1
|
Huliganga E, Cho E, Swartz CD, Williams A, Recio L, Salk JJ, Marchetti F, Yauk CL. Adverse Outcome Pathway-Informed Integrated Testing to Identify Chemicals Causing Genotoxicity Through Oxidative DNA Damage: Case Study on 4-Nitroquinoline 1-Oxide. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2025; 66:185-198. [PMID: 40341686 PMCID: PMC12087725 DOI: 10.1002/em.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 05/10/2025]
Abstract
Adverse outcome pathways (AOPs) provide a framework to organize and weigh evidence linking molecular interactions of toxicants in cells to adverse outcomes relevant to risk assessment or regulatory decision-making. Applying this framework facilitates the interpretation of data produced using new test methods. We used an existing AOP (AOP #296) that describes how oxidative DNA damage leads to mutations and chromosomal aberrations to develop an integrated testing strategy to evaluate whether a chemical operates through this pathway. We exposed human TK6 cells to increasing concentrations of 4-nitroquinoline 1-oxide (4NQO), a tobacco mimetic that causes oxidative DNA damage, in a time-series design. We measured oxidative DNA damage and strand breaks using the high-throughput CometChip assay with and without formamidopyrimidine DNA glycosylase (Fpg), alongside analyses of micronucleus (MN) frequency by flow cytometry, and mutations by error-corrected sequencing (duplex sequencing-DS). Our analysis shows how these methods can be combined to quantify 4NQO-induced, concentration- and time-dependent increases in: (a) oxidative DNA damage (occurred early and at low concentrations); (b) strand breaks (remained elevated to 6 h post-exposure); (c) MN frequency (at 24 h); (d) mutation frequency (at 48 h); and (e) C > A transversions consistent with expected substitutions induced by oxidative DNA lesions. The time series shows the repair of oxidative DNA damage with persistent strand breaks remaining at 6 h. Overall, we provide an example of an AOP-informed testing strategy and contribute to the quantitative understanding of AOP #296. We also demonstrate the value of DS as an effective approach for mutagenicity assessment.
Collapse
Affiliation(s)
- Elizabeth Huliganga
- Department of BiologyUniversity of OttawaOttawaCanada
- Environmental Health Science and Research Bureau, Health CanadaOttawaCanada
| | - Eunnara Cho
- Environmental Health Science and Research Bureau, Health CanadaOttawaCanada
| | | | - Andrew Williams
- Environmental Health Science and Research Bureau, Health CanadaOttawaCanada
| | | | - Jesse J. Salk
- Division of Hematology and OncologyUniversity of Washington School of MedicineSeattleWAUSA
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health CanadaOttawaCanada
- Department of BiologyCarleton UniversityOttawaCanada
| | | |
Collapse
|
2
|
Zhao NN, Guo FY, Zhou BM, Liu M, Zhang CY. Construction of a Multiple Cyclic Ligation-Promoted Exponential Recombinase Polymerase Amplification Platform for Sensitive and Simultaneous Monitoring of Cancer Biomarkers Fpg and FEN1. Anal Chem 2025; 97:3099-3107. [PMID: 39880659 DOI: 10.1021/acs.analchem.4c06344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Formamidopyrimidine DNA glycosylase (Fpg) and flap endonuclease 1 (FEN1) are essential to sustaining genomic stability and integrity, while the abnormal activities of Fpg and FEN1 may lead to various diseases and cancers. The development of simple methods for simultaneously monitoring Fpg and FEN1 is highly desirable. Herein, we construct a multiple cyclic ligation-promoted exponential recombinase polymerase amplification (RPA) platform for sensitive and simultaneous monitoring of Fpg and FEN1 in cells and clinical tissues. We designed two programmable substrate probes with 8-oxo-7,8-dihydroguanine (8-oxoG) damage sites and 5' flaps that can be identified/cleaved by Fpg and FEN1 to produce nicking sites. The juxtaposition of the cleavage sites is ligated by DNA ligase to form intact double-stranded DNA (dsDNA) templates that can be amplified via RPA to produce abundant dsDNA products labeled with Cy5 and Cy3 fluorophores and biotin, respectively. The resultant dsDNA can be captured by magnetic beads and subsequently disassembled into dispersed Cy3 and Cy5 molecules upon heat treatment, generating significant fluorescence signals. This assay exhibits a limit of detection of 1.12 × 10-10 U μL-1 for Fpg and 1.66 × 10-9 U μL-1 for FEN1, and it can be used for the analysis of enzymatic kinetic parameters, screening of inhibitors, and simultaneous monitoring of Fpg and FEN1 in a single cell and in clinic tissue samples. Moreover, the proposed strategy can be applied to monitor other DNA repair proteins by merely changing the recognition sites of dsDNA substrate probes, providing a promising platform for clinical diagnosis, biomedical research, and drug discovery.
Collapse
Affiliation(s)
- Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Fang-Yu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Bao-Mei Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
3
|
Gureev AP, Nesterova VV, Sadovnikova IS. Long-range PCR as a tool for evaluating mitochondrial DNA damage: Principles, benefits, and limitations of the technique. DNA Repair (Amst) 2025; 146:103812. [PMID: 39848024 DOI: 10.1016/j.dnarep.2025.103812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Mitochondrial DNA (mtDNA) is often more susceptible to damage compared to nuclear DNA. This is due to its localization in the mitochondrial matrix, where a large portion of reactive oxygen species are produced. Mitochondria do not have histones and mtDNA is only slightly protected by histone-like proteins and is believed to have less efficient repair mechanisms. In this review, we discuss the long-range PCR method, which allows for the effective detection of mtDNA damage. The method is based on the assumption that various types of DNA lesions can interfere the progress of DNA polymerase, resulting in reduced amplification efficiency. It can be used to estimate the number of additional (above background) lesions in mtDNA. The review outlines the evolution of the methodology, its variations, applications in a wide range of model organisms, the advantages of the method and its limitations, as well as ways to overcome these limitations. Over the past two decades, the use of long-range PCR has allowed the study of mtDNA repair mechanisms, the characteristics of mitochondrial genome damage in various neurodegenerative diseases, aging, ischemic and oncological processes, as well as in anticancer therapy. The assessment of mtDNA damage has also been proposed for use in environmental biomonitoring. This review provides a critical evaluation of the various variations of this method, summarizes the accumulated data, and discusses the role of mtDNA damage in different organs at the organismal level.
Collapse
Affiliation(s)
- Artem P Gureev
- Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia.
| | - Veronika V Nesterova
- Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Irina S Sadovnikova
- Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| |
Collapse
|
4
|
Kumar K, Fornace AJ, Suman S. 8-OxodG: A Potential Biomarker for Chronic Oxidative Stress Induced by High-LET Radiation. DNA 2024; 4:221-238. [PMID: 39268222 PMCID: PMC11391509 DOI: 10.3390/dna4030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Oxidative stress-mediated biomolecular damage is a characteristic feature of ionizing radiation (IR) injury, leading to genomic instability and chronic health implications. Specifically, a dose- and linear energy transfer (LET)-dependent persistent increase in oxidative DNA damage has been reported in many tissues and biofluids months after IR exposure. Contrary to low-LET photon radiation, high-LET IR exposure is known to cause significantly higher accumulations of DNA damage, even at sublethal doses, compared to low-LET IR. High-LET IR is prevalent in the deep space environment (i.e., beyond Earth's magnetosphere), and its exposure could potentially impair astronauts' health. Therefore, the development of biomarkers to assess and monitor the levels of oxidative DNA damage can aid in the early detection of health risks and would also allow timely intervention. Among the recognized biomarkers of oxidative DNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodG) has emerged as a promising candidate, indicative of chronic oxidative stress. It has been reported to exhibit differing levels following equivalent doses of low- and high-LET IR. This review discusses 8-OxodG as a potential biomarker of high-LET radiation-induced chronic stress, with special emphasis on its potential sources, formation, repair mechanisms, and detection methods. Furthermore, this review addresses the pathobiological implications of high-LET IR exposure and its association with 8-OxodG. Understanding the association between high-LET IR exposure-induced chronic oxidative stress, systemic levels of 8-OxodG, and their potential health risks can provide a framework for developing a comprehensive health monitoring biomarker system to safeguard the well-being of astronauts during space missions and optimize long-term health outcomes.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
5
|
Wang G, Yu P, Wang J. Structures and dynamics of 8-oxo-7,8-dihydro-2'-deoxyguanosine in neutral and basic aqueous solutions by spectroscopy. J Chem Phys 2024; 161:024201. [PMID: 38973759 DOI: 10.1063/5.0209256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/15/2024] [Indexed: 07/09/2024] Open
Abstract
8-oxo-7,8-dihydro-2'-dexyoguanine (8-oxo-dG) can be tautomerized to a 6-enolate,8-keto tautomer through nearby-NH deprotonation at elevated pH. In this work, the N3-protonated 8-oxo-dG tautomers in deuterated pH-buffer solutions were studied using steady-state UV/Vis, FTIR, and ultrafast two-dimensional IR spectroscopies. The presence of 6,8-diketo and C6-anionic tautomers at neutral to basic conditions (pD = 7.4-12.0) was revealed by UV/Vis and FTIR results and was further confirmed by 2D IR signals in both diagonal and off-diagonal regions. However, the C6-enol tautomer, which may be an intermediate during the transition from 6,8-diketo to C6-enolate,C8-keto, was not observed appreciably due to its extreme low population. Furthermore, the neutral-to-anionic tautomeric transition of N3H-8-oxo-dG studied in this work occurs under more basic conditions than the N1H-8-oxo-dG reported previously, showing a higher pKa value for N3H than N1H. Finally, vibrational relaxation of the carbonyl stretching mode was found to be both molecular site dependent and pD dependent for 8oxo-dG. Taken together, this work shows that the ultrafast infrared spectroscopic method is effective for examining tautomers and their dynamics in nucleic acids.
Collapse
Affiliation(s)
- Guixiu Wang
- Department of Marine Technology, Rizhao Polytechnic, Yantai North Road, 16, Rizhao, Shandong Province 276800, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
6
|
Kruchinin AA, Kamzeeva PN, Zharkov DO, Aralov AV, Makarova AV. 8-Oxoadenine: A «New» Player of the Oxidative Stress in Mammals? Int J Mol Sci 2024; 25:1342. [PMID: 38279342 PMCID: PMC10816367 DOI: 10.3390/ijms25021342] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Numerous studies have shown that oxidative modifications of guanine (7,8-dihydro-8-oxoguanine, 8-oxoG) can affect cellular functions. 7,8-Dihydro-8-oxoadenine (8-oxoA) is another abundant paradigmatic ambiguous nucleobase but findings reported on the mutagenicity of 8-oxoA in bacterial and eukaryotic cells are incomplete and contradictory. Although several genotoxic studies have demonstrated the mutagenic potential of 8-oxoA in eukaryotic cells, very little biochemical and bioinformatics data about the mechanism of 8-oxoA-induced mutagenesis are available. In this review, we discuss dual coding properties of 8-oxoA, summarize historical and recent genotoxicity and biochemical studies, and address the main protective cellular mechanisms of response to 8-oxoA. We also discuss the available structural data for 8-oxoA bypass by different DNA polymerases as well as the mechanisms of 8-oxoA recognition by DNA repair enzymes.
Collapse
Affiliation(s)
- Alexander A. Kruchinin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- National Research Center, Kurchatov Institute, Kurchatov sq. 2, 123182 Moscow, Russia
| | - Polina N. Kamzeeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia;
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Andrey V. Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Alena V. Makarova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- National Research Center, Kurchatov Institute, Kurchatov sq. 2, 123182 Moscow, Russia
| |
Collapse
|
7
|
Qiu Y, Liu B, Zhou W, Tao X, Liu Y, Mao L, Wang H, Yuan H, Yang Y, Li B, Wang W, Qiu Y. Repair-driven DNA tetrahedral nanomachine combined with DNAzyme for 8-oxo guanine DNA glycosylase activity assay, drug screening and intracellular imaging. Analyst 2024; 149:537-545. [PMID: 38088097 DOI: 10.1039/d3an01521a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
8-oxo guanine DNA glycosylase (8-oxoG DNA glycosylase), a crucial DNA repair enzyme, is essential for maintaining genome integrity and preventing diseases caused by DNA oxidative damage. Imaging 8-oxoG DNA glycosylase in living cells requires a dependable technique. In this study, we designed a DNAzyme-modified DNA tetrahedral nanomachine (DTDN) powered by 8-oxoG restoration. Incorporating a molecular beacon probe (MB), the constructed platform was used for amplified in situ monitoring of 8-oxoG DNA glycosylase. Under normal conditions, duplexing with a complementary strand modified with two 8-oxoG sites inhibited the activity of DNAzyme. The restoration of DNAzyme activity by the repair of intracellular 8-oxoG DNA glycosylase on 8-oxoG bases can initiate a signal amplification reaction. This detection system can detect 8-oxoG DNA glycosylase activity linearly between 0 and 20 U mL-1, with a detection limit as low as 0.52 U mL-1. Using this method, we were able to screen 14 natural compounds and identify 6 of them as 8-oxoG DNA glycosylase inhibitors. In addition, a novel approach was utilized to assess the activity of 8-oxoG DNA glycosylase in living cells. In conclusion, this method provides a universal tool for monitoring the activity of 8-oxoG DNA glycosylase in vitro and in living cells, which holds great promise for elucidating the enzyme's functionality and facilitating drug screening endeavors.
Collapse
Affiliation(s)
- Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenchao Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Xueqing Tao
- College of Biology, Hunan University, Changsha 410082, China
| | - Yang Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Linxi Mao
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
8
|
Hayden H, Klopf J, Ibrahim N, Knöbl V, Sotir A, Mekis R, Nowikovsky K, Eilenberg W, Neumayer C, Brostjan C. Quantitation of oxidized nuclear and mitochondrial DNA in plasma samples of patients with abdominal aortic aneurysm. Free Radic Biol Med 2023; 206:94-105. [PMID: 37353175 DOI: 10.1016/j.freeradbiomed.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
There is accumulating evidence that pro-inflammatory features are inherent to mitochondrial DNA and oxidized DNA species. 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is the most frequently studied oxidatively generated lesion. Modified DNA reaches the circulation upon cell apoptosis, necrosis or neutrophil extracellular trap (NET) formation. Standard chromatography-based techniques for the assessment of 8-oxodGuo imply degradation of DNA to a single base level, thus precluding the attribution to a nuclear or mitochondrial origin. We therefore aimed to establish a protocol for the concomitant assessment of oxidized mitochondrial and nuclear DNA from human plasma samples. We applied immunoprecipitation (IP) for 8-oxodGuo to separate oxidized from non-oxidized DNA species and subsequent quantitative polymerase chain reaction (qPCR) to assign them to their subcellular source. The IP procedure failed when applied directly to plasma samples, i.e. isotype control precipitated similar amounts of DNA as the specific 8-oxodGuo antibody. In contrast, DNA isolation from plasma prior to the IP process provided assay specificity with little impact on DNA oxidation status. We further optimized sensitivity and efficiency of qPCR analysis by reducing amplicon length and targeting repetitive nuclear DNA elements. When the established protocol was applied to plasma samples of abdominal aortic aneurysm (AAA) patients and control subjects, the AAA cohort displayed significantly elevated circulating non-oxidized and total nuclear DNA and a trend for increased levels of oxidized mitochondrial DNA. An enrichment of mitochondrial versus nuclear DNA within the oxidized DNA fraction was seen for AAA patients. Regarding the potential source of circulating DNA, we observed a significant correlation of markers of neutrophil activation and NET formation with nuclear DNA, independent of oxidation status. Thus, the established method provides a tool to detect and distinguish the release of oxidized nuclear and mitochondrial DNA in human plasma and offers a refined biomarker to monitor disease conditions of pro-inflammatory cell and tissue destruction.
Collapse
Affiliation(s)
- Hubert Hayden
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Johannes Klopf
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Nahla Ibrahim
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Viktoria Knöbl
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Anna Sotir
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ronald Mekis
- Institute of Physiology, Pathophysiology and Biophysics, Unit of Physiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Karin Nowikovsky
- Institute of Physiology, Pathophysiology and Biophysics, Unit of Physiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Wolf Eilenberg
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christoph Neumayer
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christine Brostjan
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Nikkel DJ, Wetmore SD. Distinctive Formation of a DNA-Protein Cross-Link during the Repair of DNA Oxidative Damage: Insights into Human Disease from MD Simulations and QM/MM Calculations. J Am Chem Soc 2023. [PMID: 37285289 DOI: 10.1021/jacs.3c01773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reactive oxygen species damage DNA and result in health issues. The major damage product, 8-oxo-7,8-dihydroguanine (8oG), is repaired by human adenine DNA glycosylase homologue (MUTYH). Although MUTYH misfunction is associated with a genetic disorder called MUTYH-associated polyposis (MAP) and MUTYH is a potential target for cancer drugs, the catalytic mechanism required to develop disease treatments is debated in the literature. This study uses molecular dynamics simulations and quantum mechanics/molecular mechanics techniques initiated from DNA-protein complexes that represent different stages of the repair pathway to map the catalytic mechanism of the wild-type MUTYH bacterial homologue (MutY). This multipronged computational approach characterizes a DNA-protein cross-linking mechanism that is consistent with all previous experimental data and is a distinct pathway across the broad class of monofunctional glycosylase repair enzymes. In addition to clarifying how the cross-link is formed, accommodated by the enzyme, and hydrolyzed for product release, our calculations rationalize why cross-link formation is favored over immediate glycosidic bond hydrolysis, the accepted mechanism for all other monofunctional DNA glycosylases to date. Calculations on the Y126F mutant MutY highlight critical roles for active site residues throughout the reaction, while investigation of the N146S mutant rationalizes the connection between the analogous N224S MUTYH mutation and MAP. In addition to furthering our knowledge of the chemistry associated with a devastating disorder, the structural information gained about the distinctive MutY mechanism compared to other repair enzymes represents an important step for the development of specific and potent small-molecule inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
10
|
İnce K, Güner S, Büyükbebeci A, İnce N. Are Thiol/Disulfide and 8-OHdG Levels in the Blood of Patients with Diabetic Foot a Risk Factor for Amputation? INT J LOW EXTR WOUND 2023:15347346231177858. [PMID: 37229661 DOI: 10.1177/15347346231177858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE As diabetic patients live longer and there are more effective treatments available, the incidence of diabetes and its complications is increasing. The effects of oxidative stress and antioxidant processes on diabetes behavior, especially diabetic foot, are really direct. The goal of this research is to investigate the effects of oxidative stress and antioxidant mechanism on the outcome of amputation by examining the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and thiol/disulfide in the blood of patients diagnosed with diabetic foot. METHODS The research consisted of 76 patients with type 2 diabetes with associated diabetic foot, ages 40-65 (51 men, 25 women). Patients with diabetic foot wounds and accompanying peripheral artery disease were not included in the study. After a mean follow-up of 9.6 months, 28 patients resulted in amputation. Between patients who required amputation and those who did not, the levels of 8-OHdG, native thiol, total thiol, disulfide, native thiol/total thiol ratio, disulfide/native thiol ratio, and disulfide/total thiol ratio were compared. Additionally, the age, sex, Wagner stage, and amputation outcome of these 2 patient groups were compared. RESULTS The outcomes of amputation in diabetic foot patients were not related to the levels of native thiol, total thiol, disulfide, native thiol/total thiol ratio, disulfide/native thiol ratio, total thiol/disulfide ratio, or 8-OHdG (P > .05). However, patients with diabetic foot who were male, older, and at a more advanced Wagner stage had a higher rate of amputations (P < .05). CONCLUSION Oxidative stress and antioxidant mechanism are effective on diabetes complications. However, since there are many factors affecting the outcome of amputation, they are not directly effective in terms of resulting amputation in patients with diabetic foot ulcer.
Collapse
Affiliation(s)
- Kamil İnce
- Department of Orthopaedics and Traumatology, T.C. Ministry of Health Islahiye State Hospital, Gaziantep, Turkey
| | - Savaş Güner
- Department of Orthopaedics and Traumatology, Gaziantep University, Faculty of Medicine, Gaziantep, Turkey
| | - Ayşegül Büyükbebeci
- Faculty of Medicine, Department of Biochemistry, Gaziantep University, Gaziantep, Turkey
| | - Nursima İnce
- Faculty of Physical Medicine and Rehabilitation, Hasan Kalyoncu Universty, Gaziantep, Turkey
| |
Collapse
|
11
|
Xiao Y, Yi H, Zhu J, Chen S, Wang G, Liao Y, Lei Y, Chen L, Zhang X, Ye F. Evaluation of DNA adduct damage using G-quadruplex-based DNAzyme. Bioact Mater 2023; 23:45-52. [PMID: 36406255 PMCID: PMC9650010 DOI: 10.1016/j.bioactmat.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/15/2022] [Accepted: 10/02/2022] [Indexed: 11/11/2022] Open
Abstract
Toxicity assessment is a major problem in pharmaceutical candidates and industry chemicals development. However, due to the lack of practical analytical methods for DNA adduct analysis, the safety evaluation of drug and industry chemicals was severely limited. Here, we develop a DNAzyme-based method to detect DNA adduct damage for toxicity assessment of drugs and chemicals. Among 18 structural variants of G4 DNAzyme, EA2 DNAzyme exhibits an obvious DNA damaging effect of styrene oxide (SO) due to its unstable structure. The covalent binding of SO to DNAzyme disrupts the Hoogsteen hydrogen bonding sites of G-plane guanines and affects the formation of the G4 quadruplex. DNA damage chemicals reduce the peroxidase activity of the G4 DNAzyme to monitor the DNA adduct damage by disrupting the structural integrity of the G4 DNAzyme. Our method for genotoxic assessment of pharmaceutical candidates and industrial chemicals can elucidate the complex chemical pathways leading to toxicity, predict toxic effects of chemicals, and evaluate possible risks to human health.
Collapse
Affiliation(s)
- Yi Xiao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Haomin Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Jingzhi Zhu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Suhua Chen
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Guofang Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yilong Liao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yuanyuan Lei
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Liyin Chen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Fangfu Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
12
|
Gelova SP, Chan K. Mutagenesis induced by protonation of single-stranded DNA is linked to glycolytic sugar metabolism. Mutat Res 2023; 826:111814. [PMID: 36634476 DOI: 10.1016/j.mrfmmm.2023.111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Mutagenesis can be thought of as random, in the sense that the occurrence of each mutational event cannot be predicted with precision in space or time. However, when sufficiently large numbers of mutations are analyzed, recurrent patterns of base changes called mutational signatures can be identified. To date, some 60 single base substitution or SBS signatures have been derived from analysis of cancer genomics data. We recently reported that the ubiquitous signature SBS5 matches the pattern of single nucleotide polymorphisms (SNPs) in humans and has analogs in many species. Using a temperature-sensitive single-stranded DNA (ssDNA) mutation reporter system, we also showed that a similar mutational pattern in yeast is dependent on error-prone translesion DNA synthesis (TLS) and glycolytic sugar metabolism. Here, we further investigated mechanisms that are responsible for this form of mutagenesis in yeast. We first confirmed that excess sugar metabolism leads to increased mutation rate, which was detectable by fluctuation assay. Since glycolysis is known to produce excess protons, we then investigated the effects of experimental manipulations on pH and mutagenesis. We hypothesized that yeast metabolizing 8% glucose would produce more excess protons than cells metabolizing 2% glucose. Consistent with this, cells metabolizing 8% glucose had lower intracellular and extracellular pH values. Similarly, deletion of vma3 (encoding a vacuolar H+-ATPase subunit) increased mutagenesis. We also found that treating cells with edelfosine (which renders membranes more permeable, including to protons) or culturing in low pH media increased mutagenesis. Analysis of the mutational pattern attributable to 20 µM edelfosine treatment revealed similarity to the SBS5-like TLS- and glycolysis-dependant mutational patterns previously observed in ssDNA. Altogether, our results agree with multiple biochemical studies showing that protonation of nitrogenous bases can alter base pairing so as to stabilize some mispairs, and shed new light on a common form of intrinsic mutagenesis.
Collapse
Affiliation(s)
- Suzana P Gelova
- University of Ottawa Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada; Agriculture and Agri-Food Canada, 2585 County Road 20, Harrow, Ontario N0R 1G0, Canada
| | - Kin Chan
- University of Ottawa Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
13
|
Zeng F, Parker K, Zhan Y, Miller M, Zhu MY. Upregulated DNA Damage-Linked Biomarkers in Parkinson's Disease Model Mice. ASN Neuro 2023; 15:17590914231152099. [PMID: 36683340 PMCID: PMC9880594 DOI: 10.1177/17590914231152099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
SUMMARY STATEMENT The present study examined expression of DNA damage markers in VMAT2 Lo PD model mice. The results demonstrate there is a significant increase in these DNA damage markers mostly in the brain regions of 18- and 23-month-old model mice, indicating oxidative stress-induced DNA lesion is an important pathologic feature of this mouse model.
Collapse
Affiliation(s)
- Fei Zeng
- Department of Neurology, Renmin Hospital of the Wuhan University,
Wuhan, China
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| | - Karsten Parker
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| | - Yanqiang Zhan
- Department of Neurology, Renmin Hospital of the Wuhan University,
Wuhan, China
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| | - Matthew Miller
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| | - Meng-Yang Zhu
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| |
Collapse
|
14
|
Paintsil EA, Morrison EA. Preparation of Recombinant Histones and Widom 601 DNA for Reconstitution of Nucleosome Core Particles. Methods Mol Biol 2023; 2599:163-175. [PMID: 36427149 DOI: 10.1007/978-1-0716-2847-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Expression and purification of individual histone proteins and amplification and purification of DNA are the initial steps toward reconstituting nucleosome core particles. Histone proteins are expressed in E. coli, extracted from inclusion bodies, and purified using ion-exchange chromatography. DNA containing the 147 base pair Widom 601 sequence is amplified in bacteria using a plasmid containing multiple copies of this strong nucleosome positioning sequence. Following alkaline lysis of bacteria, DNA is extracted using phenol and chloroform, released from the vector via restriction enzyme digestion, and purified in subsequent precipitation and ion-exchange chromatography steps. Here, we describe a combination of two protocols: one to express and purify recombinant human histones and the other to amplify and purify Widom 601 DNA.
Collapse
Affiliation(s)
- Emeleeta A Paintsil
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emma A Morrison
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
15
|
Pantzke J, Offer S, Zimmermann EJ, Kuhn E, Streibel T, Oeder S, Di Bucchianico S, Zimmermann R. An alternative in vitro model considering cell-cell interactions in fiber-induced pulmonary fibrosis. Toxicol Mech Methods 2022:1-16. [DOI: 10.1080/15376516.2022.2156008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Elias J. Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
| | - Thorsten Streibel
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
16
|
Gelova SP, Doherty KN, Alasmar S, Chan K. Intrinsic base substitution patterns in diverse species reveal links to cancer and metabolism. Genetics 2022; 222:iyac144. [PMID: 36149294 PMCID: PMC9630983 DOI: 10.1093/genetics/iyac144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022] Open
Abstract
Analyses of large-scale cancer sequencing data have revealed that mutagenic processes can create distinctive patterns of base substitutions, called mutational signatures. Interestingly, mutational patterns resembling some of these signatures can also be observed in normal cells. To determine whether similar patterns exist more generally, we analyzed large data sets of genetic variation, including mutations from 7 model species and single nucleotide polymorphisms in 42 species, totaling >1.9 billion variants. We found that base substitution patterns for most species closely match single base substitution (SBS) mutational signature 5 in the Catalog of Somatic Mutations in Cancer (COSMIC) database. SBS5 is ubiquitous in cancers and also present in normal human cells, suggesting that similar patterns of genetic variation across so many species are likely due to conserved biochemistry. We investigated the mechanistic origins of the SBS5-like mutational pattern in Saccharomyces cerevisiae, and show that translesion DNA synthesis and sugar metabolism are directly linked to this form of mutagenesis. We propose that conserved metabolic processes in cells are coupled to continuous generation of genetic variants, which can be acted upon by selection to drive the evolution of biological entities.
Collapse
Affiliation(s)
- Suzana P Gelova
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kassidy N Doherty
- Biopharmaceutical Sciences Undergraduate Program, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Salma Alasmar
- Biopharmaceutical Sciences Undergraduate Program, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kin Chan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
17
|
Thapa MJ, Fabros RM, Alasmar S, Chan K. Analyses of mutational patterns induced by formaldehyde and acetaldehyde reveal similarity to a common mutational signature. G3 GENES|GENOMES|GENETICS 2022; 12:6694047. [PMID: 36073936 PMCID: PMC9635668 DOI: 10.1093/g3journal/jkac238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/22/2022] [Indexed: 12/23/2022]
Abstract
Formaldehyde and acetaldehyde are reactive small molecules produced endogenously in cells as well as being environmental contaminants. Both of these small aldehydes are classified as human carcinogens, since they are known to damage DNA and exposure is linked to cancer incidence. However, the mutagenic properties of formaldehyde and acetaldehyde remain incompletely understood, at least in part because they are relatively weak mutagens. Here, we use a highly sensitive yeast genetic reporter system featuring controlled generation of long single-stranded DNA regions to show that both small aldehydes induced mutational patterns characterized by predominantly C/G → A/T, C/G → T/A, and T/A → C/G substitutions, each in similar proportions. We observed an excess of C/G → A/T transversions when compared to mock-treated controls. Many of these C/G → A/T transversions occurred at TC/GA motifs. Interestingly, the formaldehyde mutational pattern resembles single base substitution signature 40 from the Catalog of Somatic Mutations in Cancer. Single base substitution signature 40 is a mutational signature of unknown etiology. We also noted that acetaldehyde treatment caused an excess of deletion events longer than 4 bases while formaldehyde did not. This latter result could be another distinguishing feature between the mutational patterns of these simple aldehydes. These findings shed new light on the characteristics of 2 important, commonly occurring mutagens.
Collapse
Affiliation(s)
- Mahanish J Thapa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa , Ottawa, ON K1H 8M5, Canada
| | - Reena M Fabros
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa , Ottawa, ON K1H 8M5, Canada
| | - Salma Alasmar
- Biopharmaceutical Sciences Undergraduate Program, University of Ottawa , Ottawa, ON K1N 6N5, Canada
| | - Kin Chan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa , Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
18
|
Jin SG, Meng Y, Johnson J, Szabó PE, Pfeifer GP. Concordance of hydrogen peroxide-induced 8-oxo-guanine patterns with two cancer mutation signatures of upper GI tract tumors. SCIENCE ADVANCES 2022; 8:eabn3815. [PMID: 35658030 PMCID: PMC9166614 DOI: 10.1126/sciadv.abn3815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/15/2022] [Indexed: 05/22/2023]
Abstract
Oxidative DNA damage has been linked to inflammation, cancer, and aging. Here, we have mapped two types of oxidative DNA damage, oxidized guanines produced by hydrogen peroxide and oxidized thymines created by potassium permanganate, at a single-base resolution. 8-Oxo-guanine occurs strictly dependent on the G/C sequence context and shows a pronounced peak at transcription start sites (TSSs). We determined the trinucleotide sequence pattern of guanine oxidation. This pattern shows high similarity to the cancer-associated single-base substitution signatures SBS18 and SBS36. SBS36 is found in colorectal cancers that carry mutations in MUTYH, encoding a repair enzyme that operates on 8-oxo-guanine mispairs. SBS18 is common in inflammation-associated upper gastrointestinal tract tumors including esophageal and gastric adenocarcinomas. Oxidized thymines induced by permanganate occur with a distinct dinucleotide specificity, 5'T-A/C, and are depleted at the TSS. Our data suggest that two cancer mutational signatures, SBS18 and SBS36, are caused by reactive oxygen species.
Collapse
Affiliation(s)
- Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Yingying Meng
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jennifer Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Piroska E. Szabó
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | | |
Collapse
|
19
|
Chiorcea-Paquim AM. 8-oxoguanine and 8-oxodeoxyguanosine Biomarkers of Oxidative DNA Damage: A Review on HPLC-ECD Determination. Molecules 2022; 27:1620. [PMID: 35268721 PMCID: PMC8911600 DOI: 10.3390/molecules27051620] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022] Open
Abstract
Reactive oxygen species (ROS) are continuously produced in living cells due to metabolic and biochemical reactions and due to exposure to physical, chemical and biological agents. Excessive ROS cause oxidative stress and lead to oxidative DNA damage. Within ROS-mediated DNA lesions, 8-oxoguanine (8-oxoG) and its nucleotide 8-oxo-2'-deoxyguanosine (8-oxodG)-the guanine and deoxyguanosine oxidation products, respectively, are regarded as the most significant biomarkers for oxidative DNA damage. The quantification of 8-oxoG and 8-oxodG in urine, blood, tissue and saliva is essential, being employed to determine the overall effects of oxidative stress and to assess the risk, diagnose, and evaluate the treatment of autoimmune, inflammatory, neurodegenerative and cardiovascular diseases, diabetes, cancer and other age-related diseases. High-performance liquid chromatography with electrochemical detection (HPLC-ECD) is largely employed for 8-oxoG and 8-oxodG determination in biological samples due to its high selectivity and sensitivity, down to the femtomolar range. This review seeks to provide an exhaustive analysis of the most recent reports on the HPLC-ECD determination of 8-oxoG and 8-oxodG in cellular DNA and body fluids, which is relevant for health research.
Collapse
Affiliation(s)
- Ana-Maria Chiorcea-Paquim
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Chemistry, 3004-535 Coimbra, Portugal;
- Instituto Pedro Nunes (IPN), 3030-199 Coimbra, Portugal
| |
Collapse
|
20
|
Fleming AM, Burrows CJ. Chemistry of ROS-mediated oxidation to the guanine base in DNA and its biological consequences. Int J Radiat Biol 2022; 98:452-460. [PMID: 34747670 PMCID: PMC8881305 DOI: 10.1080/09553002.2021.2003464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE One outcome of DNA damage from hydroxyl radical generated by ionizing radiation (IR) or by the Fenton reaction is oxidation of the nucleobases, especially guanine (G). While 8-oxo-7,8-dihydroguanine (OG) is a commonly studied oxidized lesion, several others are formed in high abundance, including 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), a prevalent product in in vitro chemistry that is challenging to study from cellular sources. In this short review, we have a goal of explaining new insights into hydroxyl radical-induced oxidation chemistry of G in DNA and comparing it to endogenous DNA damage, as well as commenting on the biological outcomes of DNA base damage. CONCLUSIONS Pathways of oxidation of G are discussed and a comparison is made between IR (hydroxyl radical chemistry) and endogenous oxidative stress that largely forms carbonate radical anion as a reactive intermediate. These pathways overlap with the formation of OG and 2Ih, but other guanine-derived lesions are more pathway specific. The biological consequences of guanine oxidation include both mutagenesis and epigenetics; a new mechanism of gene regulation via the base excision repair pathway is described for OG, whereas the impact of IR in forming guanine modifications may be to confound this process in addition to introduction of mutagenic sites.
Collapse
|
21
|
Structural Insights into the Specificity of 8-Oxo-7,8-dihydro-2′-deoxyguanosine Bypass by Family X DNA Polymerases. Genes (Basel) 2021; 13:genes13010015. [PMID: 35052363 PMCID: PMC8774566 DOI: 10.3390/genes13010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
8-oxo-guanine (8OG) is a common base lesion, generated by reactive oxygen species, which has been associated with human diseases such as cancer, aging-related neurodegenerative disorders and atherosclerosis. 8OG is highly mutagenic, due to its dual-coding potential it can pair both with adenine or cytidine. Therefore, it creates a challenge for DNA polymerases striving to correctly replicate and/or repair genomic or mitochondrial DNA. Numerous structural studies provide insights into the mechanistic basis of the specificity of 8OG bypass by DNA polymerases from different families. Here, we focus on how repair polymerases from Family X (Pols β, λ and µ) engage DNA substrates containing the oxidized guanine. We review structures of binary and ternary complexes for the three polymerases, which represent distinct steps in their catalytic cycles—the binding of the DNA substrate and the incoming nucleotide, followed by its insertion and extension. At each of these steps, the polymerase may favor or exclude the correct C or incorrect A, affecting the final outcome, which varies depending on the enzyme.
Collapse
|
22
|
Jorgensen A, Thygesen MB, Kristiansen U, Poulsen HE. An in silico kinetic model of 8-oxo-7,8-dihydro-2-deoxyguanosine and 8-oxo-7,8-dihydroguanosine metabolism from intracellular formation to urinary excretion. Scandinavian Journal of Clinical and Laboratory Investigation 2021; 81:540-545. [PMID: 34511003 DOI: 10.1080/00365513.2021.1969682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Oxidatively generated DNA damage is of paramount importance in a wide range of physiological and pathophysiological processes. Urinary 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) is often used as an outcome marker in studies on the role of oxidatively generated DNA damage, but its exact relation to intracellular damage levels and variations in DNA repair have been unclear. Using a new approach of quantitative kinetic modeling inspired by pharmacokinetics, we find evidence that in steady state - i.e. when systemic consequences of given change in damage or cellular removal rates have stabilized - the urinary excretion of 8-oxodG is closely correlated to rates of damage and intracellular 8-oxodG levels, but independent of the rate of cellular removal. Steady state was calculated to occur within approximately 12 h. A similar pattern was observed in a model of the corresponding RNA marker 8-oxo-7,8-dihydroguanosine (8-oxoGuo), but with steady-state occurring slower (up to 5 d). These data have significant implications for the planning of studies and interpretation of data involving urinary 8-oxodG/8-oxoGuo excretion as outcome.HighlightsThe kinetics of 8-oxodG/8-oxoGuo formation, removal and excretion were simulated in silico.The model was based on existing data on 8-oxodG/8-oxoGuo levels and removal/excretion rates.Intracellular 8-oxodG/8-oxoGuo was closely correlated with urinary excretion in steady state.Changes in removal rates did not influence urinary excretion of 8-oxodG/8-oxoGuo.
Collapse
Affiliation(s)
- Anders Jorgensen
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Psychiatric Center Copenhagen (Rigshospitalet), Mental Health Services of the Capital Region, Copenhagen, Denmark
| | - Maria Bremholm Thygesen
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Uffe Kristiansen
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Enghusen Poulsen
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Pharmacology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
23
|
Henriksen T, Weimann A, Larsen EL, Poulsen HE. Quantification of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-guanosine concentrations in urine and plasma for estimating 24-h urinary output. Free Radic Biol Med 2021; 172:350-357. [PMID: 34166769 DOI: 10.1016/j.freeradbiomed.2021.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Among markers for oxidative stress urinary excretion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 8-oxo-7,8-dihydro-guanosine (8-oxoGuo) have been widely used in controlled and epidemiological studies, and are considered to represent intracellular markers of oxidation of DNA and RNA in the entire organism, respectively. Although being non-invasive, urinary methods have shortcomings. There is no established method for analysis of 8-oxodGuo and 8-oxoGuo in plasma and the few plasma values presented in the literature vary greatly. We here present a liquid chromatography mass spectrometry method with full validation for analysis of 8-oxodGuo and 8-oxoGuo in plasma. Further, we investigated the basis for our previously physiological model and show that a single plasma sample can be used to estimate the 24-h production of 8-oxoGuo, whereas we challenge the use of urinary 8-oxodGuo/creatinine ratio or plasma 8-oxodGuo as measures of oxidative stress.
Collapse
Affiliation(s)
- Trine Henriksen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Allan Weimann
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Emil List Larsen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Cardiology, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Cardiology, Copenhagen University Hospital, North Zealand, Hillerød, Denmark; Department of Clinical Medicine, Health Science Faculty, University of Copenhagen, Denmark; Department of Endochrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.
| |
Collapse
|
24
|
Rajaei M, Saxena AS, Johnson LM, Snyder MC, Crombie TA, Tanny RE, Andersen EC, Joyner-Matos J, Baer CF. Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in C. elegans. Genome Res 2021; 31:1602-1613. [PMID: 34404692 PMCID: PMC8415377 DOI: 10.1101/gr.275372.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
Important clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the laboratory as in nature. The base-substitution spectrum differs between C. elegans laboratory mutation accumulation (MA) experiments and the standing site-frequency spectrum, which has been argued to be in part owing to increased oxidative stress in the laboratory environment. Using genome sequence data from C. elegans MA lines carrying a mutation (mev-1) that increases the cellular titer of reactive oxygen species (ROS), leading to increased oxidative stress, we find the base-substitution spectrum is similar between mev-1, its wild-type progenitor (N2), and another set of MA lines derived from a different wild strain (PB306). Conversely, the rate of short insertions is greater in mev-1, consistent with studies in other organisms in which environmental stress increased the rate of insertion–deletion mutations. Further, the mutational properties of mononucleotide repeats in all strains are different from those of nonmononucleotide sequence, both for indels and base-substitutions, and whereas the nonmononucleotide spectra are fairly similar between MA lines and wild isolates, the mononucleotide spectra are very different, with a greater frequency of A:T → T:A transversions and an increased proportion of ±1-bp indels. The discrepancy in mutational spectra between laboratory MA experiments and natural variation is likely owing to a consistent (but unknown) effect of the laboratory environment that manifests itself via different modes of mutability and/or repair at mononucleotide loci.
Collapse
Affiliation(s)
- Moein Rajaei
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | | | - Lindsay M Johnson
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Michael C Snyder
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Timothy A Crombie
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Joanna Joyner-Matos
- Department of Biology, Eastern Washington University, Cheney, Washington 99004, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.,University of Florida Genetics Institute, Gainesville, Florida 32608, USA
| |
Collapse
|
25
|
Ripanti F, Fasolato C, Mazzarda F, Palleschi S, Ceccarini M, Li C, Bignami M, Bodo E, Bell SEJ, Mazzei F, Postorino P. Advanced Raman Spectroscopy Detection of Oxidative Damage in Nucleic Acid Bases: Probing Chemical Changes and Intermolecular Interactions in Guanosine at Ultralow Concentration. Anal Chem 2021; 93:10825-10833. [PMID: 34324303 PMCID: PMC8382216 DOI: 10.1021/acs.analchem.1c01049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA/RNA synthesis precursors are especially vulnerable to damage induced by reactive oxygen species occurring following oxidative stress. Guanosine triphosphates are the prevalent oxidized nucleotides, which can be misincorporated during replication, leading to mutations and cell death. Here, we present a novel method based on micro-Raman spectroscopy, combined with ab initio calculations, for the identification, detection, and quantification of oxidized nucleotides at low concentration. We also show that the Raman signature in the terahertz spectral range (<100 cm-1) contains information on the intermolecular assembly of guanine in tetrads, which allows us to further boost the oxidative damage detection limit. Eventually, we provide evidence that similar analyses can be carried out on samples in very small volumes at very low concentrations by exploiting the high sensitivity of surface-enhanced Raman scattering combined with properly designed superhydrophobic substrates. These results pave the way for employing such advanced spectroscopic methods for quantitatively sensing the oxidative damage of nucleotides in the cell.
Collapse
Affiliation(s)
- Francesca Ripanti
- Department of Physics, Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| | - Claudia Fasolato
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, Perugia, Italy
| | - Flavia Mazzarda
- Department of Physics, Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| | - Simonetta Palleschi
- Department of Environment & Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Marina Ceccarini
- National Centre for Rare Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Chunchun Li
- School of Chemistry and Chemical Engineering, Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland
| | - Margherita Bignami
- Department of Environment & Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Enrico Bodo
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, Rome, Italy
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland
| | - Filomena Mazzei
- Department of Environment & Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Paolo Postorino
- Department of Physics, Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| |
Collapse
|
26
|
Kilarkaje N, Al-Qaryyan M, Al-Bader MD. Trans-resveratrol imparts disparate effects on transcription of DNA damage sensing/repair pathway genes in euglycemic and hyperglycemic rat testis. Toxicol Appl Pharmacol 2021; 418:115510. [PMID: 33775663 DOI: 10.1016/j.taap.2021.115510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Prevention or repair of DNA damage is critical to inhibit carcinogenesis in living organisms. Using quantitative RT2 Profiler™ PCR array, we investigated if trans-resveratrol could modulate the transcription of DNA damage sensing/repair pathway genes in euglycemic and non-obese type 2 diabetic Goto-Kakizaki rat testis. Trans-resveratrol imparted disparate effects on gene expressions. In euglycemic rats, it downregulated 79% and upregulated 2% of genes. However, in diabetic rats, it upregulated only 2% and downregulated 4% of genes. As such, diabetes upregulated 16% and downregulated 4% of genes. Trans-resveratrol normalized the expression of 9 (60%) out of 15 upregulated genes in diabetic rats. In euglycemic rats, trans-resveratrol inhibited ATM/ATR, DNA damage repair, pro-cell cycle progression, and apoptosis signaling genes. However, it increased Cdkn1a and Sumo1, indicating cell cycle arrest, apoptosis, and cytostasis in conjunction with increased DNA double-strand breaks and apoptosis. Diabetes increased DNA damage and apoptosis but did not affect ATM/ATR and double-strand break repair genes, although it increased few single-strand repair genes. Diabetes increased Abl1 and Sirt1, which may be related to apoptosis, but their increase may well suggest the enhanced cell cycle progression and putative carcinogenicity. The transcription of Rad17 and Smc1a increased in diabetic rats indicating G2 phase arrest and increases in a few DNA single-strand breaks repair genes suggesting DNA damage repair. Trans-resveratrol inhibits the cell cycle and causes cell death in euglycemic rat testis but normalizes diabetes-induced genes related to DNA damage and cell cycle control, suggesting its usefulness in maintaining DNA integrity in diabetes.
Collapse
Affiliation(s)
| | - Mariam Al-Qaryyan
- Department of Physiology Faculty of Medicine, Kuwait University, Kuwait
| | - Maie D Al-Bader
- Department of Physiology Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
27
|
Qiu Y, Dang W, Fan J, Zhou T, Li B, Liu Y, Qin Y, Tong C, Daniyal M, Wang W, Liu B. DNAzyme and rGO based fluorescence assay for Fpg activity analysis, drug screening, and bacterial imaging. Talanta 2020; 218:121158. [PMID: 32797912 DOI: 10.1016/j.talanta.2020.121158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/03/2020] [Accepted: 05/10/2020] [Indexed: 11/16/2022]
Abstract
Due to the significant role of formamidopyrimidine DNA glycosylase (Fpg) in physiological processes and DNA oxidative damage-related diseases, it is essential to establish sensitive methods for monitoring the Fpg activity in vitro and in vivo so as to illustrate its concrete role in these events. In this work, a sensitive, simple and reliable fluorescence assay was developed by taking the advantages of DNAzyme assisted cascade signal amplification and ultra-high fluorescence quenching efficiency of reduced graphene oxide (rGO). This detection system consisted of DNAzyme, rGO and fluorescence probe allows the activity of Fpg to be detected in a linear range from 0 to 80 U/mL with a detection limit of 0.66 U/mL. With the help of this method, 11 natural compounds were screened, and 7 compounds were identified as activators of Fpg. More importantly, the developed assay was used to monitor the activity of Fpg through fluorescence imaging in living Escherichia coli for the first time. The imaging results visually demonstrated the dynamic activation effect of natural compound Ginsenoside Re on the Fpg of Escherichia coli. In summary, these results indicated that this DNAzyme and rGO based fluorescence assay provides a potent strategy for Fpg quantitative assay in vitro and real-time monitoring in living bacteria, which holds great potential for applying on biological study and Fpg-targeted drug screening.
Collapse
Affiliation(s)
- Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; College of Biology, Hunan University, Changsha, 410082, China
| | - Wenya Dang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ting Zhou
- College of Biology, Hunan University, Changsha, 410082, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yang Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yan Qin
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha, 410082, China
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
28
|
Li Y, Guo J, Zhang H, Lam CW, Luo W, Zhou H, Zhang W. Protective Effect of Thymidine on DNA Damage Induced by Hydrogen Peroxide in Human Hepatocellular Cancer Cells. ACS OMEGA 2020; 5:21796-21804. [PMID: 32905386 PMCID: PMC7469367 DOI: 10.1021/acsomega.0c02843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Intracellular ribonucleotide (RN) and deoxyribonucleotide (dRN) pool sizes are critical for the fidelity of DNA synthesis. They are likely to be severely perturbed by many factors which disrupt the integrity and stability of DNA, leading to DNA damage. Exogenously supplied nucleosides are able to increase the deoxynucleoside triphosphate pools, then reverse the DNA damage, and decrease the oncogene-induced transformation dramatically. In this study, the impact of thymidine on the hydrogen peroxide (H2O2)-induced DNA damage was investigated in HepG2 liver cancer cells. From the result of the comet assay, the tail length of cells in the thymidine 600 μM + H2O2 1.0 mM group was dramatically decreased from 42.1 ± 10.8 to 21.9 ± 2.4 μm compared to that exposed with 1.0 mM H2O2 (p < 0.05), suggesting that pretreatment of thymidine reduced the DNA damage of HepG2 cells. Although the RN and dRN contents decreased in the damage group, most of them presented increasing tendency when pretreated with thymidine, especially the key metabolites dCTP, which was mainly related with the decline in the rate of DNA synthesis. The restoration also showed a significant G0/G1 phase arrest of cell cycle progression from 44.6 ± 2.2 to 56.6 ± 0.4% after pretreated with thymidine (p < 0.05). In conclusion, our data demonstrated that the pretreatment with thymidine had a potential protective ability against oxidative damage for DNA in HepG2 cells through the perturbation of RN and dRN pools as well as cell cycle arrest, which should provide new insights into the molecular basis of preventing H2O2-induced oxidative DNA damage in mammalian cells.
Collapse
|
29
|
Sato I, Sasaki J, Satoh H, Natsuhori M, Murata T, Okada K. Assessments of DNA Damage and Radiation Exposure Dose in Cattle Living in the Contaminated Area Caused by the Fukushima Nuclear Accident. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:496-501. [PMID: 32844262 DOI: 10.1007/s00128-020-02968-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Since the Fukushima nuclear accident in 2011, various abnormalities have been reported in animals living in the contaminated area. In the present study, we examined DNA damage in cattle living in the "difficult-to-return zone" by 8-hydroxy-2'-deoxyguanosine, comet, and micronucleus assays using their peripheral blood. The radiation exposure dose rate at the sampling time was approximately 0.25 or 0.38 mGy/day and the cumulative dose was estimated at approximately 1000 mGy. Significant increase in DNA damage was not detected by any of the three methods. As DNA damage is a stochastic effect of radiation, it might be occurring in animals living in the contaminated area. However, the present results suggest that radiation-induced DNA damage in the cattle did not increase to the level detectable by the assays we used due to the low dose rate in this area.
Collapse
Affiliation(s)
- Itaru Sato
- Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan.
| | - Jun Sasaki
- Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Hiroshi Satoh
- Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Masahiro Natsuhori
- School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan
| | - Takahisa Murata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Keiji Okada
- Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| |
Collapse
|
30
|
Nayek U, Unnikrishnan VK, Abdul Salam AA, Chidangil S, Mathur D. Thermal Energy Electrons and OH-Radicals Induce Strand Breaks in DNA in an Aqueous Environment: Some Salts Offer Protection Against Strand Breaks. J Phys Chem A 2020; 124:1508-1514. [PMID: 32040313 DOI: 10.1021/acs.jpca.0c00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electrons and •OH-radicals have been generated by using low-energy laser pulses of 6 ns duration (1064 nm wavelength) to create plasma in a suspension of plasmid DNA (pUC19) in water. Upon thermalization, these particles induce single and double strand breakages in DNA along with possible base oxidation/base degradation. The time-evolution of the ensuing structural modifications has been measured; damage to DNA is seen to occur within 30 s of laser irradiation. The time-evolution is also measured upon addition of physiologically relevant concentrations of salts containing monovalent, divalent, or trivalent alkali ions. It is shown that some alkali ions can significantly inhibit strand breakages while some do not. The inhibition is due to electrostatic shielding of DNA, but significantly, the extent of such shielding is seen to depend on how each alkali ion binds to DNA. Results of experiments on strand breakages induced by thermalized particles produced upon plasma-induced photolysis of water, and their inhibition, suggest implications beyond studies of DNA; they open new vistas for utilizing simple nanosecond lasers to explore the effect of ultralow energy radiation on living matter under physiologically relevant conditions.
Collapse
Affiliation(s)
- Upendra Nayek
- Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India.,Centre for Applied Nanosciences, Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India
| | - V K Unnikrishnan
- Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India.,Centre for Biophotonics, Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India.,Centre for Applied Nanosciences, Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India.,Centre for Biophotonics, Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India
| | - Deepak Mathur
- Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India
| |
Collapse
|
31
|
Manganese Is Required for the Rapid Recovery of DNA Synthesis following Oxidative Challenge in Escherichia coli. J Bacteriol 2019; 201:JB.00426-19. [PMID: 31570529 DOI: 10.1128/jb.00426-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/18/2019] [Indexed: 11/20/2022] Open
Abstract
Divalent metals such as iron and manganese play an important role in the cellular response to oxidative challenges and are required as cofactors by many enzymes. However, how these metals affect replication after oxidative challenge is not known. Here, we show that replication in Escherichia coli is inhibited following a challenge with hydrogen peroxide and requires manganese for the rapid recovery of DNA synthesis. We show that the manganese-dependent recovery of DNA synthesis occurs independent of lesion repair, modestly improves cell survival, and is associated with elevated rates of mutagenesis. The Mn-dependent mutagenesis involves both replicative and translesion polymerases and requires prior disruption by H2O2 to occur. Taking these findings together, we propose that replication in E. coli is likely to utilize an iron-dependent enzyme(s) that becomes oxidized and inactivated during oxidative challenges. The data suggest that manganese remetallates these or alternative enzymes to allow genomic DNA replication to resume, although with reduced fidelity.IMPORTANCE Iron and manganese play important roles in how cell's cope with oxygen stress. However, how these metals affect the ability of cells to replicate after oxidative challenges is not known. Here, we show that replication in Escherichia coli is inhibited following a challenge with hydrogen peroxide and requires manganese for the rapid recovery of DNA synthesis. The manganese-dependent recovery of DNA synthesis occurs independently of lesion repair and modestly improves survival, but it also increases the mutation rate in cells. The results imply that replication in E. coli is likely to utilize an iron-dependent enzyme(s) that becomes oxidized and inactivated during oxidative challenges. We propose that manganese remetallates these or alternative enzymes to allow genomic DNA replication to resume, although with reduced fidelity.
Collapse
|
32
|
Barranger A, Langan LM, Sharma V, Rance GA, Aminot Y, Weston NJ, Akcha F, Moore MN, Arlt VM, Khlobystov AN, Readman JW, Jha AN. Antagonistic Interactions between Benzo[a]pyrene and Fullerene (C 60) in Toxicological Response of Marine Mussels. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E987. [PMID: 31288459 PMCID: PMC6669530 DOI: 10.3390/nano9070987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to assess the ecotoxicological effects of the interaction of fullerene (C60) and benzo[a]pyrene (B[a]P) on the marine mussel, Mytilus galloprovincialis. The uptake of nC60, B[a]P and mixtures of nC60 and B[a]P into tissues was confirmed by Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) and Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Biomarkers of DNA damage as well as proteomics analysis were applied to unravel the interactive effect of B[a]P and C60. Antagonistic responses were observed at the genotoxic and proteomic level. Differentially expressed proteins (DEPs) were only identified in the B[a]P single exposure and the B[a]P mixture exposure groups containing 1 mg/L of C60, the majority of which were downregulated (~52%). No DEPs were identified at any of the concentrations of nC60 (p < 0.05, 1% FDR). Using DEPs identified at a threshold of (p < 0.05; B[a]P and B[a]P mixture with nC60), gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that these proteins were enriched with a broad spectrum of biological processes and pathways, including those broadly associated with protein processing, cellular processes and environmental information processing. Among those significantly enriched pathways, the ribosome was consistently the top enriched term irrespective of treatment or concentration and plays an important role as the site of biological protein synthesis and translation. Our results demonstrate the complex multi-modal response to environmental stressors in M. galloprovincialis.
Collapse
Affiliation(s)
- Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Vikram Sharma
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Graham A Rance
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Yann Aminot
- Centre for Chemical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Nicola J Weston
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Farida Akcha
- Ifremer, Laboratory of Ecotoxicology, F-44311, CEDEX 03 Nantes, France
| | - Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3HD, UK
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Cornwall TR1 3LJ, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, King's College London, MRC-PHE Centre for Environmental & Health, London SE1 9NH, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England and Imperial College London, London SE1 9NH, UK
| | - Andrei N Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - James W Readman
- Centre for Chemical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| |
Collapse
|
33
|
Nucleic acid-based fluorescent methods for the determination of DNA repair enzyme activities: A review. Anal Chim Acta 2019; 1060:30-44. [DOI: 10.1016/j.aca.2018.12.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/09/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
|
34
|
Killelea T, Palud A, Akcha F, Lemor M, L'haridon S, Godfroy A, Henneke G. The interplay at the replisome mitigates the impact of oxidative damage on the genetic integrity of hyperthermophilic Archaea. eLife 2019; 8:45320. [PMID: 31184586 PMCID: PMC6559790 DOI: 10.7554/elife.45320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
8-oxodeoxyguanosine (8-oxodG), a major oxidised base modification, has been investigated to study its impact on DNA replication in hyperthermophilic Archaea. Here we show that 8-oxodG is formed in the genome of growing cells, with elevated levels following exposure to oxidative stress. Functional characterisation of cell-free extracts and the DNA polymerisation enzymes, PolB, PolD, and the p41/p46 complex, alone or in the presence of accessory factors (PCNA and RPA) indicates that translesion synthesis occurs under replicative conditions. One of the major polymerisation effects was stalling, but each of the individual proteins could insert and extend past 8-oxodG with differing efficiencies. The introduction of RPA and PCNA influenced PolB and PolD in similar ways, yet provided a cumulative enhancement to the polymerisation performance of p41/p46. Overall, 8-oxodG translesion synthesis was seen to be potentially mutagenic leading to errors that are reminiscent of dA:8-oxodG base pairing.
Collapse
Affiliation(s)
- Tom Killelea
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Adeline Palud
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Farida Akcha
- Laboratoire d'Ecotoxicologie, Ifremer, Nantes, France
| | - Mélanie Lemor
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Stephane L'haridon
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Anne Godfroy
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Ghislaine Henneke
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| |
Collapse
|
35
|
Niedernhofer LJ, Gurkar AU, Wang Y, Vijg J, Hoeijmakers JHJ, Robbins PD. Nuclear Genomic Instability and Aging. Annu Rev Biochem 2019; 87:295-322. [PMID: 29925262 DOI: 10.1146/annurev-biochem-062917-012239] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nuclear genome decays as organisms age. Numerous studies demonstrate that the burden of several classes of DNA lesions is greater in older mammals than in young mammals. More challenging is proving this is a cause rather than a consequence of aging. The DNA damage theory of aging, which argues that genomic instability plays a causal role in aging, has recently gained momentum. Support for this theory stems partly from progeroid syndromes in which inherited defects in DNA repair increase the burden of DNA damage leading to accelerated aging of one or more organs. Additionally, growing evidence shows that DNA damage accrual triggers cellular senescence and metabolic changes that promote a decline in tissue function and increased susceptibility to age-related diseases. Here, we examine multiple lines of evidence correlating nuclear DNA damage with aging. We then consider how, mechanistically, nuclear genotoxic stress could promote aging. We conclude that the evidence, in toto, supports a role for DNA damage as a nidus of aging.
Collapse
Affiliation(s)
- Laura J Niedernhofer
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute Florida, Jupiter, Florida 33458, USA;
| | - Aditi U Gurkar
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute Florida, Jupiter, Florida 33458, USA; .,Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Michael F. Price Center, Bronx, New York 10461, USA
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 CE Rotterdam, The Netherlands
| | - Paul D Robbins
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute Florida, Jupiter, Florida 33458, USA;
| |
Collapse
|
36
|
Li Z, Yao Y, Zhang Y, Zhang Y, Shao Y, Tang C, Qu W, Zhou Y. Classification and Temporal Variability in Urinary 8-oxodG and 8-oxoGuo: Analysis by UHPLC-MS/MS. Sci Rep 2019; 9:8187. [PMID: 31160621 PMCID: PMC6547699 DOI: 10.1038/s41598-019-44240-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/10/2019] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress damage has been found to be associated with exposure of children to environmental pollutants, but there are few data on the variability of urinary oxidative stress biomarkers and the accuracy of biomarker concentration classification. We performed a longitudinal study in Chinese school-aged children to investigate the variability of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo) concentrations and the ability of a single first morning urine sample to assess accuracy and sensitivity of biomarkers concentration classification. After adjusting for both creatinine and specific gravity, we characterized the distribution and reproducibility of repeated measurement of 8-oxodG and 8-oxoGuo by using intraclass correlation coefficients (ICCs) derived from linear mixed model and performed surrogate category analyses to determine whether a single spot sample could accurately classify 8-oxodG and 8-oxoGuo levels. Results indicated that the geometric mean (GM) concentrations of 8-oxodG and 8-oxoGuo were 3.865 ng/mL and 5.725 ng/mL, respectively. High variability of 8-oxodG and 8-oxoGuo was observed in the single spot first morning urine sample (ICC = 0.25 and 0.18, respectively). Three repeated urinary specimens achieved sensitivity of 0.87 for 8-oxodG and 0.83 for 8-oxoGuo in low tertile and sensitivity of 0.78 in high tertile. But classification in medium tertile was less accurate for both 8-oxodG and 8-oxoGuo. In conclusion, high variability of urinary 8-oxodG and 8-oxoGuo levels results in repeated samplings needed for accurate classification.
Collapse
Affiliation(s)
- Ziqi Li
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
- Department of Nutrition and Food Hygiene and Chemistry, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yuan Yao
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
- Department of Nutrition and Food Hygiene and Chemistry, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yanfei Zhang
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
- Department of Nutrition and Food Hygiene and Chemistry, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yining Zhang
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
- Department of Nutrition and Food Hygiene and Chemistry, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yijun Shao
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
- Department of Nutrition and Food Hygiene and Chemistry, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Chuanxi Tang
- Centers for Disease Control and Prevention of Changnin distribution, Shanghai, 200050, China
| | - Weidong Qu
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
- Department of Environmental Health, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Ying Zhou
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China.
- Department of Nutrition and Food Hygiene and Chemistry, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China.
- Pudong New Area for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China.
| |
Collapse
|
37
|
Abstract
7,8-Dihydro-8-oxoguanine (oxoG) is the most abundant oxidative DNA lesion with dual coding properties. It forms both Watson–Crick (anti)oxoG:(anti)C and Hoogsteen (syn)oxoG:(anti)A base pairs without a significant distortion of a B-DNA helix. DNA polymerases bypass oxoG but the accuracy of nucleotide incorporation opposite the lesion varies depending on the polymerase-specific interactions with the templating oxoG and incoming nucleotides. High-fidelity replicative DNA polymerases read oxoG as a cognate base for A while treating oxoG:C as a mismatch. The mutagenic effects of oxoG in the cell are alleviated by specific systems for DNA repair and nucleotide pool sanitization, preventing mutagenesis from both direct DNA oxidation and oxodGMP incorporation. DNA translesion synthesis could provide an additional protective mechanism against oxoG mutagenesis in cells. Several human DNA polymerases of the X- and Y-families efficiently and accurately incorporate nucleotides opposite oxoG. In this review, we address the mutagenic potential of oxoG in cells and discuss the structural basis for oxoG bypass by different DNA polymerases and the mechanisms of the recognition of oxoG by DNA glycosylases and dNTP hydrolases.
Collapse
|
38
|
Nayek U, Unnikrishnan VK, Abdul Salam AA, Vasa P, Chidangil S, Mathur D. Strong Strand Breaks in DNA Induced by Thermal Energy Particles and Their Electrostatic Inhibition by Na + Nanostructures. J Phys Chem A 2019; 123:3241-3247. [PMID: 30920832 DOI: 10.1021/acs.jpca.9b00650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Low-power laser pulses of 6 ns duration (1064 nm wavelength) have been used to create plasma in an aqueous solution of plasmid DNA (pUC19). Thermal energy electrons and •OH radicals in the plasma induce strand breakages in DNA, including double strand breaks and possible base oxidation/base degradation. The time evolution of these modifications shows that it takes barely 30 s for damage to DNA to occur. Addition of physiologically relevant concentrations of a salt (NaCl) significantly inhibits such damage. We rationalize such inhibition using simple electrostatic considerations. The observation that DNA damage is induced by plasma-induced photolysis of water suggests implications beyond studies of DNA and opens new vistas for using simple nanosecond lasers to probe how ultralow energy radiation may affect living matter under physiological conditions.
Collapse
Affiliation(s)
| | | | | | - Parinda Vasa
- Department of Physics , Indian Institute of Technology Bombay , Powai, Mumbai 400 076 , India
| | | | | |
Collapse
|
39
|
Approaches and Methods to Measure Oxidative Stress in Clinical Samples: Research Applications in the Cancer Field. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1279250. [PMID: 30992736 PMCID: PMC6434272 DOI: 10.1155/2019/1279250] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) are common by-products of normal aerobic cellular metabolism and play important physiological roles in intracellular cell signaling and homeostasis. The human body is equipped with antioxidant systems to regulate the levels of these free radicals and maintain proper physiological function. However, a condition known as oxidative stress (OS) occurs, when ROS overwhelm the body's ability to readily detoxify them. Excessive amounts of free radicals generated under OS conditions cause oxidative damage to proteins, lipids, and nucleic acids, severely compromising cell health and contributing to disease development, including cancer. Biomarkers of OS can therefore be exploited as important tools in the assessment of disease status in humans. In the present review, we discuss different approaches used for the evaluation of OS in clinical samples. The described methods are limited in their ability to reflect on OS only partially, revealing the need of more integrative approaches examining both pro- and antioxidant reactions with higher sensitivity to physiological/pathological alternations. We also provide an overview of recent findings of OS in patients with different types of cancer. Identification of OS biomarkers in clinical samples of cancer patients and defining their roles in carcinogenesis hold great promise in promoting the development of targeted therapeutic approaches and diagnostic strategies assessing disease status. However, considerable data variability across laboratories makes it difficult to draw general conclusions on the significance of these OS biomarkers. To our knowledge, no adequate comparison has yet been performed between different biomarkers and the methodologies used to measure them, making it difficult to conduct a meta-analysis of findings from different groups. A critical evaluation and adaptation of proposed methodologies available in the literature should therefore be undertaken, to enable the investigators to choose the most suitable procedure for each chosen biomarker.
Collapse
|
40
|
Electrochemical analysis of 8-hydroxy-2'-deoxyguanosine with enhanced sensitivity based on exonuclease-mediated functional nucleic acid. Talanta 2019; 199:324-328. [PMID: 30952266 DOI: 10.1016/j.talanta.2019.02.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 01/27/2023]
Abstract
In this work, an electrochemical method for sensitive analysis of 8-hydroxy-2'-deoxyguanosine, a key biomarker that is widely used to study oxidative injury-related diseases, is proposed based on exonuclease-mediated functional nucleic acid. In the design, exonuclease can not only distinguish the existence of target, but also suppress the background noise, thus the sensitivity can be enhanced. Moreover, DNAzyme designed in the functional nucleic acid can further improve the sensitivity of the analysis during signal generation process. Therefore, exonuclease-mediated functional nucleic acid may ensure high sensitivity of the assay. Further studies reveal that the detection of 8-hydroxy-2'-deoxyguanosine can be achieved with a linearity from 0.01 nM to 7.0 μM and a detection limit of 6.82 pM. The new method has also been successfully applied to the determination of 8-OHdG in urine with good results, indicating its great potential for practical use.
Collapse
|
41
|
Gerin I, Bury M, Baldin F, Graff J, Van Schaftingen E, Bommer GT. Phosphoglycolate has profound metabolic effects but most likely no role in a metabolic DNA response in cancer cell lines. Biochem J 2019; 476:629-643. [PMID: 30670572 PMCID: PMC6380167 DOI: 10.1042/bcj20180435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
Abstract
Repair of a certain type of oxidative DNA damage leads to the release of phosphoglycolate, which is an inhibitor of triose phosphate isomerase and is predicted to indirectly inhibit phosphoglycerate mutase activity. Thus, we hypothesized that phosphoglycolate might play a role in a metabolic DNA damage response. Here, we determined how phosphoglycolate is formed in cells, elucidated its effects on cellular metabolism and tested whether DNA damage repair might release sufficient phosphoglycolate to provoke metabolic effects. Phosphoglycolate concentrations were below 5 µM in wild-type U2OS and HCT116 cells and remained unchanged when we inactivated phosphoglycolate phosphatase (PGP), the enzyme that is believed to dephosphorylate phosphoglycolate. Treatment of PGP knockout cell lines with glycolate caused an up to 500-fold increase in phosphoglycolate concentrations, which resulted largely from a side activity of pyruvate kinase. This increase was much higher than in glycolate-treated wild-type cells and was accompanied by metabolite changes consistent with an inhibition of phosphoglycerate mutase, most likely due to the removal of the priming phosphorylation of this enzyme. Surprisingly, we found that phosphoglycolate also inhibits succinate dehydrogenase with a Ki value of <10 µM. Thus, phosphoglycolate can lead to profound metabolic disturbances. In contrast, phosphoglycolate concentrations were not significantly changed when we treated PGP knockout cells with Bleomycin or ionizing radiation, which are known to lead to the release of phosphoglycolate by causing DNA damage. Thus, phosphoglycolate concentrations due to DNA damage are too low to cause major metabolic changes in HCT116 and U2OS cells.
Collapse
Affiliation(s)
- Isabelle Gerin
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Marina Bury
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Francesca Baldin
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Julie Graff
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Emile Van Schaftingen
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Guido T Bommer
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| |
Collapse
|
42
|
Holland MM, Bonds RM, Holland CA, McElhoe JA. Recovery of mtDNA from unfired metallic ammunition components with an assessment of sequence profile quality and DNA damage through MPS analysis. Forensic Sci Int Genet 2018; 39:86-96. [PMID: 30611826 DOI: 10.1016/j.fsigen.2018.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
Recovery of suitable amounts of quality DNA from copper and brass surfaces, like those encountered in ammunition, has been a challenge for the forensic community. The ability of copper ions to rapidly facilitate oxidative damage leading to fragmentation of DNA significantly reduces the pool of templates for PCR amplification. We compared two methods for recovering mitochondrial (mt) DNA from the surface of unfired copper projectiles, brass casings, and aluminum casings, and found that using a cotton swab moistened with 0.5M EDTA was the favored approach, especially when the metallic surface was etched. Degradation was significantly higher for DNA samples recovered from copper and brass surfaces, when compared to aluminum. Massively parallel sequencing (MPS) of the control region, using the PowerSeq™ CRM Nested System kit and the Illumina MiSeq instrument, produced full haplotypes for aluminum samples regardless of the method used to deposit or collect DNA, while less than 60% of the copper and brass samples produced partial or full profile information. Touch DNA collected from copper and brass samples produced higher rates of partial or full MPS profile information (∼88-96%), while collection with 0.5M EDTA produced better results than when collection was performed with water; average of ∼70% versus ∼47%. While MPS data was not impacted by noise in the sequencing process, a higher than expected rate of noise was observed, potentially due to an increase in low-level damage lesions. Noise patterns were strikingly different when compared to control data, suggesting that noisy sites may be predictable when testing samples with high levels of oxidative damage. Library preparation was a poor predictor of MPS data quality, as a large percentage of reads did not align with the reference genome. This may impact the number of samples that can be run when a deep-coverage MPS approach is being considered for analysis of mtDNA heteroplasmy. Overall, when applying an MPS approach to the analysis of mtDNA recovered from ammunition, results are expected from touch DNA, will be limited for copper and brass components when the DNA is exposed to an aqueous environment, and DNA degradation will be accelerated when DNA comes in contact with copper or brass surfaces. Practitioners should consider collecting DNA from metallic surfaces with 0.5M EDTA, as this will maximize yield and mitigate degradation. The results of this study directly impact MPS analysis of minor mtDNA sequence variants from metallic surfaces, and are particularly relevant to forensic investigations.
Collapse
Affiliation(s)
- Mitchell M Holland
- Forensic Science Program, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 014 Thomas Building, University Park, PA, 16802, United States.
| | - Rachel M Bonds
- Forensic Science Program, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 014 Thomas Building, University Park, PA, 16802, United States
| | - Charity A Holland
- Forensic Science Program, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 014 Thomas Building, University Park, PA, 16802, United States
| | - Jennifer A McElhoe
- Forensic Science Program, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 014 Thomas Building, University Park, PA, 16802, United States
| |
Collapse
|
43
|
Wang YZ, Zhuo ZJ, Fang Y, Li L, Zhang J, He J, Wu XM. Functional Polymorphisms in hOGG1 Gene and Neuroblastoma Risk in Chinese Children. J Cancer 2018; 9:4521-4526. [PMID: 30519358 PMCID: PMC6277639 DOI: 10.7150/jca.27983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is a lethal tumor of the sympathetic nervous system. 8-Hydroxydeoxyguanine (8-OH-dG) formation is a common seen type of oxidative DNA damage, which could be repaired by human oxoguanine glycosylase 1 (hOGG1). To explore the contributing role of hOGG1 gene single nucleotide polymorphisms (SNPs) in neuroblastoma risk, we performed a case-control study by genotyping three SNPs (rs1052133 G>C, rs159153 T>C, rs293795 A>G) in hOGG1 gene. A total of 512 neuroblastoma cases and 1076 cancer-free controls were enrolled from three medical centers in China. The hOGG1 gene polymorphisms were determined using TaqMan real-time PCR. The results showed that only the rs1052133 G>C polymorphism was associated with neuroblastoma risk [GC vs. GG: adjusted odds ratio (OR)=0.64, 95% confidence interval (CI)=0.51-0.81, P=0.0002; dominant model: adjusted OR=0.71, 95% CI=0.57-0.88, P=0.002]. Moreover, subjects carrying 1, 2, or 1-3 protective genotypes have less opportunity to develop neuroblastoma, in comparison to those without protective genotypes. Stratified analysis revealed that rs1052133 GC/CC carriers were less likely to develop neuroblastoma in subgroups of age >18 months, males, tumor that develops from retroperitoneal, mediastinum and clinical stage I+II+4s. Our results indicate that hOGG1 rs1052133 G>C polymorphism is associated with decreased risk of neuroblastoma. However, the exact biological mechanism awaits further research.
Collapse
Affiliation(s)
- Yi-Zhen Wang
- Department of Pathology, Anhui Provincial Children's Hospital, Hefei 230051, Anhui, China
| | - Zhen-Jian Zhuo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yuan Fang
- Department of Pathology, Anhui Provincial Children's Hospital, Hefei 230051, Anhui, China
| | - Lin Li
- Clinical Laboratory, Anhui Provincial Children's Hospital, Hefei 230051, Anhui, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Xue-Mei Wu
- Department of Pathology, Anhui Provincial Children's Hospital, Hefei 230051, Anhui, China
| |
Collapse
|
44
|
de Oliveira AAF, de Oliveira TF, Dias MF, Medeiros MHG, Di Mascio P, Veras M, Lemos M, Marcourakis T, Saldiva PHN, Loureiro APM. Genotoxic and epigenotoxic effects in mice exposed to concentrated ambient fine particulate matter (PM 2.5) from São Paulo city, Brazil. Part Fibre Toxicol 2018; 15:40. [PMID: 30340610 PMCID: PMC6194750 DOI: 10.1186/s12989-018-0276-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Metropolitan Area of São Paulo has a unique composition of atmospheric pollutants, and positive correlations between exposure and the risk of diseases and mortality have been observed. Here we assessed the effects of ambient fine particulate matter (PM2.5) on genotoxic and global DNA methylation and hydroxymethylation changes, as well as the activities of antioxidant enzymes, in tissues of AJ mice exposed whole body to ambient air enriched in PM2.5, which was concentrated in a chamber near an avenue of intense traffic in São Paulo City, Brazil. RESULTS Mice exposed to concentrated ambient PM2.5 (1 h daily, 3 months) were compared to in situ ambient air exposed mice as the study control. The concentrated PM2.5 exposed group presented increased levels of the oxidized nucleoside 8-oxo-7,8-dihydro-2'-deoxyguanosine in lung and kidney DNA and increased levels of the etheno adducts 1,N6-etheno-2'-deoxyadenosine and 1,N2-etheno-2'-deoxyguanosine in kidney and liver DNA, respectively. Apart from the genotoxic effects, the exposure to PM2.5 led to decreased levels of the epigenetic mark 5-hydroxymethylcytosine (5-hmC) in lung and liver DNA. Changes in lung, liver, and erythrocyte antioxidant enzyme activities were also observed. Decreased glutathione reductase and increased superoxide dismutase (SOD) activities were observed in the lungs, while the liver presented increased glutathione S-transferase and decreased SOD activities. An increase in SOD activity was also observed in erythrocytes. These changes are consistent with the induction of local and systemic oxidative stress. CONCLUSIONS Mice exposed daily to PM2.5 at a concentration that mimics 24-h exposure to the mean concentration found in ambient air presented, after 3 months, increased levels of DNA lesions related to the occurrence of oxidative stress in the lungs, liver, and kidney, in parallel to decreased global levels of 5-hmC in lung and liver DNA. Genetic and epigenetic alterations induced by pollutants may affect the genes committed to cell cycle control, apoptosis, and cell differentiation, increasing the chance of cancer development, which merits further investigation.
Collapse
Affiliation(s)
- Antonio Anax Falcão de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Tiago Franco de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
- Present address: Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite 245, Porto Alegre, Rio Grande do Sul CEP 90050-170 Brazil
| | - Michelle Francini Dias
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Marisa Helena Gennari Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Mariana Veras
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Miriam Lemos
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
- Instituto de Estudos Avançados, Universidade de São Paulo, R. do Anfiteatro, 513, São Paulo, CEP 05508060 Brazil
| | - Ana Paula Melo Loureiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| |
Collapse
|
45
|
Maciel-Barón LÁ, Moreno-Blas D, Morales-Rosales SL, González-Puertos VY, López-Díazguerrero NE, Torres C, Castro-Obregón S, Königsberg M. Cellular Senescence, Neurological Function, and Redox State. Antioxid Redox Signal 2018; 28:1704-1723. [PMID: 28467755 DOI: 10.1089/ars.2017.7112] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Cellular senescence, characterized by permanent cell cycle arrest, has been extensively studied in mitotic cells such as fibroblasts. However, senescent cells have also been observed in the brain. Even though it is recognized that cellular energetic metabolism and redox homeostasis are perturbed in the aged brain and neurodegenerative diseases (NDDs), it is still unknown which alterations in the overall physiology can stimulate cellular senescence induction and their relationship with the former events. Recent Advances: Recent findings have shown that during prolonged inflammatory and pathologic events, the blood-brain barrier could be compromised and immune cells might enter the brain; this fact along with the brain's high oxygen dependence might result in oxidative damage to macromolecules and therefore senescence induction. Thus, cellular senescence in different brain cell types is revised here. CRITICAL ISSUES Most information related to cellular senescence in the brain has been obtained from research in glial cells since it has been assumed that the senescent phenotype is a feature exclusive to mitotic cells. Nevertheless, neurons with senescence hallmarks have been observed in old mouse brains. Therefore, although this is a controversial topic in the field, here we summarize and integrate the observations from several studies and propose that neurons indeed senesce. FUTURE DIRECTIONS It is still unknown which alterations in the overall metabolism can stimulate senescence induction in the aged brain, what are the mechanisms and signaling pathways, and what is their relationship to NDD development. The understanding of these processes will expose new targets to intervene age-associated pathologies.-Antioxid. Redox Signal. 28, 1704-1723.
Collapse
Affiliation(s)
- Luis Ángel Maciel-Barón
- 1 División de Ciencias Biológicas y de la Salud, Department Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa , Iztapalapa, México
| | - Daniel Moreno-Blas
- 2 Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Ciudad de México, México
| | - Sandra Lizbeth Morales-Rosales
- 1 División de Ciencias Biológicas y de la Salud, Department Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa , Iztapalapa, México
| | - Viridiana Yazmín González-Puertos
- 1 División de Ciencias Biológicas y de la Salud, Department Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa , Iztapalapa, México
| | - Norma Edith López-Díazguerrero
- 1 División de Ciencias Biológicas y de la Salud, Department Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa , Iztapalapa, México
| | - Claudio Torres
- 3 Department of Pathology and Laboratory Medicine, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Susana Castro-Obregón
- 2 Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Ciudad de México, México
| | - Mina Königsberg
- 1 División de Ciencias Biológicas y de la Salud, Department Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa , Iztapalapa, México
| |
Collapse
|
46
|
Matter B, Seiler CL, Murphy K, Ming X, Zhao J, Lindgren B, Jones R, Tretyakova N. Mapping three guanine oxidation products along DNA following exposure to three types of reactive oxygen species. Free Radic Biol Med 2018; 121:180-189. [PMID: 29702150 PMCID: PMC6858621 DOI: 10.1016/j.freeradbiomed.2018.04.561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
Abstract
Reactive oxygen and nitrogen species generated during respiration, inflammation, and immune response can damage cellular DNA, contributing to aging, cancer, and neurodegeneration. The ability of oxidized DNA bases to interfere with DNA replication and transcription is strongly influenced by their chemical structures and locations within the genome. In the present work, we examined the influence of local DNA sequence context, DNA secondary structure, and oxidant identity on the efficiency and the chemistry of guanine oxidation in the context of the Kras protooncogene. A novel isotope labeling strategy developed in our laboratory was used to accurately map the formation of 2,2-diamino-4-[(2-deoxy-β-D-erythropentofuranosyl)amino]- 5(2 H)-oxazolone (Z), 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG), and 8-nitroguanine (8-NO2-G) lesions along DNA duplexes following photooxidation in the presence of riboflavin, treatment with nitrosoperoxycarbonate, and oxidation in the presence of hydroxyl radicals. Riboflavin-mediated photooxidation preferentially induced OG lesions at 5' guanines within GG repeats, while treatment with nitrosoperoxycarbonate targeted 3'-guanines within GG and AG dinucleotides. Little sequence selectivity was observed following hydroxyl radical-mediated oxidation. However, Z and 8-NO2-G adducts were overproduced at duplex ends, irrespective of oxidant identity. Overall, our results indicate that the patterns of Z, OG, and 8-NO2-G adduct formation in the genome are distinct and are influenced by oxidant identity and the secondary structure of DNA.
Collapse
Affiliation(s)
- Brock Matter
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher L Seiler
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristopher Murphy
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xun Ming
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jianwei Zhao
- Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Bruce Lindgren
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roger Jones
- Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
47
|
Zoidis E, Seremelis I, Kontopoulos N, Danezis GP. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants (Basel) 2018; 7:E66. [PMID: 29758013 PMCID: PMC5981252 DOI: 10.3390/antiox7050066] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
Unlike other essential trace elements that interact with proteins in the form of cofactors, selenium (Se) becomes co-translationally incorporated into the polypeptide chain as part of 21st naturally occurring amino acid, selenocysteine (Sec), encoded by the UGA codon. Any protein that includes Sec in its polypeptide chain is defined as selenoprotein. Members of the selenoproteins family exert various functions and their synthesis depends on specific cofactors and on dietary Se. The Se intake in productive animals such as chickens affect nutrient utilization, production performances, antioxidative status and responses of the immune system. Although several functions of selenoproteins are unknown, many disorders are related to alterations in selenoprotein expression or activity. Selenium insufficiency and polymorphisms or mutations in selenoproteins' genes and synthesis cofactors are involved in the pathophysiology of many diseases, including cardiovascular disorders, immune dysfunctions, cancer, muscle and bone disorders, endocrine functions and neurological disorders. Finally, heavy metal poisoning decreases mRNA levels of selenoproteins and increases mRNA levels of inflammatory factors, underlying the antagonistic effect of Se. This review is an update on Se dependent antioxidant enzymes, presenting the current state of the art and is focusing on results obtained mainly in chicken.
Collapse
Affiliation(s)
- Evangelos Zoidis
- Department of Nutritional Physiology and Feeding, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | - Isidoros Seremelis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | - Nikolaos Kontopoulos
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | - Georgios P Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| |
Collapse
|
48
|
Bhattacharjee K, Shukla PK. Does 8-Nitroguanine Form 8-Oxoguanine? An Insight from Its Reaction with •OH Radical. J Phys Chem B 2018; 122:1852-1861. [PMID: 29360382 DOI: 10.1021/acs.jpcb.7b12192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
8-Nitroguanine (8-nitroG) formed due to nitration of guanine base of DNA plays an important role in mutagenesis and carcinogenesis. In the present contribution, state-of-the-art quantum chemical calculations using M06-2X density functional and domain-based local pair natural orbital-coupled cluster theory with single, double, and perturbative triple excitations (DLPNO-CCSD(T)) methods have been carried out to investigate the mechanism of reaction of •OH radical with 8-nitroG leading to the formation of 8-oxoguanine (8-oxoG) (one of the most mutagenic and carcinogenic derivatives of guanine) in gas phase and aqueous media. Calculations of barrier energies and rate constants involved in the addition reactions of •OH radical at different sites of 8-nitroguanine show that C8 and C2 sites are the most and least reactive sites, respectively. Relative stability and Boltzmann populations of adducts show that the adduct formed at the C8 site occurs predominantly in equilibrium. Our calculations reveal that 8-nitroG is very reactive toward •OH radical and is converted readily into 8-oxoG when attacked by •OH radicals, in agreement with available experimental observations.
Collapse
Affiliation(s)
| | - P K Shukla
- Department of Physics, Assam University , Silchar 788011, India
| |
Collapse
|
49
|
|
50
|
Hattori K, Nakadate K, Morii A, Noguchi T, Ogasawara Y, Ishii K. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity. Biochem Biophys Res Commun 2017; 492:218-223. [PMID: 28823918 DOI: 10.1016/j.bbrc.2017.08.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells.
Collapse
Affiliation(s)
- Kenji Hattori
- Department of Hygienic Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Kazuhiko Nakadate
- Department of Basic Science, Educational and Research Center for Pharmacy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Akane Morii
- Department of Hygienic Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Takumi Noguchi
- Department of Hygienic Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Kazuyuki Ishii
- Department of Hygienic Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|