1
|
Yang Y, Yuan H, Zhang Y, Luan J, Wang H. Progress in African Swine Fever Vector Vaccine Development. Int J Mol Sci 2025; 26:921. [PMID: 39940691 PMCID: PMC11816837 DOI: 10.3390/ijms26030921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
African swine fever (ASF) is a highly lethal, infectious, hemorrhagic fever disease, characterized by an acute mortality rate approaching 100%. It is highly contagious, and results in significant losses to the global hog industry as it spreads. Despite incremental progress in research on the African swine fever virus (ASFV), a safe and effective commercial vaccine has yet to be developed. Vector vaccines, a promising type of vaccine, offer unique advantages, and are a primary focus in ASFV vaccine research. This paper focuses on the characteristics of viral, bacterial, and yeast vector vaccines; elucidates the immunological mechanisms associated with antigens; lists the types of antigens that have significant potential; discusses the feasibility of using exogenously expressed cytokines to enhance the protective power of vector vaccines; and, finally, discusses the types of vectors that are commonly used and the latest advances in this field.
Collapse
Affiliation(s)
| | | | | | | | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China; yangyue-@mail.sdu.edu.cn (Y.Y.); (H.Y.); (Y.Z.); (J.L.)
| |
Collapse
|
2
|
Sosnovtseva AO, Le TH, Karpov DS, Vorobyev PO, Gumennaya YD, Alekseeva ON, Chumakov PM, Lipatova AV. Establishment of a Panel of Human Cell Lines to Identify Cellular Receptors Used by Enteroviruses to Infect Cells. Int J Mol Sci 2025; 26:923. [PMID: 39940693 PMCID: PMC11817244 DOI: 10.3390/ijms26030923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Non-pathogenic natural and recombinant strains of human Enteroviruses are the subject of ongoing study with some strains having been approved for use as anticancer agents. The efficacy of oncolytic virotherapy depends upon identifying the receptor utilized by a specific strain for cell entry, and the presence of this receptor on the surface of cancer cells. Accordingly, a rapid and straightforward approach to determining the enteroviral receptors is necessary for developing an effective patient-specific, virus-based cancer therapy. To this end, we created a panel of seven lines with double knockouts on the background of the HEK293T cell line, which lacks the IFNAR1 gene. In these lines, the main viral receptor genes, including PVR, CXADR, CD55, ITGA2, SCARB2, ICAM1, and FCGRT, were knocked out using the CRISPR/Cas9 system. The panel of lines was validated on twelve different Enteroviruses types, providing a basis for studying the molecular mechanisms of enterovirus entry into cells, and for developing new therapeutic strains.
Collapse
Affiliation(s)
- Anastasiia O. Sosnovtseva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Thi Hoa Le
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Dmitry S. Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Pavel O. Vorobyev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Yana D. Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Olga N. Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Anastasia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| |
Collapse
|
3
|
Xie Y, Mei H, Wang W, Li X, Hu P, Tian X, Zhou R, Liu J, Qu J. ALCAM is an entry factor for severe community acquired Pneumonia-associated Human adenovirus species B. Nat Commun 2024; 15:10889. [PMID: 39738070 PMCID: PMC11686370 DOI: 10.1038/s41467-024-55261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Human adenovirus (HAdV) is a widely spread respiratory pathogen that can cause infections in multiple tissues and organs. Previous studies have established an association between HAdV species B (HAdV-B) infection and severe community-acquired pneumonia (SCAP). However, the connection between SCAP-associated HAdV-B infection and host factor expression profile in patients has not been systematically investigated. Here, we perform a CRISPR genetic screen on HAdV-B using two generations of cell surface protein-focused CRISPR libraries and identify a series of host factors including the known receptor DSG-2 and an unknown factor, activated leukocyte cell adhesion molecule (ALCAM). Further investigation shows that ALCAM affects HAdV-B infection by participating in viral internalization. Transcriptomics data from human blood samples suggests that ALCAM expression is higher in SCAP patients with HAdV-B infection than in those with other infections. Chimeric and authentic virus experiments show that ALCAM is a widely used host factor across B1 and B2 genetic clusters of HAdV-B. The dissociation constant between the knob domain of HAdV-B fiber and ALCAM is 837 nM in average. In summary, our results suggest that ALCAM is an entry factor for SCAP-associated HAdV-B.
Collapse
Affiliation(s)
- Yusang Xie
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Pengfei Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, Guangdong, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, Guangdong, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.
| |
Collapse
|
4
|
Nagai H, Saito M, Iwata H. Direct conversion of urine-derived cells into functional motor neuron-like cells by defined transcription factors. Sci Rep 2024; 14:27011. [PMID: 39505927 PMCID: PMC11541886 DOI: 10.1038/s41598-024-73759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 11/08/2024] Open
Abstract
Direct cell-type conversion of somatic cells into cell types of interest has garnered great attention because it circumvents rejuvenation and preserves the hallmarks of cellular aging (unlike induced pluripotent stem cells [iPSCs]) and is more suitable for modeling diseases with strong age-related and epigenetic contributions. Fibroblasts are commonly used for direct conversion; however, obtaining these cells requires highly invasive skin biopsies. Urine-derived cells (UDCs) are an alternative cell source and can be obtained via noninvasive procedures. Herein, induced motor neuron-like cells (iMNs) were generated from UDCs by transducing transcription factors involved in motor neuron (MN) differentiation. iMNs exhibited neuronal morphology, upregulation of pan-neuron and MN markers, and MN functionality, including spontaneous calcium oscillation and bungarotoxin-positive neuromuscular junction formation, when co-cultured with myotubes. Altogether, the findings of this study indicated that UDCs can be converted to functional MNs. This technology may allow us to understand disease pathogenesis and progression and discover biomarkers and drugs for MN-related diseases at the population level.
Collapse
Affiliation(s)
- Hiroaki Nagai
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, 251-8555, Kanagawa, Japan.
| | - Masayo Saito
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, 251-8555, Kanagawa, Japan
| | - Hidehisa Iwata
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, 251-8555, Kanagawa, Japan.
| |
Collapse
|
5
|
Fuchs J, Hübner J, Schmidt A, Irrgang P, Maier C, Vieira Antão A, Oltmanns F, Thirion C, Lapuente D, Tenbusch M. Evaluation of adenoviral vector Ad19a encoding RSV-F as novel vaccine against respiratory syncytial virus. NPJ Vaccines 2024; 9:205. [PMID: 39472590 PMCID: PMC11522487 DOI: 10.1038/s41541-024-01001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infections in infants and toddlers. Since natural infections do not induce persistent immunity, there is the need of vaccines providing long-term protection. Here, we evaluated a new adenoviral vector (rAd) vaccine based on the rare serotype rAd19a and compared the immunogenicity and efficacy to the highly immunogenic rAd5. Given as an intranasal boost in DNA primed mice, both vectors encoding the F protein provided efficient protection against a subsequent RSV infection. However, intramuscular immunization with rAd19a vectors provoked vaccine-enhanced disease after RSV infection compared to non-vaccinated animals. While mucosal IgA antibodies and tissue-resident memory T-cells in intranasally vaccinated mice rapidly control RSV replication, a strong anamnestic systemic T-cell response in absence of local immunity might be the reason for immune-mediated enhanced disease. Our study highlighted the potential benefits of developing effective mucosal against respiratory pathogens.
Collapse
Affiliation(s)
- Jana Fuchs
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Julian Hübner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Anna Schmidt
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Clara Maier
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Ana Vieira Antão
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | | | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany.
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, D-91054, Erlangen, Germany.
| |
Collapse
|
6
|
Zhang Y, Shi X, Shen Y, Dong X, He R, Chen G, Zhang Y, Tan H, Zhang K. Nanoengineering-armed oncolytic viruses drive antitumor response: progress and challenges. MedComm (Beijing) 2024; 5:e755. [PMID: 39399642 PMCID: PMC11467370 DOI: 10.1002/mco2.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Oncolytic viruses (OVs) have emerged as a powerful tool in cancer therapy. Characterized with the unique abilities to selectively target and lyse tumor cells, OVs can expedite the induction of cell death, thereby facilitating effective tumor eradication. Nanoengineering-derived OVs overcome traditional OV therapy limitations by enhancing the stability of viral circulation, and tumor targeting, promising improved clinical safety and efficacy and so on. This review provides a comprehensive analysis of the multifaceted mechanisms through which engineered OVs can suppress tumor progression. It initiates with a concise delineation on the fundamental attributes of existing OVs, followed by the exploration of their mechanisms of the antitumor response. Amid rapid advancements in nanomedicine, this review presents an extensive overview of the latest developments in the synergy between nanomaterials, nanotechnologies, and OVs, highlighting the unique characteristics and properties of the nanomaterials employed and their potential to spur innovation in novel virus design. Additionally, it delves into the current challenges in this emerging field and proposes strategies to overcome these obstacles, aiming to spur innovation in the design and application of next-generation OVs.
Collapse
Affiliation(s)
- Yan Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinyu Shi
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yifan Shen
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiulin Dong
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ruiqing He
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Guo Chen
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yan Zhang
- Department of Medical UltrasoundRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Honghong Tan
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
7
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N. Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Le T. Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Dmitriy V. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Yana D. Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Elizaveta R. Naberezhnaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Denis O. Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| |
Collapse
|
8
|
Longo C, Saito M, Castro PT, Traina E, Werner H, Elito Júnior J, Araujo Júnior E. Coxsackievirus Group B Infections during Pregnancy: An Updated Literature Review. J Clin Med 2024; 13:4922. [PMID: 39201064 PMCID: PMC11355224 DOI: 10.3390/jcm13164922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
Coxsackievirus group B (CVB), a member of the Picornaviridae family and enterovirus genus, poses risks during pregnancy due to its potential to cause severe fetal and neonatal infections. Transmission primarily occurs through fecal-oral routes, with infections peaking mostly in warmer months. Vertical transmission to the fetus can lead to conditions such as myocarditis, encephalitis, and systemic neonatal disease, presenting clinically as severe myocardial syndromes and neurological deficits. Diagnostic challenges include detecting asymptomatic maternal infections and conducting in utero assessments using advanced techniques like RT-PCR from amniotic fluid samples. Morbidity and mortality associated with congenital CVB infections are notable, linked to preterm delivery, fetal growth restriction, and potential long-term health impacts such as type 1 diabetes mellitus and structural cardiac anomalies. Current treatments are limited to supportive care, with emerging therapies showing promise but requiring further study for efficacy in utero. Preventive measures focus on infection control and hygiene to mitigate transmission risks, which are crucial especially during pregnancy. Future research should aim to fill knowledge gaps in epidemiology, improve diagnostic capabilities, and develop targeted interventions to enhance maternal and fetal outcomes.
Collapse
Affiliation(s)
- Carolina Longo
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (C.L.); (E.T.); (J.E.J.)
| | - Mauricio Saito
- CONCEPTUS—Fetal Medicine Center, São Paulo 04001-084, SP, Brazil;
| | - Pedro Teixeira Castro
- Department of Fetal Medicine, Biodesign Laboratory DASA/PUC, Rio de Janeiro 22451-900, RJ, Brazil; (P.T.C.); (H.W.)
| | - Evelyn Traina
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (C.L.); (E.T.); (J.E.J.)
| | - Heron Werner
- Department of Fetal Medicine, Biodesign Laboratory DASA/PUC, Rio de Janeiro 22451-900, RJ, Brazil; (P.T.C.); (H.W.)
| | - Julio Elito Júnior
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (C.L.); (E.T.); (J.E.J.)
| | - Edward Araujo Júnior
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (C.L.); (E.T.); (J.E.J.)
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil
| |
Collapse
|
9
|
Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4975-4997. [PMID: 38100377 DOI: 10.1021/acsabm.3c00842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Disorders of the central nervous system (CNS) which include a wide range of neurodegenerative and neurological conditions have become a serious global issue. The presence of CNS barriers poses a significant challenge to the progress of designing effective therapeutic delivery systems, limiting the effectiveness of drugs, genes, and other therapeutic agents. Natural nanocarriers present in biological systems have inspired researchers to design unique delivery systems through biomimicry. As natural resource derived delivery systems are more biocompatible, current research has been focused on the development of delivery systems inspired by bacteria, viruses, fungi, and mammalian cells. Despite their structural potential and extensive physiological function, making them an excellent choice for biomaterial engineering, the delivery of nucleic acids remains challenging due to their instability in biological systems. Similarly, the efficient delivery of genetic material within the tissues of interest remains a hurdle due to a lack of selectivity and targeting ability. Considering that gene therapies are the holy grail for intervention in diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's Disease, and Huntington's disease, this review centers around recent advances in bioinspired approaches to gene delivery for the prevention of CNS disorders.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
10
|
Wang Y, Zou X, Guo X, Zhang Z, Wang M, Hung T, Lu Z. Redirect Tropism of Fowl Adenovirus 4 Vector by Modifying Fiber2 with Variable Domain of Heavy-Chain Antibody. Genes (Basel) 2024; 15:467. [PMID: 38674401 PMCID: PMC11049955 DOI: 10.3390/genes15040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The variable domain of a heavy-chain antibody (VHH) has the potential to be used to redirect the cell tropism of adenoviral vectors. Here, we attempted to establish platforms to simplify the screening of VHHs for their specific targeting function when being incorporated into the fiber of adenovirus. Both fowl adenovirus 4 (FAdV-4) and simian adenovirus 1 (SAdV-1) have two types of fiber, one of which is dispensable for virus propagation and is a proper site for VHH display. An intermediate plasmid, pMD-FAV4Fs, was constructed as the start plasmid for FAdV-4 fiber2 modification. Foldon from phage T4 fibritin, a trigger for trimerization, was employed to bridge the tail/shaft domain of fiber2 and VHHs against human CD16A, a key membrane marker of natural killer (NK) cells. Through one step of restriction-assembly, the modified fiber2 was transferred to the adenoviral plasmid, which was linearized and transfected to packaging cells. Five FAdV-4 viruses carrying the GFP gene were finally rescued and amplified, with three VHHs being displayed. One recombinant virus, FAdV4FC21-EG, could hardly transduce human 293 or Jurkat cells. In contrast, when it was used at a multiplicity of infection of 1000 viral particles per cell, the transduction efficiency reached 51% or 34% for 293 or Jurkat cells expressing exogenous CD16A. Such a strategy of fiber modification was transplanted to the SAdV-1 vector to construct SAdV1FC28H-EG, which moderately transduced primary human NK cells while the parental virus transduced none. Collectively, we reformed the strategy of integrating VHH to fiber and established novel platforms for screening VHHs to construct adenoviral vectors with a specific tropism.
Collapse
Affiliation(s)
- Yongjin Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Xiaohui Zou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Xiaojuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Zhichao Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Min Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Tao Hung
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Zhuozhuang Lu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| |
Collapse
|
11
|
Chen J, Guo X, Zou X, Wang M, Yang C, Hou W, Sprindzuk MV, Lu Z. The Biodistribution of Replication-Defective Simian Adenovirus 1 Vector in a Mouse Model. Viruses 2024; 16:550. [PMID: 38675893 PMCID: PMC11054548 DOI: 10.3390/v16040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The administration route affects the biodistribution of a gene transfer vector and the expression of a transgene. A simian adenovirus 1 vector carrying firefly luciferase and GFP reporter genes (SAdV1-GFluc) were constructed, and its biodistribution was investigated in a mouse model by bioluminescence imaging and virus DNA tracking with real-time PCR. Luciferase activity and virus DNA were mainly found in the liver and spleen after the intravenous administration of SAdV1-GFluc. The results of flow cytometry illustrated that macrophages in the liver and spleen as well as hepatocytes were the target cells. Repeated inoculation was noneffective because of the stimulated serum neutralizing antibodies (NAbs) against SAdV-1. A transient, local expression of low-level luciferase was detected after intragastric administration, and the administration could be repeated without compromising the expression of the reporter gene. Intranasal administration led to a moderate, constant expression of a transgene in the whole respiratory tract and could be repeated one more time without a significant increase in the NAb titer. An immunohistochemistry assay showed that respiratory epithelial cells and macrophages in the lungs were transduced. High luciferase activity was restricted at the injection site and sustained for a week after intramuscular administration. A compromised transgene expression was observed after a repeated injection. When these mice were intramuscularly injected for a third time with the human adenovirus 5 (HAdV-5) vector carrying a luciferase gene, the luciferase activity recovered and reached the initial level, suggesting that the sequential use of SAdV-1 and HAdV-5 vectors was practicable. In short, the intranasal inoculation or intramuscular injection may be the preferred administration routes for the novel SAdV-1 vector in vaccine development.
Collapse
Affiliation(s)
- Juan Chen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Xiaojuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
| | - Xiaohui Zou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
| | - Min Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
| | - Chunlei Yang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
- Henan Chemical Technician College, Kaifeng 475008, China
| | - Wenzhe Hou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
| | - Matvey V. Sprindzuk
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Belarus;
| | - Zhuozhuang Lu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
| |
Collapse
|
12
|
Padget RL, Zeitz MJ, Blair GA, Wu X, North MD, Tanenbaum MT, Stanley KE, Phillips CM, King DR, Lamouille S, Gourdie RG, Hoeker GS, Swanger SA, Poelzing S, Smyth JW. Acute Adenoviral Infection Elicits an Arrhythmogenic Substrate Prior to Myocarditis. Circ Res 2024; 134:892-912. [PMID: 38415360 PMCID: PMC11003857 DOI: 10.1161/circresaha.122.322437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Viral cardiac infection represents a significant clinical challenge encompassing several etiological agents, disease stages, complex presentation, and a resulting lack of mechanistic understanding. Myocarditis is a major cause of sudden cardiac death in young adults, where current knowledge in the field is dominated by later disease phases and pathological immune responses. However, little is known regarding how infection can acutely induce an arrhythmogenic substrate before significant immune responses. Adenovirus is a leading cause of myocarditis, but due to species specificity, models of infection are lacking, and it is not understood how adenoviral infection may underlie sudden cardiac arrest. Mouse adenovirus type-3 was previously reported as cardiotropic, yet it has not been utilized to understand the mechanisms of cardiac infection and pathology. METHODS We have developed mouse adenovirus type-3 infection as a model to investigate acute cardiac infection and molecular alterations to the infected heart before an appreciable immune response or gross cardiomyopathy. RESULTS Optical mapping of infected hearts exposes decreases in conduction velocity concomitant with increased Cx43Ser368 phosphorylation, a residue known to regulate gap junction function. Hearts from animals harboring a phospho-null mutation at Cx43Ser368 are protected against mouse adenovirus type-3-induced conduction velocity slowing. Additional to gap junction alterations, patch clamping of mouse adenovirus type-3-infected adult mouse ventricular cardiomyocytes reveals prolonged action potential duration as a result of decreased IK1 and IKs current density. Turning to human systems, we find human adenovirus type-5 increases phosphorylation of Cx43Ser368 and disrupts synchrony in human induced pluripotent stem cell-derived cardiomyocytes, indicating common mechanisms with our mouse whole heart and adult cardiomyocyte data. CONCLUSIONS Together, these findings demonstrate that adenoviral infection creates an arrhythmogenic substrate through direct targeting of gap junction and ion channel function in the heart. Such alterations are known to precipitate arrhythmias and likely contribute to sudden cardiac death in acutely infected patients.
Collapse
Affiliation(s)
- Rachel L. Padget
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Michael J. Zeitz
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Grace A. Blair
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Xiaobo Wu
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Michael D. North
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | | | - Kari E. Stanley
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Chelsea M. Phillips
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - D. Ryan King
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Samy Lamouille
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Robert G. Gourdie
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Gregory S. Hoeker
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Sharon A. Swanger
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Steven Poelzing
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - James W. Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
13
|
Wen J, Ke Z, Wang Y, Li Y, Zhang D, Mo X, Yin J, Shi C, Zhou W, Zheng S, Wang Q. Coxsackievirus and adenovirus receptor inhibits tilapia lake virus infection via binding to viral segment 8 and 10 encoded protein. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109438. [PMID: 38341116 DOI: 10.1016/j.fsi.2024.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The global aquaculture industry of tilapia (Oreochromis niloticus) has been significantly impacted by the emergence of tilapia lake virus (TiLV). However, effective prevention and control measures are still not available due to a lack of unclear pathogenesis of TiLV. Our previous transcriptome found that coxsackievirus and adenovirus receptor (CAR) was in response to TiLV infection in tilapia. To explore the potential function of OnCAR, the effect of OnCAR on TiLV proliferation was analyzed in this study. The OnCAR open reading frame (ORF) sequence of tilapia was 516 bp in length that encoded 171 amino acids with an Ig-like domain and transmembrane region. The OnCAR gene showed widespread expression in all investigated tissues, with the highest levels in the heart. Moreover, the OnCAR gene in the liver and muscle of tilapia exhibited dynamic expression levels upon TiLV challenge. Subcellular localization analysis indicated that OnCAR protein was mainly localized on the membrane of tilapia brain (TiB) cells. Importantly, the gene transcripts, genome copy number, S8-encoded protein, cytopathic effect, and internalization of TiLV were obviously decreased in the TiB cells overexpressed with OnCAR, indicating that OnCAR could inhibit TiLV replication. Mechanically, OnCAR could interact with viral S8 and S10-encoded protein. To the best of our knowledge, OnCAR is the first potential anti-TiLV cellular surface molecular receptor discovered for inhibiting TiLV infection. This finding is beneficial for better understanding the antiviral mechanism of tilapia and lays a foundation for establishing effective prevention and control strategies against tilapia lake virus disease (TiLVD).
Collapse
Affiliation(s)
- Jing Wen
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China; College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Zishan Ke
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Yingying Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Defeng Zhang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Xubing Mo
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Wenli Zhou
- College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Shucheng Zheng
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China; State Key Lab of Marine Pollution, Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China.
| | - Qing Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Scarsella L, Ehrke-Schulz E, Paulussen M, Thal SC, Ehrhardt A, Aydin M. Advances of Recombinant Adenoviral Vectors in Preclinical and Clinical Applications. Viruses 2024; 16:377. [PMID: 38543743 PMCID: PMC10974029 DOI: 10.3390/v16030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 05/23/2024] Open
Abstract
Adenoviruses (Ad) have the potential to induce severe infections in vulnerable patient groups. Therefore, understanding Ad biology and antiviral processes is important to comprehend the signaling cascades during an infection and to initiate appropriate diagnostic and therapeutic interventions. In addition, Ad vector-based vaccines have revealed significant potential in generating robust immune protection and recombinant Ad vectors facilitate efficient gene transfer to treat genetic diseases and are used as oncolytic viruses to treat cancer. Continuous improvements in gene delivery capacity, coupled with advancements in production methods, have enabled widespread application in cancer therapy, vaccine development, and gene therapy on a large scale. This review provides a comprehensive overview of the virus biology, and several aspects of recombinant Ad vectors, as well as the development of Ad vector, are discussed. Moreover, we focus on those Ads that were used in preclinical and clinical applications including regenerative medicine, vaccine development, genome engineering, treatment of genetic diseases, and virotherapy in tumor treatment.
Collapse
Affiliation(s)
- Luca Scarsella
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Michael Paulussen
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
| | - Serge C. Thal
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Malik Aydin
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| |
Collapse
|
15
|
Yao J, Atasheva S, Wagner N, Di Paolo NC, Stewart PL, Shayakhmetov DM. Targeted, safe, and efficient gene delivery to human hematopoietic stem and progenitor cells in vivo using the engineered AVID adenovirus vector platform. Mol Ther 2024; 32:103-123. [PMID: 37919899 PMCID: PMC10787117 DOI: 10.1016/j.ymthe.2023.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Targeted delivery and cell-type-specific expression of gene-editing proteins in various cell types in vivo represent major challenges for all viral and non-viral delivery platforms developed to date. Here, we describe the development and analysis of artificial vectors for intravascular delivery (AVIDs), an engineered adenovirus-based gene delivery platform that allows for highly targeted, safe, and efficient gene delivery to human hematopoietic stem and progenitor cells (HSPCs) in vivo after intravenous vector administration. Due to a set of refined structural modifications, intravenous administration of AVIDs did not trigger cytokine storm, hepatotoxicity, or thrombocytopenia. Single intravenous administration of AVIDs to humanized mice, grafted with human CD34+ cells, led to up to 20% transduction of CD34+CD38-CD45RA- HSPC subsets in the bone marrow. Importantly, targeted in vivo transduction of CD34+CD38-CD45RA-CD90-CD49f+ subsets, highly enriched for human hematopoietic stem cells (HSCs), reached up to 19%, which represented a 1,900-fold selectivity in gene delivery to HSC-enriched over lineage-committed CD34-negative cell populations. Because the AVID platform allows for regulated, cell-type-specific expression of gene-editing technologies as well as expression of immunomodulatory proteins to ensure persistence of corrected HSCs in vivo, the HSC-targeted AVID platform may enable development of curative therapies through in vivo gene correction in human HSCs after a single intravenous administration.
Collapse
Affiliation(s)
- Jia Yao
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Svetlana Atasheva
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicole Wagner
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nelson C Di Paolo
- AdCure Bio, LLC, Century Spring West, 6000 Lake Forrest Drive, Atlanta, GA 30328, USA
| | - Phoebe L Stewart
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dmitry M Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Discovery and Developmental Therapeutics Program, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
16
|
Lan W, Quan L, Li Y, Ou J, Duan B, Mei T, Tan X, Chen W, Feng L, Wan C, Zhao W, Chodosh J, Seto D, Zhang Q. Isolation of novel simian adenoviruses from macaques for development of a vector for human gene therapy and vaccines. J Virol 2023; 97:e0101423. [PMID: 37712705 PMCID: PMC10617444 DOI: 10.1128/jvi.01014-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Adenoviruses are widely used in gene therapy and vaccine delivery. Due to the high prevalence of human adenoviruses (HAdVs), the pre-existing immunity against HAdVs in humans is common, which limits the wide and repetitive use of HAdV vectors. In contrast, the pre-existing immunity against simian adenoviruses (SAdVs) is low in humans. Therefore, we performed epidemiological investigations of SAdVs in simians and found that the SAdV prevalence was as high as 33.9%. The whole-genome sequencing and sequence analysis showed SAdV diversity and possible cross species transmission. One isolate with low level of pre-existing neutralizing antibodies in humans was used to construct replication-deficient SAdV vectors with E4orf6 substitution and E1/E3 deletion. Interestingly, we found that the E3 region plays a critical role in its replication in human cells, but the absence of this region could be compensated for by the E4orf6 from HAdV-5 and the E1 expression intrinsic to HEK293 cells.
Collapse
Affiliation(s)
- Wendong Lan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Lulu Quan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiqiang Li
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Junxian Ou
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Biyan Duan
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Ting Mei
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Xiao Tan
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Weiwei Chen
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Chengsong Wan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - James Chodosh
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Qiwei Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Hartmann KP, van Gogh M, Freitag PC, Kast F, Nagy-Davidescu G, Borsig L, Plückthun A. FAP-retargeted Ad5 enables in vivo gene delivery to stromal cells in the tumor microenvironment. Mol Ther 2023; 31:2914-2928. [PMID: 37641405 PMCID: PMC10556229 DOI: 10.1016/j.ymthe.2023.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/19/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Fibroblast activation protein (FAP) is a cell surface serine protease that is highly expressed on reactive stromal fibroblasts, such as cancer-associated fibroblasts (CAFs), and generally absent in healthy adult tissues. FAP expression in the tumor stroma has been detected in more than 90% of all carcinomas, rendering CAFs excellent target cells for a tumor site-specific adenoviral delivery of cancer therapeutics. Here, we present a tropism-modified human adenovirus 5 (Ad5) vector that targets FAP through trivalent, designed ankyrin repeat protein-based retargeting adapters. We describe the development and validation of these adapters via cell-based screening assays and demonstrate adapter-mediated Ad5 retargeting to FAP+ fibroblasts in vitro and in vivo. We further show efficient in vivo delivery and in situ production of a therapeutic payload by CAFs in the tumor microenvironment (TME), resulting in attenuated tumor growth. We thus propose using our FAP-Ad5 vector to convert CAFs into a "biofactory," secreting encoded cancer therapeutics into the TME to enable a safe and effective cancer treatment.
Collapse
Affiliation(s)
- K Patricia Hartmann
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Merel van Gogh
- Department of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Patrick C Freitag
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Florian Kast
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gabriela Nagy-Davidescu
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lubor Borsig
- Department of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
18
|
Dabbiru VAS, Müller L, Schönborn L, Greinacher A. Vaccine-Induced Immune Thrombocytopenia and Thrombosis (VITT)-Insights from Clinical Cases, In Vitro Studies and Murine Models. J Clin Med 2023; 12:6126. [PMID: 37834770 PMCID: PMC10573542 DOI: 10.3390/jcm12196126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
An effective worldwide vaccination campaign started and is still being carried out in the face of the coronavirus disease 2019 (COVID-19) pandemic. While vaccines are great tools to confront the pandemic, predominantly adenoviral vector-based vaccines can cause a rare severe adverse effect, termed vaccine-induced immune thrombocytopenia and thrombosis (VITT), in about 1 in 100,000 vaccinated individuals. VITT is diagnosed 5-30 days post-vaccination and clinically characterized by thrombocytopenia, strongly elevated D-dimer levels, platelet-activating anti-platelet factor 4 (PF4) antibodies and thrombosis, especially at atypical sites such as the cerebral venous sinus and/or splanchnic veins. There are striking similarities between heparin-induced thrombocytopenia (HIT) and VITT. Both are caused by anti-PF4 antibodies, causing platelet and leukocyte activation which results in massive thrombo-inflammation. However, it is still to be determined why PF4 becomes immunogenic in VITT and which constituent of the vaccine triggers the immune response. As VITT-like syndromes are increasingly reported in patients shortly after viral infections, direct virus-PF4 interactions might be most relevant. Here we summarize the current information and hypotheses on the pathogenesis of VITT and address in vivo models, especially murine models for further studies on VITT.
Collapse
Affiliation(s)
| | | | | | - Andreas Greinacher
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (V.A.S.D.); (L.M.); (L.S.)
| |
Collapse
|
19
|
Wang Y, Wang M, Bao R, Wang L, Du X, Qiu S, Yang C, Song H. A novel humanized tri-receptor transgenic mouse model of HAdV infection and pathogenesis. J Med Virol 2023; 95:e29026. [PMID: 37578851 DOI: 10.1002/jmv.29026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Human adenovirus (HAdV) is a highly virulent respiratory pathogen that poses clinical challenges in terms of diagnostics and treatment. Currently, no effective therapeutic drugs or prophylactic vaccines are available for HAdV infections. One factor contributing to this deficiency is that existing animal models, including wild-type and single-receptor transgenic mice, are unsuitable for HAdV proliferation and pathology testing. In this study, a tri-receptor transgenic mouse model expressing the three best-characterized human cellular receptors for HAdV (hCAR, hCD46, and hDSG2) was generated and validated via analysis of transgene insertion, receptor mRNA expression, and protein abundance distribution. Following HAdV-7 infection, the tri-receptor mice exhibited high transcription levels at the early and late stages of the HAdV gene, as well as viral protein expression. Furthermore, the tri-receptor mice infected with HAdV exhibited dysregulated cytokine responses and multiple tissue lesions. This transgenic mouse model represents human HAdV infection and pathogenesis with more accuracy than any other reported animal model. As such, this model facilitates the comprehensive investigation of HAdV pathogenesis as well as the evaluation of potential vaccines and therapeutic modalities for HAdV.
Collapse
Affiliation(s)
- Yawei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Min Wang
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
- College of Public Heaith, China Medical University, Shenyang, China
| | - Renlong Bao
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ligui Wang
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xinying Du
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shaofu Qiu
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chaojie Yang
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
20
|
Dong T, Shah JR, Phung AT, Larson C, Sanchez AB, Aisagbonhi O, Blair SL, Oronsky B, Trogler WC, Reid T, Kummel AC. A Local and Abscopal Effect Observed with Liposomal Encapsulation of Intratumorally Injected Oncolytic Adenoviral Therapy. Cancers (Basel) 2023; 15:3157. [PMID: 37370769 PMCID: PMC10296131 DOI: 10.3390/cancers15123157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
This study evaluated the in vivo therapeutic efficacy of oncolytic serotype 5 adenovirus TAV255 in CAR-deficient tumors. In vitro experiments were performed with cell lines that expressed different levels of CAR (HEK293, A549, CT26, 4T1, and MCF-7). Low CAR cells, such as CT26, were poorly transduced by Ad in vitro unless the adenovirus was encapsulated in liposomes. However, the CT26 tumor in an immune-competent mouse model responded to the unencapsulated TAV255; 33% of the tumors were induced into complete remission, and mice with complete remission rejected the rechallenge with cancer cell injection. Encapsulation of TAV255 improves its therapeutic efficacy by transducing more CT26 cells, as expected from in vitro results. In a bilateral tumor model, nonencapsulated TAV255 reduced the growth rate of the locally treated tumors but had no effect on the growth rate of the distant tumor site. Conversely, encapsulated TAV255-infected CT26 induced a delayed growth rate of both the primary injected tumor and the distant tumor, consistent with a robust immune response. In vivo, intratumorally injected unencapsulated adenoviruses infect CAR-negative cells with only limited efficiency. However, unencapsulated adenoviruses robustly inhibit the growth of CAR-deficient tumors, an effect that constitutes an 'in situ vaccination' by stimulating cytotoxic T cells.
Collapse
Affiliation(s)
- Tao Dong
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jaimin R. Shah
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Abraham T. Phung
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | - Omonigho Aisagbonhi
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92037, USA
| | - Sarah L. Blair
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | | | - William C. Trogler
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Reid
- EpicentRx, Inc., La Jolla, CA 92037, USA
| | - Andrew C. Kummel
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Cai X, Gao C, Ma L, Li C. Genome-wide identification, evolution and expression analysis of tight junction gene family and the immune roles of claudin5 gene in turbot (Scophthalmus maximus L.). Gene 2023:147541. [PMID: 37301449 DOI: 10.1016/j.gene.2023.147541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Tight junction proteins (TJs) are important component proteins that maintaining the structure and function of TJs, connecting to each other to form a TJ complex between cells, maintaining the biological homeostasis of the internal environment. In this study, a total of 103 TJ genes were identified in turbot according to our whole-transcriptome database. Transmembrane TJs were divided into seven subfamilies, including claudin (CLDN), occludin (OCLD), tricellulin (MARVELD2), MARVEL domain containing 3 (MARVELD3), junctional adhesion molecules (JAM), immunoglobulin superfamily member 5 (IGSF5/JAM4), blood vessel epicardial substance (BVEs). Moreover, the majority of homologous pairs of TJ genes showed highly conserved alongside length, exon/intron number and motifs. As for phylogenetic analysis for 103 TJ genes, eight of them have undergone a positive selection and JAMB-like has undergone the most neutral evolution. The expression patterns of several TJ genes showed the lowest expression levels in blood, while the highest expression levels were detected in intestine, gill and skin, which all belong to mucosal tissues. Meanwhile, most examined TJ genes showed down-regulated expression patterns during bacterial infection, while several TJ genes exhibited up-regulated expression patterns at a later stage (24 h). At the same time, several potential candidate genes (such as CLDN-15, CLDN-3, CLDN-12, CLDN-5 and OCLD) were significantly down-regulated, which may indicate their important functions that involved in the regulation of bacterial infection. Currently, there is little research on CLDN5 in the intestine, but it is highly expressed in the intestine and has significant changes in intestinal expression after bacterial infection. Thus, we knocked down CLDN5 by the method of lentiviral infection. The result showed CLDN5 was related to cell migration (wound healing) and apoptosis, and the method of dualluciferasereporterassay showed that the functions of CLDN5 could be regulated by miR-24. The study of TJs may lead to a better understanding of the function of TJs in teleost.
Collapse
Affiliation(s)
- Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch WA 6150, Australia
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch WA 6150, Australia
| | - Le Ma
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch WA 6150, Australia
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
22
|
Chakraborty S, Tabrizi Z, Bhatt NN, Franciosa SA, Bracko O. A Brief Overview of Neutrophils in Neurological Diseases. Biomolecules 2023; 13:biom13050743. [PMID: 37238612 DOI: 10.3390/biom13050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in circulation and are the first line of defense after an infection or injury. Neutrophils have a broad spectrum of functions, including phagocytosis of microorganisms, the release of pro-inflammatory cytokines and chemokines, oxidative burst, and the formation of neutrophil extracellular traps. Traditionally, neutrophils were thought to be most important for acute inflammatory responses, with a short half-life and a more static response to infections and injury. However, this view has changed in recent years showing neutrophil heterogeneity and dynamics, indicating a much more regulated and flexible response. Here we will discuss the role of neutrophils in aging and neurological disorders; specifically, we focus on recent data indicating the impact of neutrophils in chronic inflammatory processes and their contribution to neurological diseases. Lastly, we aim to conclude that reactive neutrophils directly contribute to increased vascular inflammation and age-related diseases.
Collapse
Affiliation(s)
| | - Zeynab Tabrizi
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | | | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Department of Neurology, University of Miami-Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
23
|
Schellhorn S, Brücher D, Wolff NA, Schröer K, Sallard E, Mese K, Zhang W, Ehrke-Schulz E, Thévenod F, Plückthun A, Ehrhardt A. Targeting Oncolytic Adenoviruses to Cancer Cells Using a Designed Ankyrin Repeat Protein Lipocalin-2 Fusion Protein. Hum Gene Ther 2023; 34:203-216. [PMID: 36802735 DOI: 10.1089/hum.2022.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Oncolytic viruses are a promising technology to attack cancer cells and to recruit immune cells to the tumor site. Since the Lipocalin-2 receptor (LCN2R) is expressed on most cancer cells, we used its ligand LCN2 to target oncolytic adenoviruses (Ads) to cancer cells. Therefore, we fused a Designed Ankyrin Repeat Protein (DARPin) adapter binding the knob of Ad type 5 (knob5) to LCN2 to retarget the virus toward LCN2R with the aim of analyzing the basic characteristics of this novel targeting approach. The adapter was tested in vitro with Chinese Hamster Ovary (CHO) cells stably expressing the LCN2R and on 20 cancer cell lines (CCLs) using an Ad5 vector encoding luciferase and green fluorescent protein. Luciferase assays with the LCN2 adapter (LA) showed 10-fold higher infection compared with blocking adapter (BA) in CHO cells expressing LCN2R and in cells not expressing the LCN2R. Most CCLs showed an increased viral uptake of LA-bound virus compared with BA-bound virus and for five CCLs viral uptake was comparable to unmodified Ad5. Flow cytometry and hexon immunostainings also revealed increased uptake of LA-bound Ads compared with BA-bound Ads in most tested CCLs. Virus spread was studied in 3D cell culture models and nine CCLs showed increased and earlier fluorescence signals for LA-bound virus compared with BA-bound virus. Mechanistically, we show that the LA increases viral uptake only in the absence of its ligand Enterobactin (Ent) and independently of iron. Altogether, we characterized a novel DARPin-based system resulting in enhanced uptake demonstrating potential for future oncolytic virotherapy.
Collapse
Affiliation(s)
- Sebastian Schellhorn
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Dominik Brücher
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Natascha A Wolff
- Institute of Physiology, Pathophysiology, and Toxicology, Center for Biomedical Training and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Katrin Schröer
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Erwan Sallard
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Kemal Mese
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Frank Thévenod
- Institute of Physiology, Pathophysiology, and Toxicology, Center for Biomedical Training and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
24
|
Podgorski II, Harrach B, Benkő M, Papp T. Characterization of monkey adenoviruses with three fiber genes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 108:105403. [PMID: 36610683 DOI: 10.1016/j.meegid.2023.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Although the occurrence of three fiber genes in monkey adenoviruses had already been described, the relatedness of the "extra" fibers have not yet been discussed. Here we report the genome analysis of two simian adenovirus (SAdV) serotypes from Old World monkeys and the phylogenetic analysis of the multiple fiber genes found in these and related AdVs. One of the newly sequenced serotypes (SAdV-2), isolated from a rhesus macaque (Macaca mulatta), was classified into species Human mastadenovirus G (HAdV-G), while the other serotype (SAdV-17), originating from a grivet (Chlorocebus aethiops), classified to Simian mastadenovirus F (SAdV-F). We identified unique features in the gene content of these SAdVs compared to those typical for other members of the genus Mastadenovirus. Namely, in the E1B region of SAdV-2, the 19K gene was replaced by an ITR repetition and a copy of the E4 ORF1 gene. Among the 37 genes in both SAdVs, three genes of different lengths, predicted to code for the cellular attachment proteins (the fibers), were found. These proteins exhibit high diversity. Yet, phylogenetic calculations of their conserved parts could reveal the probable evolutionary steps leading to the multiple-fibered contemporary HAdV and SAdV species. Seemingly, there existed (a) common ancestor(s) with two fiber genes for the lineages of the AdVs in species SAdV-B, -E, -F and HAdV-F, alongside a double-fibered ancestor for today's SAdV-C and HAdV-G, which later diverged into descendants forming today's species. Additionally, some HAdV-G members picked up a third fiber gene either to the left-hand or to the in-between position from the existing two. A SAdV-F progenitor also obtained a third copy to the middle, as observed in SAdV-17. The existence of three fiber genes in these contemporary AdVs brings novel possibilities for the design of optimised AdV-based vectors with potential multiple target binding abilities.
Collapse
Affiliation(s)
- Iva I Podgorski
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary.
| | - Balázs Harrach
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary.
| | - Mária Benkő
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary.
| | - Tibor Papp
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary.
| |
Collapse
|
25
|
Jayabal P, Zhou F, Ma X, Bondra KM, Blackman B, Weintraub ST, Chen Y, Chévez-Barrios P, Houghton PJ, Gallie B, Shiio Y. Nitric oxide suppression by secreted frizzled-related protein 2 drives retinoblastoma. Cell Rep 2023; 42:112103. [PMID: 36773293 PMCID: PMC10412738 DOI: 10.1016/j.celrep.2023.112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 12/15/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Retinoblastoma is a cancer of the infant retina primarily driven by loss of the Rb tumor suppressor gene, which is undruggable. Here, we report an autocrine signaling, mediated by secreted frizzled-related protein 2 (SFRP2), which suppresses nitric oxide and enables retinoblastoma growth. We show that coxsackievirus and adenovirus receptor (CXADR) is the cell-surface receptor for SFRP2 in retinoblastoma cells; that CXADR functions as a "dependence receptor," transmitting a growth-inhibitory signal in the absence of SFRP2; and that the balance between SFRP2 and CXADR determines nitric oxide production. Accordingly, high SFRP2 RNA expression correlates with high-risk histopathologic features in retinoblastoma. Targeting SFRP2 signaling by SFRP2-binding peptides or by a pharmacological inhibitor rapidly induces nitric oxide and profoundly inhibits retinoblastoma growth in orthotopic xenograft models. These results reveal a cytokine signaling pathway that regulates nitric oxide production and retinoblastoma cell proliferation and is amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Panneerselvam Jayabal
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Fuchun Zhou
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Xiuye Ma
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Kathryn M Bondra
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Barron Blackman
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Population Health Sciences, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Patricia Chévez-Barrios
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Brenda Gallie
- The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Yuzuru Shiio
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
26
|
Yang Y, Wu S, Wang Y, Shao F, Lv P, Li R, Zhao X, Zhang J, Zhang X, Li J, Hou L, Xu J, Chen W. Lung-Targeted Transgene Expression of Nanocomplexed Ad5 Enhances Immune Response in the Presence of Preexisting Immunity. ENGINEERING (BEIJING, CHINA) 2023:S2095-8099(23)00010-3. [PMID: 36714358 PMCID: PMC9869631 DOI: 10.1016/j.eng.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Recombinant adenovirus serotype 5 (Ad5) vector has been widely applied in vaccine development targeting infectious diseases, such as Ebola virus disease and coronavirus disease 2019 (COVID-19). However, the high prevalence of preexisting anti-vector immunity compromises the immunogenicity of Ad5-based vaccines. Thus, there is a substantial unmet need to minimize preexisting immunity while improving the insert-induced immunity of Ad5 vectors. Herein, we address this need by utilizing biocompatible nanoparticles to modulate Ad5-host interactions. We show that positively charged human serum albumin nanoparticles ((+)HSAnp), which are capable of forming a complex with Ad5, significantly increase the transgene expression of Ad5 in both coxsackievirus-adenovirus receptor-positive and -negative cells. Furthermore, in charge- and dose-dependent manners, Ad5/(+)HSAnp complexes achieve robust (up to 227-fold higher) and long-term (up to 60 days) transgene expression in the lungs of mice following intranasal instillation. Importantly, in the presence of preexisting anti-Ad5 immunity, complexed Ad5-based Ebola and COVID-19 vaccines significantly enhance antigen-specific humoral response and mucosal immunity. These findings suggest that viral aggregation and charge modification could be leveraged to engineer enhanced viral vectors for vaccines and gene therapies.
Collapse
Affiliation(s)
- Yilong Yang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shipo Wu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Yudong Wang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Fangze Shao
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Peng Lv
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Ruihua Li
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xiaofan Zhao
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jun Zhang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xiaopeng Zhang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jianmin Li
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Junjie Xu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Wei Chen
- Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
27
|
Fu Y, Xiong S. Exosomes mediate Coxsackievirus B3 transmission and expand the viral tropism. PLoS Pathog 2023; 19:e1011090. [PMID: 36634130 PMCID: PMC9888687 DOI: 10.1371/journal.ppat.1011090] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/31/2023] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Specific virus-receptor interactions are important determinants in viral host range, tropism and pathogenesis, influencing the location and initiation of primary infection as well as viral spread to other target organs/tissues in the postviremic phase. Coxsackieviruses of Group B (CVB) and its six serotypes (CVB1-6) specifically interact with two receptor proteins, coxsackievirus-adenovirus receptor (CAR) and decay-accelerating factor (DAF), and cause various lesions in most permissive tissues. However, our previous data and other studies revealed that virus receptor-negative cells or tissues can be infected with CVB type 3 (CVB3), which can also effectively replicate. To study this interesting finding, we explored the possibility that exosomes are involved in CVB3 tropism and that exosomes functionally enhance CVB3 transmission. We found that exosomes carried and delivered CVB3 virions, resulting in efficient infection in receptor-negative host cells. We also found that delivery of CVB3 virions attached to exosomes depended on the virus receptor CAR. Importantly, exosomes carrying CVB3 virions exhibited greater infection efficiency than free virions because they accessed various entry routes, overcoming restrictions to viral tropism. In vivo experiments demonstrated that inhibition of exosome coupling with virions attenuated CVB3-induced immunological system dysfunction and reduced mortality. Our study describes a new mechanism in which exosomes contribute to viral tropism, spread, and pathogenesis.
Collapse
Affiliation(s)
- Yuxuan Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- * E-mail:
| |
Collapse
|
28
|
Jennings MR, Parks RJ. Human Adenovirus Gene Expression and Replication Is Regulated through Dynamic Changes in Nucleoprotein Structure throughout Infection. Viruses 2023; 15:161. [PMID: 36680201 PMCID: PMC9863843 DOI: 10.3390/v15010161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Human adenovirus (HAdV) is extremely common and can rapidly spread in confined populations such as daycare centers, hospitals, and retirement homes. Although HAdV usually causes only minor illness in otherwise healthy patients, HAdV can cause significant morbidity and mortality in certain populations, such as the very young, very old, or immunocompromised individuals. During infection, the viral DNA undergoes dramatic changes in nucleoprotein structure that promote the rapid expression of viral genes, replication of the DNA, and generation of thousands of new infectious virions-each process requiring a distinct complement of virus and host-encoded proteins. In this review, we summarize our current understanding of the nucleoprotein structure of HAdV DNA during the various phases of infection, the cellular proteins implicated in mediating these changes, and the role of epigenetics in HAdV gene expression and replication.
Collapse
Affiliation(s)
- Morgan R. Jennings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
29
|
Matthaeus C, Jüttner R, Gotthardt M, Rathjen FG. The IgCAM CAR Regulates Gap Junction-Mediated Coupling on Embryonic Cardiomyocytes and Affects Their Beating Frequency. Life (Basel) 2022; 13:14. [PMID: 36675963 PMCID: PMC9866089 DOI: 10.3390/life13010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The IgCAM coxsackie-adenovirus receptor (CAR) is essential for embryonic heart development and electrical conduction in the mature heart. However, it is not well-understood how CAR exerts these effects at the cellular level. To address this question, we analyzed the spontaneous beating of cultured embryonic hearts and cardiomyocytes from wild type and CAR knockout (KO) embryos. Surprisingly, in the absence of the CAR, cultured cardiomyocytes showed increased frequencies of beating and calcium cycling. Increased beatings of heart organ cultures were also induced by the application of reagents that bind to the extracellular region of the CAR, such as the adenovirus fiber knob. However, the calcium cycling machinery, including calcium extrusion via SERCA2 and NCX, was not disrupted in CAR KO cells. In contrast, CAR KO cardiomyocytes displayed size increases but decreased in the total numbers of membrane-localized Cx43 clusters. This was accompanied by improved cell-cell coupling between CAR KO cells, as demonstrated by increased intercellular dye diffusion. Our data indicate that the CAR may modulate the localization and oligomerization of Cx43 at the plasma membrane, which could in turn influence electrical propagation between cardiomyocytes via gap junctions.
Collapse
Affiliation(s)
- Claudia Matthaeus
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
- Laboratory of Cellular Biophysics, NHLBI, NIH, 50 South Drive, Building 50 RM 3312, Bethesda, MD 20892, USA
| | - René Jüttner
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
| | - Michael Gotthardt
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
| | - Fritz G. Rathjen
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
| |
Collapse
|
30
|
Wang WC, Sayedahmed EE, Mittal SK. Significance of Preexisting Vector Immunity and Activation of Innate Responses for Adenoviral Vector-Based Therapy. Viruses 2022; 14:v14122727. [PMID: 36560730 PMCID: PMC9787786 DOI: 10.3390/v14122727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
An adenoviral (AdV)-based vector system is a promising platform for vaccine development and gene therapy applications. Administration of an AdV vector elicits robust innate immunity, leading to the development of humoral and cellular immune responses against the vector and the transgene antigen, if applicable. The use of high doses (1011-1013 virus particles) of an AdV vector, especially for gene therapy applications, could lead to vector toxicity due to excessive levels of innate immune responses, vector interactions with blood factors, or high levels of vector transduction in the liver and spleen. Additionally, the high prevalence of AdV infections in humans or the first inoculation with the AdV vector result in the development of vector-specific immune responses, popularly known as preexisting vector immunity. It significantly reduces the vector efficiency following the use of an AdV vector that is prone to preexisting vector immunity. Several approaches have been developed to overcome this problem. The utilization of rare human AdV types or nonhuman AdVs is the primary strategy to evade preexisting vector immunity. The use of heterologous viral vectors, capsid modification, and vector encapsulation are alternative methods to evade vector immunity. The vectors can be optimized for clinical applications with comprehensive knowledge of AdV vector immunity, toxicity, and circumvention strategies.
Collapse
|
31
|
Kadkhodazadeh M, Mohajel N, Behdani M, Baesi K, Khodaei B, Azadmanesh K, Arashkia A. Fiber manipulation and post-assembly nanobody conjugation for adenoviral vector retargeting through SpyTag-SpyCatcher protein ligation. Front Mol Biosci 2022; 9:1039324. [PMID: 36545512 PMCID: PMC9760943 DOI: 10.3389/fmolb.2022.1039324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
For adenoviruses (Ads) to be optimally effective in cancer theranostics, they need to be retargeted toward target cells and lose their natural tropism. Typically, this is accomplished by either engineering fiber proteins and/or employing bispecific adapters, capable of bonding Ad fibers and tumor antigen receptors. This study aimed to present a simple and versatile method for generating Ad-based bionanoparticles specific to target cells, using the SpyTag-SpyCatcher system. The SpyTag peptide was inserted into the HI loop of fiber-knob protein, which could act as a covalent anchoring site for a targeting moiety fused to a truncated SpyCatcher (SpyCatcherΔ) pair. After confirming the presence and functionality of SpyTag on the Ad type-5 (Ad5) fiber knob, an adapter molecule, comprising of SpyCatcherΔ fused to an anti-vascular endothelial growth factor receptor 2 (VEGFR2) nanobody, was recombinantly expressed in Escherichia coli and purified before conjugation to fiber-modified Ad5 (fmAd5). After evaluating fmAd5 detargeting from its primary coxsackie and adenovirus receptor (CAR), the nanobody-decorated fmAd5 could be efficiently retargeted to VEGFR2-expressing 293/KDR and human umbilical vein endothelial (HUVEC) cell lines. In conclusion, a plug-and-play platform was described in this study for detargeting and retargeting Ad5 through the SpyTag-SpyCatcher system, which could be potentially applied to generate tailored bionanoparticles for a broad range of specific targets; therefore, it can be introduced as a promising approach in cancer nanotheranostics.
Collapse
Affiliation(s)
| | - Nasir Mohajel
- Department of Molecular Virology, Pasture Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Kazem Baesi
- Hepatitis and AIDS Department, Pasteur institute of Iran, Tehran, Iran
| | - Behzad Khodaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasture Institute of Iran, Tehran, Iran,*Correspondence: Kayhan Azadmanesh, ; Arash Arashkia,
| | - Arash Arashkia
- Department of Molecular Virology, Pasture Institute of Iran, Tehran, Iran,*Correspondence: Kayhan Azadmanesh, ; Arash Arashkia,
| |
Collapse
|
32
|
A link between severe hepatitis in children and adenovirus 41 and adeno-associated virus 2 infections. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the past few months there have been reports of severe acute hepatitis in several hundred, otherwise healthy, immunocompetent young children. Several deaths have been recorded and a relatively large proportion of the patients have needed liver transplants. Most of the cases, so far, have been seen in the UK and in North America, but it has also been reported in many other European countries, the Middle East and Asia. Most common viruses have been ruled out as a causative agent; hepatitis A virus (HAV), hepatitis B virus (HBV) and hepatitis C virus (HCV) were not detected, nor were Epstein–Barr virus (EBV), cytomegalovirus (CMV) and human immunodeficiency virus (HIV) in many cases. A small proportion of the children had been infected with SARS-CoV-2 but these seem to be in a minority; similarly, almost none of the children had been vaccinated against COVID-19. Significantly, many of the patients were infected with adenovirus 41 (HAdV-F41). Previously, HAdV-41 had not been linked to hepatitis and is usually considered to cause gastroenteritis in both immunocompetent and immunocompromised patients. In two most recent studies, adeno-associated virus 2 (AAV2) was detected in almost all patients, together with species C and F HAdVs and human herpesvirus 6B (HHV6B). Here, I discuss the possibility that a change in tropism of HAdV-41 and changes in AAV2 may be responsible for their links to acute hepatitis.
Collapse
|
33
|
Ortiz-Zapater E, Bagley DC, Hernandez VL, Roberts LB, Maguire TJA, Voss F, Mertins P, Kirchner M, Peset-Martin I, Woszczek G, Rosenblatt J, Gotthardt M, Santis G, Parsons M. Epithelial coxsackievirus adenovirus receptor promotes house dust mite-induced lung inflammation. Nat Commun 2022; 13:6407. [PMID: 36302767 PMCID: PMC9613683 DOI: 10.1038/s41467-022-33882-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/06/2022] [Indexed: 12/25/2022] Open
Abstract
Airway inflammation and remodelling are important pathophysiologic features in asthma and other respiratory conditions. An intact epithelial cell layer is crucial to maintain lung homoeostasis, and this depends on intercellular adhesion, whilst damaged respiratory epithelium is the primary instigator of airway inflammation. The Coxsackievirus Adenovirus Receptor (CAR) is highly expressed in the epithelium where it modulates cell-cell adhesion stability and facilitates immune cell transepithelial migration. However, the contribution of CAR to lung inflammation remains unclear. Here we investigate the mechanistic contribution of CAR in mediating responses to the common aeroallergen, House Dust Mite (HDM). We demonstrate that administration of HDM in mice lacking CAR in the respiratory epithelium leads to loss of peri-bronchial inflammatory cell infiltration, fewer goblet-cells and decreased pro-inflammatory cytokine release. In vitro analysis in human lung epithelial cells confirms that loss of CAR leads to reduced HDM-dependent inflammatory cytokine release and neutrophil migration. Epithelial CAR depletion also promoted smooth muscle cell proliferation mediated by GSK3β and TGF-β, basal matrix production and airway hyperresponsiveness. Our data demonstrate that CAR coordinates lung inflammation through a dual function in leucocyte recruitment and tissue remodelling and may represent an important target for future therapeutic development in inflammatory lung diseases.
Collapse
Affiliation(s)
- Elena Ortiz-Zapater
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science King's College London, London, UK
| | - Dustin C Bagley
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | | | - Luke B Roberts
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas J A Maguire
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Felizia Voss
- Max-Delbrück-Centrum für Molekulare Medizin in the Helmholtz Assoziation (MDC), Berlin, Germany
- DZHK Partner site Berlin, Berlin, Germany
| | - Philipp Mertins
- Berlin Institute of Health at Charité, Universitaetsmedizin Berlin, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Marieluise Kirchner
- Berlin Institute of Health at Charité, Universitaetsmedizin Berlin, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | | - Grzegorz Woszczek
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jody Rosenblatt
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Michael Gotthardt
- Max-Delbrück-Centrum für Molekulare Medizin in the Helmholtz Assoziation (MDC), Berlin, Germany
- Berlin Institute of Health at Charité, Universitaetsmedizin Berlin, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - George Santis
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science King's College London, London, UK
- Department of Respiratory Medicine, Guy's & St Thomas NHS Trust, London, UK
| | - Maddy Parsons
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
34
|
Greber UF, Suomalainen M. Adenovirus entry: Stability, uncoating, and nuclear import. Mol Microbiol 2022; 118:309-320. [PMID: 35434852 PMCID: PMC9790413 DOI: 10.1111/mmi.14909] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022]
Abstract
Adenoviruses (AdVs) are widespread in vertebrates. They infect the respiratory and gastrointestinal tracts, the eyes, heart, liver, and kidney, and are lethal to immunosuppressed people. Mastadenoviruses infecting mammals comprise several hundred different types, and many specifically infect humans. Human adenoviruses are the most widely used vectors in clinical applications, including cancer treatment and COVID-19 vaccination. AdV vectors are physically and genetically stable and generally safe in humans. The particles have an icosahedral coat and a nucleoprotein core with a DNA genome. We describe the concept of AdV cell entry and highlight recent advances in cytoplasmic transport, uncoating, and nuclear import of the viral DNA. We highlight a recently discovered "linchpin" function of the virion protein V ensuring cytoplasmic particle stability, which is relaxed at the nuclear pore complex by cues from the E3 ubiquitin ligase Mind bomb 1 (MIB1) and the proteasome triggering disruption. Capsid disruption by kinesin motor proteins and microtubules exposes the linchpin and renders protein V a target for MIB1 ubiquitination, which dissociates V from viral DNA and enhances DNA nuclear import. These advances uncover mechanisms controlling capsid stability and premature uncoating and provide insight into nuclear transport of nucleic acids.
Collapse
Affiliation(s)
- Urs F. Greber
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Maarit Suomalainen
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
35
|
Tian J, Xu Z, Moitra R, Palmer DJ, Ng P, Byrnes AP. Binding of adenovirus species C hexon to prothrombin and the influence of hexon on vector properties in vitro and in vivo. PLoS Pathog 2022; 18:e1010859. [PMID: 36156097 PMCID: PMC9536601 DOI: 10.1371/journal.ppat.1010859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
The majority of adenovirus (Ad) vectors are based on human Ad type 5, which is a member of Ad species C. Species C also includes the closely-related types 1, 2, 6, 57 and 89. It is known that coagulation factors bind to Ad5 hexon and play a key role in the liver tropism of Ad5 vectors, but it is unclear how coagulation factors affect vectors derived from other species C Ads. We evaluated species C Ad vectors both in vitro and following intravenous injection in mice. To assess the impact of hexon differences, we constructed chimeric Ad5 vectors that contain the hexon hypervariable regions from other species C types, including vectors with hexon mutations that decreased coagulation factor binding. After intravenous injection into mice, vectors with Ad5 or Ad6 hexon had strong liver tropism, while vectors with chimeric hexon from other Ad types had weaker liver tropism due to inhibition by natural antibodies and complement. In addition, we discovered a novel ability of hexon to bind prothrombin, which is the most abundant coagulation factor in blood, and we found striking differences in the affinity of Ads for human, mouse and bovine coagulation factors. When compared to Ad5, vectors with non-Ad5 species C hexons had considerably higher affinity for both human and mouse prothrombin. Most of the vectors tested were strongly dependent on coagulation factors for liver transduction, but vectors with chimeric Ad6 hexon showed much less dependence on coagulation factors than other vectors. We found that in vitro neutralization experiments with mouse serum predicted in vivo behavior of Ad5 vectors, but in vitro experiments did not predict the in vivo behavior of vectors based on other Ad types. In sum, hexons from different human Ad species C viruses confer diverse properties on vectors, including differing abilities to target the liver.
Collapse
Affiliation(s)
- Jie Tian
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - Zhili Xu
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - Rituparna Moitra
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - Donna J. Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew P. Byrnes
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Ailia MJ, Yoo SY. In Vivo Oncolytic Virotherapy in Murine Models of Hepatocellular Carcinoma: A Systematic Review. Vaccines (Basel) 2022; 10:vaccines10091541. [PMID: 36146619 PMCID: PMC9505175 DOI: 10.3390/vaccines10091541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Current therapies often provide marginal survival benefits at the expense of undesirable side effects. Oncolytic viruses represent a novel strategy for the treatment of HCC due to their inherent ability to cause direct tumor cell lysis while sparing normal tissue and their capacity to stimulate potent immune responses directed against uninfected tumor cells and distant metastases. Oncolytic virotherapy (OVT) is a promising cancer treatment, but before it can become a standard option in practice, several challenges-systemic viral delivery optimization/enhancement, inter-tumoral virus dispersion, anti-cancer immunity cross-priming, and lack of artificial model systems-need to be addressed. Addressing these will require an in vivo model that accurately mimics the tumor microenvironment and allows the scientific community to design a more precise and accurate OVT. Due to their close physiologic resemblance to humans, murine cancer models are the likely preferred candidates. To provide an accurate assessment of the current state of in vivo OVT in HCC, we have reviewed a comprehensively searched body of work using murine in vivo HCC models for OVT.
Collapse
|
37
|
Gene Therapy for Mitochondrial Diseases: Current Status and Future Perspective. Pharmaceutics 2022; 14:pharmaceutics14061287. [PMID: 35745859 PMCID: PMC9231068 DOI: 10.3390/pharmaceutics14061287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial diseases (MDs) are a group of severe genetic disorders caused by mutations in the nuclear or mitochondrial genome encoding proteins involved in the oxidative phosphorylation (OXPHOS) system. MDs have a wide range of symptoms, ranging from organ-specific to multisystemic dysfunctions, with different clinical outcomes. The lack of natural history information, the limits of currently available preclinical models, and the wide range of phenotypic presentations seen in MD patients have all hampered the development of effective therapies. The growing number of pre-clinical and clinical trials over the last decade has shown that gene therapy is a viable precision medicine option for treating MD. However, several obstacles must be overcome, including vector design, targeted tissue tropism and efficient delivery, transgene expression, and immunotoxicity. This manuscript offers a comprehensive overview of the state of the art of gene therapy in MD, addressing the main challenges, the most feasible solutions, and the future perspectives of the field.
Collapse
|
38
|
Jt S, M H, Wam B, Ac B, Sa N. Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective. J Mol Med (Berl) 2022; 100:875-901. [PMID: 35606652 PMCID: PMC9126699 DOI: 10.1007/s00109-022-02208-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Abstract Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an attractive platform for tackling acquired and inherited cardiovascular diseases in the future. Current cardiovascular gene therapy trials in humans mainly focus on improving cardiac angiogenesis and function. Encouragingly, local delivery of therapeutic transgenes utilising first-generation human adenovirus serotype (HAd)-5 is safe in the short term and has shown some efficacy in drug refractory angina pectoris and heart failure with reduced ejection fraction. Despite this success, systemic delivery of therapeutic HAd-5 vectors targeting cardiovascular tissues and internal organs is limited by negligible gene transfer to target cells, elimination by the immune system, liver sequestration, off-target effects, and episomal degradation. To circumvent these barriers, cardiovascular gene therapy research has focused on determining the safety and efficacy of rare alternative serotypes and/or genetically engineered adenoviral capsid protein-modified vectors following local or systemic delivery. Pre-clinical studies have identified several vectors including HAd-11, HAd-35, and HAd-20–42-42 as promising platforms for local and systemic targeting of vascular endothelial and smooth muscle cells. In the past, clinical gene therapy trials were often restricted by limited scale-up capabilities of gene therapy medicinal products (GTMPs) and lack of regulatory guidance. However, significant improvement of industrial GTMP scale-up and purification, development of novel producer cell lines, and issuing of GTMP regulatory guidance by national regulatory health agencies have addressed many of these challenges, creating a more robust framework for future adenoviral-based cardiovascular gene therapy. In addition, this has enabled the mass roll out of adenovirus vector-based COVID-19 vaccines. Key messages
First-generation HAd-5 vectors are widely used in cardiovascular gene therapy. HAd-5-based gene therapy was shown to lead to cardiac angiogenesis and improved function. Novel HAd vectors may represent promising transgene carriers for systemic delivery. Novel methods allow industrial scale-up of rare/genetically altered Ad serotypes. National regulatory health agencies have issued guidance on GMP for GTMPs.
Collapse
Affiliation(s)
- Schwartze Jt
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| | - Havenga M
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bakker Wam
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bradshaw Ac
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Nicklin Sa
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
39
|
Roque J, Santos P, Margaça FMA, Caeiro MF, Cabo Verde S. Inactivation mechanisms of human adenovirus by e-beam irradiation in water environments. Appl Microbiol Biotechnol 2022; 106:3799-3809. [PMID: 35575914 DOI: 10.1007/s00253-022-11958-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022]
Abstract
This study aims to study the kinetics and mechanisms of human adenovirus inactivation by electron beam. Human adenovirus type 5 (HAdV-5) was inoculated in two types of aqueous substrates (phosphate-buffered saline - PBS, domestic wastewater - WW) treated by electron beam at a dose range between 3 and 21 kGy. Samples were evaluated for virus infectivity, PCR amplification of fragments of HAdV-5 genome and abundance and antigenicity of the virion structural proteins. The maximum reduction in viral titre, in plaque-forming units (PFU) per millilitre, was about 7 and 5 log PFU/mL for e-beam irradiation at 20 kGy in PBS and 19 kGy in wastewater, respectively. Among the virion structural proteins detected, the hexon protein showed the higher radioresistance. Long (10.1 kbp) genomic DNA fragments were differently PCR amplified, denoting a substrate effect on HAdV-5 genome degradation by e-beam. The differences observed between the two substrates can be explained by the protective effect that the organic matter present in the substrate may have on viral irradiation. According to the obtained results, the decrease in viral viability/infectivity may be due to DNA damage and to protein alterations. In summary, electron beam irradiation at a dose of 13 kGy is capable of reducing HAdV-5 viral titres by more than 99.99% (4 log PFU/mL) in both substrates assayed, indicating that this type of technology is effective for viral wastewater disinfection and may be used as a tertiary treatment in water treatment plants. KEY POINTS: • The substrate in which the virus is suspended has an impact on its sensitivity to e-beam treatment. • E-beam irradiation at 13 kGy is capable of reducing by 4 Log PFU/mL the HAdV-5 viral titre. • The decrease in viral viability/infectivity may be due to DNA damage and to protein alterations.
Collapse
Affiliation(s)
- Joana Roque
- Centro de Ciências E Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066, Bobadela LRS, Portugal.,Centro de Estudos Do Ambiente E Do Mar (CESAM), Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Edifício C2-Piso 4, Campo Grande, 1749-016, Lisbon, Portugal
| | - Pedro Santos
- Centro de Ciências E Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066, Bobadela LRS, Portugal
| | - Fernanda M A Margaça
- Centro de Ciências E Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066, Bobadela LRS, Portugal
| | - Maria Filomena Caeiro
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Edifício C2-Piso 4, Campo Grande, 1749-016, Lisbon, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências E Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066, Bobadela LRS, Portugal.
| |
Collapse
|
40
|
Zhang M, Xu D, Feng C, Guo W, Fei C, Sun H, Yang Z, Ma S. Isolation and characterization of a novel clade of coxsackievirus B2 associated with hand, foot, and mouth disease in Southwest China. J Med Virol 2022; 94:2598-2606. [PMID: 35149996 DOI: 10.1002/jmv.27657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
Coxsackievirus B2 (CVB2) is an enterovirus B (EV-B) species and can cause aseptic meningitis, myocarditis and hand, foot, and mouth disease (HFMD). We characterized a novel CVB2 (YN31V3) associated with HFMD in Yunnan, Southwest China in 2019. Although YN31V3 and other Mainland China epidemic strains mainly belonged to genotype C, YN31V3 formed an independent branch. The genome sequence of the strain YN31V3 from this study showed 12.91% nucleotide difference to its closest strain RW41-2/YN/CHN/2012. Recombination analyses showed that the newly isolated YN31V3 was probably a recombinant, which was closely related to CVB2 strains in the genomic P1 region and other EV-B strains in the P2 and P3 regions, respectively. YN31V3 strain had a temperature-sensitive phenotype. Challenge of suckling BALB/c mice with YN31V3 could cause symptoms of disease and severe pathological lesions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Danhan Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Changzeng Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Wei Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Chengrui Fei
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| |
Collapse
|
41
|
Human Coxsackie- and adenovirus receptor is a putative target of neutrophil elastase-mediated shedding. Mol Biol Rep 2022; 49:3213-3223. [PMID: 35122600 PMCID: PMC8924087 DOI: 10.1007/s11033-022-07153-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/17/2022] [Indexed: 12/04/2022]
Abstract
Background During viral-induced myocarditis, immune cells migrate towards the site of infection and secrete proteases, which in turn can act as sheddases by cleaving extracellular domains of transmembrane proteins. We were interested in the shedding of the Coxsackie- and adenovirus receptor (CAR) that acts as an entry receptor for both eponymous viruses, which cause myocarditis. CAR shedding by secreted immune proteases could result in a favourable outcome of myocarditis as CAR’s extracellular domain would be removed from the cardiomyocytes’ surface leading to decreased susceptibility to ongoing viral infections. Methods and results In this work, matrix metalloproteinases and serine proteinases were screened for their proteolytic activity towards human CAR. Whereas matrix metalloproteinases, proteinase 3, and cathepsin G did not cleave human recombinant CAR or only within long incubation times, neutrophil elastase showed a distinct cleavage pattern of CAR’s extracellular domain that was time- and dose-dependent. Neutrophil elastase cleaves CAR at its membrane-proximal immunoglobulin domain as we determined by nanoLC-MS/MS. Furthermore, neutrophil elastase treatment of cells reduced CAR surface levels as seen by flow cytometry and immunofluorescence microscopy. Conclusions With this study, we show that CAR might be a target for shedding by neutrophil elastase. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07153-2.
Collapse
|
42
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
43
|
Meyer KJ, Pellack D, Hedberg-Buenz A, Pomernackas N, Soukup D, Wang K, Fingert JH, Anderson MG. Recombinant adenovirus causes prolonged mobilization of macrophages in the anterior chambers of mice. Mol Vis 2021; 27:741-756. [PMID: 35136346 PMCID: PMC8763664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/28/2021] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Ocular tissues of mice have been studied in many ways using replication-deficient species C type 5 adenovirus (Ad5) as a tool for manipulating gene expression. Whereas refinements to injection protocols and tropism have led to several advances in targeting cells of interest, there remains a relative lack of information concerning how Ad5 may influence other ocular cell types capable of confounding experimental interpretation. Here, a slit lamp is used to thoroughly photodocument the sequelae of intraocular Ad5 injections over time in mice, with attention to potentially confounding indices of inflammation. METHODS A cohort of C57BL/6J mice was randomly split into three groups (Virus, receiving unilateral intracameral injection with 5×107 plaque-forming units (pfu) of a cargo-less Ad5 construct; Saline, receiving unilateral balanced salt solution injection; and Naïve, receiving no injections). From this initial experiment, a total of 52 eyes from 26 mice were photodocumented via slit lamp at four time points (baseline and 1, 3, and 10 weeks following initiation of the experiment) by an observer masked to treatments and other parameters of the experimental design. Following the last in vivo exam, tissues were collected. Based on the slit-lamp data, tissues were studied via immunostaining with the macrophage marker F4/80. Subsequently, three iterations of the original experiment were performed with otherwise identical experimental parameters testing the effect of age, intravitreal injection, and A195 buffer, adding slit-lamp photodocumentation of an additional 32 eyes from 16 mice. RESULTS The masked investigator could use the sequential images from each mouse in the initial experiment to assign each mouse to its correct treatment group with near perfect fidelity. Virus-injected eyes were characterized by corneal damage indicative of intraocular injection and a prolonged mobilization of clump cells on the surface of the iris. Saline-injected eyes had only transient corneal opacities indicative of intraocular injections, and Naïve eyes remained normal. Immunostaining with F4/80 was consistent with ascribing the clump cells visualized via slit-lamp imaging as a type of macrophage. Experimental iterations using Ad5 indicate that all virus-injected eyes had the distinguishing feature of a prolonged presence of clump cells on the surface of the iris regardless of injection site. Mice receiving an intraocular injection of Ad5 at an advanced age displayed a protracted course of corneal cloudiness that prevented detailed visualization of the iris at the last time point. CONCLUSIONS Because the eye is often considered an "immune privileged site," we suspect that several studies have neglected to consider that the presence of Ad5 in the eye might evoke strong reactions from the innate immune system. Ad5 injection caused a sustained mobilization of clump cells-that is, macrophages. This change is likely a consequence of either direct macrophage transduction or a secondary response to cytokines produced locally by other transduced cells. Regardless of how these cells were altered, the important implication is that the adenovirus led to long-lasting changes in the environment of the anterior chamber. Thus, these findings describe a caveat of Ad5-mediated studies involving macrophage mobilization, which we encourage groups to use as a bioassay in their experiments and consider in interpretation of their ongoing experiments using adenoviruses.
Collapse
Affiliation(s)
- Kacie J. Meyer
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Danielle Pellack
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Adam Hedberg-Buenz
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA
| | - Nicholas Pomernackas
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Dana Soukup
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA
| | - John H. Fingert
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA
| | - Michael G. Anderson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA
| |
Collapse
|
44
|
Watanabe M, Nishikawaji Y, Kawakami H, Kosai KI. Adenovirus Biology, Recombinant Adenovirus, and Adenovirus Usage in Gene Therapy. Viruses 2021; 13:v13122502. [PMID: 34960772 PMCID: PMC8706629 DOI: 10.3390/v13122502] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is currently in the public spotlight. Several gene therapy products, including oncolytic virus (OV), which predominantly replicates in and kills cancer cells, and COVID-19 vaccines have recently been commercialized. Recombinant adenoviruses, including replication-defective adenoviral vector and conditionally replicating adenovirus (CRA; oncolytic adenovirus), have been extensively studied and used in clinical trials for cancer and vaccines. Here, we review the biology of wild-type adenoviruses, the methodological principle for constructing recombinant adenoviruses, therapeutic applications of recombinant adenoviruses, and new technologies in pluripotent stem cell (PSC)-based regenerative medicine. Moreover, this article describes the technology platform for efficient construction of diverse "CRAs that can specifically target tumors with multiple factors" (m-CRAs). This technology allows for modification of four parts in the adenoviral E1 region and the subsequent insertion of a therapeutic gene and promoter to enhance cancer-specific viral replication (i.e., safety) as well as therapeutic effects. The screening study using the m-CRA technology successfully identified survivin-responsive m-CRA (Surv.m-CRA) as among the best m-CRAs, and clinical trials of Surv.m-CRA are underway for patients with cancer. This article also describes new recombinant adenovirus-based technologies for solving issues in PSC-based regenerative medicine.
Collapse
Affiliation(s)
- Maki Watanabe
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Yuya Nishikawaji
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Hirotaka Kawakami
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Ken-Ichiro Kosai
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- South Kyushu Center for Innovative Medical Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- Center for Clinical and Translational Research, Kagoshima University Hospital, Kagoshima 890-8544, Japan
| |
Collapse
|
45
|
Bieri M, Hendrickx R, Bauer M, Yu B, Jetzer T, Dreier B, Mittl PRE, Sobek J, Plückthun A, Greber UF, Hemmi S. The RGD-binding integrins αvβ6 and αvβ8 are receptors for mouse adenovirus-1 and -3 infection. PLoS Pathog 2021; 17:e1010083. [PMID: 34910784 PMCID: PMC8673666 DOI: 10.1371/journal.ppat.1010083] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mammalian adenoviruses (AdVs) comprise more than ~350 types including over 100 human (HAdVs) and just three mouse AdVs (MAdVs). While most HAdVs initiate infection by high affinity/avidity binding of their fiber knob (FK) protein to either coxsackievirus AdV receptor (CAR), CD46 or desmoglein (DSG)-2, MAdV-1 (M1) infection requires arginine-glycine-aspartate (RGD) binding integrins. To identify the receptors mediating MAdV infection we generated five novel reporter viruses for MAdV-1/-2/-3 (M1, M2, M3) transducing permissive murine (m) CMT-93 cells, but not B16 mouse melanoma cells expressing mCAR, human (h) CD46 or hDSG-2. Recombinant M1 or M3 FKs cross-blocked M1 and M3 but not M2 infections. Profiling of murine and human cells expressing RGD-binding integrins suggested that αvβ6 and αvβ8 heterodimers are associated with M1 and M3 infections. Ectopic expression of mβ6 in B16 cells strongly enhanced M1 and M3 binding, infection, and progeny production comparable with mαvβ6-positive CMT-93 cells, whereas mβ8 expressing cells were more permissive to M1 than M3. Anti-integrin antibodies potently blocked M1 and M3 binding and infection of CMT-93 cells and hαvβ8-positive M000216 cells. Soluble integrin αvβ6, and synthetic peptides containing the RGDLXXL sequence derived from FK-M1, FK-M3 and foot and mouth disease virus coat protein strongly interfered with M1/M3 infections, in agreement with high affinity interactions of FK-M1/FK-M3 with αvβ6/αvβ8, determined by surface plasmon resonance measurements. Molecular docking simulations of ternary complexes revealed a bent conformation of RGDLXXL-containing FK-M3 peptides on the subunit interface of αvβ6/β8, where the distal leucine residue dips into a hydrophobic pocket of β6/8, the arginine residue ionically engages αv aspartate215, and the aspartate residue coordinates a divalent cation in αvβ6/β8. Together, the RGDLXXL-bearing FKs are part of an essential mechanism for M1/M3 infection engaging murine and human αvβ6/8 integrins. These integrins are highly conserved in other mammals, and may favour cross-species virus transmission.
Collapse
Affiliation(s)
- Manuela Bieri
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Molecular Life Sciences Graduate School, ETH and University Of Zurich, Switzerland
| | - Rodinde Hendrickx
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Molecular Life Sciences Graduate School, ETH and University Of Zurich, Switzerland
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tania Jetzer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Peer R. E. Mittl
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Jens Sobek
- Functional Genomics Center Zurich, Eidgenössische Technische Hochschule (ETH) Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Wang Q, Liu J, Janssen JM, Tasca F, Mei H, Gonçalves MAFV. Broadening the reach and investigating the potential of prime editors through fully viral gene-deleted adenoviral vector delivery. Nucleic Acids Res 2021; 49:11986-12001. [PMID: 34669958 PMCID: PMC8599732 DOI: 10.1093/nar/gkab938] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Prime editing is a recent precision genome editing modality whose versatility offers the prospect for a wide range of applications, including the development of targeted genetic therapies. Yet, an outstanding bottleneck for its optimization and use concerns the difficulty in delivering large prime editing complexes into cells. Here, we demonstrate that packaging prime editing constructs in adenoviral capsids overcomes this constrain resulting in robust genome editing in both transformed and non-transformed human cells with up to 90% efficiencies. Using this cell cycle-independent delivery platform, we found a direct correlation between prime editing activity and cellular replication and disclose that the proportions between accurate prime editing events and unwanted byproducts can be influenced by the target-cell context. Hence, adenovector particles permit the efficacious delivery and testing of prime editing reagents in human cells independently of their transformation and replication statuses. The herein integrated gene delivery and gene editing technologies are expected to aid investigating the potential and limitations of prime editing in numerous experimental settings and, eventually, in ex vivo or in vivo therapeutic contexts.
Collapse
Affiliation(s)
- Qian Wang
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Jin Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Josephine M Janssen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Francesca Tasca
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
47
|
Concepts in Oncolytic Adenovirus Therapy. Int J Mol Sci 2021; 22:ijms221910522. [PMID: 34638863 PMCID: PMC8508870 DOI: 10.3390/ijms221910522] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
Oncolytic adenovirus therapy is gaining importance as a novel treatment option for the management of various cancers. Different concepts of modification within the adenovirus vector have been identified that define the mode of action against and the interaction with the tumour. Adenoviral vectors allow for genetic manipulations that restrict tumour specificity and also the expression of specific transgenes in order to support the anti-tumour effect. Additionally, replication of the virus and reinfection of neighbouring tumour cells amplify the therapeutic effect. Another important aspect in oncolytic adenovirus therapy is the virus induced cell death which is a process that activates the immune system against the tumour. This review describes which elements in adenovirus vectors have been identified for modification not only to utilize oncolytic adenovirus vectors into conditionally replicating adenoviruses (CRAds) that allow replication specifically in tumour cells but also to confer specific characteristics to these viruses. These advances in development resulted in clinical trials that are summarized based on the conceptual design.
Collapse
|
48
|
Kim JY, Bae S, Park S, Kwon JS, Lim SY, Park JY, Cha HH, Seo MH, Lee HJ, Lee N, Heo J, Shum D, Jee Y, Kim SH. Comparison of Antibody and T Cell Responses Induced by Single Doses of ChAdOx1 nCoV-19 and BNT162b2 Vaccines. Immune Netw 2021; 21:e29. [PMID: 34522442 PMCID: PMC8410992 DOI: 10.4110/in.2021.21.e29] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
There are limited data directly comparing humoral and T cell responses to the ChAdOx1 nCoV-19 and BNT162b2 vaccines. We compared Ab and T cell responses after first doses of ChAdOx1 nCoV-19 vs. BNT162b2 vaccines. We enrolled healthcare workers who received ChAdOx1 nCoV-19 or BNT162b2 vaccine in Seoul, Korea. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S1 protein-specific IgG Abs (S1-IgG), neutralizing Abs (NT Abs), and SARS-CoV-2-specific T cell response were evaluated before vaccination and at 1-wk intervals for 3 wks after vaccination. A total of 76 persons, comprising 40 injected with the ChAdOx1 vaccine and 36 injected with the BNT162b2 vaccine, participated in this study. At 3 wks after vaccination, the mean levels (±SD) of S1-IgG and NT Abs in the BNT162b2 participants were significantly higher than in the ChAdOx1 participants (S1-IgG, 14.03±7.20 vs. 6.28±8.87, p<0.0001; NT Ab, 183.1±155.6 vs. 116.6±116.2, p=0.035), respectively. However, the mean values of the T cell responses in the 2 groups were comparable after 2 wks. The humoral immune response after the 1st dose of BNT162b2 developed faster and was stronger than after the 1st dose of ChAdOx1. However, the T cell responses to BNT162b2 and ChAdOx1 were similar.
Collapse
Affiliation(s)
- Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seongman Bae
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Soonju Park
- Institut Pasteur Korea, Seongnam 13488, Korea
| | - Ji-Soo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - So Yun Lim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ji Young Park
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hye Hee Cha
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Mi Hyun Seo
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyun Jung Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Nakyung Lee
- Institut Pasteur Korea, Seongnam 13488, Korea
| | | | - David Shum
- Institut Pasteur Korea, Seongnam 13488, Korea
| | | | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
49
|
Coxsackievirus and Adenovirus Receptor (CXADR): Recent Findings and Its Role and Regulation in Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:95-109. [PMID: 34453733 DOI: 10.1007/978-3-030-77779-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Coxsackievirus and adenovirus receptor (CXADR) belongs to immunoglobulin superfamily of cell adhesion molecules. It expresses in most tissues, but displays unique and indispensable functions in some tissues such as heart and testis. CXADR is a multifunctional protein that can serve as a viral receptor, a junction structural protein and a signalling molecule. Thus, it exerts a wide range of functions such as facilitating leukocyte transmigration, regulating barrier function and cell adhesion, promoting EMT transition, and mediating spermatogenesis. This review aims to provide an overview and highlights some recent findings on CXADR in the field with emphasis on studies in the testis, upon which future studies can be designed to delineate the roles and regulation of CXADR in spermatogenesis.
Collapse
|
50
|
Takeuchi H, Yamaga S, Sasaki N, Kuboniwa M, Matsusaki M, Amano A. Porphyromonas gingivalis induces penetration of lipopolysaccharide and peptidoglycan through the gingival epithelium via degradation of coxsackievirus and adenovirus receptor. Cell Microbiol 2021; 23:e13388. [PMID: 34448537 DOI: 10.1111/cmi.13388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 11/28/2022]
Abstract
Porphyromonas gingivalis is a major pathogen of human periodontitis and dysregulates innate immunity at the gingival epithelial surface. We previously reported that the bacterium specifically degrades junctional adhesion molecule 1 (JAM1), causing gingival epithelial barrier breakdown. However, the functions of other JAM family protein(s) in epithelial barrier dysregulation caused by P. gingivalis are not fully understood. The present results show that gingipains, Arg-specific or Lys-specific cysteine proteases produced by P. gingivalis, specifically degrade coxsackievirus and adenovirus receptor (CXADR), a JAM family protein, at R145 and K235 in gingival epithelial cells. In contrast, a gingipain-deficient P. gingivalis strain was found to be impaired in regard to degradation of CXADR. Furthermore, knockdown of CXADR in artificial gingival epithelium increased permeability to dextran 40 kDa, lipopolysaccharide and peptidoglycan, whereas overexpression of CXADR in a gingival epithelial tissue model prevented penetration by those agents following P. gingivalis infection. Together, these results suggest that P. gingivalis gingipains breach the stratified squamous epithelium barrier by degrading CXADR as well as JAM1, which allows for efficient transfer of bacterial virulence factors into subepithelial tissues. TAKEAWAYS: P. gingivalis, a periodontal pathogen, degraded coxsackievirus and adenovirus receptor (CXADR), a JAM family protein, in gingival epithelial tissues. P. gingivalis gingipains, cysteine proteases, degraded CXADR at R145 and K235. CXADR degradation by P. gingivalis caused increased permeability to lipopolysaccharide and peptidoglycan through gingival epithelial tissues.
Collapse
Affiliation(s)
- Hiroki Takeuchi
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Shunsuke Yamaga
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Naoko Sasaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|