1
|
Wu S, Gao J, Han Y, Zhang W, Li X, Kong D, Wang H, Zuo L. Balancing act: The dual role of claudin-2 in disease. Ann N Y Acad Sci 2025. [PMID: 40101185 DOI: 10.1111/nyas.15311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Claudin-2 (CLDN2), a tight junction protein, is predominantly found in leaky epithelial cell layers where it plays a pivotal role in forming paracellular pores necessary for the efficient transport of cations and water. Its abundance is intricately regulated by upstream signals, modulating its synthesis, transport, and localization to adapt to diverse environmental changes. Aberrant expression levels of CLDN2 are observed in numerous pathological conditions including cancer, inflammation, immune disorders, fibrosis, and kidney and biliary stones. Recent advances have uncovered the mechanisms by which the loss or restoration of CLDN2 affects functions such as epithelial barrier, cell proliferation, renewal, migration, invasion, and tissue regeneration. This exerts a dual-directional influence on the pathogenesis, perpetuation, and progression of diseases, indicating the potential to both accelerate and decelerate the course of disease evolution. Here, we discuss these nuanced bidirectional regulatory effects mediated by CLDN2, and how it may contribute to the progression or regression of disease when it becomes unbalanced.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Jia Gao
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yiran Han
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wenzhe Zhang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Xue Li
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Knarr MJ, Moon J, Rawat P, DiFeo A, Hoon DSB, Drapkin R. Repurposing colforsin daropate to treat MYC-driven high-grade serous ovarian carcinomas. Sci Signal 2024; 17:eado8303. [PMID: 39561220 DOI: 10.1126/scisignal.ado8303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is one of the deadliest cancers for women, with a low survival rate, no early detection biomarkers, a high rate of recurrence, and few therapeutic options. Forskolin, an activator of cyclic AMP signaling, has several anticancer activities, including against HGSOC, but has limited use in vivo. Its water-soluble derivative, colforsin daropate, has the same mechanism of action as forskolin and is used to treat acute heart failure. Here, we investigated the potential of colforsin daropate as a treatment for HGSOC. We found that colforsin daropate induced cell cycle arrest and apoptosis in cultured HGSOC cells and spheroids but had negligible cytotoxicity in immortalized, nontumorigenic fallopian tube secretory cells and ovarian surface epithelial cells. Colforsin daropate also prevented HGSOC cells from invading ovarian surface epithelial cell layers in culture. In vivo, colforsin daropate reduced tumor growth, synergized with cisplatin (a standard chemotherapy in ovarian cancer care), and improved host survival in subcutaneous and intraperitoneal xenograft models. These antitumor effects of colforsin daropate were mediated in part by its reduction in the abundance and transcriptional activity of the oncoprotein c-MYC, which is often increased in HGSOC. Our findings demonstrate that colforsin daropate may be a promising therapeutic that could be combined with conventional therapies to treat HGSOC.
Collapse
Affiliation(s)
- Matthew J Knarr
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jamie Moon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Providence Health Services, Santa Monica, CA 90404, USA
| | - Priyanka Rawat
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Analisa DiFeo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Providence Health Services, Santa Monica, CA 90404, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Marsch P, Rajagopal N, Nangia S. Biophysics of claudin proteins in tight junction architecture: Three decades of progress. Biophys J 2024; 123:2363-2378. [PMID: 38859584 PMCID: PMC11365114 DOI: 10.1016/j.bpj.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives.
Collapse
Affiliation(s)
- Patrick Marsch
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York.
| |
Collapse
|
4
|
Apostolova D, Apostolov G, Moten D, Batsalova T, Dzhambazov B. Claudin-12: guardian of the tissue barrier or friend of tumor cells. Tissue Barriers 2024:2387408. [PMID: 39087432 DOI: 10.1080/21688370.2024.2387408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Tight junctions (TJs) are an important component of cellular connectivity. Claudin family proteins, as a constituent of TJs, determine their barrier properties, cell polarity and paracellular permeability. Claudin-12 is an atypical member of the claudin family, as it belongs to the group of non-classical claudins that lack a PDZ-binding domain. It has been shown that claudin-12 is involved in paracellular Ca2+ transients and it is present in normal and hyperplastic tissues in addition to neoplastic tissues. Dysregulation of claudin-12 expression has been reported in various cancers, suggesting that this protein may play an important role in cancer cell migration, invasion, and metastasis. Some studies have shown that claudin-12 gene functions as a tumor suppressor, but others have reported that overexpression of claudin-12 significantly increases the metastatic properties of various tumor cells. Investigating this dual role of claudin-12 is of utmost importance and should therefore be studied in detail. The aim of this review is to provide an overview of the information available to date on claudin-12, including its structure, expression in various tissues and substances that may affect it, with a final focus on its role in cancer.
Collapse
Affiliation(s)
- Desislava Apostolova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Georgi Apostolov
- Department of Neurosurgery, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Dzhemal Moten
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Balik Dzhambazov
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
5
|
Farcas RA, Almasri M, Grad S, Popa SL, Leucuta DC, Ismaiel A, Dumitrascu DL. Breaking Barriers in Functional Dyspepsia: A Systematic Review and Meta-analysis on Duodenal Tight Junction Protein Expression. J Neurogastroenterol Motil 2024; 30:281-289. [PMID: 38972865 PMCID: PMC11238099 DOI: 10.5056/jnm24013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 07/09/2024] Open
Abstract
Background/Aims Disruptions in tight junction (TJ) protein expression leading to duodenal epithelial barrier impairment may contribute to increased intestinal permeability, potentially playing a role in functional dyspepsia (FD) pathophysiology. Currently published studies evaluated the role of several TJ proteins in FD patients with inconsistent results. Therefore, we conducted this systematic review and metaanalysis to evaluate the duodenal mucosal expression of several TJ proteins in FD. Methods We performed a systematic electronic search on PubMed, EMBASE, and Scopus using predefined keywords. Diagnosis of FD by Rome III or Rome IV criteria was considered acceptable. Full articles satisfying our inclusion and exclusion criteria were included. The principal summary outcome was the mean difference of several TJ proteins in FD patients and control subjects. Results A total of 8 and 5 studies were included in our qualitative and quantitative synthesis, respectively, with a total population of 666 participants, out of which 420 were FD patients. No significant differences were observed between FD patients and controls in the expression of claudin-1 (-0.102 [95% CI, -0.303, 0.099]), claudin-2 (0.161 [95% CI, -0.134, 0.456)], claudin-3 (0.278 [95% CI, -0.280, 0.837]), claudin-4 (0.045 [95% CI, -0.264, 0.354]), ZO-1 (-0.221 [95% CI, -0.683, 0.241]), ZO-2 (-0.070 [95% CI, -0.147, 0.007]), ZO-3 (-0.129 [95% CI, -0.376, 0.118]), β-catenin (-0.135 [95% CI, -0.484, 0.214]), E-cadherin (-0.083 [95% CI, -0.229, 0.063]), and occludin (-0.158 [95% CI, -0.409, 0.093]). Conclusions The expressions of all evaluated proteins including claudin-1, claudin-2, claudin-3, claudin-4, ZO-1, ZO-2, ZO-3, β-catenin, E-cadherin, and occludin did not significantly differ between FD patients and controls. However, due to the limited number of included studies, results should be interpreted with caution.
Collapse
Affiliation(s)
- Radu A Farcas
- 2nd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Malaz Almasri
- Dr Constantin Papilian Cluj Napoca Emergency Military Hospital, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Simona Grad
- 2nd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stefan-Lucian Popa
- 2nd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel C Leucuta
- Department of Medical Informatics and Biostatistics, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Abdulrahman Ismaiel
- 2nd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan L Dumitrascu
- 2nd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Yu Z, Liu D, Wu C, Zhao W. Intestinal absorption of bioactive oligopeptides: paracellular transport and tight junction modulation. Food Funct 2024; 15:6274-6288. [PMID: 38787733 DOI: 10.1039/d4fo00529e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Bioactive oligopeptides have gained increasing attention due to their diverse physiological functions, and these can be transported into the vasculature via transcellular and paracellular pathways. Among these, paracellular transport through the intercellular space is a passive diffusion process without energy consumption. It is currently the most frequently reported absorption route for food-derived bioactive oligopeptides. Previous work has demonstrated that paracellular pathways are mainly controlled by tight junctions, but the mechanism by which they regulate paracellular absorption of bioactive oligopeptides remains unclear. In this review, we summarized the composition of paracellular pathways across the intercellular space and elaborated on the paracellular transport mechanism of bioactive oligopeptides in terms of the interaction between oligopeptides and tight junction proteins, the protein expression level of tight junctions, the signaling pathways regulating intestinal permeability, and the properties of oligopeptides themselves. These findings contribute to a more profound understanding of the paracellular absorption of bioactive oligopeptides.
Collapse
Affiliation(s)
- Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| | - Di Liu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China
| | - Chunjian Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| |
Collapse
|
7
|
Kundu S, Jaiswal M, Babu Mullapudi V, Guo J, Kamat M, Basso KB, Guo Z. Investigation of Glycosylphosphatidylinositol (GPI)-Plasma Membrane Interaction in Live Cells and the Influence of GPI Glycan Structure on the Interaction. Chemistry 2024; 30:e202303047. [PMID: 37966101 PMCID: PMC10922586 DOI: 10.1002/chem.202303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Centre, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Wang W, Zhou Y, Li W, Quan C, Li Y. Claudins and hepatocellular carcinoma. Biomed Pharmacother 2024; 171:116109. [PMID: 38185042 DOI: 10.1016/j.biopha.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has a high incidence and dismal prognosis, making it a significant global health burden. To change this, the development of new therapeutic strategies is imminent. The claudin (CLDN) family, as key components of tight junctions (TJs), plays an important role in the initiation and development of cancer. Dysregulated expression of CLDNs leads to loss of intercellular adhesion and aberrant cell signaling, which are closely related to cancer cell invasion, migration, and epithelial-mesenchymal transition (EMT). CLDN1, CLDN3, CLDN4, CLDN5, CLDN6, CLDN7, CLDN9, CLDN10, CLDN11, CLDN14, and CLDN17 are aberrantly expressed in HCC, which drives the progression of the disease. Consequently, they have tremendous potential as prognostic indicators and therapeutic targets. This article summarizes the aberrant expression, molecular mechanisms, and clinical application studies of different subtypes of CLDNs in HCC, with a particular emphasis on CLDN1.
Collapse
Affiliation(s)
- Wentao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The Second Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Yi Zhou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China.
| |
Collapse
|
9
|
Cong X, Mao XD, Wu LL, Yu GY. The role and mechanism of tight junctions in the regulation of salivary gland secretion. Oral Dis 2024; 30:3-22. [PMID: 36825434 DOI: 10.1111/odi.14549] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Tight junctions (TJs) are cell-cell interactions that localize at the most apical portion of epithelial/endothelial cells. One of the predominant functions of TJs is to regulate material transport through paracellular pathway, which serves as a selective barrier. In recent years, the expression and function of TJs in salivary glands has attracted great interest. The characteristics of multiple salivary gland TJ proteins have been identified. During salivation, the activation of muscarinic acetylcholine receptor and transient receptor potential vanilloid subtype 1, as well as other stimuli, promote the opening of acinar TJs by inducing internalization of TJs, thereby contributing to increased paracellular permeability. Besides, endothelial TJs are also redistributed with leakage of blood vessels in cholinergic-stimulated submandibular glands. Furthermore, under pathological conditions, such as Sjögren's syndrome, diabetes mellitus, immunoglobulin G4-related sialadenitis, and autotransplantation, the integrity and barrier function of TJ complex are impaired and may contribute to hyposalivation. Moreover, in submandibular glands of Sjögren's syndrome mouse model and patients, the endothelial barrier is disrupted and involved in hyposecretion and lymphocytic infiltration. These findings enrich our understanding of the secretory mechanisms that link the importance of epithelial and endothelial TJ functions to salivation under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Xin Cong
- Center for Salivary Gland Diseases, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Department of Physiology and Pathophysiology, Peking University School of Basic Sciences, Beijing, China
| | - Xiang-Di Mao
- Center for Salivary Gland Diseases, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Department of Physiology and Pathophysiology, Peking University School of Basic Sciences, Beijing, China
| | - Li-Ling Wu
- Center for Salivary Gland Diseases, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Department of Physiology and Pathophysiology, Peking University School of Basic Sciences, Beijing, China
| | - Guang-Yan Yu
- Center for Salivary Gland Diseases, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
10
|
Ling C, Versloot CJ, Arvidsson Kvissberg ME, Hu G, Swain N, Horcas-Nieto JM, Miraglia E, Thind MK, Farooqui A, Gerding A, van Eunen K, Koster MH, Kloosterhuis NJ, Chi L, ChenMi Y, Langelaar-Makkinje M, Bourdon C, Swann J, Smit M, de Bruin A, Youssef SA, Feenstra M, van Dijk TH, Thedieck K, Jonker JW, Kim PK, Bakker BM, Bandsma RHJ. Rebalancing of mitochondrial homeostasis through an NAD +-SIRT1 pathway preserves intestinal barrier function in severe malnutrition. EBioMedicine 2023; 96:104809. [PMID: 37738832 PMCID: PMC10520344 DOI: 10.1016/j.ebiom.2023.104809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND The intestine of children with severe malnutrition (SM) shows structural and functional changes that are linked to increased infection and mortality. SM dysregulates the tryptophan-kynurenine pathway, which may impact processes such as SIRT1- and mTORC1-mediated autophagy and mitochondrial homeostasis. Using a mouse and organoid model of SM, we studied the repercussions of these dysregulations on malnutrition enteropathy and the protective capacity of maintaining autophagy activity and mitochondrial health. METHODS SM was induced through feeding male weanling C57BL/6 mice a low protein diet (LPD) for 14-days. Mice were either treated with the NAD+-precursor, nicotinamide; an mTORC1-inhibitor, rapamycin; a SIRT1-activator, resveratrol; or SIRT1-inhibitor, EX-527. Malnutrition enteropathy was induced in enteric organoids through amino-acid deprivation. Features of and pathways to malnutrition enteropathy were examined, including paracellular permeability, nutrient absorption, and autophagic, mitochondrial, and reactive-oxygen-species (ROS) abnormalities. FINDINGS LPD-feeding and ensuing low-tryptophan availability led to villus atrophy, nutrient malabsorption, and intestinal barrier dysfunction. In LPD-fed mice, nicotinamide-supplementation was linked to SIRT1-mediated activation of mitophagy, which reduced damaged mitochondria, and improved intestinal barrier function. Inhibition of mTORC1 reduced intestinal barrier dysfunction and nutrient malabsorption. Findings were validated and extended using an organoid model, demonstrating that resolution of mitochondrial ROS resolved barrier dysfunction. INTERPRETATION Malnutrition enteropathy arises from a dysregulation of the SIRT1 and mTORC1 pathways, leading to disrupted autophagy, mitochondrial homeostasis, and ROS. Whether nicotinamide-supplementation in children with SM could ameliorate malnutrition enteropathy should be explored in clinical trials. FUNDING This work was supported by the Bill and Melinda Gates Foundation, the Sickkids Research Institute, the Canadian Institutes of Health Research, and the University Medical Center Groningen.
Collapse
Affiliation(s)
- Catriona Ling
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Christian J Versloot
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Matilda E Arvidsson Kvissberg
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Guanlan Hu
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nathan Swain
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - José M Horcas-Nieto
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Emily Miraglia
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mehakpreet K Thind
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Amber Farooqui
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Albert Gerding
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Karen van Eunen
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Mirjam H Koster
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Lijun Chi
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - YueYing ChenMi
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Miriam Langelaar-Makkinje
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Celine Bourdon
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jonathan Swann
- Faculty of Medicine, School of Human Development and Health, University of Southampton, United Kingdom; Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, United Kingdom
| | - Marieke Smit
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Alain de Bruin
- Department of Biomolecular Health Sciences, Dutch Molecular Pathology Centre, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Sameh A Youssef
- Department of Biomolecular Health Sciences, Dutch Molecular Pathology Centre, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Janssen Pharmaceutica Research and Development, 2340, Beerse, Belgium
| | - Marjon Feenstra
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Theo H van Dijk
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Kathrin Thedieck
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands; Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria; Freiburg Materials Research Center (FMF), University Freiburg, Freiburg, Germany
| | - Johan W Jonker
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Peter K Kim
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Barbara M Bakker
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands.
| | - Robert H J Bandsma
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands; Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
11
|
Kundu S, Lin C, Jaiswal M, Mullapudi VB, Craig KC, Chen S, Guo Z. Profiling Glycosylphosphatidylinositol (GPI)-Interacting Proteins in the Cell Membrane Using a Bifunctional GPI Analogue as the Probe. J Proteome Res 2023; 22:919-930. [PMID: 36700487 PMCID: PMC9992086 DOI: 10.1021/acs.jproteome.2c00728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchorage of cell surface proteins to the membrane is biologically important and ubiquitous in eukaryotes. However, GPIs do not contain long enough lipids to span the entire membrane bilayer. To transduce binding signals, GPIs must interact with other membrane components, but such interactions are difficult to define. Here, a new method was developed to explore GPI-interacting membrane proteins in live cell with a bifunctional analogue of the glucosaminylphosphatidylinositol motif conserved in all GPIs as a probe. This probe contained a diazirine functionality in the lipid and an alkynyl group on the glucosamine residue to respectively facilitate the cross-linkage of GPI-binding membrane proteins with the probe upon photoactivation and then the installation of biotin to the cross-linked proteins via a click reaction for affinity-based protein isolation and analysis. Profiling the proteins pulled down from the Hela cells revealed 94 unique and 18 overrepresented proteins compared to the control, and most of them are membrane proteins and many are GPI-related. The results have proved not only the concept of using the new bifunctional GPI probe to investigate GPI-binding membrane proteins but also the important role of inositol in the biological functions of GPI anchors and GPI-anchored proteins.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Chuwei Lin
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Kendall C. Craig
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Current Address: Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Yadav R, Kumar Y, Dahiya D, Bhatia A. Claudins: The Newly Emerging Targets in Breast Cancer. Clin Breast Cancer 2022; 22:737-752. [PMID: 36175290 DOI: 10.1016/j.clbc.2022.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/04/2022] [Indexed: 01/25/2023]
Abstract
Claudin-low breast cancers are recently described entities showing low expression of certain claudins and cell adhesion molecules. Claudins constitute the backbone of tight junctions (TJs) formed between 2 cells. Their dysregulation plays a vital role in tumorigenesis. First part of the article focuses on the role of claudins in the TJ organization, their structural-functional characteristics, and post-transcriptional and translational modifications. The latter part of the review attempts to summarize existing knowledge regarding the status of claudins in breast cancer. The article also provides an overview of the effect of claudins on tumor progression, metastasis, stemness, chemotherapy resistance, and their crosstalk with relevant signaling pathways in breast cancer. Claudins can act as 2-edged swords in tumors. Some claudins have either tumor-suppressive/ promoting action, while others work as both in a context-dependent manner. Claudins regulate many important events in breast cancer. However, the intricacies involved in their activity are poorly understood. Post-translational modifications in claudins and their impact on TJ integrity, function, and tumor behavior are still unclear. Although their role in adverse events in breast cancer is recognized, their potential to serve as relevant targets for future therapeutics, especially for difficult-to-treat subtypes of the above malignancy, remains to be explored.
Collapse
Affiliation(s)
- Reena Yadav
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
13
|
Cao W, Xing H, Li Y, Tian W, Song Y, Jiang Z, Yu J. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark Res 2022; 10:38. [PMID: 35642043 PMCID: PMC9153115 DOI: 10.1186/s40364-022-00385-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
The claudin18.2 (CLDN18.2) protein, an isoform of claudin18, a member of the tight junction protein family, is a highly selective biomarker with limited expression in normal tissues and often abnormal expression during the occurrence and development of various primary malignant tumors, such as gastric cancer/gastroesophageal junction (GC/GEJ) cancer, breast cancer, colon cancer, liver cancer, head and neck cancer, bronchial cancer and non-small-cell lung cancer. CLDN18.2 participates in the proliferation, differentiation and migration of tumor cells. Recent studies have identified CLDN18.2 expression as a potential specific marker for the diagnosis and treatment of these tumors. With its specific expression pattern, CLDN18.2 has become a unique molecule for targeted therapy in different cancers, especially in GC; for example, agents such as zolbetuximab (claudiximab, IMAB362), a monoclonal antibody (mAb) against CLDN18.2, have been developed. In this review, we outline recent advances in the development of immunotherapy strategies targeting CLDN18.2, including monoclonal antibodies (mAbs), bispecific antibodies (BsAbs), chimeric antigen receptor T (CAR-T) cells redirected to target CLDN18.2, and antibody–drug conjugates (ADCs).
Collapse
Affiliation(s)
- Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenliang Tian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
14
|
Claudins and Gastric Cancer: An Overview. Cancers (Basel) 2022; 14:cancers14020290. [PMID: 35053454 PMCID: PMC8773541 DOI: 10.3390/cancers14020290] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Gastric cancer (GC) is one of the most common cancers and the third leading cause of cancer deaths worldwide, with a high frequency of recurrence and metastasis, and a poor prognosis. This review presents novel biological and clinical significance of claudin (CLDN) expression in GC, especially CLDN18, and clinical trials centered around CLDN18.2. It also presents new findings for other CLDNs. Abstract Despite recent improvements in diagnostic ability and treatment strategies, advanced gastric cancer (GC) has a high frequency of recurrence and metastasis, with poor prognosis. To improve the treatment results of GC, the search for new treatment targets from proteins related to epithelial–mesenchymal transition (EMT) and cell–cell adhesion is currently being conducted. EMT plays an important role in cancer metastasis and is initiated by the loss of cell–cell adhesion, such as tight junctions (TJs), adherens junctions, desmosomes, and gap junctions. Among these, claudins (CLDNs) are highly expressed in some cancers, including GC. Abnormal expression of CLDN1, CLDN2, CLDN3, CLDN4, CLDN6, CLDN7, CLDN10, CLDN11, CLDN14, CLDN17, CLDN18, and CLDN23 have been reported. Among these, CLDN18 is of particular interest. In The Cancer Genome Atlas, GC was classified into four new molecular subtypes, and CLDN18–ARHGAP fusion was observed in the genomically stable type. An anti-CLDN18.2 antibody drug was recently developed as a therapeutic drug for GC, and the results of clinical trials are highly predictable. Thus, CLDNs are highly expressed in GC as TJs and are expected targets for new antibody drugs. Herein, we review the literature on CLDNs, focusing on CLDN18 in GC.
Collapse
|
15
|
Monaco A, Ovryn B, Axis J, Amsler K. The Epithelial Cell Leak Pathway. Int J Mol Sci 2021; 22:ijms22147677. [PMID: 34299297 PMCID: PMC8305272 DOI: 10.3390/ijms22147677] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
The epithelial cell tight junction structure is the site of the transepithelial movement of solutes and water between epithelial cells (paracellular permeability). Paracellular permeability can be divided into two distinct pathways, the Pore Pathway mediating the movement of small ions and solutes and the Leak Pathway mediating the movement of large solutes. Claudin proteins form the basic paracellular permeability barrier and mediate the movement of small ions and solutes via the Pore Pathway. The Leak Pathway remains less understood. Several proteins have been implicated in mediating the Leak Pathway, including occludin, ZO proteins, tricellulin, and actin filaments, but the proteins comprising the Leak Pathway remain unresolved. Many aspects of the Leak Pathway, such as its molecular mechanism, its properties, and its regulation, remain controversial. In this review, we provide a historical background to the evolution of the Leak Pathway concept from the initial examinations of paracellular permeability. We then discuss current information about the properties of the Leak Pathway and present current theories for the Leak Pathway. Finally, we discuss some recent research suggesting a possible molecular basis for the Leak Pathway.
Collapse
Affiliation(s)
- Ashley Monaco
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA; (A.M.); (J.A.)
| | - Ben Ovryn
- Department of Physics, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA;
| | - Josephine Axis
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA; (A.M.); (J.A.)
| | - Kurt Amsler
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA; (A.M.); (J.A.)
- Correspondence: ; Tel.: +1-516-686-3716
| |
Collapse
|
16
|
Luo T, Liu H, Chen B, Liu H, Abdel-Latif A, Kitakaze M, Wang X, Wu Y, Chou D, Kim JK. A novel role of claudin-5 in prevention of mitochondrial fission against ischemic/hypoxic stress in cardiomyocytes. Can J Cardiol 2021; 37:1593-1606. [PMID: 33838228 DOI: 10.1016/j.cjca.2021.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Downregulation of claudin-5 in the heart is associated with the end-stage heart failure. However, the underlying mechanism of claudin-5 is unclear. Here we investigated the molecular actions of claudin-5 in perspective of mitochondria in cardiomyocytes to better understand the role of claudin-5 in cardioprotection during ischemia. METHODS AND RESULTS Claudin-5 was detected in the murine heart tissue and the neonatal rat cardiomyocytes (NRCM). Its protein level was severely decreased after myocardial ischemia/reperfusion (I/R; 30 min/24 h) or hypoxia/reoxygenation (H/R; 24 h/4 h). Claudin-5 was present in the mitochondria of NRCM as determined by confocal microscopy. H/R-induced downregulation of claudin-5 was accompanied by mitochondrial fragmentation. The protein level of mitofusin 2 (Mfn2) was dramatically decreased while the expression of dynamin-related protein (Drp) 1 was significantly increased after H/R. H/R-induced mitochondrial swelling and fission were observed by transmission electron microscope (TEM). Overexpression of claudin-5 by adenoviral infection reversed these structural disintegration of mitochondria. The mitochondria-centered intrinsic pathway of apoptosis triggered by H/R and indicated by the expression of cytochrome c and cleaved caspase 3 in the cytoplasm of NRCMs was also reduced by overexpressing claudin-5. Overexpression of claudin-5 in mouse heart also significantly decreased cleaved caspase 3 expression and the infarct size in ischemic heart with improved systolic function. CONCLUSION We demonstrated for the first time the presence of claudin-5 in the mitochondria in cardiomyocytes and provided the firm evidence for the cardioprotective role of claudin-5 in the preservation of mitochondrial dynamics and cell fate against hypoxia- or ischemia-induced stress.
Collapse
Affiliation(s)
- Tao Luo
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China; Division of Cardiology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| | - Haiqiong Liu
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Baihe Chen
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China; Division of Cardiology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Han Liu
- Division of Cardiology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, 40536-0509, USA
| | - Masafumi Kitakaze
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, 5675-8565, Japan
| | - Xianbao Wang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yuanzhou Wu
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Dylan Chou
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Jin Kyung Kim
- Division of Cardiology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
17
|
Zhang H, Kong Q, Wang J, Jiang Y, Hua H. Complex roles of cAMP-PKA-CREB signaling in cancer. Exp Hematol Oncol 2020; 9:32. [PMID: 33292604 PMCID: PMC7684908 DOI: 10.1186/s40164-020-00191-1] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is the first discovered second messenger, which plays pivotal roles in cell signaling, and regulates many physiological and pathological processes. cAMP can regulate the transcription of various target genes, mainly through protein kinase A (PKA) and its downstream effectors such as cAMP-responsive element binding protein (CREB). In addition, PKA can phosphorylate many kinases such as Raf, GSK3 and FAK. Aberrant cAMP-PKA signaling is involved in various types of human tumors. Especially, cAMP signaling may have both tumor-suppressive and tumor-promoting roles depending on the tumor types and context. cAMP-PKA signaling can regulate cancer cell growth, migration, invasion and metabolism. This review highlights the important roles of cAMP-PKA-CREB signaling in tumorigenesis. The potential strategies to target this pathway for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Hongying Zhang
- Laboratory of Oncogene, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- Laboratory of Oncogene, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangfu Jiang
- Laboratory of Oncogene, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Wang X, Zhao Q, Shi H, Qi F, Shi N, Bai D, Li X, Yuan H, Zuo X. Oxidative stress is important in the pathogenesis of stress-related mucosal disease. Exp Ther Med 2020; 20:83. [PMID: 32968440 PMCID: PMC7499950 DOI: 10.3892/etm.2020.9211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
Stress-related mucosal disease (SRMD) is a common complication in patients in the intensive care unit (ICU). The aim of the present study was to investigate the possible mechanisms for the pathogenesis of SRMD. In total, 38 patients with SRMD were enrolled from an ICU, as well as 15 healthy volunteers. The disease severity of patients in ICU was evaluated using the Acute Physiology and Chronic Health Evaluation (APACHE) II score. Gastric mucosa with the most severe lesions were biopsied for hematoxylin and eosin staining and then assessed by pathological damage scoring. The serum levels of malondialdehyde (MDA), superoxide dismutase (SOD) and ischemic modified albumin (IMA) were also detected. In addition, claudin-3 and inducible nitric oxide (NO) synthase (iNOS) in the gastric mucosa were assessed by western blotting and immunohistochemistry. The average APACHE II score of the patients with SRMD was significantly higher compared with the controls. Moreover, the levels of MDA (4.74±2.89 nmol/ml) and IMA (93.61±10.78 U/ml) in patients with SRMD were significantly higher compared with the controls (P<0.001), while those of SOD (89.66±12.85 U/ml) in the patients with SRMD were significantly lower compared with the controls (P<0.001). Furthermore, compared with the control, iNOS expression was significantly higher (P=0.034), while the expression of claudin-3 was significantly lower in patients with SRMD (P<0.001). The results indicated that APACHE II score was positively correlated with pathological damage score (r=0.639, P<0.001) and levels of MDA (r=0.743, P<0.001), but negatively correlated with the level of SOD (r=-0.392, P=0.015). In addition, MDA was positively correlated with IMA (r=0.380, P=0.018), but negatively correlated with claudin-3 (r=-0.377, P=0.020). Therefore, it was speculated that oxidative stress may play an important role in the pathogenesis of SRMD, and NO levels and cell membrane permeability are altered during this process.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Gastroenterology, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Qin Zhao
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Gastroenterology, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Huanling Shi
- Department of Endoscopy Center, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Feng Qi
- Department of Critical Care Medicine, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Na Shi
- Department of Central Laboratory, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Dongfang Bai
- Department of Endocrinology, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xiaopei Li
- Department of Gastroenterology, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Haipeng Yuan
- Department of Gastroenterology, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
19
|
Yuan M, Chen X, Sun Y, Jiang L, Xia Z, Ye K, Jiang H, Yang B, Ying M, Cao J, He Q. ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression. Acta Pharm Sin B 2020; 10:1426-1439. [PMID: 32963941 PMCID: PMC7488353 DOI: 10.1016/j.apsb.2020.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
The membrane protein claudin-3 (CLDN3) is critical for the formation and maintenance of tight junction and its high expression has been implicated in dictating malignant progression in various cancers. However, the post-translational modification of CLDN3 and its biological function remains poorly understood. Here, we report that CLDN3 is positively correlated with ovarian cancer progression both in vitro and in vivo. Of interest, CLDN3 undergoes S-palmitoylation on three juxtamembrane cysteine residues, which contribute to the accurate plasma membrane localization and protein stability of CLDN3. Moreover, the deprivation of S-palmitoylation in CLDN3 significantly abolishes its tumorigenic promotion effect in ovarian cancer cells. By utilizing the co-immunoprecipitation assay, we further identify ZDHHC12 as a CLDN3-targating palmitoyltransferase from 23 ZDHHC family proteins. Furthermore, the knockdown of ZDHHC12 also significantly inhibits CLDN3 accurate membrane localization, protein stability and ovarian cancer cells tumorigenesis. Thus, our work reveals S-palmitoylation as a novel regulatory mechanism that modulates CLDN3 function, which implies that targeting ZDHHC12-mediated CLDN3 S-palmitoylation might be a potential strategy for ovarian cancer therapy.
Collapse
Affiliation(s)
- Meng Yuan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaobing Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yitang Sun
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Li Jiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhongni Xia
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Hong Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 100098, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
da Cruz Silva LL, de Oliveira WRP, Pereira NV, Halpern I, Tanabe CKFD, Mattos MSG, Sotto MN. Claudin expression profile in flat wart and cutaneous squamous cell carcinoma in epidermodysplasia verruciformis. Sci Rep 2020; 10:9268. [PMID: 32518268 PMCID: PMC7283482 DOI: 10.1038/s41598-020-66065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/07/2020] [Indexed: 11/09/2022] Open
Abstract
Epidermodysplasia verruciformis (EV) is a genodermatosis related to human beta-papillomavirus (beta-HPV), with a high risk of cutaneous squamous cell carcinoma (cSCC). Claudins are transmembrane proteins expressed in epithelia and may be altered during carcinogenesis. For a better understanding of the role of beta-HPV in cutaneous carcinogenesis, this claudin expression study was conducted on lesions of patients with and without EV. In this study, claudins-1, -2, -3, -4, -5, -7 and -11 expressions were analyzed by applying the immunohistochemistry technique, in samples of 108 normal skin, 39 flat warts and 174 cSCC. The cSCC samples were organized in tissue microarrays. We found that claudin-1 and claudin-3 focal expressions were associated with cSCC (p < 0.001), and claudin-2 focal or negative expression with flat wart (p < 0.001), in EV and NEV (non-EV) groups. For claudin-5, EV group showed a lower chance of focal and negative expression (p < 0.001), and its negative expression was associated with flat wart (p < 0.001) and lower mean age (p < 0.001). Claudins-4, -7 and -11 showed a diffuse expression in almost all studied samples. Our findings suggest that claudin-5 increased expression observed on normal skin, flat wart and cSCC showed association with EV. Claudin-1 and -3 down expression were also observed, but they could not be related to beta-HPV infection.
Collapse
Affiliation(s)
- Lana Luiza da Cruz Silva
- Departament of Dermatology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | - Naiura Vieira Pereira
- Departament of Dermatology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ilana Halpern
- Departament of Dermatology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Mirian N Sotto
- Departament of Dermatology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.,Departament of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
21
|
Nighot P, Ma T. Endocytosis of Intestinal Tight Junction Proteins: In Time and Space. Inflamm Bowel Dis 2020; 27:283-290. [PMID: 32497180 PMCID: PMC7813749 DOI: 10.1093/ibd/izaa141] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic cells take up macromolecules and particles from the surrounding milieu and also internalize membrane proteins via a precise process of endocytosis. The role of endocytosis in diverse physiological processes such as cell adhesion, cell signaling, tissue remodeling, and healing is well recognized. The epithelial tight junctions (TJs), present at the apical lateral membrane, play a key role in cell adhesion and regulation of paracellular pathway. These vital functions of the TJ are achieved through the dynamic regulation of the presence of pore and barrier-forming proteins within the TJ complex on the plasma membrane. In response to various intracellular and extracellular clues, the TJ complexes are actively regulated by intracellular trafficking. The intracellular trafficking consists of endocytosis and recycling cargos to the plasma membrane or targeting them to the lysosomes for degradation. Increased intestinal TJ permeability is a pathological factor in inflammatory bowel disease (IBD), and the TJ permeability could be increased due to the altered endocytosis or recycling of TJ proteins. This review discusses the current information on endocytosis of intestinal epithelial TJ proteins. The knowledge of the endocytic regulation of the epithelial TJ barrier will provide further understanding of pathogenesis and potential targets for IBD and a wide variety of human disease conditions.
Collapse
Affiliation(s)
- Prashant Nighot
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA,Address correspondence to: Prashant Nighot, Department of Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Room C5814B, Hershey, PA, 17033, USA. E-mail:
| | - Thomas Ma
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| |
Collapse
|
22
|
Post-translational modifications of tight junction transmembrane proteins and their direct effect on barrier function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183330. [PMID: 32376223 DOI: 10.1016/j.bbamem.2020.183330] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022]
Abstract
Post-translational modifications (PTMs) such as phosphorylation, ubiquitination or glycosylation are processes affecting the conformation, stability, localization and function of proteins. There is clear evidence that PTMs can act upon tight junction (TJ) proteins, thus modulating epithelial barrier function. Compared to transcriptional or translational regulation, PTMs are rapid and more dynamic processes so in the context of barrier maintenance they might be essential for coping with changing environmental or external impacts. The aim of this review is to extract literature deciphering PTMs in TJ proteins directly contributing to epithelial barrier changes in permeability to ions and macromolecules. It is not intended to cover the entire scope of PTMs in TJ proteins and should rather be understood as a digest of TJ protein modifications directly resulting in the tightening or opening of the epithelial barrier.
Collapse
|
23
|
Tavsan Z, Kayali HA. Protein Kinase C regulates the complex between cell membrane molecules in ovarian cancer. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Role of Claudin Proteins in Regulating Cancer Stem Cells and Chemoresistance-Potential Implication in Disease Prognosis and Therapy. Int J Mol Sci 2019; 21:ijms21010053. [PMID: 31861759 PMCID: PMC6982342 DOI: 10.3390/ijms21010053] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Claudins are cell–cell adhesion proteins, which are expressed in tight junctions (TJs), the most common apical cell-cell adhesion. Claudin proteins help to regulate defense and barrier functions, as well as differentiation and polarity in epithelial and endothelial cells. A series of studies have now reported dysregulation of claudin proteins in cancers. However, the precise mechanisms are still not well understood. Nonetheless, studies have clearly demonstrated a causal role of multiple claudins in the regulation of epithelial to mesenchymal transition (EMT), a key feature in the acquisition of a cancer stem cell phenotype in cancer cells. In addition, claudin proteins are known to modulate therapy resistance in cancer cells, a feature associated with cancer stem cells. In this review, we have focused primarily on highlighting the causal link between claudins, cancer stem cells, and therapy resistance. We have also contemplated the significance of claudins as novel targets in improving the efficacy of cancer therapy. Overall, this review provides a much-needed understanding of the emerging role of claudin proteins in cancer malignancy and therapeutic management.
Collapse
|
25
|
MicroRNA-155-5p is a key regulator of allergic inflammation, modulating the epithelial barrier by targeting PKIα. Cell Death Dis 2019; 10:884. [PMID: 31767859 PMCID: PMC6877533 DOI: 10.1038/s41419-019-2124-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
Recent studies have demonstrated that microRNA-155-5p (miR-155-5p) plays an essential role in the regulation of allergen-induced inflammation and is overexpressed in the skin of patients with atopic dermatitis (AD), although the mechanism is unknown. In this study, silencing miR-155-5p attenuated the thickening of the epidermis in AD model and reduced the infiltration of inflammatory cells and the secretion of Th2 cytokines. Protein kinase inhibitor α (PKIα) was identified as a direct target of miR-155-5p and correlated negatively with miR-155-5p in our AD model. Fluorescence in situ hybridization showed that miR-155-5p-expressing cells were predominantly present in the epidermis. When epithelial cells were transfected with an miR-155-5p inhibitor, the expression of PKIα, occludin, and CLDN16 increased and that of TSLP decreased significantly, whereas the overexpression of miR-155-5p resulted in the opposite changes. The increased expression of PKIα and tight junction (TJ) proteins, with reduced TSLP and IL-33, was also detected in miR-155-5p-blocked mice, in both the initial and elicitation stages of AD. The expression of TJ proteins also decreased when cells were transfected with PKIα siRNA. TJ proteins increased and TSLP and IL-33 decreased significantly after the overexpression of PKIα. Our data provide the first evidence that miR-155-5p is critical for the allergic inflammation in a mouse model of AD by directly regulating PKIα and thus epithelial TJ expression. These findings suggest new therapeutic strategies that target miR-155-5p in patients with allergic disorders.
Collapse
|
26
|
Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal 2019; 66:109485. [PMID: 31770579 DOI: 10.1016/j.cellsig.2019.109485] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Endothelial tight junctions (TJs) regulate the transport of water, ions, and molecules through the paracellular pathway, serving as an important barrier in blood vessels and maintaining vascular homeostasis. In endothelial cells (ECs), TJs are highly dynamic structures that respond to multiple external stimuli and pathological conditions. Alterations in the expression, distribution, and structure of endothelial TJs may lead to many related vascular diseases and pathologies. In this review, we provide an overview of the assessment methods used to evaluate endothelial TJ barrier function both in vitro and in vivo and describe the composition of endothelial TJs in diverse vascular systems and ECs. More importantly, the direct phosphorylation and dephosphorylation of TJ proteins by intracellular kinases and phosphatases, as well as the signaling pathways involved in the regulation of TJs, including and the protein kinase C (PKC), PKA, PKG, Ras homolog gene family member A (RhoA), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and Wnt/β-catenin pathways, are discussed. With great advances in this area, targeting endothelial TJs may provide novel treatment for TJ-related vascular pathologies.
Collapse
Affiliation(s)
- Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
27
|
Brazilian Green Propolis Rescues Oxidative Stress-Induced Mislocalization of Claudin-1 in Human Keratinocyte-Derived HaCaT Cells. Int J Mol Sci 2019; 20:ijms20163869. [PMID: 31398894 PMCID: PMC6719963 DOI: 10.3390/ijms20163869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 01/05/2023] Open
Abstract
Claudin-1 (CLDN1) is expressed in the tight junction (TJ) of the skin granular layer and acts as a physiological barrier for the paracellular transport of ions and nonionic molecules. Ultraviolet (UV) and oxidative stress may disrupt the TJ barrier, but the mechanism of and protective agents against this effect have not been clarified. We found that UVB and hydrogen peroxide (H2O2) caused the internalization of CLDN1 and increased the paracellular permeability of lucifer yellow, a fluorescent marker, in human keratinocyte-derived HaCaT cells. Therefore, the mechanism of mislocalization of CLDN1 and the protective effect of an ethanol extract of Brazilian green propolis (EBGP) were investigated. The UVB- and H2O2-induced decreases in CLDN1 localization were rescued by EBGP. H2O2 decreased the phosphorylation level of CLDN1, which was also rescued by EBGP. Wild-type CLDN1 was distributed in the cytosol after treatment with H2O2, whereas T191E, its H2O2-insensitive phosphorylation-mimicking mutant, was localized at the TJ. Both protein kinase C activator and protein phosphatase 2A inhibitor rescued the H2O2-induced decrease in CLDN1 localization. The tight junctional localization of CLDN1 and paracellular permeability showed a negative correlation. Our results indicate that UVB and H2O2 could induce the elevation of paracellular permeability mediated by the dephosphorylation and mislocalization of CLDN1 in HaCaT cells, which was rescued by EBGP. EBGP and its components may be useful in preventing the destruction of the TJ barrier through UV and oxidative stress.
Collapse
|
28
|
Zhao B, Che D, Adams S, Guo N, Han R, Zhang C, Qin G, Farouk MH, Jiang H. N-Acetyl-d-galactosamine prevents soya bean agglutinin-induced intestinal barrier dysfunction in intestinal porcine epithelial cells. J Anim Physiol Anim Nutr (Berl) 2019; 103:1198-1206. [PMID: 30934149 DOI: 10.1111/jpn.13091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/23/2022]
Abstract
Soya bean agglutinin (SBA) is a glycoprotein and the main anti-nutritional component in most soya bean feedstuffs. It is mainly a non-fibre carbohydrate-based protein and represents about 10% of soya bean-based anti-nutritional effects. In this study, we sought to determine the effects of N-Acetyl-D-galactosamine (GalNAc or D-GalNAc) on the damage induced by SBA on the membrane permeability and tight junction proteins of piglet intestinal epithelium (IPEC-J2) cells. The IPEC-J2 cells were pre-cultured with 0, 0.125 × 10-4 , 0.25 × 10-4 , 0.5 × 10-4 , 1.0 × 10-4 and 2.0 × 10-4 mmol/L GalNAc at different time period (1, 2, 4 and 8 hr) before being exposed to 0.5 mg/ml SBA for 24 hr. The results indicate that pre-incubation with GalNAc mitigates the mechanical barrier injury as reflected by a significant increase in trans-epithelial electric resistance (TEER) value and a decrease in alkaline phosphatase (ALP) activity in cell culture medium pre-treated with GalNAc before incubation with SBA as both indicate a reduction in cellular membrane permeability. In addition, mRNA levels of the tight junction proteins occludin and claudin-3 were lower in the SBA-treated groups without pre-treatment with GalNAc. The mRNA expression of occludin was reduced by 17.3% and claudin-3 by 42% (p < 0.01). Moreover, the corresponding protein expression levels were lowered by 17.8% and 43.5% (p < 0.05) respectively. However, in the GalNAc pre-treated groups, occludin and claudin-3 mRNAs were reduced by 1.6% (p > 0.05) and 2.7% (p < 0.01), respectively, while the corresponding proteins were reduced by 4.3% and 7.2% (p < 0.05). In conclusion, GalNAc may prevent the effect of SBA on membrane permeability and tight junction proteins on IPEC-J2s.
Collapse
Affiliation(s)
- Bao Zhao
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dongsheng Che
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Seidu Adams
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Nan Guo
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chun Zhang
- Department of Animal Science and Technology, Changchun University of science and technology, Changchun, China
| | - Guixin Qin
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Mohammed Hamdy Farouk
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Hailong Jiang
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
29
|
Monzon CM, Garvin JL. Claudin-19 mediates the effects of NO on the paracellular pathway in thick ascending limbs. Am J Physiol Renal Physiol 2019; 317:F411-F418. [PMID: 31166708 DOI: 10.1152/ajprenal.00065.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Claudins are a family of tight junction proteins that provide size and charge selectivity to solutes traversing the paracellular space. Thick ascending limbs (TALs) express numerous claudins, including claudin-19. Nitric oxide (NO), via cGMP, reduces dilution potentials in perfused TALs, a measure of paracellular permeability, but the role of claudin-19 is unknown. We hypothesized that claudin-19 mediates the effects of NO/cGMP on the paracellular pathway in TALs via increases in plasma membrane expression of this protein. We measured the effect of the NO donor spermine NONOate (SPM) on dilution potentials with and without blocking antibodies and plasma membrane expression of claudin-19. During the control period, the dilution potential was -18.2 ± 1.8 mV. After treatment with 200 μmol/l SPM, it was -14.7 ± 2.0 mV (P < 0.04). In the presence of claudin-19 antibody, the dilution potential was -12.7 ± 2.1 mV. After SPM, it was -12.9 ± 2.4 mV, not significantly different. Claudin-19 antibody alone had no effect on dilution potentials. In the presence of Tamm-Horsfall protein antibody, SPM reduced the dilution potential from -9.7 ± 1.0 to -6.3 ± 1.1 mV (P < 0.006). Dibutyryl-cGMP (500 µmol/l) reduced the dilution potential from -19.6 ± 2.6 to -17.2 ± 2.3 mV (P < 0.002). Dibutyryl-cGMP increased expression of claudin-19 in the plasma membrane from 29.9 ± 3.8% to 65.9 ± 10.1% of total (P < 0.011) but did not change total expression. We conclude that claudin-19 mediates the effects of the NO/cGMP signaling cascade on the paracellular pathway.
Collapse
Affiliation(s)
- Casandra M Monzon
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
30
|
Rambabu M, Jayanthi S. Virtual screening of National Cancer Institute database for claudin-4 inhibitors: Synthesis, biological evaluation, and molecular dynamics studies. J Cell Biochem 2019; 120:8588-8600. [PMID: 30474874 DOI: 10.1002/jcb.28147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
Claudin-4 (CLDN4) is a vital member of tight-junction proteins that is often overexpressed in cancer and other malignancies. The three-dimensional structure of human CLDN4 was constructed based on homology modeling approach. A total of 265 242 molecules from the National Cancer Institute (NCI) database has been utilized as a dataset for this study. In the present work, structure-based virtual screening is performed with the NCI database using Glide. By molecular docking, 10 candidate molecules with high scoring functions, which binds to the active site of CLDN4 were identified. Subsequently, molecular dynamics simulations of membrane protein were used for optimization of the top-three lead compounds (NCI110039, NCI344682, and NCI661251) with CLDN4 in a dynamic system. The lead molecule from NCI database NCI11039 (purpurogallin carboxylic acid) was synthesized and cytotoxic properties were evaluated with A549, MCF7 cell lines. Our docking and dynamics simulations predicted that ARG31, ASN142, ASP146, and ARG158 as critically important residues involved in the CLDN4 activity. Finally, three lead candidates from the NCI database were identified as potent CLDN4 inhibitors. Cytotoxicity assays had proved that purpurogallin carboxylic acid had an inhibitory effect towards breast (MCF7) and lung (A549) cancer cell lines. Computational insights and in vitro (cytotoxicity) studies reported in this study are expected to be helpful for the development of novel anticancer agents.
Collapse
Affiliation(s)
- Majji Rambabu
- Department of Biotechnology, Computational Drug Design Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sivaraman Jayanthi
- Department of Biotechnology, Computational Drug Design Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
31
|
Zhang X, Wang X, Wang A, Li Q, Zhou M, Li T. CLDN10 promotes a malignant phenotype of osteosarcoma cells via JAK1/Stat1 signaling. J Cell Commun Signal 2019; 13:395-405. [PMID: 30796717 DOI: 10.1007/s12079-019-00509-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/13/2019] [Indexed: 01/10/2023] Open
Abstract
In our previous study, the expression profile of tight junction (TJ) protein claudins (CLDNs) in human osteosarcoma (OS) cells was examined, and the data found the CLDN10 was high expressed in OS cells versus fetal osteoblast cells. Hence, we aim to determine the impacts and the molecular mechanisms of CLDN10 in the metastatic phenotype of OS. The exact expression profiles of CLDN10 and phosphorylated Janus kinase 1 (JAK1) in noncancerous bone tissues and OS tissues were detected via a western blotting and immunohistochemistry method. The OS cells with CLDN10 or JAK1 silencing was established via an RNA interference (RNAi) method, and an osteoblast cell line stably expressing CLDN10 was established via cell transfection. Then, the transfection effects and activation states of JAK1/ signal transducer and activator of transcription1 (Stat1) pathway in OS and osteoblast cells were detected via a western blotting assay. Moreover, the metastatic ability of osteoblast cells and OS cells in vitro were evaluated by means of a cell counting kit-8 (CCK8) assay, colony formation assay in soft agar, transwell assay and wound-healing experiment. The present data revealed that CLDN10 and phospho-JAK1 were up-regulated in OS tissues compared with noncancerous bone tissues. Genetic loss of CLDN10 or JAK1 inhibited the activation of the Stat1 and the malignant phenotype in OS cells. To sum up, our study suggested the CLDN10 enhanced the metastatic phenotype of OS cells via the activation of the JAK1/Stat1 signaling pathway.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Orthopedic Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gong qingtuan Road 54 Hao, Zibo, Shandong Province, China.,Center for Translational Medicine, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong Province, China
| | - Xianbin Wang
- Department of Orthopedic Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gong qingtuan Road 54 Hao, Zibo, Shandong Province, China
| | - Aiyu Wang
- Department of Rehabilitation, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong Province, China
| | - Qian Li
- Department of Orthopedic Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gong qingtuan Road 54 Hao, Zibo, Shandong Province, China
| | - Ming Zhou
- Department of Orthopedic Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gong qingtuan Road 54 Hao, Zibo, Shandong Province, China
| | - Tao Li
- Department of Orthopedic Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gong qingtuan Road 54 Hao, Zibo, Shandong Province, China. .,Center for Translational Medicine, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong Province, China.
| |
Collapse
|
32
|
Gonzalez-Vicente A, Saez F, Monzon CM, Asirwatham J, Garvin JL. Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension. Physiol Rev 2019; 99:235-309. [PMID: 30354966 DOI: 10.1152/physrev.00055.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The thick ascending limb plays a key role in maintaining water and electrolyte balance. The importance of this segment in regulating blood pressure is evidenced by the effect of loop diuretics or local genetic defects on this parameter. Hormones and factors produced by thick ascending limbs have both autocrine and paracrine effects, which can extend prohypertensive signaling to other structures of the nephron. In this review, we discuss the role of the thick ascending limb in the development of hypertension, not as a sole participant, but one that works within the rich biological context of the renal medulla. We first provide an overview of the basic physiology of the segment and the anatomical considerations necessary to understand its relationship with other renal structures. We explore the physiopathological changes in thick ascending limbs occurring in both genetic and induced animal models of hypertension. We then discuss the racial differences and genetic defects that affect blood pressure in humans through changes in thick ascending limb transport rates. Throughout the text, we scrutinize methodologies and discuss the limitations of research techniques that, when overlooked, can lead investigators to make erroneous conclusions. Thus, in addition to advancing an understanding of the basic mechanisms of physiology, the ultimate goal of this work is to understand our research tools, to make better use of them, and to contextualize research data. Future advances in renal hypertension research will require not only collection of new experimental data, but also integration of our current knowledge.
Collapse
Affiliation(s)
| | - Fara Saez
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Casandra M Monzon
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jessica Asirwatham
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
33
|
Tabariès S, McNulty A, Ouellet V, Annis MG, Dessureault M, Vinette M, Hachem Y, Lavoie B, Omeroglu A, Simon HG, Walsh LA, Kimbung S, Hedenfalk I, Siegel PM. Afadin cooperates with Claudin-2 to promote breast cancer metastasis. Genes Dev 2019; 33:180-193. [PMID: 30692208 PMCID: PMC6362814 DOI: 10.1101/gad.319194.118] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/19/2018] [Indexed: 01/04/2023]
Abstract
Tabariès et al. show that signaling downstream from a Claudin-2/Afadin complex enables the efficient formation of breast cancer metastases. Claudin-2 promotes breast cancer liver metastasis by enabling seeding and early cancer cell survival. We now demonstrate that the PDZ-binding motif of Claudin-2 is necessary for anchorage-independent growth of cancer cells and is required for liver metastasis. Several PDZ domain-containing proteins were identified that interact with the PDZ-binding motif of Claudin-2 in liver metastatic breast cancer cells, including Afadin, Arhgap21, Pdlim2, Pdlim7, Rims2, Scrib, and ZO-1. We specifically examined the role of Afadin as a potential Claudin-2-interacting partner that promotes breast cancer liver metastasis. Afadin associates with Claudin-2, an interaction that requires the PDZ-binding motif of Claudin-2. Loss of Afadin also impairs the ability of breast cancer cells to form colonies in soft agar and metastasize to the lungs or liver. Immunohistochemical analysis of Claudin-2 and/or Afadin expression in 206 metastatic breast cancer tumors revealed that high levels of both Claudin-2 and Afadin in primary tumors were associated with poor disease-specific survival, relapse-free survival, lung-specific relapse, and liver-specific relapse. Our findings indicate that signaling downstream from a Claudin-2/Afadin complex enables the efficient formation of breast cancer metastases. Moreover, combining Claudin-2 and Afadin as prognostic markers better predicts the potential of breast cancer to metastasize to soft tissues.
Collapse
Affiliation(s)
- Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Alexander McNulty
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Véronique Ouellet
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Mireille Dessureault
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Maude Vinette
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Yasmina Hachem
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Brennan Lavoie
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Atilla Omeroglu
- Department of Pathology, McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - Hans-Georg Simon
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60614, USA.,Stanley Manne Children's Research Institute, Chicago, Illinois 60614, USA
| | - Logan A Walsh
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Human Genetics, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Siker Kimbung
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund SE 221 00, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund SE 221 00, Sweden
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada
| |
Collapse
|
34
|
Bhat AA, Uppada S, Achkar IW, Hashem S, Yadav SK, Shanmugakonar M, Al-Naemi HA, Haris M, Uddin S. Tight Junction Proteins and Signaling Pathways in Cancer and Inflammation: A Functional Crosstalk. Front Physiol 2019; 9:1942. [PMID: 30728783 PMCID: PMC6351700 DOI: 10.3389/fphys.2018.01942] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/22/2018] [Indexed: 12/14/2022] Open
Abstract
The ability of epithelial cells to organize through cell–cell adhesion into a functioning epithelium serves the purpose of a tight epithelial protective barrier. Contacts between adjacent cells are made up of tight junctions (TJ), adherens junctions (AJ), and desmosomes with unique cellular functions and a complex molecular composition. These proteins mediate firm mechanical stability, serves as a gatekeeper for the paracellular pathway, and helps in preserving tissue homeostasis. TJ proteins are involved in maintaining cell polarity, in establishing organ-specific apical domains and also in recruiting signaling proteins involved in the regulation of various important cellular functions including proliferation, differentiation, and migration. As a vital component of the epithelial barrier, TJs are under a constant threat from proinflammatory mediators, pathogenic viruses and bacteria, aiding inflammation and the development of disease. Inflammatory bowel disease (IBD) patients reveal loss of TJ barrier function, increased levels of proinflammatory cytokines, and immune dysregulation; yet, the relationship between these events is partly understood. Although TJ barrier defects are inadequate to cause experimental IBD, mucosal immune activation is changed in response to augmented epithelial permeability. Thus, the current studies suggest that altered barrier function may predispose or increase disease progression and therapies targeted to specifically restore the barrier function may provide a substitute or supplement to immunologic-based therapies. This review provides a brief introduction about the TJs, AJs, structure and function of TJ proteins. The link between TJ proteins and key signaling pathways in cell proliferation, transformation, and metastasis is discussed thoroughly. We also discuss the compromised intestinal TJ integrity under inflammatory conditions, and the signaling mechanisms involved that bridge inflammation and cancer.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Srijayaprakash Uppada
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Iman W Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sheema Hashem
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Santosh K Yadav
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Hamda A Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.,Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
35
|
Claudin 1 Is Highly Upregulated by PKC in MCF7 Human Breast Cancer Cells and Correlates Positively with PKCε in Patient Biopsies. Transl Oncol 2019; 12:561-575. [PMID: 30658316 PMCID: PMC6349319 DOI: 10.1016/j.tranon.2018.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 01/04/2023] Open
Abstract
Recent studies provide compelling evidence to suggest that the tight junction protein claudin 1, aberrantly expressed in several cancer types, plays an important role in cancer progression. Dysregulation of claudin 1 has been shown to induce epithelial mesenchymal transition (EMT). Furthermore, activation of the ERK signaling pathway by protein kinase C (PKC) was shown to be necessary for EMT induction. Whether PKC is involved in regulating breast cancer progression has not been addressed. The PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA) was used to investigate the effect of PKC activity on claudin 1 transcription and protein levels, subcellular distribution, and alterations in EMT markers in human breast cancer (HBC) cell lines. As well, tissue microarray analysis (TMA) of a large cohort of invasive HBC biopsies was conducted to investigate correlations between claudin 1 and PKC isomers. TPA upregulated claudin 1 levels in all HBC cell lines analyzed. In particular, a high induction of claudin 1 protein was observed in the MCF7 cell line. TPA treatment also led to an accumulation of claudin 1 in the cytoplasm. Additionally, we demonstrated that the upregulation of claudin 1 was through the ERK signaling pathway. In patient biopsies, we identified a significant positive correlation between claudin 1, PKCα, and PKCε in ER+ tumors. A similar correlation between claudin 1 and PKCε was identified in ER- tumors, and high PKCε was associated with shorter disease-free survival. Collectively, these studies demonstrate that claudin 1 and the ERK signaling pathway are important players in HBC progression.
Collapse
|
36
|
Sun L, Feng L, Cui J. Increased expression of claudin-12 promotes the metastatic phenotype of human bronchial epithelial cells and is associated with poor prognosis in lung squamous cell carcinoma. Exp Ther Med 2018; 17:165-174. [PMID: 30651778 PMCID: PMC6307469 DOI: 10.3892/etm.2018.6964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
A prior study by our group using cDNA array analysis identified the tight junction component claudin-12 (CLDN12) to be an upregulated gene in lung squamous cell carcinoma (SqCC) cells compared with normal human bronchial epithelial cells. The present study aimed to explore the effect and underlying molecular mechanism of CLDN12 with regard to the malignant phenotype of SqCC. Firstly, the expression patterns of CLDN12 in SqCC tissues, lung adenocarcinoma tissues and histologically non-neoplastic lung epithelial tissues were investigated by immunohistochemistry and western blotting. Additionally, associations between CLDN12 expression and clinicopathological indicators were examined in patients with SqCC. Furthermore, the impact of CLDN12 on the malignant phenotype of the human bronchial epithelial cell line BEAS-2B in vitro was assessed using the Cell Counting kit-8 assay, Transwell assay and a wound-healing experiment. Western blotting and immunofluorescence were also used to detect the impact of CLDN12 on the epithelial-mesenchymal transition (EMT) of BEAS-2B cells. Tyrosine kinase 2 (Tyk2) RNA interference was further utilized to determine the impact of the Tyk2/signal transducer and activator of transcription 1 (Stat1) signaling pathway on the EMT of BEAS-2B cells. To conclude, it was indicated that the expression of CLDN12 was upregulated in SqCC tissues and was associated with the extent of lymphatic metastasis in patients with SqCC. Furthermore, CLDN12 promoted the EMT of human bronchial epithelial cells in vitro. The findings indicated that the induction of Tyk2/Stat1 signaling appears to be an important mechanism by which CLDN12 promotes the EMT of SqCC cells.
Collapse
Affiliation(s)
- Lemeng Sun
- Department of Oncology, Stem Cell and Cancer Center, The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liangshu Feng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiuwei Cui
- Department of Oncology, Stem Cell and Cancer Center, The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
37
|
Zhang X, Wang H, Li Q, Li T. CLDN2 inhibits the metastasis of osteosarcoma cells via down-regulating the afadin/ERK signaling pathway. Cancer Cell Int 2018; 18:160. [PMID: 30349422 PMCID: PMC6192349 DOI: 10.1186/s12935-018-0662-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Background In an earlier study, we investigated the expression of tight junction protein claudins (CLDNs) in human osteosarcoma (OS) cells, and the CLDN2 was found to be down-regulated in primary tumor cells compared with normal osteoblast cells. Here, we sought to explore the effects of CLDN2 on the malignant phenotype of OS and the underlying molecular mechanisms. Methods The expression patterns of CLDN2 and afadin in OS tissues and histologically non-neoplastic bone tissues were explored via immunohistochemistry and western blotting. CLDN2 expression levels in an OS cell line stably expressing CLDN2 and an osteoblast cell line with a CLDN2 knockout were confirmed by western blotting and immunofluorescence staining. The malignant phenotype of OS cells and osteoblast cells in vitro was assessed using a cell counting kit-8 assay, transwell assay and wound-healing experiment. Western blotting was utilized to detect the activation state of Ras/Raf/MEK/ERK pathway. Moreover, an RNA interference method were used to silence afadin in CLDN2-expressing OS cells. Results Our research group found that CLDN2 and afadin was underexpressed in OS tissues, and the overexpression of CLDN2 significantly inhibited the migration abilities of OS cells. Genetic silencing of afadin in CLDN2-overexpressing OS cells promoted U2OS cell motility and activation of the Ras/Raf/MEK/ERK pathway. Conclusions In this study, we confirmed that CLDN2 expression significantly inhibited the malignant phenotype of OS cells in vitro. Inhibition of the ERK pathway by afadin may be one of the mechanisms by which CLDN2 blocks the metastasis phenotype of OS cells.
Collapse
Affiliation(s)
- Xiaowei Zhang
- 1Center for Translational Medicine, Central Hospital of Zibo, Affiliated with Shandong University, Gong qingtuan Road 54Hao, Zibo, Shandong China.,3Department of Orthopedic Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong China
| | - Haiming Wang
- Department of General Surgery, People's Hospital of Linzi District, Affiliated with Binzhou Medical College, Zibo, Shandong China
| | - Qian Li
- 3Department of Orthopedic Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong China
| | - Tao Li
- 1Center for Translational Medicine, Central Hospital of Zibo, Affiliated with Shandong University, Gong qingtuan Road 54Hao, Zibo, Shandong China.,3Department of Orthopedic Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong China
| |
Collapse
|
38
|
Parang B, Thompson JJ, Williams CS. Blood Vessel Epicardial Substance (BVES) in junctional signaling and cancer. Tissue Barriers 2018; 6:1-12. [PMID: 30307367 DOI: 10.1080/21688370.2018.1499843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Blood vessel epicardial substance (BVES) is a tight-junction associated protein that was originally discovered from a cDNA screen of the developing heart. Research over the last decade has shown that not only is BVES is expressed in cardiac and skeletal tissue, but BVES is also is expressed throughout the gastrointestinal epithelium. Mice lacking BVES sustain worse intestinal injury and inflammation. Furthermore, BVES is suppressed in gastrointestinal cancers, and mouse modeling has shown that loss of BVES promotes tumor formation. Recent work from multiple laboratories has revealed that BVES can regulate several molecular pathways, including cAMP, WNT, and promoting the degradation of the oncogene, c-Myc. This review will summarize our current understanding of how BVES regulates the intestinal epithelium and discuss how BVES functions at the molecular level to preserve epithelial phenotypes and suppress tumorigenesis.
Collapse
Affiliation(s)
- Bobak Parang
- a Department of Medicine , Cornell University , New York , NY , USA
| | - Joshua J Thompson
- b Department of Medicine, Division of Gastroenterology , Vanderbilt University , Nashville , TN , USA
| | - Christopher S Williams
- b Department of Medicine, Division of Gastroenterology , Vanderbilt University , Nashville , TN , USA.,c Veterans Affairs Tennessee Valley Health Care System , Nashville , TN , USA
| |
Collapse
|
39
|
Developing a link between toxicants, claudins and neural tube defects. Reprod Toxicol 2018; 81:155-167. [DOI: 10.1016/j.reprotox.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
|
40
|
Increased expression of claudin-17 promotes a malignant phenotype in hepatocyte via Tyk2/Stat3 signaling and is associated with poor prognosis in patients with hepatocellular carcinoma. Diagn Pathol 2018; 13:72. [PMID: 30219077 PMCID: PMC6138900 DOI: 10.1186/s13000-018-0749-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the second leading cause of cancer death in Asia; however, the molecular mechanism in its tumorigenesis remains unclear. Abnormal expression of claudins (CLDNs), a family of tight junction (TJ) proteins, plays an important role in the metastatic phenotype of epithelial-derived tumors by affecting tight junction structure, function and related cellular signaling pathways. In a previous study, we used a tissue chip assay to identify CLDN17 as an upregulated gene in HCC. Here we aimed to use molecular biology technology to explore the effect of CLDN17 on the malignant phenotype of HCC and the underlying molecular mechanism, with the objective of identifying a new target for HCC treatment and the control of HCC metastasis. Method The expression levels of CLDN17 in HCC tissues and histologically non-neoplastic hepatic tissues were explored by immunohistochemistry. Stable transfection of the hepatocyte line HL7702 with CLDN17 was detected by real-time polymerase chain reaction (PCR), western blotting and immunofluorescence. The impact of CLDN17 on the malignant phenotype of HL7702 cells in vitro was assessed by a Cell Counting Kit-8 (CCK8) assay, a Transwell assay and a wound-healing experiment. Western blotting was utilized to detect the activation state of Tyrosine kinase 2 (Tyk2) / signal transducer and activator of transcription3 (Stat3) pathway. A Tyk2 RNA interference (RNAi) was utilized to determine the impact of the Tyk2/Stat3 signaling pathway on the malignant phenotype of hepatocytes. Results In this work, our research group first found that CLDN17 was highly expressed in HCC tissues and was associated with poor prognosis. In addition, we demonstrated that CLDN17 affected the Stat3 signaling pathway via Tyk2 and ultimately enhanced the migration ability of hepatocytes. Conclusion In conclusion, we confirmed that the upregulated expression of CLDN17 significantly enhances the migration ability of hepatocytes in vitro and we found that the activation of the Stat3 pathway by Tyk2 may an important mechanism by which CLDN17 promotes aggressiveness in hepatocytes.
Collapse
|
41
|
The "Frail" Brain Blood Barrier in Neurodegenerative Diseases: Role of Early Disruption of Endothelial Cell-to-Cell Connections. Int J Mol Sci 2018; 19:ijms19092693. [PMID: 30201915 PMCID: PMC6164949 DOI: 10.3390/ijms19092693] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
The main neurovascular unit of the Blood Brain Barrier (BBB) consists of a cellular component, which includes endothelial cells, astrocytes, pericytes, microglia, neurons, and oligodendrocytes as well as a non-cellular component resulting from the extracellular matrix. The endothelial cells are the major vital components of the BBB able to preserve the brain homeostasis. These cells are situated along the demarcation line between the bloodstream and the brain. Therefore, an alteration or the progressive disruption of the endothelial layer may clearly impair the brain homeostasis. The proper functioning of the brain endothelial cells is generally ensured by two elements: (1) the presence of junction proteins and (2) the preservation of a specific polarity involving an apical-luminal and a basolateral-abluminal membrane. This review intends to identify the molecular mechanisms underlying BBB function and their changes occurring in early stages of neurodegenerative processes in order to develop novel therapeutic strategies aimed to counteract neurodegenerative disorders.
Collapse
|
42
|
Yang L, Sun X, Meng X. Differences in the expression profiles of claudin proteins in human gastric carcinoma compared with non‑neoplastic mucosa. Mol Med Rep 2018; 18:1271-1278. [PMID: 29901188 PMCID: PMC6072183 DOI: 10.3892/mmr.2018.9122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 03/01/2018] [Indexed: 01/12/2023] Open
Abstract
Numerous genetic alterations associated with cancer progression have the potential to serve as biomarkers for the early diagnosis of cancer. Numerous studies have suggested that claudin proteins, which are the primary components of tight junction structures, are associated with the regulation of cell polarity and cell differentiation. To investigate the expression profiles of the tight junction proteins claudin-2, −5, −7 and −8 in gastric carcinoma, immunohistochemical analysis, western blotting and reverse transcription-quantitative polymerase chain reaction analysis was used to detect the expression profiles of these claudin proteins in gastric carcinoma tissues and in homologous non-neoplastic mucosal tissues. According to the present study, the expression levels of claudin-7 and claudin-8 were downregulated, while the expression of claudin-5 was upregulated in gastric carcinoma tissues compared with in non-neoplastic mucosal tissues. Additionally, no notable difference was observed between claudin-2 expression in gastric carcinoma tissues and non-neoplastic mucosae. Correlations between claudin-7 and −8 expression and lymphatic metastasis in gastric carcinoma tissues were additionally reported. In summary, the present study revealed the distinct expression profiles of claudin-5, −7 and −8 in non-neoplastic mucosal tissues and gastric carcinoma tissues. Furthermore, the expression of these claudin proteins was highly associated with metastatic progression and prognosis in patients with gastric carcinoma, and had predictive value for the metastasis and survival of patients with gastric carcinoma.
Collapse
Affiliation(s)
- Luoluo Yang
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xun Sun
- Department of Pathology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiangwei Meng
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
43
|
Garcia MA, Nelson WJ, Chavez N. Cell-Cell Junctions Organize Structural and Signaling Networks. Cold Spring Harb Perspect Biol 2018; 10:a029181. [PMID: 28600395 PMCID: PMC5773398 DOI: 10.1101/cshperspect.a029181] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-cell junctions link cells to each other in tissues, and regulate tissue homeostasis in critical cell processes that include tissue barrier function, cell proliferation, and migration. Defects in cell-cell junctions give rise to a wide range of tissue abnormalities that disrupt homeostasis and are common in genetic abnormalities and cancers. Here, we discuss the organization and function of cell-cell junctions primarily involved in adhesion (tight junction, adherens junction, and desmosomes) in two different epithelial tissues: a simple epithelium (intestine) and a stratified epithelium (epidermis). Studies in these tissues reveal similarities and differences in the organization and functions of different cell-cell junctions that meet the requirements for the specialized functions of each tissue. We discuss cell-cell junction responses to genetic and environmental perturbations that provide further insights into their roles in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Miguel A Garcia
- Department of Biology, Stanford University, Stanford, California 94305
| | - W James Nelson
- Department of Biology, Stanford University, Stanford, California 94305
- Departments of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Natalie Chavez
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
44
|
Sonoki H, Tanimae A, Furuta T, Endo S, Matsunaga T, Ichihara K, Ikari A. Caffeic acid phenethyl ester down-regulates claudin-2 expression at the transcriptional and post-translational levels and enhances chemosensitivity to doxorubicin in lung adenocarcinoma A549 cells. J Nutr Biochem 2018; 56:205-214. [PMID: 29597147 DOI: 10.1016/j.jnutbio.2018.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/30/2018] [Accepted: 02/22/2018] [Indexed: 12/18/2022]
Abstract
Claudin-2 is highly expressed in human lung adenocarcinoma cells and involved in the promotion of proliferation. Here, we searched for a compound, which can decrease claudin-2 expression using lung adenocarcinoma A549 cells. In the screening using compounds included in royal jelly and propolis, the protein level of claudin-2 was dose-dependently decreased by caffeic acid phenethyl ester (CAPE), whereas the mRNA level and promoter activity were only decreased by 50 μM CAPE. These results suggest that CAPE down-regulates claudin-2 expression mediated by two different mechanisms. CAPE (50 μM) decreased the level of p-NF-κB, whereas it increased that of IκB. The CAPE-induced decrease in promoter activity of claudin-2 was blocked by the mutation in an NF-κB-binding site. The inhibition of NF-κB may be involved in the decrease in mRNA level of claudin-2. The CAPE (10 μM)-induced decrease in claudin-2 expression was inhibited by chloroquine, a lysosomal inhibitor. CAPE increased the expression and activity of protein phosphatase (PP) 1 and 2A. The CAPE-induced decrease in claudin-2 expression was blocked by cantharidin, a potent PPs inhibitor. The cell proliferation was suppressed by CAPE, which was partially rescued by ectopic expression of claudin-2. In addition, the toxicity and accumulation of doxorubicin in 3D spheroid cells were enhanced by CAPE, which was inhibited by ectopic expression of claudin-2. Taken together, CAPE down-regulates claudin-2 expression at the transcriptional and post-translational levels, and enhances sensitivity of cells to doxorubicin in 3D culture conditions. CAPE may be a useful adjunctive compound in the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Hiroyuki Sonoki
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Asami Tanimae
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Takumi Furuta
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Kenji Ichihara
- Nagaragawa Research Center, API Co., Ltd., Gifu 502-0071, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| |
Collapse
|
45
|
Zhang X, Wang H, Li Q, Liu Y, Zhao P, Li T. Differences in the expression profiles of claudin proteins in human nasopharyngeal carcinoma compared with non-neoplastic mucosa. Diagn Pathol 2018; 13:11. [PMID: 29402318 PMCID: PMC5800018 DOI: 10.1186/s13000-018-0685-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/15/2018] [Indexed: 11/18/2022] Open
Abstract
Background Several studies have suggested that claudin proteins, which are the main components of tight junction structures, are related to the regulation of cell polarity and cell differentiation. Method To explore the expression profiles of the tight junction proteins claudin-2, − 5, − 8 and − 9 in nasopharyngeal carcinoma, IHC (immunohistochemical analysis), Western blot and real-time PCR were used to detect the expression profiles of these claudin proteins in nasopharyngeal carcinoma tissues and in non-neoplastic mucosal tissues. Results According to our study, the expression levels of claudin-2 and claudin-5 were reduced, while the expression of claudin-8 was increased in nasopharyngeal carcinoma tissues in comparison with non-neoplastic mucosal tissues. Correlations between claudin-2 and -5 expression and metastatic progression in nasopharyngeal carcinoma patients were also found. Conclusion In summary, our research reveals distinct expression profiles of claudin-2, − 5 and − 8 in non-neoplastic mucosal tissues and nasopharyngeal carcinoma tissues. In addition, the expression of these claudin proteins was highly correlated with metastatic progression and prognosis in patients with nasopharyngeal carcinoma and had predictive value for the metastasis and survival of nasopharyngeal carcinoma patients.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Center for Translational Medicine; Department of Spinal Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gongqingtuan Road 54Hao, Zibo, Shandong Province, China
| | - Haiming Wang
- Department of General Surgery, People's Hospital of Linzi District, Affiliated with Binzhou Medical College, Shandong Province, China
| | - Qian Li
- Department of Spinal Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong Province, China
| | - Yunpeng Liu
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Peiqing Zhao
- Center for Translational Medicine; Department of Spinal Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gongqingtuan Road 54Hao, Zibo, Shandong Province, China
| | - Tao Li
- Center for Translational Medicine; Department of Spinal Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gongqingtuan Road 54Hao, Zibo, Shandong Province, China.
| |
Collapse
|
46
|
Shigetomi K, Ikenouchi J. Regulation of the epithelial barrier by post-translational modifications of tight junction membrane proteins. J Biochem 2017; 163:265-272. [DOI: 10.1093/jb/mvx077] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/21/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Kenta Shigetomi
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| |
Collapse
|
47
|
Van Itallie CM, Anderson JM. Phosphorylation of tight junction transmembrane proteins: Many sites, much to do. Tissue Barriers 2017; 6:e1382671. [PMID: 29083946 DOI: 10.1080/21688370.2017.1382671] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phosphorylation is a dynamic post-translational modification that can alter protein structure, localization, protein-protein interactions and stability. All of the identified tight junction transmembrane proteins can be multiply phosphorylated, but only in a few cases are the consequences of phosphorylation at specific sites well characterized. The goal of this review is to highlight some of the best understood examples of phosphorylation changes in the integral membrane tight junction proteins in the context of more general overview of the effects of phosphorylation throughout the proteome. We expect as that structural information for the tight junction proteins becomes more widely available and the molecular modeling algorithms improve, so will our understanding of the relevance of phosphorylation changes at single and multiple sites in tight junction proteins.
Collapse
Affiliation(s)
- Christina M Van Itallie
- a National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , MD , USA
| | - James M Anderson
- a National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
48
|
Baumgartner HK, Rudolph MC, Ramanathan P, Burns V, Webb P, Bitler BG, Stein T, Kobayashi K, Neville MC. Developmental Expression of Claudins in the Mammary Gland. J Mammary Gland Biol Neoplasia 2017; 22:141-157. [PMID: 28455726 PMCID: PMC5488167 DOI: 10.1007/s10911-017-9379-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/17/2017] [Indexed: 02/06/2023] Open
Abstract
Claudins are a large family of membrane proteins whose classic function is to regulate the permeability of tight junctions in epithelia. They are tetraspanins, with four alpha-helices crossing the membrane, two extracellular loops, a short cytoplasmic N-terminus and a longer and more variable C-terminus. The extracellular ends of the helices are known to undergo side-to-side (cis) interactions that allow the formation of claudin polymers in the plane of the membrane. The extracellular loops also engage in head-to-head (trans) interactions thought to mediate the formation of tight junctions. However, claudins are also present in intracellular structures, thought to be vesicles, with less well-characterized functions. Here, we briefly review our current understanding of claudin structure and function followed by an examination of changes in claudin mRNA and protein expression and localization through mammary gland development. Claudins-1, 3, 4, 7, and 8 are the five most prominent members of the claudin family in the mouse mammary gland, with varied abundance and intracellular localization during the different stages of post-pubertal development. Claudin-1 is clearly localized to tight junctions in mammary ducts in non-pregnant non-lactating animals. Cytoplasmic puncta that stain for claudin-7 are present throughout development. During pregnancy claudin-3 is localized both to the tight junction and basolaterally while claudin-4 is found only in sparse puncta. In the lactating mouse both claudin-3 and claudin-8 are localized at the tight junction where they may be important in forming the paracellular barrier. At involution and under challenge by lipopolysaccharide claudins -1, -3, and -4 are significantly upregulated. Claudin-3 is still colocalized with tight junction molecules but is also distributed through the cytoplasm as is claudin-4. These largely descriptive data provide the essential framework for future mechanistic studies of the function and regulation of mammary epithelial cell claudins.
Collapse
Affiliation(s)
- Heidi K. Baumgartner
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO 80045 USA
| | - Michael C. Rudolph
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Denver, Aurora, CO 80045 USA
| | - Palaniappian Ramanathan
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555 USA
| | - Valerie Burns
- Department of Physiology and Biophysics, Anschutz Medical Center, University of Colorado Denver, Aurora, CO 80045 USA
| | - Patricia Webb
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO 80045 USA
| | - Benjamin G. Bitler
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO 80045 USA
| | - Torsten Stein
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ken Kobayashi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Margaret C. Neville
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO 80045 USA
- Department of Physiology and Biophysics, Anschutz Medical Center, University of Colorado Denver, Aurora, CO 80045 USA
- 6561 Glencoe St., Centennial, CO 80121 USA
| |
Collapse
|
49
|
Runggaldier D, Pradas LG, Neckel PH, Mack AF, Hirt B, Gleiser C. Claudin expression in the rat endolymphatic duct and sac - first insights into regulation of the paracellular barrier by vasopressin. Sci Rep 2017; 7:45482. [PMID: 28374851 PMCID: PMC5379655 DOI: 10.1038/srep45482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Hearing and balance functions of the inner ear rely on the homeostasis of the endolymphatic fluid. When disturbed, pathologic endolymphatic hydrops evolves as observed in Menière’s disease. The molecular basis of inner ear fluid regulation across the endolymphatic epithelium is largely unknown. In this study we identified the specific expression of the tight junction (TJ) molecules Claudin 3, 4, 6, 7, 8, 10, and 16 in epithelial preparations of the rat inner ear endolymphatic duct (ED) and endolymphatic sac (ES) by high-throughput qPCR and immunofluorescence confocal microscopy. Further we showed that Claudin 4 in the ES is a target of arginine-vasopressin (AVP), a hormone elevated in Menière’s disease. Moreover, our transmission-electron microscopy (TEM) analysis revealed that the TJs of the ED were shallow and shorter compared to the TJ of the ES indicating facilitation of a paracellular fluid transport across the ED epithelium. The significant differences in the subcellular localization of the barrier-forming protein Claudin 3 between the ED and ES epithelium further support the TEM observations. Our results indicate a high relevance of Claudin 3 and Claudin 4 as important paracellular barrier molecules in the ED and ES epithelium with potential involvement in the pathophysiology of Menière’s disease.
Collapse
Affiliation(s)
- Daniel Runggaldier
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Lidia Garcia Pradas
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Bernhard Hirt
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Corinna Gleiser
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
50
|
Muto S. Physiological roles of claudins in kidney tubule paracellular transport. Am J Physiol Renal Physiol 2017; 312:F9-F24. [DOI: 10.1152/ajprenal.00204.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/30/2022] Open
Abstract
The paracellular pathways in renal tubular epithelia such as the proximal tubules, which reabsorb the largest fraction of filtered solutes and water and are leaky epithelia, are important routes for transepithelial transport of solutes and water. Movement occurs passively via an extracellular route through the tight junction between cells. The characteristics of paracellular transport vary among different nephron segments with leaky or tighter epithelia. Claudins expressed at tight junctions form pores and barriers for paracellular transport. Claudins are from a multigene family, comprising at least 27 members in mammals. Multiple claudins are expressed at tight junctions of individual nephron segments in a nephron segment-specific manner. Over the last decade, there have been advances in our understanding of the structure and functions of claudins. This paper is a review of our current knowledge of claudins, with special emphasis on their physiological roles in proximal tubule paracellular solute and water transport.
Collapse
Affiliation(s)
- Shigeaki Muto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|