1
|
Jiang C, Tan X, Jin J, Wang P. The Molecular Basis of Amino Acids Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501889. [PMID: 40411419 DOI: 10.1002/advs.202501889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/29/2025] [Indexed: 05/26/2025]
Abstract
Amino acids are organic compounds that serve as the building blocks of proteins and peptides. Additionally, they function as bioactive molecules that play important roles in metabolic regulation and signal transduction. The ability of cells to sense fluctuations in intracellular and extracellular amino acid levels is vital for effectively regulating protein synthesis and catabolism, maintaining homeostasis, adapting to diverse nutritional environments and influencing cell fate decision. In this review, the recent molecular insights into amino acids sensing are discussed, along with the different sensing mechanisms in distinct organisms.
Collapse
Affiliation(s)
- Cong Jiang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| | - Xiao Tan
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| | - Jiali Jin
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| | - Ping Wang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| |
Collapse
|
2
|
Lee SH, Lira-Albarrán S, Rinaudo PF. Proteomic and metabolomic insights into oxidative stress response activation in mouse embryos generated by in vitro fertilization. Hum Reprod Open 2025; 2025:hoaf022. [PMID: 40416391 PMCID: PMC12101870 DOI: 10.1093/hropen/hoaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/26/2025] [Indexed: 05/27/2025] Open
Abstract
STUDY QUESTION How different is the global proteomic and metabolic profile of mouse blastocysts generated by IVF, cultured in optimal (5% O2) or stressful (20% O2) conditions, compared to in vivo generated blastocysts? SUMMARY ANSWER We found that in IVF-generated embryos: (i) the proteome was more sensitive to high oxygen levels than the global metabolomic profile; (ii) enzymes involved in splicing and the spliceosome are altered; (iii) numerous metabolic pathways, particularly amino acids metabolism, are altered (iv) there is activation of the integrated stress response (ISR) and downregulation of mTOR pathways. WHAT IS KNOWN ALREADY IVF culture conditions are known to affect the gene expression of embryos. However, comprehensive data on the global metabolic and proteomic changes that occur in IVF-generated embryos are unknown. STUDY DESIGN SIZE DURATION Mouse embryos were generated by natural mating (in vivo control or flushed blastocyst-FB-group) or by IVF using KSOM medium and two distinct oxygen concentrations: 5% O2 (optimal) and 20% O2 (stressful). Proteomic and metabolomic analyses were performed using state-of-the-art mass spectrometry techniques in triplicate (n = 100 blastocysts per replicate), allowing for detailed profiling of protein and metabolite alterations in each group. PARTICIPANTS/MATERIALS SETTING METHODS Mouse blastocysts were collected from CD-1 and B6D2F1 strains as specified above. High-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for proteomics, while high-performance liquid chromatography coupled with mass spectrometry (HILIC-MS) was used for metabolomics. In addition, Immunofluorescence was used to assess the activation of stress response pathways, including the ISR. MAIN RESULTS AND THE ROLE OF CHANCE Proteomic analysis revealed significant changes in protein expression in embryos cultured under 20% O2 compared to 5% O2 and in vivo embryos. Compared to in vivo embryos, IVF embryos cultured under 20% O2 exhibited 599 differentially expressed proteins, with an increase in proteins involved in oxidative stress responses, aminoacyl-tRNA synthesis, and spliceosome pathways. In contrast, IVF embryos cultured under 5% O2 showed fewer changes, with 426 differentially expressed proteins, though still reflecting significant alterations compared to in vivo embryos. These results indicate that embryos in stressful conditions (20% O2) exhibit a stronger stress response and alterations in critical pathways for protein synthesis and DNA repair. Metabolomic analysis revealed that embryos cultured under 20% O2 showed changes in branch-chained amino acid levels, and decreased levels of key metabolites of the TCA cycle and pentose phosphate pathway. Embryos cultured under 5% O2 had increased pyruvate levels, suggesting altered glycolysis. Immunofluorescence confirmed that oxidative stress markers such as GCN2, EIF2α, and ATF4 were upregulated in IVF embryos, indicating ISR activation. Overall, IVF and embryo culture have a direct impact on embryo proteomes and metabolomes affecting amino acid metabolism and stress-related pathways. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION Results in a murine model should be extrapolated with caution to human embryos. WIDER IMPLICATIONS OF THE FINDINGS These findings offer valuable insights into how different IVF culture conditions, specifically oxygen levels, impact the global metabolic and proteomic profiles of embryos. These findings provide critical insights into the profound impact of IVF culture conditions, particularly oxygen levels, on the global metabolic and proteomic landscapes of embryos. By identifying key metabolic pathways disrupted by oxidative stress, we highlight the potential clinical importance of proteomic and metabolomic analyses in understanding embryo quality, improving ART, and ultimately enhancing pregnancy outcomes. The integration of metabolomic and proteomic data offers a comprehensive understanding of how oxidative stress influences cellular function. These insights have direct clinical relevance, providing a foundation for optimizing ART protocols to mitigate oxidative stress. STUDY FUNDING/COMPETING INTERESTS This work was supported by grant R01 HD108166-01A1 from the National Institute of Child Health and Human Development (NICHD) to P.F.R. The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.
Collapse
Affiliation(s)
- Seok Hee Lee
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Saúl Lira-Albarrán
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Paolo F Rinaudo
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Zhu Y, Liu Y, Wang X, Chen Z, Chen B, Hu B, Tang T, Cheng H, Liu X, Ning Y. Squamocin Suppresses Tumor Growth through Triggering an Endoplasmic Reticulum Stress-Associated Degradation of EZH2/MYC Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413120. [PMID: 39823459 PMCID: PMC12005766 DOI: 10.1002/advs.202413120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/16/2024] [Indexed: 01/19/2025]
Abstract
Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin. Mechanistically, squamocin disrupts mitochondrial respiratory Complex I function, reduces ATP production, and impairs HSP90α function, provoking endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). These intrinsic events within tumor cells enhance ER stress-associated ubiquitylation and degradation by triggering ubiquitin via the E1 activase UBA6, facilitating ubiquitin transferring to E2 conjugate UBE2Z and increasing the activities of E3 ligase FBXW7 to degrade both EZH2 and MYC. The findings elucidate the role of squamocin in the degradation of oncoproteins EZH2 and MYC by triggering an ER stress-associated UBA6-UBE2Z-FBXW7 ubiquitin cascade, providing insights that may accelerate therapeutic development targeting tumors driven by the EZH2/MYC axis.
Collapse
Affiliation(s)
- Yin Zhu
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Immune Regulation and ImmunotherapyGuangzhou510515China
| | - Yurui Liu
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Immune Regulation and ImmunotherapyGuangzhou510515China
| | - Xiangtao Wang
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Zhifeng Chen
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Baojian Chen
- Southern Medical University Hospital of Integrated Traditional Chinese and Western MedicineSouthern Medical UniversityGuangzhou510000China
| | - Bingxin Hu
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhou510515China
| | - Tiane Tang
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhou510515China
| | - Haoran Cheng
- The First Clinical Medical SchoolSouthern Medical UniversityGuangzhou510515China
| | - Xinglong Liu
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhou510515China
| | - Yunshan Ning
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Immune Regulation and ImmunotherapyGuangzhou510515China
| |
Collapse
|
4
|
Saxena S, Liebscher S. Boosting the X factor: Increasing XBP1s-mediated ER stress signaling protects motor neurons in ALS/FTD. Mol Ther 2025; 33:844-846. [PMID: 39999835 PMCID: PMC11897750 DOI: 10.1016/j.ymthe.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Affiliation(s)
- Smita Saxena
- Department of Physical Medicine & Rehabilitation, University of Missouri, Columbia, MO, USA; NextGen Precision Health, University of Missouri, Columbia, MO, USA.
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, University Hospital Munich & BioMedical Center, Ludwig Maximilians University Munich, Martinsried, Germany; Institute of Neurobiochemistry, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
5
|
Lv X, Jiang A, Hua J, Liu Z, Yan Q, Tang S, Kang J, Tan Z, Wu J, Zhou C. Long-term leucine supplementation increases body weight in goats by controlling appetite and muscle protein synthesis under protein-restricted conditions. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:404-418. [PMID: 40034461 PMCID: PMC11872668 DOI: 10.1016/j.aninu.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 03/05/2025]
Abstract
An inadequate amino acid (AA) supply in animals under protein-restricted conditions can slow skeletal muscle growth. Protein translation can be activated by short-term leucine (Leu) stimulation; however, whether muscle mass increases under long-term Leu supplementation and how the gut and muscle respond to Leu supplementation are largely unknown. In this study, we investigated if muscle mass increases with long-term Leu supplementation under protein-restricted conditions. We identified changes in the link between the gut and muscles under different amino acid supply conditions, using goats as the study object. A total of 27 Xiangdong black male goats with average initial body weight (BW) of 10.88 ± 1.22 kg were randomly divided into three dietary treatments: a normal protein diet (NP, 14.24% crude protein [CP]); a low protein diet (LP, 8.27% CP with supplemental 1.66% rumen-protected lysine [RPLys] and 0.09% rumen-protected methionine [RPMet]); and LP diet with rumen-protected Leu (RPLeu) (LP + RPLeu, 8.75% CP with supplemental 1.66% RPLys, 0.09% RPMet and 1.46% RPLeu). The animal trial lasted for 110 d, consisting of 20 d of adaptation and a 90 d of experimental period. The results showed that long-term protein restriction increased gut tryptophan hydroxylase 1 (TPH1) activity (P < 0.001), tryptophan (Trp) catabolism (P < 0.001), and 5-hydroxytryptamine (5-HT) synthesis (P < 0.001), which all subsequently reduced goat appetite. Long-term Leu supplementation inhibited 5-HT synthesis (P < 0.001), decreased Trp catabolism in the gut, and increased appetite in goats. Long-term protein restriction enhanced jejunal and ileal branched-chain amino acid transferase (BCAT) (P < 0.001) and branched-chain α-Keto acid dehydrogenase (BCKD) (P = 0.048) activities, which increased branched-chain amino acid (BCAA) catabolism. Immunofluorescence results showed that protein restriction decreased the intestinal mucosal expression of solute carrier family 1 member 5 (SLC1A5) (P = 0.032) and solute carrier family 7 member 5 (SLC7A5) (P < 0.001), reduced BCAA transport from the mucosa to the blood, lowered BCAA levels in the blood (P < 0.001). Western blot results showed that protein restriction inhibited mammalian target of rapamycin (mTOR) pathway activation in goat muscles. Leu supplementation increased BCAA translocation from the intestine to the blood and promoted activation of the muscle mTOR pathway and protein synthesis. In conclusion, our results suggest that Leu supplementation in low-protein diets improves appetite and alleviates the inhibition of muscle protein synthesis in goats.
Collapse
Affiliation(s)
- Xiaokang Lv
- Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Aoyu Jiang
- Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jinling Hua
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Zixin Liu
- Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qiongxian Yan
- Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Shaoxun Tang
- Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jinhe Kang
- Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zhiliang Tan
- Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jian Wu
- Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Chuanshe Zhou
- Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
6
|
Białek W, Hryniewicz-Jankowska A, Czechowicz P, Sławski J, Collawn JF, Czogalla A, Bartoszewski R. The lipid side of unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159515. [PMID: 38844203 DOI: 10.1016/j.bbalip.2024.159515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Although our current knowledge of the molecular crosstalk between the ER stress, the unfolded protein response (UPR), and lipid homeostasis remains limited, there is increasing evidence that dysregulation of either protein or lipid homeostasis profoundly affects the other. Most research regarding UPR signaling in human diseases has focused on the causes and consequences of disrupted protein folding. The UPR itself consists of very complex pathways that function to not only maintain protein homeostasis, but just as importantly, modulate lipid biogenesis to allow the ER to adjust and promote cell survival. Lipid dysregulation is known to activate many aspects of the UPR, but the complexity of this crosstalk remains a major research barrier. ER lipid disequilibrium and lipotoxicity are known to be important contributors to numerous human pathologies, including insulin resistance, liver disease, cardiovascular diseases, neurodegenerative diseases, and cancer. Despite their medical significance and continuous research, however, the molecular mechanisms that modulate lipid synthesis during ER stress conditions, and their impact on cell fate decisions, remain poorly understood. Here we summarize the current view on crosstalk and connections between altered lipid metabolism, ER stress, and the UPR.
Collapse
Affiliation(s)
- Wojciech Białek
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
7
|
Gao Y, Slomnicki LP, Kilanczyk E, Forston MD, Pietrzak M, Rouchka EC, Howard RM, Whittemore SR, Hetman M. Reduced Expression of Oligodendrocyte Linage-Enriched Transcripts During the Endoplasmic Reticulum Stress/Integrated Stress Response. ASN Neuro 2024; 16:2371162. [PMID: 39024571 PMCID: PMC11262469 DOI: 10.1080/17590914.2024.2371162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/12/2024] [Indexed: 07/20/2024] Open
Abstract
Endoplasmic reticulum (ER) stress in oligodendrocyte (OL) linage cells contributes to several CNS pathologies including traumatic spinal cord injury (SCI) and multiple sclerosis. Therefore, primary rat OL precursor cell (OPC) transcriptomes were analyzed using RNASeq after treatments with two ER stress-inducing drugs, thapsigargin (TG) or tunicamycin (TM). Gene ontology term (GO) enrichment showed that both drugs upregulated mRNAs associated with the general stress response. The GOs related to ER stress were only enriched for TM-upregulated mRNAs, suggesting greater ER stress selectivity of TM. Both TG and TM downregulated cell cycle/cell proliferation-associated transcripts, indicating the anti-proliferative effects of ER stress. Interestingly, many OL lineage-enriched mRNAs were downregulated, including those for transcription factors that drive OL identity such as Olig2. Moreover, ER stress-associated decreases of OL-specific gene expression were found in mature OLs from mouse models of white matter pathologies including contusive SCI, toxin-induced demyelination, and Alzheimer's disease-like neurodegeneration. Taken together, the disrupted transcriptomic fingerprint of OL lineage cells may facilitate myelin degeneration and/or dysfunction when pathological ER stress persists in OL lineage cells.
Collapse
Affiliation(s)
- Yonglin Gao
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lukasz P Slomnicki
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Ewa Kilanczyk
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Michael D Forston
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Eric C Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
| | - Russell M Howard
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
8
|
Yang W, Ling X, He S, Cui H, Wang L, Yang Z, An H, Zou P, Chen Q, Sun L, Yang H, Liu J, Cao J, Ao L. Perturbation of IP3R-dependent endoplasmic reticulum calcium homeostasis by PPARδ-activated metabolic stress leads to mouse spermatocyte apoptosis: A direct mechanism for perfluorooctane sulfonic acid-induced spermatogenic disorders. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123167. [PMID: 38110051 DOI: 10.1016/j.envpol.2023.123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) as an archetypal representative of per- and polyfluoroalkyl substances (PFAS) is ubiquitously distributed in the environment and extensively detected in human bodies. Although accumulating evidence is suggestive of the deleterious effects of PFOS on male reproduction, the direct toxicity of PFOS towards spermatogenic cells and the relevant mechanisms remain poorly understood. The aims of the present study were to explore the direct effects and underlying molecular mechanisms of PFOS on spermatogenesis. Through integrating animal study, transcriptome profiling, in silico toxicological approaches, and in vitro validation study, we identified the molecular initiating event and key events contributing to PFOS-induced spermatogenic impairments. The mouse experiments revealed that spermatocytes were involved in PFOS-induced spermatogenic disorders and the activation of peroxisome proliferator-activated receptor delta (PPARδ) was linked to spermatocyte loss in PFOS-administrated mice. GC-2spd(ts) cells were treated with an increased gradient of PFOS, which was relevant to environmental and occupational exposure levels of PFOS in populations. Following 72-h treatment, cells was harvested for RNA sequencing. The transcriptome profiling and benchmark dose (BMD) modeling identified endoplasmic reticulum (ER) stress as the key event for PFOS-mediated spermatocyte apoptosis and determined the point-of-departure (PoD) for perturbations of ER stress signaling. Based on the calculated PoD value, further bioinformatics analyses combined with in vitro and in vivo validations showed that PFOS caused metabolic stress by activating PPARδ in mouse spermatocytes, which was responsible for Beclin 1-involved inositol 1,4,5-trisphosphate receptor (IP3R) sensitization. The disruption of IP3R-mediated ER calcium homeostasis triggered ER calcium depletion, leading to ER stress and apoptosis in mouse spermatocytes exposed to PFOS. This study systematically investigated the direct impacts of PFOS on spermatogenesis and unveiled the relevant molecular mechanism of PFOS-induced spermatogenic disorders, providing novel insights and potential preventive/therapeutic targets for PFAS-associated male reproductive toxicity.
Collapse
Affiliation(s)
- Wang Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shijun He
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Haonan Cui
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lihong Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Huihui An
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei Sun
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
9
|
Ahlstedt BA, Ganji R, Mukkavalli S, Paulo JA, Gygi SP, Raman M. UBXN1 maintains ER proteostasis and represses UPR activation by modulating translation. EMBO Rep 2024; 25:672-703. [PMID: 38177917 PMCID: PMC10897191 DOI: 10.1038/s44319-023-00027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
ER protein homeostasis (proteostasis) is essential for proper folding and maturation of proteins in the secretory pathway. Loss of ER proteostasis can lead to the accumulation of misfolded or aberrant proteins in the ER and triggers the unfolded protein response (UPR). In this study, we find that the p97 adaptor UBXN1 is an important negative regulator of the UPR. Loss of UBXN1 sensitizes cells to ER stress and activates the UPR. This leads to widespread upregulation of the ER stress transcriptional program. Using comparative, quantitative proteomics we show that deletion of UBXN1 results in a significant enrichment of proteins involved in ER-quality control processes including those involved in protein folding and import. Notably, we find that loss of UBXN1 does not perturb p97-dependent ER-associated degradation (ERAD). Our studies indicate that loss of UBXN1 increases translation in both resting and ER-stressed cells. Surprisingly, this process is independent of p97 function. Taken together, our studies have identified a new role for UBXN1 in repressing translation and maintaining ER proteostasis in a p97 independent manner.
Collapse
Affiliation(s)
- Brittany A Ahlstedt
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
- ALPCA diagnostics, Salem, NH, USA
| | - Rakesh Ganji
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Sirisha Mukkavalli
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
- Dana Farber Cancer Research Institute, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology Harvard Medical School, Boston, MA, USA
| | - Steve P Gygi
- Department of Cell Biology Harvard Medical School, Boston, MA, USA
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
10
|
Liu K, Zhao C, Adajar RC, DeZwaan-McCabe D, Rutkowski DT. A beneficial adaptive role for CHOP in driving cell fate selection during ER stress. EMBO Rep 2024; 25:228-253. [PMID: 38177915 PMCID: PMC10897205 DOI: 10.1038/s44319-023-00026-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Cellular stresses elicit signaling cascades that are capable of either mitigating the inciting dysfunction or initiating cell death. During endoplasmic reticulum (ER) stress, the transcription factor CHOP is widely recognized to promote cell death. However, it is not clear whether CHOP also has a beneficial role during adaptation. Here, we combine a new, versatile, genetically modified Chop allele with single cell analysis and with stresses of physiological intensity, to rigorously examine the contribution of CHOP to cell fate. Paradoxically, we find that CHOP promotes death in some cells, but proliferation-and hence recovery-in others. Strikingly, this function of CHOP confers to cells a stress-specific competitive growth advantage. The dynamics of CHOP expression and UPR activation at the single cell level suggest that CHOP maximizes UPR activation, which in turn favors stress resolution, subsequent UPR deactivation, and proliferation. Taken together, these findings suggest that CHOP's function can be better described as a "stress test" that drives cells into either of two mutually exclusive fates-adaptation or death-during stresses of physiological intensity.
Collapse
Affiliation(s)
- Kaihua Liu
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Chaoxian Zhao
- Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Reed C Adajar
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Diane DeZwaan-McCabe
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - D Thomas Rutkowski
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
11
|
Zhang W, Miura A, Abu Saleh MM, Shimizu K, Mita Y, Tanida R, Hirako S, Shioda S, Gmyr V, Kerr-Conte J, Pattou F, Jin C, Kanai Y, Sasaki K, Minamino N, Sakoda H, Nakazato M. The NERP-4-SNAT2 axis regulates pancreatic β-cell maintenance and function. Nat Commun 2023; 14:8158. [PMID: 38071217 PMCID: PMC10710447 DOI: 10.1038/s41467-023-43976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Insulin secretion from pancreatic β cells is regulated by multiple stimuli, including nutrients, hormones, neuronal inputs, and local signalling. Amino acids modulate insulin secretion via amino acid transporters expressed on β cells. The granin protein VGF has dual roles in β cells: regulating secretory granule formation and functioning as a multiple peptide precursor. A VGF-derived peptide, neuroendocrine regulatory peptide-4 (NERP-4), increases Ca2+ influx in the pancreata of transgenic mice expressing apoaequorin, a Ca2+-induced bioluminescent protein complex. NERP-4 enhances glucose-stimulated insulin secretion from isolated human and mouse islets and β-cell-derived MIN6-K8 cells. NERP-4 administration reverses the impairment of β-cell maintenance and function in db/db mice by enhancing mitochondrial function and reducing metabolic stress. NERP-4 acts on sodium-coupled neutral amino acid transporter 2 (SNAT2), thereby increasing glutamine, alanine, and proline uptake into β cells and stimulating insulin secretion. SNAT2 deletion and inhibition abolish the protective effects of NERP-4 on β-cell maintenance. These findings demonstrate a novel autocrine mechanism of β-cell maintenance and function that is mediated by the peptide-amino acid transporter axis.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ayako Miura
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Md Moin Abu Saleh
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland - Bahrain, Busaiteen, Bahrain
| | - Koichiro Shimizu
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichiro Mita
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Ryota Tanida
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Saitama, Japan
| | - Seiji Shioda
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Yokohama, Japan
| | - Valery Gmyr
- Université de Lille, Inserm, Campus Hospitalo-Universitaire de Lille, Institut Pasteur de Lille, U1190-EGID, F-59000, Lille, France
| | - Julie Kerr-Conte
- Université de Lille, Inserm, Campus Hospitalo-Universitaire de Lille, Institut Pasteur de Lille, U1190-EGID, F-59000, Lille, France
| | - Francois Pattou
- Université de Lille, Inserm, Campus Hospitalo-Universitaire de Lille, Institut Pasteur de Lille, U1190-EGID, F-59000, Lille, France
| | - Chunhuan Jin
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuki Sasaki
- Department of Peptidomics, Sasaki Foundation, Tokyo, Japan
| | - Naoto Minamino
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research, Suita, Japan
| | - Hideyuki Sakoda
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masamitsu Nakazato
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
- Institute for Protein Research, Osaka University, Osaka, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
12
|
Xiang J, Pompetti AJ, Faranda AP, Wang Y, Novo SG, Li DWC, Duncan MK. ATF4 May Be Essential for Adaption of the Ocular Lens to Its Avascular Environment. Cells 2023; 12:2636. [PMID: 37998373 PMCID: PMC10670291 DOI: 10.3390/cells12222636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
The late embryonic mouse lens requires the transcription factor ATF4 for its survival although the underlying mechanisms were unknown. Here, RNAseq analysis revealed that E16.5 Atf4 null mouse lenses downregulate the mRNA levels of lens epithelial markers as well as known markers of late lens fiber cell differentiation. However, a comparison of this list of differentially expressed genes (DEGs) with other known transcriptional regulators of lens development indicated that ATF4 expression is not directly controlled by the previously described lens gene regulatory network. Pathway analysis revealed that the Atf4 DEG list was enriched in numerous genes involved in nutrient transport, amino acid biosynthesis, and tRNA charging. These changes in gene expression likely result in the observed reductions in lens free amino acid and glutathione levels, which would result in the observed low levels of extractable lens protein, finally leading to perinatal lens disintegration. These data demonstrate that ATF4, via its function in the integrated stress response, is likely to play a crucial role in mediating the adaption of the lens to the avascularity needed to maintain lens transparency.
Collapse
Affiliation(s)
- Jiawen Xiang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510230, China
| | - Anthony J. Pompetti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Adam P. Faranda
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Samuel G. Novo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510230, China
| | - Melinda K. Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
13
|
Solana‐Balaguer J, Martín‐Flores N, Garcia‐Segura P, Campoy‐Campos G, Pérez‐Sisqués L, Chicote‐González A, Fernández‐Irigoyen J, Santamaría E, Pérez‐Navarro E, Alberch J, Malagelada C. RTP801 mediates transneuronal toxicity in culture via extracellular vesicles. J Extracell Vesicles 2023; 12:e12378. [PMID: 37932242 PMCID: PMC10627824 DOI: 10.1002/jev2.12378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in intercellular communication, participating in the paracrine trophic support or in the propagation of toxic molecules, including proteins. RTP801 is a stress-regulated protein, whose levels are elevated during neurodegeneration and induce neuron death. However, whether RTP801 toxicity is transferred trans-neuronally via EVs remains unknown. Hence, we overexpressed or silenced RTP801 protein in cultured cortical neurons, isolated their derived EVs (RTP801-EVs or shRTP801-EVs, respectively), and characterized EVs protein content by mass spectrometry (MS). RTP801-EVs toxicity was assessed by treating cultured neurons with these EVs and quantifying apoptotic neuron death and branching. We also tested shRTP801-EVs functionality in the pathologic in vitro model of 6-Hydroxydopamine (6-OHDA). Expression of RTP801 increased the number of EVs released by neurons. Moreover, RTP801 led to a distinct proteomic signature of neuron-derived EVs, containing more pro-apoptotic markers. Hence, we observed that RTP801-induced toxicity was transferred to neurons via EVs, activating apoptosis and impairing neuron morphology complexity. In contrast, shRTP801-EVs were able to increase the arborization in recipient neurons. The 6-OHDA neurotoxin elevated levels of RTP801 in EVs, and 6-OHDA-derived EVs lost the mTOR/Akt signalling activation via Akt and RPS6 downstream effectors. Interestingly, EVs derived from neurons where RTP801 was silenced prior to exposing them to 6-OHDA maintained Akt and RPS6 transactivation in recipient neurons. Taken together, these results suggest that RTP801-induced toxicity is transferred via EVs, and therefore, it could contribute to the progression of neurodegenerative diseases, in which RTP801 is involved.
Collapse
Affiliation(s)
- Júlia Solana‐Balaguer
- Department of Biomedical SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Núria Martín‐Flores
- Department of Biomedical SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
| | - Pol Garcia‐Segura
- Department of Biomedical SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Genís Campoy‐Campos
- Department of Biomedical SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Leticia Pérez‐Sisqués
- Department of Biomedical SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
| | - Almudena Chicote‐González
- Department of Biomedical SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | | | - Enrique Santamaría
- Proteored‐ISCIIIProteomics UnitNavarrabiomed, Departamento de SaludUPNAIdiSNAPamplonaSpain
| | - Esther Pérez‐Navarro
- Department of Biomedical SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Jordi Alberch
- Department of Biomedical SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Cristina Malagelada
- Department of Biomedical SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| |
Collapse
|
14
|
Liu K, Zhao C, Adajar RC, DeZwaan-McCabe D, Rutkowski DT. A beneficial adaptive role for CHOP in driving cell fate selection during ER stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533325. [PMID: 36993175 PMCID: PMC10055232 DOI: 10.1101/2023.03.19.533325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cellular stresses elicit signaling cascades that are capable of either mitigating the inciting dysfunction or initiating cell death. During endoplasmic reticulum (ER) stress, the transcription factor CHOP is widely recognized to promote cell death. However, it is not clear whether CHOP also has a beneficial role during adaptation. Here, we have combined a new, versatile, genetically modified Chop allele with single cell analysis and with stresses of physiological intensity, to rigorously examine the contribution of CHOP to cell fate. Paradoxically, we found that CHOP promoted death in some cells, but proliferation-and hence recovery-in others. Strikingly, this function of CHOP conferred to cells a stress-specific competitive growth advantage. The dynamics of CHOP expression and UPR activation at the single cell level suggested that CHOP maximizes UPR activation, which in turn favors stress resolution, subsequent UPR deactivation, and proliferation. Taken together, these findings suggest that CHOP's function can be better described as a "stress test" that drives cells into either of two mutually exclusive fates-adaptation or death-during stresses of physiological intensity.
Collapse
Affiliation(s)
- Kaihua Liu
- Program in Human Toxicology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Chaoxian Zhao
- Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Reed C. Adajar
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Diane DeZwaan-McCabe
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - D. Thomas Rutkowski
- Program in Human Toxicology, University of Iowa Carver College of Medicine, Iowa City, IA
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
15
|
Gauthier-Coles G, Rahimi F, Bröer A, Bröer S. Inhibition of GCN2 Reveals Synergy with Cell-Cycle Regulation and Proteostasis. Metabolites 2023; 13:1064. [PMID: 37887389 PMCID: PMC10609202 DOI: 10.3390/metabo13101064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The integrated stress response is a signaling network comprising four branches, each sensing different cellular stressors, converging on the phosphorylation of eIF2α to downregulate global translation and initiate recovery. One of these branches includes GCN2, which senses cellular amino acid insufficiency and participates in maintaining amino acid homeostasis. Previous studies have shown that GCN2 is a viable cancer target when amino acid stress is induced by inhibiting an additional target. In this light, we screened numerous drugs for their potential to synergize with the GCN2 inhibitor TAP20. The drug sensitivity of six cancer cell lines to a panel of 25 compounds was assessed. Each compound was then combined with TAP20 at concentrations below their IC50, and the impact on cell growth was evaluated. The strongly synergistic combinations were further characterized using synergy analyses and matrix-dependent invasion assays. Inhibitors of proteostasis and the MEK-ERK pathway, as well as the pan-CDK inhibitors, flavopiridol, and seliciclib, were potently synergistic with TAP20 in two cell lines. Among their common CDK targets was CDK7, which was more selectively targeted by THZ-1 and synergized with TAP20. Moreover, these combinations were partially synergistic when assessed using matrix-dependent invasion assays. However, TAP20 alone was sufficient to restrict invasion at concentrations well below its growth-inhibitory IC50. We conclude that GCN2 inhibition can be further explored in vivo as a cancer target.
Collapse
Affiliation(s)
- Gregory Gauthier-Coles
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
- School of Medicine, Yale University, New Haven, CT 06504, USA
| | - Farid Rahimi
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
| | - Angelika Bröer
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
| |
Collapse
|
16
|
Gao Y, Wei GZ, Forston MD, Rood B, Hodges ER, Burke D, Andres K, Morehouse J, Armstrong C, Glover C, Slomnicki LP, Ding J, Chariker JH, Rouchka EC, Saraswat Ohri S, Whittemore SR, Hetman M. Opposite modulation of functional recovery following contusive spinal cord injury in mice with oligodendrocyte-selective deletions of Atf4 and Chop/Ddit3. Sci Rep 2023; 13:9193. [PMID: 37280306 PMCID: PMC10244317 DOI: 10.1038/s41598-023-36258-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
The integrated stress response (ISR)-activated transcription factors ATF4 and CHOP/DDIT3 may regulate oligodendrocyte (OL) survival, tissue damage and functional impairment/recovery in white matter pathologies, including traumatic spinal cord injury (SCI). Accordingly, in OLs of OL-specific RiboTag mice, Atf4, Chop/Ddit3 and their downstream target gene transcripts were acutely upregulated at 2, but not 10, days post-contusive T9 SCI coinciding with maximal loss of spinal cord tissue. Unexpectedly, another, OL-specific upregulation of Atf4/Chop followed at 42 days post-injury. However, wild type versus OL-specific Atf4-/- or Chop-/- mice showed similar white matter sparing and OL loss at the injury epicenter, as well as unaffected hindlimb function recovery as determined by the Basso mouse scale. In contrast, the horizontal ladder test revealed persistent worsening or improvement of fine locomotor control in OL-Atf4-/- or OL-Chop-/- mice, respectively. Moreover, chronically, OL-Atf-/- mice showed decreased walking speed during plantar stepping despite greater compensatory forelimb usage. Therefore, ATF4 supports, while CHOP antagonizes, fine locomotor control during post-SCI recovery. No correlation between those effects and white matter sparing together with chronic activation of the OL ISR suggest that in OLs, ATF4 and CHOP regulate function of spinal cord circuitries that mediate fine locomotor control during post-SCI recovery.
Collapse
Affiliation(s)
- Yonglin Gao
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - George Z Wei
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Michael D Forston
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Benjamin Rood
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Emily R Hodges
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Darlene Burke
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Kariena Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Johnny Morehouse
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Christine Armstrong
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Charles Glover
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
| | - Lukasz P Slomnicki
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Jixiang Ding
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Julia H Chariker
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA
| | - Eric C Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA
| | - Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
17
|
Louisse J, Fragki S, Rijkers D, Janssen A, van Dijk B, Leenders L, Staats M, Bokkers B, Zeilmaker M, Piersma A, Luijten M, Hoogenboom R, Peijnenburg A. Determination of in vitro hepatotoxic potencies of a series of perfluoroalkyl substances (PFASs) based on gene expression changes in HepaRG liver cells. Arch Toxicol 2023; 97:1113-1131. [PMID: 36864359 PMCID: PMC10025204 DOI: 10.1007/s00204-023-03450-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/24/2023] [Indexed: 03/04/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are omnipresent and have been shown to induce a wide range of adverse health effects, including hepatotoxicity, developmental toxicity, and immunotoxicity. The aim of the present work was to assess whether human HepaRG liver cells can be used to obtain insight into differences in hepatotoxic potencies of a series of PFASs. Therefore, the effects of 18 PFASs on cellular triglyceride accumulation (AdipoRed assay) and gene expression (DNA microarray for PFOS and RT-qPCR for all 18 PFASs) were studied in HepaRG cells. BMDExpress analysis of the PFOS microarray data indicated that various cellular processes were affected at the gene expression level. From these data, ten genes were selected to assess the concentration-effect relationship of all 18 PFASs using RT-qPCR analysis. The AdipoRed data and the RT-qPCR data were used for the derivation of in vitro relative potencies using PROAST analysis. In vitro relative potency factors (RPFs) could be obtained for 8 PFASs (including index chemical PFOA) based on the AdipoRed data, whereas for the selected genes, in vitro RPFs could be obtained for 11-18 PFASs (including index chemical PFOA). For the readout OAT5 expression, in vitro RPFs were obtained for all PFASs. In vitro RPFs were found to correlate in general well with each other (Spearman correlation) except for the PPAR target genes ANGPTL4 and PDK4. Comparison of in vitro RPFs with RPFs obtained from in vivo studies in rats indicate that best correlations (Spearman correlation) were obtained for in vitro RPFs based on OAT5 and CXCL10 expression changes and external in vivo RPFs. HFPO-TA was found to be the most potent PFAS tested, being around tenfold more potent than PFOA. Altogether, it may be concluded that the HepaRG model may provide relevant data to provide insight into which PFASs are relevant regarding their hepatotoxic effects and that it can be applied as a screening tool to prioritize other PFASs for further hazard and risk assessment.
Collapse
Affiliation(s)
- Jochem Louisse
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands.
| | - Styliani Fragki
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Deborah Rijkers
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Aafke Janssen
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Bas van Dijk
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Liz Leenders
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Martijn Staats
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Bas Bokkers
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marco Zeilmaker
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Aldert Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ron Hoogenboom
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| |
Collapse
|
18
|
Ye Z, Zhang F, Wang P, Ran Y, Liu C, Lu J, Zhang M, Yao L. BAICALEIN RELIEVES BRAIN INJURY VIA INHIBITING FERROPTOSIS AND ENDOPLASMIC RETICULUM STRESS IN A RAT MODEL OF CARDIAC ARREST. Shock 2023; 59:434-441. [PMID: 36427096 DOI: 10.1097/shk.0000000000002058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Background: Cardiac arrest (CA) is one of the leading causes of death worldwide. Endoplasmic reticulum (ER) stress and ferroptosis are proven pathological mechanisms implicated in neuronal damage. Baicalein, a ferroptosis Inhibitor, improved outcomes after traumatic brain injury. We aimed to explore the effects of baicalein on brain injury via ferroptosis and ER stress in a rat model of CA.Methods: Cardiac arrest models were established in Sprague-Dawley (SD) rats. The sham group (n = 6) was untreated with inducing ventricular fibrillation to cardiac arrest and cardiopulmonary resuscitation (CPR). Survival rats were randomly divided into five groups (n = 6). Ferroptosis inhibitor and ER stress agonist were administered separately and together in three groups. There was no drug intervention in the remaining group. The neurological deficit scores were recorded. Characteristics of ferroptosis were observed. And the associated protein of ferroptosis and ER stress were determined by Western blot. Cerebral ROS production was measured by using 2',7'-dichlorofluorescein diacetate as the oxidative fluorescent probe. Results: Baicalein treatment improved neurological outcomes and decreased neurocyte injuries compared with CPR group. The changes of ferroptosis, more specifically, iron content, glutathione peroxidase 4 (GPX4), reactive oxygen species (ROS), arachidonate 15-lipoxygenase (ALOX15) and mitochondrial characteristics, were observed in brain tissue after ROSC. ALOX15 was lower in baicalein group than in CPR group. The morphology and structure of mitochondria in baicalein group were better than in CPR group. The ER stress markers, glucose-regulated protein 78, activating Transcription Factor 4 and C/EBP homologous protein was lower in baicalein group compared with CPR group. ROS in tunicamycin group was higher than in CPR group. And ROS in baicalein +tunicamycin group was lower than in tunicamycin group. Conclusion: Ferroptosis and ER stress are both involved in brain injury after ROSC. Baicalein alleviates brain injury via suppressing the ferroptosis and ER stress, and reduces ROS partly through inhibiting ER stress. Baicalein is a potential drug to relieve brain injury after ROSC.
Collapse
Affiliation(s)
| | - Fan Zhang
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | | | - Yingqi Ran
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Cong Liu
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jinming Lu
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Mingtao Zhang
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Lan Yao
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| |
Collapse
|
19
|
Fragki S, Louisse J, Bokkers B, Luijten M, Peijnenburg A, Rijkers D, Piersma AH, Zeilmaker MJ. New approach methodologies: A quantitative in vitro to in vivo extrapolation case study with PFASs. Food Chem Toxicol 2023; 172:113559. [PMID: 36535450 PMCID: PMC9890272 DOI: 10.1016/j.fct.2022.113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
PER: and polyfluoroalkyl substances (PFASs) have been associated with increased blood lipids in humans. Perfluorooctanoic acid (PFOA) has been also linked with elevated alanine transferase (ALT) serum levels in humans, and in rodents the liver is a main target organ for many PFASs. With the focus on New Approach Methodologies, the chronic oral equivalent effect doses were calculated for PFOA, PFNA (perfluorononanoic acid), PFHxS (perfluorohexanesulfonic acid) and PFOS (perfluorooctane sulfonic acid) based on in vitro effects measured in the HepaRG cell line. Selected in vitro readouts were considered biomarkers for lipid disturbances and hepatotoxicity. Concentration-response data obtained from HepaRG cells on triglyceride (TG) accumulation and expression changes of 12 selected genes (some involved in cholesterol homeostasis) were converted into corresponding human dose-response data, using physiologically based kinetic (PBK) model-facilitated reverse dosimetry. Next to this, the biokinetics of the chemicals were studied in the cell system. The current European dietary PFASs exposure overlaps with the calculated oral equivalent effect doses, indicating that the latter may lead to interference with hepatic gene expression and lipid metabolism. These findings illustrate an in vitro-in silico methodology, which can be applied for more PFASs, to select those that should be prioritized for further hazard characterization.
Collapse
Affiliation(s)
- Styliani Fragki
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Jochem Louisse
- Wageningen Food Safety Research (WFSR), Wageningen, the Netherlands
| | - Bas Bokkers
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research (WFSR), Wageningen, the Netherlands
| | - Deborah Rijkers
- Wageningen Food Safety Research (WFSR), Wageningen, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD, Utrecht, the Netherlands
| | - Marco J Zeilmaker
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
20
|
Shum HCE, Wu K, Vadgama J, Wu Y. Potential Therapies Targeting the Metabolic Reprogramming of Diabetes-Associated Breast Cancer. J Pers Med 2023; 13:157. [PMID: 36675817 PMCID: PMC9861470 DOI: 10.3390/jpm13010157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
In recent years, diabetes-associated breast cancer has become a significant clinical challenge. Diabetes is not only a risk factor for breast cancer but also worsens its prognosis. Patients with diabetes usually show hyperglycemia and hyperinsulinemia, which are accompanied by different glucose, protein, and lipid metabolism disorders. Metabolic abnormalities observed in diabetes can induce the occurrence and development of breast cancer. The changes in substrate availability and hormone environment not only create a favorable metabolic environment for tumorigenesis but also induce metabolic reprogramming events required for breast cancer cell transformation. Metabolic reprogramming is the basis for the development, swift proliferation, and survival of cancer cells. Metabolism must also be reprogrammed to support the energy requirements of the biosynthetic processes in cancer cells. In addition, metabolic reprogramming is essential to enable cancer cells to overcome apoptosis signals and promote invasion and metastasis. This review aims to describe the major metabolic changes in diabetes and outline how cancer cells can use cellular metabolic changes to drive abnormal growth and proliferation. We will specifically examine the mechanism of metabolic reprogramming by which diabetes may promote the development of breast cancer, focusing on the role of glucose metabolism, amino acid metabolism, and lipid metabolism in this process and potential therapeutic targets. Although diabetes-associated breast cancer has always been a common health problem, research focused on finding treatments suitable for the specific needs of patients with concurrent conditions is still limited. Most studies are still currently in the pre-clinical stage and mainly focus on reprogramming the glucose metabolism. More research targeting the amino acid and lipid metabolism is needed.
Collapse
Affiliation(s)
- Hang Chee Erin Shum
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ke Wu
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1748 E. 118th Street, Los Angeles, CA 90095, USA
| | - Jaydutt Vadgama
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1748 E. 118th Street, Los Angeles, CA 90095, USA
| | - Yong Wu
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1748 E. 118th Street, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Alzahrani MR, Guan BJ, Zagore LL, Wu J, Chen CW, Licatalosi DD, Baker KE, Hatzoglou M. Newly synthesized mRNA escapes translational repression during the acute phase of the mammalian unfolded protein response. PLoS One 2022; 17:e0271695. [PMID: 35947624 PMCID: PMC9365188 DOI: 10.1371/journal.pone.0271695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Endoplasmic Reticulum (ER) stress, caused by the accumulation of misfolded proteins in the ER, elicits a homeostatic mechanism known as the Unfolded Protein Response (UPR). The UPR reprograms gene expression to promote adaptation to chronic ER stress. The UPR comprises an acute phase involving inhibition of bulk protein synthesis and a chronic phase of transcriptional induction coupled with the partial recovery of protein synthesis. However, the role of transcriptional regulation in the acute phase of the UPR is not well understood. Here we analyzed the fate of newly synthesized mRNA encoding the protective and homeostatic transcription factor X-box binding protein 1 (XBP1) during this acute phase. We have previously shown that global translational repression induced by the acute UPR was characterized by decreased translation and increased stability of XBP1 mRNA. We demonstrate here that this stabilization is independent of new transcription. In contrast, we show XBP1 mRNA newly synthesized during the acute phase accumulates with long poly(A) tails and escapes translational repression. Inhibition of newly synthesized RNA polyadenylation during the acute phase decreased cell survival with no effect in unstressed cells. Furthermore, during the chronic phase of the UPR, levels of XBP1 mRNA with long poly(A) tails decreased in a manner consistent with co-translational deadenylation. Finally, additional pro-survival, transcriptionally-induced mRNAs show similar regulation, supporting the broad significance of the pre-steady state UPR in translational control during ER stress. We conclude that the biphasic regulation of poly(A) tail length during the UPR represents a previously unrecognized pro-survival mechanism of mammalian gene regulation.
Collapse
Affiliation(s)
- Mohammed R. Alzahrani
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Leah L. Zagore
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jing Wu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Chien-Wen Chen
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Donny D. Licatalosi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kristian E. Baker
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
22
|
Chen CW, Guan BJ, Alzahrani MR, Gao Z, Gao L, Bracey S, Wu J, Mbow CA, Jobava R, Haataja L, Zalavadia AH, Schaffer AE, Lee H, LaFramboise T, Bederman I, Arvan P, Mathews CE, Gerling IC, Kaestner KH, Tirosh B, Engin F, Hatzoglou M. Adaptation to chronic ER stress enforces pancreatic β-cell plasticity. Nat Commun 2022; 13:4621. [PMID: 35941159 PMCID: PMC9360004 DOI: 10.1038/s41467-022-32425-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic β-cells are prone to endoplasmic reticulum (ER) stress due to their role in insulin secretion. They require sustainable and efficient adaptive stress responses to cope with this stress. Whether episodes of chronic stress directly compromise β-cell identity is unknown. We show here under reversible, chronic stress conditions β-cells undergo transcriptional and translational reprogramming associated with impaired expression of regulators of β-cell function and identity. Upon recovery from stress, β-cells regain their identity and function, indicating a high degree of adaptive plasticity. Remarkably, while β-cells show resilience to episodic ER stress, when episodes exceed a threshold, β-cell identity is gradually lost. Single cell RNA-sequencing analysis of islets from type 1 diabetes patients indicates severe deregulation of the chronic stress-adaptation program and reveals novel biomarkers of diabetes progression. Our results suggest β-cell adaptive exhaustion contributes to diabetes pathogenesis.
Collapse
Affiliation(s)
- Chien-Wen Chen
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mohammed R Alzahrani
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Zhaofeng Gao
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Long Gao
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Syrena Bracey
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jing Wu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Cheikh A Mbow
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Raul Jobava
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Leena Haataja
- The Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI, 48105, USA
| | - Ajay H Zalavadia
- Lerner Research Institute, Cleveland Clinic, 9620 Carnegie Ave N Bldg, Cleveland, OH, 44106, US
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hugo Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Peter Arvan
- The Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI, 48105, USA
| | - Clayton E Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, US
| | - Ivan C Gerling
- Department of Medicine, University of Tennessee, Memphis, TN, US
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Boaz Tirosh
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA.
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53705, USA.
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
23
|
Krokowski D, Jobava R, Szkop KJ, Chen CW, Fu X, Venus S, Guan BJ, Wu J, Gao Z, Banaszuk W, Tchorzewski M, Mu T, Ropelewski P, Merrick WC, Mao Y, Sevval AI, Miranda H, Qian SB, Manifava M, Ktistakis NT, Vourekas A, Jankowsky E, Topisirovic I, Larsson O, Hatzoglou M. Stress-induced perturbations in intracellular amino acids reprogram mRNA translation in osmoadaptation independently of the ISR. Cell Rep 2022; 40:111092. [PMID: 35858571 PMCID: PMC9491157 DOI: 10.1016/j.celrep.2022.111092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
The integrated stress response (ISR) plays a pivotal role in adaptation of translation machinery to cellular stress. Here, we demonstrate an ISR-independent osmoadaptation mechanism involving reprogramming of translation via coordinated but independent actions of mTOR and plasma membrane amino acid transporter SNAT2. This biphasic response entails reduced global protein synthesis and mTOR signaling followed by translation of SNAT2. Induction of SNAT2 leads to accumulation of amino acids and reactivation of mTOR and global protein synthesis, paralleled by partial reversal of the early-phase, stress-induced translatome. We propose SNAT2 functions as a molecular switch between inhibition of protein synthesis and establishment of an osmoadaptive translation program involving the formation of cytoplasmic condensates of SNAT2-regulated RNA-binding proteins DDX3X and FUS. In summary, we define key roles of SNAT2 in osmotolerance.
Collapse
Affiliation(s)
- Dawid Krokowski
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Raul Jobava
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Krzysztof J Szkop
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institute, Stockholm, Sweden
| | - Chien-Wen Chen
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xu Fu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Venus
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jing Wu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Zhaofeng Gao
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Wioleta Banaszuk
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Marek Tchorzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland; EcoTech-Complex Centre, Maria Curie-Skłodowska University, Lublin, Poland
| | - Tingwei Mu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Phil Ropelewski
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - William C Merrick
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Aksoylu Inci Sevval
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institute, Stockholm, Sweden
| | - Helen Miranda
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Anastasios Vourekas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Eckhard Jankowsky
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ivan Topisirovic
- The Lady Davis Institute, Jewish General Hospital, Montréal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada; Department of Biochemistry and Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institute, Stockholm, Sweden.
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
24
|
Roles of mTOR in the Regulation of Pancreatic β-Cell Mass and Insulin Secretion. Biomolecules 2022; 12:biom12050614. [PMID: 35625542 PMCID: PMC9138643 DOI: 10.3390/biom12050614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/07/2022] Open
Abstract
Pancreatic β-cells are the only type of cells that can control glycemic levels via insulin secretion. Thus, to explore the mechanisms underlying pancreatic β-cell failure, many reports have clarified the roles of important molecules, such as the mechanistic target of rapamycin (mTOR), which is a central regulator of metabolic and nutrient cues. Studies have uncovered the roles of mTOR in the function of β-cells and the progression of diabetes, and they suggest that mTOR has both positive and negative effects on pancreatic β-cells in the development of diabetes.
Collapse
|
25
|
Hagen CM, Roth E, Graf TR, Verrey F, Graf R, Gupta A, Pellegrini G, Poncet N, Camargo SMR. Loss of LAT1 sex-dependently delays recovery after caerulein-induced acute pancreatitis. World J Gastroenterol 2022; 28:1024-1054. [PMID: 35431492 PMCID: PMC8968515 DOI: 10.3748/wjg.v28.i10.1024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/08/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The expression of amino acid transporters is known to vary during acute pancreatitis (AP) except for LAT1 (slc7a5), the expression of which remains stable. LAT1 supports cell growth by importing leucine and thereby stimulates mammalian target of rapamycin (mTOR) activity, a phenomenon often observed in cancer cells. The mechanisms by which LAT1 influences physiological and pathophysiological processes and affects disease progression in the pancreas are not yet known.
AIM To evaluate the role of LAT1 in the development of and recovery from AP.
METHODS AP was induced with caerulein (cae) injections in female and male mice expressing LAT1 or after its knockout (LAT1 Cre/LoxP). The development of the initial AP injury and its recovery were followed for seven days after cae injections by daily measuring body weight, assessing microscopical tissue architecture, mRNA and protein expression, protein synthesis, and enzyme activity levels, as well as by testing the recruitment of immune cells by FACS and ELISA.
RESULTS The initial injury, evaluated by measurements of plasma amylase, lipase, and trypsin activity, as well as the gene expression of dedifferentiation markers, did not differ between the groups. However, early metabolic adaptations that support regeneration at later stages were blunted in LAT1 knockout mice. Especially in females, we observed less mTOR reactivation and dysfunctional autophagy. The later regeneration phase was clearly delayed in female LAT1 knockout mice, which did not regain normal expression of the pancreas-specific differentiation markers recombining binding protein suppressor of hairless-like protein (rbpjl) and basic helix-loop-helix family member A15 (mist1). Amylase mRNA and protein levels remained lower, and, strikingly, female LAT1 knockout mice presented signs of fibrosis lasting until day seven. In contrast, pancreas morphology had returned to normal in wild-type littermates.
CONCLUSION LAT1 supports the regeneration of acinar cells after AP. Female mice lacking LAT1 exhibited more pronounced alterations than male mice, indicating a sexual dimorphism of amino acid metabolism.
Collapse
Affiliation(s)
- Cristina M Hagen
- Institute of Physiology, University of Zurich, Zurich 8057, ZH, Switzerland
| | - Eva Roth
- Institute of Physiology, University of Zurich, Zurich 8057, ZH, Switzerland
| | - Theresia Reding Graf
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, Zurich University Hospital, Zurich 8091, ZH, Switzerland
| | - François Verrey
- Institute of Physiology, University of Zurich, Zurich 8057, ZH, Switzerland
| | - Rolf Graf
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, Zurich University Hospital, Zurich 8091, ZH, Switzerland
| | - Anurag Gupta
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, Zurich University Hospital, Zurich 8091, ZH, Switzerland
| | - Giovanni Pellegrini
- Institute of Veterinary Pathology, University of Zurich, Zurich 8057, ZH, Switzerland
| | - Nadège Poncet
- Institute of Physiology, University of Zurich, Zurich 8057, ZH, Switzerland
| | | |
Collapse
|
26
|
Bröer S. Amino acid transporters as modulators of glucose homeostasis. Trends Endocrinol Metab 2022; 33:120-135. [PMID: 34924221 DOI: 10.1016/j.tem.2021.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Amino acids modulate glucose homeostasis. Cytosolic levels of amino acids are regulated by amino acid transporters, modulating insulin release, protein synthesis, cell proliferation, cell fate, and metabolism. In β-cells, amino acid transporters modulate incretin-stimulated insulin release. In the liver, amino acid transporters provide glutamine and alanine for gluconeogenesis. Intestinal amino acid transporters facilitate the intake of amino acids causing protein restriction when inactive. Adipocyte development is regulated by amino acid transporters through activation of mechanistic target of rapamycin (mTORC1) and amino acid-related metabolites. The accumulation and metabolism of branched-chain amino acids (BCAAs) in muscle depends on transporters. The integration between amino acid metabolism and transport is critical for the maintenance and function of tissues and cells involved in glucose homeostasis.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Acton 2601, Australia.
| |
Collapse
|
27
|
Bröer S, Gauthier-Coles G. Amino Acid Homeostasis in Mammalian Cells with a Focus on Amino Acid Transport. J Nutr 2021; 152:16-28. [PMID: 34718668 PMCID: PMC8754572 DOI: 10.1093/jn/nxab342] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Amino acid homeostasis is maintained by import, export, oxidation, and synthesis of nonessential amino acids, and by the synthesis and breakdown of protein. These processes work in conjunction with regulatory elements that sense amino acids or their metabolites. During and after nutrient intake, amino acid homeostasis is dominated by autoregulatory processes such as transport and oxidation of excess amino acids. Amino acid deprivation triggers processes such as autophagy and the execution of broader transcriptional programs to maintain plasma amino acid concentrations. Amino acid transport plays a crucial role in the absorption of amino acids in the intestine, the distribution of amino acids across cells and organs, the recycling of amino acids in the kidney, and the recycling of amino acids after protein breakdown.
Collapse
|
28
|
DBtRend: A Web-Server of tRNA Expression Profiles from Small RNA Sequencing Data in Humans. Genes (Basel) 2021; 12:genes12101576. [PMID: 34680971 PMCID: PMC8535304 DOI: 10.3390/genes12101576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 01/04/2023] Open
Abstract
Transfer RNA (tRNA), a key component of the translation machinery, plays critical roles in stress conditions and various diseases. While knowledge regarding the importance of tRNA function is increasing, its biological roles are still not well understood. There is currently no comprehensive database or web server providing the expression landscape of tRNAs across a variety of human tissues and diseases. Here, we constructed a user-friendly and interactive database, DBtRend, which provides a profile of mature tRNA expression across various biological conditions by reanalyzing the small RNA or microRNA sequencing data from the Cancer Genome Atlas (TCGA) and NCBI's Gene Expression Omnibus (GEO) in humans. Users can explore not only the expression values of mature individual tRNAs in the human genome, but also those of isodecoders and isoacceptors based on our specific pipelines. DBtRend provides the expressed patterns of tRNAs, the differentially expressed tRNAs in different biological conditions, and the information of samples or patients, tissue types, and molecular subtype of cancers. The database is expected to help researchers interested in functional discoveries of tRNAs.
Collapse
|
29
|
Waters MF, Delghingaro-Augusto V, Javed K, Dahlstrom JE, Burgio G, Bröer S, Nolan CJ. Knockout of the Amino Acid Transporter SLC6A19 and Autoimmune Diabetes Incidence in Female Non-Obese Diabetic (NOD) Mice. Metabolites 2021; 11:metabo11100665. [PMID: 34677380 PMCID: PMC8540324 DOI: 10.3390/metabo11100665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
High protein feeding has been shown to accelerate the development of type 1 diabetes in female non-obese diabetic (NOD) mice. Here, we investigated whether reducing systemic amino acid availability via knockout of the Slc6a19 gene encoding the system B(0) neutral amino acid transporter AT1 would reduce the incidence or delay the onset of type 1 diabetes in female NOD mice. Slc6a19 gene deficient NOD mice were generated using the CRISPR-Cas9 system which resulted in marked aminoaciduria. The incidence of diabetes by week 30 was 59.5% (22/37) and 69.0% (20/29) in NOD.Slc6a19+/+ and NOD.Slc6a19-/- mice, respectively (hazard ratio 0.77, 95% confidence interval 0.41-1.42; Mantel-Cox log rank test: p = 0.37). The median survival time without diabetes was 28 and 25 weeks for NOD.Slc6a19+/+ and NOD.Slc6a19-/- mice, respectively (ratio 1.1, 95% confidence interval 0.6-2.0). Histological analysis did not show differences in islet number or the degree of insulitis between wild type and Slc6a19 deficient NOD mice. We conclude that Slc6a19 deficiency does not prevent or delay the development of type 1 diabetes in female NOD mice.
Collapse
Affiliation(s)
- Matthew F. Waters
- Australian National University Medical School, Australian National University, Acton, ACT 2601, Australia; (M.F.W.); (V.D.-A.); (J.E.D.)
- John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
| | - Viviane Delghingaro-Augusto
- Australian National University Medical School, Australian National University, Acton, ACT 2601, Australia; (M.F.W.); (V.D.-A.); (J.E.D.)
- John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
| | - Kiran Javed
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia; (K.J.); (S.B.)
| | - Jane E. Dahlstrom
- Australian National University Medical School, Australian National University, Acton, ACT 2601, Australia; (M.F.W.); (V.D.-A.); (J.E.D.)
- John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
- ACT Pathology, The Canberra Hospital, Canberra Health Services, Garran, ACT 2605, Australia
| | - Gaetan Burgio
- John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
| | - Stefan Bröer
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia; (K.J.); (S.B.)
| | - Christopher J. Nolan
- Australian National University Medical School, Australian National University, Acton, ACT 2601, Australia; (M.F.W.); (V.D.-A.); (J.E.D.)
- John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
- Department of Endocrinology, The Canberra Hospital, Garran, ACT 2505, Australia
- Correspondence: ; Tel.: +61-2-5124-4224
| |
Collapse
|
30
|
Mass spectrometry-based direct detection of multiple types of protein thiol modifications in pancreatic beta cells under endoplasmic reticulum stress. Redox Biol 2021; 46:102111. [PMID: 34425387 PMCID: PMC8379693 DOI: 10.1016/j.redox.2021.102111] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
Thiol-based post-translational modifications (PTMs) play a key role in redox-dependent regulation and signaling. Functional cysteine (Cys) sites serve as redox switches, regulated through multiple types of PTMs. Herein, we aim to characterize the complexity of thiol PTMs at the proteome level through the establishment of a direct detection workflow. The LC-MS/MS based workflow allows for simultaneous quantification of protein abundances and multiple types of thiol PTMs. To demonstrate its utility, the workflow was applied to mouse pancreatic β-cells (β-TC-6) treated with thapsigargin to induce endoplasmic reticulum (ER) stress. This resulted in the quantification of >9000 proteins and multiple types of thiol PTMs, including intra-peptide disulfide (S–S), S-glutathionylation (SSG), S-sulfinylation (SO2H), S-sulfonylation (SO3H), S-persulfidation (SSH), and S-trisulfidation (SSSH). Proteins with significant changes in abundance were observed to be involved in canonical pathways such as autophagy, unfolded protein response, protein ubiquitination pathway, and EIF2 signaling. Moreover, ~500 Cys sites were observed with one or multiple types of PTMs with SSH and S–S as the predominant types of modifications. In many cases, significant changes in the levels of different PTMs were observed on various enzymes and their active sites, while their protein abundance exhibited little change. These results provide evidence of independent translational and post-translational regulation of enzyme activity. The observed complexity of thiol modifications on the same Cys residues illustrates the challenge in the characterization and interpretation of protein thiol modifications and their functional regulation.
Simultaneous quantification of protein abundances and multiple types of thiol PTMs. Multiple types PTMs observed on the same Cys sites for redox-regulated proteins. Data revealed complexity of thiol PTMs and their regulation. Distinctive translational and post-translational regulation under ER stress in β-cells.
Collapse
|
31
|
Kobiita A, Godbersen S, Araldi E, Ghoshdastider U, Schmid MW, Spinas G, Moch H, Stoffel M. The Diabetes Gene JAZF1 Is Essential for the Homeostatic Control of Ribosome Biogenesis and Function in Metabolic Stress. Cell Rep 2021; 32:107846. [PMID: 32640216 DOI: 10.1016/j.celrep.2020.107846] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of pancreatic β-cells to respond to increased demands for insulin during metabolic stress critically depends on proper ribosome homeostasis and function. Excessive and long-lasting stimulation of insulin secretion can elicit endoplasmic reticulum (ER) stress, unfolded protein response, and β-cell apoptosis. Here we show that the diabetes susceptibility gene JAZF1 is a key transcriptional regulator of ribosome biogenesis, global protein, and insulin translation. JAZF1 is excluded from the nucleus, and its expression levels are reduced upon metabolic stress and in diabetes. Genetic deletion of Jazf1 results in global impairment of protein synthesis that is mediated by defects in ribosomal protein synthesis, ribosomal RNA processing, and aminoacyl-synthetase expression, thereby inducing ER stress and increasing β-cell susceptibility to apoptosis. Importantly, JAZF1 function and its pleiotropic actions are impaired in islets of murine T2D and in human islets exposed to metabolic stress. Our study identifies JAZF1 as a central mediator of metabolic stress in β-cells.
Collapse
Affiliation(s)
- Ahmad Kobiita
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland
| | - Elisa Araldi
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland
| | - Umesh Ghoshdastider
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland
| | - Marc W Schmid
- MWSchmid GmbH, Möhrlistrasse 25, 8006 Zurich, Switzerland
| | - Giatgen Spinas
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitäts-Spital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University and University Hospital Zürich, Schmelzbergstrasse 12, 8091 Zürich, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland; Medical Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Karusheva Y, Strassburger K, Markgraf DF, Zaharia OP, Bódis K, Kössler T, Tura A, Pacini G, Burkart V, Roden M, Szendroedi J. Branched-Chain Amino Acids Associate Negatively With Postprandial Insulin Secretion in Recent-Onset Diabetes. J Endocr Soc 2021; 5:bvab067. [PMID: 34027277 PMCID: PMC8130764 DOI: 10.1210/jendso/bvab067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Context In addition to unfavorable effects on insulin sensitivity, elevated plasma branched-chain amino acids (BCAA) stimulate insulin secretion, which, over the long-term, could impair pancreatic β-cell function. Objective To investigate cross-sectional and prospective associations between circulating BCAA and postprandial β-cell function in recently diagnosed type 1 and type 2 diabetes. Methods The study included individuals with well-controlled type 1 and type 2 diabetes (known diabetes duration <12 months) and glucose-tolerant participants (controls) of similar age, sex, and body mass index (n = 10/group) who underwent mixed meal tolerance tests. Plasma BCAA levels were quantified by gas chromatography-mass spectrometry, postprandial β-cell function was assessed from serum C-peptide levels, and insulin sensitivity was determined from PREDIM index (PREDIcted M-value). Results In type 1 diabetes, postprandial total BCAA, valine, and leucine levels were 25%, 18%, and 19% higher vs control, and total as well as individual postprandial BCAA were related inversely to C-peptide levels. In type 2 diabetes, postprandial isoleucine was 16% higher vs the respective controls, while neither total nor individual BCAA correlated with C-peptide levels. Whole-body insulin sensitivity was lower in both diabetes groups than in corresponding controls. Conclusion Insulin deficiency associates with sustained high BCAA concentrations, which could contribute to exhausting the insulin secretory reserve in early type 1 diabetes.
Collapse
Affiliation(s)
- Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Daniel F Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Kálmán Bódis
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Theresa Kössler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andrea Tura
- Metabolic Unit, Institute of Neuroscience, National Research Council, 35127 Padova, Italy
| | - Giovanni Pacini
- Metabolic Unit, Institute of Neuroscience, National Research Council, 35127 Padova, Italy
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
33
|
Delgado-Benito V, Berruezo-Llacuna M, Altwasser R, Winkler W, Sundaravinayagam D, Balasubramanian S, Caganova M, Graf R, Rahjouei A, Henke MT, Driesner M, Keller L, Prigione A, Janz M, Akalin A, Di Virgilio M. PDGFA-associated protein 1 protects mature B lymphocytes from stress-induced cell death and promotes antibody gene diversification. J Exp Med 2021; 217:151913. [PMID: 32609329 PMCID: PMC7537392 DOI: 10.1084/jem.20200137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/20/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
The establishment of protective humoral immunity is dependent on the ability of mature B cells to undergo antibody gene diversification while adjusting to the physiological stressors induced by activation with the antigen. Mature B cells diversify their antibody genes by class switch recombination (CSR) and somatic hypermutation (SHM), which are both dependent on efficient induction of activation-induced cytidine deaminase (AID). Here, we identified PDGFA-associated protein 1 (Pdap1) as an essential regulator of cellular homeostasis in mature B cells. Pdap1 deficiency leads to sustained expression of the integrated stress response (ISR) effector activating transcription factor 4 (Atf4) and induction of the ISR transcriptional program, increased cell death, and defective AID expression. As a consequence, loss of Pdap1 reduces germinal center B cell formation and impairs CSR and SHM. Thus, Pdap1 protects mature B cells against chronic ISR activation and ensures efficient antibody diversification by promoting their survival and optimal function.
Collapse
Affiliation(s)
- Verónica Delgado-Benito
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maria Berruezo-Llacuna
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Robert Altwasser
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Bioinformatics and Omics Data Science Technology Platform, Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Wiebke Winkler
- Laboratory of Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Laboratory of Biology of Malignant Lymphomas, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité, University Medicine, Berlin, Germany
| | - Devakumar Sundaravinayagam
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sandhya Balasubramanian
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marieta Caganova
- Laboratory of Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Robin Graf
- Laboratory of Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ali Rahjouei
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marie-Thérèse Henke
- Laboratory of Mitochondria and Cell Fate Reprogramming, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Madlen Driesner
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Lisa Keller
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alessandro Prigione
- Laboratory of Mitochondria and Cell Fate Reprogramming, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Janz
- Laboratory of Biology of Malignant Lymphomas, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité, University Medicine, Berlin, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Technology Platform, Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michela Di Virgilio
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
34
|
Engin AB, Engin A. Protein Kinases Signaling in Pancreatic Beta-cells Death and Type 2 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:195-227. [PMID: 33539017 DOI: 10.1007/978-3-030-49844-3_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes (T2D) is a worldwide serious public health problem. Insulin resistance and β-cell failure are the two major components of T2D pathology. In addition to defective endoplasmic reticulum (ER) stress signaling due to glucolipotoxicity, β-cell dysfunction or β-cell death initiates the deleterious vicious cycle observed in T2D. Although the primary cause is still unknown, overnutrition that contributes to the induction of the state of low-grade inflammation, and the activation of various protein kinases-related metabolic pathways are main factors leading to T2D. In this chapter following subjects, which have critical checkpoints regarding β-cell fate and protein kinases pathways are discussed; hyperglycemia-induced β-cell failure, chronic accumulation of unfolded protein in β-cells, the effect of intracellular reactive oxygen species (ROS) signaling to insulin secretion, excessive saturated free fatty acid-induced β-cell apoptosis, mitophagy dysfunction, proinflammatory responses and insulin resistance, and the reprogramming of β-cell for differentiation or dedifferentiation in T2D. There is much debate about selecting proposed therapeutic strategies to maintain or enhance optimal β-cell viability for adequate insulin secretion in T2D. However, in order to achieve an effective solution in the treatment of T2D, more intensive clinical trials are required on newer therapeutic options based on protein kinases signaling pathways.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
35
|
Pszczolkowski VL, Arriola Apelo SI. The market for amino acids: understanding supply and demand of substrate for more efficient milk protein synthesis. J Anim Sci Biotechnol 2020; 11:108. [PMID: 33292704 PMCID: PMC7659053 DOI: 10.1186/s40104-020-00514-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
For dairy production systems, nitrogen is an expensive nutrient and potentially harmful waste product. With three quarters of fed nitrogen ending up in the manure, significant research efforts have focused on understanding and mitigating lactating dairy cows’ nitrogen losses. Recent changes proposed to the Nutrient Requirement System for Dairy Cattle in the US include variable efficiencies of absorbed essential AA for milk protein production. This first separation from a purely substrate-based system, standing on the old limiting AA theory, recognizes the ability of the cow to alter the metabolism of AA. In this review we summarize a compelling amount of evidence suggesting that AA requirements for milk protein synthesis are based on a demand-driven system. Milk protein synthesis is governed at mammary level by a set of transduction pathways, including the mechanistic target of rapamycin complex 1 (mTORC1), the integrated stress response (ISR), and the unfolded protein response (UPR). In tight coordination, these pathways not only control the rate of milk protein synthesis, setting the demand for AA, but also manipulate cellular AA transport and even blood flow to the mammary glands, securing the supply of those needed nutrients. These transduction pathways, specifically mTORC1, sense specific AA, as well as other physiological signals, including insulin, the canonical indicator of energy status. Insulin plays a key role on mTORC1 signaling, controlling its activation, once AA have determined mTORC1 localization to the lysosomal membrane. Based on this molecular model, AA and insulin signals need to be tightly coordinated to maximize milk protein synthesis rate. The evidence in lactating dairy cows supports this model, in which insulin and glucogenic energy potentiate the effect of AA on milk protein synthesis. Incorporating the effect of specific signaling AA and the differential role of energy sources on utilization of absorbed AA for milk protein synthesis seems like the evident following step in nutrient requirement systems to further improve N efficiency in lactating dairy cow rations.
Collapse
Affiliation(s)
- Virginia L Pszczolkowski
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Sebastian I Arriola Apelo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA. .,Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
36
|
Mukherjee D, Bercz LS, Torok MA, Mace TA. Regulation of cellular immunity by activating transcription factor 4. Immunol Lett 2020; 228:24-34. [PMID: 33002512 DOI: 10.1016/j.imlet.2020.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Activating transcription factor 4 (ATF4) is a DNA binding transcription factor belonging to the family of basic Leucine zipper proteins. ATF4 can be activated in response to multiple cellular stress signals including endoplasmic reticulum stress in the event of improper protein folding or oxidative stress because of mitochondrial dysfunction as well as hypoxia. There are multiple downstream targets of ATF4 that can coordinate the regulation between survival and apoptosis of a cell based on time and exposure to stress. ATF4, therefore, has a broad range of control that results in the modulation of immune cells of the innate and adaptive responses leading to regulation of the cellular immunity. Studies provide evidence that ATF4 can regulate immune cells such as macrophages, T cells, B cells, NK cells and dendritic cells contributing to progression of disease. Immune cells can be exposed to stressed environment in the event of a pathogen attack, infection, inflammation, or in the tumor microenvironment leading to increased ATF4 activity to regulate these responses. ATF4 can further control differentiation and maturation of different immune cell types becoming a determinant of effective immune regulation. Additionally, ATF4 has been heavily implicated in rendering effector immune cells dysfunctional that are used to target tumorigenesis. Therefore, there is a need to evaluate where the literature stands in understanding the overall role of ATF4 in regulating cellular immunity to identify therapeutic targets and generalized mechanisms for different disease progressions.
Collapse
Affiliation(s)
- Debasmita Mukherjee
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Lena S Bercz
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Molly A Torok
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Thomas A Mace
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States; Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
37
|
Louisse J, Rijkers D, Stoopen G, Janssen A, Staats M, Hoogenboom R, Kersten S, Peijnenburg A. Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA) increase triglyceride levels and decrease cholesterogenic gene expression in human HepaRG liver cells. Arch Toxicol 2020; 94:3137-3155. [PMID: 32588087 PMCID: PMC7415755 DOI: 10.1007/s00204-020-02808-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/15/2020] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are omnipresent in the environment, food chain, and humans. Epidemiological studies have shown a positive association between serum levels of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), and increased serum cholesterol and, in some cases, also triglyceride levels. However, causality has been questioned, as animal studies, as well as a human trial, showed a decrease in serum cholesterol and no effects or a decrease in plasma triglycerides. To obtain more insight into the effects of PFASs on these processes, the present study investigated the effects of PFOA, PFOS, and perfluorononanoic acid (PFNA) on intracellular triglyceride and cholesterol levels in human HepaRG liver cells. DNA microarray analyses were performed to provide insight into underlying mechanisms. All PFASs induced an increase in cellular triglyceride levels, but had no effect on cholesterol levels. Gene set enrichment analysis (GSEA) of the microarray data indicated that gene sets related to cholesterol biosynthesis were repressed by PFOA, PFOS, and PFNA. Other gene sets commonly affected by all PFAS were related to PERK/ATF4 signaling (induced), tRNA amino-acylation (induced), amino acid transport (induced), and glycolysis/gluconeogenesis (repressed). Moreover, numerous target genes of peroxisome proliferator-activated receptor α (PPARα) were found to be upregulated. Altogether, the present study shows that PFOA, PFOS, and PFNA increase triglyceride levels and inhibit cholesterogenic gene expression in HepaRG cells. In addition, the present study indicates that PFASs induce endoplasmic reticulum stress, which may be an important mechanism underlying some of the toxic effects of these chemicals.
Collapse
Affiliation(s)
- Jochem Louisse
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands.
| | - Deborah Rijkers
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Geert Stoopen
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Aafke Janssen
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Martijn Staats
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Ron Hoogenboom
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| |
Collapse
|
38
|
Lytrivi M, Ghaddar K, Lopes M, Rosengren V, Piron A, Yi X, Johansson H, Lehtiö J, Igoillo-Esteve M, Cunha DA, Marselli L, Marchetti P, Ortsäter H, Eizirik DL, Cnop M. Combined transcriptome and proteome profiling of the pancreatic β-cell response to palmitate unveils key pathways of β-cell lipotoxicity. BMC Genomics 2020; 21:590. [PMID: 32847508 PMCID: PMC7448506 DOI: 10.1186/s12864-020-07003-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prolonged exposure to elevated free fatty acids induces β-cell failure (lipotoxicity) and contributes to the pathogenesis of type 2 diabetes. In vitro exposure of β-cells to the saturated free fatty acid palmitate is a valuable model of lipotoxicity, reproducing features of β-cell failure observed in type 2 diabetes. In order to map the β-cell response to lipotoxicity, we combined RNA-sequencing of palmitate-treated human islets with iTRAQ proteomics of insulin-secreting INS-1E cells following a time course exposure to palmitate. RESULTS Crossing transcriptome and proteome of palmitate-treated β-cells revealed 85 upregulated and 122 downregulated genes at both transcript and protein level. Pathway analysis identified lipid metabolism, oxidative stress, amino-acid metabolism and cell cycle pathways among the most enriched palmitate-modified pathways. Palmitate induced gene expression changes compatible with increased free fatty acid mitochondrial import and β-oxidation, decreased lipogenesis and modified cholesterol transport. Palmitate modified genes regulating endoplasmic reticulum (ER) function, ER-to-Golgi transport and ER stress pathways. Furthermore, palmitate modulated cAMP/protein kinase A (PKA) signaling, inhibiting expression of PKA anchoring proteins and downregulating the GLP-1 receptor. SLC7 family amino-acid transporters were upregulated in response to palmitate but this induction did not contribute to β-cell demise. To unravel critical mediators of lipotoxicity upstream of the palmitate-modified genes, we identified overrepresented transcription factor binding sites and performed network inference analysis. These identified LXR, PPARα, FOXO1 and BACH1 as key transcription factors orchestrating the metabolic and oxidative stress responses to palmitate. CONCLUSIONS This is the first study to combine transcriptomic and sensitive time course proteomic profiling of palmitate-exposed β-cells. Our results provide comprehensive insight into gene and protein expression changes, corroborating and expanding beyond previous findings. The identification of critical drivers and pathways of the β-cell lipotoxic response points to novel therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Maria Lytrivi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium.,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Kassem Ghaddar
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Miguel Lopes
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Victoria Rosengren
- Diabetes Research Unit, Department of Clinical Science and Education, Sodersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Anthony Piron
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Henrik Johansson
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, 171 21, Solna, Sweden
| | - Janne Lehtiö
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, 171 21, Solna, Sweden
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Daniel A Cunha
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Henrik Ortsäter
- Diabetes Research Unit, Department of Clinical Science and Education, Sodersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium. .,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
39
|
Poncet N, Halley PA, Lipina C, Gierliński M, Dady A, Singer GA, Febrer M, Shi Y, Yamaguchi TP, Taylor PM, Storey KG. Wnt regulates amino acid transporter Slc7a5 and so constrains the integrated stress response in mouse embryos. EMBO Rep 2020; 21:e48469. [PMID: 31789450 PMCID: PMC6944906 DOI: 10.15252/embr.201948469] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 12/29/2022] Open
Abstract
Amino acids are essential for cellular metabolism, and it is important to understand how nutrient supply is coordinated with changing energy requirements during embryogenesis. Here, we show that the amino acid transporter Slc7a5/Lat1 is highly expressed in tissues undergoing morphogenesis and that Slc7a5-null mouse embryos have profound neural and limb bud outgrowth defects. Slc7a5-null neural tissue exhibited aberrant mTORC1 activity and cell proliferation; transcriptomics, protein phosphorylation and apoptosis analyses further indicated induction of the integrated stress response as a potential cause of observed defects. The pattern of stress response gene expression induced in Slc7a5-null embryos was also detected at low level in wild-type embryos and identified stress vulnerability specifically in tissues undergoing morphogenesis. The Slc7a5-null phenotype is reminiscent of Wnt pathway mutants, and we show that Wnt/β-catenin loss inhibits Slc7a5 expression and induces this stress response. Wnt signalling therefore normally supports the metabolic demands of morphogenesis and constrains cellular stress. Moreover, operation in the embryo of the integrated stress response, which is triggered by pathogen-mediated as well as metabolic stress, may provide a mechanistic explanation for a range of developmental defects.
Collapse
Affiliation(s)
- Nadège Poncet
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
- Present address:
Institute of PhysiologyUniversity of ZürichZürichSwitzerland
| | - Pamela A Halley
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Christopher Lipina
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Marek Gierliński
- Division of Computational BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Alwyn Dady
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Gail A Singer
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Melanie Febrer
- Sequencing FacilitySchool of Life SciencesUniversity of DundeeDundeeUK
- Present address:
Illumina CanadaVictoriaBCCanada
| | - Yun‐Bo Shi
- Section on Molecular MorphogenesisNICHD, NIHBethesdaMDUSA
| | - Terry P Yamaguchi
- Cancer and Developmental Biology LaboratoryCenter for Cancer ResearchNational Cancer Institute‐Frederick, NIHFrederickMDUSA
| | - Peter M Taylor
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Kate G Storey
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
40
|
Itzhak DN, Sacco F, Nagaraj N, Tyanova S, Mann M, Murgia M. SILAC-based quantitative proteomics using mass spectrometry quantifies endoplasmic reticulum stress in whole HeLa cells. Dis Model Mech 2019; 12:dmm.040741. [PMID: 31628211 PMCID: PMC6899043 DOI: 10.1242/dmm.040741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
The unfolded protein response (UPR) involves extensive proteome remodeling in many cellular compartments. To date, a comprehensive analysis of the UPR has not been possible because of technological limitations. Here, we employ stable isotope labeling with amino acids in cell culture (SILAC)-based proteomics to quantify the response of over 6200 proteins to increasing concentrations of tunicamycin in HeLa cells. We further compare the effects of tunicamycin (5 µg/ml) to those of thapsigargin (1 µM) and DTT (2 mM), both activating the UPR through different mechanisms. This systematic quantification of the proteome-wide expression changes that follow proteostatic stress is a resource for the scientific community, enabling the discovery of novel players involved in the pathophysiology of the broad range of disorders linked to proteostasis. We identified increased expression in 38 proteins not previously linked to the UPR, of which 15 likely remediate ER stress, and the remainder may contribute to pathological outcomes. Unexpectedly, there are few strongly downregulated proteins, despite expression of the pro-apoptotic transcription factor CHOP, suggesting that IRE1-dependent mRNA decay (RIDD) has a limited contribution to ER stress-mediated cell death in our system. Summary: A novel observation point of a familiar scenario: proteomic quantification of over 6200 proteins as a resource to further explore endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Daniel N Itzhak
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Francesca Sacco
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nagarjuna Nagaraj
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Stefka Tyanova
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany.,Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Marta Murgia
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany .,Department of Biomedical Sciences, University of Padova, 35121 Padua, Italy
| |
Collapse
|
41
|
Zhang Z, Ruan H, Liu CJ, Ye Y, Gong J, Diao L, Guo AY, Han L. tRic: a user-friendly data portal to explore the expression landscape of tRNAs in human cancers. RNA Biol 2019; 17:1674-1679. [PMID: 31432762 DOI: 10.1080/15476286.2019.1657744] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transfer RNAs (tRNAs) play critical roles in human cancer. Currently, no database provides the expression landscape and clinical relevance of tRNAs across a variety of human cancers. Utilizing miRNA-seq data from The Cancer Genome Atlas, we quantified the relative expression of tRNA genes and merged them into the codon level and amino level across 31 cancer types. The expression of tRNAs is associated with clinical features of patient smoking history and overall survival, and disease stage, subtype, and grade. We further analysed codon frequency and amino acid frequency for each protein coding gene and linked alterations of tRNA expression with protein translational efficiency. We include these data resources in a user-friendly data portal, tRic (tRNA in cancer, https://hanlab.uth.edu/tRic/ or http://bioinfo.life.hust.edu.cn/tRic/), which can be of significant interest to the research community.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston , Houston, TX, USA
| | - Hang Ruan
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston , Houston, TX, USA
| | - Chun-Jie Liu
- Department of Bioinformatics and Systems Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei, PR China
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston , Houston, TX, USA
| | - Jing Gong
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston , Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei, PR China
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston , Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston , Houston, TX, USA
| |
Collapse
|
42
|
Gonen N, Meller A, Sabath N, Shalgi R. Amino Acid Biosynthesis Regulation during Endoplasmic Reticulum Stress Is Coupled to Protein Expression Demands. iScience 2019; 19:204-213. [PMID: 31377665 PMCID: PMC6698312 DOI: 10.1016/j.isci.2019.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) stress response, also known as the unfolded protein response (UPR), is a complex cellular response to ER protein misfolding that involves transcriptional regulatory branches and a PERK-mediated translational regulatory branch. Here we revealed that amino acid biosynthesis regulation is coupled to protein synthesis demands during ER stress. Specifically, we demonstrated that the UPR leads to PERK-dependent induction in the biosynthesis of specific amino acids, and to upregulation of their corresponding tRNA synthetases. Furthermore, we found that sequences of UPR-upregulated proteins are significantly enriched with these UPR-induced amino acids. Interestingly, whereas the UPR leads to repression of ER target proteins, we showed that secreted proteins tended to escape this repression and were highly enriched for the UPR-induced amino acids. Our results unravel coordination between amino acid supply, namely, biosynthesis and tRNA loading, and demand from UPR-induced proteins under ER stress, thus revealing an additional regulatory layer of protein synthesis.
Coordination of amino acid supply and protein synthesis demand during ER stress Specific amino acid biosynthesis and cognate tRNA synthetases induction by the UPR UPR-induced amino acids support amino acid demand of UPR-upregulated proteins UPR-induced amino acids are highly enriched within secreted proteins
Collapse
Affiliation(s)
- Nir Gonen
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Anatoly Meller
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Niv Sabath
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
43
|
Papadopoli D, Boulay K, Kazak L, Pollak M, Mallette FA, Topisirovic I, Hulea L. mTOR as a central regulator of lifespan and aging. F1000Res 2019; 8:F1000 Faculty Rev-998. [PMID: 31316753 PMCID: PMC6611156 DOI: 10.12688/f1000research.17196.1] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
The mammalian/mechanistic target of rapamycin (mTOR) is a key component of cellular metabolism that integrates nutrient sensing with cellular processes that fuel cell growth and proliferation. Although the involvement of the mTOR pathway in regulating life span and aging has been studied extensively in the last decade, the underpinning mechanisms remain elusive. In this review, we highlight the emerging insights that link mTOR to various processes related to aging, such as nutrient sensing, maintenance of proteostasis, autophagy, mitochondrial dysfunction, cellular senescence, and decline in stem cell function.
Collapse
Affiliation(s)
- David Papadopoli
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Suite 720, Montréal, QC, H4A 3T2, Canada
- Lady Davis Institute, SMBD JGH, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Karine Boulay
- Lady Davis Institute, SMBD JGH, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Maisonneuve-Rosemont Hospital Research Centre, 5415 Assumption Blvd, Montréal, QC, H1T 2M4, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Lawrence Kazak
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, QC, H3G 1Y6, Canada
- Goodman Cancer Research Centre, 1160 Pine Avenue West, Montréal, QC, H3A 1A3, Canada
| | - Michael Pollak
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Suite 720, Montréal, QC, H4A 3T2, Canada
- Lady Davis Institute, SMBD JGH, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Goodman Cancer Research Centre, 1160 Pine Avenue West, Montréal, QC, H3A 1A3, Canada
- Department of Experimental Medicine, McGill University, 845 Sherbrooke Street West, Montréal, QC, H3A 0G4, Canada
| | - Frédérick A. Mallette
- Maisonneuve-Rosemont Hospital Research Centre, 5415 Assumption Blvd, Montréal, QC, H1T 2M4, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
- Département de Médecine, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Ivan Topisirovic
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Suite 720, Montréal, QC, H4A 3T2, Canada
- Lady Davis Institute, SMBD JGH, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, QC, H3G 1Y6, Canada
- Department of Experimental Medicine, McGill University, 845 Sherbrooke Street West, Montréal, QC, H3A 0G4, Canada
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Centre, 5415 Assumption Blvd, Montréal, QC, H1T 2M4, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
- Département de Médecine, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
44
|
Santos M, Fidalgo A, Varanda AS, Oliveira C, Santos MAS. tRNA Deregulation and Its Consequences in Cancer. Trends Mol Med 2019; 25:853-865. [PMID: 31248782 DOI: 10.1016/j.molmed.2019.05.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
The expression of transfer RNAs (tRNAs) is deregulated in cancer cells but the mechanisms and functional meaning of such deregulation are poorly understood. The proteome of cancer cells is not fully encoded by their transcriptome, however, the contribution of mRNA translation to such diversity remains to be elucidated. We review data supporting the hypothesis that tRNA expression deregulation and translational error rate is an important contributor to proteome diversity and cell population heterogeneity, genome instability, and drug resistance in tumors. This hypothesis is aligned with recent data in various model organisms, showing unanticipated adaptive roles of translational errors (adaptive mistranslation), expression control of specific gene subsets by tRNAs, and proteome diversification by elevation of translational error rates in tumors.
Collapse
Affiliation(s)
- Mafalda Santos
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal; Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Fidalgo
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - A Sofia Varanda
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal; Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Carla Oliveira
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal; Department of Pathology, Medical Faculty of Porto, Porto, Portugal.
| | - Manuel A S Santos
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
45
|
Zhou Z, Sun B, Huang S, Jia W, Yu D. The tRNA-associated dysregulation in diabetes mellitus. Metabolism 2019; 94:9-17. [PMID: 30711570 DOI: 10.1016/j.metabol.2019.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus (DM) is a complex endocrine and metabolic disorder for human health and well-being. Deregulated glucose and lipid metabolism are the primary underlying manifestations associated with this disease. Transfer RNAs (tRNAs) are considered to mainly participate in protein translation and may contribute to complex human pathologies. Although the molecular mechanisms remain, for the most part, unknown, accumulating evidence indicates that tRNAs play a vital role in the pathogenesis of DM. This paper reviews different aspects of tRNA-associated dysregulation in DM, such as tRNA mutations, tRNA modifications, tRNA aminoacylation and tRNA derivatives, aiming at a better understanding of the pathogenesis of DM and providing new ideas for the personalized treatment of this metabolism-associated disease.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Bao Sun
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410000, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410000, China
| | - Shiqiong Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410000, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410000, China
| | - Wenrui Jia
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
46
|
Amino acid transporters in the regulation of insulin secretion and signalling. Biochem Soc Trans 2019; 47:571-590. [PMID: 30936244 DOI: 10.1042/bst20180250] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 01/02/2023]
Abstract
Amino acids are increasingly recognised as modulators of nutrient disposal, including their role in regulating blood glucose through interactions with insulin signalling. More recently, cellular membrane transporters of amino acids have been shown to form a pivotal part of this regulation as they are primarily responsible for controlling cellular and circulating amino acid concentrations. The availability of amino acids regulated by transporters can amplify insulin secretion and modulate insulin signalling in various tissues. In addition, insulin itself can regulate the expression of numerous amino acid transporters. This review focuses on amino acid transporters linked to the regulation of insulin secretion and signalling with a focus on those of the small intestine, pancreatic β-islet cells and insulin-responsive tissues, liver and skeletal muscle. We summarise the role of the amino acid transporter B0AT1 (SLC6A19) and peptide transporter PEPT1 (SLC15A1) in the modulation of global insulin signalling via the liver-secreted hormone fibroblast growth factor 21 (FGF21). The role of vesicular vGLUT (SLC17) and mitochondrial SLC25 transporters in providing glutamate for the potentiation of insulin secretion is covered. We also survey the roles SNAT (SLC38) family and LAT1 (SLC7A5) amino acid transporters play in the regulation of and by insulin in numerous affective tissues. We hypothesise the small intestine amino acid transporter B0AT1 represents a crucial nexus between insulin, FGF21 and incretin hormone signalling pathways. The aim is to give an integrated overview of the important role amino acid transporters have been found to play in insulin-regulated nutrient signalling.
Collapse
|
47
|
M(en)TORship lessons on life and death by the integrated stress response. Biochim Biophys Acta Gen Subj 2018; 1863:644-649. [PMID: 30572003 DOI: 10.1016/j.bbagen.2018.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
Abstract
Cells employ pro-survival and pro-adaptive pathways to cope with different forms of environmental stress. When stress is excessive, and the damage caused by it is unsustainable, cells engage pro-death pathways, which are in place to protect the host from the deleterious effects of harmed cells. Two important pathways that determine the balance between survival and death of stressed cells are the integrated stress response (ISR) and the mammalian target of rapamycin (mTOR), both of which converge at the level of mRNA translation. The two pathways have established avenues of communication to control their activity and determine the fate of stressed cells in a context-dependent manner. The functional interplay between the ISR and mTOR may have significant ramifications in the development and treatment of human diseases such as diabetes, neurodegeneration and cancer.
Collapse
|
48
|
Geoghegan D, Arnall C, Hatton D, Noble-Longster J, Sellick C, Senussi T, James DC. Control of amino acid transport into Chinese hamster ovary cells. Biotechnol Bioeng 2018; 115:2908-2929. [PMID: 29987891 DOI: 10.1002/bit.26794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/06/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
Abstract
Amino acid transporters (AATs) represent a key interface between the cell and its environment, critical for all cellular processes: Energy generation, redox control, and synthesis of cell and product biomass. However, very little is known about the activity of different functional classes of AATs in Chinese hamster ovary (CHO) cells, how they support cell growth and productivity, and the potential for engineering their activity and/or the composition of amino acids in growth media to improve CHO cell performance in vitro. In this study, we have comparatively characterized AAT expression in untransfected and monoclonal antibody (MAb)-producing CHO cells using transcriptome analysis by RNA-seq, and mechanistically dissected AAT function using a variety of transporter-specific chemical inhibitors, comparing their effect on cell proliferation, recombinant protein production, and amino acid transport. Of a possible 56 mammalian plasma membrane AATs, 16 AAT messenger RNAs (mRNAs) were relatively abundant across all CHO cell populations. Of these, a subset of nine AAT mRNAs were more abundant in CHO cells engineered to produce a recombinant MAb. Together, upregulated AATs provide additional supply of specific amino acids overrepresented in MAb biomass compared to CHO host cell biomass, enable transport of synthetic substrates for glutathione synthesis, facilitate transport of essential amino acids to maintain active protein synthesis, and provide amino acid substrates for coordinated antiport systems to maintain supplies of proteinogenic and essential amino acids.
Collapse
Affiliation(s)
- Darren Geoghegan
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Claire Arnall
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | - Joanne Noble-Longster
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | | | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
49
|
Jung TW, Chung YH, Kim HC, Abd El-Aty AM, Jeong JH. Hyperlipidemia-induced hepassocin in the liver contributes to insulin resistance in skeletal muscle. Mol Cell Endocrinol 2018; 470:26-33. [PMID: 29111387 DOI: 10.1016/j.mce.2017.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022]
Abstract
Hepassocin (HPS) has recently been identified as a novel hepatokine that causes hepatic steatosis. However, the role of HPS in the development of insulin resistance in skeletal muscle under obesity remains unclear. The effect of hyperlipidemia on hepatic HPS expression was evaluated in primary hepatocytes and liver of mice. HPS-mediated signal pathways were explored using small interfering (si) RNAs of specific genes or inhibitors. We found that treatment of primary hepatocytes with palmitate could induce HPS expression through C/EBPβ-mediated transcriptional activation. Furthermore, increased HPS expression was observed in the liver of high fat diet (HFD)-fed or tunicamycin-treated mice. Pretreatment with 4-phenylbutyrate (4-BPA) (an endoplasmic reticulum (ER) stress inhibitor) and suppression of p38 by siRNA abrogated the effect of palmitate on HPS expression in primary hepatocytes. Treatment of differentiated C2C12 cells with recombinant HPS caused c-Jun N-terminal kinase (JNK) phosphorylation and impairment of insulin sensitivity in a dose-dependent manner. siRNA-mediated suppression of JNK reduced the effect of HPS on insulin signaling. Furthermore, the suppression of epidermal growth factor receptor (EGFR) by siRNA mitigated both HPS-induced JNK phosphorylation and insulin resistance. In addition, HPS did not affect inflammation and ER stress in differentiated C2C12 cells. In conclusion, we elucidated that ER stress induced by palmitate could increase the expression of HPS in hepatocytes and further contribute to the development of insulin resistance in skeletal muscle via EGFR/JNK-mediated pathway. Taken together, we suggest that HPS could be a therapeutic target for obesity-linked insulin resistance.
Collapse
Affiliation(s)
- Tae Woo Jung
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Republic of Korea; Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Yang X, Xia R, Yue C, Zhai W, Du W, Yang Q, Cao H, Chen X, Obando D, Zhu Y, Chen X, Chen JJ, Piganelli J, Wipf P, Jiang Y, Xiao G, Wu C, Jiang J, Lu B. ATF4 Regulates CD4 + T Cell Immune Responses through Metabolic Reprogramming. Cell Rep 2018; 23:1754-1766. [PMID: 29742431 PMCID: PMC6051420 DOI: 10.1016/j.celrep.2018.04.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 12/31/2017] [Accepted: 04/06/2018] [Indexed: 01/16/2023] Open
Abstract
T cells are strongly regulated by oxidizing environments and amino acid restriction. How T cells reprogram metabolism to adapt to these extracellular stress situations is not well understood. Here, we show that oxidizing environments and amino acid starvation induce ATF4 in CD4+ T cells. We also demonstrate that Atf4-deficient CD4+ T cells have defects in redox homeostasis, proliferation, differentiation, and cytokine production. We further reveal that ATF4 regulates a coordinated gene network that drives amino acid intake, mTORC1 activation, protein translation, and an anabolic program for de novo synthesis of amino acids and glutathione. ATF4 also promotes catabolic glycolysis and glutaminolysis and oxidative phosphorylation and thereby provides precursors and energy for anabolic pathways. ATF4-deficient mice mount reduced Th1 but elevated Th17 immune responses and develop more severe experimental allergic encephalomyelitis (EAE). Our study demonstrates that ATF4 is critical for CD4+ T cell-mediated immune responses through driving metabolic adaptation.
Collapse
Affiliation(s)
- Xi Yang
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA; School of Medicine, Tsinghua University, HaiDian, Beijing 100084, China
| | - Rui Xia
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA; Department of Immunology, Institute of Medical Biotechnology, Soochow University, Suzhou 215007, China; The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Cuihua Yue
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA; Department of Oncology, the Third Affiliated Hospital, Soochow University, Changzhou 213003, Jiangsu, China
| | - Wensi Zhai
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA; Department of Oncology, the Third Affiliated Hospital, Soochow University, Changzhou 213003, Jiangsu, China
| | - Wenwen Du
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA; Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qianting Yang
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA; Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Key Laboratory of Infection and Immunity, Third People's Hospital, Guangdong Medical College, Shenzhen, Guangdong 518112, China
| | - Huiling Cao
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen 518055, China
| | - Xiaojuan Chen
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Danielle Obando
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Yibei Zhu
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA; Department of Immunology, Institute of Medical Biotechnology, Soochow University, Suzhou 215007, China
| | - Xinchun Chen
- Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Key Laboratory of Infection and Immunity, Third People's Hospital, Guangdong Medical College, Shenzhen, Guangdong 518112, China
| | - Jane-Jane Chen
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jon Piganelli
- Division of Immunogenetics, Department of Pediatrics, Rangos Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Peter Wipf
- Department of Chemistry and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Guozhi Xiao
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen 518055, China
| | - Changping Wu
- Department of Oncology, the Third Affiliated Hospital, Soochow University, Changzhou 213003, Jiangsu, China
| | - Jingting Jiang
- Department of Oncology, the Third Affiliated Hospital, Soochow University, Changzhou 213003, Jiangsu, China
| | - Binfeng Lu
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|