1
|
Chopra U, Bhansali P, Gangi Setty SR, Chakravortty D. Endoplasmic reticulum facilitates the coordinated division of Salmonella-containing vacuoles. mBio 2025; 16:e0011425. [PMID: 40272166 PMCID: PMC12077215 DOI: 10.1128/mbio.00114-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Salmonella Typhimurium (STM) resides in a membrane-bound compartment called the Salmonella-containing vacuole (SCV) in several infected cell types where bacterial and SCV division occur synchronously to maintain a single bacterium per vacuole. However, the mechanism behind this synchronous fission is not well understood. Fission of intracellular organelles is known to be regulated by the dynamic tubular endoplasmic reticulum (ER). In this study, we evaluated the role of ER in controlling SCV division. Interestingly, Salmonella-infected cells show activation of the unfolded protein response (UPR) and expansion of ER tubules. Altering the expression of ER morphology regulators, such as reticulon-4a (Rtn4a) and CLIMP63, significantly impacted bacterial proliferation, suggesting a potential role of tubular ER in facilitating SCV division. Live-cell imaging revealed the marking of tubular ER at the center of 78% of SCV division sites. This study also explored the role of SteA (a known Salmonella effector in modulating membrane dynamics) in coordinating the SCV division. SteA resides on the SCV membranes and helps form membrane contact between SCV and ER. The colocalization of ER with SCV enclosing STMΔsteA was significantly reduced, compared with SCV of STM WT or STMΔsteA:steA. STMΔsteA shows profound defects in SCV division, resulting in multiple bacteria in a single vacuole with proliferation defects. In vivo, the STMΔsteA shows a defect in colonization in the spleen and liver and affects the initial survival rate of mice. Overall, this study suggests a coordinated role of bacterial effector SteA in promoting ER contact/association with SCVs and regulating SCV division.IMPORTANCEThis study highlights the essential role of the host endoplasmic reticulum in facilitating SCV division and maintaining a single bacterium per vacuole. The Salmonella effector SteA helps maintain the single bacterium per vacuole state. In the absence of SteA, Salmonella resides as multiple bacteria within a single large vacuole. The STMΔsteA shows reduced proliferation under in vitro conditions and exhibits colonization defects in vivo, highlighting the importance of this effector in Salmonella pathogenesis. These findings suggest that targeting SteA could provide a novel therapeutic approach to inhibit Salmonella pathogenicity.
Collapse
Affiliation(s)
- Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| |
Collapse
|
2
|
Minowa-Nozawa A, Nozawa T, Murase K, Nakagawa I. RabGAP1L modulates Rab7A and Rab10 to orchestrate cell-autonomous immunity. Cell Rep 2025; 44:115599. [PMID: 40244851 DOI: 10.1016/j.celrep.2025.115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025] Open
Abstract
Cell-autonomous immunity protects cells by utilizing membrane trafficking to detect and counteract diverse microbial pathogens, including selective autophagy and extracellular expulsion. However, the mechanisms underlying the mutual regulation among these systems has remained unknown. Here, we demonstrate that Rab GTPase-activating protein 1-like (RabGAP1L) modulates cell-autonomous immune responses via inactivation of two distinct Rab GTPases during group A Streptococcus (GAS) infection. Confocal microscopy analyses revealed that Rab7A positively regulates selective autophagy induction against GAS by facilitating endolysosomal trafficking and that Rab7A and Rab10 negatively regulate GAS expulsion from infected cells by inhibiting Rab11A-positive recycling endosome formation. RabGAP1L suppressed these pathways via inactivation of Rab7A and Rab10. By contrast, ATG7 and ATG5 knockout, resulting in autophagy deficiency, increased RabGAP1L-dependent bacterial expulsion from infected cells via the endocytic recycling pathway. Our findings suggest a regulatory mechanism of cell-autonomous immunity mediated by RabGAP1L, which contributes to the efficient elimination of intracellular pathogens.
Collapse
Affiliation(s)
- Atsuko Minowa-Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kazunori Murase
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
3
|
Arakawa M, Uriu K, Saito K, Hirose M, Katoh K, Asano K, Nakane A, Saitoh T, Yoshimori T, Morita E. HEATR3 recognizes membrane rupture and facilitates xenophagy in response to Salmonella invasion. Proc Natl Acad Sci U S A 2025; 122:e2420544122. [PMID: 40178893 PMCID: PMC12002282 DOI: 10.1073/pnas.2420544122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025] Open
Abstract
Bacterial invasion into the cytoplasm of epithelial cells triggers the activation of the cellular autophagic machinery as a defense mechanism, a process known as xenophagy. In this study, we identified HEATR3, an LC3-interacting region (LIR)-containing protein, as a factor involved in this defense mechanism using quantitative mass spectrometry analysis. HEATR3 localizes intracellularly invading Salmonella, and HEATR3 deficiency promotes Salmonella proliferation in the cytoplasm. HEATR3 also localizes to lysosomes damaged by chemical treatment, suggesting that Salmonella recognition is facilitated by damage to the host cell membrane. HEATR3 deficiency impairs LC3 recruitment to damaged membranes and blocks the delivery of the target to the lysosome. These phenotypes were rescued by exogenous expression of wild-type HEATR3 but not by the LIR mutant, indicating the crucial role of the HEATR3-LC3 interaction in the receptor for selective autophagy. HEATR3 is delivered to lysosomes in an autophagy-dependent manner. Although HEATR3 recruitment to the damaged membrane was unaffected by ATG5 or FIP200 deficiency, it was markedly impaired by treatment with a calcium chelator, suggesting involvement upstream of the autophagic pathway. These findings suggest that HEATR3 serves as a receptor for selective autophagy and is able to identify damaged membranes, facilitate the removal of damaged lysosomes, and target invading bacteria within cells.
Collapse
Affiliation(s)
- Masashi Arakawa
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Keiya Uriu
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Koki Saito
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Mai Hirose
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Graduate School of Medicine, Hirosaki University, Hirosaki036-8562, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Graduate School of Medicine, Hirosaki University, Hirosaki036-8562, Japan
| | - Tatsuya Saitoh
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan
- Center for Infectious Diseases for Education and Research, Suita, Osaka565-0871, Japan
| | - Tamotsu Yoshimori
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita565-0871, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita565-0871, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| |
Collapse
|
4
|
Ying YT, Yang J, Ye HW, Chen MY, Liu X, Chen W, Xu JX, Tan X. Staphylococcus aureus reprograms CASP8 (caspase 8) signaling to evade cell death and Xenophagy. Autophagy 2025:1-14. [PMID: 40143428 DOI: 10.1080/15548627.2025.2483887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/28/2025] Open
Abstract
Regulated cell death and xenophagy constitute fundamental cellular mechanisms against invading microorganisms. Staphylococcus aureus, a notorious pathogen, can invade and persist within host cells for extended periods. Here, we describe a novel mechanism by which S. aureus subverts these host defenses through the manipulation of the CASP8 (caspase 8) signaling pathway. Upon invasion, S. aureus triggers the assembly of a RIPK3 (receptor interacting serine/threonine kinase 3) complex to induce CASP8 autoprocessing. However, the bacterium inhibits CUL3 (cullin 3)-dependent K63-linked ubiquitination, leading to an atypical activation of CASP8. This non-canonical activation does not initiate the CASP8-CASP3 cascade but instead suppresses RIPK3-dependent necroptosis, a regulated cell death pathway typically activated when apoptosis fails. The resulting non-apoptotic, cleaved CASP8 redirects its enzymatic activity toward cleaving SQSTM1/p62, a selective macroautophagy/autophagy receptor, thus enabling S. aureus to evade antimicrobial xenophagy. The results of this study suggest that S. aureus reprograms the CASP8 signaling pathway from inducing cell death to preserving cell survival and inhibiting xenophagy, a critical strategy that supports its stealthy replication and persistence within host cells.Abbreviations: CASP3: caspase 3; CASP8: caspase 8; CFU: colony-forming units; CUL3: cullin 3; DUB: deubiquitinating enzyme; MAP1LC3B-II/LC3B-II: microtubule associated protein 1 light chain 3 beta-II; MOI: multiplicity of infection; RIPK1: receptor interacting protein kinase 1; RIPK3: receptor interacting protein kinase 3; S. aureus: Staphylococcus aureus.
Collapse
Affiliation(s)
- Yi-Tian Ying
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Yang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Hui-Wen Ye
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Mei-Yi Chen
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Jin-Xin Xu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Xun Tan
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Gatica D, Alsaadi RM, El Hamra R, Li B, Mueller R, Miyazaki M, Sun Q, Sad S, Russell RC. The ER-phagy receptor FAM134B is targeted by Salmonella Typhimurium to promote infection. Nat Commun 2025; 16:2923. [PMID: 40133256 PMCID: PMC11937434 DOI: 10.1038/s41467-025-58035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Macroautophagy/autophagy is a key catabolic-recycling pathway that can selectively target damaged organelles or invading pathogens for degradation. The selective autophagic degradation of the endoplasmic reticulum (hereafter referred to as ER-phagy) is a homeostatic mechanism, controlling ER size, the removal of misfolded protein aggregates, and organelle damage. ER-phagy can also be stimulated by pathogen infection. However, the link between ER-phagy and bacterial infection remains poorly understood, as are the mechanisms evolved by pathogens to escape the effects of ER-phagy. Here, we show that Salmonella enterica serovar Typhimurium inhibits ER-phagy by targeting the ER-phagy receptor FAM134B, leading to a pronounced increase in Salmonella burden after invasion. Salmonella prevents FAM134B oligomerization, which is required for efficient ER-phagy. FAM134B knock-out raises intracellular Salmonella number, while FAM134B activation reduces Salmonella burden. Additionally, we found that Salmonella targets FAM134B through the bacterial effector SopF to enhance intracellular survival through ER-phagy inhibition. Furthermore, FAM134B knock-out mice infected with Salmonella presented severe intestinal damage and increased bacterial burden. These results provide mechanistic insight into the interplay between ER-phagy and bacterial infection, highlighting a key role for FAM134B in innate immunity.
Collapse
Affiliation(s)
- Damián Gatica
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Reham M Alsaadi
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rayan El Hamra
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Boran Li
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Rudolf Mueller
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Biochemistry and Department of Cardiology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ryan C Russell
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada.
- University of Ottawa Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Roy Chowdhury A, Hajra D, Mukherjee D, Nair AV, Chakravortty D. Functional OmpA of Salmonella Typhimurium Provides Protection From Lysosomal Degradation and Inhibits Autophagic Processes in Macrophages. J Infect Dis 2025; 231:716-728. [PMID: 39078938 DOI: 10.1093/infdis/jiae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 03/18/2025] Open
Abstract
Our previous study showed that OmpA-deficient Salmonella Typhimurium failed to retain LAMP-1 around the Salmonella-containing vacuoles (SCV), and escaped in to the host cell cytosol. Here we show that the cytosolic population of S. Typhimurium ΔompA sequestered autophagic markers, syntaxin17 and LC3B, in a sseL-dependent manner and initiated lysosomal fusion. Moreover, inhibition of autophagy using bafilomycinA1 restored its intracellular proliferation. Ectopic overexpression of OmpA in S. Typhimurium ΔsifA restored its vacuolar niche and increased its interaction with LAMP-1, suggesting a sifA-independent role of OmpA in maintaining an intact SCV. Mutations in the OmpA extracellular loops impaired the LAMP-1 recruitment to SCV and caused bacterial release into the cytosol of macrophages, but unlike S. Typhimurium ΔompA, they retained their outer membrane stability and did not activate the lysosomal degradation pathway, aiding in their intramacrophage survival. Finally, OmpA extracellular loop mutations protected cytosolic S. Typhimurium ΔsifA from lysosomal surveillance, revealing a unique OmpA-dependent strategy of S. Typhimurium for its intracellular survival.
Collapse
Affiliation(s)
- Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipasree Hajra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| |
Collapse
|
7
|
Sadeghloo Z, Nabavi-Rad A, Zali MR, Klionsky DJ, Yadegar A. The interplay between probiotics and host autophagy: mechanisms of action and emerging insights. Autophagy 2025; 21:260-282. [PMID: 39291740 PMCID: PMC11759520 DOI: 10.1080/15548627.2024.2403277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/19/2024] Open
Abstract
Autophagy, a lysosome-dependent protein degradation mechanism, is a highly conserved catabolic process seen in all eukaryotes. This cell protection system, which is present in all tissues and functions at a basic level, can be up- or downregulated in response to various stresses. A disruption in the natural route of the autophagy process is frequently followed by an interruption in the inherent operation of the body's cells and organs. Probiotics are live bacteria that protect the host through various mechanisms. One of the processes through which probiotics exert their beneficial effects on various cells and tissues is autophagy. Autophagy can assist in maintaining host homeostasis by stimulating the immune system and affecting numerous physiological and pathological responses. In this review, we particularly focus on autophagy impairments occurring in several human illnesses and investigate how probiotics affect the autophagy process under various circumstances.Abbreviation: AD: Alzheimer disease; AKT: AKT serine/threonine kinase; AMPK: 5'AMP-activated protein kinase; ATG: autophagy related; CCl4: carbon tetrachloride; CFS: cell-free supernatant; CMA: chaperone-mediated autophagy; CRC: colorectal cancer; EPS: L. plantarum H31 exopolysaccharide; HD: Huntington disease; HFD: high-fat diet; HPV: human papillomavirus; IFNG/IFN-γ: interferon gamma; IL6: interleukin 6; LGG: L. rhamnosus GG; LPS: lipopolysaccharide; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; PD: Parkinson disease; Pg3G: pelargonidin-3-O-glucoside; PI3K: phosphoinositide 3-kinase; PolyQ: polyglutamine; ROS: reactive oxygen species; SCFAs: short-chain fatty acids; SLAB51: a novel formulation of lactic acid bacteria and bifidobacteria; Slp: surface layer protein (of acidophilus NCFM); SNCA: synuclein alpha; ULK1: unc-51 like autophagy-activating kinase 1; YB: B. longum subsp. infantis YB0411; YFP: yeast fermentate prebiotic.
Collapse
Affiliation(s)
- Zahra Sadeghloo
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Patel S, Naik L, Das M, Nayak DK, Dandsena PK, Mishra A, Kumar A, Dirisala VR, Mishra A, Das S, Singh R, Behura A, Dhiman R. Furamidine-induced autophagy exerts an anti-mycobacterial effect in a SIRT1-pAMPK-FOXO3a-dependent manner by elevation of intracellular Ca 2+ level expression. Microbiol Res 2025; 290:127976. [PMID: 39591744 DOI: 10.1016/j.micres.2024.127976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Mycobacterium tuberculosis (M. tb), the etiological agent of tuberculosis (TB), continues to be a major contributor to global mortality rates. To effectively combat this pandemic, TB control has to be enhanced in several areas, including point-of-care diagnostics, shorter and safer drug regimens, and preventative vaccination. The latest findings have highlighted autophagy as a host-defense mechanism that eradicates many invading bacteria, including M. tb. Thus, novel approaches like the stimulation of autophagy using various pharmaceutical drugs can be undertaken to deal with this noxious pathogen. The present study has been formulated to evaluate the anti-mycobacterial potential of Furamidine, a DNA minor groove binder (MGB). Initially, a non-cytotoxic concentration of Furamidine (10 µM) was used to assess its impact on the intracellular persistence of mycobacteria in differentiated THP-1 (dTHP-1) cells. Furamidine treatment compromised intracellular mycobacterial growth compared to control cells. Autophagy, a well-known host-defensive strategy, was investigated as a possible contributor to revealing the mechanism of action. Multiparametric approaches such as LC3-I to II conversion, protein level expression of different autophagic markers, and MDC staining were employed to study autophagic response that conclusively suggested the autophagy induction potential of Furamidine in dTHP-1 cells. Further, elevated LC3-II expression and increased autophagic vacuole accumulation under Baf-A1 treatment demonstrated the positive regulation of autophagic flux upon Furamidine treatment. Mechanistic investigations showed increased intracellular calcium (Ca2+) level expression, SIRT1, pAMPK, and FOXO3a activation upon its treatment. Inhibition of Ca2+ level expression suppressed Ca2+-mediated-FOXO3a level in Furamidine-treated cells. Furthermore, administering various inhibitors hampered the Furamidine-induced autophagy that impacted intracellular mycobacteria clearance. These results conclude that Furamidine triggered the Ca2+/pAMPK/SIRT1/FOXO3a pathway, causing less mycobacterial load in dTHP-1 cells.
Collapse
Affiliation(s)
- Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Pramathesh Kumar Dandsena
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur District, AP-522213, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, PO Box # 4, Faridabad, Haryana 121001, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
9
|
Morinaga S, Zhao M, Mizuta K, Kang BM, Bouvet M, Yamamoto N, Hayashi K, Kimura H, Miwa S, Igarashi K, Higuchi T, Tsuchiya H, Demura S, Hoffman RM. The Combination of Tumor-targeting Salmonella typhimurium A1-R Plus the Autophagy-inhibitor Chloroquine Synergistically Eradicates HT1080 Fibrosarcoma Cells In Vitro and In Vivo. In Vivo 2025; 39:102-109. [PMID: 39740880 PMCID: PMC11705149 DOI: 10.21873/invivo.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM Salmonella typhimurium A1-R (A1-R) targets and inhibits a wide range of cancer types without continuously infecting healthy tissue. Chloroquine, an antimalarial drug, induces apoptosis and inhibits autophagy in cancer cells. The aim of the present study was to determine the synergy of A1-R plus chloroquine on HT1080 human fibrosarcoma cells in vitro and in a nude-mouse model. MATERIALS AND METHODS HT1080 human fibrosarcoma cells were used for in vitro experiments. Four groups were analysed in vitro: No-treatment control; A1-R; chloroquine; A1-R plus chloroquine. The nude-mouse models of HT1080 human fibrosarcoma were randomly assigned into four groups: G1: untreated control; G2: Oral A1-R [5×107 colony forming units (CFU)/body, twice a week, 2 weeks]; G3: Chloroquine [100 mg/kg/body, intraperitoneal (IP) administration, twice a week, 2 weeks]; G4: Oral A1-R (5×107 CFU/body), twice a week, 2 weeks plus chloroquine (100 mg/kg/body, IP), twice a week, 2 weeks. Each cohort consisted of five mice. Tumor volume and body weight were assessed biweekly. RESULTS A1-R combined with chloroquine synergistically decreased the viability of HT1080 cells in vitro compared to other groups. Orally-administered A1-R at 5×107 CFU combined with IP-administered chloroquine eradicated HT1080 tumors in nude mice, without body-weight decrease. CONCLUSION The combination treatment of A1-R plus chloroquine demonstrated synergy against HT1080 cancer cells in vitro and in vivo. A1-R was administered orally, suggesting its potential as a probiotic. The present results suggest the clinical potential of the combination of A1-R and chloroquine for soft-tissue sarcoma therapy, a recalcitrant disease.
Collapse
Affiliation(s)
- Sei Morinaga
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ming Zhao
- AntiCancer Inc., San Diego, CA, U.S.A
| | - Kohei Mizuta
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Byung Mo Kang
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Higuchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Satoru Demura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, U.S.A.;
- Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
10
|
Torsilieri HM, Upchurch CM, Leitinger N, Casanova JE. Salmonella-induced cholesterol accumulation in infected macrophages suppresses autophagy via mTORC1 activation. Mol Biol Cell 2025; 36:ar3. [PMID: 39602284 PMCID: PMC11742112 DOI: 10.1091/mbc.e24-06-0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative bacillus that infects the host intestinal epithelium and resident macrophages. Many intracellular pathogens induce an autophagic response in host cells but have evolved mechanisms to subvert that response. Autophagy is closely linked to cellular cholesterol levels; mTORC1 senses increased cholesterol in lysosomal membranes, leading to its hyperactivity and suppression of autophagy. Previous studies indicate that Salmonella infection induces dramatic accumulation of cholesterol in macrophages, a fraction of which localizes to Salmonella containing vacuoles (SCVs). We previously reported that the bacterial effector protein SseJ triggers cholesterol accumulation through a signaling cascade involving focal adhesion kinase (FAK) and Akt. Here we show that mTORC1 is recruited to SCVs and is hyperactivated in a cholesterol-dependent manner. If cholesterol accumulation is prevented pharmacologically or through mutation of sseJ, autophagy is induced and bacterial survival is attenuated. Notably, the host lipid transfer protein OSBP (oxysterol binding protein 1) is also recruited to SCVs and its activity is necessary for both cholesterol transfer to SCVs and mTORC1 activation during infection. Finally, lipidomic analysis of Salmonella-infected macrophages revealed new insights into how Salmonella may manipulate lipid homeostasis to benefit its survival. We propose that S. Typhimurium induces cholesterol accumulation through SseJ to activate mTORC1, preventing autophagic clearance of bacteria.
Collapse
Affiliation(s)
- Holly M. Torsilieri
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Clint M. Upchurch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - James E. Casanova
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
| |
Collapse
|
11
|
Sun L, Huang K, Huang X. Establishment of a STING-Deficient HepG2 Cell Line through CRISPR/Cas9 System and Evaluation of Its Effects on Salmonella Replication. J Pathog 2024; 2024:9615181. [PMID: 39301082 PMCID: PMC11412752 DOI: 10.1155/2024/9615181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/29/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024] Open
Abstract
Background Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) is a common food-borne pathogen that causes gastroenteritis and can lead to life-threatening systemic disease when it spreads to vital organs, such as the liver. Stimulator of interferon genes (STING) is a crucial regulator of the host's innate immune response to viral infections, while its role in bacterial infections remains controversial. This study aims to establish a STING-deficient HepG2 cell line through the CRISPR/Cas9 system and evaluate its effects on Salmonella replication. Methods In this study, a STING knockout HepG2 cell line was constructed through the application of CRISPR/Cas9 technology. We assessed cell viability and proliferation using the CCK-8 assay. Subsequently, we investigated the effect of STING deletion on Salmonella replication and the expression of type I interferon-related genes. Results The STING knockout HepG2 cell line was successfully constructed using the CRISPR/Cas9 system. The proliferation capability was diminished in STING-deficient HepG2 cells, while Salmonella Typhimurium replication in these cells was augmented compared to the wild-type (WT) group. Following Salmonella infection, the transcriptional responses of type I interferon-related genes, such as IFNB1 and ISG15, were inhibited in STING-deficient HepG2 cells. Conclusions We successfully constructed a STING-deficient cell line. Our finding of increased Salmonella Typhimurium replication in STING-deficient HepG2 cells provides the basis for further studies on pathogen-host interactions.
Collapse
Affiliation(s)
- Lanqing Sun
- Department of Laboratory Medicine Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Kai Huang
- Orthopaedic Institute Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Xuan Huang
- Department of Laboratory Medicine Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Thind MK, Miraglia E, Ling C, Khan MA, Glembocki A, Bourdon C, ChenMi Y, Palaniyar N, Glogauer M, Bandsma RHJ, Farooqui A. Mitochondrial perturbations in low-protein-diet-fed mice are associated with altered neutrophil development and effector functions. Cell Rep 2024; 43:114493. [PMID: 39028622 PMCID: PMC11372442 DOI: 10.1016/j.celrep.2024.114493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024] Open
Abstract
Severe malnutrition is associated with infections, namely lower respiratory tract infections (LRTIs), diarrhea, and sepsis, and underlies the high risk of morbidity and mortality in children under 5 years of age. Dysregulations in neutrophil responses in the acute phase of infection are speculated to underlie these severe adverse outcomes; however, very little is known about their biology in this context. Here, in a lipopolysaccharide-challenged low-protein diet (LPD) mouse model, as a model of malnutrition, we show that protein deficiency disrupts neutrophil mitochondrial dynamics and ATP generation to obstruct the neutrophil differentiation cascade. This promotes the accumulation of atypical immature neutrophils that are incapable of optimal antimicrobial response and, in turn, exacerbate systemic pathogen spread and the permeability of the alveolocapillary membrane with the resultant lung damage. Thus, this perturbed response may contribute to higher mortality risk in malnutrition. We also offer a nutritional therapeutic strategy, nicotinamide, to boost neutrophil-mediated immunity in LPD-fed mice.
Collapse
Affiliation(s)
- Mehakpreet K Thind
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Emiliano Miraglia
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Catriona Ling
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Meraj A Khan
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aida Glembocki
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Celine Bourdon
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - YueYing ChenMi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Robert H J Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya.
| | - Amber Farooqui
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya.
| |
Collapse
|
13
|
Rahman MA, Sarker A, Ayaz M, Shatabdy AR, Haque N, Jalouli M, Rahman MDH, Mou TJ, Dey SK, Hoque Apu E, Zafar MS, Parvez MAK. An Update on the Study of the Molecular Mechanisms Involved in Autophagy during Bacterial Pathogenesis. Biomedicines 2024; 12:1757. [PMID: 39200221 PMCID: PMC11351677 DOI: 10.3390/biomedicines12081757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Autophagy is a unique catabolic process that degrades irrelevant or damaged components in eukaryotic cells to maintain homeostasis and eliminate infections from pathogenesis. Pathogenic bacteria have developed many autophagy manipulation techniques that affect host immune responses and intracellular bacterial pathogens have evolved to avoid xenophagy. However, reducing its effectiveness as an innate immune response has not yet been elucidated. Bacterial pathogens cause autophagy in infected cells as a cell-autonomous defense mechanism to eliminate the pathogen. However, harmful bacteria have learned to control autophagy and defeat host defenses. Intracellular bacteria can stimulate and control autophagy, while others inhibit it to prevent xenophagy and lysosomal breakdown. This review evaluates the putative functions for xenophagy in regulating bacterial infection, emphasizing that successful pathogens have evolved strategies to disrupt or exploit this defense, reducing its efficiency in innate immunity. Instead, animal models show that autophagy-associated proteins influence bacterial pathogenicity outside of xenophagy. We also examine the consequences of the complex interaction between autophagy and bacterial pathogens in light of current efforts to modify autophagy and develop host-directed therapeutics to fight bacterial infections. Therefore, effective pathogens have evolved to subvert or exploit xenophagy, although autophagy-associated proteins can influence bacterial pathogenicity outside of xenophagy. Finally, this review implies how the complex interaction between autophagy and bacterial pathogens affects host-directed therapy for bacterial pathogenesis.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Amily Sarker
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Mohammed Ayaz
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Ananya Rahman Shatabdy
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Nabila Haque
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - MD. Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Taslin Jahan Mou
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Ehsanul Hoque Apu
- Department of Biomedical Science, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia;
- School of Dentistry, University of Jordan, Amman 11942, Jordan
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Md. Anowar Khasru Parvez
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| |
Collapse
|
14
|
Cui X, Wang YT. Function of autophagy genes in innate immune defense against mucosal pathogens. Curr Opin Microbiol 2024; 79:102456. [PMID: 38554450 DOI: 10.1016/j.mib.2024.102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024]
Abstract
Mucosal immunity is posed to constantly interact with commensal microbes and invading pathogens. As a fundamental cell biological pathway affecting immune response, autophagy regulates the interaction between mucosal immunity and microbes through multiple mechanisms, including direct elimination of microbes, control of inflammation, antigen presentation and lymphocyte homeostasis, and secretion of immune mediators. Some of these physiologically important functions do not involve canonical degradative autophagy but rely on certain autophagy genes and their 'autophagy gene-specific functions.' Here, we review the relationship between autophagy and important mucosal pathogens, including influenza virus, Mycobacterium tuberculosis, Salmonella enterica, Citrobacter rodentium, norovirus, and herpes simplex virus, with a particular focus on distinguishing the canonical versus gene-specific mechanisms of autophagy genes.
Collapse
Affiliation(s)
- Xiaoyan Cui
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ya-Ting Wang
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
15
|
Rao S, Huang P, Qian YY, Xia Y, Zhang H. Colonic epithelial cell-specific TFEB activation: a key mechanism promoting anti-bacterial defense in response to Salmonella infection. Front Microbiol 2024; 15:1369471. [PMID: 38711975 PMCID: PMC11070474 DOI: 10.3389/fmicb.2024.1369471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Colitis caused by infections, especially Salmonella, has long been a common disease, underscoring the urgency to understand its intricate pathogenicity in colonic tissues for the development of effective anti-bacterial approaches. Of note, colonic epithelial cells, which form the first line of defense against bacteria, have received less attention, and the cross-talk between epithelial cells and bacteria requires further exploration. In this study, we revealed that the critical anti-bacterial effector, TFEB, was primarily located in colonic epithelial cells rather than macrophages. Salmonella-derived LPS significantly promoted the expression and nuclear translocation of TFEB in colonic epithelial cells by inactivating the mTOR signaling pathway in vitro, and this enhanced nuclear translocation of TFEB was also confirmed in a Salmonella-infected mouse model. Further investigation uncovered that the infection-activated TFEB contributed to the augmentation of anti-bacterial peptide expression without affecting the intact structure of the colonic epithelium or inflammatory cytokine expression. Our findings identify the preferential distribution of TFEB in colonic epithelial cells, where TFEB can be activated by infection to enhance anti-bacterial peptide expression, holding promising implications for the advancement of anti-bacterial therapeutics.
Collapse
Affiliation(s)
- Shanshan Rao
- Department of Pathology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pu Huang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi-Yu Qian
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xia
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfeng Zhang
- Department of Pathology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Silva RCMC, Ramos IB, Travassos LH, Mendez APG, Gomes FM. Evolution of innate immunity: lessons from mammalian models shaping our current view of insect immunity. J Comp Physiol B 2024; 194:105-119. [PMID: 38573502 DOI: 10.1007/s00360-024-01549-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/23/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity's evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.
Collapse
Affiliation(s)
- Rafael Cardoso M C Silva
- Laboratory of Immunoreceptors and Signaling, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Isabela B Ramos
- Laboratório de Ovogênese Molecular de Vetores, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil
| | - Leonardo H Travassos
- Laboratory of Immunoreceptors and Signaling, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Guzman Mendez
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio M Gomes
- Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil.
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Sharmin Z, Samarah H, Aldaya Bourricaudy R, Ochoa L, Serbus LR. Cross-validation of chemical and genetic disruption approaches to inform host cellular effects on Wolbachia abundance in Drosophila. Front Microbiol 2024; 15:1364009. [PMID: 38591028 PMCID: PMC10999648 DOI: 10.3389/fmicb.2024.1364009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Endosymbiotic Wolbachia bacteria are widespread in nature, present in half of all insect species. The success of Wolbachia is supported by a commensal lifestyle. Unlike bacterial pathogens that overreplicate and harm host cells, Wolbachia infections have a relatively innocuous intracellular lifestyle. This raises important questions about how Wolbachia infection is regulated. Little is known about how Wolbachia abundance is controlled at an organismal scale. Methods This study demonstrates methodology for rigorous identification of cellular processes that affect whole-body Wolbachia abundance, as indicated by absolute counts of the Wolbachia surface protein (wsp) gene. Results Candidate pathways, associated with well-described infection scenarios, were identified. Wolbachia-infected fruit flies were exposed to small molecule inhibitors known for targeting those same pathways. Sequential tests in D. melanogaster and D. simulans yielded a subset of chemical inhibitors that significantly affected whole-body Wolbachia abundance, including the Wnt pathway disruptor, IWR-1 and the mTOR pathway inhibitor, Rapamycin. The implicated pathways were genetically retested for effects in D. melanogaster, using inducible RNAi expression driven by constitutive as well as chemically-induced somatic GAL4 expression. Genetic disruptions of armadillo, tor, and ATG6 significantly affected whole-body Wolbachia abundance. Discussion As such, the data corroborate reagent targeting and pathway relevance to whole-body Wolbachia infection. The results also implicate Wnt and mTOR regulation of autophagy as important for regulation of Wolbachia titer.
Collapse
Affiliation(s)
- Zinat Sharmin
- Department of Biological Sciences, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Hani Samarah
- Department of Biological Sciences, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Rafael Aldaya Bourricaudy
- Department of Biological Sciences, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Laura Ochoa
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Laura Renee Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| |
Collapse
|
18
|
Atarashi N, Morishita M, Matsuda S. Activation of innate immune receptor TLR9 by mitochondrial DNA plays essential roles in the chemical long-term depression of hippocampal neurons. J Biol Chem 2024; 300:105744. [PMID: 38354781 PMCID: PMC10943477 DOI: 10.1016/j.jbc.2024.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024] Open
Abstract
Synaptic plasticity is believed to be the cellular basis for experience-dependent learning and memory. Although long-term depression (LTD), a form of synaptic plasticity, is caused by the activity-dependent reduction of cell surface α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors (AMPA receptors) at postsynaptic sites, its regulation by neuronal activity is not completely understood. In this study, we showed that the inhibition of toll-like receptor-9 (TLR9), an innate immune receptor, suppresses N-methyl-d-aspartate (NMDA)-induced reduction of cell surface AMPA receptors in cultured hippocampal neurons. We found that inhibition of TLR9 also blocked NMDA-induced activation of caspase-3, which plays an essential role in the induction of LTD. siRNA-based knockdown of TLR9 also suppressed the NMDA-induced reduction of cell surface AMPA receptors, although the scrambled RNA had no effect on the NMDA-induced trafficking of AMPA receptors. Overexpression of the siRNA-resistant form of TLR9 rescued the AMPA receptor trafficking abolished by siRNA. Furthermore, NMDA stimulation induced rapid mitochondrial morphological changes, mitophagy, and the binding of mitochondrial DNA (mtDNA) to TLR9. Treatment with dideoxycytidine and mitochondrial division inhibitor-1, which block mtDNA replication and mitophagy, respectively, inhibited NMDA-dependent AMPA receptor internalization. These results suggest that mitophagy induced by NMDA receptor activation releases mtDNA and activates TLR9, which plays an essential role in the trafficking of AMPA receptors during the induction of LTD.
Collapse
Affiliation(s)
- Naoya Atarashi
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Misaki Morishita
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Shinji Matsuda
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan; Center for Neuroscience and Biomedical Engineering (CNBE), The University of Electro-Communications, Tokyo, Japan.
| |
Collapse
|
19
|
Bonhomme D, Santecchia I, Escoll P, Papadopoulos S, Vernel-Pauillac F, Boneca IG, Werts C. Leptospiral lipopolysaccharide dampens inflammation through upregulation of autophagy adaptor p62 and NRF2 signaling in macrophages. Microbes Infect 2024; 26:105274. [PMID: 38081475 DOI: 10.1016/j.micinf.2023.105274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Leptospira interrogans are pathogenic bacteria responsible for leptospirosis, a worldwide zoonosis. All vertebrates can be infected, and some species like humans are susceptible to the disease whereas rodents such as mice are resistant and become asymptomatic renal carriers. Leptospires are stealth bacteria that are known to escape several immune recognition pathways and resist killing mechanisms. We recently published that leptospires may survive intracellularly in and exit macrophages, avoiding xenophagy, a pathogen-targeting form of autophagy. Interestingly, the latter is one of the antimicrobial mechanisms often highjacked by bacteria to evade the host immune response. In this study we explored whether leptospires subvert the key molecular players of autophagy to facilitate infection. We showed in macrophages that leptospires triggered a specific accumulation of autophagy-adaptor p62 in puncta-like structures, without altering autophagic flux. We demonstrated that Leptospira-induced p62 accumulation is a passive mechanism depending on the leptospiral virulence factor LPS signaling via TLR4/TLR2. p62 is a central pleiotropic protein, also mediating cell stress and death, via the translocation of transcription factors. We demonstrated that Leptospira-driven accumulation of p62 induced the translocation of transcription factor NRF2, a key player in the anti-oxidant response. However, NRF2 translocation upon Leptospira infection did not result as expected in antioxydant response, but dampened the production of inflammatory mediators such as iNOS/NO, TNF and IL6. Overall, these findings highlight a novel passive bacterial mechanism linked to LPS and p62/NRF2 signaling that decreases inflammation and contributes to the stealthiness of leptospires.
Collapse
Affiliation(s)
- Delphine Bonhomme
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Ignacio Santecchia
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Pedro Escoll
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité Biologie des Bactéries Intracellulaires, Paris, France
| | - Stylianos Papadopoulos
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Frédérique Vernel-Pauillac
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Ivo G Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Catherine Werts
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France.
| |
Collapse
|
20
|
Scharte F, Franzkoch R, Hensel M. Flagella-mediated cytosolic motility of Salmonella enterica Paratyphi A aids in evasion of xenophagy but does not impact egress from host cells. Mol Microbiol 2024; 121:413-430. [PMID: 37278220 DOI: 10.1111/mmi.15104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Salmonella enterica is a common foodborne, facultative intracellular enteropathogen. Typhoidal serovars like Paratyphi A (SPA) are human restricted and cause severe systemic diseases, while many serovars like Typhimurium (STM) have a broad host range, and usually lead to self-limiting gastroenteritis. There are key differences between typhoidal and non-typhoidal Salmonella in pathogenesis, but underlying mechanisms remain largely unknown. Transcriptomes and phenotypes in epithelial cells revealed induction of motility, flagella and chemotaxis genes for SPA but not STM. SPA exhibited cytosolic motility mediated by flagella. In this study, we applied single-cell microscopy to analyze triggers and cellular consequences of cytosolic motility. Live-cell imaging (LCI) revealed that SPA invades host cells in a highly cooperative manner. Extensive membrane ruffling at invasion sites led to increased membrane damage in nascent Salmonella-containing vacuole, and subsequent cytosolic release. After release into the cytosol, motile bacteria showed the same velocity as under culture conditions in media. Reduced capture of SPA by autophagosomal membranes was observed by LCI and electron microscopy. Prior work showed that SPA does not use flagella-mediated motility for cell exit via the intercellular spread. However, cytosolic motile SPA was invasion-primed if released from host cells. Our results reveal flagella-mediated cytosolic motility as a possible xenophagy evasion mechanism that could drive disease progression and contributes to the dissemination of systemic infection.
Collapse
Affiliation(s)
- Felix Scharte
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Rico Franzkoch
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- Universität Osnabrück, iBiOs-Integrated Bioimaging Facility, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- Universität Osnabrück, CellNanOs-Center of Cellular Nanoanalytics, Osnabrück, Germany
| |
Collapse
|
21
|
Sahni A, Alsing J, Narra HP, Montini M, Zafar Y, Sahni SK. Endothelial Mechanistic Target of Rapamycin Activation with Different Strains of R. rickettsii: Possible Role in Rickettsial Pathogenesis. Microorganisms 2024; 12:296. [PMID: 38399700 PMCID: PMC10892065 DOI: 10.3390/microorganisms12020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Rickettsia rickettsii is an obligate intracellular pathogen that primarily targets endothelial cells (ECs), leading to vascular inflammation and dysfunction. Mechanistic target of rapamycin (mTOR) regulates several cellular processes that directly affect host immune responses to bacterial pathogens. Here, we infected ECs with two R. rickettsii strains, avirulent (Iowa) and highly virulent Sheila Smith (SS) to identify differences in the kinetics and/or intensity of mTOR activation to establish a correlation between mTOR response and bacterial virulence. Endothelial mTOR activation with the highly virulent SS strain was significantly higher than with the avirulent Iowa strain. Similarly, there was increased LC3-II lipidation with the virulent SS strain compared with the avirulent Iowa strain of R. rickettsii. mTOR inhibitors rapamycin and Torin2 significantly increased bacterial growth and replication in the ECs, as evidenced by a more than six-fold increase in rickettsia copy numbers at 48 h post-infection. Further, the knockdown of mTOR with Raptor and Rictor siRNA resulted in a higher rickettsial copy number and the altered expression of the pro-inflammatory cytokines interleukin (IL)-1α, IL-6, and IL-8. These results are the first to reveal that endothelial mTOR activation and the early induction of autophagy might be governed by bacterial virulence and have established the mTOR pathway as an important regulator of endothelial inflammation, host immunity, and microbial replication.
Collapse
Affiliation(s)
- Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; (J.A.); (H.P.N.); (M.M.); (Y.Z.)
| | | | | | | | | | - Sanjeev K. Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; (J.A.); (H.P.N.); (M.M.); (Y.Z.)
| |
Collapse
|
22
|
Kakuda K, Ikenaka K, Kuma A, Doi J, Aguirre C, Wang N, Ajiki T, Choong CJ, Kimura Y, Badawy SMM, Shima T, Nakamura S, Baba K, Nagano S, Nagai Y, Yoshimori T, Mochizuki H. Lysophagy protects against propagation of α-synuclein aggregation through ruptured lysosomal vesicles. Proc Natl Acad Sci U S A 2024; 121:e2312306120. [PMID: 38147546 PMCID: PMC10769825 DOI: 10.1073/pnas.2312306120] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
The neuron-to-neuron propagation of misfolded α-synuclein (αSyn) aggregates is thought to be key to the pathogenesis of synucleinopathies. Recent studies have shown that extracellular αSyn aggregates taken up by the endosomal-lysosomal system can rupture the lysosomal vesicular membrane; however, it remains unclear whether lysosomal rupture leads to the transmission of αSyn aggregation. Here, we applied cell-based αSyn propagation models to show that ruptured lysosomes are the pathway through which exogenous αSyn aggregates transmit aggregation, and furthermore, this process was prevented by lysophagy, i.e., selective autophagy of damaged lysosomes. αSyn aggregates accumulated predominantly in lysosomes, causing their rupture, and seeded the aggregation of endogenous αSyn, initially around damaged lysosomes. Exogenous αSyn aggregates induced the accumulation of LC3 on lysosomes. This LC3 accumulation was not observed in cells in which a key regulator of autophagy, RB1CC1/FIP200, was knocked out and was confirmed as lysophagy by transmission electron microscopy. Importantly, RB1CC1/FIP200-deficient cells treated with αSyn aggregates had increased numbers of ruptured lysosomes and enhanced propagation of αSyn aggregation. Furthermore, various types of lysosomal damage induced using lysosomotropic reagents, depletion of lysosomal enzymes, or more toxic species of αSyn fibrils also exacerbated the propagation of αSyn aggregation, and impaired lysophagy and lysosomal membrane damage synergistically enhanced propagation. These results indicate that lysophagy prevents exogenous αSyn aggregates from escaping the endosomal-lysosomal system and transmitting aggregation to endogenous cytosolic αSyn via ruptured lysosomal vesicles. Our findings suggest that the progression and severity of synucleinopathies are associated with damage to lysosomal membranes and impaired lysophagy.
Collapse
Affiliation(s)
- Keita Kakuda
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Akiko Kuma
- Department of Genetics, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Junko Doi
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - César Aguirre
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Nan Wang
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Takahiro Ajiki
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Chi-Jing Choong
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Shaymaa Mohamed Mohamed Badawy
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
- Department of Agricultural Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig44519, Egypt
| | - Takayuki Shima
- Department of Genetics, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Shuhei Nakamura
- Department of Biochemistry, Nara Medical University, Kashihara, Nara634-8521, Japan
| | - Kousuke Baba
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
- Department of Neurotherapeutics, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Seiichi Nagano
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
- Department of Neurotherapeutics, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Kindai University, Faculty of Medicine, Osaka-sayama, Osaka589-8511, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| |
Collapse
|
23
|
Geddes-McAlister J, Hansmeier N. Quantitative Proteomics of the Intracellular Bacterial Pathogen Salmonella enterica Serovar Typhimurium. Methods Mol Biol 2024; 2813:107-115. [PMID: 38888773 DOI: 10.1007/978-1-0716-3890-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Mass spectrometry-based proteomics provides a wealth of information about changes in protein production and abundance under diverse conditions, as well as mechanisms of regulation, signaling cascades, interaction partners, and communication patterns across biological systems. For profiling of intracellular pathogens, proteomic profiling can be performed in the absence of a host to singularly define the pathogenic proteome or during an infection-like setting to identify dual perspectives of infection. In this chapter, we present techniques to extract proteins from the human bacterial intracellular pathogen, Salmonella enterica serovar Typhimurium, in the presence of macrophages, an important innate immune cell in host defense. We outline sample preparation, including protein extraction, digestion, and purification, as well as mass spectrometry measurements and bioinformatics analysis. The data generated from our dual perspective profiling approach provides new insight into pathogen and host protein modulation under infection-like conditions.
Collapse
Affiliation(s)
- Jennifer Geddes-McAlister
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada.
- Canadian Proteomics and Artificial Intelligence Consortium, Guelph, ON, Canada.
| | | |
Collapse
|
24
|
Aguilera MO, Delgui LR, Reggiori F, Romano PS, Colombo MI. Autophagy as an innate immunity response against pathogens: a Tango dance. FEBS Lett 2024; 598:140-166. [PMID: 38101809 DOI: 10.1002/1873-3468.14788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023]
Abstract
Intracellular infections as well as changes in the cell nutritional environment are main events that trigger cellular stress responses. One crucial cell response to stress conditions is autophagy. During the last 30 years, several scenarios involving autophagy induction or inhibition over the course of an intracellular invasion by pathogens have been uncovered. In this review, we will present how this knowledge was gained by studying different microorganisms. We intend to discuss how the cell, via autophagy, tries to repel these attacks with the objective of destroying the intruder, but also how some pathogens have developed strategies to subvert this. These two fates can be compared with a Tango, a dance originated in Buenos Aires, Argentina, in which the partner dancers are in close connection. One of them is the leader, embracing and involving the partner, but the follower may respond escaping from the leader. This joint dance is indeed highly synchronized and controlled, perfectly reflecting the interaction between autophagy and microorganism.
Collapse
Affiliation(s)
- Milton O Aguilera
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Odontología, Microbiología, Parasitología e Inmunología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Laura R Delgui
- Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Patricia S Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - María I Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
25
|
Eskelinen EL. Novel insights into autophagosome biogenesis revealed by cryo-electron tomography. FEBS Lett 2024; 598:9-16. [PMID: 37625816 DOI: 10.1002/1873-3468.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Autophagosome biogenesis, from the appearance of the phagophore to elongation and closure into an autophagosome, is one of the long-lasting open questions in the autophagy field. Recent studies utilising cryo-electron tomography and detailed analysis of the image data have revealed new information on the membrane dynamics of these events, including the shape and dimensions of omegasomes, phagophores and autophagosomes, and their relationships with the organelles around them. One of the important predictions from the new results is that 60-80% of the autophagosome membrane area is delivered by direct lipid transfer or lipid synthesis. Cryo-electron tomography can be expected to provide new directions for autophagy research in the near future.
Collapse
|
26
|
Rahman RJ, Rijal R, Jing S, Chen TA, Ismail I, Gomer RH. Polyphosphate uses mTOR, pyrophosphate, and Rho GTPase components to potentiate bacterial survival in Dictyostelium. mBio 2023; 14:e0193923. [PMID: 37754562 PMCID: PMC10653871 DOI: 10.1128/mbio.01939-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Although most bacteria are quickly killed after phagocytosis by a eukaryotic cell, some pathogenic bacteria escape death after phagocytosis. Pathogenic Mycobacterium species secrete polyP, and the polyP is necessary for the bacteria to prevent their killing after phagocytosis. Conversely, exogenous polyP prevents the killing of ingested bacteria that are normally killed after phagocytosis by human macrophages and the eukaryotic microbe Dictyostelium discoideum. This suggests the possibility that in these cells, a signal transduction pathway is used to sense polyP and prevent killing of ingested bacteria. In this report, we identify key components of the polyP signal transduction pathway in D. discoideum. In cells lacking these components, polyP is unable to inhibit killing of ingested bacteria. The pathway components have orthologs in human cells, and an exciting possibility is that pharmacologically blocking this pathway in human macrophages would cause them to kill ingested pathogens such as Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ryan J. Rahman
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Shiyu Jing
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Te-An Chen
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Issam Ismail
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
27
|
Chandrasekhar H, Mohapatra G, Kajal K, Singh M, Walia K, Rana S, Kaur N, Sharma S, Tuli A, Das P, Srikanth CV. SifA SUMOylation governs Salmonella Typhimurium intracellular survival via modulation of lysosomal function. PLoS Pathog 2023; 19:e1011686. [PMID: 37773952 PMCID: PMC10566704 DOI: 10.1371/journal.ppat.1011686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/11/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
One of the mechanisms shaping the pathophysiology during the infection of enteric pathogen Salmonella Typhimurium is host PTM machinery utilization by the pathogen encoded effectors. Salmonella Typhimurium (S. Tm) during infection in host cells thrives in a vacuolated compartment, Salmonella containing vacuole (SCV), which sequentially acquires host endosomal and lysosomal markers. Long tubular structures, called as Salmonella induced filaments (SIFs), are further generated by S. Tm, which are known to be required for SCV's nutrient acquisition, membrane maintenance and stability. A tightly coordinated interaction involving prominent effector SifA and various host adapters PLEKHM1, PLEKHM2 and Rab GTPases govern SCV integrity and SIF formation. Here, we report for the first time that the functional regulation of SifA is modulated by PTM SUMOylation at its 11th lysine. S. Tm expressing SUMOylation deficient lysine 11 mutants of SifA (SifAK11R) is defective in intracellular proliferation due to compromised SIF formation and enhanced lysosomal acidification. Furthermore, murine competitive index experiments reveal defective in vivo proliferation and weakened virulence of SifAK11R mutant. Concisely, our data reveal that SifAK11R mutant nearly behaves like a SifA knockout strain which impacts Rab9-MPR mediated lysosomal acidification pathway, the outcome of which culminates in reduced bacterial load in in vitro and in vivo infection model systems. Our results bring forth a novel pathogen-host crosstalk mechanism where the SUMOylation of effector SifA regulated S. Tm intracellular survival.
Collapse
Affiliation(s)
| | - Gayatree Mohapatra
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Kirti Kajal
- Regional Centre for Biotechnology, Faridabad, India
| | - Mukesh Singh
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kshitiz Walia
- Institute of Microbial Technology, Chandigarh, India
| | - Sarika Rana
- Laboratory of Immunobiology, Universite´ Libre de Bruxelles, Gosselies, Belgium
| | - Navneet Kaur
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America
| | | | - Amit Tuli
- Institute of Microbial Technology, Chandigarh, India
| | - Prasenjit Das
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | | |
Collapse
|
28
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. From Eberthella typhi to Salmonella Typhi: The Fascinating Journey of the Virulence and Pathogenicity of Salmonella Typhi. ACS OMEGA 2023; 8:25674-25697. [PMID: 37521659 PMCID: PMC10373206 DOI: 10.1021/acsomega.3c02386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Salmonella Typhi (S. Typhi), the invasive typhoidal serovar of Salmonella enterica that causes typhoid fever in humans, is a severe threat to global health. It is one of the major causes of high morbidity and mortality in developing countries. According to recent WHO estimates, approximately 11-21 million typhoid fever illnesses occur annually worldwide, accounting for 0.12-0.16 million deaths. Salmonella infection can spread to healthy individuals by the consumption of contaminated food and water. Typhoid fever in humans sometimes is accompanied by several other critical extraintestinal complications related to the central nervous system, cardiovascular system, pulmonary system, and hepatobiliary system. Salmonella Pathogenicity Island-1 and Salmonella Pathogenicity Island-2 are the two genomic segments containing genes encoding virulent factors that regulate its invasion and systemic pathogenesis. This Review aims to shed light on a comparative analysis of the virulence and pathogenesis of the typhoidal and nontyphoidal serovars of S. enterica.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Atish Roy Chowdhury
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debapriya Mukherjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dipshikha Chakravortty
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre
for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
29
|
Chatterjee R, Chaudhuri D, Setty SRG, Chakravortty D. Deceiving the big eaters: Salmonella Typhimurium SopB subverts host cell xenophagy in macrophages via dual mechanisms. Microbes Infect 2023; 25:105128. [PMID: 37019426 DOI: 10.1016/j.micinf.2023.105128] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Salmonella, a stealthy facultative intracellular pathogen, utilises an array of host immune evasion strategies. This facilitates successful survival via replicative niche establishment in otherwise hostile environments such as macrophages. Salmonella survives in and utilises macrophages for effective dissemination, ultimately leading to systemic infection. Bacterial xenophagy or macro-autophagy is an important host defense mechanism in macrophages. Here, we report for the first time that the Salmonella pathogenicity island-1 (SPI-1) effector SopB is involved in subverting host autophagy via dual mechanisms. SopB is a phosphoinositide phosphatase capable of altering the phosphoinositide dynamics of the host cell. Here, we demonstrate that SopB mediates escape from autophagy by inhibiting the terminal fusion of Salmonella-containing vacuoles (SCVs) with lysosomes and/or autophagosomes. We also report that SopB downregulates overall lysosomal biogenesis by modulating the Akt-transcription factor EB (TFEB) axis via restricting the latter's nuclear localisation. TFEB is a master regulator of lysosomal biogenesis and autophagy. This reduces the overall lysosome content inside host macrophages, further facilitating the survival of Salmonella in macrophages and systemic dissemination of Salmonella.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Debalina Chaudhuri
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India; Indian Institute of Science Research and Education, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
30
|
Zhou Y, Xiong D, Guo Y, Liu Y, Kang X, Song H, Jiao X, Pan Z. Salmonella Enteritidis RfbD enhances bacterial colonization and virulence through inhibiting autophagy. Microbiol Res 2023; 270:127338. [PMID: 36854232 DOI: 10.1016/j.micres.2023.127338] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/22/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Autophagy is a crucial innate immune response that clears pathogens intracellularly. Salmonella enterica serovar Enteritidis (S.E) has emerged as one of the most important food-borne pathogens. Here, we reported that dTDP-4-dehydro-β-ւ-rhamnose reductase (RfbD) was able to enhance bacterial colonization in vivo and in vitro by regulating autophagy. We screened the transposon mutant library of Salmonella Enteritidis strain Z11 by High-Content Analysis System, found that rfbD gene has an effect on autophagy. The Z11ΔrfbD-infected group showed greater expression of LC3-II than the Z11-infected group in HeLa, RAW264.7, and J774A.1 cells. Overall, the survival of Z11ΔrfbD in RAW264.7 cells was reduced after 8 h of infection compared to that of the Z11 wild-type strain. In addition, we observed that inhibition of autophagic flux significantly increased the survival of Z11ΔrfbD in RAW264.7 cells. Mice infection experiments revealed that Z11ΔrfbD virulence was significantly reduced, and bacterial load was reduced in the liver and cecum in mice model, and LC3-II expression was significantly increased. These findings indicate an important role of Salmonella Enteritidis protein as a strategy to suppress autophagy and provides new ideas for manipulating autophagy as a novel strategy to treat infectious diseases.
Collapse
Affiliation(s)
- Yi Zhou
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yaxin Guo
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yi Liu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xilong Kang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongqin Song
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
31
|
Li M, Tripathi-Giesgen I, Schulman BA, Baumeister W, Wilfling F. In situ snapshots along a mammalian selective autophagy pathway. Proc Natl Acad Sci U S A 2023; 120:e2221712120. [PMID: 36917659 PMCID: PMC10041112 DOI: 10.1073/pnas.2221712120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/08/2023] [Indexed: 03/16/2023] Open
Abstract
Selective macroautophagy (hereafter referred to as autophagy) describes a process in which cytosolic material is engulfed in a double membrane organelle called an autophagosome. Autophagosomes are carriers responsible for delivering their content to a lytic compartment for destruction. The cargo can be of diverse origin, ranging from macromolecular complexes to protein aggregates, organelles, and even invading pathogens. Each cargo is unique in composition and size, presenting different challenges to autophagosome biogenesis. Among the largest cargoes targeted by the autophagy machinery are intracellular bacteria, which can, in the case of Salmonella, range from 2 to 5 μm in length and 0.5 to 1.5 μm in width. How phagophores form and expand on such a large cargo remains mechanistically unclear. Here, we used HeLa cells infected with an auxotrophic Salmonella to study the process of phagophore biogenesis using in situ correlative cryo-ET. We show that host cells generate multiple phagophores at the site of damaged Salmonella-containing vacuoles (SCVs). The observed double membrane structures range from disk-shaped to expanded cup-shaped phagophores, which have a thin intermembrane lumen with a dilating rim region and expand using the SCV, the outer membrane of Salmonella, or existing phagophores as templates. Phagophore rims establish different forms of contact with the endoplasmic reticulum (ER) via structurally distinct molecular entities for membrane formation and expansion. Early omegasomes correlated with the marker Double-FYVE domain-Containing Protein 1 (DFCP1) are observed in close association with the ER without apparent membrane continuity. Our study provides insights into the formation of phagophores around one of the largest selective cargoes.
Collapse
Affiliation(s)
- Meijing Li
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry,82152Martinsried, Germany
| | - Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry,82152Martinsried, Germany
| | - Brenda A. Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry,82152Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry,82152Martinsried, Germany
| | - Florian Wilfling
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry,82152Martinsried, Germany
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, 60438Frankfurt a. M., Germany
| |
Collapse
|
32
|
Meng K, Zhu P, Shi L, Li S. Determination of the Salmonella intracellular lifestyle by the diversified interaction of Type III secretion system effectors and host GTPases. WIREs Mech Dis 2023; 15:e1587. [PMID: 36250298 DOI: 10.1002/wsbm.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/06/2022]
Abstract
Intracellular bacteria have developed sophisticated strategies to subvert the host endomembrane system to establish a stable replication niche. Small GTPases are critical players in regulating each step of membrane trafficking events, such as vesicle biogenesis, cargo transport, tethering, and fusion events. Salmonella is a widely studied facultative intracellular bacteria. Salmonella delivers several virulence proteins, termed effectors, to regulate GTPase dynamics and subvert host trafficking for their benefit. In this review, we summarize an updated and systematic understanding of the interactions between bacterial effectors and host GTPases in determining the intracellular lifestyle of Salmonella. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Kun Meng
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ping Zhu
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liuliu Shi
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
33
|
Claviere M, Lavedrine A, Lamiral G, Bonnet M, Verlhac P, Petkova DS, Espert L, Duclaux-Loras R, Lucifora J, Rivoire M, Boschetti G, Nancey S, Rozières A, Viret C, Faure M. Measles virus-imposed remodeling of the autophagy machinery determines the outcome of bacterial coinfection. Autophagy 2023; 19:858-872. [PMID: 35900944 PMCID: PMC9980578 DOI: 10.1080/15548627.2022.2107309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/18/2023] Open
Abstract
Although it is admitted that secondary infection can complicate viral diseases, the consequences of viral infection on cell susceptibility to other infections remain underexplored at the cellular level. We though to examine whether the sustained macroautophagy/autophagy associated with measles virus (MeV) infection could help cells oppose invasion by Salmonella Typhimurium, a bacterium sensitive to autophagic restriction. We report here the unexpected finding that Salmonella markedly replicated in MeV-infected cultures due to selective growth within multinucleated cells. Hyper-replicating Salmonella localized outside of LAMP1-positive compartments to an extent that equaled that of the predominantly cytosolic sifA mutant Salmonella. Bacteria were subjected to effective ubiquitination but failed to be targeted by LC3 despite an ongoing productive autophagy. Such a phenotype could not be further aggravated upon silencing of the selective autophagy regulator TBK1 or core autophagy factors ATG5 or ATG7. MeV infection also conditioned primary human epithelial cells for augmented Salmonella replication. The analysis of selective autophagy receptors able to target Salmonella revealed that a lowered expression level of SQSTM1/p62 and TAX1BP1/T6BP autophagy receptors prevented effective anti-Salmonella autophagy in MeV-induced syncytia. Conversely, as SQSTM1/p62 is promoting the cytosolic growth of Shigella flexneri, MeV infection led to reduced Shigella replication. The results indicate that the rarefaction of dedicated autophagy receptors associated with MeV infection differentially affects the outcome of bacterial coinfection depending on the nature of the functional relationship between bacteria and such receptors. Thus, virus-imposed reconfiguration of the autophagy machinery can be instrumental in determining the fate of bacterial coinfection.Abbreviations: ACTB/β-ACTIN: actin beta; ATG: autophagy related; BAFA1: bafilomycin A1; CFU: colony-forming units; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; FIP: fusion inhibitory peptide; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; LIR: MAP1LC3/LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MeV: measles virus; MOI: multiplicity of infection; OPTN: optineurin; PHH: primary human hepatocyte; SCV: Salmonella-containing vacuoles; SQSTM1/p62: sequestosome 1; S. flexneri: Shigella flexneri; S. Typhimurium: Salmonella enterica serovar Typhimurium; TAX1BP1/T6BP: Tax1 binding protein 1; TBK1: TANK binding kinase 1.
Collapse
Affiliation(s)
- Mathieu Claviere
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Guénaëlle Lamiral
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Mariette Bonnet
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Pauline Verlhac
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Denitsa S. Petkova
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Lucile Espert
- IRIM, University of Montpellier, UMR 9004 CNRS, Montpellier, France
| | - Rémi Duclaux-Loras
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, Bron, France
| | - Julie Lucifora
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | | | - Gilles Boschetti
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Department of Gastroenterology, Lyon-Sud university hospital, Hospices Civils de Lyon, Lyon, France
| | - Stéphane Nancey
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Department of Gastroenterology, Lyon-Sud university hospital, Hospices Civils de Lyon, Lyon, France
| | - Aurore Rozières
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM, France
| |
Collapse
|
34
|
Vargas JNS, Hamasaki M, Kawabata T, Youle RJ, Yoshimori T. The mechanisms and roles of selective autophagy in mammals. Nat Rev Mol Cell Biol 2023; 24:167-185. [PMID: 36302887 DOI: 10.1038/s41580-022-00542-2] [Citation(s) in RCA: 476] [Impact Index Per Article: 238.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 11/09/2022]
Abstract
Autophagy is a process that targets various intracellular elements for degradation. Autophagy can be non-selective - associated with the indiscriminate engulfment of cytosolic components - occurring in response to nutrient starvation and is commonly referred to as bulk autophagy. By contrast, selective autophagy degrades specific targets, such as damaged organelles (mitophagy, lysophagy, ER-phagy, ribophagy), aggregated proteins (aggrephagy) or invading bacteria (xenophagy), thereby being importantly involved in cellular quality control. Hence, not surprisingly, aberrant selective autophagy has been associated with various human pathologies, prominently including neurodegeneration and infection. In recent years, considerable progress has been made in understanding mechanisms governing selective cargo engulfment in mammals, including the identification of ubiquitin-dependent selective autophagy receptors such as p62, NBR1, OPTN and NDP52, which can bind cargo and ubiquitin simultaneously to initiate pathways leading to autophagy initiation and membrane recruitment. This progress opens the prospects for enhancing selective autophagy pathways to boost cellular quality control capabilities and alleviate pathology.
Collapse
Affiliation(s)
- Jose Norberto S Vargas
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan.
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| | - Tsuyoshi Kawabata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan.
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
35
|
Gehrer CM, Mitterstiller AM, Grubwieser P, Meyron-Holtz EG, Weiss G, Nairz M. Advances in Ferritin Physiology and Possible Implications in Bacterial Infection. Int J Mol Sci 2023; 24:4659. [PMID: 36902088 PMCID: PMC10003477 DOI: 10.3390/ijms24054659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Due to its advantageous redox properties, iron plays an important role in the metabolism of nearly all life. However, these properties are not only a boon but also the bane of such life forms. Since labile iron results in the generation of reactive oxygen species by Fenton chemistry, iron is stored in a relatively safe form inside of ferritin. Despite the fact that the iron storage protein ferritin has been extensively researched, many of its physiological functions are hitherto unresolved. However, research regarding ferritin's functions is gaining momentum. For example, recent major discoveries on its secretion and distribution mechanisms have been made as well as the paradigm-changing finding of intracellular compartmentalization of ferritin via interaction with nuclear receptor coactivator 4 (NCOA4). In this review, we discuss established knowledge as well as these new findings and the implications they may have for host-pathogen interaction during bacterial infection.
Collapse
Affiliation(s)
- Clemens M. Gehrer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna-Maria Mitterstiller
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Esther G. Meyron-Holtz
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
36
|
Repurposing the tyrosine kinase inhibitor nilotinib for use against intracellular multidrug-resistant Salmonella Typhimurium. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023:S1684-1182(23)00005-1. [PMID: 36702646 DOI: 10.1016/j.jmii.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/08/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND/PURPOSE The increasing incidence of infections caused by multidrug-resistant Salmonella enterica has become a serious threat to global public health. Here, we found that the tyrosine kinase inhibitor nilotinib exhibits antibacterial activity against intracellular S. enterica serovar Typhimurium in RAW264.7 macrophages. Thus, we aimed to pharmacologically exploit the anti-intracellular Salmonella activity of nilotinib and to elucidate its mechanism of action. METHODS The antibacterial activity of the compounds was assessed by high-content analysis (HCA) and intracellular CFU, minimum inhibitory concentration (MIC), and bacterial growth assays. The cytotoxicity of the compounds was evaluated by HCA and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assays. The levels of cellular AMPK, phospho-AMPK, Atg7 and β-actin were determined by immunoblotting. RESULTS The screen identified two small molecule compounds (SCT1101 and SCT1104) with potent activity against intracellular S. Typhimurium. Moreover, SCT1101 and SCT1104 enhanced the efficacy of ciprofloxacin and cefixime against intracellular S. Typhimurium. However, only SCT1101 exhibited activity against intracellular MDR and fluoroquinolone-resistant S. Typhimurium isolates. Subsequent mechanistic studies showed that neither of these nilotinib derivatives increased the phospho-AMPK level in RAW264.7 cells. Neither the AMPK inhibitor compound C nor SBI-0206965 reversed the inhibitory effects of SCT1101 and SCT1104 on intracellular Salmonella. Furthermore, neither blockade of autophagy by 3-MA nor shRNA-mediated knockdown of Atg7 protein expression in RAW264.7 cells affected the antibacterial activity of SCT1101 and SCT1104. CONCLUSION The structure of nilotinib could be used to develop novel therapeutics for controlling MDR S. Typhimurium infections.
Collapse
|
37
|
Lavedrine A, Lamiral G, Rozières A, Viret C, Faure M. [Autophagy in coinfection: "It is double pleasure to deceive the deceiver"]. Med Sci (Paris) 2023; 39:20-22. [PMID: 36692313 DOI: 10.1051/medsci/2022189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Aude Lavedrine
- Centre international de recherche en infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École normale supérieure de Lyon, Lyon, France
| | - Guénaëlle Lamiral
- Centre international de recherche en infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École normale supérieure de Lyon, Lyon, France
| | - Aurore Rozières
- Centre international de recherche en infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École normale supérieure de Lyon, Lyon, France
| | - Christophe Viret
- Centre international de recherche en infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École normale supérieure de Lyon, Lyon, France
| | - Mathias Faure
- Centre international de recherche en infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École normale supérieure de Lyon, Lyon, France
| |
Collapse
|
38
|
Zhang J, Li L, Yu J, Zhang F, Shi J, LI M, Liu J, Li H, Gao J, Wu Y. Autophagy-Modulated Biomaterial: A Robust Weapon for Modulating the Wound Environment to Promote Skin Wound Healing. Int J Nanomedicine 2023; 18:2567-2588. [PMID: 37213350 PMCID: PMC10198186 DOI: 10.2147/ijn.s398107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/28/2023] [Indexed: 05/23/2023] Open
Abstract
Autophagy, a self-renewal mechanism, can help to maintain the stability of the intracellular environment of organisms. Autophagy can also regulate several cellular functions and is strongly related to the onset and progression of several diseases. Wound healing is a biological process that is coregulated by different types of cells. However, it is troublesome owing to prolonged treatment duration and poor recovery. In recent years, biomaterials have been reported to influence the skin wound healing process by finely regulating autophagy. Biomaterials that regulate autophagy in various cells involved in skin wound healing to regulate the differentiation, proliferation and migration of cells, inflammatory responses, oxidative stress and formation of the extracellular matrix (ECM) have emerged as a key method for improving the tissue regeneration ability of biomaterials. During the inflammatory phase, autophagy enhances the clearance of pathogens from the wound site and leads to macrophage polarization from the M1 to the M2 phenotype, thus preventing enhanced inflammation that can lead to further tissue damage. Autophagy plays important roles in facilitating the formation of extracellular matrix (ECM) during the proliferative phase, removing excess intracellular ROS, and promoting the proliferation and differentiation of endothelial cells, fibroblasts, and keratinocytes. This review summarizes the close association between autophagy and skin wound healing and discusses the role of biomaterial-based autophagy in tissue regeneration. The applications of recent biomaterials designed to target autophagy are highlighted, including polymeric materials, cellular materials, metal nanomaterials, and carbon-based materials. A better understanding of biomaterial-regulated autophagy and skin regeneration and the underlying molecular mechanisms may open new possibilities for promoting skin regeneration. Moreover, this can lay the foundation for the development of more effective therapeutic approaches and novel biomaterials for clinical applications.
Collapse
Affiliation(s)
- Jin Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jing Yu
- Department of Endocrinology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157011, People’s Republic of China
| | - Fan Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jiayi Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Meiyun LI
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jianyong Liu
- Department of Vascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Haitao Li
- Department of Vascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Jie Gao, Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China, Tel/Fax +86 21-31166666, Email
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
- Correspondence: Yan Wu, College of Life Science, Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157001, People’s Republic of China, Tel/Fax +86-453-6984647, Email
| |
Collapse
|
39
|
Lee YJ, Kim JK, Jung CH, Kim YJ, Jung EJ, Lee SH, Choi HR, Son YS, Shim SM, Jeon SM, Choe JH, Lee SH, Whang J, Sohn KC, Hur GM, Kim HT, Yeom J, Jo EK, Kwon YT. Chemical modulation of SQSTM1/p62-mediated xenophagy that targets a broad range of pathogenic bacteria. Autophagy 2022; 18:2926-2945. [PMID: 35316156 PMCID: PMC9673928 DOI: 10.1080/15548627.2022.2054240] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The N-degron pathway is a proteolytic system in which the N-terminal degrons (N-degrons) of proteins, such as arginine (Nt-Arg), induce the degradation of proteins and subcellular organelles via the ubiquitin-proteasome system (UPS) or macroautophagy/autophagy-lysosome system (hereafter autophagy). Here, we developed the chemical mimics of the N-degron Nt-Arg as a pharmaceutical means to induce targeted degradation of intracellular bacteria via autophagy, such as Salmonella enterica serovar Typhimurium (S. Typhimurium), Escherichia coli, and Streptococcus pyogenes as well as Mycobacterium tuberculosis (Mtb). Upon binding the ZZ domain of the autophagic cargo receptor SQSTM1/p62 (sequestosome 1), these chemicals induced the biogenesis and recruitment of autophagic membranes to intracellular bacteria via SQSTM1, leading to lysosomal degradation. The antimicrobial efficacy was independent of rapamycin-modulated core autophagic pathways and synergistic with the reduced production of inflammatory cytokines. In mice, these drugs exhibited antimicrobial efficacy for S. Typhimurium, Bacillus Calmette-Guérin (BCG), and Mtb as well as multidrug-resistant Mtb and inhibited the production of inflammatory cytokines. This dual mode of action in xenophagy and inflammation significantly protected mice from inflammatory lesions in the lungs and other tissues caused by all the tested bacterial strains. Our results suggest that the N-degron pathway provides a therapeutic target in host-directed therapeutics for a broad range of drug-resistant intracellular pathogens.Abbreviations: ATG: autophagy-related gene; BCG: Bacillus Calmette-Guérin; BMDMs: bone marrow-derived macrophages; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CFUs: colony-forming units; CXCL: C-X-C motif chemokine ligand; EGFP: enhanced green fluorescent protein; IL1B/IL-1β: interleukin 1 beta; IL6: interleukin 6; LIR: MAP1LC3/LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; Mtb: Mycobacterium tuberculosis; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PB1: Phox and Bem1; SQSTM1/p62: sequestosome 1; S. Typhimurium: Salmonella enterica serovar Typhimurium; TAX1BP1: Tax1 binding protein 1; TNF: tumor necrosis factor; UBA: ubiquitin-associated.
Collapse
Affiliation(s)
- Yoon Jee Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Chan Hoon Jung
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eui Jung Jung
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Su Hyun Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ha Rim Choi
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yeon Sung Son
- Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sang Mi Shim
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sang Min Jeon
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jin Ho Choe
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC) & Basic Research Section, The Korean Institute of Tuberculosis (KIT), Cheongju, Korea
| | - Kyung-Cheol Sohn
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Gang Min Hur
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Tae Kim
- Chemistry R&D Center, AUTOTAC Bio Inc, Seoul, Republic of Korea
| | - Jinki Yeom
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea,Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea,CONTACT Eun-Kyeong Jo Department of Microbiology, and Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon35015, Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea,Chemistry R&D Center, AUTOTAC Bio Inc, Seoul, Republic of Korea,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea,Yong Tae Kwon Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul110-799, Korea
| |
Collapse
|
40
|
Schulte M, Hensel M, Miskiewicz K. Exposure to stressors and antimicrobials induces cell-autonomous ultrastructural heterogeneity of an intracellular bacterial pathogen. Front Cell Infect Microbiol 2022; 12:963354. [DOI: 10.3389/fcimb.2022.963354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Despite their clonality, intracellular bacterial pathogens commonly show remarkable physiological heterogeneity during infection of host cells. Physiological heterogeneity results in distinct ultrastructural morphotypes, but the correlation between bacterial physiological state and ultrastructural appearance remains to be established. In this study, we showed that individual cells of Salmonella enterica serovar Typhimurium are heterogeneous in their ultrastructure. Two morphotypes based on the criterion of cytoplasmic density were discriminated after growth under standard culture conditions, as well as during intracellular lifestyle in mammalian host cells. We identified environmental conditions which affect cytoplasmic densities. Using compounds generating oxygen radicals and defined mutant strains, we were able to link the occurrence of an electron-dense ultrastructural morphotype to exposure to oxidative stress and other stressors. Furthermore, by combining ultrastructural analyses of Salmonella during infection and fluorescence reporter analyses for cell viability, we provided evidence that two characterized ultrastructural morphotypes with electron-lucent or electron-dense cytoplasm represent viable cells. Moreover, the presence of electron-dense types is stress related and can be experimentally induced only when amino acids are available in the medium. Our study proposes ultrastructural morphotypes as marker for physiological states of individual intracellular pathogens providing a new marker for single cell analyses.
Collapse
|
41
|
Abstract
Macroautophagy/autophagy, a fundamental cell process for nutrient recycling and defense against pathogens (termed xenophagy), is crucial to human health. ATG16L2 (autophagy related 16 like 2) is an autophagic protein and a paralog of ATG16L1. Both proteins are implicated in similar diseases such as cancer and other chronic diseases; however, most autophagy studies to date have primarily focused on the function of ATG16L1, with ATG16L2 remaining uncharacterized and understudied. Overexpression of ATG16L2 has been reported in various cancers including colorectal, gastric, and prostate carcinomas, whereas altered methylation of ATG16L2 has been associated with lung cancer formation and poorer response to therapy in leukemia. In addition, ATG16L2 polymorphisms have been implicated in a range of other diseases including inflammatory bowel diseases and neurodegenerative disorders. Despite this likely role in human health, the function of this enigmatic protein in autophagy remains unknown. Here, we review current studies on ATG16L2 and collate evidence that suggests that this protein is a potential modulator of autophagy as well as the implications this has on pathogenesis.Abbreviations: ATG5: autophagy related 5; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; ATG16L2: autophagy related 16 like 2; CD: Crohn disease; IBD: inflammatory bowel diseases; IRGM: immunity related GTPase M; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PE: phosphatidylethanolamine; RB1CC1: RB1 inducible coiled-coil 1; SLE: systemic lupus erythematosus; WIPI2B: WD repeat domain, phosphoinositide interacting 2B.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia,CONTACT Laurence Don Wai Luu School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Nadeem O. Kaakoush
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia,Natalia Castaño-Rodríguez School of Biotechnology and Biomolecular Sciences, Faculty of Science, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
42
|
Rangel M, Kong J, Bhatt V, Khayati K, Guo JY. Autophagy and tumorigenesis. FEBS J 2022; 289:7177-7198. [PMID: 34270851 PMCID: PMC8761221 DOI: 10.1111/febs.16125] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Autophagy is a catabolic process that captures cellular waste and degrades them in the lysosome. The main functions of autophagy are quality control of cytosolic proteins and organelles, and intracellular recycling of nutrients in order to maintain cellular homeostasis. Autophagy is upregulated in many cancers to promote cell survival, proliferation, and metastasis. Both cell-autonomous autophagy (also known as tumor autophagy) and non-cell-autonomous autophagy (also known as host autophagy) support tumorigenesis through different mechanisms, including inhibition of p53 activation, sustaining redox homeostasis, maintenance of essential amino acids levels in order to support energy production and biosynthesis, and inhibition of antitumor immune responses. Therefore, autophagy may serve as a tumor-specific vulnerability and targeting autophagy could be a novel strategy in cancer treatment.
Collapse
Affiliation(s)
- Michael Rangel
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
| | - Jerry Kong
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
| | - Vrushank Bhatt
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
| | - Khoosheh Khayati
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA,Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA,Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| |
Collapse
|
43
|
Wang Y, Ramos M, Jefferson M, Zhang W, Beraza N, Carding S, Powell PP, Stewart JP, Mayer U, Wileman T. Control of infection by LC3-associated phagocytosis, CASM, and detection of raised vacuolar pH by the V-ATPase-ATG16L1 axis. SCIENCE ADVANCES 2022; 8:eabn3298. [PMID: 36288298 PMCID: PMC9604538 DOI: 10.1126/sciadv.abn3298] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/07/2022] [Indexed: 05/29/2023]
Abstract
The delivery of pathogens to lysosomes for degradation provides an important defense against infection. Degradation is enhanced when LC3 is conjugated to endosomes and phagosomes containing pathogens to facilitate fusion with lysosomes. In phagocytic cells, TLR signaling and Rubicon activate LC3-associated phagocytosis (LAP) where stabilization of the NADPH oxidase leads to sustained ROS production and raised vacuolar pH. Raised pH triggers the assembly of the vacuolar ATPase on the vacuole membrane where it binds ATG16L1 to recruit the core LC3 conjugation complex (ATG16L1:ATG5-12). This V-ATPase-ATG16L1 axis is also activated in nonphagocytic cells to conjugate LC3 to endosomes containing extracellular microbes. Pathogens provide additional signals for recruitment of LC3 when they raise vacuolar pH with pore-forming toxins and proteins, phospholipases, or specialized secretion systems. Many microbes secrete virulence factors to inhibit ROS production and/or the V-ATPase-ATG16L1 axis to slow LC3 recruitment and avoid degradation in lysosomes.
Collapse
Affiliation(s)
- Yingxue Wang
- Norwich Medical School, University of East Anglia, Norwich, UK
- Quadram Institute Bioscience, Norwich, UK
| | - Maria Ramos
- Norwich Medical School, University of East Anglia, Norwich, UK
- Quadram Institute Bioscience, Norwich, UK
| | | | - Weijiao Zhang
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | | | - Penny P. Powell
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - James P. Stewart
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Ulrike Mayer
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, UK
- Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|
44
|
Dowdell AS, Cartwright IM, Kitzenberg DA, Kostelecky RE, Mahjoob O, Saeedi BJ, Welch N, Glover LE, Colgan SP. Essential role for epithelial HIF-mediated xenophagy in control of Salmonella infection and dissemination. Cell Rep 2022; 40:111409. [PMID: 36170839 PMCID: PMC9553003 DOI: 10.1016/j.celrep.2022.111409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/21/2022] [Accepted: 09/02/2022] [Indexed: 01/18/2023] Open
Abstract
The intestinal mucosa exists in a state of “physiologic hypoxia,” where oxygen tensions are markedly lower than those in other tissues. Intestinal epithelial cells (IECs) have evolved to maintain homeostasis in this austere environment through oxygen-sensitive transcription factors, including hypoxia-inducible factors (HIFs). Using an unbiased chromatin immunoprecipitation (ChIP) screen for HIF-1 targets, we identify autophagy as a major pathway induced by hypoxia in IECs. One important function of autophagy is to defend against intracellular pathogens, termed “xenophagy.” Analysis reveals that HIF is a central regulator of autophagy and that in vitro infection of IECs with Salmonella Typhimurium results in induction of HIF transcriptional activity that tracks with the clearance of intracellular Salmonella. Work in vivo demonstrates that IEC-specific deletion of HIF compromises xenophagy and exacerbates bacterial dissemination. These results reveal that the interaction between hypoxia, HIF, and xenophagy is an essential innate immune component for the control of intracellular pathogens. Dowdell et al. show that hypoxia, through stabilization of HIF-1α, activates autophagy in intestinal epithelial cells (IECs). Further, the model invasive bacterium Salmonella Typhimurium stabilizes HIF in IECs to trigger anti-bacterial autophagy (xenophagy). This mechanism demonstrates an essential mucosal innate immune response for control of invasive pathogens.
Collapse
Affiliation(s)
- Alexander S Dowdell
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Veterans Hospital, Aurora, CO, USA
| | - Ian M Cartwright
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Veterans Hospital, Aurora, CO, USA
| | - David A Kitzenberg
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rachael E Kostelecky
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Omemh Mahjoob
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Bejan J Saeedi
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nichole Welch
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Louise E Glover
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Sean P Colgan
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Veterans Hospital, Aurora, CO, USA.
| |
Collapse
|
45
|
Teranishi H, Tabata K, Saeki M, Umemoto T, Hatta T, Otomo T, Yamamoto K, Natsume T, Yoshimori T, Hamasaki M. Identification of CUL4A-DDB1-WDFY1 as an E3 ubiquitin ligase complex involved in initiation of lysophagy. Cell Rep 2022; 40:111349. [PMID: 36103833 DOI: 10.1016/j.celrep.2022.111349] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 01/13/2023] Open
Abstract
Macroautophagy is a bulk degradation system in which double membrane-bound structures called autophagosomes to deliver cytosolic materials to lysosomes. Autophagy promotes cellular homeostasis by selectively recognizing and sequestering specific targets, such as damaged organelles, protein aggregates, and invading bacteria, termed selective autophagy. We previously reported a type of selective autophagy, lysophagy, which helps clear damaged lysosomes. Damaged lysosomes become ubiquitinated and recruit autophagic machinery. Proteomic studies using transfection reagent-coated beads and further evaluations reveal that a CUL4A-DDB1-WDFY1 E3 ubiquitin ligase complex is essential to initiate lysophagy and clear damaged lysosomes. Moreover, we show that LAMP2 is ubiquitinated by the CUL4A E3 ligase complex as a substrate on damaged lysosomes. These results reveal how cells selectively tag damaged lysosomes to initiate autophagy for the clearance of lysosomes.
Collapse
Affiliation(s)
- Hirofumi Teranishi
- JT Pharmaceutical Frontier Research Laboratory, Yokohama 236-0004, Japan
| | - Keisuke Tabata
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka 565-0871, Japan; Department of Genetics, Graduate School of Medicine Osaka University, Osaka 565-0871, Japan
| | - Marika Saeki
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka 565-0871, Japan
| | - Tetsuo Umemoto
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka 565-0871, Japan
| | - Tomohisa Hatta
- Molecular Profiling Research Center for Drug Discovery, AIST, Tokyo 135-0064, Japan
| | - Takanobu Otomo
- Department of Genetics, Graduate School of Medicine Osaka University, Osaka 565-0871, Japan
| | - Kentaro Yamamoto
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka 565-0871, Japan
| | - Toru Natsume
- Molecular Profiling Research Center for Drug Discovery, AIST, Tokyo 135-0064, Japan
| | - Tamotsu Yoshimori
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka 565-0871, Japan; Department of Genetics, Graduate School of Medicine Osaka University, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan.
| | - Maho Hamasaki
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka 565-0871, Japan; Department of Genetics, Graduate School of Medicine Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
46
|
Bergsma S, Euverink GJW, Charalampogiannis N, Poulios E, Janssens TKS, Achinas S. Biotechnological and Medical Aspects of Lactic Acid Bacteria Used for Plant Protection: A Comprehensive Review. BIOTECH 2022; 11:biotech11030040. [PMID: 36134914 PMCID: PMC9497054 DOI: 10.3390/biotech11030040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
The use of chemical pesticides in agriculture goes hand in hand with some crucial problems. These problems include environmental deterioration and human health complications. To eliminate the problems accompanying chemical pesticides, biological alternatives should be considered. These developments spark interest in many environmental fields, including agriculture. In this review, antifungal compounds produced by lactic acid bacteria (LABs) are considered. It summarizes the worldwide distribution of pesticides and the effect of pesticides on human health and goes into detail about LAB species, their growth, fermentation, and their antifungal compounds. Additionally, interactions between LABs with mycotoxins and plants are discussed.
Collapse
Affiliation(s)
- Simon Bergsma
- Faculty of Science and Engineering; University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Correspondence: (S.B.); (S.A.)
| | - Gerrit Jan Willem Euverink
- Faculty of Science and Engineering; University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | - Efthymios Poulios
- 4th Department of Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece
| | | | - Spyridon Achinas
- Faculty of Science and Engineering; University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Correspondence: (S.B.); (S.A.)
| |
Collapse
|
47
|
Luk CH, Enninga J, Valenzuela C. Fit to dwell in many places – The growing diversity of intracellular Salmonella niches. Front Cell Infect Microbiol 2022; 12:989451. [PMID: 36061869 PMCID: PMC9433700 DOI: 10.3389/fcimb.2022.989451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Salmonella enterica is capable of invading different host cell types including epithelial cells and M cells during local infection, and immune cells and fibroblasts during the subsequent systemic spread. The intracellular lifestyles of Salmonella inside different cell types are remarkable for their distinct residential niches, and their varying replication rates. To study this, researchers have employed different cell models, such as various epithelial cells, immune cells, and fibroblasts. In epithelial cells, S. Typhimurium dwells within modified endolysosomes or gains access to the host cytoplasm. In the cytoplasm, the pathogen is exposed to the host autophagy machinery or poised for rapid multiplication, whereas it grows at a slower rate or remains dormant within the endomembrane-bound compartments. The swift bimodal lifestyle is not observed in fibroblasts and immune cells, and it emerges that these cells handle intracellular S. Typhimurium through different clearance machineries. Moreover, in these cell types S. Typhimurium grows withing modified phagosomes of distinct functional composition by adopting targeted molecular countermeasures. The preference for one or the other intracellular niche and the diverse cell type-specific Salmonella lifestyles are determined by the complex interactions between a myriad of bacterial effectors and host factors. It is important to understand how this communication is differentially regulated dependent on the host cell type and on the distinct intracellular growth rate. To support the efforts in deciphering Salmonella invasion across the different infection models, we provide a systematic comparison of the findings yielded from cell culture models. We also outline the future directions towards a better understanding of these differential Salmonella intracellular lifestyles.
Collapse
Affiliation(s)
- Chak Hon Luk
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
- *Correspondence: Chak Hon Luk, ; Camila Valenzuela,
| | - Jost Enninga
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
| | - Camila Valenzuela
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
- *Correspondence: Chak Hon Luk, ; Camila Valenzuela,
| |
Collapse
|
48
|
Roy Chowdhury A, Sah S, Varshney U, Chakravortty D. Salmonella Typhimurium outer membrane protein A (OmpA) renders protection from nitrosative stress of macrophages by maintaining the stability of bacterial outer membrane. PLoS Pathog 2022; 18:e1010708. [PMID: 35969640 PMCID: PMC9410544 DOI: 10.1371/journal.ppat.1010708] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 08/25/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Bacterial porins are highly conserved outer membrane proteins used in the selective transport of charged molecules across the membrane. In addition to their significant contributions to the pathogenesis of Gram-negative bacteria, their role(s) in salmonellosis remains elusive. In this study, we investigated the role of outer membrane protein A (OmpA), one of the major outer membrane porins of Salmonella, in the pathogenesis of Salmonella Typhimurium (STM). Our study revealed that OmpA plays an important role in the intracellular virulence of Salmonella. An ompA deficient strain of Salmonella (STM ΔompA) showed compromised proliferation in macrophages. We found that the SPI-2 encoded virulence factors such as sifA and ssaV are downregulated in STM ΔompA. The poor colocalization of STM ΔompA with LAMP-1 showed that disruption of SCV facilitated its release into the cytosol of macrophages, where it was assaulted by reactive nitrogen intermediates (RNI). The enhanced recruitment of nitrotyrosine on the cytosolic population of STM ΔompAΔsifA and ΔompAΔssaV compared to STM ΔsifA and ΔssaV showed an additional role of OmpA in protecting the bacteria from host nitrosative stress. Further, we showed that the generation of greater redox burst could be responsible for enhanced sensitivity of STM ΔompA to the nitrosative stress. The expression of several other outer membrane porins such as ompC, ompD, and ompF was upregulated in STM ΔompA. We found that in the absence of ompA, the enhanced expression of ompF increased the outer membrane porosity of Salmonella and made it susceptible to in vitro and in vivo nitrosative stress. Our study illustrates a novel mechanism for the strategic utilization of OmpA by Salmonella to protect itself from the nitrosative stress of macrophages.
Collapse
Affiliation(s)
- Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Shivjee Sah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
49
|
Gómez-Virgilio L, Silva-Lucero MDC, Flores-Morelos DS, Gallardo-Nieto J, Lopez-Toledo G, Abarca-Fernandez AM, Zacapala-Gómez AE, Luna-Muñoz J, Montiel-Sosa F, Soto-Rojas LO, Pacheco-Herrero M, Cardenas-Aguayo MDC. Autophagy: A Key Regulator of Homeostasis and Disease: An Overview of Molecular Mechanisms and Modulators. Cells 2022; 11:cells11152262. [PMID: 35892559 PMCID: PMC9329718 DOI: 10.3390/cells11152262] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a highly conserved lysosomal degradation pathway active at basal levels in all cells. However, under stress conditions, such as a lack of nutrients or trophic factors, it works as a survival mechanism that allows the generation of metabolic precursors for the proper functioning of the cells until the nutrients are available. Neurons, as post-mitotic cells, depend largely on autophagy to maintain cell homeostasis to get rid of damaged and/or old organelles and misfolded or aggregated proteins. Therefore, the dysfunction of this process contributes to the pathologies of many human diseases. Furthermore, autophagy is highly active during differentiation and development. In this review, we describe the current knowledge of the different pathways, molecular mechanisms, factors that induce it, and the regulation of mammalian autophagy. We also discuss its relevant role in development and disease. Finally, here we summarize several investigations demonstrating that autophagic abnormalities have been considered the underlying reasons for many human diseases, including liver disease, cardiovascular, cerebrovascular diseases, neurodegenerative diseases, neoplastic diseases, cancers, and, more recently, infectious diseases, such as SARS-CoV-2 caused COVID-19 disease.
Collapse
Affiliation(s)
- Laura Gómez-Virgilio
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
| | - Maria-del-Carmen Silva-Lucero
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
| | - Diego-Salvador Flores-Morelos
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Guerrero, Mexico;
| | - Jazmin Gallardo-Nieto
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
- Biotechnology Engeniering, Universidad Politécnica de Quintana Roo, Cancún 77500, Quintana Roo, Mexico
| | - Gustavo Lopez-Toledo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
| | - Arminda-Mercedes Abarca-Fernandez
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
- Biotechnology Engeniering, Universidad Politécnica de Quintana Roo, Cancún 77500, Quintana Roo, Mexico
| | - Ana-Elvira Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Guerrero, Mexico;
| | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 53150, Estado de México, Mexico; (J.L.-M.); (F.M.-S.)
- Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo 11805, Dominican Republic
| | - Francisco Montiel-Sosa
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 53150, Estado de México, Mexico; (J.L.-M.); (F.M.-S.)
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico;
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros 51000, Dominican Republic;
| | - Maria-del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
- Correspondence: ; Tel.: +52-55-2907-0937
| |
Collapse
|
50
|
Deretic V, Lazarou M. A guide to membrane atg8ylation and autophagy with reflections on immunity. J Cell Biol 2022; 221:e202203083. [PMID: 35699692 PMCID: PMC9202678 DOI: 10.1083/jcb.202203083] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/11/2022] Open
Abstract
The process of membrane atg8ylation, defined herein as the conjugation of the ATG8 family of ubiquitin-like proteins to membrane lipids, is beginning to be appreciated in its broader manifestations, mechanisms, and functions. Classically, membrane atg8ylation with LC3B, one of six mammalian ATG8 family proteins, has been viewed as the hallmark of canonical autophagy, entailing the formation of characteristic double membranes in the cytoplasm. However, ATG8s are now well described as being conjugated to single membranes and, most recently, proteins. Here we propose that the atg8ylation is coopted by multiple downstream processes, one of which is canonical autophagy. We elaborate on these biological outputs, which impact metabolism, quality control, and immunity, emphasizing the context of inflammation and immunological effects. In conclusion, we propose that atg8ylation is a modification akin to ubiquitylation, and that it is utilized by different systems participating in membrane stress responses and membrane remodeling activities encompassing autophagy and beyond.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|