1
|
Shi J, Onuki Y, Kawanami F, Miyagawa N, Iwasaki F, Tsuda H, Takahashi K, Oku T, Suzuki M, Higashi K, Adachi H, Nishimura Y, Nakajima M, Irimura T, Higashi N. The Uptake of Heparanase into Mast Cells Is Regulated by Its Enzymatic Activity to Degrade Heparan Sulfate. Int J Mol Sci 2024; 25:6281. [PMID: 38892469 PMCID: PMC11173065 DOI: 10.3390/ijms25116281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Mast cells take up extracellular latent heparanase and store it in secretory granules. The present study examined whether the enzymatic activity of heparanase regulates its uptake efficiency. Recombinant mouse heparanase mimicking both the latent and mature forms (L-Hpse and M-Hpse, respectively) was internalized into mastocytoma MST cells, peritoneal cell-derived mast cells, and bone marrow-derived mast cells. The internalized amount of L-Hpse was significantly higher than that of M-Hpse. In MST cells, L-Hpse was continuously internalized for up to 8 h, while the uptake of M-Hpse was saturated after 2 h of incubation. L-Hpse and M-Hpse are similarly bound to the MST cell surface. The expression level of cell surface heparan sulfate was reduced in MST cells incubated with M-Hpse. The internalized amount of M-Hpse into mast cells was significantly increased in the presence of heparastatin (SF4), a small molecule heparanase inhibitor that does not affect the binding of heparanase to immobilized heparin. Enzymatically quiescent M-Hpse was prepared with a point mutation at Glu335. The internalized amount of mutated M-Hpse was significantly higher than that of wild-type M-Hpse but similar to that of wild-type and mutated L-Hpse. These results suggest that the enzymatic activity of heparanase negatively regulates the mast cell-mediated uptake of heparanase, possibly via the downregulation of cell surface heparan sulfate expression.
Collapse
Affiliation(s)
- Jia Shi
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (J.S.); (Y.O.); (H.T.); (K.T.)
| | - Yoshiki Onuki
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (J.S.); (Y.O.); (H.T.); (K.T.)
| | - Fumiya Kawanami
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (J.S.); (Y.O.); (H.T.); (K.T.)
| | - Naoko Miyagawa
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (J.S.); (Y.O.); (H.T.); (K.T.)
| | - Fumika Iwasaki
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (J.S.); (Y.O.); (H.T.); (K.T.)
| | - Haruna Tsuda
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (J.S.); (Y.O.); (H.T.); (K.T.)
| | - Katsuhiko Takahashi
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (J.S.); (Y.O.); (H.T.); (K.T.)
| | - Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan;
| | - Masato Suzuki
- Department of Clinical and Analytical Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan (K.H.)
| | - Kyohei Higashi
- Department of Clinical and Analytical Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan (K.H.)
| | - Hayamitsu Adachi
- Institute of Microbial Chemistry (BIKAKEN), 18-24, Miyamoto, Numazu 410-0301, Shizuoka, Japan;
| | - Yoshio Nishimura
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23, Kamiosaki, Shinagawa-ku 141-0021, Tokyo, Japan;
| | - Motowo Nakajima
- SBI Pharmaceuticals Co., Ltd., 1-6-1, Roppongi, Minato-ku 106-6019, Tokyo, Japan;
| | - Tatsuro Irimura
- Division of Glycobiologics, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku 113-8421, Tokyo, Japan;
| | - Nobuaki Higashi
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (J.S.); (Y.O.); (H.T.); (K.T.)
| |
Collapse
|
2
|
Rabinowitz ZM, Somers J, Wang Z, Cui L. Chemical toolbox to interrogate Heparanase-1 activity. Curr Opin Chem Biol 2024; 80:102452. [PMID: 38555836 DOI: 10.1016/j.cbpa.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
The development of a robust chemical toolbox to interrogate the activity of heparanase-1 (HPSE-1), an endo-β-d-glucuronidase and the only known enzyme that cleaves heparan sulfate (HS), has become critically important. The primary function of HPSE-1, cleaving HS side chains from heparan sulfate proteoglycans (HSPGs), regulates the integrity of the extracellular matrix (ECM) and the bioavailability of active, heparan sulfate-binding partners such as enzymes, growth factors, chemokines, and cytokines. HPSE-1 enzymatic activity is strictly regulated and has been found to play fundamental roles in pathophysiological processes. HPSE-1 is significantly overexpressed under various conditions including cancer, metastasis, angiogenesis, and inflammation, making HPSE-1 a promising therapeutic and diagnostic target. Chemical tools that can detect and image HPSE-1 activity in vitro and/or in vivo can help drive the discovery of novel and efficacious anti-HPSE-1 drugs, investigate the basic biology of HPSE-1, and help serve as a diagnostic tool in clinical applications. Here, we will give an overview of the common chemical tools to detect HPSE-1 activity and highlight the novel heparanase probes recently developed in our lab.
Collapse
Affiliation(s)
- Zachary M Rabinowitz
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Johnathan Somers
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Zhishen Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Lina Cui
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
3
|
Vlodavsky I, Kayal Y, Hilwi M, Soboh S, Sanderson RD, Ilan N. Heparanase-A single protein with multiple enzymatic and nonenzymatic functions. PROTEOGLYCAN RESEARCH 2023; 1:e6. [PMID: 37547889 PMCID: PMC10398610 DOI: 10.1002/pgr2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023]
Abstract
Heparanase (Hpa1) is expressed by tumor cells and cells of the tumor microenvironment and functions extracellularly to remodel the extracellular matrix (ECM) and regulate the bioavailability of ECM-bound factors, augmenting, among other effects, gene transcription, autophagy, exosome formation, and heparan sulfate (HS) turnover. Much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth, metastasis, and chemoresistance. The enzyme appears to fulfill some normal functions associated, for example, with vesicular traffic, lysosomal-based secretion, autophagy, HS turnover, and gene transcription. It activates cells of the innate immune system, promotes the formation of exosomes and autophagosomes, and stimulates signal transduction pathways via enzymatic and nonenzymatic activities. These effects dynamically impact multiple regulatory pathways that together drive tumor growth, dissemination, and drug resistance as well as inflammatory responses. The emerging premise is that heparanase expressed by tumor cells, immune cells, endothelial cells, and other cells of the tumor microenvironment is a key regulator of the aggressive phenotype of cancer, an important contributor to the poor outcome of cancer patients and a valid target for therapy. So far, however, antiheparanase-based therapy has not been implemented in the clinic. Unlike heparanase, heparanase-2 (Hpa2), a close homolog of heparanase (Hpa1), does not undergo proteolytic processing and hence lacks intrinsic HS-degrading activity, the hallmark of heparanase. Hpa2 retains the capacity to bind heparin/HS and exhibits an even higher affinity towards HS than heparanase, thus competing for HS binding and inhibiting heparanase enzymatic activity. It appears that Hpa2 functions as a natural inhibitor of Hpa1 regulates the expression of selected genes that maintain tissue hemostasis and normal function, and plays a protective role against cancer and inflammation, together emphasizing the significance of maintaining a proper balance between Hpa1 and Hpa2.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Yasmin Kayal
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Maram Hilwi
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Soaad Soboh
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Ralph D. Sanderson
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Neta Ilan
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| |
Collapse
|
4
|
Whitefield C, Vo Y, Schwartz BD, Hepburn C, Ahmed FH, Onagi H, Banwell MG, Nelms K, Malins LR, Jackson CJ. Complex Inhibitory Mechanism of Glycomimetics with Heparanase. Biochemistry 2023. [PMID: 37368361 DOI: 10.1021/acs.biochem.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Heparanase (HPSE) is the only mammalian endo-β-glucuronidase known to catalyze the degradation of heparan sulfate. Dysfunction of HPSE activity has been linked to several disease states, resulting in HPSE becoming the target of numerous therapeutic programs, yet no drug has passed clinical trials to date. Pentosan polysulfate sodium (PPS) is a heterogeneous, FDA-approved drug for the treatment of interstitial cystitis and a known HPSE inhibitor. However, due to its heterogeneity, characterization of its mechanism of HPSE inhibition is challenging. Here, we show that inhibition of HPSE by PPS is complex, involving multiple overlapping binding events, each influenced by factors such as oligosaccharide length and inhibitor-induced changes in the protein secondary structure. The present work advances our molecular understanding of the inhibition of HPSE and will aid in the development of therapeutics for the treatment of a broad range of pathologies associated with enzyme dysfunction, including cancer, inflammatory disease, and viral infections.
Collapse
Affiliation(s)
- Cassidy Whitefield
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yen Vo
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Brett D Schwartz
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Caryn Hepburn
- Waters Australia Pty Ltd, 38-46 South Street, Rydalmere, New South Wales 2116, Australia
| | - F Hafna Ahmed
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hideki Onagi
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Keats Nelms
- Beta Therapeutics Pty. Ltd. Level 6, 121 Marcus Clarke Street, Canberra, Australian Capital Territory 2601, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
5
|
Takahashi I. Importance of Heparan Sulfate Proteoglycans in Pancreatic Islets and β-Cells. Int J Mol Sci 2022; 23:12082. [PMID: 36292936 PMCID: PMC9603760 DOI: 10.3390/ijms232012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
β-cells in the islets of Langerhans of the pancreas secrete insulin in response to the glucose concentration in the blood. When these pancreatic β-cells are damaged, diabetes develops through glucose intolerance caused by insufficient insulin secretion. High molecular weight polysaccharides, such as heparin and heparan sulfate (HS) proteoglycans, and HS-degrading enzymes, such as heparinase, participate in the protection, maintenance, and enhancement of the functions of pancreatic islets and β-cells, and the demand for studies on glycobiology within the field of diabetes research has increased. This review introduces the roles of complex glycoconjugates containing high molecular weight polysaccharides and their degrading enzymes in pancreatic islets and β-cells, including those obtained in studies conducted by us earlier. In addition, from the perspective of glycobiology, this study proposes the possibility of application to diabetes medicine.
Collapse
Affiliation(s)
- Iwao Takahashi
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Morioka 028-3694, Iwate, Japan
| |
Collapse
|
6
|
Yuan F, Yang Y, Zhou H, Quan J, Liu C, Wang Y, Zhang Y, Yu X. Heparanase in cancer progression: Structure, substrate recognition and therapeutic potential. Front Chem 2022; 10:926353. [PMID: 36157032 PMCID: PMC9500389 DOI: 10.3389/fchem.2022.926353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Heparanase, a member of the carbohydrate-active enzyme (CAZy) GH79 family, is an endo-β-glucuronidase capable of degrading the carbohydrate moiety of heparan sulphate proteoglycans, thus modulating and facilitating remodeling of the extracellular matrix. Heparanase activity is strongly associated with major human pathological complications, including but not limited to tumour progress, angiogenesis and inflammation, which make heparanase a valuable therapeutic target. Long-due crystallographic structures of human and bacterial heparanases have been recently determined. Though the overall architecture of human heparanase is generally comparable to that of bacterial glucuronidases, remarkable differences exist in their substrate recognition mode. Better understanding of regulatory mechanisms of heparanase in substrate recognition would provide novel insight into the anti-heparanase inhibitor development as well as potential clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xing Yu
- *Correspondence: Yujing Zhang, ; Xing Yu,
| |
Collapse
|
7
|
Whitefield C, Hong N, Mitchell JA, Jackson CJ. Computational design and experimental characterisation of a stable human heparanase variant. RSC Chem Biol 2022; 3:341-349. [PMID: 35382258 PMCID: PMC8905545 DOI: 10.1039/d1cb00239b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Heparanase is the only human enzyme known to hydrolyse heparin sulfate and is involved in many important physiological processes. However, it is also unregulated in many disease states, such as cancer, diabetes and Covid-19. It is thus an important drug target, yet the heterologous production of heparanase is challenging and only possible in mammalian or insect expression systems, which limits the ability of many laboratories to study it. Here we describe the computational redesign of heparanase to allow high yield expression in Escherchia coli. This mutated form of heparanase exhibits essentially identical kinetics, inhibition, structure and protein dynamics to the wild type protein, despite the presence of 26 mutations. This variant will facilitate wider study of this important enzyme and contributes to a growing body of literature that shows evolutionarily conserved and functionally neutral mutations can have significant effects on protein folding and expression. A mutant heparanase that exhibits wild type structure and activity but can be heterologously produced in bacterial protein expression systems.![]()
Collapse
Affiliation(s)
- Cassidy Whitefield
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Nansook Hong
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Joshua A. Mitchell
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Colin J. Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
8
|
Mayfosh AJ, Nguyen TK, Hulett MD. The Heparanase Regulatory Network in Health and Disease. Int J Mol Sci 2021; 22:11096. [PMID: 34681753 PMCID: PMC8541136 DOI: 10.3390/ijms222011096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) is a structural framework that has many important physiological functions which include maintaining tissue structure and integrity, serving as a barrier to invading pathogens, and acting as a reservoir for bioactive molecules. This cellular scaffold is made up of various types of macromolecules including heparan sulfate proteoglycans (HSPGs). HSPGs comprise a protein core linked to the complex glycosaminoglycan heparan sulfate (HS), the remodeling of which is important for many physiological processes such as wound healing as well as pathological processes including cancer metastasis. Turnover of HS is tightly regulated by a single enzyme capable of cleaving HS side chains: heparanase. Heparanase upregulation has been identified in many inflammatory diseases including atherosclerosis, fibrosis, and cancer, where it has been shown to play multiple roles in processes such as epithelial-mesenchymal transition, angiogenesis, and cancer metastasis. Heparanase expression and activity are tightly regulated. Understanding the regulation of heparanase and its downstream targets is attractive for the development of treatments for these diseases. This review provides a comprehensive overview of the regulators of heparanase as well as the enzyme's downstream gene and protein targets, and implications for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alyce J. Mayfosh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Tien K. Nguyen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Mark D. Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| |
Collapse
|
9
|
Rodrigues-Junior DM, Pelarin MFDA, Nader HB, Vettore AL, Pinhal MAS. MicroRNA-1252-5p Associated with Extracellular Vesicles Enhances Bortezomib Sensitivity in Multiple Myeloma Cells by Targeting Heparanase. Onco Targets Ther 2021; 14:455-467. [PMID: 33488100 PMCID: PMC7814994 DOI: 10.2147/ott.s286751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Multiple myeloma (MM) remains an incurable disease, and patient survival requires a better understanding of this malignancy's molecular aspects. Heparanase (HPSE) is highly expressed in aggressive MM cells and related to tumor growth, metastasis, and bortezomib (BTZ) resistance. Thus, targeting HPSE seems to be a promising approach for MM treatment, and because microRNAs (miRNAs) have emerged as potential regulators of HPSE expression, the use of extracellular vesicles (EVs) can allow the efficient delivery of therapeutic miRNAs. METHODS We used prediction algorithms to identify potential miRNAs that regulate negatively HPSE expression. RT-qPCR was performed to assess miRNAs and HPSE expression in MM lines (U266 and RPMI-8226). Synthetic miRNA mimics were electroporated in MM cells to understand the miRNA contribution in HPSE expression, glycosaminoglycans (GAGs) profile, cell proliferation, and cell death induced by BTZ. EVs derived from HEK293T cells were engineered with miRNAs to evaluate their therapeutic potential combined with BTZ. RESULTS It revealed a direct association between BTZ sensitivity, HPSE, and miR-1252-5p expressions. Moreover, overexpression of miR-1252-5p significantly reduced HPSE expression and HPSE enzymatic activity in MM cells. The higher level of miR-1252-5p was correlated with a reduction of cell viability and higher sensitivity to BTZ. Further, EVs carrying miR-1252-5p increased MM cells' sensitivity to BTZ treatment. CONCLUSION These results showed that miR-1252-5p could negatively regulate HPSE in MM, indicating the use of EVs carrying miR-1252-5p as a potential novel BTZ sensitization approach in MM cells.
Collapse
Affiliation(s)
- Dorival Mendes Rodrigues-Junior
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Institute of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Helena Bonciani Nader
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - André Luiz Vettore
- Department of Biological Science, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| | - Maria Aparecida Silva Pinhal
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Biochemistry, Faculdade de Medicina do ABC, Santo André, Brazil
| |
Collapse
|
10
|
Alshehri MA, Alshehri MM, Albalawi NN, Al-Ghamdi MA, Al-Gayyar MMH. Heparan sulfate proteoglycans and their modification as promising anticancer targets in hepatocellular carcinoma. Oncol Lett 2021; 21:173. [PMID: 33552290 PMCID: PMC7798035 DOI: 10.3892/ol.2021.12434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of primary liver cancer. Despite advancements in the treatment strategies of HCC, there is an urgent requirement to identify and develop novel therapeutic drugs that do not lead to resistance. These novel agents should have the potential to influence the primary mechanisms participating in the pathogenesis of HCC. Heparan sulfate proteoglycans (HSPGs) are major elements of the extracellular matrix that perform structural and signaling functions. HSPGs protect against invasion of tumor cells by preventing cell infiltration and intercellular adhesion. Several enzymes, such as heparanase, matrix metalloproteinase-9 and sulfatase-2, have been reported to affect HSPGs, leading to their degradation and thus enhancing tumor invasion. In addition, some compounds that are produced from the degradation of HSPGs, including glypican-3 and syndecan-1, enhance tumor progression. Thus, the identification of enzymes that affect HSPGs or their degradation products in HCC may lead to the development of novel therapeutic targets. The present review discusses the main enzymes and compounds associated with HSPGs, and their involvement with the pathogenicity of HCC.
Collapse
Affiliation(s)
- Mohammed A Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Moath M Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Naif N Albalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Moshari A Al-Ghamdi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed M H Al-Gayyar
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
11
|
Ko K, Suzuki T, Ishikawa R, Hattori N, Ito R, Umehara K, Furihata T, Dohmae N, Linhardt RJ, Igarashi K, Toida T, Higashi K. Ischemic stroke disrupts the endothelial glycocalyx through activation of proHPSE via acrolein exposure. J Biol Chem 2020; 295:18614-18624. [PMID: 33127645 PMCID: PMC7939480 DOI: 10.1074/jbc.ra120.015105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/28/2020] [Indexed: 01/10/2023] Open
Abstract
Infiltration of peripheral immune cells after blood-brain barrier dysfunction causes severe inflammation after a stroke. Although the endothelial glycocalyx, a network of membrane-bound glycoproteins and proteoglycans that covers the lumen of endothelial cells, functions as a barrier to circulating cells, the relationship between stroke severity and glycocalyx dysfunction remains unclear. In this study, glycosaminoglycans, a component of the endothelial glycocalyx, were studied in the context of ischemic stroke using a photochemically induced thrombosis mouse model. Decreased levels of heparan sulfate and chondroitin sulfate and increased activity of hyaluronidase 1 and heparanase (HPSE) were observed in ischemic brain tissues. HPSE expression in cerebral vessels increased after stroke onset and infarct volume greatly decreased after co-administration of N-acetylcysteine + glycosaminoglycan oligosaccharides as compared with N-acetylcysteine administration alone. These results suggest that the endothelial glycocalyx was injured after the onset of stroke. Interestingly, scission activity of proHPSE produced by immortalized endothelial cells and HEK293 cells transfected with hHPSE1 cDNA were activated by acrolein (ACR) exposure. We identified the ACR-modified amino acid residues of proHPSE using nano LC-MS/MS, suggesting that ACR modification of Lys139 (6-kDa linker), Lys107, and Lys161, located in the immediate vicinity of the 6-kDa linker, at least in part is attributed to the activation of proHPSE. Because proHPSE, but not HPSE, localizes outside cells by binding with heparan sulfate proteoglycans, ACR-modified proHPSE represents a promising target to protect the endothelial glycocalyx.
Collapse
Affiliation(s)
- Kenta Ko
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | - Ryota Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Natsuko Hattori
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Risako Ito
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Kenta Umehara
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomomi Furihata
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Naoshi Dohmae
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan; Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba, Japan
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kyohei Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.
| |
Collapse
|
12
|
Barbosa GO, Biancardi MF, Carvalho HF. Heparan sulfate fine‐tunes stromal‐epithelial communication in the prostate gland. Dev Dyn 2020; 250:618-628. [DOI: 10.1002/dvdy.281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/20/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Guilherme O. Barbosa
- Department of Structural and Functional Biology, Institute of Biology State University of Campinas Campinas Brazil
| | - Manoel F. Biancardi
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences Federal University of Goiás Goiânia Brazil
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology, Institute of Biology State University of Campinas Campinas Brazil
| |
Collapse
|
13
|
Rangarajan S, Richter JR, Richter RP, Bandari SK, Tripathi K, Vlodavsky I, Sanderson RD. Heparanase-enhanced Shedding of Syndecan-1 and Its Role in Driving Disease Pathogenesis and Progression. J Histochem Cytochem 2020; 68:823-840. [PMID: 32623935 PMCID: PMC7711244 DOI: 10.1369/0022155420937087] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023] Open
Abstract
Both heparanase and syndecan-1 are known to be present and active in disease pathobiology. An important feature of syndecan-1 related to its role in pathologies is that it can be shed from the surface of cells as an intact ectodomain composed of the extracellular core protein and attached heparan sulfate and chondroitin sulfate chains. Shed syndecan-1 remains functional and impacts cell behavior both locally and distally from its cell of origin. Shedding of syndecan-1 is initiated by a variety of stimuli and accomplished predominantly by the action of matrix metalloproteinases. The accessibility of these proteases to the core protein of syndecan-1 is enhanced, and shedding facilitated, when the heparan sulfate chains of syndecan-1 have been shortened by the enzymatic activity of heparanase. Interestingly, heparanase also enhances shedding by upregulating the expression of matrix metalloproteinases. Recent studies have revealed that heparanase-induced syndecan-1 shedding contributes to the pathogenesis and progression of cancer and viral infection, as well as other septic and non-septic inflammatory states. This review discusses the heparanase/shed syndecan-1 axis in disease pathogenesis and progression, the potential of targeting this axis therapeutically, and the possibility that this axis is widespread and of influence in many diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Israel Vlodavsky
- The University of Alabama at Birmingham, Birmingham, Alabama, and Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
14
|
Khanna M, Parish CR. Heparanase: Historical Aspects and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:71-96. [PMID: 32274707 DOI: 10.1007/978-3-030-34521-1_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparanase is an endo-β-glucuronidase that cleaves at a limited number of internal sites the glycosaminoglycan heparan sulfate (HS). Heparanase enzymatic activity was first reported in 1975 and by 1983 evidence was beginning to emerge that the enzyme was a facilitator of tumor metastasis by cleaving HS chains present in blood vessel basement membranes and, thereby, aiding the passage of tumor cells through blood vessel walls. Due to a range of technical difficulties, it took another 16 years before heparanase was cloned and characterized in 1999 and a further 14 years before the crystal structure of the enzyme was solved. Despite these substantial deficiencies, there was steady progress in our understanding of heparanase long before the enzyme was fully characterized. For example, it was found as early as 1984 that activated T cells upregulate heparanase expression, like metastatic tumor cells, and the enzyme aids the entry of T cells and other leukocytes into inflammatory sites. Furthermore, it was discovered in 1989 that heparanase releases pre-existing growth factors and cytokines associated with HS in the extracellular matrix (ECM), the liberated growth factors/cytokines enhancing angiogenesis and wound healing. There were also the first hints that heparanase may have functions other than enzymatic activity, in 1995 it being reported that under certain conditions the enzyme could act as a cell adhesion molecule. Also, in the same year PI-88 (Muparfostat), the first heparanase inhibitor to reach and successfully complete a Phase III clinical trial was patented.Nevertheless, the cloning of heparanase (also known as heparanase-1) in 1999 gave the field an enormous boost and some surprises. The biggest surprise was that there is only one heparanase encoding gene in the mammalian genome, despite earlier research, based on substrate specificity, suggesting that there are at least three different heparanases. This surprising conclusion has remained unchanged for the last 20 years. It also became evident that heparanase is a family 79 glycoside hydrolase that is initially produced as a pro-enzyme that needs to be processed by proteases to form an enzymatically active heterodimer. A related molecule, heparanase-2, was also discovered that is enzymatically inactive but, remarkably, recently has been shown to inhibit heparanase-1 activity as well as acting as a tumor suppressor that counteracts many of the pro-tumor properties of heparanase-1.The early claim that heparanase plays a key role in tumor metastasis, angiogenesis and inflammation has been confirmed by many studies over the last 20 years. In fact, heparanase expression is enhanced in all major cancer types, namely carcinomas, sarcomas, and hematological malignancies, and correlates with increased metastasis and poor prognosis. Also, there is mounting evidence that heparanase plays a central role in the induction of inflammation-associated cancers. The enzymatic activity of heparanase has also emerged in unexpected situations, such as in the spread of HS-binding viruses and in Type-1 diabetes where the destruction of intracellular HS in pancreatic insulin-producing beta cells precipitates diabetes. But the most extraordinary recent discoveries have been with the realization that heparanase can exert a range of biological activities that are independent of its enzymatic function, most notably activation of several signaling pathways and being a transcription factor that controls methylation of histone tails. Collectively, these data indicate that heparanase is a truly multifunctional protein that has the additional property of cleaving HS chains and releasing from ECM and cell surfaces hundreds of HS-binding proteins with a plethora of functional consequences. Clearly, there are many unique features of this intriguing molecule that still remain to be explored and are highlighted in this Chapter.
Collapse
Affiliation(s)
- Mayank Khanna
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Christopher R Parish
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
15
|
Heparanase: Cloning, Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:189-229. [PMID: 32274711 DOI: 10.1007/978-3-030-34521-1_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 2019, we mark the 20th anniversary of the cloning of the human heparanase gene. Heparanase remains the only known enzyme to cleave heparan sulfate, which is an abundant component of the extracellular matrix. Thus, elucidating the mechanisms underlying heparanase expression and activity is critical to understanding its role in healthy and pathological settings. This chapter provides a historical account of the race to clone the human heparanase gene, describes the intracellular and extracellular function of the enzyme, and explores the various mechanisms regulating heparanase expression and activity at the gene, transcript, and protein level.
Collapse
|
16
|
Molecular Aspects of Heparanase Interaction with Heparan Sulfate, Heparin and Glycol Split Heparin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32274710 DOI: 10.1007/978-3-030-34521-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Heparanase is the principal enzyme that degrades heparan sulfate (HS) in both physiological (HS turnover) and pathological (tumor metastasis, inflammation) cell conditions, catalysing the hydrolysis of the β-1-4 glycosidic bond in -GlcUA-β(1-4)-GlcNX-. Despite efforts to define the minimum trisaccharide sequence that allows glycans to be recognized by heparanase, a rigorous "molecular code" by which the enzyme reads and degrades HS chains has not been identified. The X-ray diffraction model of heparanase, resolved by Wu et al (2015), revealed a complex between the trisaccharide GlcNS6S-GlcUA-GlcNS6S and heparanase. Efforts are ongoing to better understand how HS mimetics longer than three residues are recognized by heparanase before being hydrolyzed or inhibit the enzyme. It is also important to consider the flexibility of the enzyme active site, a feature that opens up the development of heparanase inhibitors with structures significantly different from HS or heparin. This chapter reviews the state-of-the-art knowledge about structural aspects of heparanase activities in terms of substrate recognition, mechanism of hydrolysis, and inhibition.
Collapse
|
17
|
Heparanase-The Message Comes in Different Flavors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:253-283. [DOI: 10.1007/978-3-030-34521-1_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Martín C, Fernández-Vega I, Suárez JE, Quirós LM. Adherence of Lactobacillus salivarius to HeLa Cells Promotes Changes in the Expression of the Genes Involved in Biosynthesis of Their Ligands. Front Immunol 2020; 10:3019. [PMID: 31998306 PMCID: PMC6962182 DOI: 10.3389/fimmu.2019.03019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The attachment of a variety of Lactobacilli to the mucosal surfaces is accomplished through the interaction of OppA, a superficial bacterial protein also involved in oligopeptide internalization, and the glycosaminoglycan moiety of the proteoglycans that form the epithelial cell glycocalyx. Upon the interaction of the vaginal isolate Lactobacillus salivarius Lv72 and HeLa cell cultures, the expression of oppA increased more than 50-fold over the following 30 min, with the overexpression enduring, albeit at a lower rate, for up to 24 h. Conversely, transcriptional analysis of 62 genes involved in proteoglycan biosynthesis revealed generalized repression of genes whose products catalyze different steps of the whole pathway. This led to decreases in the superficial concentration of heparan (60%) and chondroitin sulfate (40%), although the molecular masses of these glycosaminoglycans were higher than those of the control cultures. Despite this lowering in the concentration of the receptor, attachment of the Lactobacilli proceeded, and completely overlaid the underlying HeLa cell culture.
Collapse
Affiliation(s)
- Carla Martín
- Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Iván Fernández-Vega
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan E Suárez
- Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
| | - Luis M Quirós
- Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
19
|
Opposing Effects of Heparanase and Heparanase-2 in Head & Neck Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:847-856. [PMID: 32274741 DOI: 10.1007/978-3-030-34521-1_37] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Squamous cell carcinoma of head and neck (SCCHN) is the most common cancer in the head and neck and is the sixth most common neoplasm worldwide. SCCHN has a high propensity to lymph node metastases, especially cancer of the pharynx. Prognosis of patients with SCCHN is severely influenced by the status of metastatic cervical lymph nodes and survival rates drop down to half when patients are presented with a metastatic node. The clinical relevance of heparanase as a prognostic marker in SCCHN was reported in several publications. Low levels of heparanase in SCCHN tumor cells was correlated with prolonged disease-free and overall survival. Furthermore, nuclear localization of heparanase predicts a favorable outcome compared to cytoplasmic localization. Heparanase staining was positively correlated with lymphatic vessel density and lymph node metastasis associated with the elevation of vascular endothelial growth factor C (VEGF-C). Heparanase ability to enhance phosphorylation of epidermal growth factor receptor (EGFR), and signal transducer and activator of transcription 3 (STAT3) were postulated to serve as critical molecular mechanisms by which heparanase facilitates tumor growth.Heparanase-2 (HPA2) is a close homolog of heparanase that lacks intrinsic HS-degrading activity but retains the capacity to bind HS with high affinity. HPA2 expression was markedly elevated in SCCHN patients, correlating with prolonged follow-up time to recurrence and inversely correlating with patients' N-stage. HPA2 appears to inhibit tumor dissemination, suggesting that HPA2 functions as a tumor suppressor. Thus, Heparanase and Heparanase-2 seem to exert opposing effects on SCCHN.
Collapse
|
20
|
Heparanase – Discovery and Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:61-69. [DOI: 10.1007/978-3-030-34521-1_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Vlodavsky I, Sanderson RD, Ilan N. Non-Anticoagulant Heparins as Heparanase Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:493-522. [PMID: 32274724 PMCID: PMC7142274 DOI: 10.1007/978-3-030-34521-1_20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The chapter will review early and more recent seminal contributions to the discovery and characterization of heparanase and non-anticoagulant heparins inhibiting its peculiar enzymatic activity. Indeed, heparanase displays a unique versatility in degrading heparan sulfate chains of several proteoglycans expressed in all mammalian cells. This endo-β-D-glucuronidase is overexpressed in cancer, inflammation, diabetes, atherosclerosis, nephropathies and other pathologies. Starting from known low- or non-anticoagulant heparins, the search for heparanase inhibitors evolved focusing on structure-activity relationship studies and taking advantage of new chemical-physical analytical methods which have allowed characterization and sequencing of polysaccharide chains. New methods to screen heparanase inhibitors and to evaluate their mechanism of action and in vivo activity in experimental models prompted their development. New non-anticoagulant heparin derivatives endowed with anti-heparanase activity are reported. Some leads are under clinical evaluation in the oncology field (e.g., acute myeloid leukemia, multiple myeloma, pancreatic carcinoma) and in other pathological conditions (e.g., sickle cell disease, malaria, labor arrest).
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| |
Collapse
|
22
|
Vlodavsky I, Sanderson RD, Ilan N. Forty Years of Basic and Translational Heparanase Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:3-59. [PMID: 32274705 PMCID: PMC7142273 DOI: 10.1007/978-3-030-34521-1_1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes key developments in the heparanase field obtained 20 years prior to cloning of the HPSE gene and nearly 20 years after its cloning. Of the numerous publications and review articles focusing on heparanase, we have selected those that best reflect the progression in the field as well as those we regard important accomplishments with preference to studies performed by scientists and groups that contributed to this book. Apart from a general 'introduction' and 'concluding remarks', the abstracts of these studies are presented essentially as published along the years. We apologize for not being objective and not being able to include some of the most relevant abstracts and references, due to space limitation. Heparanase research can be divided into two eras. The first, initiated around 1975, dealt with identifying the enzyme, establishing the relevant assay systems and investigating its biological activities and significance in cancer and other pathologies. Studies performed during the first area are briefly introduced in a layman style followed by the relevant abstracts presented chronologically, essentially as appears in PubMed. The second era started in 1999 when the heparanase gene was independently cloned by 4 research groups [1-4]. As expected, cloning of the heparanase gene boosted heparanase research by virtue of the readily available recombinant enzyme, molecular probes, and anti-heparanase antibodies. Studies performed during the second area are briefly introduced followed by selected abstracts of key findings, arranged according to specific topics.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| |
Collapse
|
23
|
Wu L, Davies GJ. An Overview of the Structure, Mechanism and Specificity of Human Heparanase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:139-167. [PMID: 32274709 DOI: 10.1007/978-3-030-34521-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The retaining endo-β-D-glucuronidase Heparanase (HPSE) is the primary mammalian enzyme responsible for breakdown of the glycosaminoglycan heparan sulfate (HS). HPSE activity is essential for regulation and turnover of HS in the extracellular matrix, and its activity affects diverse processes such as inflammation, angiogenesis and cell migration. Aberrant heparanase activity is strongly linked to cancer metastasis, due to structural breakdown of extracellular HS networks and concomitant release of sequestered HS-binding growth factors. A full appreciation of HPSE activity in health and disease requires a structural understanding of the enzyme, and how it engages with its HS substrates. This chapter summarizes key findings from the recent crystal structures of human HPSE and its proenzyme. We present details regarding the 3-dimensional protein structure of HPSE and the molecular basis for its interaction with HS substrates of varying sulfation states. We also examine HPSE in a wider context against related β-D-glucuronidases from other species, highlighting the structural features that control exo/endo - glycosidase selectivity in this family of enzymes.
Collapse
Affiliation(s)
- Liang Wu
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, UK.
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, UK
| |
Collapse
|
24
|
Hardak E, Peled E, Crispel Y, Ghanem S, Attias J, Asayag K, Kogan I, Nadir Y. Heparan sulfate chains contribute to the anticoagulant milieu in malignant pleural effusion. Thorax 2019; 75:143-152. [DOI: 10.1136/thoraxjnl-2018-212964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 10/21/2019] [Accepted: 11/15/2019] [Indexed: 12/26/2022]
Abstract
BackgroundWhile malignant pleural effusion (MPE) is a common and significant cause of morbidity in patients with cancer, current treatment options are limited. Human heparanase, involved in angiogenesis and metastasis, cleaves heparan sulfate (HS) side chains on the cell surface.AimsTo explore the coagulation milieu in MPE and infectious pleural effusion (IPE) focusing on the involvement of heparanase.MethodsSamples of 30 patients with MPE and 44 patients with IPE were evaluated in comparison to those of 33 patients with transudate pleural effusions, using heparanase ELISA, heparanase procoagulant activity assay, thrombin and factor Xa chromogenic assays and thromboelastography. A cell proliferation assay was performed. EMT-6 breast cancer cells were injected to the pleural cavity of mice. A peptide inhibiting heparanase activity was administered subcutaneously.ResultsLevels of heparanase, factor Xa and thrombin were significantly higher in exudate than transudate. Thromboelastography detected almost no thrombus formation in the whole blood, mainly on MPE addition. This effect was completely reversed by bacterial heparinase. Direct measurement revealed high levels of HS chains in pleural effusions. Higher proliferation was observed in tumour cell lines incubated with exudate than with transudate and it was reduced when bacterial heparinase was added. The tumour size in the pleural cavity of mice treated with the heparanase inhibitor were significantly smaller compared with control (p=0.005).ConclusionsHS chains released by heparanase form an anticoagulant milieu in MPE, preventing local thrombosis and enabling tumour cell proliferation. Inhibition of heparanase might provide a therapeutic option for patients with recurrent MPE.
Collapse
|
25
|
Sistla JC, Desai UR. A Robust, One-step FRET Assay for Human Heparanase. Bio Protoc 2019; 9:e3356. [PMID: 33654855 DOI: 10.21769/bioprotoc.3356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/07/2023] Open
Abstract
Heparanase, an endo-β-D-glucuronidase, cleaves cell surface and extracellular matrix heparan sulfate (HS) chains at distinct sites and plays important biological roles including modulation of cell growth and metastasis. Although a number of different types of heparanase assays have been reported to date, most are labor intensive, complex and/or expensive to carry out. We reasoned that a simpler heparanase assay could be developed using heparin labeled with Dabcyl and EDANS as donor and acceptor fluorophores so as to generate a FRET signal. Our results show that a more robust heparanase assay could be developed based on the principle studied herein and more homogeneous preparation of heparin. Yet, the assay in its current form could be used for routine screening of potential inhibitors in a high-throughput manner as well as for studying heparanase activity expressed in tumors as well as biological fluids like plasma.
Collapse
Affiliation(s)
- Jyothi C Sistla
- Institute for Structural Biology, Drug Discovery, and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Umesh R Desai
- Institute for Structural Biology, Drug Discovery, and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
26
|
Sistla JC, Morla S, Alabbas AHB, Kalathur RC, Sharon C, Patel BB, Desai UR. Polymeric fluorescent heparin as one-step FRET substrate of human heparanase. Carbohydr Polym 2018; 205:385-391. [PMID: 30446119 DOI: 10.1016/j.carbpol.2018.10.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/29/2018] [Accepted: 10/22/2018] [Indexed: 01/21/2023]
Abstract
Heparanase, an endo-β-D-glucuronidase, cleaves cell surface and extracellular matrix heparan sulfate (HS) chains and plays important roles in cellular growth and metastasis. Heparanase assays reported to-date are labor intensive, complex and/or expensive. A simpler assay is critically needed to understand the myriad roles of heparanase. We reasoned that fluorescent heparin could serve as an effective probe of heparanase levels. Following synthesis and screening, a heparin preparation labeled with DABCYL and EDANS was identified, which exhibited a characteristic increase in signal following cleavage by human heparanase. This work describes the synthesis of this heparin substrate, its kinetic and spectrofluorometric properties, optimization of the heparanase assay, use of the assay in inhibitor screening, and elucidation of the state of heparanase in different cell lines. Our FRET-based assay is much simpler and more robust than all assays reported in the literature as well as a commercially available kit.
Collapse
Affiliation(s)
- Jyothi C Sistla
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA; Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Shravan Morla
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA; Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Al-Humaidi B Alabbas
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA; Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Ravi C Kalathur
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chetna Sharon
- Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA
| | - Bhaumik B Patel
- Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA; Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Umesh R Desai
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA; Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA.
| |
Collapse
|
27
|
Abstract
Cancer patients have a pro-thrombotic state attributed to the ability of cancer cells to activate the coagulation system and interact with hemostatic cells, thus tilting the balance between pro- and anticoagulants. Mechanisms underlying the coagulation system activation involve tumor cells, endothelial cells, platelets, and white blood cells. Anti-cancer therapies, including anti-angiogenic drugs, significantly increase the risk of thrombosis during treatment. Along with the role of coagulation proteins in the hemostatic system, these proteins also serve as growth factors to the tumor. Heparanase is a pro-angiogenic and pro-metastatic protein. Our previous studies have demonstrated that it enhances tissue factor (TF) activity and is present at high levels in tumor cells and patients' blood. Strategies to attenuate heparanase effects by heparin mimetics or peptides interrupting the TF-heparanase interaction are good candidates to attenuate tumor growth and thrombotic manifestations.
Collapse
Affiliation(s)
- Yona Nadir
- Thrombosis and Hemostasis Unit, Department of Hematology, Rambam Health Care Campus, Haifa, Israel
| | - Benjamin Brenner
- Thrombosis and Hemostasis Unit, Department of Hematology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
28
|
Demystifying the pH dependent conformational changes of human heparanase pertaining to structure–function relationships: an in silico approach. J Comput Aided Mol Des 2018; 32:821-840. [DOI: 10.1007/s10822-018-0131-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
|
29
|
Wu ZL, Huang X, Ethen CM, Tatge T, Pasek M, Zaia J. Non-reducing end labeling of heparan sulfate via click chemistry and a high throughput ELISA assay for heparanase. Glycobiology 2018; 27:518-524. [PMID: 28025251 DOI: 10.1093/glycob/cww130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/14/2016] [Indexed: 01/02/2023] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide found in the extracellular matrix (ECM) and on the cell membrane. It plays numerous roles in cellular events, including cell growth, migration and differentiation through binding to various growth factors, cytokines and other ECM proteins. Heparanase (HPSE) is an endoglycosidase that cleaves HS in the ECM and cell membrane. By degrading HS, HPSE not only alters the integrity of the ECM but also releases growth factors and angiogenic factors bound to HS chains, therefore, changes various cellular activities, including cell mobility that is critical for cancer metastasis. Accordingly, HPSE is an ideal drug target for cancer therapeutics. Here, we describe a method for non-reducing end labeling of HS via click chemistry (CC), and further use it in a novel HPSE assay. HS chains on a recombinant human syndecan-4 are first labeled at their non-reducing ends with GlcNAz using dimeric HS polymerase EXT1/EXT2. The labeled sample is then biotinylated through CC, immobilized on a multi-well plate and detected with ELISA. HPSE digestion of the biotinylated sample removes the label and, therefore, reduces the signal in ELISA assay. Non-reducing end labeling avoids the interference in an HPSE reaction caused by any internal labeling of HS. The assay is very sensitive with only 2.5 ng of labeled syndecan-4 needed in each reaction. The assay is also highly reproducible with a Z' > 0.6. Overall, this new method is suitable for high-throughput drug screening on HPSE.
Collapse
Affiliation(s)
- Zhengliang L Wu
- Department of Enzyme, Bio-Techne, R&D Systems, Minneapolis, MN 55413, USA
| | - Xinyi Huang
- Department of Enzyme, Bio-Techne, R&D Systems, Minneapolis, MN 55413, USA
| | - Cheryl M Ethen
- Department of Enzyme, Bio-Techne, R&D Systems, Minneapolis, MN 55413, USA
| | - Timothy Tatge
- Department of Enzyme, Bio-Techne, R&D Systems, Minneapolis, MN 55413, USA
| | - Marta Pasek
- Department of Protein Purification, Bio-Techne, R&D Systems, Inc. 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
30
|
Deciphering the mode of action, structural and biochemical analysis of heparinase II/III (PsPL12a) a new member of family 12 polysaccharide lyase from Pseudopedobacter saltans. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1347-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
31
|
Li N, Jie MM, Yang M, Tang L, Chen SY, Sun XM, Tang B, Yang SM. Magnetic Gold Nanoparticle-Labeled Heparanase Monoclonal Antibody and its Subsequent Application for Tumor Magnetic Resonance Imaging. NANOSCALE RESEARCH LETTERS 2018; 13:106. [PMID: 29671088 PMCID: PMC5906410 DOI: 10.1186/s11671-018-2518-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/05/2018] [Indexed: 05/03/2023]
Abstract
Heparanase (HPA) is ubiquitously expressed in various metastatic malignant tumors; previous studies have demonstrated that HPA was a potential tumor-associated antigen (TAA) for tumor immunotherapy. We sought to evaluate the feasibility of HPA as a common TAA for magnetic resonance imaging (MRI) of tumor metastasis and its potential application in tumor molecular imaging. We prepared a targeted probe based on magnetic gold nanoparticles coupled with an anti-HPA antibody for the specific detection of HPA by MRI. The specificity of the targeted probe was validated in vitro by incubation of the probe with various tumor cells, and the probe was able to selectively detect HPA (+) cells. We found the probes displayed significantly reduced signal intensity in several tumor cells, and the signal intensity decreased significantly after the targeted probe was injected in tumor-bearing nude mice. In the study, we demonstrated that the HPA&GoldMag probe had excellent physical and chemical properties and immune activities and could specifically target many tumor cell tissues both in vitro and in vivo. This may provide an experimental base for molecular imaging of tumor highly expressing heparanase using HPA mAbs.
Collapse
Affiliation(s)
- Ning Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030 China
- Department of Gastroenterology, Institute of Surgery research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042 China
| | - Meng-Meng Jie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030 China
| | - Min Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030 China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030 China
| | - Si-Yuan Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030 China
| | - Xue-Mei Sun
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030 China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030 China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030 China
| |
Collapse
|
32
|
Nadir Y, Brenner B. Novel strategies of coagulation inhibition for reducing tumor growth and angiogenesis. Thromb Res 2018; 164 Suppl 1:S153-S156. [DOI: 10.1016/j.thromres.2017.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/14/2017] [Indexed: 12/26/2022]
|
33
|
Jin H, Cui M. Gene silencing of heparanase results in suppression of invasion and migration of gallbladder carcinoma cells. Biosci Biotechnol Biochem 2018; 82:1116-1122. [PMID: 29598788 DOI: 10.1080/09168451.2018.1456316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This study investigated the effect of transcriptional gene silencing of the heparanase gene on standard gallbladder carcinoma cells (GBC-SD). The miRNAs targeting the promoter region and coding region of the heparanase gene were designed and synthesized. We transfected four recombinant miRNA vectors into GBC-SD. We performed the wound healing assays and invasion assays. The result shows that the heparanase expression was significantly decreased by recombinant vectors in transfected GBC-SD cells (p < 0.01), of which pmiR-Hpa-2 showed best interference effect (p < 0.05). The penetrated and migrating cells numbers and adherence rate of GBC-SD cells were significantly decreased by pmiR-Hpa-2 (p < 0.05).
Collapse
Affiliation(s)
- Hao Jin
- a The Second Department of General Surgery , Zhuhai People's Hospital , Zhuhai , China
| | - Min Cui
- a The Second Department of General Surgery , Zhuhai People's Hospital , Zhuhai , China
| |
Collapse
|
34
|
Adachi H, Nakae K, Sakamoto S, Nosaka C, Atsumi S, Shibuya M, Higashi N, Nakajima M, Irimura T, Nishimura Y. Microbial metabolites and derivatives targeted at inflammation and bone diseases therapy: chemistry, biological activity and pharmacology. J Antibiot (Tokyo) 2017; 71:ja2017138. [PMID: 29089599 DOI: 10.1038/ja.2017.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022]
Abstract
Microbial metabolites have attracted increasing interest as a source of therapeutics and as probes for biological mechanisms. New microbial metabolites and derivatives targeted at inflammation and bone disease therapy have been identified by focusing on prostaglandin release, osteoblast differentiation and immune cell functions. These modulators of inflammatory processes and bone disease contribute to our understanding of biological mechanisms and support identification of the therapeutic potential of drug lead candidates. The present review describes recent advances in the chemistry and analysis of inhibitors of prostaglandin release or other functional molecules of immune cells, as well as inducers of osteoblast differentiation, including biological and pharmacological activities.The Journal of Antibiotics advance online publication, 1 November 2017; doi:10.1038/ja.2017.138.
Collapse
Affiliation(s)
- Hayamitsu Adachi
- Institute of Microbial Chemistry (BIKAKEN), Numazu Branch, Shizuoka, Japan
| | - Koichi Nakae
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Shuichi Sakamoto
- Institute of Microbial Chemistry (BIKAKEN), Numazu Branch, Shizuoka, Japan
| | - Chisato Nosaka
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Sonoko Atsumi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Pennacchio A, Capo A, Caira S, Tramice A, Varriale A, Staiano M, D'Auria S. Cloning and bacterial expression systems for recombinant human heparanase production: Substrate specificity investigation by docking of a putative heparanase substrate. Biotechnol Appl Biochem 2017; 65:89-98. [PMID: 28805269 DOI: 10.1002/bab.1582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/02/2017] [Indexed: 01/19/2023]
Abstract
Human heparanase (HPSE) is an enzyme that degrades the extracellular matrix. It is implicated in a multiplicity of physiological and pathological processes encouraging angiogenesis and tumor metastasis. The protein is a heterodimer composed of a subunit of 8 kDa and another of 50 kDa. The two protein subunits are noncovalently associated. The cloning and expression of the two protein subunits in Escherichia coli and their subsequent purification to homogeneity under native conditions result in the production of an active HPSE enzyme. The substrate specificity of the HPSE was studied by docking of a putative substrate that is a designed oligosaccharide with the minimum recognition backbone, with the additional 2-N-sulfate and 6-O-sulfate groups at the nonreducing GlcN and a fluorogenic tag at the reducing extremity GlcN. To develop a quantitative fluorescence assay with this substrate would be extremely useful in studies on HPSE, as the HPSE cleavage of fluorogenic tag would result in a measurable response.
Collapse
|
36
|
Emerging Roles of Heparanase in Viral Pathogenesis. Pathogens 2017; 6:pathogens6030043. [PMID: 28927006 PMCID: PMC5618000 DOI: 10.3390/pathogens6030043] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/10/2023] Open
Abstract
Heparan sulfate (HS) is ubiquitously expressed on mammalian cells. It is a polysaccharide that binds growth factors, cytokines, and chemokines, and thereby controls several important physiological functions. Ironically, many human pathogens including viruses interact with it for adherence to host cells. HS functions can be regulated by selective modifications and/or selective cleavage of the sugar chains from the cell surface. In mammals, heparanase (HPSE) is the only known enzyme capable of regulating HS functions via a selective endoglycosidase activity that cleaves polymeric HS chains at internal sites. During homeostasis, HPSE expression and its endoglycosidase activity are tightly regulated; however, under stress conditions, including infection, its expression may be upregulated, which could contribute directly to the onset of several disease pathologies. Here we focus on viral infections exemplified by herpes simplex virus, dengue virus, human papillomavirus, respiratory syncytial virus, adenovirus, hepatitis C virus, and porcine respiratory and reproductive syncytial virus to summarize recent advances in understanding the highly significant, but emerging roles, of the enzyme HPSE in viral infection, spread and pathogenesis.
Collapse
|
37
|
Chen X, Jiang W, Yue C, Zhang W, Tong C, Dai D, Cheng B, Huang C, Lu L. Heparanase Contributes To Trans-Endothelial Migration of Hepatocellular Carcinoma Cells. J Cancer 2017; 8:3309-3317. [PMID: 29158804 PMCID: PMC5665048 DOI: 10.7150/jca.20159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
The overall outcome of patients with hepatocellular carcinoma (HCC) is still very poor due to its high metastasis and recurrence rate. During metastasis, trans-endothelial migration (TEM) of HCC cells is a key step. Heparanase (HPSE) is an endo-beta-glucuronidase and exerts prometastatic properties for normal and tumor-derived cells. However, it is remains unclear that HPSE contributes to TEM of HCC cells. In this study, human umbilical vein endothelial cells-C (HUVEC-C) was used to simulate vascular endothelial cells (VECs), and the HCCLM3 cells with high HPSE expression were chosen and used for in vitro TEM assay and in vivo experiment. As results, we found that HCCLM3 cells showed higher TEM rate compared with other HCC cells. Downregulation or inhibition of HPSE activity resulted in suppression of TEM of HCC cells both in vitro and in vivo. Our findings suggest that HPSE contributes to TEM of HCC cells, which may be a new biological function of HPSE.
Collapse
Affiliation(s)
- Xiaopeng Chen
- Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Wen Jiang
- Department of General Surgery, Maanshan People's Hospital, Maanshan 243000, China
| | - Chaofu Yue
- Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Wenjun Zhang
- Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Chaogang Tong
- Department of General Surgery, Affiliated Chaohu Hospital, Anhui Medical University, Hefei 238000, China
| | - Dafei Dai
- Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Bin Cheng
- Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Chen Huang
- Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Linming Lu
- Department of Pathology, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| |
Collapse
|
38
|
Peppicelli S, Andreucci E, Ruzzolini J, Laurenzana A, Margheri F, Fibbi G, Del Rosso M, Bianchini F, Calorini L. The acidic microenvironment as a possible niche of dormant tumor cells. Cell Mol Life Sci 2017; 74:2761-2771. [PMID: 28331999 PMCID: PMC11107711 DOI: 10.1007/s00018-017-2496-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/01/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022]
Abstract
Although surgical excision, chemo-, and radio-therapy are clearly advanced, tumors may relapse due to cells of the so-called "minimal residual disease". Indeed, small clusters of tumor cells persist in host tissues after treatment of the primary tumor elaborating strategies to survive and escape from immunological attacks before their relapse: this variable period of remission is known as "cancer dormancy". Therefore, it is crucial to understand and consider the major concepts addressing dormancy, to identify new targets and disclose potential clinical strategies. Here, we have particularly focused the relationships between tumor microenvironment and cancer dormancy, looking at a re-appreciated aspect of this compartment that is the low extracellular pH. Accumulating evidences indicate that acidity of tumor microenvironment is associated with a poor prognosis of tumor-bearing patients, stimulates a chemo- and radio-therapy resistant phenotype, and suppresses the tumoricidal activity of cytotoxic lymphocytes and natural killer cells, and all these aspects are useful for dormancy. Therefore, this review discusses the possibility that acidity of tumor microenvironment may provide a new, not previously suggested, adequate milieu for "dormancy" of tumor cells.
Collapse
MESH Headings
- Acidosis/complications
- Acidosis/immunology
- Acidosis/pathology
- Animals
- Apoptosis
- Cell Proliferation
- Humans
- Hydrogen-Ion Concentration
- Immunologic Surveillance
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Neoplasm Recurrence, Local/etiology
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm, Residual/complications
- Neoplasm, Residual/immunology
- Neoplasm, Residual/pathology
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Prognosis
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- Tumor Microenvironment
Collapse
Affiliation(s)
- Silvia Peppicelli
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Elena Andreucci
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Jessica Ruzzolini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Anna Laurenzana
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Francesca Margheri
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Gabriella Fibbi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Mario Del Rosso
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Francesca Bianchini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy.
- Istituto Toscano Tumori, Firenze, Italy.
| | - Lido Calorini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy.
- Istituto Toscano Tumori, Firenze, Italy.
| |
Collapse
|
39
|
Changyaleket B, Chong ZZ, Dull RO, Nanegrungsunk D, Xu H. Heparanase promotes neuroinflammatory response during subarachnoid hemorrhage in rats. J Neuroinflammation 2017; 14:137. [PMID: 28720149 PMCID: PMC5516362 DOI: 10.1186/s12974-017-0912-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/10/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Heparanase, a mammalian endo-β-D-glucoronidase that specifically degrades heparan sulfate, has been implicated in inflammation and ischemic stroke. However, the role of heparanase in neuroinflammatory response in subarachnoid hemorrhage (SAH) has not yet been investigated. This study was designed to examine the association between heparanase expression and neuroinflammation during subarachnoid hemorrhage. METHODS Rats were subjected to SAH by endovascular perforation, and the expression of heparanase was determined by Western blot analysis and immunofluorescence in the ipsilateral brain cortex at 24 h post-SAH. Pial venule leukocyte trafficking was monitored by using intravital microscopy through cranial window. RESULTS Our results indicated that, compared to their sham-surgical controls, the rats subjected to SAH showed marked elevation of heparanase expression in the ipsilateral brain cortex. The SAH-induced elevation of heparanase was accompanied by increased leukocyte trafficking in pial venules and significant neurological deficiency. Intracerebroventricular application of a selective heparanase inhibitor, OGT2115, which was initiated at 3 h after SAH, significantly suppressed the leukocyte trafficking and improved the neurological function. CONCLUSIONS Our findings indicate that heparanase plays an important role in mediating the neuroinflammatory response after SAH and contributes to SAH-related neurological deficits and early brain injury following SAH.
Collapse
Affiliation(s)
| | - Zhao Zhong Chong
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Randal O Dull
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Danop Nanegrungsunk
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Haoliang Xu
- Department of Pathology, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
40
|
Changyaleket B, Deliu Z, Chignalia AZ, Feinstein DL. Heparanase: Potential roles in multiple sclerosis. J Neuroimmunol 2017; 310:72-81. [PMID: 28778449 DOI: 10.1016/j.jneuroim.2017.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/22/2017] [Accepted: 07/01/2017] [Indexed: 12/14/2022]
Abstract
Heparanase is a heparan sulfate degrading enzyme that cleaves heparan sulfate (HS) chains present on HS proteoglycans (HSPGs), and has been well characterized for its roles in tumor metastasis and inflammation. However, heparanase is emerging as a contributing factor in the genesis and severity of a variety of neurodegenerative diseases and conditions. This is in part due to the wide variety of HSPGs on which the presence or absence of HS moieties dictates protein function. This includes growth factors, chemokines, cytokines, as well as components of the extracellular matrix (ECM) which in turn regulate leukocyte infiltration into the CNS. Roles for heparanase in stroke, Alzheimer's disease, and glioma growth have been described; roles for heparanase in other disease such as multiple sclerosis (MS) are less well established. However, given its known roles in inflammation and leukocyte infiltration, it is likely that heparanase also contributes to MS pathology. In this review, we will briefly summarize what is known about heparanase roles in the CNS, and speculate as to its potential role in regulating disease progression in MS and its animal model EAE (experimental autoimmune encephalitis), which may justify testing of heparanase inhibitors for MS treatment.
Collapse
Affiliation(s)
| | - Zane Deliu
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
| | - Andreia Z Chignalia
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA; Jesse Brown Veteran Affairs Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
41
|
Barbosa GO, Cervigne NK, Carvalho HF, Augusto TM. Heparanase 1 involvement in prostate physiopathology. Cell Biol Int 2017; 41:1194-1202. [DOI: 10.1002/cbin.10748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/13/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Guilherme O. Barbosa
- Department of Structural and Functional Biology; State University of Campinas; Campinas Sao Paulo Brazil
| | - Nilva K. Cervigne
- Faculty of Medicine of Jundiai; Department of Morphology and Basic Pathology; Jundiai Sao Paulo Brazil
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology; State University of Campinas; Campinas Sao Paulo Brazil
| | - Taize M. Augusto
- Faculty of Medicine of Jundiai; Department of Morphology and Basic Pathology; Jundiai Sao Paulo Brazil
| |
Collapse
|
42
|
Tsunenaga M. Heparanase Inhibitors Facilitate the Assembly of the Basement Membrane in Artificial Skin. ACTA ACUST UNITED AC 2016; 5:113-122. [PMID: 27853671 PMCID: PMC5070419 DOI: 10.2174/2211542005666160725154356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent research suggests that the basement membrane at the dermal-epidermal junction of the skin plays an important role in maintaining a healthy epidermis and dermis, and repeated damage to the skin can destabilize the skin and accelerate the aging process. Skin-equivalent models are suitable for studying the reconstruction of the basement membrane and its contribution to epidermal homeostasis because they lack the basement membrane and show abnormal expression of epidermal differentiation markers. By using these models, it has been shown that reconstruction of the basement membrane is enhanced not only by supplying basement membrane components, but also by inhibiting proteinases such as urokinase and matrix metalloproteinase. Although matrix metalloproteinase inhibitors assist in the reconstruction of the basement membrane structure, their action is not sufficient to promote its functional recovery. However, heparanase inhibitors stabilize the heparan sulfate chains of perlecan (a heparan sulfate proteoglycan) and promote the regulation of heparan sulfate binding growth factors in the basement membrane. Heparan sulfate promotes effective protein-protein interactions, thereby facilitating the assembly of type VII collagen anchoring fibrils and elastin-associated microfibrils. Using both matrix metalloproteinase inhibitors and heparanase inhibitors, the basement membrane in a skin-equivalent model comes close to recapitulating the structure and function of an in vivo basement membrane. Therefore, by using an appropriate dermis model and suitable protease inhibitors, it may be possible to produce skin-equivalent models that are more similar to natural skin
Collapse
Affiliation(s)
- Makoto Tsunenaga
- Shiseido Research Center, 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama 224-8558, Japan
| |
Collapse
|
43
|
The heparanase/heparan sulfate proteoglycan axis: A potential new therapeutic target in sarcomas. Cancer Lett 2016; 382:245-254. [PMID: 27666777 DOI: 10.1016/j.canlet.2016.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022]
Abstract
Heparanase, the only known mammalian endoglycosidase degrading heparan sulfate (HS) chains of HS proteoglycans (HSPG), is a highly versatile protein affecting multiple events in tumor cells and their microenvironment. In several malignancies, deregulation of the heparanase/HSPG system has been implicated in tumor progression, hence representing a valuable therapeutic target. Currently, multiple agents interfering with the heparanase/HSPG axis are under clinical investigation. Sarcomas are characterized by a high biomolecular complexity and multiple levels of interconnection with microenvironment sustaining their growth and progression. The clinical management of advanced diseases remains a challenge. In several sarcoma subtypes, high levels of heparanase expression have been correlated with poor prognosis associated factors. On the other hand, expression of cell surface-associated HSPGs (i.e. glypicans and syndecans) has been found altered in specific sarcoma subtypes. Recent studies provided the preclinical proof-of-principle of the role of the heparanase/HSPG axis as therapeutic target in various sarcoma subtypes. Although currently there are no clinical trials evaluating agents targeting heparanase and/or HSPGs in sarcomas, we here provide arguments for this strategy as potentially able to implement the therapeutic options for sarcoma patients.
Collapse
|
44
|
Heyman B, Yang Y. Mechanisms of heparanase inhibitors in cancer therapy. Exp Hematol 2016; 44:1002-1012. [PMID: 27576132 DOI: 10.1016/j.exphem.2016.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/09/2016] [Accepted: 08/19/2016] [Indexed: 12/26/2022]
Abstract
Heparanase is an endo-β-D-glucuronidase capable of cleaving heparan sulfate side chains contributing to breakdown of the extracellular matrix. Increased expression of heparanase has been observed in numerous malignancies and is associated with a poor prognosis. It has generated significant interest as a potential antineoplastic target because of the multiple roles it plays in tumor growth and metastasis. The protumorigenic effects of heparanase are enhanced by the release of heparan sulfate side chains, with subsequent increase in bioactive fragments and cytokine levels that promote tumor invasion, angiogenesis, and metastasis. Preclinical experiments have found heparanase inhibitors to substantially reduce tumor growth and metastasis, leading to clinical trials with heparan sulfate mimetics. In this review, we examine the role of heparanase in tumor biology and its interaction with heparan surface proteoglycans, specifically syndecan-1, as well as the mechanism of action for heparanase inhibitors developed as antineoplastic therapeutics.
Collapse
Affiliation(s)
- Benjamin Heyman
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina, USA; Department of Immunology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
45
|
Heparanase: a rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Med Chem 2016; 8:647-80. [PMID: 27057774 DOI: 10.4155/fmc-2016-0012] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, heparanase has attracted considerable attention as a promising target for innovative pharmacological applications. Heparanase is a multifaceted protein endowed with enzymatic activity, as an endo-β-D-glucuronidase, and nonenzymatic functions. It is responsible for the cleavage of heparan sulfate side chains of proteoglycans, resulting in structural alterations of the extracellular matrix. Heparanase appears to be involved in major human diseases, from the most studied tumors to chronic inflammation, diabetic nephropathy, bone osteolysis, thrombosis and atherosclerosis, in addition to more recent investigation in various rare diseases. The present review provides an overview on heparanase, its biological role, inhibitors and possible clinical applications, covering the latest findings in these areas.
Collapse
|
46
|
Gross-Cohen M, Feld S, Doweck I, Neufeld G, Hasson P, Arvatz G, Barash U, Naroditsky I, Ilan N, Vlodavsky I. Heparanase 2 Attenuates Head and Neck Tumor Vascularity and Growth. Cancer Res 2016; 76:2791-801. [PMID: 27013193 DOI: 10.1158/0008-5472.can-15-1975] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 02/26/2016] [Indexed: 12/18/2022]
Abstract
The endoglycosidase heparanase specifically cleaves the heparan sulfate (HS) side chains on proteoglycans, an activity that has been implicated strongly in tumor metastasis and angiogenesis. Heparanase-2 (Hpa2) is a close homolog of heparanase that lacks intrinsic HS-degrading activity but retains the capacity to bind HS with high affinity. In head and neck cancer patients, Hpa2 expression was markedly elevated, correlating with prolonged time to disease recurrence and inversely correlating with tumor cell dissemination to regional lymph nodes, suggesting that Hpa2 functions as a tumor suppressor. The molecular mechanism associated with favorable prognosis following Hpa2 induction is unclear. Here we provide evidence that Hpa2 overexpression in head and neck cancer cells markedly reduces tumor growth. Restrained tumor growth was associated with a prominent decrease in tumor vascularity (blood and lymph vessels), likely due to reduced Id1 expression, a transcription factor highly implicated in VEGF-A and VEGF-C gene regulation. We also noted that tumors produced by Hpa2-overexpressing cells are abundantly decorated with stromal cells and collagen deposition, correlating with a marked increase in lysyl oxidase expression. Notably, heparanase enzymatic activity was unimpaired in cells overexpressing Hpa2, suggesting that reduced tumor growth is not caused by heparanase regulation. Moreover, growth of tumor xenografts by Hpa2-overexpressing cells was unaffected by administration of a mAb that targets the heparin-binding domain of Hpa2, implying that Hpa2 function does not rely on heparanase or heparan sulfate. Cancer Res; 76(9); 2791-801. ©2016 AACR.
Collapse
Affiliation(s)
- Miriam Gross-Cohen
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sari Feld
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ilana Doweck
- Department of Otolaryngology, Head and Neck Surgery, Carmel Medical Center, Haifa, Israel
| | - Gera Neufeld
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Peleg Hasson
- Department of Anatomy and Cell Biology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gil Arvatz
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Uri Barash
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inna Naroditsky
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
47
|
Downregulation of Heparanase Expression Results in Suppression of Invasion, Migration, and Adhesion Abilities of Hepatocellular Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:241983. [PMID: 26839882 PMCID: PMC4709605 DOI: 10.1155/2015/241983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022]
Abstract
Objective. Heparanase (HPSE) is high-expressed in most malignant tumors including hepatocellular carcinoma (HCC) and promotes cancer cell invasion and migration. The aim of the study is to explore whether HPSE enhances adhesion in metastasis of HCC cells. Methods. HPSE expressions in human HCC cells were measured with real-time RT-PCR and Western blot analysis. Four recombinant miRNA vectors pcDNATM6.2-GW/EmGFP-miR-HPSE (pmiR-HPSE) were transfected into HCCLM3 cell. HPSE expression in transfected cell was measured. The cell invasion, migration, and adhesion abilities were detected, respectively. Results. Both HPSE mRNA and protein relative expression levels were higher in HepG2, BEL-7402, and HCCLM3 cells than those in normal hepatocyte (P < 0.05). HPSE showed highest expression level in HCCLM3 cell (P < 0.05). Transfection efficiencies of four miRNA vectors were 75%–85%. The recombinant vectors significantly decreased HPSE expression in transfected HCCLM3 cells (P < 0.01), and pmiR-HPSE-1 showed best interference effect (P < 0.05). pmiR-HPSE-1 significantly decreased the penetrated and migrating cells numbers and adherence rate of HCCLM3 cells (P < 0.05). Conclusion. HPSE is a potentiator of cell adhesion in metastasis of HCC.
Collapse
|
48
|
Tsunekawa N, Higashi N, Kogane Y, Waki M, Shida H, Nishimura Y, Adachi H, Nakajima M, Irimura T. Heparanase augments inflammatory chemokine production from colorectal carcinoma cell lines. Biochem Biophys Res Commun 2015; 469:878-83. [PMID: 26713365 DOI: 10.1016/j.bbrc.2015.12.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
Abstract
To explore possible roles of heparanase in cancer-host crosstalk, we examined whether heparanase influences expression of inflammatory chemokines in colorectal cancer cells. Murine colorectal carcinoma cells incubated with heparanase upregulated MCP-1, KC, and RANTES genes and released MCP-1 and KC proteins. Heparanase-dependent production of IL-8 was detected in two human colorectal carcinoma cell lines. Addition of a heparanase inhibitor Heparastatin (SF4) did not influence MCP-1 production, while both latent and mature forms of heparanase augmented MCP-1 release, suggesting that heparanase catalytic activity was dispensable for MCP-1 production. In contrast, addition of heparin to the medium suppressed MCP-1 release in a dose-dependent manner. Similarly, targeted suppression of Ext1 by RNAi significantly suppressed cell surface expression of heparan sulfate and MCP-1 production in colon 26 cells. Taken together, it is concluded that colon 26 cells transduce the heparanase-mediated signal through heparan sulfate binding. We propose a novel function for heparanase independent of its endoglycosidase activity, namely as a stimulant for chemokine production.
Collapse
Affiliation(s)
- Naoki Tsunekawa
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuaki Higashi
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; One-stop Sharing Facility Center for Future Drug Discoveries, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yusuke Kogane
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michihiko Waki
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Shida
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshio Nishimura
- Institute of Microbial Chemistry, Tokyo, Kamiosaki 3-14-23, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Hayamitsu Adachi
- Institute of Microbial Chemistry, Tokyo, Kamiosaki 3-14-23, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Motowo Nakajima
- SBI Pharmaceuticals Co., Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo 106-6019, Japan
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Biochemistry and Department of Breast and Endocrine Surgery, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 104-8560, Japan.
| |
Collapse
|
49
|
Elewa MAF, Al-Gayyar MM, Schaalan MF, Abd El Galil KH, Ebrahim MA, El-Shishtawy MM. Hepatoprotective and anti-tumor effects of targeting MMP-9 in hepatocellular carcinoma and its relation to vascular invasion markers. Clin Exp Metastasis 2015; 32:479-93. [PMID: 25999065 DOI: 10.1007/s10585-015-9721-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/27/2015] [Indexed: 12/21/2022]
Abstract
The current study aims to evaluate the hepatoprotective and antitumor efficacy of doxycycline, as an matrix metalloproteases-9 (MMP-9) inhibitor, in an in vivo model of hepatocellular carcinoma (HCC). HCC was induced experimentally by thiocetamide (200 mg/kg) in rats that were treated with doxycycline (5 mg/kg for 16 weeks). Tumor severity was evaluated by measuring α-fetoprotein (AFP) levels, histopathologically by investigating liver sections stained with hematoxylin/eosin and assessing the survival rate. Liver homogenates were used for the measurements of MMP-9, fascin and hepatic heparan sulfate proteoglycan (HSPG) levels. Oxidative stress markers [malonaldehyde (MDA) and glutathione] as well as fibroblast growth factor-2 (FGF-2) gene expression were also among the assessed indicators. HCC in human and animal samples showed significant elevation in the levels of MMP-9 (231.7, 90 %), fascin (33.17, 140 %), as well as FGF-2 gene expression (342 % in animal samples; all respectively), associated with a significant decrease in hepatic HSPG level. Treatment of rats with doxycycline increased the animal survival rate (90 %) and decreased serum AFP level. Moreover, doxycycline ameliorated fibrosis and the induced massive hepatic tissue breakdown. It also restored the integrity of hepatic HSPGs and showed a magnificent inhibitory effect of tumor invasion cascade by significantly reducing the activities of MMP-9 (42 %) and fascin (50 %), as well as reducing the gene expression of FGF-2 (85.7 %). Furthermore, the antioxidant impact of doxycycline was evidenced by the significant elevation in glutathione level and depressing MDA level. To this end, doxycycline, proved promising hepatoprotective and antitumor activity and opens, thereby, a new horizon against vascular migration ability of the tumor cells.
Collapse
Affiliation(s)
- Mohammed A F Elewa
- Dept. of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Misr International University, 28km Cairo-Ismailia Road, Cairo, 18111, Egypt,
| | | | | | | | | | | |
Collapse
|
50
|
Extracellular acidity, a "reappreciated" trait of tumor environment driving malignancy: perspectives in diagnosis and therapy. Cancer Metastasis Rev 2015; 33:823-32. [PMID: 24984804 DOI: 10.1007/s10555-014-9506-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tumors are ecosystems which develop from stem cells endowed with unlimited self-renewal capability and genetic instability, under the effects of mutagenesis and natural selection imposed by environmental changes. Abnormal vascularization, reduced lymphatic network, uncontrolled cell growth frequently associated with hypoxia, and extracellular accumulation of glucose metabolites even in the presence of an adequate oxygen level are all factors contributing to reduce pH in the extracellular space of tumors. Evidence is accumulating that acidity is associated with a poor prognosis and participates actively to tumor progression. This review addresses some of the most experimental evidences providing that acidity of tumor environment facilitates local invasiveness and metastatic dissemination, independently from hypoxia, with which acidity is often but not always associated. Clinical investigations have also shown that tumors with acidic environment are associated with resistance to chemotherapy and radiation-induced apoptosis, suppression of cytotoxic lymphocytes, and natural killer cells tumoricidal activity. Therefore, new technologies for functional and molecular imaging as well as strategies directed to target low extracellular pH and low pH-adapted tumor cells might represent important issues in oncology.
Collapse
|