 2022; 18:2781-2798. [PMID: 35266845 PMCID: PMC9673932 DOI: 10.1080/15548627.2022.2047384] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ubiquitination is an important reversible post-translational modification. Many viruses hijack the host ubiquitin system to enhance self-replication. In the present study, we found that Avibirnavirus VP3 protein was ubiquitinated during infection and supported virus replication by ubiquitination. Mass spectrometry and mutation analysis showed that VP3 was ubiquitinated at residues K73, K135, K158, K193, and K219. Virus rescue showed that ubiquitination at sites K73, K193, and K219 on VP3 could enhance the replication abilities of infectious bursal disease virus (IBDV), and that K135 was essential for virus survival. Binding of the zinc finger domain of TRAF6 (TNF receptor associated factor 6) to VP3 mediated K11- and K33-linked ubiquitination of VP3, which promoted its nuclear accumulation to facilitate virus replication. Additionally, VP3 could inhibit TRAF6-mediated NFKB/NF-κB (nuclear factor kappa B) activation and IFNB/IFN-β (interferon beta) production to evade host innate immunity by inducing TRAF6 autophagic degradation in an SQSTM1/p62 (sequestosome 1)-dependent manner. Our findings demonstrated a macroautophagic/autophagic mechanism by which Avibirnavirus protein VP3 blocked NFKB-mediated IFNB production by targeting TRAF6 during virus infection, and provided a potential drug target for virus infection control.Abbreviations: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; Cas9: CRISPR-associated protein 9; CHX: cycloheximide; Co-IP: co-immunoprecipitation; CRISPR: clustered regularly interspaced short palindromic repeats; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GST: glutathione S-transferase; IBDV: infectious bursal disease virus; IF: indirect immunofluorescence; IFNB/IFN-β: interferon beta; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MS: mass spectrometry; NFKB/NF-κB: nuclear factor kappa B; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; pAb: polyclonal antibody; PRRs: pattern recognition receptors; RNF125: ring finger protein 125; RNF135/Riplet: ring finger protein 135; SQSTM1/p62: sequestosome 1; TAX1BP1: tax1 binding protein1; TCID50: 50% tissue culture infective dose; TRAF3: TNF receptor associated factor 3; TRAF6: TNF receptor associated factor 6; TRIM25: tripartite motif containing 25; Ub: ubiquitin; Wort: wortmannin; WT: wild type.
Collapse
Affiliation(s)
- Tingjuan Deng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Boli Hu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xingbo Wang
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | - Lulu Lin
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiran Peng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiaojuan Zheng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Min Liao
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yulan Jin
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jinyan Gu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China,Collaborative innovation center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China,CONTACT Jiyong Zhou MOA Key Laboratory of Animal Virology, Zhejiang University, 866 Yuhangtang Road, Hangzhou310058, Zhejiang Province, P. R. China
| |
Collapse
|
5
|
Li H, Wan B, Jiang D, Ji P, Zhao M, Li X, Li R, Qiao S. Proteomic Investigation Reveals Eukaryotic Translation Initiation Factor 5A Involvement in Porcine Reproductive and Respiratory Syndrome Virus Infection in vitro. Front Vet Sci 2022; 9:861137. [PMID: 35498732 PMCID: PMC9043857 DOI: 10.3389/fvets.2022.861137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/18/2022] [Indexed: 12/05/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), one of the most serious animal pathogens in the world, has caused enormous global swine industry losses. An in-depth investigation of the PRRSV-host interaction would be beneficial for preventing and controlling PRRSV infections and transmission. In this study, we performed label-free quantitative proteomic assays to investigate proteome dynamics of porcine alveolar macrophages (PAMs) during infection with highly pathogenic PRRSV (HP-PRRSV) strain HN07-1. Analysis of the results led to identification of 269 significantly differentially expressed host cellular proteins, of which levels of proteins belonging to the eukaryotic translation initiation factor (eIF) family were found to be decreased in abundance in HP-PRRSV-infected PAMs. Furthermore, knockdown of eIF5A expression was demonstrated to markedly suppress HP-PRRSV propagation, as reflected by reduced progeny virus titers in vitro. These results highlight the importance of eIF5A in PRRSV infection, while also demonstrating that PAMs down-regulate eIF5A expression as a host cell antiviral strategy. Results of the current study deepen our understanding of PRRSV pathogenesis and provide novel insights to guide development of effective strategies to combat the virus.
Collapse
Affiliation(s)
- Huawei Li
- Henan Key Laboratory of Innovation and Utilization of Unconventional Feed Resources, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Bo Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dawei Jiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pengchao Ji
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xinfeng Li
- Henan Key Laboratory of Innovation and Utilization of Unconventional Feed Resources, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Rui Li
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Songlin Qiao
| |
Collapse
|
6
|
Xu C, Li T, Lei J, Zhang Y, Zhou J, Hu B. The Autophagy Cargo Receptor SQSTM1 Inhibits Infectious Bursal Disease Virus Infection through Selective Autophagic Degradation of Double-Stranded Viral RNA. Viruses 2021; 13:v13122494. [PMID: 34960763 PMCID: PMC8704251 DOI: 10.3390/v13122494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Selective autophagy mediates the degradation of cytoplasmic cargos, such as damaged organelles, invading pathogens, and protein aggregates. However, whether it targets double-stranded RNA (dsRNA) of intracellular pathogens is still largely unknown. Here, we show that selective autophagy regulates the degradation of the infectious bursal disease virus (IBDV) dsRNA genome. The amount of dsRNA decreased greatly in cells that overexpressed the autophagy-required protein VPS34 or autophagy cargo receptor SQSTM1, while it increased significantly in SQSTM1 or VPS34 knockout cells or by treating wild-type cells with the autophagy inhibitor chloroquine or wortmannin. Confocal microscopy and structured illumination microscopy showed SQSTM1 colocalized with dsRNA during IBDV infection. A pull-down assay further confirmed the direct binding of SQSTM1 to dsRNA through amino acid sites R139 and K141. Overexpression of SQSTM1 inhibited the replication of IBDV, while knockout of SQSTM1 promoted IBDV replication. Therefore, our findings reveal the role of SQSTM1 in clearing viral dsRNA through selective autophagy, highlighting the antiviral role of autophagy in the removal of the viral genome.
Collapse
Affiliation(s)
- Chenyang Xu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.X.); (T.L.); (J.L.)
| | - Tongtong Li
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.X.); (T.L.); (J.L.)
| | - Jing Lei
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.X.); (T.L.); (J.L.)
| | - Yina Zhang
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (J.Z.)
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (J.Z.)
| | - Boli Hu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.X.); (T.L.); (J.L.)
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (J.Z.)
- Correspondence:
| |
Collapse
|
7
|
Azli B, Ravi S, Hair-Bejo M, Omar AR, Ideris A, Mat Isa N. Functional prediction of de novo uni-genes from chicken transcriptomic data following infectious bursal disease virus at 3-days post-infection. BMC Genomics 2021; 22:461. [PMID: 34147086 PMCID: PMC8214787 DOI: 10.1186/s12864-021-07690-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infectious bursal disease (IBD) is an economically very important issue to the poultry industry and it is one of the major threats to the nation's food security. The pathogen, a highly pathogenic strain of a very virulent IBD virus causes high mortality and immunosuppression in chickens. The importance of understanding the underlying genes that could combat this disease is now of global interest in order to control future outbreaks. We had looked at identified novel genes that could elucidate the pathogenicity of the virus following infection and at possible disease resistance genes present in chickens. RESULTS A set of sequences retrieved from IBD virus-infected chickens that did not map to the chicken reference genome were de novo assembled, clustered and analysed. From six inbred chicken lines, we managed to assemble 10,828 uni-transcripts and screened 618 uni-transcripts which were the most significant sequences to known genes, as determined by BLASTX searches. Based on the differentially expressed genes (DEGs) analysis, 12 commonly upregulated and 18 downregulated uni-genes present in all six inbred lines were identified with false discovery rate of q-value < 0.05. Yet, only 9 upregulated and 13 downregulated uni-genes had BLAST hits against the Non-redundant and Swiss-Prot databases. The genome ontology enrichment keywords of these DEGs were associated with immune response, cell signalling and apoptosis. Consequently, the Weighted Gene Correlation Network Analysis R tool was used to predict the functional annotation of the remaining unknown uni-genes with no significant BLAST hits. Interestingly, the functions of the three upregulated uni-genes were predicted to be related to innate immune response, while the five downregulated uni-genes were predicted to be related to cell surface functions. These results further elucidated and supported the current molecular knowledge regarding the pathophysiology of chicken's bursal infected with IBDV. CONCLUSION Our data revealed the commonly up- and downregulated novel uni-genes identified to be immune- and extracellular binding-related, respectively. Besides, these novel findings are valuable contributions in improving the current existing integrative chicken transcriptomics annotation and may pave a path towards the control of viral particles especially towards the suppression of IBD and other infectious diseases in chickens.
Collapse
Affiliation(s)
- Bahiyah Azli
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Sharanya Ravi
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Mohd Hair-Bejo
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Aini Ideris
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Nurulfiza Mat Isa
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| |
Collapse
|
8
|
Ma ST, Wang YS, Wang XL, Xia XX, Bi ZW, Wang JY, Zhu YM, Ouyang W, Qian J. Mass spectrometry-based proteomic analysis of potential infectious bursal disease virus VP3-interacting proteins in chicken embryo fibroblasts cells. Virus Genes 2021; 57:194-204. [PMID: 33559837 DOI: 10.1007/s11262-021-01828-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
The structural protein VP3 of infectious bursal disease virus (IBDV) plays a critical role in viral assembly, replication, immune escape, and anti-apoptosis. Interaction between VP3 and host protein factors can affect stages in the viral replication cycle. In this study, 137 host proteins interacting with VP3 protein were screened through liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics approach. The functions and relevance of the proteins were obtained through bioinformatics analysis. Most VP3-interacting proteins were linked to binding, catalytic activity, and structural molecular activity, and performed functions in cell parts and cells. Biological functions of VP3-interacting proteins were mainly relevant to "Cytoskeleton", "Translation", and "Signal transduction mechanisms", involving ribosomes, "Tight junction", regulation of actin cytoskeleton, and other pathways. Six potential VP3-interacting proteins in host cells were knocked down, and vimentin, myosin-9, and annexin A2 were found to be related to IBDV replication. This study would help explore regulatory pathways and cellular mechanisms in IBDV-infected cells, and also provided clues for the in-depth study of VP3 biological functions and IBDV replication or pathogenesis.
Collapse
Affiliation(s)
- Sun-Ting Ma
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Yong-Shan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Xiao-Li Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Xing-Xia Xia
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Zhen-Wei Bi
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Jing-Yu Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Yu-Mei Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Wei Ouyang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. .,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China.
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. .,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China.
| |
Collapse
|
9
|
Huang X, Xu Y, Lin Q, Guo W, Zhao D, Wang C, Wang L, Zhou H, Jiang Y, Cui W, Qiao X, Li Y, Ma G, Tang L. Determination of antiviral action of long non-coding RNA loc107051710 during infectious bursal disease virus infection due to enhancement of interferon production. Virulence 2021; 11:68-79. [PMID: 31865850 PMCID: PMC6961729 DOI: 10.1080/21505594.2019.1707957] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The functions and profiles of lncRNAs during infectious bursal disease virus (IBDV) infection have not been determined, yet. The objectives of this study were to determine the antiviral action of loc107051710 lncRNA during IBDV infection by investigating the relationship between loc107051710 and IRF8, Type I IFN, STATs, and ISGs. DF-1 cells were either left untreated as non-infected controls (n = 1) or infected with IBDV (n = 3). RNA sequencing was applied for analysis of mRNAs and lncRNAs expression. Differentially expressed genes were verified by RT-qPCR. Then identification, of 230 significantly different expressed genes (182 mRNAs and 48 lncRNA) by pairwise comparison of the infected and control groups, was carried out. The functions of differentially expressed lncRNAs were investigated by selection of lncRNAs and mRNAs significantly enriched in the aforementioned biological processes and signaling pathways for construction of lncRNA-mRNA co-expression networks. The techniques of gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways were applied. It was suggested that these differentially expressed genes were involved in the interaction between the host and IBDV. Loc107051710 was found to have potential antiviral effects. RT-qPCR and western blot were applied and revealed that loc107051710 was required for induction of IRF8, type I IFN, STAT, and ISG expression, and its knockdown promoted IBDV replication. By fluorescence in situ hybridization, it was found that loc107051710 was translocated from the nucleus to the cytoplasm after infection with IBDV. Overall, loc107051710 promoted the production of IFN-α and IFN-β by regulating IRF8, thereby promoting the antiviral activity of ISGs.
Collapse
Affiliation(s)
- Xuewei Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Qingyu Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Weilong Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Dongfang Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Chunmei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Guangpeng Ma
- Agricultural High Technology Department, China Rural Technology Development Center, Beijing China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
10
|
Cytoplasmic Cargo Receptor p62 Inhibits Avibirnavirus Replication by Mediating Autophagic Degradation of Viral Protein VP2. J Virol 2020; 94:JVI.01255-20. [PMID: 32967959 PMCID: PMC7925189 DOI: 10.1128/jvi.01255-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/05/2020] [Indexed: 12/25/2022] Open
Abstract
Avibirnavirus causes severe immunosuppression and mortality in young chickens. VP2, the capsid protein of avibirnavirus, is responsible for virus assembly, maturation, and replication. Previous study showed that avibirnavirus particles could be engulfed into the autophagosome and degradation of virus particles took apart. Selective autophagy is a highly specific and regulated degradation pathway for the clearance of damaged or unwanted cytosolic components and superfluous organelles as well as invading microbes. However, whether and how selective autophagy removes avibirnavirus capsids is largely unknown. Here, we have shown that selective autophagy specifically clears ubiquitinated avibirnavirus protein VP2 by p62 recognition and that p62 is an inhibitor of avibirnavirus replication, highlighting the role of p62 as a potential drug target for mediating the removal of ubiquitinated virus components from cells. Selective autophagy regulates the degradation of cytoplasmic cargos, such as damaged organelles, invading pathogens, and aggregated proteins. Furthermore, autophagy is capable of degrading avibirnavirus, but the mechanism responsible for this process is unclear. Here, we show that autophagy cargo receptor p62 regulates the degradation of the avibirnavirus capsid protein VP2. Binding of p62 to VP2 enhances autophagic induction and promotes autophagic degradation of viral protein VP2. Further study showed that the interaction of p62 with viral protein VP2 is dependent on ubiquitination at the K411 site of VP2 and the ubiquitin-associated domain of p62. Mutation analysis showed that the K411R mutation of viral protein VP2 prohibits its p62-mediated degradation. Consistent with this finding, p62 lacking the ubiquitin-associated domain or the LC3-interacting region no longer promoted the degradation of VP2. Virus production revealed that the knockout of p62 but not the overexpression of p62 promotes the replication of avibirnavirus. Collectively, our findings suggest that p62 mediates selective autophagic degradation of avibirnavirus protein VP2 in a ubiquitin-dependent manner and is an inhibitor of avibirnavirus replication. IMPORTANCE Avibirnavirus causes severe immunosuppression and mortality in young chickens. VP2, the capsid protein of avibirnavirus, is responsible for virus assembly, maturation, and replication. Previous study showed that avibirnavirus particles could be engulfed into the autophagosome and degradation of virus particles took apart. Selective autophagy is a highly specific and regulated degradation pathway for the clearance of damaged or unwanted cytosolic components and superfluous organelles as well as invading microbes. However, whether and how selective autophagy removes avibirnavirus capsids is largely unknown. Here, we have shown that selective autophagy specifically clears ubiquitinated avibirnavirus protein VP2 by p62 recognition and that p62 is an inhibitor of avibirnavirus replication, highlighting the role of p62 as a potential drug target for mediating the removal of ubiquitinated virus components from cells.
Collapse
|
11
|
Zhang Y, Wen Z, Shi X, Liu YJ, Eriksson JE, Jiu Y. The diverse roles and dynamic rearrangement of vimentin during viral infection. J Cell Sci 2020; 134:134/5/jcs250597. [PMID: 33154171 DOI: 10.1242/jcs.250597] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epidemics caused by viral infections pose a significant global threat. Cytoskeletal vimentin is a major intermediate filament (IF) protein, and is involved in numerous functions, including cell signaling, epithelial-mesenchymal transition, intracellular organization and cell migration. Vimentin has important roles for the life cycle of particular viruses; it can act as a co-receptor to enable effective virus invasion and guide efficient transport of the virus to the replication site. Furthermore, vimentin has been shown to rearrange into cage-like structures that facilitate virus replication, and to recruit viral components to the location of assembly and egress. Surprisingly, vimentin can also inhibit virus entry or egress, as well as participate in host-cell defense. Although vimentin can facilitate viral infection, how this function is regulated is still poorly understood. In particular, information is lacking on its interaction sites, regulation of expression, post-translational modifications and cooperation with other host factors. This Review recapitulates the different functions of vimentin in the virus life cycle and discusses how they influence host-cell tropism, virulence of the pathogens and the consequent pathological outcomes. These insights into vimentin-virus interactions emphasize the importance of cytoskeletal functions in viral cell biology and their potential for the identification of novel antiviral targets.
Collapse
Affiliation(s)
- Yue Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Zeyu Wen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Xuemeng Shi
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku FI-20520, Finland .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China .,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| |
Collapse
|
12
|
Wang Y, Zhang H, Ma D, Deng X, Wu D, Li F, Wu Q, Liu H, Wang J. Hsp70 Is a Potential Therapeutic Target for Echovirus 9 Infection. Front Mol Biosci 2020; 7:146. [PMID: 32766279 PMCID: PMC7379509 DOI: 10.3389/fmolb.2020.00146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Echovirus is an important cause of viral pneumonia and encephalitis in infants, neonates, and young children worldwide. However, the exact mechanism of its pathogenesis is still not well understood. Here, we established an echovirus type 9 infection mice model, and performed two-dimensional gel electrophoresis (2DE) and tandem mass spectrometry (MS/MS)-based comparative proteomics analysis to investigate the differentially expressed host proteins in mice brain. A total of 21 differentially expressed proteins were identified by MS/MS. The annotation of the differentially expressed proteins by function using the UniProt and GO databases identified one viral protein (5%), seven cytoskeletal proteins (33%), six macromolecular biosynthesis and metabolism proteins (28%), two stress response and chaperone binding proteins (9%), and five other cellular proteins (25%). The subcellular locations of these proteins were mainly found in the cytoskeleton, cytoplasm, nucleus, mitochondria, and Golgi apparatus. The protein expression profiles and the results of quantitative RT-PCR in the detection of gene transcripts were found to complement each other. The differential protein interaction network was predicted using the STRING database. Of the identified proteins, heat shock protein 70 (Hsp70), showing consistent results in the proteomics and transcriptomic analyses, was analyzed through Western blotting to verify the reliability of differential protein expression data in this study. Further, evaluation of the function of Hsp70 using siRNA and quercetin, an inhibitor of Hsp70, showed that Hsp70 was necessary for the infection of echovirus type 9. This study revealed that echovirus infection could cause the differential expression of a series of host proteins, which is helpful to reveal the pathogenesis of viral infection and identify therapeutic drug targets. Additionally, our results suggest that Hsp70 could be a useful therapeutic host protein target for echovirus infection.
Collapse
Affiliation(s)
- Yang Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongbo Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiang Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongdong Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuge Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Yasmin AR, Omar AR, Farhanah MI, Hiscox AJ, Yeap SK. Quantitative Proteomics Analysis Revealed Compromised Chicken Dendritic Cells Function at Early Stage of Very Virulent Infectious Bursal Disease Virus Infection. Avian Dis 2020; 63:275-288. [PMID: 31251527 DOI: 10.1637/11936-072418-reg.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/19/2018] [Indexed: 11/05/2022]
Abstract
Chicken dendritic cells (DCs) have been demonstrated to be susceptible to infectious bursal disease virus (IBDV), a causative agent of acute and immunosuppressed disease in young chicks known as infectious bursal disease. Further functional characterization of IBDV-infected DCs of chickens is required to provide a better understanding on the influence of the virus on chicken bone marrow-derived dendritic cells (BM-DCs) following very virulent (vv) IBDV infection. Membrane proteins of BM-DCs were extracted and the proteins were further denatured and reduced before performing labeling with isobaric tags for relative and absolute quantitation. The differential expression protein profiles were identified and quantified using liquid chromatography coupled with tandem mass spectrometry, and later validated using flow cytometry and real-time reverse transcriptase PCR. The analysis has identified 134 differentially regulated proteins from a total of 283 proteins (cutoff values of ≤0.67, ≥1.5, and ProtScore >1.3 at 95% confidence interval), which produced high-yield membrane fractions. The entry of vvIBDV into the plasma membrane of BM-DCs was observed at 3 hr postinfection by the disruption of several important protein molecule functions, namely apoptosis, RNA/DNA/protein synthesis, and transport and cellular organization, without the activation of proteins associated with signaling. At the later stage of infection, vvIBDV induced expression of several proteins, namely CD200 receptor 1-A, integrin alpha-5, HSP-90, cathepsin, lysosomal-associated membrane protein, and Ras-related proteins, which play crucial roles in signaling, apoptosis, stress response, and antigen processing as well as in secretion of danger-associated proteins. These findings collectively indicated that the chicken DCs are expressing various receptors regarded as potential targets for pathogen interaction during viral infection. Therefore, fundamental study of the interaction of DCs and IBDV will provide valuable information in understanding the role of professional antigen-presenting cells in chickens and their molecular interactions during IBDV infection and vaccination.
Collapse
Affiliation(s)
- A R Yasmin
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia,
| | - A R Omar
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - M I Farhanah
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - A J Hiscox
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - S K Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| |
Collapse
|
14
|
Zhang Y, Hu B, Li Y, Deng T, Xu Y, Lei J, Zhou J. Binding of Avibirnavirus VP3 to the PIK3C3-PDPK1 complex inhibits autophagy by activating the AKT-MTOR pathway. Autophagy 2019; 16:1697-1710. [PMID: 31885313 DOI: 10.1080/15548627.2019.1704118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Macroautophagy/autophagy is a host natural defense response. Viruses have developed various strategies to subvert autophagy during their life cycle. Recently, we revealed that autophagy was activated by binding of Avibirnavirus to cells. In the present study, we report the inhibition of autophagy initiated by PIK3C3/VPS34 via the PDPK1-dependent AKT-MTOR pathway. Autophagy detection revealed that viral protein VP3 triggered inhibition of autophagy at the early stage of Avibirnavirus replication. Subsequent interaction analysis showed that the CC1 domain of VP3 disassociated PIK3C3-BECN1 complex by direct interaction with BECN1 and blocked autophagosome formation, while the CC3 domain of VP3 disrupted PIK3C3-PDPK1 complex via directly binding to PIK3C3 and inhibited both formation and maturation of autophagosome. Furthermore, we found that PDPK1 activated AKT-MTOR pathway for suppressing autophagy via binding to AKT. Finally, we proved that CC3 domain was critical for role of VP3 in regulating replication of Avibirnavirus through autophagy. Taken together, our study identified that Avibirnavirus VP3 links PIK3C3-PDPK1 complex to AKT-MTOR pathway and inhibits autophagy, a critical step for controlling virus replication. ABBREVIATIONS ATG14/Barkor: autophagy related 14; BECN1: beclin 1; CC: coiled-coil; ER: endoplasmic reticulum; hpi: hours post-infection; IBDV: infectious bursal disease virus; IP: co-immunoprecipitation; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; PDPK1: 3-phosphoinositid-dependent protein kinase-1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; SQSTM1: sequestosome 1; vBCL2: viral BCL2 apoptosis regulator.
Collapse
Affiliation(s)
- Yina Zhang
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University , Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University , Hangzhou, China
| | - Boli Hu
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University , Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University , Hangzhou, China
| | - Yahui Li
- MOE International Joint collaborative Research Laboratory for Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Tingjuan Deng
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University , Hangzhou, China
| | - Yuting Xu
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University , Hangzhou, China
| | - Jing Lei
- MOE International Joint collaborative Research Laboratory for Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University , Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University , Hangzhou, China
| |
Collapse
|
15
|
Jiang H, Wei L, Wang D, Wang J, Zhu S, She R, Liu T, Tian J, Quan R, Hou L, Li Z, Chu J, Zhou J, Guo Y, Xi Y, Song H, Yuan F, Liu J. ITRAQ-based quantitative proteomics reveals the first proteome profiles of piglets infected with porcine circovirus type 3. J Proteomics 2019; 212:103598. [PMID: 31785380 DOI: 10.1016/j.jprot.2019.103598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/24/2023]
Abstract
Porcine circovirus type 3 (PCV3) infection induces porcine dermatitis and nephropathy syndrome, reproductive failure, and multisystemic inflammatory lesions in piglets and sows. To better understand the host responses to PCV3 infection, isobaric tags for relative and absolute quantification (iTRAQ) labeling combined with LC-MS/MS analysis was used for quantitative determination of differentially regulated cellular proteins in the lungs of specific-pathogen-free piglets after 4 weeks of PCV3 infection. Totally, 3429 proteins were detected in three independent mass spectrometry analyses, of which 242 differential cellular proteins were significantly regulated, consisting of 100 upregulated proteins and 142 downregulated proteins in PCV3-infected group relative to control group. Bioinformatics analysis revealed that these higher or lower abundant proteins involved primarily metabolic processes, innate immune response, MHC-I and MHC-II components, and phagosome pathways. Ten genes encoding differentially regulated proteins were selected for investigation via real-time RT-PCR. The expression levels of six representative proteins, OAS1, Mx1, ISG15, IFIT3, SOD2, and HSP60, were further confirmed by Western blotting and immunohistochemistry. This study attempted for the first time to investigate the protein profile of PCV3-infected piglets using iTRAQ technology; our findings provide valuable information to better understand the mechanisms underlying the host responses to PCV3 infection in piglets. SIGNIFICANCE: Our study identified differentially abundant proteins related to a variety of potential signaling pathways in the lungs of PCV3-infected piglets. These findings provide valuable information to better understand the mechanisms of host responses to PCV3 infection.
Collapse
Affiliation(s)
- Haijun Jiang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Ruiping She
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Tianlong Liu
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Jijing Tian
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Lei Hou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jun Chu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Yuxin Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Yanyang Xi
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Huiqi Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Feng Yuan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China.
| |
Collapse
|
16
|
SUMO1 Modification Facilitates Avibirnavirus Replication by Stabilizing Polymerase VP1. J Virol 2019; 93:JVI.02227-18. [PMID: 30842328 DOI: 10.1128/jvi.02227-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/23/2019] [Indexed: 02/06/2023] Open
Abstract
SUMOylation is a posttranslational modification that has crucial roles in diverse cellular biological pathways and in various viral life cycles. In this study, we found that the VP1 protein, the RNA-dependent RNA polymerase of avibirnavirus infectious bursal disease virus (IBDV), regulates virus replication by SUMOylation during infection. Our data demonstrated that the polymerase VP1 is efficiently modified by small ubiquitin-like modifier 1 (SUMO1) in avibirnavirus-infected cell lines. Mutation analysis showed that residues 404I and 406I within SUMO interaction motif 3 of VP1 constitute the critical site for SUMO1 modification. Protein stability assays showed that SUMO1 modification enhanced significantly the stability of polymerase VP1 by inhibiting K48-linked ubiquitination. A reverse genetic approach showed that only IBDV with I404C/T and I406C/F mutations of VP1 could be rescued successfully with decreased replication ability. Our data demonstrated that SUMO1 modification is essential to sustain the stability of polymerase VP1 during IBDV replication and provides a potential target for designing antiviral drugs targeting IBDV.IMPORTANCE SUMOylation is an extensively discussed posttranslational modification in diverse cellular biological pathways. However, there is limited understanding about SUMOylation of viral proteins of IBDV during infection. In the present study, we revealed a SUMO1 modification of VP1 protein, the RNA-dependent RNA polymerase of avibirnavirus infectious bursal disease virus (IBDV). The required site of VP1 SUMOylation comprised residues 404I and 406I of SUMO interaction motif 3, which was essential for maintaining its stability by inhibiting K48-linked ubiquitination. We also showed that IBDV with SUMOylation-deficient VP1 had decreased replication ability. These data demonstrated that the SUMOylation of IBDV VP1 played an important role in maintaining IBDV replication.
Collapse
|
17
|
Li JY, Yong YH, Gong DL, Shi L, Wang XM, Gooneratne R, Yadnyavalkya P, Ju XH. Proteomic analysis of the response of porcine adrenal gland to heat stress. Res Vet Sci 2019; 122:102-110. [PMID: 30481676 PMCID: PMC7111741 DOI: 10.1016/j.rvsc.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/06/2018] [Accepted: 11/11/2018] [Indexed: 12/12/2022]
Abstract
Heat stress (HS) and its associated pathologies are major challenges facing the pig industry in southern China, and are responsible for large economic losses. However, the molecular mechanisms governing the abnormal secretion of HS-responsive hormones, such as glucocorticoids, are not fully understood. The goal of this study was to investigate differentially expressed proteins (DEPs) in the adrenal glands of pigs, and to elucidate changes in the immune neuroendocrine system in pigs following HS. Through a functional proteomics approach, we identified 1202 peptides, corresponding to 415 proteins. Of these, we found 226 DEPs between heat-stressed and control porcine adrenal gland tissue; 99 of these were up-regulated and 127 were down-regulated in response to HS. These DEPs included proteins involved in substrate transport, cytoskeletal changes, and stress responses. Ingenuity Pathway Analysis was used to identify the subcellular characterization, functional pathway involvement, regulatory networks, and upstream regulators of the identified proteins. Functional network and pathway analyses may provide insights into the complexity and dynamics of HS-host interactions, and may accelerate our understanding of the mechanisms of HS.
Collapse
Affiliation(s)
- Jun-Yu Li
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
| | - Yan-Hong Yong
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dong-Liang Gong
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lin Shi
- Department of Animal Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiao-Min Wang
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| | - Patil Yadnyavalkya
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| | - Xiang-Hong Ju
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China.
| |
Collapse
|
18
|
Ubiquitination Is Essential for Avibirnavirus Replication by Supporting VP1 Polymerase Activity. J Virol 2019; 93:JVI.01899-18. [PMID: 30429342 PMCID: PMC6340032 DOI: 10.1128/jvi.01899-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 11/20/2022] Open
Abstract
Avibirnavirus protein VP1, the RNA-dependent RNA polymerase, is responsible for IBDV genome replication, gene expression, and assembly. However, little is known about its chemical modification relating to its polymerase activity. In this study, we revealed the molecular mechanism of ubiquitin modification of VP1 via a K63-linked ubiquitin chain during infection. Lysine (K) residue 751 at the C terminus of VP1 is the target site for ubiquitin, and its ubiquitination is independent of VP1’s interaction with VP3 and eukaryotic initiation factor 4A II. The K751 ubiquitination promotes the polymerase activity of VP1 and unubiquitinated VP1 mutant IBDV significantly impairs virus replication. We conclude that VP1 is the ubiquitin-modified protein and reveal the mechanism by which VP1 promotes avibirnavirus replication. Ubiquitination is critical for several cellular physical processes. However, ubiquitin modification in virus replication is poorly understood. Therefore, the present study aimed to determine the presence and effect of ubiquitination on polymerase activity of viral protein 1 (VP1) of avibirnavirus. We report that the replication of avibirnavirus is regulated by ubiquitination of its VP1 protein, the RNA-dependent RNA polymerase of infectious bursal disease virus (IBDV). In vivo detection revealed the ubiquitination of VP1 protein in IBDV-infected target organs and different cells but not in purified IBDV particles. Further analysis of ubiquitination confirms that VP1 is modified by K63-linked ubiquitin chain. Point mutation screening showed that the ubiquitination site of VP1 was at the K751 residue in the C terminus. The K751 ubiquitination is independent of VP1’s interaction with VP3 and eukaryotic initiation factor 4A II. Polymerase activity assays indicated that the K751 ubiquitination at the C terminus of VP1 enhanced its polymerase activity. The K751-to-R mutation of VP1 protein did not block the rescue of IBDV but decreased the replication ability of IBDV. Our data demonstrate that the ubiquitination of VP1 is crucial to regulate its polymerase activity and IBDV replication. IMPORTANCE Avibirnavirus protein VP1, the RNA-dependent RNA polymerase, is responsible for IBDV genome replication, gene expression, and assembly. However, little is known about its chemical modification relating to its polymerase activity. In this study, we revealed the molecular mechanism of ubiquitin modification of VP1 via a K63-linked ubiquitin chain during infection. Lysine (K) residue 751 at the C terminus of VP1 is the target site for ubiquitin, and its ubiquitination is independent of VP1’s interaction with VP3 and eukaryotic initiation factor 4A II. The K751 ubiquitination promotes the polymerase activity of VP1 and unubiquitinated VP1 mutant IBDV significantly impairs virus replication. We conclude that VP1 is the ubiquitin-modified protein and reveal the mechanism by which VP1 promotes avibirnavirus replication.
Collapse
|
19
|
Tarifeño-Saldivia E, Aguilar A, Contreras D, Mercado L, Morales-Lange B, Márquez K, Henríquez A, Riquelme-Vidal C, Boltana S. Iron Overload Is Associated With Oxidative Stress and Nutritional Immunity During Viral Infection in Fish. Front Immunol 2018; 9:1296. [PMID: 29922300 PMCID: PMC5996096 DOI: 10.3389/fimmu.2018.01296] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022] Open
Abstract
Iron is a trace element, essential to support life due to its inherent ability to exchange electrons with a variety of molecules. The use of iron as a cofactor in basic metabolic pathways is essential to both pathogenic microorganisms and their hosts. During evolution, the shared requirement of micro- and macro-organisms for this important nutrient has shaped the pathogen-host relationship. Infectious pancreatic necrosis virus (IPNv) affects salmonids constituting a sanitary problem for this industry as it has an important impact on post-smolt survival. While immune modulation induced by IPNv infection has been widely characterized on Salmo salar, viral impact on iron host metabolism has not yet been elucidated. In the present work, we evaluate short-term effect of IPNv on several infected tissues from Salmo salar. We observed that IPNv displayed high tropism to headkidney, which directly correlates with a rise in oxidative stress and antiviral responses. Transcriptional profiling on headkidney showed a massive modulation of gene expression, from which biological pathways involved with iron metabolism were remarkable. Our findings suggest that IPNv infection increase oxidative stress on headkidney as a consequence of iron overload induced by a massive upregulation of genes involved in iron metabolism.
Collapse
Affiliation(s)
- Estefanía Tarifeño-Saldivia
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Andrea Aguilar
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| | - David Contreras
- Renewable Resources Laboratory, Biotechnology Center, University of Concepción, University Campus, Concepción, Chile
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Byron Morales-Lange
- Grupo de Marcadores Inmunológicos, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Katherine Márquez
- Renewable Resources Laboratory, Biotechnology Center, University of Concepción, University Campus, Concepción, Chile
| | - Adolfo Henríquez
- Renewable Resources Laboratory, Biotechnology Center, University of Concepción, University Campus, Concepción, Chile
| | - Camila Riquelme-Vidal
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Sebastian Boltana
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| |
Collapse
|
20
|
Zhou N, Fan C, Liu S, Zhou J, Jin Y, Zheng X, Wang Q, Liu J, Yang H, Gu J, Zhou J. Cellular proteomic analysis of porcine circovirus type 2 and classical swine fever virus coinfection in porcine kidney-15 cells using isobaric tags for relative and absolute quantitation-coupled LC-MS/MS. Electrophoresis 2017; 38:1276-1291. [PMID: 28247913 DOI: 10.1002/elps.201600541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 12/22/2022]
Abstract
Viral coinfection or superinfection in host has caused public health concern and huge economic losses of farming industry. The influence of viral coinfection on cellular protein abundance is essential for viral pathogenesis. Based on a coinfection model for porcine circovirus type 2 (PCV2) and classical swine fever virus (CSFV) developed previously by our laboratory, isobaric tags for relative and absolute quantitation (iTRAQ)-coupled LC-MS/MS proteomic profiling was performed to explore the host cell responses to PCV2-CSFV coinfection. Totally, 3932 proteins were identified in three independent mass spectrometry analyses. Compared with uninfected cells, 304 proteins increased (fold change >1.2) and 198 decreased (fold change <0.833) their abundance in PCV2-infected cells (p < 0.05), 60 and 61 were more and less abundant in CSFV-infected cells, and 196 and 158 were more and less abundant, respectively in cells coinfected with PCV2 and CSFV. Representative differentially abundant proteins were validated by quantitative real-time PCR, Western blotting and confocal laser scanning microscopy. Bioinformatic analyses confirmed the dominant role of PCV2, and indicated that mitochondrial dysfunction, nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response and apoptosis signaling pathways might be the specifical targets during PCV2-CSFV coinfection.
Collapse
Affiliation(s)
- Niu Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Chunmei Fan
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Song Liu
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jianwei Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yulan Jin
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaojuan Zheng
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Qin Wang
- China Institute of Veterinary Drug and Control, Beijing, PR China
| | - Jue Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Hanchun Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Jinyan Gu
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, PR China.,Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, PR China.,State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
21
|
Han K, Zhao D, Liu Y, Liu Q, Huang X, Yang J, Bi K, Xu T, Li Y. Generation and characterization of a monoclonal antibody against duck Tembusu virus envelope protein. Pol J Vet Sci 2017; 19:877-883. [PMID: 28092616 DOI: 10.1515/pjvs-2016-0109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that has caused massive economic losses to the duck industry in China. Envelope (E) protein of DTMUV is an important structural protein, which is able to induce protective immune response in target animals and can be used as specific serological diagnosis tool. In this study, a novel monoclonal antibody, designated mAb 3E9, was generated against DTMUV E protein. It is positive in indirect ELISA against both His-E protein and the purified whole viral antigen. Also, this mAb showed positive reaction with DTMUV in Western blot and indirect immunofluorescence assay, and the isotype was IgG1. End-point neutralizing assay performed in BHK-21 cells revealed that the neutralization titer of 3E9 against DTMUV JS804 strain reached 1:50. Furthermore, functional studies revealed that 3E9 blocks infection of DTMUV at a step on viral attachment. The anti-E mAbs produced in the present work may be valuable in developing an antigen-capture ELISA test for antigen detection or a competitive ELISA test for antibody detection or therapeutic medicine for DTMUV in poultry.
Collapse
|
22
|
Analysis of the spleen proteome of chickens infected with reticuloendotheliosis virus. Arch Virol 2017; 162:1187-1199. [PMID: 28097424 PMCID: PMC5387025 DOI: 10.1007/s00705-016-3180-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/19/2016] [Indexed: 10/30/2022]
Abstract
Infection with reticuloendotheliosis virus (REV), a gammaretrovirus in the family Retroviridae, can result in immunosuppression and subsequent increased susceptibility to secondary infections. In the present study, we identified differentially expressed proteins in the spleens of chickens infected with the REV-A HLJ07I strain, using two-dimensional gel electrophoresis on samples from time points coinciding with different phases of the REV life cycle. Differentially expressed proteins were identified using one-dimensional liquid chromatography electrospray ionization tandem mass spectrometry (1D LC ESI MS/MS). Comparative analysis of multiple gels revealed that the majority of changes occurred at early stages of infection. In total, 60 protein spots representing 28 host proteins were detected as either quantitatively (false discovery rate [FDR] ≤0.05 and fold change ≥2) or qualitatively differentially expressed at least once during different sampling points. The differentially expressed proteins identified in this study included antioxidants, molecular chaperones, cellular metabolism, formation of the cytoskeleton, signal transduction, cell proliferation and cellar aging. The present findings provide a basis for further studies to elucidate the role of these proteins in REV-host interactions. This could lead to a better understanding of REV infection mechanisms that cause immune suppression.
Collapse
|
23
|
Quan R, Zhu S, Wei L, Wang J, Yan X, Li Z, Liu J. Transcriptional profiles in bursal B-lymphoid DT40 cells infected with very virulent infectious bursal disease virus. Virol J 2017; 14:7. [PMID: 28086922 PMCID: PMC5237357 DOI: 10.1186/s12985-016-0668-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Background Infectious bursal disease virus (IBDV) causes a highly contagious, immunosuppressive disease in chickens. The virus mainly infects immature B lymphocytes in the bursa of Fabricius (BF). Chicken B cell line DT40, an avian leukosis virus-induced B cell line, supports very virulent IBDV (vvIBDV) infection in vitro and thereby serves as a good model for investigating the infection and pathogenesis of this virus. However, a transcriptome-wide understanding of the interaction between vvIBDV and B cells has not yet been achieved. This study aimed to employ time-course DNA microarrays to investigate gene expression patterns in DT40 cells after infection with vvIBDV strain LX. Results DT40 cells infected with vvIBDV exhibited alterations in the expression of many important host genes involved in signal transduction pathways, including MAPK signaling, PI3K/mTOR signaling, cell death and survival, BCR signaling, and antigen presentation. The changes in cellular mRNA levels identified by microarray analysis were confirmed for 8 selected genes using real-time reverse transcription-PCR. The upregulation of inflammatory cytokines and Toll-like receptors (TLRs) in the bursa of vvIBDV-infected chickens might involve excessive activation of the innate immune and inflammatory responses and contribute to tissue damage. Conclusions The present study is the first to provide a comprehensive differential transcriptional profile of cultured DT40 cells in response to vvIBDV infection and further extends our understanding of the molecular mechanisms underlying vvIBDV infection and pathogenesis.
Collapse
Affiliation(s)
- Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Xu Yan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China.
| |
Collapse
|
24
|
Li Y, Ming F, Huang H, Guo K, Chen H, Jin M, Zhou H. Proteome Response of Chicken Embryo Fibroblast Cells to Recombinant H5N1 Avian Influenza Viruses with Different Neuraminidase Stalk Lengths. Sci Rep 2017; 7:40698. [PMID: 28079188 PMCID: PMC5227709 DOI: 10.1038/srep40698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
The variation on neuraminidase (NA) stalk region of highly pathogenic avian influenza H5N1 virus results in virulence change in animals. In our previous studies, the special NA stalk-motif of H5N1 viruses has been demonstrated to play a significant role in the high virulence and pathogenicity in chickens. However, the molecular mechanisms underlying the pathogenicity of viruses with different NA stalk remain poorly understood. This study presents a comprehensive characterization of the proteome response of chicken cells to recombinant H5N1 virus with stalk-short NA (rNA-wt) and the stalkless NA mutant virus (rSD20). 208 proteins with differential abundance profiles were identified differentially expressed (DE), and these proteins were mainly related to stress response, transcription regulation, transport, metabolic process, cellular component and cytoskeleton. Through Ingenuity Pathways Analysis (IPA), the significant biological functions of DE proteins represented included Post-Translational Modification, Protein Folding, DNA Replication, Recombination and Repair. It was interesting to find that most DE proteins were involved in the TGF-β mediated functional network. Moreover, the specific DE proteins may play important roles in the innate immune responses and H5N1 virus replication. Our data provide important information regarding the comparable host response to H5N1 influenza virus infection with different NA stalk lengths.
Collapse
Affiliation(s)
- Yongtao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China.,College of Animal Husbandry &Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, P.R. China
| | - Fan Ming
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Huimin Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Kelei Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
25
|
Biron D, Nedelkov D, Missé D, Holzmuller P. Proteomics and Host–Pathogen Interactions. GENETICS AND EVOLUTION OF INFECTIOUS DISEASES 2017. [PMCID: PMC7149668 DOI: 10.1016/b978-0-12-799942-5.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Du J, Xing S, Tian Z, Gao S, Xie J, Chang H, Liu G, Luo J, Yin H. Proteomic analysis of sheep primary testicular cells infected with bluetongue virus. Proteomics 2016; 16:1499-514. [PMID: 26989863 PMCID: PMC7168089 DOI: 10.1002/pmic.201500275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 01/03/2016] [Accepted: 03/11/2016] [Indexed: 01/06/2023]
Abstract
Bluetongue virus (BTV) causes a non‐contagious, arthropod‐transmitted disease in wild and domestic ruminants, such as sheep. In this study, we used iTRAQ labeling coupled with LC‐MS/MS for quantitative identification of differentially expressed proteins in BTV‐infected sheep testicular (ST) cells. Relative quantitative data were obtained for 4455 proteins in BTV‐ and mock‐infected ST cells, among which 101 and 479 proteins were differentially expressed at 24 and 48 h post‐infection, respectively, indicating further proteomic changes during the later stages of infection. Ten corresponding genes of differentially expressed proteins were validated via real‐time RT‐PCR. Expression levels of three representative proteins, eIF4a1, STAT1 and HSP27, were further confirmed via western blot analysis. Bioinformatics analysis disclosed that the differentially expressed proteins are primarily involved in biological processes related to innate immune response, signal transduction, nucleocytoplasmic transport, transcription and apoptosis. Several upregulated proteins were associated with the RIG‐I‐like receptor signaling pathway and endocytosis. To our knowledge, this study represents the first attempt to investigate proteome‐wide dysregulation in BTV‐infected cells with the aid of quantitative proteomics. Our collective results not only enhance understanding of the host response to BTV infection but also highlight multiple potential targets for the development of antiviral agents.
Collapse
Affiliation(s)
- Junzheng Du
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Shanshan Xing
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Zhancheng Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Shandian Gao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Junren Xie
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| |
Collapse
|
27
|
Han K, Zhao D, Liu Y, Liu Q, Huang X, Yang J, An F, Li Y. Quantitative Proteomic Analysis of Duck Ovarian Follicles Infected with Duck Tembusu Virus by Label-Free LC-MS. Front Microbiol 2016; 7:463. [PMID: 27066001 PMCID: PMC4815560 DOI: 10.3389/fmicb.2016.00463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/21/2016] [Indexed: 12/15/2022] Open
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that has caused massive economic losses to the duck industry in China. DTMUV infection mainly results in significant decreases in egg production in egg-laying ducks within 1–2 weeks post infection. However, information on the comparative protein expression of host tissues in response to DTMUV infection is limited. In the present study, the cellular protein response to DTMUV infection in duck ovarian follicles was analyzed using nano-flow high-performance liquid chromatography-electrospray tandem mass spectrometry. Quantitative proteomic analysis revealed 131 differentially expressed proteins, among which 53 were up regulated and 78 were down regulated. The identified proteins were involved in the regulation of essential processes such as cellular structure and integrity, RNA processing, protein biosynthesis and modification, vesicle transport, signal transduction, and mitochondrial pathway. Some selected proteins that were found to be regulated in DTMUV-infected tissues were screened by quantitative real-time PCR to examine their regulation at the transcriptional level, western blot analysis was used to validate the changes of some selected proteins on translational level. To our knowledge, this study is the first to analyze the proteomic changes in duck ovarian follicles following DTMUV infection. The protein-related information obtained in this study may be useful to understand the host response to DTMUV infection and the inherent mechanism of DTMUV replication and pathogenicity.
Collapse
Affiliation(s)
- Kaikai Han
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Dongmin Zhao
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Yuzhuo Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Xinmei Huang
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Jing Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Fengjiao An
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Yin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
28
|
Zheng W, Lu X, Fu Z, Zhang L, Li X, Xu X, Ren Y, Lu Y, Fu H, Tian J. Identification of candidate synovial membrane biomarkers after Achyranthes aspera treatment for rheumatoid arthritis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:308-316. [DOI: 10.1016/j.bbapap.2015.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/21/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022]
|
29
|
Cho HK, Kim J, Moon JY, Nam BH, Kim YO, Kim WJ, Park JY, An CM, Cheong J, Kong HJ. Microarray analysis of gene expression in olive flounder liver infected with viral haemorrhagic septicaemia virus (VHSV). FISH & SHELLFISH IMMUNOLOGY 2016; 49:66-78. [PMID: 26631808 DOI: 10.1016/j.fsi.2015.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/04/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
The most fatal viral pathogen in olive flounder Paralichthys olivaceus, is viral hemorrhagic septicemia virus, which afflicts over 48 species of freshwater and marine fish. Here, we performed gene expression profiling on transcripts isolated from VHSV-infected olive flounder livers using a 13 K cDNA microarray chip. A total of 1832 and 1647 genes were upregulated and down-regulated over two-fold, respectively, after infection. A variety of immune-related genes showing significant changes in gene expression were identified in upregulated genes through gene ontology annotation. These genes were grouped into categories such as antibacterial peptide, antigen-recognition and adhesion molecules, apoptosis, cytokine-related pathway, immune system, stress response, and transcription factor and regulatory factors. To verify the cDNA microarray data, we performed quantitative real-time PCR, and the results were similar to the microarray data. In conclusion, these results may be useful for the identification of specific genes or for the diagnosis of VHSV infection in flounder.
Collapse
Affiliation(s)
- Hyun Kook Cho
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Julan Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Ji Young Moon
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Woo-Jin Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Jung Youn Park
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Cheul Min An
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Jaehun Cheong
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea.
| |
Collapse
|
30
|
Zheng X, Jia L, Hu B, Sun Y, Zhang Y, Gao X, Deng T, Bao S, Xu L, Zhou J. The C-terminal amyloidogenic peptide contributes to self-assembly of Avibirnavirus viral protease. Sci Rep 2015; 5:14794. [PMID: 26440769 PMCID: PMC4594098 DOI: 10.1038/srep14794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
Unlike other viral protease, Avibirnavirus infectious bursal disease virus (IBDV)-encoded viral protease VP4 forms unusual intracellular tubule-like structures during viral infection. However, the formation mechanism and potential biological functions of intracellular VP4 tubules remain largely elusive. Here, we show that VP4 can assemble into tubules in diverse IBDV-infected cells. Dynamic analysis show that VP4 initiates the assembly at early stage of IBDV infection, and gradually assembles into larger size of fibrils within the cytoplasm and nucleus. Intracellular assembly of VP4 doesn't involve the host cytoskeleton, other IBDV-encoded viral proteins or vital subcellular organelles. Interestingly, the last C-terminal hydrophobic and amyloidogenic stretch (238)YHLAMA(243) with two "aggregation-prone" alanine residues was found to be essential for its intracellular self-assembly. The assembled VP4 fibrils show significantly low solubility, subsequently, the deposition of highly assembled VP4 structures ultimately deformed the host cytoskeleton and nucleus, which was potentially associated with IBDV lytic infection. Importantly, the assembly of VP4 significantly reduced the cytotoxicity of protease activity in host cells which potentially prevent the premature cell death and facilitate viral replication. This study provides novel insights into the formation mechanism and biological functions of the Avibirnavirus protease-related fibrils.
Collapse
Affiliation(s)
- Xiaojuan Zheng
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China.,State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, PR China
| | - Lu Jia
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China
| | - Boli Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanting Sun
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China
| | - Yina Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China
| | - Xiangxiang Gao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China
| | - Tingjuan Deng
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China
| | - Shengjun Bao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China
| | - Li Xu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China.,State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, PR China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
31
|
Guo X, Hu H, Chen F, Li Z, Ye S, Cheng S, Zhang M, He Q. iTRAQ-based comparative proteomic analysis of Vero cells infected with virulent and CV777 vaccine strain-like strains of porcine epidemic diarrhea virus. J Proteomics 2015; 130:65-75. [PMID: 26361011 PMCID: PMC7102838 DOI: 10.1016/j.jprot.2015.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 12/24/2022]
Abstract
The re-emerging porcine epidemic diarrhea virus (PEDV) variant related diarrhea has been documented in China since late 2010 and now with global distribution. Currently, a virulent PEDV CH/YNKM-8/2013 and a CV777 vaccine strain-like AH-M have been successfully isolated from the clinical samples. To dissect out the underlying pathogenic mechanism of virulent PEDV and clarify the differences between virulent and CV777 vaccine strain-like PEDV infections, we performed an iTRAQ-based comparative quantitative proteomic study of Vero cells infected with both PEDV strains. A total of 661 and 474 differentially expressed proteins were identified upon virulent and CV777 vaccine strain-like isolates infection, respectively. Ingenuity Pathway Analysis was employed to investigate the canonical pathways and functional networks involved in both PEDV infections. Comprehensive studies have revealed that the PEDV virulent strain suppressed protein synthesis of Vero cells through down-regulating mTOR as well as its downstream targets 4EBP1 and p70S6K activities, which were validated by immunoblotting. In addition, the virulent strain could activate NF-κB pathway more intensively than the CV777 vaccine strain-like isolate, and elicit stronger inflammatory cascades as well. These data might provide new insights for elucidating the specific pathogenesis of PEDV infection, and pave the way for the development of effective therapeutic strategies. Biological significance Porcine epidemic diarrhea is now worldwide distributed and causing huge economic losses to swine industry. The immunomodulation and pathogenesis between PEDV and host, as well as the difference between virulent and attenuated strains of PEDV infections are still largely unknown. In this study, we presented for the first application of proteomic analysis to compare whole cellular protein alterations induced by virulent and CV777 vaccine strain-like PEDV infections, which might contribute to understand the pathogenesis of PEDV and anti-viral strategy development.
Vero cells proteome was individually analyzed upon virulent and attenuated PEDV infections. Many pathways and interactive networks were constructed based on differentially expressed proteins. Virulent PEDV strain suppressed mTOR as well as its downstream targets 4EBP1 and p70S6K activities. Virulent PEDV strain activated NF-κB pathway more intensively than the attenuated isolate.
Collapse
Affiliation(s)
- Xiaozhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhonghua Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyi Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Cheng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China
| | - Mengjia Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
32
|
Sun Y, Hu B, Fan C, Jia L, Zhang Y, Du A, Zheng X, Zhou J. iTRAQ-based quantitative subcellular proteomic analysis of Avibirnavirus-infected cells. Electrophoresis 2015; 36:1596-611. [PMID: 25929241 PMCID: PMC7163642 DOI: 10.1002/elps.201500014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 11/19/2022]
Abstract
Infectious bursal disease virus (IBDV) enters the host cells via endocytic pathway to achieve viral replication in the cytoplasm. Here, we performed LC-MS/MS coupled with isobaric tags for relative and absolute quantification labeling of differentially abundant proteins of IBDV-infected cells using a subcellular fractionation strategy. We show that the viral infection regulates the abundance and/or subcellular localization of 3211 proteins during early infection. In total, 23 cellular proteins in the cytoplasmic proteome and 34 in the nuclear proteome were significantly altered after virus infection. These differentially abundant proteins are involved in such biological processes as immune response, signal transduction, RNA processing, macromolecular biosynthesis, energy metabolism, virus binding, and cellular apoptosis. Moreover, transcriptional profiles of the 25 genes corresponding to the identified proteins were analyzed by quantitative real-time RT-PCR. Ingenuity Pathway Analysis clustered the differentially abundant proteins primarily into the mTOR pathway, PI3K/Akt pathway, and interferon-β signaling cascades. Confocal microscopy showed colocalization of the viral protein VP3 with host proteins heterogeneous nuclear ribonucleoprotein H1, nuclear factor 45, apoptosis inhibitor 5, nuclear protein localization protein 4 and DEAD-box RNA helicase 42 during the virus infection. Together, these identified subcellular constituents provide important information for understanding host-IBDV interactions and underlying mechanisms of IBDV infection and pathogenesis.
Collapse
Affiliation(s)
- Yanting Sun
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
| | - Boli Hu
- College of Veterinary MedicineNanjing Agricultural UniversityNanjingP. R. China
| | - Chengfei Fan
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
| | - Lu Jia
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
| | - Yina Zhang
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
| | - Aifang Du
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
| | - Xiaojuan Zheng
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang UniversityHangzhouP. R. China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
- College of Veterinary MedicineNanjing Agricultural UniversityNanjingP. R. China
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang UniversityHangzhouP. R. China
| |
Collapse
|
33
|
Zhou MT, Qin Y, Li M, Chen C, Chen X, Shu HB, Guo L. Quantitative Proteomics Reveals the Roles of Peroxisome-associated Proteins in Antiviral Innate Immune Responses. Mol Cell Proteomics 2015; 14:2535-49. [PMID: 26124285 DOI: 10.1074/mcp.m115.048413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 11/06/2022] Open
Abstract
Compared with whole-cell proteomic analysis, subcellular proteomic analysis is advantageous not only for the increased coverage of low abundance proteins but also for generating organelle-specific data containing information regarding dynamic protein movement. In the present study, peroxisome-enriched fractions from Sendai virus (SeV)-infected or uninfected HepG2 cells were obtained and subjected to quantitative proteomics analysis. We identified 311 proteins that were significantly changed by SeV infection. Among these altered proteins, 25 are immune response-related proteins. Further bioinformatic analysis indicated that SeV infection inhibits cell cycle-related proteins and membrane attack complex-related proteins, all of which are beneficial for the survival and replication of SeV within host cells. Using Luciferase reporter assays on several innate immune-related reporters, we performed functional analysis on 11 candidate proteins. We identified LGALS3BP and CALU as potential negative regulators of the virus-induced activation of the type I interferons.
Collapse
Affiliation(s)
- Mao-Tian Zhou
- From the ‡State Key Laboratory of Virology, College of Life Sciences
| | - Yue Qin
- From the ‡State Key Laboratory of Virology, College of Life Sciences; §Medical Research Institute, Wuhan University
| | - Mi Li
- From the ‡State Key Laboratory of Virology, College of Life Sciences; §Medical Research Institute, Wuhan University
| | - Chen Chen
- From the ‡State Key Laboratory of Virology, College of Life Sciences
| | - Xi Chen
- ¶Wuhan Institute of Biotechnology, Wuhan, China
| | - Hong-Bing Shu
- From the ‡State Key Laboratory of Virology, College of Life Sciences; §Medical Research Institute, Wuhan University;
| | - Lin Guo
- From the ‡State Key Laboratory of Virology, College of Life Sciences;
| |
Collapse
|
34
|
Hui RK, Leung FC. Differential Expression Profile of Chicken Embryo Fibroblast DF-1 Cells Infected with Cell-Adapted Infectious Bursal Disease Virus. PLoS One 2015; 10:e0111771. [PMID: 26053856 PMCID: PMC4460012 DOI: 10.1371/journal.pone.0111771] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 10/01/2014] [Indexed: 12/17/2022] Open
Abstract
RNA-Seq was used to unveil the transcriptional profile of DF-1 cells at the early stage of caIBDV infection. Total RNAs were extracted from virus-infected cells at 0, 6 and 12 hpi. RNA-Seq datasets of respective samples mapped to 56.5–57.6% of isoforms in the reference genome Galgal4.73. At 6 hpi, 23 isoforms underwent an elevated expression, while 128 isoforms were up-regulated and 5 were down-regulated at 12 hpi in the virus-infected group. Besides, 10 isoforms were exclusively expressed in the virus-infected cells. Though no significant change was detected in cytokine and interferon expression levels at the first 12 hours of infection, modulations of the upstream regulators were observed. In addition to the reported regulatory factors including EIF2AK2, MX, OAS*A, GBP7 and IFIT, IBDV infection also triggered a IFIT5-IRF1/3-RSAD5 pathway in the DF-1 cells which potentially restricted the viral replication cycle in the early infection stage. Over-expression of LIPA and CH25H, together with the suppression of STARD4, LSS and AACS genes implied a modulation of membrane fluidity and lipid raft arrangement in the infected cells. Alternative splicing of the EFR3 homolog A gene was also through to be involved in the lipid membrane regulation, and these cumulative responses projected an inhibition of viral endocytosis. Recognition of viral RNA genomes and intermediates was presumably enhanced by the elevated levels of IFIH1, DHX58 and TRIM25 genes which possess properties on detecting viral dsRNA. On the other hand, the caIBDV arrested the host's apoptotic process by inducing the expression of apoptosis inhibitors including NFKBIA/Z, TNFAIP2/3 and ITA at the first 12 hours of infection. In conclusion, the differential expression landscape demonstrated with RNA-Seq provides a comprehensive picture on the molecular interactions between host cells and virus at the early stage of infection.
Collapse
Affiliation(s)
- Raymond K. Hui
- School of Biological Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Frederick C. Leung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
35
|
Wang S, Hu B, Si W, Jia L, Zheng X, Zhou J. Avibirnavirus VP4 Protein Is a Phosphoprotein and Partially Contributes to the Cleavage of Intermediate Precursor VP4-VP3 Polyprotein. PLoS One 2015; 10:e0128828. [PMID: 26046798 PMCID: PMC4457844 DOI: 10.1371/journal.pone.0128828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/30/2015] [Indexed: 11/19/2022] Open
Abstract
Birnavirus-encoded viral protein 4 (VP4) utilizes a Ser/Lys catalytic dyad mechanism to process polyprotein. Here three phosphorylated amino acid residues Ser538, Tyr611 and Thr674 within the VP4 protein of the infectious bursal disease virus (IBDV), a member of the genus Avibirnavirus of the family Birnaviridae, were identified by mass spectrometry. Anti-VP4 monoclonal antibodies finely mapping to phosphorylated (p)Ser538 and the epitope motif 530PVVDGIL536 were generated and verified. Proteomic analysis showed that in IBDV-infected cells the VP4 was distributed mainly in the cytoskeletal fraction and existed with different isoelectric points and several phosphorylation modifications. Phosphorylation of VP4 did not influence the aggregation of VP4 molecules. The proteolytic activity analysis verified that the pTyr611 and pThr674 sites within VP4 are involved in the cleavage of viral intermediate precursor VP4-VP3. This study demonstrates that IBDV-encoded VP4 protein is a unique phosphoprotein and that phosphorylation of Tyr611 and Thr674 of VP4 affects its serine-protease activity.
Collapse
Affiliation(s)
- Sanying Wang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
- Shaoxing Center for Disease Control and Prevention, Shaoxing, PR China
| | - Boli Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Weiying Si
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Lu Jia
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Xiaojuan Zheng
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, PR China
- * E-mail: (JYZ); (XJZ)
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, PR China
- * E-mail: (JYZ); (XJZ)
| |
Collapse
|
36
|
Xu D, Song L, Wang H, Xu X, Wang T, Lu L. Proteomic analysis of cellular protein expression profiles in response to grass carp reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2015; 44:515-524. [PMID: 25783000 DOI: 10.1016/j.fsi.2015.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 06/04/2023]
Abstract
Grass carp (Ctenopharyngodon idella) hemorrhagic disease, caused by grass carp reovirus (GCRV), is emerging as a serious problem in grass carp aquaculture. To better understand the molecular responses to GCRV infection, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization tandem mass spectroscopy were performed to investigate altered proteins in C. idella kidney (CIK) cells. Differentially expressed proteins in mock infected CIK cells and GCRV-infected CIK cells were compared. Twenty-three differentially expressed spots were identified (22 upregulated spots and 1 downregulated spot), which included cytoskeleton proteins, macromolecular biosynthesis-associated proteins, stress response proteins, signal transduction proteins, energy metabolism-associated proteins and ubiquitin proteasome pathway-associated proteins. Moreover, 10 of the corresponding genes of the differentially expressed proteins were quantified by real-time reverse transcription polymerase chain reaction to examine their transcriptional profiles. The T cell internal antigen 1 (TIA1) and Ras-GTPase-activating SH3-domain-binding protein1 (G3BP1) of the cellular stress granule pathway from grass carp C. idella (designated as CiTIA1 and CiG3BP1) were upregulated and downregulated during GCRV infection, respectively. The full-length cDNA of CiTIA1 was 2753 bp, with an open reading frame (ORF) of 1155bp, which encodes a putative 385-amino acid protein. The 2271 bp full-length cDNA of CiG3BP1 comprised an ORF of 1455 bp that encodes a putative 485-amino acid protein. Phylogenetic analysis revealed that the complete ORFs of CiTIA1 and CiG3BP1 were very similar to zebrafish and well-characterized mammalian homologs. The expressions of the cellular proteins CiTIA1 and CiG3BP1 in response to GCRV were validated by western blotting, which indicated that the GCRV should unlink TIA1 aggregation and stress granule formation. This study provides useful information on the proteomic and cellular stress granule pathway's responses to GCRV infection, which adds to our understanding of viral pathogenesis.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Lang Song
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Hao Wang
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xiaoyan Xu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Tu Wang
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Liqun Lu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
37
|
Proteomic and immunological identification of two new allergens from silkworm (Bombyx mori L.) pupae. Cent Eur J Immunol 2015; 40:30-4. [PMID: 26155181 PMCID: PMC4472537 DOI: 10.5114/ceji.2015.50830] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/10/2015] [Indexed: 11/28/2022] Open
Abstract
This study explored food allergy caused by eating silkworm (Bombyx mori L.) pupae, a traditionally accepted food and animal feed in East and Southeast Asia, and identified two new allergens by proteomic and immunological methods. Proteins isolated from silkworm pupae were separated by two-dimensional gel electrophoresis (2-DE); pooled sera from patients allergic to silkworm pupa proteins were used to detect immunoglobulin E (IgE)-binding proteins by western blotting, and allergens specific for silkworm pupa consumption-caused allergy were visualised with the ECL reagents. The selected allergen proteins were further identified by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. Finally, chitinase and paramyosin were identified as silkworm pupa proteins showing strong immunoglobulin (IgE)-binding reaction. Analysis of the sequence homology of the two proteins using the AllergenOnline database indicated that chitinase and paramyosin shared 24.8% and 62.8% sequence homology with known allergens Der f 18 (Dermatophagoides farinae) and Der p 11 (Dermatophagoides pteronyssinus), respectively. Our results shed light on the understanding and treatment of silkworm pupa allergy.
Collapse
|
38
|
Du C, Liu HF, Lin YZ, Wang XF, Ma J, Li YJ, Wang X, Zhou JH. Proteomic alteration of equine monocyte-derived macrophages infected with equine infectious anemia virus. Proteomics 2015; 15:1843-58. [PMID: 25684102 DOI: 10.1002/pmic.201400279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/06/2015] [Accepted: 02/05/2015] [Indexed: 01/18/2023]
Abstract
Similar to the well-studied viruses human immunodeficiency virus (HIV)-1 and simian immunodeficiency virus (SIV), equine infectious anemia virus (EIAV) is another member of the Lentivirus genus in the family Retroviridae. Previous studies revealed that interactions between EIAV and the host resulted in viral evolution in pathogenicity and immunogenicity, as well as adaptation to the host. Proteomic analysis has been performed to examine changes in protein expression and/or modification in host cells infected with viruses and has revealed useful information for virus-host interactions. In this study, altered protein expression in equine monocyte-derived macrophages (eMDMs, the principle target cell of EIAV in vivo) infected with the EIAV pathogenic strain EIAV(DLV34) (DLV34) was examined using 2D-LC-MS/MS coupled with the iTRAQ labeling technique. The expression levels of 210 cellular proteins were identified to be significantly upregulated or downregulated by infection with DLV34. Alterations in protein expression were confirmed by examining the mRNA levels of eight selected proteins using quantitative real-time reverse-transcription PCR, and by verifying the levels of ten selected proteins using parallel reaction monitoring (PRM). Further analysis of GO and Kyoto Encyclopedia of Genes and Genomes (KEGG)-Pathway enrichment demonstrated that these differentially expressed proteins are primarily related to the biological processes of oxidative phosphorylation, protein folding, RNA splicing, and ubiquitylation. Our results can facilitate a better understanding of the host response to EIAV infection and the cellular processes required for EIAV replication and pathogenesis.
Collapse
Affiliation(s)
- Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Hai-Fang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yi-Jing Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China.,Hayao Pharmaceutical Group Biovaccine Co, Harbin, P. R. China
| |
Collapse
|
39
|
Zeng S, Zhang H, Ding Z, Luo R, An K, Liu L, Bi J, Chen H, Xiao S, Fang L. Proteome analysis of porcine epidemic diarrhea virus (PEDV)-infected Vero cells. Proteomics 2015; 15:1819-28. [PMID: 25604190 PMCID: PMC7167732 DOI: 10.1002/pmic.201400458] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/04/2014] [Accepted: 01/16/2015] [Indexed: 12/16/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes an acute, highly contagious, and devastating viral enteric disease with a high mortality rate in suckling pigs. A large‐scale outbreak of PED occurred in China in 2010, with PEDV emerging in the United States in 2013 and spreading rapidly, posing significant economic and public health concerns. In this study, LC–MS/MS coupled to iTRAQ labeling was used to quantitatively identify differentially expressed cellular proteins in PEDV‐infected Vero cells. We identified 49 differentially expressed cellular proteins, of which 8 were upregulated and 41 downregulated. These differentially expressed proteins were involved in apoptosis, signal transduction, and stress responses. Based on these differentially expressed proteins, we propose that PEDV might utilize apoptosis and extracellular signal regulated kinases pathways for maximum viral replication. Our study is the first attempt to analyze the protein profile of PEDV‐infected cells by quantitative proteomics, and we believe our findings provide valuable information with respect to better understanding the host response to PEDV infection.
Collapse
Affiliation(s)
- Songlin Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Huan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Zhen Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Kang An
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Lianzeng Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Jing Bi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
40
|
Quantitative iTRAQ LC-MS/MS proteomics reveals the proteome profiles of DF-1 cells after infection with subgroup J Avian leukosis virus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:395307. [PMID: 25632391 PMCID: PMC4302370 DOI: 10.1155/2015/395307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/09/2014] [Accepted: 12/17/2014] [Indexed: 12/18/2022]
Abstract
Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that can induce various clinical tumors and has caused severe economic losses in China. To improve our understanding of the host cellular responses to virus infection and the pathogenesis of ALV-J infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with multidimensional liquid chromatography-tandem mass spectrometry to detect the protein changes in DF-1 cells infected and mock-infected with ALV-J. A total of 75 cellular proteins were significantly changed, including 33 upregulated proteins and 42 downregulated proteins. The reliability of iTRAQ-LC MS/MS was confirmed via real-time PCR. Most of these proteins were related to the physiological functions of metabolic processes, biosynthetic processes, responses to stimuli, protein binding, signal transduction, cell cytoskeleton, and so forth. We also found some proteins that play important roles in apoptosis and oncogenicity. The differentially expressed proteins identified may provide valuable information to elucidate the pathogenesis of virus infection and virus-host interactions.
Collapse
|
41
|
Zhang J, Ruan X, Zan J, Zheng X, Yan Y, Liao M, Zhou J. Efficient generation of monoclonal antibodies against major structural proteins of rabies virus with suckling mouse brain antigen. Monoclon Antib Immunodiagn Immunother 2014; 33:94-100. [PMID: 24746150 DOI: 10.1089/mab.2013.0087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The rabies virus is a neurotropic virus that causes fatal disease in humans and animals. However, not all commercial antibodies against rabies virus (RABV) structural proteins are generally available, and production of high-quality monoclonal antibodies (MAbs) requires high purification of virus particles and special facilities and is time-consuming. By using RABV-infected suckling mouse brain as antigens in this study, 11 hybridoma cells secreting MAbs against RABV were obtained, which showed strong reactivity with RABV-infected Vero cells in immunofluorescence assay. Among the 11 MAbs, three MAbs (1B11, 1C8, and 8H12) showed a neutralizing effect to RABV, while MAb 4B7 recognized the recombinant nucleoprotein (N) of RABV expressed in Vero cells; seven MAbs (1H3, 3H7, 4E7, 4G3, 5A10, 6C9, and 7B3) reacted specifically with phosphoprotein (P) of RABV. The MAbs developed in this study will be useful in establishing a diagnostic test and study on the interactions between RABV and its host.
Collapse
Affiliation(s)
- Jinyang Zhang
- 1 Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University , Hangzhou, P.R. China
| | | | | | | | | | | | | |
Collapse
|
42
|
An K, Fang L, Luo R, Wang D, Xie L, Yang J, Chen H, Xiao S. Quantitative proteomic analysis reveals that transmissible gastroenteritis virus activates the JAK-STAT1 signaling pathway. J Proteome Res 2014; 13:5376-90. [PMID: 25357264 DOI: 10.1021/pr500173p] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transmissible gastroenteritis virus (TGEV), a porcine enteropathogenic coronavirus, causes lethal watery diarrhea and severe dehydration in piglets. In this study, liquid chromatography-tandem mass spectrometry coupled to isobaric tags for relative and absolute quantification labeling was used to quantitatively identify differentially expressed cellular proteins after TGEV infection in PK-15 cells. In total, 162 differentially expressed cellular proteins were identified, including 60 upregulated proteins and 102 downregulated proteins. These differentially expressed proteins were involved in the cell cycle, cellular growth and proliferation, the innate immune response, etc. Interestingly, many upregulated proteins were associated with interferon signaling, especially signal transducer and activator of transcription 1 (STAT1) and interferon-stimulated genes (ISGs). Immunoblotting and real-time quantitative reverse transcription polymerase chain reaction demonstrated that TGEV infection induces STAT1 phosphorylation and nuclear translocation, as well as ISG expression. This study for the first time reveals that TGEV induces interferon signaling from the point of proteomic analysis.
Collapse
Affiliation(s)
- Kang An
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, Hubei China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
He X, He X, Liu H, Li M, Cai S, Fu Z, Lu X. Proteomic analysis of BmN cells (Bombyx mori) in response to infection with Nosema bombycis. Acta Biochim Biophys Sin (Shanghai) 2014; 46:982-90. [PMID: 25267721 DOI: 10.1093/abbs/gmu092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Nosema bombycis (N. bombycis, Nb) is an obligate intracellular parasite, which can cause pebrine disease in the silkworm. To investigate the effects of N. bombycis infection on the host cells, proteomes from BmN cells that had or had not been infected with N. bombycis at different infection stages were characterized with two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry, which identified 24 differentially expressed host proteins with significant intensity differences (P < 0.05) at least at one time point in mock- and N. bombycis infected cells. Notably, gene ontology analyses showed that these proteins are involved in many important biological reactions. During the infection phase, proteins involved in energy metabolism and oxidative stress had up-regulated expression. Two proteins participated in ubiquitin-dependent protein catabolic process had down-regulated expression. Quantitative real-time polymerase chain reaction was used to analyze the transcriptional profiles of these identified proteins. Taken together, the abundance changes, putative functions, and participation in biological reactions for the identified proteins produce a host-responsive protein model in N. bombycis-infected BmN cells. These findings further our knowledge about the effect of energy defect parasites on the host cells.
Collapse
Affiliation(s)
- Xinyi He
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangkang He
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Han Liu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingqian Li
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shunfeng Cai
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhangwuke Fu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingmeng Lu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
44
|
Liu J, Bai J, Zhang L, Hou C, Li Y, Jiang P. Proteomic alteration of PK-15 cells after infection by porcine circovirus type 2. Virus Genes 2014; 49:400-16. [PMID: 25103791 PMCID: PMC7089180 DOI: 10.1007/s11262-014-1106-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
Abstract
Porcine circovirus type 2 (PCV2) has been identified as the essential causal agent of post-weaning multisystemic wasting syndrome, which has spread worldwide. To discover cellular protein responses of PK-15 cells to PCV2 infection, two-dimensional liquid chromatography-tandem mass spectrometry (MS) coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling was employed to quantitatively identify the proteins that were differentially expressed in PK-15 from the PCV2-infected group compared to the uninfected control group. A total of 196 cellular proteins in PK-15 that were significantly altered at different time periods post-infection were identified. These differentially expressed proteins were related to the biological processes of binding, cell structure, signal transduction, cell adhesion, etc. and their interactions. Moreover, some of these proteins were further confirmed by Western blot. The high number of differentially expressed proteins identified should be very useful in elucidating the mechanism of replication and pathogenesis of PCV2 in the future.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Cho SY, Kwon J, Vaidya B, Kim JO, Lee S, Jeong EH, Baik KS, Choi JS, Bae HJ, Oh MJ, Kim D. Modulation of proteome expression by F-type lectin during viral hemorrhagic septicemia virus infection in fathead minnow cells. FISH & SHELLFISH IMMUNOLOGY 2014; 39:464-474. [PMID: 24931624 DOI: 10.1016/j.fsi.2014.05.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/13/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
Lectins found in fish tissues play an important role in the innate immune response against viral infection. A fucose-binding type lectin, RbFTL-3, from rock bream (Oplegnathus fasciatus) was identified using expressed sequence tag (EST) analysis. The expression of RbFTL-3 mRNA was higher in intestine than other tissues of rock bream. To determine the function of RbFTL-3, VHSV-susceptible fathead minnow (FHM) cells were transfected with pcDNA3.1(+) or pcDNA3.1(+)-RbFTL-3 and further infected with VHSV. The results show that the viability of FHM cells transfected with pcDNA3.1(+)-RbFTL-3 is higher than that of cells transfected with pcDNA3.1(+) (relative cell viability: 28.9% vs 56.2%). A comparative proteomic analysis, performed to explore the proteins related to the protective effect of RbFTL-3 in the cells during VHSV infection, identified 90 proteins differentially expressed in VHSV-infected FHM cells transfected with pcDNA3.1(+) or pcDNA3.1(+)-RbFTL-3. The expression of RbFTL-3 inhibits a vascular-sorting protein (SNF8) and diminishes the loss of prothrombin, which are closely associated with controlling viral budding and hemorrhage in fish cells, respectively. Subsequent Ingenuity Pathways Analysis enabled prediction of their biofunctional groupings and interaction networks. The results suggest RbFTL-3 modulates the expression of proteins related to viral budding (SNF8, CCT5 and TUBB) and thrombin signaling (F2) to increase the viability of VHSV infected cells.
Collapse
Affiliation(s)
- Se-Young Cho
- Department of Food Science and Technology and Functional Food Research Center, Chonnam National University, Gwangju 500-757, South Korea
| | - Joseph Kwon
- Korea Basic Science Institute, Daejeon 305-806, South Korea
| | - Bipin Vaidya
- Department of Food Science and Technology and Functional Food Research Center, Chonnam National University, Gwangju 500-757, South Korea
| | - Jong-Oh Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu 550-749, Jeonnam, South Korea
| | - Sunghoon Lee
- Personal Genomics Institute, Genome Research Foundation, Suwon 443-270, South Korea
| | - Eun-Hye Jeong
- Department of Food Science and Technology and Functional Food Research Center, Chonnam National University, Gwangju 500-757, South Korea
| | - Keun Sik Baik
- Korea Basic Science Institute, Daejeon 305-806, South Korea
| | - Jong-Soon Choi
- Korea Basic Science Institute, Daejeon 305-806, South Korea
| | - Hyeun-Jong Bae
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, South Korea; Bioenergy Research Center, Chonnam National University, Gwangju 500-757, South Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu 550-749, Jeonnam, South Korea.
| | - Duwoon Kim
- Department of Food Science and Technology and Functional Food Research Center, Chonnam National University, Gwangju 500-757, South Korea; Bioenergy Research Center, Chonnam National University, Gwangju 500-757, South Korea.
| |
Collapse
|
46
|
Inhibition of antiviral innate immunity by birnavirus VP3 protein via blockage of viral double-stranded RNA binding to the host cytoplasmic RNA detector MDA5. J Virol 2014; 88:11154-65. [PMID: 25031338 DOI: 10.1128/jvi.01115-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Chicken MDA5 (chMDA5), the sole known pattern recognition receptor for cytoplasmic viral RNA in chickens, initiates type I interferon (IFN) production. Infectious bursal disease virus (IBDV) evades host innate immunity, but the mechanism is unclear. We report here that IBDV inhibited antiviral innate immunity via the chMDA5-dependent signaling pathway. IBDV infection did not induce efficient type I interferon (IFN) production but antagonized the antiviral activity of beta interferon (IFN-β) in DF-1 cells pretreated with IFN-α/β. Dual-luciferase assays and inducible expression systems demonstrated that IBDV protein VP3 significantly inhibited IFN-β expression stimulated by naked IBDV genomic double-stranded RNA (dsRNA). The VP3 protein competed strongly with chMDA5 to bind IBDV genomic dsRNA in vitro and in vivo, and VP3 from other birnaviruses also bound dsRNA. Site-directed mutagenesis confirmed that deletion of the VP3 dsRNA binding domain restored IFN-β expression. Our data demonstrate that VP3 inhibits antiviral innate immunity by blocking binding of viral genomic dsRNA to MDA5. IMPORTANCE MDA5, a known pattern recognition receptor and cytoplasmic viral RNA sensor, plays a critical role in host antiviral innate immunity. Many pathogens escape or inhibit the host antiviral immune response, but the mechanisms involved are unclear for most pathogens. We report here that birnaviruses inhibit host antiviral innate immunity via the MDA5-dependent signaling pathway. The antiviral innate immune system involving IFN-β did not function effectively during birnavirus infection, and the viral protein VP3 significantly inhibited IFN-β expression stimulated by naked viral genomic dsRNA. We also show that VP3 blocks MDA5 binding to viral genomic dsRNA in vitro and in vivo. Our data reveal that birnavirus-encoded viral protein VP3 is an inhibitor of the antiviral innate immune response and inhibits the antiviral innate immune response via the MDA5-dependent signaling pathway.
Collapse
|
47
|
Zhu Y, Wang C, Wang X, Li B, Li F. Effect of dietary fiber/starch balance on the cecal proteome of growing rabbits. J Proteomics 2014; 103:23-34. [DOI: 10.1016/j.jprot.2014.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 12/23/2022]
|
48
|
Chen WT, Wu YL, Chen T, Cheng CS, Chan HL, Chou HC, Chen YW, Yin HS. Proteomics analysis of the DF-1 chicken fibroblasts infected with avian reovirus strain S1133. PLoS One 2014; 9:e92154. [PMID: 24667214 PMCID: PMC3965424 DOI: 10.1371/journal.pone.0092154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Avian reovirus (ARV) is a member of the Orthoreovirus genus in the Reoviridae family. It is the etiological agent of several diseases, among which viral arthritis and malabsorption syndrome are the most commercially important, causing considerable economic losses in the poultry industry. Although a small but increasing number of reports have characterized some aspects of ARV infection, global changes in protein expression in ARV-infected host cells have not been examined. The current study used a proteomics approach to obtain a comprehensive view of changes in protein levels in host cells upon infection by ARV. METHODOLOGY AND PRINCIPAL FINDINGS The proteomics profiles of DF-1 chicken fibroblast cells infected with ARV strain S1133 were analyzed by two-dimensional differential-image gel electrophoresis. The majority of protein expression changes (≥ 1.5 fold, p<0.05) occurred at 72 h post-infection. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified 51 proteins with differential expression levels, including 25 that were upregulated during ARV infection and 26 that were downregulated. These proteins were divided into eight groups according to biological function: signal transduction, stress response, RNA processing, the ubiquitin-proteasome pathway, lipid metabolism, carbohydrate metabolism, energy metabolism, and cytoskeleton organization. They were further examined by immunoblotting to validate the observed alterations in protein expression. CONCLUSION/SIGNIFICANCE This is the first report of a time-course proteomic analysis of ARV-infected host cells. Notably, all identified proteins involved in signal transduction, RNA processing, and the ubiquitin-proteasome pathway were downregulated in infected cells, whereas proteins involved in DNA synthesis, apoptosis, and energy production pathways were upregulated. In addition, other differentially expressed proteins were linked with the cytoskeleton, metabolism, redox regulation, and stress response. These proteomics data provide valuable information about host cell responses to ARV infection and will facilitate further studies of the molecular mechanisms underlying ARV pathogenesis.
Collapse
Affiliation(s)
- Wen-Ting Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Le Wu
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chao-Sheng Cheng
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiu-Chuan Chou
- Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan
| | - Yi-Wen Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsien-Sheng Yin
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
49
|
Wu Y, Jin Y, Pan W, Ye C, Sun X, Sun Y, Hu B, Zhou J. Comparative proteomics analysis of host cells infected with Brucella abortus A19. Electrophoresis 2014; 35:1130-43. [PMID: 24519676 DOI: 10.1002/elps.201300378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 01/18/2023]
Abstract
We carried out a proteomic analysis of THP-1-derived macrophages with and without Brucella abortus A19 (B. abortus A19) infection in order to study the cellular responses to B. abortus A19. The proteins were analyzed at different time points after infection with 2DE followed by MALDI-TOF/TOF identification. Comparative analysis of multiple 2DE gels revealed that the majority of changes in protein abundance appeared between 48 and 96 h after infection. MS identified 44 altered proteins, including 20 proteins increased in abundance and 24 proteins decreased in abundance, which were found to be involved in cytoskeleton, signal transduction, energy metabolism, host macromolecular biosynthesis, and stress response. Moreover, 22 genes corresponding to the altered proteins were quantified by real-time RT-PCR to examine the transcriptional profiles between infected and uninfected THP-1-derived macrophages. Finally, we mapped the altered pathways and networks using ingenuity pathway analysis, which suggested that the altered protein species were heavily favored germ cell-Sertoli cell junction signaling as the primary pathway. Furthermore, mechanisms of viral exit from host cell and macrophage stimulating protein-recepteur d'origine nantais signaling appeared to be major pathways modulated in infected cells. This study effectively provides useful dynamic protein-related information concerning B. abortus infection in macrophages.
Collapse
Affiliation(s)
- Yongping Wu
- College of Animal Sciences and Technology, Zhejiang A&F University, Hangzhou, P.R. China; Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Shen X, Wang T, Xu D, Lu L. Proteomic identification, characterization and expression analysis of Ctenopharyngodon idella VDAC1 upregulated by grass carp reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2014; 37:96-107. [PMID: 24434647 DOI: 10.1016/j.fsi.2014.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/05/2014] [Accepted: 01/05/2014] [Indexed: 06/03/2023]
Abstract
Voltage-dependent anion channels (VDACs) located in the mitochondrial outer membrane are mitochondrial porins that play central roles in regulating cell life and death. In this present report, the VDAC protein 1 from grass carp Ctenopharyngodon idella (designated as CiVDAC1) was found to be upregulated by grass carp reovirus (GCRV) infection through two-dimensional gel electrophoresis and protein analysis of infected C. idella kidney (CIK) cells. The full-length cDNA of CiVDAC1 was 995 bp with an open reading frame (ORF) of 852 bp that encodes a putative 283-amino acid protein. Phylogenic analysis revealed that the complete ORF of CiVDAC1 demonstrated high identity with well characterized mammalian homologs. The deduced CiVDAC1 protein contains an α-helix at the amino terminal, 19 membrane-spanning β-strands, and one eukaryotic mitochondrial porin signature motif. Tissue tropism analysis indicated that CiVDAC1 is abundant in muscle, heart, skin, swim bladder, trunk kidney and spleen. Transcriptional expression profiles indicated that the CiVDAC1 gene was upregulated upon viral challenge in a manner similar to the Mx2 gene, which is a marker gene used to indicate activation of innate antiviral immunity. Similar expression patterns of the CiVDAC1 gene were observed in CIK cells stimulated with poly (I:C), as well as grass carp kidney tissue challenged with GCRV in vivo. CiVDAC1 silencing in CIK cells had no impact on progeny virus production, but over-expression of CiVDAC1 in vivo showed strongly protect against challenge with live virus. To interpret the role of other VDAC proteins in viral pathogenesis, CiVDAC2 was characterized and showed to respond positively to GCRV challenge, which suggested that CiVDAC2 might functionally complement CiVDAC1 in C. idella. The present data did demonstrate that CiVDAC1 might be mediated grass carp antiviral immune response.
Collapse
Affiliation(s)
- Xiaobao Shen
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture of P. R. China, Shanghai Ocean University, Shanghai 201306, China
| | - Tu Wang
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture of P. R. China, Shanghai Ocean University, Shanghai 201306, China
| | - Dan Xu
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture of P. R. China, Shanghai Ocean University, Shanghai 201306, China
| | - Liqun Lu
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture of P. R. China, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|