1
|
Yilmaz EG, Hacıosmanoğlu N, Jordi SBU, Yilmaz B, Inci F. Revolutionizing IBD research with on-chip models of disease modeling and drug screening. Trends Biotechnol 2024:S0167-7799(24)00284-1. [PMID: 39523166 DOI: 10.1016/j.tibtech.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel disease (IBD) comprises chronic inflammatory conditions with complex mechanisms and diverse manifestations, posing significant clinical challenges. Traditional animal models and ethical concerns in human studies necessitate innovative approaches. This review provides an overview of human intestinal architecture in health and inflammation, emphasizing the role of microfluidics and on-chip technologies in IBD research. These technologies allow precise manipulation of cellular and microbial interactions in a physiologically relevant context, simulating the intestinal ecosystem microscopically. By integrating cellular components and replicating 3D tissue architecture, they offer promising models for studying host-microbe interactions, wound healing, and therapeutic approaches. Continuous refinement of these technologies promises to advance IBD understanding and therapy development, inspiring further innovation and cross-disciplinary collaboration.
Collapse
Affiliation(s)
- Eylul Gulsen Yilmaz
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Nedim Hacıosmanoğlu
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Sebastian Bruno Ulrich Jordi
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010, Bern, Switzerland; Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010, Bern, Switzerland; Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland.
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey.
| |
Collapse
|
2
|
Kumari B, Tiwari A, Meena S, Ahirwar DK. Inflammation-Associated Stem Cells in Gastrointestinal Cancers: Their Utility as Prognostic Biomarkers and Therapeutic Targets. Cancers (Basel) 2024; 16:3134. [PMID: 39335106 PMCID: PMC11429849 DOI: 10.3390/cancers16183134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Stem cells are critical for the development and homeostasis of the gastrointestinal (GI) tract. Inflammatory molecules are known to regulate the activity of stem cells. A comprehensive review specifically describing the role of inflammatory molecules in the regulation of stem cells within the GI tract and in GI cancers (GICs) is not available. This review focuses on understanding the role of inflammatory molecules and stem cells in maintaining homeostasis of the GI tract. We further discuss how inflammatory conditions contribute to the transformation of stem cells into tumor-initiating cells. We also describe the molecular mechanisms of inflammation and stem cell-driven progression and metastasis of GICs. Furthermore, we report on studies describing the prognostic value of cancer stem cells and the clinical trials evaluating their therapeutic utility. This review provides a detailed overview on the role of inflammatory molecules and stem cells in maintaining GI tract homeostasis and their implications for GI-related malignancies.
Collapse
Affiliation(s)
- Beauty Kumari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Aniket Tiwari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Sakshi Meena
- School of Life Sciences, Devi Ahilya Vishwavidyalaya Indore, Indore 452001, Madhya Pradesh, India;
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| |
Collapse
|
3
|
Ando T, Takazawa I, Spencer ZT, Ito R, Tomimori Y, Mikulski Z, Matsumoto K, Ishitani T, Denson LA, Kawakami Y, Kawakami Y, Kitaura J, Ahmed Y, Kawakami T. Ileal Crohn's Disease Exhibits Reduced Activity of Phospholipase C-β3-Dependent Wnt/β-Catenin Signaling Pathway. Cells 2024; 13:986. [PMID: 38891118 PMCID: PMC11171731 DOI: 10.3390/cells13110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Crohn's disease is a chronic, debilitating, inflammatory bowel disease. Here, we report a critical role of phospholipase C-β3 (PLC-β3) in intestinal homeostasis. In PLC-β3-deficient mice, exposure to oral dextran sodium sulfate induced lethality and severe inflammation in the small intestine. The lethality was due to PLC-β3 deficiency in multiple non-hematopoietic cell types. PLC-β3 deficiency resulted in reduced Wnt/β-catenin signaling, which is essential for homeostasis and the regeneration of the intestinal epithelium. PLC-β3 regulated the Wnt/β-catenin pathway in small intestinal epithelial cells (IECs) at transcriptional, epigenetic, and, potentially, protein-protein interaction levels. PLC-β3-deficient IECs were unable to respond to stimulation by R-spondin 1, an enhancer of Wnt/β-catenin signaling. Reduced expression of PLC-β3 and its signature genes was found in biopsies of patients with ileal Crohn's disease. PLC-β regulation of Wnt signaling was evolutionally conserved in Drosophila. Our data indicate that a reduction in PLC-β3-mediated Wnt/β-catenin signaling contributes to the pathogenesis of ileal Crohn's disease.
Collapse
Affiliation(s)
- Tomoaki Ando
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
- Atopy Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ikuo Takazawa
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
| | - Zachary T. Spencer
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA; (Z.T.S.)
| | - Ryoji Ito
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
- Central Institute for Experimental Animals, Kawasaki 210-0821, Kanagawa, Japan
| | - Yoshiaki Tomimori
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
| | - Zbigniew Mikulski
- Imaging Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Tohru Ishitani
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-0044, Gunma, Japan
| | - Lee A. Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yu Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
| | - Yuko Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
| | - Jiro Kitaura
- Atopy Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA; (Z.T.S.)
| | - Toshiaki Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
| |
Collapse
|
4
|
Khan R, Jori C, Ansari MM, Ahmad A, Nadeem A, Siddiqui N, Sultana S. α-Terpineol Mitigates Dextran Sulfate Sodium-Induced Colitis in Rats by Attenuating Inflammation and Apoptosis. ACS OMEGA 2023; 8:29794-29802. [PMID: 37599911 PMCID: PMC10433518 DOI: 10.1021/acsomega.3c04317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
Ulcerative colitis (UC) is one of the major inflammatory disorders of the gastrointestinal tract. α-Terpineol (αTL) is naturally present in several plants, and it belongs to the monoterpenes category. αTL possesses various pharmacological properties such as antioxidant, antibacterial, antifungal, anticancer, and antiulcer activities. Importantly, αTL has been reported to possess potent anti-inflammatory effects also. In this study, we hypothesize that αTL may have protective effects against dextran sodium sulfate (DSS)-induced colitis in Wistar rats. Animals were randomly allocated to 3 groups of 6 rats each. In group III, αTL was administered at a dose of 50 mg/kg b. wt. orally from days 1 to 14, while in groups II and III, 4% DSS in drinking water was given to rats ad libitum from the 7th to 14th days. After 24 h of the last dose of αTL, all animals were euthanized. αTL administration reduced the DSS-induced colonic disease activity index, tissue damage, and goblet cell disintegration. αTL suppressed the orchestration of mast cells in the inflamed colon, enhanced the immunostaining of NF-kB-p65, COX-2, iNOS, p53, caspase-9, and cleaved caspase-3, and suppressed the immunostaining of connexin-43, survivin, and Bcl-2. The activities of caspases-9 and -3 were reduced significantly by αTL pretreatment, as also confirmed by calorimetric assays. Moreover, αTL significantly attenuated the nitric oxide level and myeloperoxidase activity. Histological results further support the fact that αTL reduced DSS-induced colonic damage and reduced inflammatory cell infiltration. Overall, our findings suggest that αTL has strong protective effects against DSS-induced colitis by mitigating inflammatory and apoptotic responses.
Collapse
Affiliation(s)
- Rehan Khan
- Chemical
Biology Unit, Institute of Nano Science
and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Chandrashekhar Jori
- Chemical
Biology Unit, Institute of Nano Science
and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Md. Meraj Ansari
- Centre
for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and
Research, S.A.S Nagar,
Sector 67, Mohali 160062, Punjab, India
| | - Anas Ahmad
- Julia
McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology,
Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases
and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ahmed Nadeem
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nahid Siddiqui
- Amity
Institute of Biotechnology, Amity University, Noida 201303, India
| | - Sarwat Sultana
- Department
of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
5
|
Iyer K, Erkert L, Becker C. Know your neighbors: microbial recognition at the intestinal barrier and its implications for gut homeostasis and inflammatory bowel disease. Front Cell Dev Biol 2023; 11:1228283. [PMID: 37519301 PMCID: PMC10375050 DOI: 10.3389/fcell.2023.1228283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Intestinal epithelial cells (IECs) perform several physiological and metabolic functions at the epithelial barrier. IECs also play an important role in defining the overall immune functions at the mucosal region. Pattern recognition receptors (PRRs) on the cell surface and in other cellular compartments enable them to sense the presence of microbes and microbial products in the intestinal lumen. IECs are thus at the crossroads of mediating a bidirectional interaction between the microbial population and the immune cells present at the intestinal mucosa. This communication between the microbial population, the IECs and the underlying immune cells has a profound impact on the overall health of the host. In this review, we focus on the various PRRs present in different cellular compartments of IECs and discuss the recent developments in the understanding of their role in microbial recognition. Microbial recognition and signaling at the epithelial barrier have implications in the maintenance of intestinal homeostasis, epithelial barrier function, maintenance of commensals, and the overall tolerogenic function of PRRs in the gut mucosa. We also highlight the role of an aberrant microbial sensing at the epithelial barrier in the pathogenesis of inflammatory bowel disease (IBD) and the development of colorectal cancer.
Collapse
Affiliation(s)
- Krishna Iyer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, United States
| | - Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Zhang M, Wang ZZ, Chen NH. Connexin 43 Phosphorylation: Implications in Multiple Diseases. Molecules 2023; 28:4914. [PMID: 37446576 DOI: 10.3390/molecules28134914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Connexin 43 (Cx43) is most widely distributed in mammals, especially in the cardiovascular and nervous systems. Its phosphorylation state has been found to be regulated by the action of more than ten kinases and phosphatases, including mitogen-activated protein kinase/extracellular signaling and regulating kinase signaling. In addition, the phosphorylation status of different phosphorylation sites affects its own synthesis and assembly and the function of the gap junctions (GJs) to varying degrees. The phosphorylation of Cx43 can affect the permeability, electrical conductivity, and gating properties of GJs, thereby having various effects on intercellular communication and affecting physiological or pathological processes in vitro and in vivo. Therefore, clarifying the relationship between Cx43 phosphorylation and specific disease processes will help us better understand the disease. Based on the above clinical and preclinical findings, we present in this review the functional significance of Cx43 phosphorylation in multiple diseases and discuss the potential of Cx43 as a drug target in Cx43-related disease pathophysiology, with an emphasis on the importance of connexin 43 as an emerging therapeutic target in cardiac and neuroprotection.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
7
|
Guo Q, Hou X, Cui Q, Li S, Shen G, Luo Q, Wu H, Chen H, Liu Y, Chen A, Zhang Z. Pectin mediates the mechanism of host blood glucose regulation through intestinal flora. Crit Rev Food Sci Nutr 2023; 64:6714-6736. [PMID: 36756885 DOI: 10.1080/10408398.2023.2173719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Pectin is a complex polysaccharide found in plant cell walls and interlayers. As a food component, pectin is benefit for regulating intestinal flora. Metabolites of intestinal flora, including short-chain fatty acids (SCFAs), bile acids (BAs) and lipopolysaccharides (LPS), are involved in blood glucose regulation. SCFAs promote insulin synthesis through the intestine-GPCRs-derived pathway and hepatic adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway to promote hepatic glycogen synthesis. On the one hand, BAs stimulate intestinal L cells and pancreatic α cells to secrete Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) through receptors G protein-coupled receptor (TGR5) and farnesoid X receptor (FXR). On the other hand, BAs promote hepatic glycogen synthesis through AMPK pathway. LPS inhibits the release of inflammatory cytokines through Toll-like receptors (TLRs)-myeloid differentiation factor 88 (MYD88) pathway and mitogen-activated protein kinase (MAPK) pathway, thereby alleviating insulin resistance (IR). In brief, both SCFAs and BAs promote GLP-1 secretion through different pathways, employing strategies of increasing glucose consumption and decreasing glucose production to maintain normal glucose levels. Notably, pectin can also directly inhibit the release of inflammatory cytokines through the -TLRs-MYD88 pathway. These data provide valuable information for further elucidating the relationship between pectin-intestinal flora-glucose metabolism.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qiang Cui
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qingying Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hejun Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
8
|
Liu Y, Ge X, Li C, Xue T. Derivation and characterization of new cell line from intestine of turbot (Scophthalmus maximus). In Vitro Cell Dev Biol Anim 2023; 59:153-162. [PMID: 36809593 PMCID: PMC10073165 DOI: 10.1007/s11626-022-00746-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/09/2022] [Indexed: 02/23/2023]
Abstract
A continuous intestine cell line from turbot (Scophthalmus maximus) designated as SMI was established utilizing the tissue explant technique. Primary SMI cell was cultured at 24 °C in a medium with 20% fetal bovine serum (FBS), then subcultured in 10% FBS after 10 passages. Impacts of medium or temperature on the growth of SMI were examined and the results indicated it grew well in DMEM supplemented with 10% FBS at 24 °C. The SMI cell line was subcultured more than 60 times. Karyotyping, chromosome number, and ribosomal RNA genotyping analysis revealed that SMI had a modal diploid chromosome number of 44 and originated from turbot. After being transfected with pEGFP-N1 and FAM-siRNA, a large number of green fluorescence signals were observed in SMI, indicating that SMI could be used as an ideal platform to explore gene function in vitro. In addition, the expression of epithelium-associated genes such as itga6, itgb4, gja1, claudin1, zo-1, and E-cadherin in SMI suggested the SMI had some characteristics of epidermal cells. The upregulation of immune-associated genes such as TNF-β, NF-κB, and IL-1β in SMI after stimulation with pathogen-associated molecular patterns suggested the SMI might exhibit immune functions similar to the intestinal epithelium in vivo.
Collapse
Affiliation(s)
- Yiping Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuefeng Ge
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
9
|
Miri ST, Sotoodehnejadnematalahi F, Amiri MM, Pourshafie MR, Rohani M. The impact of Lactobacillus and Bifidobacterium probiotic cocktail on modulation of gene expression of gap junctions dysregulated by intestinal pathogens. Arch Microbiol 2022; 204:417. [PMID: 35737111 DOI: 10.1007/s00203-022-03026-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
Probiotics are special bacterial strains with strain specific impacts. They can affect health condition in intestine by producing organic acid, competing with pathogens and maintaining cells homeostasis. Regarding to importance of cell junctions in cells transportation and the influence of pathogens in their functions which lead to inflammation, the impact of probiotic strains comprised of Lactobacillus and Bifidobacterium strains on two important members of gap junctions (Cx26 and Cx43) were assayed. The expressions of cell junction genes in contact with probiotic cocktail along with pathogenic components of enterotoxigenic Escherichia coli and Salmonella typhimurium on HT-29 cell line in different treatment orders were evaluated. Results analysis demonstrated downregulation of cx26 and cx43 along with pathogenic components while, probiotic cocktail could modulate their expression by upregulation. We concluded that Lactobacillus and Bifidobacterium strains were efficient probiotics, when they were used as one cocktail, impacted grater amount on the expression of cell junctions and this might lead to modulate homeostasis and reveal inflammation symptoms in intestine.
Collapse
Affiliation(s)
- Seyedeh Tina Miri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Reza Pourshafie
- Department of Bacteriology, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhhoori St, Tehran, Iran.
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhhoori St, Tehran, Iran.
| |
Collapse
|
10
|
Blocking connexin 43 and its promotion of ATP release from renal tubular epithelial cells ameliorates renal fibrosis. Cell Death Dis 2022; 13:511. [PMID: 35641484 PMCID: PMC9156700 DOI: 10.1038/s41419-022-04910-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023]
Abstract
Whether metabolites derived from injured renal tubular epithelial cells (TECs) participate in renal fibrosis is poorly explored. After TEC injury, various metabolites are released and among the most potent is adenosine triphosphate (ATP), which is released via ATP-permeable channels. In these hemichannels, connexin 43 (Cx43) is the most common member. However, its role in renal interstitial fibrosis (RIF) has not been fully examined. We analyzed renal samples from patients with obstructive nephropathy and mice with unilateral ureteral obstruction (UUO). Cx43-KSP mice were generated to deplete Cx43 in TECs. Through transcriptomics, metabolomics, and single-cell sequencing multi-omics analysis, the relationship among tubular Cx43, ATP, and macrophages in renal fibrosis was explored. The expression of Cx43 in TECs was upregulated in both patients and mice with obstructive nephropathy. Knockdown of Cx43 in TECs or using Cx43-specific inhibitors reduced UUO-induced inflammation and fibrosis in mice. Single-cell RNA sequencing showed that ATP specific receptors, including P2rx4 and P2rx7, were distributed mainly on macrophages. We found that P2rx4- or P2rx7-positive macrophages underwent pyroptosis after UUO, and in vitro ATP directly induced pyroptosis by macrophages. The administration of P2 receptor or P2X7 receptor blockers to UUO mice inhibited macrophage pyroptosis and demonstrated a similar degree of renoprotection as Cx43 genetic depletion. Further, we found that GAP 26 (a Cx43 hemichannel inhibitor) and A-839977 (an inhibitor of the pyroptosis receptor) alleviated UUO-induced fibrosis, while BzATP (the agonist of pyroptosis receptor) exacerbated fibrosis. Single-cell sequencing demonstrated that the pyroptotic macrophages upregulated the release of CXCL10, which activated intrarenal fibroblasts. Cx43 mediates the release of ATP from TECs during renal injury, inducing peritubular macrophage pyroptosis, which subsequently leads to the release of CXCL10 and activation of intrarenal fibroblasts and acceleration of renal fibrosis.
Collapse
|
11
|
Tea Polyphenols Prevent and Intervene in COVID-19 through Intestinal Microbiota. Foods 2022; 11:foods11040506. [PMID: 35205982 PMCID: PMC8871045 DOI: 10.3390/foods11040506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 12/13/2022] Open
Abstract
Although all countries have taken corresponding measures, the coronavirus disease 2019 (COVID-19) is still ravaging the world. To consolidate the existing anti-epidemic results and further strengthen the prevention and control measures against the new coronavirus, we are now actively pioneering a novel research idea of regulating the intestinal microbiota through tea polyphenols for reference. Although studies have long revealed the regulatory effect of tea polyphenols on the intestinal microbiota to various gastrointestinal inflammations, little is known about the prevention and intervention of COVID-19. This review summarizes the possible mechanism of the influence of tea polyphenols on COVID-19 mediated by the intestinal microbiota. In this review, the latest studies of tea polyphenols exhibiting their own antibacterial and anti-inflammatory activities and protective effects on the intestinal mucosal barrier are combed through and summarized. Among them, (−)-epigallocatechin-3-gallate (EGCG), one of the main monomers of catechins, may be activated as nuclear factor erythroid 2 p45-related factor 2 (Nrf2). The agent inhibits the expression of ACE2 (a cellular receptor for SARS-CoV-2) and TMPRSS2 to inhibit SARS-CoV-2 infection, inhibiting the life cycle of SARS-CoV-2. Thus, preliminary reasoning and judgments have been made about the possible mechanism of the effect of tea polyphenols on the COVID-19 control and prevention mediated by the microbiota. These results may be of great significance to the future exploration of specialized research in this field.
Collapse
|
12
|
Tittarelli A. Connexin channels modulation in pathophysiology and treatment of immune and inflammatory disorders. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166258. [PMID: 34450245 DOI: 10.1016/j.bbadis.2021.166258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Connexin-mediated intercellular communication mechanisms include bidirectional cell-to-cell coupling by gap junctions and release/influx of molecules by hemichannels. These intercellular communications have relevant roles in numerous immune system activities. Here, we review the current knowledge about the function of connexin channels, mainly those formed by connexin-43, on immunity and inflammation. Focusing on those evidence that support the design and development of therapeutic tools to modulate connexin expression and/or channel activities with treatment potential for infections, wounds, cancer, and other inflammatory conditions.
Collapse
Affiliation(s)
- Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile.
| |
Collapse
|
13
|
The Impact of MicroRNAs during Inflammatory Bowel Disease: Effects on the Mucus Layer and Intercellular Junctions for Gut Permeability. Cells 2021; 10:cells10123358. [PMID: 34943865 PMCID: PMC8699384 DOI: 10.3390/cells10123358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Research on inflammatory bowel disease (IBD) has produced mounting evidence for the modulation of microRNAs (miRNAs) during pathogenesis. MiRNAs are small, non-coding RNAs that interfere with the translation of mRNAs. Their high stability in free circulation at various regions of the body allows researchers to utilise miRNAs as biomarkers and as a focus for potential treatments of IBD. Yet, their distinct regulatory roles at the gut epithelial barrier remain elusive due to the fact that there are several external and cellular factors contributing to gut permeability. This review focuses on how miRNAs may compromise two components of the gut epithelium that together form the initial physical barrier: the mucus layer and the intercellular epithelial junctions. Here, we summarise the impact of miRNAs on goblet cell secretion and mucin structure, along with the proper function of various junctional proteins involved in paracellular transport, cell adhesion and communication. Knowledge of how this elaborate network of cells at the gut epithelial barrier becomes compromised as a result of dysregulated miRNA expression, thereby contributing to the development of IBD, will support the generation of miRNA-associated biomarker panels and therapeutic strategies that detect and ameliorate gut permeability.
Collapse
|
14
|
Probiotics in Intestinal Mucosal Healing: A New Therapy or an Old Friend? Pharmaceuticals (Basel) 2021; 14:ph14111181. [PMID: 34832962 PMCID: PMC8622522 DOI: 10.3390/ph14111181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), Crohn’s disease, and ulcerative colitis are characterized by chronic and relapsing inflammation, while their pathogenesis remains mostly unelucidated. Gut commensal microbiota seem to be one of the various implicated factors, as several studies have shown a significant decrease in the microbiome diversity of patients with IBD. Although the question of whether microbiota dysbiosis is a causal factor or the result of chronic inflammation remains unanswered, one fact is clear; active inflammation in IBD results in the disruption of the mucus layer structure, barrier function, and also, colonization sites. Recently, many studies on IBD have been focusing on the interplay between mucosal and luminal microbiota, underlining their possible beneficial effect on mucosal healing. Regarding this notion, it has now been shown that specific probiotic strains, when administrated, lead to significantly decreased inflammation, amelioration of colitis, and improved mucosal healing. Probiotics are live microorganisms exerting beneficial effects on the host’s health when administered in adequate quantity. The aim of this review was to present and discuss the current findings on the role of gut microbiota and their metabolites in intestinal wound healing and the effects of probiotics on intestinal mucosal wound closure.
Collapse
|
15
|
Toll-Like Receptors as Drug Targets in the Intestinal Epithelium. Handb Exp Pharmacol 2021; 276:291-314. [PMID: 34783909 DOI: 10.1007/164_2021_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) receptors are responsible for initiation of inflammatory responses by their recognition of molecular patterns present in invading microorganisms (such as bacteria, viruses or fungi) or in molecules released following tissue damage in disease states. Expressed in the intestinal epithelium, they initiate an intracellular signalling cascade in response to molecular patterns resulting in the activation of transcription factors and the release of cytokines, chemokines and vasoactive molecules. Intestinal epithelial cells are exposed to microorganisms on a daily basis and form part of the primary defence against pathogens by using TLRs. TLRs and their accessory molecules are subject to tight regulation in these cells so as to not overreact or react in unnecessary circumstances. TLRs have more recently been associated with chronic inflammatory diseases as a result of inappropriate regulation, this can be damaging and lead to chronic inflammatory diseases such as inflammatory bowel disease (IBD). Targeting Toll-like receptors offers a potential therapeutic approach for IBD. In this review, the current knowledge on the TLRs is reviewed along with their association with intestinal diseases. Finally, compounds that target TLRs in animal models of IBD, clinic trials and their future merit as targets are discussed.
Collapse
|
16
|
Wu Z, Chen S, He Y, Zhang D, Zou S, Xie J, Zhou C. Connective tissue growth factor promotes cell-to-cell communication in human periodontal ligament stem cells via MAPK and PI3K pathway. J Periodontol 2021; 93:e60-e72. [PMID: 34532860 DOI: 10.1002/jper.21-0339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cell-cell communication is an essential process to respond to biological stimuli and sustain the micro environmental homeostasis of human periodontal ligament stem cells (hPDLSCs). Connective tissue growth factor (CTGF), a critical secreted matrix protein, exhibits significant tasks in regulating the cell-cell and cell-matrix interactions. This study aimed to explore the relationship between CTGF and cell communication and the underlying mechanism. METHODS qRT-PCR was used to detect CCN family, connexin, and pannexin family expression in hPDLSCs. Stimulation with CTGF, cell migration assay was performed to examine the wound repair. The scrape loading/dye transfer assay was employed to access lucifer Yellow molecules transfer efficiency mediated by cell-cell communication. Connexin43 (Cx43), Pannexin1 (Panx1), MAPK, and the PI3K/Akt signaling pathway proteins were examined via Western blotting. Immunofluorescence was applied to visualize the localization of specific proteins within cells. Corresponding pathway inhibitors were applied to hPDLSCs to detect Cx43, Panx1 expression, and intercellular communication induced by CTGF. RESULTS Our result showed that CTGF was the second most expressed CCN family member in hPDLSCs. Cx43, and Panx1 were the most widely expressed gap junction hemichannels in hPDLSCs. CTGF enhanced hPDLSCs migration in a dose-dependent manner. CTGF promoted cell-cell communication by up-regulating Cx43 and Panx1. CTGF induced Akt, JNK, and p38 phosphorylation and subcellular relocation. Inhibiting corresponding pathways reduced Cx43 expression, thereby weakening CTGF-induced cell-cell communication. However, the Panx1 expression in CTGF-treated hPDLSCs mainly depended on PI3K/Akt signaling. CONCLUSION We provided novel evidence that CTGF promoted cell-cell communication in hPDLSCs through MAPK and PI3K pathway.
Collapse
Affiliation(s)
- Zuping Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sirui Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuying He
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. Int J Mol Sci 2021; 22:ijms22168977. [PMID: 34445682 PMCID: PMC8396440 DOI: 10.3390/ijms22168977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.
Collapse
|
18
|
Synergistic anti-allergy activity using a combination of Enterococcus faecalis IC-1 and luteolin. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Sommer K, Wiendl M, Müller TM, Heidbreder K, Voskens C, Neurath MF, Zundler S. Intestinal Mucosal Wound Healing and Barrier Integrity in IBD-Crosstalk and Trafficking of Cellular Players. Front Med (Lausanne) 2021; 8:643973. [PMID: 33834033 PMCID: PMC8021701 DOI: 10.3389/fmed.2021.643973] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelial barrier is carrying out two major functions: restricting the entry of potentially harmful substances while on the other hand allowing the selective passage of nutrients. Thus, an intact epithelial barrier is vital to preserve the integrity of the host and to prevent development of disease. Vice versa, an impaired intestinal epithelial barrier function is a hallmark in the development and perpetuation of inflammatory bowel disease (IBD). Besides a multitude of genetic, molecular and cellular alterations predisposing for or driving barrier dysintegrity in IBD, the appearance of intestinal mucosal wounds is a characteristic event of intestinal inflammation apparently inducing breakdown of the intestinal epithelial barrier. Upon injury, the intestinal mucosa undergoes a wound healing process counteracting this breakdown, which is controlled by complex mechanisms such as epithelial restitution, proliferation and differentiation, but also immune cells like macrophages, granulocytes and lymphocytes. Consequently, the repair of mucosal wounds is dependent on a series of events including coordinated trafficking of immune cells to dedicated sites and complex interactions among the cellular players and other mediators involved. Therefore, a better understanding of the crosstalk between epithelial and immune cells as well as cell trafficking during intestinal wound repair is necessary for the development of improved future therapies. In this review, we summarize current concepts on intestinal mucosal wound healing introducing the main cellular mediators and their interplay as well as their trafficking characteristics, before finally discussing the clinical relevance and translational approaches to therapeutically target this process in a clinical setting.
Collapse
Affiliation(s)
- Katrin Sommer
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Wiendl
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tanja M Müller
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Karin Heidbreder
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Caroline Voskens
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
20
|
Pectin in diet: Interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions. Carbohydr Polym 2021; 255:117388. [DOI: 10.1016/j.carbpol.2020.117388] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
|
21
|
Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell Mol Gastroenterol Hepatol 2021; 11:1463-1482. [PMID: 33610769 PMCID: PMC8025057 DOI: 10.1016/j.jcmgh.2021.02.007] [Citation(s) in RCA: 349] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
The human gastrointestinal tract (GI) harbors a diverse population of microbial life that continually shapes host pathophysiological responses. Despite readily available abundant metagenomic data, the functional dynamics of gut microbiota remain to be explored in various health and disease conditions. Microbiota generate a variety of metabolites from dietary products that influence host health and pathophysiological functions. Since gut microbial metabolites are produced in close proximity to gut epithelium, presumably they have significant impact on gut barrier function and immune responses. The goal of this review is to discuss recent advances on gut microbial metabolites in the regulation of intestinal barrier function. While the mechanisms of action of these metabolites are only beginning to emerge, they mainly point to a small group of shared pathways that control gut barrier functions. Amidst expanding technology and broadening knowledge, exploitation of beneficial microbiota and their metabolites to restore pathophysiological balance will likely prove to be an extremely useful remedial tool.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Caleb Samuel Whitley
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
22
|
Garcia-Vega L, O’Shaughnessy EM, Albuloushi A, Martin PE. Connexins and the Epithelial Tissue Barrier: A Focus on Connexin 26. BIOLOGY 2021; 10:biology10010059. [PMID: 33466954 PMCID: PMC7829877 DOI: 10.3390/biology10010059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Tissues that face the external environment are known as ‘epithelial tissue’ and form barriers between different body compartments. This includes the outer layer of the skin, linings of the intestine and airways that project into the lumen connecting with the external environment, and the cornea of the eye. These tissues do not have a direct blood supply and are dependent on exchange of regulatory molecules between cells to ensure co-ordination of tissue events. Proteins known as connexins form channels linking cells directly and permit exchange of small regulatory signals. A range of environmental stimuli can dysregulate the level of connexin proteins and or protein function within the epithelia, leading to pathologies including non-healing wounds. Mutations in these proteins are linked with hearing loss, skin and eye disorders of differing severity. As such, connexins emerge as prime therapeutic targets with several agents currently in clinical trials. This review outlines the role of connexins in epithelial tissue and how their dysregulation contributes to pathological pathways. Abstract Epithelial tissue responds rapidly to environmental triggers and is constantly renewed. This tissue is also highly accessible for therapeutic targeting. This review highlights the role of connexin mediated communication in avascular epithelial tissue. These proteins form communication conduits with the extracellular space (hemichannels) and between neighboring cells (gap junctions). Regulated exchange of small metabolites less than 1kDa aide the co-ordination of cellular activities and in spatial communication compartments segregating tissue networks. Dysregulation of connexin expression and function has profound impact on physiological processes in epithelial tissue including wound healing. Connexin 26, one of the smallest connexins, is expressed in diverse epithelial tissue and mutations in this protein are associated with hearing loss, skin and eye conditions of differing severity. The functional consequences of dysregulated connexin activity is discussed and the development of connexin targeted therapeutic strategies highlighted.
Collapse
|
23
|
Liu J, Li X, Ke A. High-mobility group box-1 induces mechanical pain hypersensitivity through astrocytic connexin 43 via the toll-like receptor-4/JNK signaling pathway. Synapse 2020; 75:e22184. [PMID: 32761652 DOI: 10.1002/syn.22184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022]
Abstract
The present study aimed to investigate the effects of high-mobility group box-1 (HMGB-1) on mechanical pain hypersensitivity and the underlying mechanism. Mouse primary astrocytes were isolated and treated as specified. A CCK-8 assay was used to determine cytotoxicity and a gap junctional communication assay was performed. Ethidium bromide (EtBr) uptake was used to evaluate the hemichannel activity of primary astrocytes. A mouse model of neuropathic pain was developed and paw withdrawal threshold was used to evaluate hind paw sensitivity. RT-qPCR and Western blot were used to determine mRNA and protein expression of genes, respectively. ELISA was used to measure the release of inflammatory cytokines. Treatment with HMGB-1 increased the expression of both toll-like receptor-4 (TLR-4) and connexin 43 (Cx43) in mouse primary astrocytes. HMGB-1 also promoted gap junctional intercellular communication and hemichannel function. Our results also demonstrated that HMGB-1-regulated Cx43 through the JNK signaling pathway, and Cx43 was involved in HMGB-1-mediated inflammation in astrocytes. In vivo analysis supported the idea that HMGB-1-induced mechanical hypersensitivity was associated with Cx43. We therefore conclude that HMGB-1-induced mechanical pain hypersensitivity occurs through modulating astrocytic Cx43 via the TLR-4/JNK signaling pathway.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Xiuhua Li
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Ana Ke
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
24
|
Toll-Like Receptor-Mediated Cardiac Injury during Experimental Sepsis. Mediators Inflamm 2020; 2020:6051983. [PMID: 32410859 PMCID: PMC7199613 DOI: 10.1155/2020/6051983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Sepsis is associated with global cardiac dysfunction and with high mortality rate. The development of septic cardiomyopathy is due to complex interactions of damage-associated molecular patters, cytokines, and complement activation products. The aim of this study was to define the effects of sepsis on cardiac structure, gap junction, and tight junction (TJ) proteins. Sepsis was induced by cecal ligation and puncture in male C57BL/6 mice. After a period of 24 h, the expression of cardiac structure, gap junction, and TJ proteins was determined. Murine HL-1 cells were stimulated with LPS, and mRNA expression of cardiac structure and gap junction proteins, intracellular reactive oxygen species, and troponin I release was analyzed. Furthermore, pyrogenic receptor subtype 7 (P2X7) expression and troponin I release of human cardiomyocytes (iPS) were determined after LPS exposure. In vivo, protein expression of connexin43 and α-actinin was decreased after the onset of polymicrobial sepsis, whereas in HL-1 cells, mRNA expression of connexin43, α-actinin, and desmin was increased in the presence of LPS. Expression of TJ proteins was not affected in vivo during sepsis. Although the presence of LPS and nigericin resulted in a significant troponin I release from HL-1 cells. Sepsis affected cardiac structure and gap junction proteins in mice, potentially contributing to compromised cardiac function.
Collapse
|
25
|
Eyking A, Ferber F, Köhler S, Reis H, Cario E. TRIM58 Restrains Intestinal Mucosal Inflammation by Negatively Regulating TLR2 in Myeloid Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:1636-1649. [PMID: 31383741 DOI: 10.4049/jimmunol.1900413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/08/2019] [Indexed: 12/19/2022]
Abstract
Balanced control of innate immune signaling in the intestine represents an important host defense mechanism to avoid inappropriate responses that may exacerbate mucosal injury in acute inflammation. In this study, we report that TRIM58, a RING E3-ubiquitin ligase, associates with TLR2. The interaction was found in a yeast two-hybrid screen (human leukocyte and mononuclear library) and confirmed by coimmunoprecipitation of tagged and endogenous proteins. TRIM58 was predominantly expressed by murine and human myeloid-derived cells. Stimulation with a TLR2 ligand modulated TRIM58 synthesis in myeloid cells. Overexpression of TRIM58, but only in presence of the RING domain, promoted proteasome-dependent degradation of TLR2, inhibiting its signaling activity. Genetic deletion of Trim58 in mice (Trim58 -/-) led to impaired resolution of acute dextran sodium sulfate-induced colitis, which was characterized by delayed recovery from colonic injury and associated with enhanced expression of TLR2 protein and proinflammatory cyto/chemokine production in inflamed colons. Using myeloid cell-specific deletion of Trim58 in mice, we demonstrated that the myeloid cell compartment was responsible for early colitis acceleration in Trim58 deficiency. In vitro studies revealed that Trim58 -/- myeloid cells, which showed constitutive upregulation of TLR2 protein, overreacted to a proinflammatory milieu (TNF-α and IFN-γ) with increased IL-1β protein production, which mechanistically depended on Tlr2 Finally, we found that TRIM58 mRNA and protein expression levels were reduced in colonic specimens from patients with ulcerative colitis. In conclusion, we identify TRIM58 as a novel negative mediator of innate immune control and mucosal homeostasis via TLR2 signaling. Dysfunction of TRIM58 in myeloid cells may contribute to ulcerative colitis pathogenesis.
Collapse
Affiliation(s)
- Annette Eyking
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, 45147 Essen, Germany.,Medical School, University of Duisburg-Essen, 45147 Essen, Germany; and
| | - Frederike Ferber
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, 45147 Essen, Germany.,Medical School, University of Duisburg-Essen, 45147 Essen, Germany; and
| | - Stefanie Köhler
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, 45147 Essen, Germany.,Medical School, University of Duisburg-Essen, 45147 Essen, Germany; and
| | - Henning Reis
- Medical School, University of Duisburg-Essen, 45147 Essen, Germany; and.,Institute of Pathology, University Hospital Essen, 45147 Essen, Germany
| | - Elke Cario
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, 45147 Essen, Germany; .,Medical School, University of Duisburg-Essen, 45147 Essen, Germany; and
| |
Collapse
|
26
|
García-Vega L, O'Shaughnessy EM, Jan A, Bartholomew C, Martin PE. Connexin 26 and 43 play a role in regulating proinflammatory events in the epidermis. J Cell Physiol 2019; 234:15594-15606. [PMID: 30710344 DOI: 10.1002/jcp.28206] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Dysregulation of Connexin (CX) expression and function is associated with a range of chronic inflammatory conditions including psoriasis and nonhealing wounds. To mimic a proinflammatory environment, HaCaT cells, a model human keratinocyte cell line, were challenged with 10 µg/ml peptidoglycan (PGN) isolated from Staphylococcus aureus for 15 min to 24 hr in the presence or absence of CX blockers and/or following CX26, CX43, PANX1 and TLR2 small interfering RNA (siRNA) knockdown (KD). Expression levels of IL-6, IL-8, CX26, CX43, PANX1, TLR2 and Ki67 were assessed by quantitative real-time polymerase chain reaction, western blot analysis and/or immunocytochemistry. Nuclear factor kappa β (NF-κβ) was blocked with BAY 11-7082, CX-channel function was determined by adenosine 5'-triphosphate (ATP) release assays. Enzyme-linked immunosorbent assay monitored IL6 release following PGN challenge in the presence or absence of siRNA or blockers of CX or purinergic signalling. Exposure to PGN induced IL-6, IL-8, CX26 and TLR2 gene expression but it did not influence CX43, PANX1 or Ki67 messenger RNA expression levels. CX43 protein levels were reduced following 24 hr PGN exposure. PGN-induced CX26 and IL-6 expression were also aborted by TLR2-KD and inhibition of NF-κβ. ATP and IL-6 release were stimulated following 15 min and 1-24 hr challenge with PGN, respectively. Release of both agents was inhibited by coincubation with CX-channel blockers, CX26-, CX43- and TLR2-KD. The IL-6 response was also reduced by purinergic blockers. CX-signalling plays a role in the innate immune response in the epidermis. PGN is detected by TLR2, which via NF-κβ, directly activates CX26 and IL-6 expression. CX43 and CX26 maintain proinflammatory signalling by permitting ATP release, however, PANX1 does not participate.
Collapse
Affiliation(s)
- Laura García-Vega
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK
| | - Erin M O'Shaughnessy
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK
| | - Afnan Jan
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK
| | - Chris Bartholomew
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK
| | - Patricia E Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK
| |
Collapse
|
27
|
Xiao L, Li X, Kyoung Chung H, Kalakonda S, Cai JZ, Cao S, Chen N, Liu Y, Rao JN, Wang HY, Gorospe M, Wang JY. RNA-Binding Protein HuR Regulates Paneth Cell Function by Altering Membrane Localization of TLR2 via Post-transcriptional Control of CNPY3. Gastroenterology 2019; 157:731-743. [PMID: 31103627 PMCID: PMC6707881 DOI: 10.1053/j.gastro.2019.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/26/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Paneth cells secrete antimicrobial proteins including lysozyme via secretory autophagy as part of the mucosal protective response. The ELAV like RNA-binding protein 1 (ELAVL1, also called HuR) regulates stability and translation of messenger RNAs (mRNAs) and many aspects of mucosal physiology. We studied the posttranscriptional mechanisms by which HuR regulates Paneth cell function. METHODS Intestinal mucosal tissues were collected from mice with intestinal epithelium (IE)-specific disruption of HuR (IE-HuR-/-), HuRfl/fl-Cre- mice (controls), and patients with inflammatory bowel diseases and analyzed by histology and immunohistochemistry. Paneth cell functions were determined by lysozyme-immunostaining assays. We isolated primary enterocytes from IE-HuR-/- and control mice and derived intestinal organoids. HuR and the chaperone CNPY3 were overexpressed from transgenes in intestinal epithelial cells (IECs) or knocked down with small interfering RNAs. We performed RNA pulldown assays to investigate interactions between HuR and its target mRNAs. RESULTS Intestinal tissues from IE-HuR-/- mice had reduced numbers of Paneth cells, and Paneth cells had fewer lysozyme granules per cell, compared with tissues from control mice, but there were no effects on Goblet cells or enterocytes. Intestinal mucosa from patients with inflammatory bowel diseases had reduced levels of HuR and fewer Paneth cells. IE-HuR-/- mice did not have the apical distribution of TLR2 in the intestinal mucosa as observed in control mice. IECs from IE-HuR-/- mice expressed lower levels of CNPY3. Intestinal organoids from IE-HuR-/- mice were smaller and contained fewer buds compared with those generated from controls, and had fewer lysozyme-positive cells. In IECs, knockdown of HuR decreased levels of the autophagy proteins LC3-I and LC3-II, compared with control cells, and prevented rapamycin-induced autophagy. We found HuR to interact directly with the Cnpy3 mRNA coding region and increase levels of CNPY3 by increasing the stability and translation of Cnpy3 mRNA. CNPY3 bound TLR2, and cells with knockdown of CNPY3 or HuR lost membrane localization of TLR2, but increased cytoplasmic levels of TLR2. CONCLUSIONS In studies of mice, IECs, and human tissues, we found HuR to increase expression of CNPY3 at the posttranscriptional level. CNPY3 is required for membrane localization of TLR2 and Paneth cell function.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Maryland 21201,Baltimore Veterans Affairs Medical Center, Maryland 21201
| | - Xiaoxue Li
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Maryland 21201,Baltimore Veterans Affairs Medical Center, Maryland 21201
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Maryland 21201,Baltimore Veterans Affairs Medical Center, Maryland 21201
| | - Sudhakar Kalakonda
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Maryland 21201,Baltimore Veterans Affairs Medical Center, Maryland 21201
| | - Jia-Zhong Cai
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Maryland 21201,Baltimore Veterans Affairs Medical Center, Maryland 21201
| | - Shan Cao
- Department of Gastroenterology, People’s Hospital, Peking University, Beijing, China
| | - Ning Chen
- Department of Gastroenterology, People’s Hospital, Peking University, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, People’s Hospital, Peking University, Beijing, China
| | - Jaladanki N. Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Maryland 21201,Baltimore Veterans Affairs Medical Center, Maryland 21201
| | - Hong-Ying Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Academy of Medical Sciences, Beijing, China
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-IRP, NIH, Baltimore, Maryland 21224
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
28
|
Xiong G, Tang W, Zhang D, He D, Wei G, Atala A, Liang XJ, Bleyer AJ, Bleyer ME, Yu J, Aloi JA, Ma JX, Furdui CM, Zhang Y. Impaired Regeneration Potential in Urinary Stem Cells Diagnosed from the Patients with Diabetic Nephropathy. Theranostics 2019; 9:4221-4232. [PMID: 31281543 PMCID: PMC6592174 DOI: 10.7150/thno.34050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/03/2019] [Indexed: 01/13/2023] Open
Abstract
Stem cells present in urine possess regenerative capacity to repair kidney injury. However, the unique characteristics of urinary stem cells (USC) from patients with diabetic nephropathy (d-USC) are unknown. The goal of this study was to investigate stemness properties in cell phenotype and regenerative potential of d-USC, compared to USC from healthy individuals. Methods: Thirty-six urine samples collected from patients (n=12, age range 60-75 years) with diabetic nephropathy (stages 3-4 stage chronic kidney disease [CKD]) were compared with 30 urine samples from healthy age-matched donors (n=10, age range 60-74 years). Results: There were approximately six times as many cells in urine samples from patients with diabetic nephropathy, including twice as many USC clones as healthy donors. However, approximately 70% of d-USC had weaker regenerative capacity as assessed by cell proliferation, less secretion of paracrine factors, weaker telomerase activity, and lower renal tubular epithelial differentiation potential compared to healthy controls. In addition, the levels of inflammatory factors (IL-1β and Cx43) and apoptotic markers (Caspase-3, and TUNEL) were significantly increased in d-USC compared to USC (p<0.01). Protein levels of autophagy marker (LC3-II) and mTOR signaling molecules (p-mTOR/mTOR, p-Raptor/Raptor and p-S6K1) were significantly lower in patient with diabetic nephropathy (p<0.01). Nevertheless, up to 30% of d-USC possessed similar regenerative capacity as USC from healthy donors. Conclusions: Regenerative performance of most d-USC was significantly lower than normal controls. Understanding the specific changes in d-USC regeneration capability will help elucidate the pathobiology of diabetic nephropathy and lead to prevent USC from diabetic insults, recover the stemness function and also identify novel biomarkers to predict progression of this chronic kidney disease.
Collapse
|
29
|
Bazzoun D, Adissu HA, Wang L, Urazaev A, Tenvooren I, Fostok SF, Chittiboyina S, Sturgis J, Hodges K, Chandramouly G, Vidi PA, Talhouk RS, Lelièvre SA. Connexin 43 maintains tissue polarity and regulates mitotic spindle orientation in the breast epithelium. J Cell Sci 2019; 132:jcs.223313. [PMID: 30992345 DOI: 10.1242/jcs.223313] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Cell-cell communication is essential for tissue homeostasis, but its contribution to disease prevention remains to be understood. We demonstrate the involvement of connexin 43 (Cx43, also known as GJA1) and related gap junction in epithelial homeostasis, illustrated by polarity-mediated cell cycle entry and mitotic spindle orientation (MSO). Cx43 localization is restricted to the apicolateral membrane of phenotypically normal breast luminal epithelial cells in 3D culture and in vivo Chemically induced blockade of gap junction intercellular communication (GJIC), as well as the absence of Cx43, disrupt the apicolateral distribution of polarity determinant tight junction marker ZO-1 (also known as TJP1) and lead to random MSO and cell multilayering. Induced expression of Cx43 in cells that normally lack this protein reestablishes polarity and proper MSO in 3D culture. Cx43-directed MSO implicates PI3K-aPKC signaling, and Cx43 co-precipitates with signaling node proteins β-catenin (CTNNB1) and ZO-2 (also known as TJP2) in the polarized epithelium. The distribution of Cx43 is altered by pro-inflammatory breast cancer risk factors such as leptin and high-fat diet, as shown in cell culture and on tissue biopsy sections. The control of polarity-mediated quiescence and MSO may contribute to the tumor-suppressive role of Cx43.
Collapse
Affiliation(s)
- D Bazzoun
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA.,Biology Department, Faculty of Arts and Sciences, American University of Beirut, 11-0236 Beirut, Lebanon
| | - H A Adissu
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - L Wang
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - A Urazaev
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - I Tenvooren
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - S F Fostok
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 11-0236 Beirut, Lebanon
| | - S Chittiboyina
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Sturgis
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - K Hodges
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - G Chandramouly
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - P-A Vidi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - R S Talhouk
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 11-0236 Beirut, Lebanon
| | - S A Lelièvre
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
30
|
Adesso S, Ruocco M, Rapa SF, Piaz FD, Raffaele Di Iorio B, Popolo A, Autore G, Nishijima F, Pinto A, Marzocco S. Effect of Indoxyl Sulfate on the Repair and Intactness of Intestinal Epithelial Cells: Role of Reactive Oxygen Species' Release. Int J Mol Sci 2019; 20:ijms20092280. [PMID: 31072046 PMCID: PMC6539031 DOI: 10.3390/ijms20092280] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by an oxidative stress status, driving some CKD-associated complications, even at the gastrointestinal level. Indoxyl Sulfate (IS) is a protein-bound uremic toxin, poorly eliminated by dialysis. This toxin is able to affect the intestinal system, but its molecular mechanism/s in intestinal epithelial cells (IECs) remain poorly understood. This study's aim was to evaluate the effect of IS (31.2-250 µM) on oxidative stress in IEC-6 cells and on the intactness of IECs monolayers. Our results indicated that IS enhanced oxidative cell damage by inducing reactive oxygen species (ROS) release, reducing the antioxidant response and affecting Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation as well its related antioxidant enzymes. In the wound healing assay model, IS reduced IEC-6 migration, slightly impaired actin cytoskeleton rearrangement; this effect was associated with connexin 43 alteration. Moreover, we reported the effect of CKD patients' sera in IEC-6 cells. Our results indicated that patient sera induced ROS release in IEC-6 cells directly related to IS sera content and this effect was reduced by AST-120 serum treatment. Results highlighted the effect of IS in inducing oxidative stress in IECs and in impairing the intactness of the IECs cell monolayer, thus significantly contributing to CKD-associated intestinal alterations.
Collapse
Affiliation(s)
- Simona Adesso
- Department of Pharmacy, University of Salerno, I-84084, Fisciano, Salerno, Italy.
| | - Marco Ruocco
- Department of Pharmacy, University of Salerno, I-84084, Fisciano, Salerno, Italy.
| | - Shara Francesca Rapa
- Department of Pharmacy, University of Salerno, I-84084, Fisciano, Salerno, Italy.
| | - Fabrizio Dal Piaz
- Department of Medicine, University of Salerno, I-84084 Fisciano, Salerno, Italy.
| | | | - Ada Popolo
- Department of Pharmacy, University of Salerno, I-84084, Fisciano, Salerno, Italy.
| | - Giuseppina Autore
- Department of Pharmacy, University of Salerno, I-84084, Fisciano, Salerno, Italy.
| | - Fuyu Nishijima
- Pharmaceuticals Division, Kureha Corporation, 169-8503 Tokyo, Japan.
| | - Aldo Pinto
- Department of Pharmacy, University of Salerno, I-84084, Fisciano, Salerno, Italy.
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, I-84084, Fisciano, Salerno, Italy.
| |
Collapse
|
31
|
Cx43 Inhibition Attenuates Sepsis-Induced Intestinal Injury via Downregulating ROS Transfer and the Activation of the JNK1/Sirt1/FoxO3a Signaling Pathway. Mediators Inflamm 2019; 2019:7854389. [PMID: 30948926 PMCID: PMC6425293 DOI: 10.1155/2019/7854389] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
Intestinal injury has long been considered to play a crucial role in the pathophysiology of sepsis and has even been characterized as the “motor” of it. Thus, we explored the effects of connexin43 (Cx43) on sepsis-induced intestinal injury in order to provide potential therapeutic strategies. Rat cecal ligation and puncture (CLP) models in vivo and cell models (IEC-6 cells) pretreated with LPS in vitro were used in the current study. Firstly, different methods, such as Cx43 inhibitors (18-α-GA and oleamide) or siRNA targeting Cx43 and N-acetyl cysteine (NAC) (a kind of ROS scavenger), were used to observe the effects of Cx43 channels mediating ROS transfer on intestinal injury. Secondly, the influence of ROS content on the activity of the JNK1/Sirt1/FoxO3a signaling pathway was explored through the application of NAC, sp600125 (a JNK1 inhibitor), and nicotinamide (a Sirt1 inhibitor). Finally, luciferase assays and ChIP were used to determine the direct regulation of FoxO3a on proapoptotic proteins, Bim and Puma. The results showed that sepsis-induced intestinal injury presented a dynamic change, coincident with the alternation of Cx43 expression. The inhibition of Cx43 attenuated CLP-induced intestinal injury in vivo and LPS-induced IEC-6 injury in vitro. The changes of Cx43 channel function regulated ROS transfer between the neighboring cells, which mediated the activation of the JNK1/Sirt1/FoxO3a signaling pathway. FoxO3a directly affected its downstream target genes, Bim and Puma, which are responsible for cell or tissue apoptosis. In summary, our results suggest that Cx43 inhibition suppresses ROS transfer and inactivates the JNK1/Sirt1/FoxO3a signaling pathway to protect against sepsis-induced intestinal injury.
Collapse
|
32
|
Wong J, Chopra J, Chiang LLW, Liu T, Ho J, Wu WKK, Tse G, Wong SH. The Role of Connexins in Gastrointestinal Diseases. J Mol Biol 2019; 431:643-652. [PMID: 30639409 DOI: 10.1016/j.jmb.2019.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/03/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
Gap junctions are hexagonal arrays of protein molecules in the plasma membrane and were first described in Mauthner cell synapses of goldfish. They form pathways for coupling between cells, allowing passive, electrotonic spread of ions and also passage of larger molecules such as amino acids and nucleotides. They are expressed in both excitable and non-excitable tissues. Each gap junction is made of two connexons, which are hexameric proteins of the connexin subunit. In this review, the roles that connexins play in gastrointestinal motility, the mechanisms of altered connexin expression leading to inflammatory bowel disease, gastrointestinal infections, and gastrointestinal symptoms in autistic spectrum disorder are discussed in detail.
Collapse
Affiliation(s)
- Jeremy Wong
- Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Jasmine Chopra
- Faculty of Arts and Science, University of Toronto, Toronto, Canada
| | | | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, PR China
| | - Jeffery Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, PR China; Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, PR China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, PR China; Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, PR China
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, PR China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, PR China.
| | - Sunny Hei Wong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, PR China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, PR China.
| |
Collapse
|
33
|
P. McKernan D. Toll-like receptors and immune cell crosstalk in the intestinal epithelium. AIMS ALLERGY AND IMMUNOLOGY 2019. [DOI: 10.3934/allergy.2019.1.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
34
|
Garcia MA, Nelson WJ, Chavez N. Cell-Cell Junctions Organize Structural and Signaling Networks. Cold Spring Harb Perspect Biol 2018; 10:a029181. [PMID: 28600395 PMCID: PMC5773398 DOI: 10.1101/cshperspect.a029181] [Citation(s) in RCA: 310] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-cell junctions link cells to each other in tissues, and regulate tissue homeostasis in critical cell processes that include tissue barrier function, cell proliferation, and migration. Defects in cell-cell junctions give rise to a wide range of tissue abnormalities that disrupt homeostasis and are common in genetic abnormalities and cancers. Here, we discuss the organization and function of cell-cell junctions primarily involved in adhesion (tight junction, adherens junction, and desmosomes) in two different epithelial tissues: a simple epithelium (intestine) and a stratified epithelium (epidermis). Studies in these tissues reveal similarities and differences in the organization and functions of different cell-cell junctions that meet the requirements for the specialized functions of each tissue. We discuss cell-cell junction responses to genetic and environmental perturbations that provide further insights into their roles in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Miguel A Garcia
- Department of Biology, Stanford University, Stanford, California 94305
| | - W James Nelson
- Department of Biology, Stanford University, Stanford, California 94305
- Departments of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Natalie Chavez
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
35
|
Inflammation induced ER stress affects absorptive intestinal epithelial cells function and integrity. Int Immunopharmacol 2018; 55:336-344. [DOI: 10.1016/j.intimp.2017.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
|
36
|
Srinivasan L, Page G, Kirpalani H, Murray JC, Das A, Higgins RD, Carlo WA, Bell EF, Goldberg RN, Schibler K, Sood BG, Stevenson DK, Stoll BJ, Van Meurs KP, Johnson KJ, Levy J, McDonald SA, Zaterka-Baxter KM, Kennedy KA, Sánchez PJ, Duara S, Walsh MC, Shankaran S, Wynn JL, Cotten CM. Genome-wide association study of sepsis in extremely premature infants. Arch Dis Child Fetal Neonatal Ed 2017; 102:F439-F445. [PMID: 28283553 PMCID: PMC5563277 DOI: 10.1136/archdischild-2016-311545] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 02/02/2017] [Accepted: 02/13/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To identify genetic variants associated with sepsis (early-onset and late-onset) using a genome-wide association (GWA) analysis in a cohort of extremely premature infants. STUDY DESIGN Previously generated GWA data from the Neonatal Research Network's anonymised genomic database biorepository of extremely premature infants were used for this study. Sepsis was defined as culture-positive early-onset or late-onset sepsis or culture-proven meningitis. Genomic and whole-genome-amplified DNA was genotyped for 1.2 million single-nucleotide polymorphisms (SNPs); 91% of SNPs were successfully genotyped. We imputed 7.2 million additional SNPs. p Values and false discovery rates (FDRs) were calculated from multivariate logistic regression analysis adjusting for gender, gestational age and ancestry. Target statistical value was p<10-5. Secondary analyses assessed associations of SNPs with pathogen type. Pathway analyses were also run on primary and secondary end points. RESULTS Data from 757 extremely premature infants were included: 351 infants with sepsis and 406 infants without sepsis. No SNPs reached genome-wide significance levels (5×10-8); two SNPs in proximity to FOXC2 and FOXL1 genes achieved target levels of significance. In secondary analyses, SNPs for ELMO1, IRAK2 (Gram-positive sepsis), RALA, IMMP2L (Gram-negative sepsis) and PIEZO2 (fungal sepsis) met target significance levels. Pathways associated with sepsis and Gram-negative sepsis included gap junctions, fibroblast growth factor receptors, regulators of cell division and interleukin-1-associated receptor kinase 2 (p values<0.001 and FDR<20%). CONCLUSIONS No SNPs met genome-wide significance in this cohort of extremely low birthweight infants; however, areas of potential association and pathways meriting further study were identified.
Collapse
Affiliation(s)
- Lakshmi Srinivasan
- Department of Pediatrics, The Children’s Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, PA
| | - Grier Page
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC
| | - Haresh Kirpalani
- Department of Pediatrics, The Children’s Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, PA
| | | | - Abhik Das
- Social, Statistical and Environmental Sciences Unit, RTI International, Rockville, MD
| | - Rosemary D. Higgins
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Waldemar A. Carlo
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Edward F. Bell
- University of Iowa, Department of Pediatrics, Iowa City, IA
| | | | - Kurt Schibler
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Beena G. Sood
- Department of Pediatrics, Wayne State University, Detroit, MI
| | - David K. Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Lucile Packard Children’s Hospital, Palo Alto, CA
| | - Barbara J. Stoll
- Emory University School of Medicine, Department of Pediatrics, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Krisa P. Van Meurs
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Lucile Packard Children’s Hospital, Palo Alto, CA
| | | | - Joshua Levy
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC
| | - Scott A. McDonald
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC
| | | | - Kathleen A. Kennedy
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX
| | - Pablo J. Sánchez
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shahnaz Duara
- University of Miami Miller School of Medicine, Miami, FL
| | - Michele C. Walsh
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH
| | | | - James L. Wynn
- Department of Pediatrics, University of Florida, Gainesville, FL
| | | |
Collapse
|
37
|
Gleisner MA, Navarrete M, Hofmann F, Salazar-Onfray F, Tittarelli A. Mind the Gaps in Tumor Immunity: Impact of Connexin-Mediated Intercellular Connections. Front Immunol 2017; 8:1067. [PMID: 28919895 PMCID: PMC5585150 DOI: 10.3389/fimmu.2017.01067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022] Open
Abstract
Gap junctions (GJs)-mediated intercellular communications (GJICs) are connexin (Cx)-formed plasma membrane channels that allow for the passage of small molecules between adjacent cells, and are involved in several physiopathological processes, including immune responses against cancer. In general, tumor cells are poorly coupled through GJs, mainly due to low Cx expression or reduced channel activity, suggesting that Cxs may have tumor suppressor roles. However, more recent data indicate that Cxs and/or GJICs may also in some cases promote tumor progression. This dual role of Cx channels in tumor outcome may be due, at least partially, to the fact that GJs not only interconnect cells from the same type, such as cancer cells, but also promote the intercellular communication of tumor cells with different types of cells from their microenvironment, and such diverse intercellular interactions have distinctive impact on tumor development. For example, whereas GJ-mediated interactions among tumor cells and microglia have been implicated in promotion of tumor growth, tumor cells delivery to dendritic cells of antigenic peptides through GJs have been associated with enhanced immune-mediated tumor elimination. In this review, we provide an updated overview on the role of GJICs in tumor immunity, focusing on the pro-tumor and antitumor effect of GJs occurring among tumor and immune cells. Accumulated data suggest that GJICs may act as tumor suppressors or enhancers depending on whether tumor cells interact predominantly with antitumor immune cells or with stromal cells. The complex modulation of immune-tumor cell GJICs should be taken into consideration in order to potentiate current cancer immunotherapies.
Collapse
Affiliation(s)
- María Alejandra Gleisner
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Mariela Navarrete
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Francisca Hofmann
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Andrés Tittarelli
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| |
Collapse
|
38
|
Hennenberg EM, Eyking A, Reis H, Cario E. MDR1A deficiency restrains tumor growth in murine colitis-associated carcinogenesis. PLoS One 2017; 12:e0180834. [PMID: 28686677 PMCID: PMC5501609 DOI: 10.1371/journal.pone.0180834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
Patients with Ulcerative Colitis (UC) have an increased risk to develop colitis-associated colorectal cancer (CAC). Here, we found that protein expression of ABCB1 (ATP Binding Cassette Subfamily B Member 1) / MDR1 (multidrug resistance 1) was diminished in the intestinal mucosa of patients with active UC with or without CAC, but not in non-UC patients with sporadic colon cancer. We investigated the consequences of ABCB1/MDR1 loss-of-function in a common murine model for CAC (AOM/DSS). Mice deficient in MDR1A (MDR1A KO) showed enhanced intratumoral inflammation and cellular damage, which were associated with reduced colonic tumor size and decreased degree of dysplasia, when compared to wild-type (WT). Increased cell injury correlated with reduced capacity for growth of MDR1A KO tumor spheroids cultured ex-vivo. Gene expression analysis by microarray demonstrated that MDR1A deficiency shaped the inflammatory response towards an anti-tumorigenic microenvironment by downregulating genes known to be important mediators of cancer progression (PTGS2 (COX2), EREG, IL-11). MDR1A KO tumors showed increased gene expression of TNFSF10 (TRAIL), a known inducer of cancer cell death, and CCL12, a strong trigger of B cell chemotaxis. Abundant B220+ B lymphocyte infiltrates with interspersed CD138+ plasma cells were recruited to the MDR1A KO tumor microenvironment, concomitant with high levels of immunoglobulin light chain genes. In contrast, MDR1A deficiency in RAG2 KO mice that lack both B and T cells aggravated colonic tumor progression. MDR1A KO CD19+ B cells, but not WT CD19+ B cells, suppressed growth of colonic tumor-derived spheroids from AOM/DSS-WT mice in an ex-vivo co-culture system, implying that B-cell regulated immune responses contributed to delayed tumor development in MDR1A deficiency. In conclusion, we provide first evidence that loss of ABCB1/MDR1 function may represent an essential tumor-suppressive host defense mechanism in CAC.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/immunology
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Carcinogenesis/genetics
- Carcinogenesis/immunology
- Carcinogenesis/pathology
- Chemotaxis
- Colitis, Ulcerative/complications
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- Colorectal Neoplasms/complications
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/pathology
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/immunology
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- Disease Models, Animal
- Epiregulin/genetics
- Epiregulin/immunology
- Gene Expression Regulation, Neoplastic
- Genes, Immunoglobulin Light Chain/genetics
- Humans
- Interleukin-11/genetics
- Interleukin-11/immunology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Leukocyte Common Antigens/genetics
- Leukocyte Common Antigens/immunology
- Male
- Mice
- Mice, Knockout
- Monocyte Chemoattractant Proteins/genetics
- Monocyte Chemoattractant Proteins/immunology
- Signal Transduction
- TNF-Related Apoptosis-Inducing Ligand/genetics
- TNF-Related Apoptosis-Inducing Ligand/immunology
Collapse
Affiliation(s)
- Eva Maria Hennenberg
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
- Medical School, University of Duisburg-Essen, Essen, Germany
| | - Annette Eyking
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
- Medical School, University of Duisburg-Essen, Essen, Germany
| | - Henning Reis
- Medical School, University of Duisburg-Essen, Essen, Germany
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Elke Cario
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
- Medical School, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
39
|
Shao YX, Lei Z, Wolf PG, Gao Y, Guo YM, Zhang BK. Zinc Supplementation, via GPR39, Upregulates PKCζ to Protect Intestinal Barrier Integrity in Caco-2 Cells Challenged bySalmonella entericaSerovar Typhimurium. J Nutr 2017; 147:1282-1289. [DOI: 10.3945/jn.116.243238] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/23/2016] [Accepted: 04/13/2017] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yu-Xin Shao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhao Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Patricia G Wolf
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Yan Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu-Ming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bing-Kun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Cario E. P-glycoprotein multidrug transporter in inflammatory bowel diseases: More questions than answers. World J Gastroenterol 2017; 23:1513-1520. [PMID: 28321153 PMCID: PMC5340804 DOI: 10.3748/wjg.v23.i9.1513] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/06/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal barrier is constantly exposed to numerous environmental substrates that are foreign and potentially harmful. These xenobiotics can cause shifts in the intestinal microbiota composition, affect mucosal immune responses, disturb tissue integrity and impair regeneration. The multidrug transporter ABCB1/MDR1 p-glycoprotein (p-gp) plays a key role at the front line of host defence by efficiently protecting the gastrointestinal barrier from xenobiotic accumulation. This Editorial discusses how altered expression and function of ABCB1/MDR1 p-gp may contribute to the development and persistence of chronic intestinal inflammation in inflammatory bowel diseases (IBD). Recent evidence implies multiple interactions between intestinal microbiota, innate immunity and xenobiotic metabolism via p-gp. While decreased efflux activity may promote disease susceptibility and drug toxicity, increased efflux activity may confer resistance to therapeutic drugs in IBD. Mice deficient in MDR1A develop spontaneously chronic colitis, providing a highly valuable murine IBD model for the study of intestinal epithelial barrier function, immunoregulation, infectious co-triggers and novel therapeutic approaches. Possible associations of human ABCB1 gene polymorphisms with IBD susceptibility have been evaluated, but results are inconsistent. Future studies must focus on further elucidation of the pathophysiological relevance and immunological functions of p-gp and how its ambiguous effects could be therapeutically targeted in IBD.
Collapse
|
41
|
N-Acetylcysteine improves intestinal function in lipopolysaccharides-challenged piglets through multiple signaling pathways. Amino Acids 2017; 49:1915-1929. [PMID: 28271166 DOI: 10.1007/s00726-017-2389-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/27/2017] [Indexed: 12/20/2022]
Abstract
This study determined whether N-acetylcysteine (NAC) could improve intestinal function through phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), epithelial growth factor receptor (EGFR), toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB), adenosine 5'-monophosphate-activated protein kinase (AMPK), and type I interferon (IFN) signaling pathways in a piglet model of lipopolysaccharides (LPS) challenge. Thirty-two piglets (24-day-old) were randomly allocated to one of four treatments, with eight replicates per treatment and one piglet per replicate. The experiment consisted of four treatments in a 2 × 2 factorial arrangement with two diets (supplemented with 0 or 500 mg NAC/kg diet) and saline or LPS administration. On day 20 of the trial, piglets in the LPS and LPS + NAC groups were intraperitoneally injected with 0 (saline) or 100 μg LPS/kg BW. Blood samples were obtained at 3 h and intestinal mucosae were collected at 6 h post LPS or saline injection. The growth performance was not affected by dietary NAC. LPS induced intestinal dysfunction, as indicated by: (1) reductions in the small-intestinal glutathione concentrations and plasma D-xylose levels; (2) elevations in plasma diamine oxidase activity, mucosal MMP3 mRNA levels and caspase-3 protein abundance; (3) reduced the activities of the small-intestinal mucosal maltase, sucrase and lactase. The adverse effects of LPS on porcine intestinal function and redox status were mitigated by NAC supplementation through the activation of multiple signaling pathways involving PI3K/Akt/mTOR, EGFR, TLR4/NF-κB, AMPK, and type I IFN. Our findings provide novel mechanisms for beneficial effects of NAC in protecting the intestine from inflammation in animals.
Collapse
|
42
|
Quinteiro-Filho WM, Calefi AS, Cruz DSG, Aloia TPA, Zager A, Astolfi-Ferreira CS, Piantino Ferreira JA, Sharif S, Palermo-Neto J. Heat stress decreases expression of the cytokines, avian β-defensins 4 and 6 and Toll-like receptor 2 in broiler chickens infected with Salmonella Enteritidis. Vet Immunol Immunopathol 2017; 186:19-28. [PMID: 28413046 DOI: 10.1016/j.vetimm.2017.02.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/31/2017] [Accepted: 02/25/2017] [Indexed: 01/05/2023]
Abstract
A high ambient temperature is a highly relevant stressor in poultry production. Heat stress (HS) has been reported to reduce animal welfare, performance indices and increase Salmonella susceptibility. Salmonella spp. are major zoonotic pathogen that cause over 1 billion of human infections worldwide annually. Therefore, the current study was designed to analyze the effect of heat stress on Salmonella infection in chickens through modulation of the immune responses. Salmonella Enteritidis was inoculated via gavage at one day of age (106cfu/mL). Heat stress 31±1°C was applied from 35 to 41 days of age. Broiler chickens were divided into the following groups of 12 chickens: control (C); heat stress (HS31°C); S. Enteritidis positive control (PC); and S. Enteritidis+heat stress (PHS31°C). We observed that heat stress increased corticosterone serum levels. Concomitantly heat stress decreased (1) the IgA and IFN-γ plasmatic levels; (2) the mRNA expression of IL-6, IL-12 in spleen and IL-1β, IL-10, TGF-β in cecal tonsils; (3) the mRNA expression of AvBD4 and AvBD6 in cecal tonsils; and (4) the mRNA expression of TLR2 in spleen and cecal tonsils of chickens infected with S. Enteritidis (PHS31°C group). Heat stress also increased Salmonella colonization in the crop and caecum as well as Salmonella invasion to the spleen, liver and bone marrow, showing a deficiency in the control of S. Enteritidis induced infection. Together, the present data suggested that heat stress activated hypothalamus-pituitary-adrenal (HPA) axis, as observed by the increase in the corticosterone levels, which in turn presumably decreases the immune system activity, leading to an impairment of the intestinal mucosal barrier and increasing chicken susceptibility to the invasion of different organs by S. Enteritidis .
Collapse
Affiliation(s)
- W M Quinteiro-Filho
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil.
| | - A S Calefi
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - D S G Cruz
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - T P A Aloia
- Experimental Research Laboratory, Albert Einstein Jewish Institute for Education and Research, Albert Einstein Hospital, Sao Paulo, Brazil
| | - A Zager
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - C S Astolfi-Ferreira
- Laboratory of Avian Diseases, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - J A Piantino Ferreira
- Laboratory of Avian Diseases, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - S Sharif
- Laboratory of Immunology, Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - J Palermo-Neto
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
43
|
Jhamb S, Vangaveti VN, Malabu UH. Genetic and molecular basis of diabetic foot ulcers: Clinical review. J Tissue Viability 2016; 25:229-236. [DOI: 10.1016/j.jtv.2016.06.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/10/2016] [Accepted: 06/21/2016] [Indexed: 12/19/2022]
|
44
|
Gajardo-Gómez R, Labra VC, Orellana JA. Connexins and Pannexins: New Insights into Microglial Functions and Dysfunctions. Front Mol Neurosci 2016; 9:86. [PMID: 27713688 PMCID: PMC5031785 DOI: 10.3389/fnmol.2016.00086] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions, microglia adopt a resting phenotype associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, these cells shift to an activated phenotype that is necessary for the proper restoration of brain homeostasis. However, when the intensity of a threat is relatively high, microglial activation worsens the progression of damage rather than providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and other brain cells, including astrocytes and neurons, are critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. Gap junction channels (which are exclusively formed by connexins in vertebrates) connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. Hemichannels (HCs) and pannexons (which are formed by connexins and pannexins, respectively) communicate the intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review article, we discuss the available evidence concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contributions to microglial function and dysfunction. Specifically, we focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain.
Collapse
Affiliation(s)
- Rosario Gajardo-Gómez
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
45
|
Al-Ghadban S, Kaissi S, Homaidan FR, Naim HY, El-Sabban ME. Cross-talk between intestinal epithelial cells and immune cells in inflammatory bowel disease. Sci Rep 2016; 6:29783. [PMID: 27417573 PMCID: PMC4945922 DOI: 10.1038/srep29783] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) involves functional impairment of intestinal epithelial cells (IECs), concomitant with the infiltration of the lamina propria by inflammatory cells. We explored the reciprocal paracrine and direct interaction between human IECs and macrophages (MΦ) in a co-culture system that mimics some aspects of IBD. We investigated the expression of intercellular junctional proteins in cultured IECs under inflammatory conditions and in tissues from IBD patients. IECs establish functional gap junctions with IECs and MΦ, respectively. Connexin (Cx26) and Cx43 expression in cultured IECs is augmented under inflammatory conditions; while, Cx43-associated junctional complexes partners, E-cadherin, ZO-1, and β-catenin expression is decreased. The expression of Cx26 and Cx43 in IBD tissues is redistributed to the basal membrane of IEC, which is associated with decrease in junctional complex proteins' expression, collagen type IV expression and infiltration of MΦ. These data support the notion that the combination of paracrine and hetero-cellular communication between IECs and MΦs may regulate epithelial cell function through the establishment of junctional complexes between inflammatory cells and IECs, which ultimately contribute to the dys-regulation of intestinal epithelial barrier.
Collapse
Affiliation(s)
- Sara Al-Ghadban
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American university of Beirut, Beirut, Lebanon
| | - Samira Kaissi
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American university of Beirut, Beirut, Lebanon
| | - Fadia R Homaidan
- Inflammation group-Nature Conservation Center (NCC) for Sustainable Futures, American University of Beirut, Lebanon
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marwan E El-Sabban
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American university of Beirut, Beirut, Lebanon
| |
Collapse
|
46
|
Toll-like receptors in the pathogenesis of chemotherapy-induced gastrointestinal toxicity. Curr Opin Support Palliat Care 2016; 10:157-64. [DOI: 10.1097/spc.0000000000000202] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Tse G, Lai ETH, Yeo JM, Tse V, Wong SH. Mechanisms of Electrical Activation and Conduction in the Gastrointestinal System: Lessons from Cardiac Electrophysiology. Front Physiol 2016; 7:182. [PMID: 27303305 PMCID: PMC4885840 DOI: 10.3389/fphys.2016.00182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP) are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Eric Tsz Him Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Jie Ming Yeo
- School of Medicine, Imperial College LondonLondon, UK
| | - Vivian Tse
- Department of Physiology, McGill UniversityMontreal, QC, Canada
| | - Sunny Hei Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Sciences, Chinese University of Hong KongHong Kong, China
| |
Collapse
|
48
|
Hamon L, Savarin P, Pastré D. Polyamine signal through gap junctions: A key regulator of proliferation and gap-junction organization in mammalian tissues? Bioessays 2016; 38:498-507. [DOI: 10.1002/bies.201500195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Loic Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques; INSERM U1204 and Université Evry-Val d'Essonne; Evry France
| | - Philippe Savarin
- Centre National de Recherche Scientifique (CNRS), Equipe Spectroscopie des Biomolécules et des Milieux Biologiques (SBMB); Université Paris 13, Sorbonne Paris Cité, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Unité Mixte de Recherche (UMR) 7244; Bobigny France
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques; INSERM U1204 and Université Evry-Val d'Essonne; Evry France
| |
Collapse
|
49
|
Puebla C, Cisterna BA, Salas DP, Delgado-López F, Lampe PD, Sáez JC. Linoleic acid permeabilizes gastric epithelial cells by increasing connexin 43 levels in the cell membrane via a GPR40- and Akt-dependent mechanism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:439-48. [PMID: 26869446 DOI: 10.1016/j.bbalip.2016.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/25/2016] [Accepted: 02/06/2016] [Indexed: 02/08/2023]
Abstract
Linoleic acid (LA) is known to activate G-protein coupled receptors and connexin hemichannels (Cx HCs) but possible interlinks between these two responses remain unexplored. Here, we evaluated the mechanism of action of LA on the membrane permeability mediated by Cx HCs in MKN28 cells. These cells were found to express connexins, GPR40, GPR120, and CD36 receptors. The Cx HC activity of these cells increased after 5 min of treatment with LA or GW9508, an agonist of GPR40/GPR120; or exposure to extracellular divalent cation-free solution (DCFS), known to increase the open probability of Cx HCs, yields an immediate increase in Cx HC activity of similar intensity and additive with LA-induced change. Treatment with a CD36 blocker or transfection with siRNA-GPR120 maintains the LA-induced Cx HC activity. However, cells transfected with siRNA-GPR40 did not show LA-induced Cx HC activity but activity was increased upon exposure to DCFS, confirming the presence of activatable Cx HCs in the cell membrane. Treatment with AKTi (Akt inhibitor) abrogated the LA-induced Cx HC activity. In HeLa cells transfected with Cx43 (HeLa-Cx43), LA induced phosphorylation of surface Cx43 at serine 373 (S373), site for Akt phosphorylation. HeLa-Cx43 but not HeLa-Cx43 cells with a S373A mutation showed a LA-induced Cx HC activity directly related to an increase in cell surface Cx43 levels. Thus, the increase in membrane permeability induced by LA is mediated by an intracellular signaling pathway activated by GPR40 that leads to an increase in membrane levels of Cx43 phosphorylated at serine 373 via Akt.
Collapse
Affiliation(s)
- Carlos Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Bruno A Cisterna
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Daniela P Salas
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Delgado-López
- Laboratorios de Biomedicina, Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Paul D Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
50
|
Maes M, Crespo Yanguas S, Willebrords J, Cogliati B, Vinken M. Connexin and pannexin signaling in gastrointestinal and liver disease. Transl Res 2015; 166:332-43. [PMID: 26051630 PMCID: PMC4570182 DOI: 10.1016/j.trsl.2015.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 12/20/2022]
Abstract
Gap junctions, which mediate intercellular communication, are key players in digestive homeostasis. They are also frequently involved in gastrointestinal and liver pathology. This equally holds true for connexin (Cx) hemichannels, the structural precursors of gap junctions, and pannexin (Panx) channels, Cx-like proteins assembled in a hemichannel configuration. Both Cx hemichannels and Panx channels facilitate extracellular communication and drive a number of deteriorative processes, such as cell death and inflammation. Cxs, Panxs, and their channels underlie a wide spectrum of gastrointestinal and liver diseases, including gastritis and peptic ulcer disease, inflammatory intestinal conditions, acute liver failure, cholestasis, hepatitis and steatosis, liver fibrosis and cirrhosis, infectious gastrointestinal pathologies, and gastrointestinal and liver cancer. This could open promising perspectives for the characterization of new targets and biomarkers for therapeutic and diagnostic clinical purposes in the area of gastroenterology and hepatology.
Collapse
Affiliation(s)
- Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|