1
|
Bessetti RN, Cobb M, Lilley RM, Johnson NZ, Perez DA, Koonce VM, McCoy K, Litwa KA. Sulforaphane protects developing neural networks from VPA-induced synaptic alterations. Mol Psychiatry 2025:10.1038/s41380-025-02967-5. [PMID: 40175519 DOI: 10.1038/s41380-025-02967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/13/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
Prenatal brain development is particularly sensitive to chemicals that can disrupt synapse formation and cause neurodevelopmental disorders. In most cases, such chemicals increase cellular oxidative stress. For example, prenatal exposure to the anti-epileptic drug valproic acid (VPA), induces oxidative stress and synaptic alterations, promoting autism spectrum disorders (ASD) in humans and autism-like behaviors in rodents. Using VPA to model chemically induced ASD, we tested whether activation of cellular mechanisms that increase antioxidant gene expression would be sufficient to prevent VPA-induced synaptic alterations. As a master regulator of cellular defense pathways, the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) promotes expression of detoxification enzymes and antioxidant gene products. To increase NRF2 activity, we used the phytochemical and potent NRF2 activator, sulforaphane (SFN). In our models of human neurodevelopment, SFN activated NRF2, increasing expression of antioxidant genes and preventing oxidative stress. SFN also enhanced expression of genes associated with synapse formation. Consistent with these gene expression profiles, SFN protected developing neural networks from VPA-induced reductions in synapse formation. Furthermore, in mouse cortical neurons, SFN rescued VPA-induced reductions in neural activity. These results demonstrate the ability of SFN to protect developing neural networks during the vulnerable period of synapse formation, while also identifying molecular signatures of SFN-mediated neuroprotection that could be relevant for combatting other environmental toxicants.
Collapse
Affiliation(s)
- Riley N Bessetti
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA
| | - Michelle Cobb
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA
| | - Rosario M Lilley
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA
| | - Noah Z Johnson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA
| | - Daisy A Perez
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA
| | - Virginia M Koonce
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
| | | | - Karen A Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA.
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA.
| |
Collapse
|
2
|
Guo J, Wang Y, He W, Lou M, Peng Y, Shi H, Lian A. Effects of sulforaphane on ABC and SRS scales in patients with autism spectrum disorder: a meta-analysis. Brain Dev 2025; 47:104321. [PMID: 39951914 DOI: 10.1016/j.braindev.2025.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 02/17/2025]
Abstract
Autism spectrum disorder (ASD) has become an increasingly prominent global health issue. Sulforaphane is a phytochemical with multiple functions that target many of the same biochemical and molecular pathways (biomarkers) associated with ASD. This study aimed to conduct a meta-analysis based on sulforaphane's effect on Aberrant Behavior Checklist (ABC) and Social Responsiveness Scale (SRS) in patients with ASD. We conducted comprehensive searches in the PubMed, Medline, Cochrane, EMBASE, and Web of Science databases from their inception. The modified Cochrane risk of bias tool was used to check the risk of bias of the included studies. Review Manager 5.3 software was used to conduct this meta-analysis. The results of this meta-analysis showed that sulforaphane significantly improved irritability and hyperactivity symptoms, suggesting that sulforaphane has the potential for the combined treatment of autism. Additional studies are needed to confirm and explore the effect of sulforaphane.
Collapse
Affiliation(s)
- Jialing Guo
- Department of Pediatric Rehebilitation, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Yichao Wang
- Department of Pediatric Rehebilitation, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Weijun He
- Department of Pediatric Rehebilitation, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Mingxing Lou
- Department of Pediatric Rehebilitation, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Ying Peng
- Department of Pediatric Rehebilitation, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Hui Shi
- Department of Pediatric Rehebilitation, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Aojie Lian
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China.
| |
Collapse
|
3
|
Chen JG, Zhu YR, Qian GS, Wang JB, Lu JH, Kensler TW, Jacobson LP, Muñoz A, Groopman JD. Fifty Years of Aflatoxin Research in Qidong, China: A Celebration of Team Science to Improve Public Health. Toxins (Basel) 2025; 17:79. [PMID: 39998096 PMCID: PMC11860843 DOI: 10.3390/toxins17020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
The Qidong Liver Cancer Institute (QDLCI) and the Qidong Cancer Registry were established in 1972 with input from doctors, other medical practitioners, and non-medical investigators arriving from urban centers such as Shanghai and Nanjing. Medical teams were established to quantify the extent of primary liver cancer in Qidong, a corn-growing peninsula on the north side of the Yangtze River. High rates of liver cancer were documented and linked to several etiologic agents, including aflatoxins. Local corn, the primary dietary staple, was found to be consistently contaminated with high levels of aflatoxins, and bioassays using this corn established its carcinogenicity in ducks and rats. Observational studies noted a positive association between levels of aflatoxin in corn and incidence of liver cancer across townships. Biomarker studies measuring aflatoxin B1 and its metabolite aflatoxin M1 in biofluids reflected the exposures. Approaches to decontamination of corn from aflatoxins were also studied. In 1993, investigators from Johns Hopkins University were invited to visit the QDLCI to discuss chemoprevention studies in some townships. A series of placebo-controlled clinical trials were conducted using oltipraz (a repurposed drug), chlorophyllin (an over-the-counter drug), and beverages prepared from 3-day-old broccoli sprouts (rich in the precursor phytochemical for sulforaphane). Modulation of biomarkers of aflatoxin DNA and albumin adducts established proof of principle for the efficacy of these agents in enhancing aflatoxin detoxication. Serendipitously, by 2012, aflatoxin exposures quantified using biomarker measurements documented a many hundred-fold reduction. In turn, the Cancer Registry documents that the age-standardized incidence rate of liver cancer is now 75% lower than that seen in the 1970s. This reduction is seen in Qidongese who have never received the hepatitis B vaccination. Aflatoxin mitigation driven by economic changes switched the dietary staple of contaminated corn to rice coupled with subsequent dietary diversity leading to lower aflatoxin exposures. This 50-year effort to understand the etiology of liver cancer in Qidong provides the strongest evidence for aflatoxin mitigation as a public health strategy for reducing liver cancer burden in exposed, high-risk populations. Also highlighted are the challenges and successes of international team science to solve pressing public health issues.
Collapse
Affiliation(s)
- Jian-Guo Chen
- Department of Epidemiology, Qidong Liver Cancer Institute, Qidong People’s Hospital, Affiliated Qidong Hospital of Nantong University, Qidong 226200, China; (Y.-R.Z.); (J.-B.W.); (J.-H.L.)
| | - Yuan-Rong Zhu
- Department of Epidemiology, Qidong Liver Cancer Institute, Qidong People’s Hospital, Affiliated Qidong Hospital of Nantong University, Qidong 226200, China; (Y.-R.Z.); (J.-B.W.); (J.-H.L.)
| | - Geng-Sun Qian
- Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai 200032, China;
| | - Jin-Bing Wang
- Department of Epidemiology, Qidong Liver Cancer Institute, Qidong People’s Hospital, Affiliated Qidong Hospital of Nantong University, Qidong 226200, China; (Y.-R.Z.); (J.-B.W.); (J.-H.L.)
| | - Jian-Hua Lu
- Department of Epidemiology, Qidong Liver Cancer Institute, Qidong People’s Hospital, Affiliated Qidong Hospital of Nantong University, Qidong 226200, China; (Y.-R.Z.); (J.-B.W.); (J.-H.L.)
| | - Thomas W. Kensler
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Lisa P. Jacobson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (L.P.J.); (A.M.)
| | - Alvaro Muñoz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (L.P.J.); (A.M.)
| | - John D. Groopman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|
4
|
Mavratzotis M, Cassel S, De Nicola GR, Montaut S, Rollin P. Synthesis of ω-Methylsulfinyl- and ω-Methylsulfonylalkyl Glucosinolates. Molecules 2025; 30:704. [PMID: 39942806 PMCID: PMC11819801 DOI: 10.3390/molecules30030704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
General pathways were devised to synthesize ω-methylsulfinyl- and ω-methylsulfonylalkyl glucosinolates, which represent an important class of structurally homogeneous plant specialized metabolites. The first approach was based on the selective S-oxidation of ω-methylsulfanyl analogs previously obtained in our laboratory, producing the corresponding sulfoxide or sulfone counterparts in moderate yields. In an alternative approach, previously prepared ω-nitroalkyl methylsulfide precursors were selectively oxidized either to sulfoxides or to sulfones. The key-thiofunctionalized hydroximoyl chloride intermediates were prepared in situ from sulfoxides or sulfones using a nitronate chlorination strategy. A coupling reaction with 1-thio-β-d-glucopyranose was directly applied, followed by O-sulfation of the intermediate thiohydroximates. The final deprotection of the sugar moiety produced the target compounds, including renowned glucoraphanin and homologs, intended for further bioactivity investigations.
Collapse
Affiliation(s)
- Manolis Mavratzotis
- ICOA, CNRS, Université d’Orléans, UMR 7311, BP 6759, F-45067 Orléans, France (S.C.); (P.R.)
| | - Stéphanie Cassel
- ICOA, CNRS, Université d’Orléans, UMR 7311, BP 6759, F-45067 Orléans, France (S.C.); (P.R.)
- Laboratoire SOFTMAT, UMR CNRS 5623, Université P. Sabatier Toulouse III, 118 Route de Narbonne, 31062 Toulouse CEDEX 9, France
| | - Gina Rosalinda De Nicola
- Research Centre for Vegetables and Ornamental Crops, Council for Agricultural Research and Economics (CREA), Via dei Fiori 8, 51017 Pescia, Italy
| | - Sabine Montaut
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Patrick Rollin
- ICOA, CNRS, Université d’Orléans, UMR 7311, BP 6759, F-45067 Orléans, France (S.C.); (P.R.)
| |
Collapse
|
5
|
Danish Rizvi SM, Abu Lila AS, Moin A, Khafagy ES, Rajab AAH, Hegazy WAH, Bendary MM. Sulforaphane Is Not Only a Food Supplement: It Diminishes the Intracellular Survival and Colonization of Salmonella enterica. ACS OMEGA 2025; 10:2969-2977. [PMID: 39895767 PMCID: PMC11780411 DOI: 10.1021/acsomega.4c09408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
Sulforaphane is a main bioactive component in several edible cruciferous vegetables. It acquires several benefits to health in addition to its considered antibacterial and antivirulence activities. Herein, we aimed at evaluating the antivirulence activity of sulforaphane against the worldwide clinically important enteric pathogen Salmonella enterica serovar Typhimurium. The influence of sulforaphane on bacterial adhesion, invasion, biofilm formation, and intracellular replication was assayed. Additionally, the effect of sulforaphane on the type III secretion system (TTSS) in S. enterica was quantified. The outcome of the combination with different antibiotics was assessed, and an in vivo protection assay was conducted to assess the influence on S. enterica pathogenesis. The results showed the significant antibiofilm activity of sulforaphane at subinhibitory effect in addition to its significant reduction in bacterial invasion and intracellular replication inside the host cells. The in vivo findings emphasized the decreased capacity of S. enterica to induce pathogenesis in the presence of sulforaphane. Our finding attributed these antivirulence activities to the interference of sulforaphane with TTSS-type II and the downregulation of its encoding genes. In a nutshell, the edible cruciferous vegetable bioactive sulforaphane is a safe adjunct therapy that can be administrated alongside traditional antibiotics for treating clinically significant enteric pathogens as S. enterica.
Collapse
Affiliation(s)
- Syed Mohd Danish Rizvi
- Department
of Pharmaceutics, College of Pharmacy, University
of Ha’il, Ha’il 81442, Saudi Arabia
- Medical
and Diagnostic Research Center, University
of Ha’il, Ha’il 81442, Saudi Arabia
| | - Amr Selim Abu Lila
- Department
of Pharmaceutics, College of Pharmacy, University
of Ha’il, Ha’il 81442, Saudi Arabia
- Medical
and Diagnostic Research Center, University
of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department
of Pharmaceutics, College of Pharmacy, University
of Ha’il, Ha’il 81442, Saudi Arabia
- Medical
and Diagnostic Research Center, University
of Ha’il, Ha’il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Azza A. H. Rajab
- Department
of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Wael A. H. Hegazy
- Department
of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud M. Bendary
- Department
of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| |
Collapse
|
6
|
Waśniowska J, Piątkowska E, Pawlicki P, Smoleń S, Kopeć A, Dyląg A, Krzemińska J, Koronowicz A. Comparative Analysis of Iodine Levels, Biochemical Responses, and Thyroid Gene Expression in Rats Fed Diets with Kale Biofortified with 5,7-Diiodo-8-Quinolinol. Int J Mol Sci 2025; 26:822. [PMID: 39859542 PMCID: PMC11765731 DOI: 10.3390/ijms26020822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Iodine is a key micronutrient essential for the synthesis of thyroid hormone, which regulates metabolic processes and maintains overall health. Despite its importance, iodine deficiency is a global health issue, leading to disorders such as goiter, hypothyroidism, and developmental abnormalities. Biofortification of crops with iodine is a promising strategy to enhance the dietary iodine intake, providing an alternative to iodized salt. Curly kale (Brassica oleracea var. sabellica) is a nutrient-rich vegetable high in vitamins A, C, K; minerals; fiber; and bioactive compounds with antioxidant, anti-inflammatory, and detoxifying properties. This study evaluates the effects of diets containing iodine-biofortified curly kale ('Oldenbor F1' and 'Redbor F1') on iodine content, tissue iodine levels, and various biochemical parameters in laboratory rats. The biofortified curly kale was enriched with 5,7-diiodo-8-quinolinol. The iodine content in the AIN-93G (control) diet and the non-biofortified curly kale diets did not differ significantly. However, diets with 5,7-diiodo-8-quinolinol biofortified kale showed significantly higher iodine levels compared with the control diets. Tissue analysis revealed the highest iodine concentrations in the liver and kidneys of rats fed diets with biofortified curly kale, indicating better iodine bioavailability. Biochemical analysis showed that rats fed the biofortified kale diet had lower total cholesterol (TC) and triglyceride (TG) levels compared with rats fed the control diet. Additionally, the biofortified diet improved the liver function markers (ALAT, ASAT) and reduced oxidative stress markers (TBARS). The study also investigated the expression of thyroid-related genes (Slc5A5, Tpo, Dio1, Dio2) in response to diets containing biofortified kale. The results demonstrated significant changes in gene expression, indicating adaptive mechanisms to dietary iodine levels and the presence of bioactive compounds in the biofortified kale. The study also observed variations in uric acid levels, with lower concentrations in rats fed a diet with biofortified curly kale. Biofortified curly kale supports thyroid function and improves liver and kidney health by reducing oxidative stress and modulating key biochemical and genetic markers. These findings suggest that biofortified curly kale can effectively increase dietary iodine intake as a nutritional intervention to address iodine deficiency and promote overall health.
Collapse
Affiliation(s)
- Justyna Waśniowska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31–120 Krakow, Poland; (J.W.); (E.P.); (A.K.); (A.D.); (J.K.)
| | - Ewa Piątkowska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31–120 Krakow, Poland; (J.W.); (E.P.); (A.K.); (A.D.); (J.K.)
| | - Piotr Pawlicki
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Agriculture in Krakow, Redzina 1c, 30–248, Krakow, Poland;
| | - Sylwester Smoleń
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31–120 Krakow, Poland;
| | - Aneta Kopeć
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31–120 Krakow, Poland; (J.W.); (E.P.); (A.K.); (A.D.); (J.K.)
| | - Agnieszka Dyląg
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31–120 Krakow, Poland; (J.W.); (E.P.); (A.K.); (A.D.); (J.K.)
| | - Joanna Krzemińska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31–120 Krakow, Poland; (J.W.); (E.P.); (A.K.); (A.D.); (J.K.)
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31–120 Krakow, Poland; (J.W.); (E.P.); (A.K.); (A.D.); (J.K.)
| |
Collapse
|
7
|
Michalczyk M. Methods of Modifying the Content of Glucosinolates and Their Derivatives in Sprouts and Microgreens During Their Cultivation and Postharvest Handling. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:2133668. [PMID: 39839498 PMCID: PMC11750299 DOI: 10.1155/ijfo/2133668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/25/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
Sprouts and microgreens which belong to the Brassicaceae family contain significantly more glucosinolates than mature vegetables, and their composition often differs too. These plant growth stages can be a valuable supplement of the aforementioned compounds in the diet. The content and proportion of individual glucosinolates in sprouts and microgreens can be regulated by modifying the length and temperature of cultivation, the type of light, the use of mineral compounds, elicitation, primming, and cold plasma as well as storage conditions. The way in which sprouts are prepared for consumption affects the yield of glucosinolate hydrolysis. Genetic variation leading to different plant responses to the same factors (e.g., type of light) makes it necessary to conduct detailed studies involving species and variety diversity. Heat stress and the use of cold plasma appear to be fairly universal methods for increasing glucosinolate content. Studies on the use of light at different wavelengths do not provide unequivocal results. Despite experiments on the use of seed soaking solutions (e.g., sulfur and selenium compounds), there are no studies in the available literature on the effects of chemical and thermal seed disinfection methods on the glucosinolate content of the obtained sprouts and microgreens.
Collapse
Affiliation(s)
- Magdalena Michalczyk
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture in Krakow, Kraków, Poland
| |
Collapse
|
8
|
Zhu W, Cremonini E, Mastaloudis AF, Mitchell AE, Bornhorst GM, Oteiza PI. Optimization of sulforaphane bioavailability from a glucoraphanin-rich broccoli seed extract in a model of dynamic gastric digestion and absorption by Caco-2 cell monolayers. Food Funct 2025; 16:314-328. [PMID: 39670818 DOI: 10.1039/d4fo04561k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Broccoli is recognized for its health benefits, attributed to the high concentrations of glucoraphanin (GR). GR must be hydrolyzed by myrosinase (Myr) to form the bioactive sulforaphane (SF). The primary challenge in delivering SF in the upper gastrointestinal (GI) tract- is improving hydrolysis of GR to SF. Here, we optimized the formulation and delivery methods to improve GR conversion and SF bioavailability. We investigated whether the combination of GR-rich broccoli seed extract powder (BSE[GR]) with Myr-rich mustard seed powder (MSP[Myr]), ± ascorbic acid (AA, a co-factor of Myr), delivered as free powder or encapsulated powder, can: (i) facilitate GR hydrolysis to SF during dynamic in vitro gastric digestion and static in vitro small intestinal digestion, and (ii) increase SF bioavailability in Caco-2 cell monolayers, a model of human intestinal epithelium. Addition of exogenous Myr increased the conversion of GR to SF in free powder during small intestinal digestion, but not during gastric digestion, where Myr activity was inhibited by the acidic environment. Capsule delivery of BSE[GR]/MSP[Myr] (w/w ratio 4 : 1) resulted in a 2.5-fold higher conversion efficiency compared to free powder delivery (72.1% compared to 29.3%, respectively). AA combined with MSP[Myr] further enhanced the conversion efficiency in small intestinal digestion and the bioavailability of SF in Caco-2 cell monolayers. Bioavailability of GR as SF, SF metabolites, and GR was 74.8% in Caco-2 cell monolayers following 30 min gastric digestion and 60 min small intestinal digestion. This study highlights strategies to optimize GR bioconversion in the upper GI tract leading to enhanced SF bioavailability.
Collapse
Affiliation(s)
- Wei Zhu
- Nutrition and Environmental Toxicology, University of California Davis, Davis, CA, USA.
| | - Eleonora Cremonini
- Nutrition and Environmental Toxicology, University of California Davis, Davis, CA, USA.
| | - Angela F Mastaloudis
- Brassica Protection Products, Baltimore, MD, USA
- LAB Nutrition Consulting, Salt Lake City, UT, USA
| | - Alyson E Mitchell
- Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Gail M Bornhorst
- Food Science and Technology, University of California Davis, Davis, CA, USA
- Biological and Agricultural Engineering, University of California Davis, Davis, CA, USA
| | - Patricia I Oteiza
- Nutrition and Environmental Toxicology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
9
|
Properzi S, Stracci F, Rosi M, Lupi C, Villarini A, Gili A. Can a diet rich in Brassicaceae help control Helicobacter pylori infection? A systematic review. Front Med (Lausanne) 2024; 11:1454902. [PMID: 39741515 PMCID: PMC11685009 DOI: 10.3389/fmed.2024.1454902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/11/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Helicobacter pylori (Hp) infection is highly prevalent globally and poses a significant public health challenge due to its link with chronic gastritis, peptic ulcers, and gastric malignancies. Hp's persistence within the gastric environment, particularly in case of infection with virulent strains, triggers chronic inflammatory responses and mucosal damage. Antibiotic therapy is the primary approach for Hp eradication, but antibiotic resistance and adverse effects hinder treatment efficacy. Emerging evidence suggests that Brassicaceae-derived metabolites could serve as adjunctive therapy for Hp infection, offering potential antimicrobial and anti-inflammatory benefits. Methods A systematic literature review was conducted following PRISMA guidelines to assess the impact of Brassicaceae-rich diets on Hp infection control. Searches were performed in MEDLINE PubMed, Web of Science, and the Cochrane Library until 18 October 2023, without language or date restrictions. Eligible studies meeting PICOS criteria were included, encompassing populations infected with Hp or Hp-infected human cell cultures, interventions involving Brassicaceae consumption or its bioactive molecules, and outcomes related to Hp infection control, antibiotic therapy interactions, reduction of antibiotic side effects, and inflammation mitigation. Animal studies, cell line experiments, reviews unrelated to the research objectives, and studies on Hp-related gastric cancer were excluded. Results Available evidence indicates that Brassicaceae consumption exhibits the potential to reduce Hp colonization but achieving complete eradication of the pathogen remains challenging. Conflicting results regarding the efficacy of broccoli in Hp treatment emerge, with certain investigations suggesting limited effectiveness. Other studies point to a potential for heightened eradication rates when combined with standard triple therapy. Furthermore, promising outcomes are observed with broccoli extract supplements, indicating their role in mitigating Hp-induced gastric mucosal damage. In fact, it is noteworthy that sulforaphane and its derivatives manifest notable reductions in pro-inflammatory markers, indicative of their anti-inflammatory properties. Adverse events associated with antibiotic therapy seem unaffected by sulforaphane derivatives or probiotics. However, individual responses to these treatments vary, underscoring the unpredictability of their efficacy in ameliorating antibiotic therapy-related side effects. Conclusion Our systematic review highlights the potential of Brassicaceae-rich diets as adjunctive therapy for Hp infection, offering synergistic interactions with antibiotics and possibly mitigating antibiotic side effects and inflammation. Further research, particularly well-designed randomized trials, is warranted to elucidate the therapeutic efficacy and optimal utilization of Brassicaceae-derived metabolites in managing human Hp-related diseases.
Collapse
Affiliation(s)
- Sara Properzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Umbria, Italy
| | - Fabrizio Stracci
- Department of Medicine and Surgery, University of Perugia, Perugia, Umbria, Italy
| | - Margherita Rosi
- Department of Medicine and Surgery, University of Perugia, Perugia, Umbria, Italy
| | - Chiara Lupi
- Department of Medicine and Surgery, University of Perugia, Perugia, Umbria, Italy
| | - Anna Villarini
- Department of Medicine and Surgery, University of Perugia, Perugia, Umbria, Italy
| | - Alessio Gili
- Department of Life Sciences, Health and Health Professions, Link Campus University, Rome, Italy
| |
Collapse
|
10
|
Chu CT, Uruno A, Katsuoka F, Yamamoto M. Role of NRF2 in Pathogenesis of Alzheimer's Disease. Antioxidants (Basel) 2024; 13:1529. [PMID: 39765857 PMCID: PMC11727090 DOI: 10.3390/antiox13121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
Alzheimer's disease (AD) is a polygenic, multifactorial neurodegenerative disorder and remains the most prevalent form of dementia, globally. Despite decades of research efforts, there is still no effective cure for this debilitating condition. AD research has increasingly focused on transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) as a potential therapeutic target. NRF2 plays a crucial role in protecting cells and tissues from environmental stressors, such as electrophiles and reactive oxygen species. Recently, an increasing number of studies have demonstrated that NRF2 is a key regulator in AD pathology. NRF2 is highly expressed in microglia, resident macrophages in the central nervous system, and contributes to neuroinflammation, phagocytosis and neurodegeneration in AD. NRF2 has been reported to modulate microglia-induced inflammation and facilitate the transition from homeostatic microglia to a disease-associated microglia subset. Genetic and pharmacological activation of NRF2 has been demonstrated to improve cognitive function. Here, we review the current understanding of the involvement of NRF2 in AD and the critical role that NRF2 plays in microglia in the context of AD. Our aim is to highlight the potential of targeting NRF2 in the microglia as a promising therapeutic strategy for mitigating the progression of AD.
Collapse
Affiliation(s)
- Ching-Tung Chu
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| | - Akira Uruno
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan;
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| |
Collapse
|
11
|
Yun J, Kim JE. Broccoli Sprout Extract Suppresses Particulate-Matter-Induced Matrix-Metalloproteinase (MMP)-1 and Cyclooxygenase (COX)-2 Expression in Human Keratinocytes by Direct Targeting of p38 MAP Kinase. Nutrients 2024; 16:4156. [PMID: 39683550 DOI: 10.3390/nu16234156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Particulate matter (PM) is an environmental pollutant that negatively affects human health, particularly skin health. In this study, we investigated the inhibitory effects of broccoli sprout extract (BSE) on PM-induced skin aging and inflammation in human keratinocytes. METHODS HaCaT keratinocytes were pretreated with BSE before exposure to PM. Cell viability was assessed using the MTT assay. The expression of skin aging and inflammation markers (MMP-1, COX-2, IL-6) was measured using Western blot, ELISA, and qRT-PCR. Reactive oxygen species levels were determined using the DCF-DA assay. Kinase assays and pull-down assays were conducted to investigate the interaction between BSE and p38α MAPK. RESULTS Our findings demonstrate that BSE effectively suppressed the expression of MMP-1, COX-2, and IL-6-critical skin aging and inflammation markers-by inhibiting p38 MAPK activity. BSE binds directly to p38α without competing with ATP, thereby selectively inhibiting its activity and downstream signaling pathways, including MSK1/2, AP-1, and NF-κB. CONCLUSIONS These results suggest that BSE is a potential functional ingredient in skincare products to mitigate PM-induced skin damage.
Collapse
Affiliation(s)
- Jaehyeok Yun
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Jong-Eun Kim
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| |
Collapse
|
12
|
Wu Z, Chen SY, Zheng L. Sulforaphane Attenuates Ethanol-Induced Teratogenesis and Dysangiogenesis in Zebrafish Embryos. Int J Mol Sci 2024; 25:11529. [PMID: 39519082 PMCID: PMC11546994 DOI: 10.3390/ijms252111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Prenatal ethanol exposure can cause a broad range of abnormalities in newborns known as Fetal Alcohol Spectrum Disorder (FASD). Despite significant progress in understanding the disease mechanisms of FASD, there remains a strong global need for effective therapies. To evaluate the therapeutic potential of sulforaphane (SFN), an active compound extracted from cruciferous vegetables, in preventing FASD, ethanol-exposed zebrafish embryos were pretreated, co-treated, or post-treated with various concentrations of SFN. The FASD-like morphological features, survival rate, hatching rate, and vascular development were then assessed in the zebrafish embryos. It was found that pretreatment with 2 μM SFN during 3-24 hpf had no noticeable protective effects against teratogenicity induced by subsequent 1.5% ethanol exposure during 24-48 hpf. In contrast, co-treatment with 2 μM SFN and 1.5% ethanol during 3-24 hpf significantly alleviated a range of ethanol-induced malformations, including reduced body length, small eyes, reduced brain size, small otic vesicle, small jaw, and pericardial edema. Post-treatment with 3 μM SFN for 4 days following 1.5% ethanol exposure during 3-24 hpf also significantly reduced the characteristic features of FASD, decreasing the mortality rate and restoring body length, eye size, brain size, and otic vesicle circumference. Moreover, we found that ethanol, even at a low dose (0.5%), causes vascular development deficit in the zebrafish embryos, which were also largely rescued by SFN treatment. These data indicated that SFN has great potential to be used in the prevention and treatment of FASD.
Collapse
Affiliation(s)
- Zhijian Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | - Liang Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| |
Collapse
|
13
|
Ruiz-Alcaraz AJ, Baquero L, Pérez-Munar PM, Oliva-Bolarín A, Sánchez-Martínez MA, Ramos-Molina B, Núñez-Sánchez MA, Moreno DA. In Vitro Study of the Differential Anti-Inflammatory Activity of Dietary Phytochemicals upon Human Macrophage-like Cells as a Previous Step for Dietary Intervention. Int J Mol Sci 2024; 25:10728. [PMID: 39409057 PMCID: PMC11477078 DOI: 10.3390/ijms251910728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic inflammatory diseases pose a substantial health challenge globally, significantly contributing to morbidity and mortality. Addressing this issue requires the use of effective anti-inflammatory strategies with fewer side effects than those provoked by currently used drugs. In this study, a range of phytochemicals (phenolic di-caffeoylquinic acid (Di-CQA), flavonoid cyanidin-3,5-diglucoside (Cy3,5DiG), aromatic isothiocyanate sinalbin (SNB) and aliphatic isothiocyanate sulforaphane (SFN)) sourced from vegetables and fruits underwent assessment for their potential anti-inflammatory activity. An in vitro model of human macrophage-like cells treated with a low dose of LPS to obtain a low degree of inflammation that emulates a chronic inflammation scenario revealed promising results. Cell viability and production of the key pro-inflammatory cytokines were assessed in the presence of various phytochemicals. The compounds Di-CQA and Cy-3,5-DiG, within low physiologically relevant doses, demonstrated notable anti-inflammatory effects by significantly reducing the production of key pro-inflammatory cytokines TNF-α and IL-6 without affecting cell viability. These findings underscore the potential of plant-derived bioactive compounds as valuable contributors to the prevention or treatment of chronic inflammatory diseases. These results suggest that these compounds, whether used individually or as part of natural mixtures, hold promise for their inclusion in nutritional interventions designed to mitigate inflammation in associated pathologies.
Collapse
Affiliation(s)
- Antonio J. Ruiz-Alcaraz
- Department of Biochemistry, Molecular Biology B and Immunology, School of Medicine, University of Murcia, Regional Campus of International Excellence, 30120 Murcia, Spain; (L.B.); (P.M.P.-M.); (M.A.S.-M.)
| | - Lorena Baquero
- Department of Biochemistry, Molecular Biology B and Immunology, School of Medicine, University of Murcia, Regional Campus of International Excellence, 30120 Murcia, Spain; (L.B.); (P.M.P.-M.); (M.A.S.-M.)
| | - Paula Martínez Pérez-Munar
- Department of Biochemistry, Molecular Biology B and Immunology, School of Medicine, University of Murcia, Regional Campus of International Excellence, 30120 Murcia, Spain; (L.B.); (P.M.P.-M.); (M.A.S.-M.)
| | - Alba Oliva-Bolarín
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.O.-B.); (B.R.-M.)
| | - María A. Sánchez-Martínez
- Department of Biochemistry, Molecular Biology B and Immunology, School of Medicine, University of Murcia, Regional Campus of International Excellence, 30120 Murcia, Spain; (L.B.); (P.M.P.-M.); (M.A.S.-M.)
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.O.-B.); (B.R.-M.)
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.O.-B.); (B.R.-M.)
| | - María A. Núñez-Sánchez
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.O.-B.); (B.R.-M.)
| | - Diego A. Moreno
- Grupo Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS-CSIC, Campus Universitario de Espinardo-25, 30100 Murcia, Spain;
| |
Collapse
|
14
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
15
|
Ramakrishnan M, Fahey JW, Zimmerman AW, Zhou X, Panjwani AA. The role of isothiocyanate-rich plants and supplements in neuropsychiatric disorders: a review and update. Front Nutr 2024; 11:1448130. [PMID: 39421616 PMCID: PMC11484503 DOI: 10.3389/fnut.2024.1448130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Neuroinflammation in response to environmental stressors is an important common pathway in a number of neurological and psychiatric disorders. Responses to immune-mediated stress can lead to epigenetic changes and the development of neuropsychiatric disorders. Isothiocyanates (ITC) have shown promise in combating oxidative stress and inflammation in the nervous system as well as organ systems. While sulforaphane from broccoli is the most widely studied ITC for biomedical applications, ITC and their precursor glucosinolates are found in many species of cruciferous and other vegetables including moringa. In this review, we examine both clinical and pre-clinical studies of ITC on the amelioration of neuropsychiatric disorders (neurodevelopmental, neurodegenerative, and other) from 2018 to the present, including documentation of protocols for several ongoing clinical studies. During this time, there have been 16 clinical studies (9 randomized controlled trials), most of which reported on the effect of sulforaphane on autism spectrum disorder and schizophrenia. We also review over 80 preclinical studies examining ITC treatment of brain-related dysfunctions and disorders. The evidence to date reveals ITC have great potential for treating these conditions with minimal toxicity. The authors call for well-designed clinical trials to further the translation of these potent phytochemicals into therapeutic practice.
Collapse
Affiliation(s)
- Monica Ramakrishnan
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Jed W. Fahey
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Institute of Medicine, University of Maine, Orono, ME, United States
| | - Andrew W. Zimmerman
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, United States
| | - Xinyi Zhou
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
- Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States
| | - Anita A. Panjwani
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
- Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
16
|
Kodaka M, Kikuchi A, Kawahira K, Kamada H, Katsuta R, Ishigami K, Suzuki T, Yamamoto Y, Inoue J. Identification of a novel target of sulforaphane: Sulforaphane binds to acyl-protein thioesterase 2 (APT2) and attenuates its palmitoylation. Biochem Biophys Res Commun 2024; 726:150244. [PMID: 38905785 DOI: 10.1016/j.bbrc.2024.150244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
Sulforaphane (SFaN) is a food-derived compound with several bioactive properties, including atherosclerosis, diabetes, and obesity treatment. However, the mechanisms by which SFaN exerts its various effects are still unclear. To elucidate the mechanisms of the various effects of SFaN, we explored novel SFaN-binding proteins using SFaN beads and identified acyl protein thioesterase 2 (APT2). We also found that SFaN binds to the APT2 via C56 residue and attenuates the palmitoylation of APT2, thereby reducing plasma membrane localization of APT2. This study reveals a novel bioactivity of SFaN as a regulator of APT2 protein palmitoylation.
Collapse
Affiliation(s)
- Manami Kodaka
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan.
| | - Akito Kikuchi
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan.
| | - Kotaro Kawahira
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan.
| | - Haruhiko Kamada
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.
| | - Ryo Katsuta
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, Japan.
| | - Ken Ishigami
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, Japan.
| | - Tsukasa Suzuki
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan.
| | - Yuji Yamamoto
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan.
| | - Jun Inoue
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan.
| |
Collapse
|
17
|
Blanco Carcache PJ, Clinton SK, Kinghorn AD. Discovery of Natural Products for Cancer Prevention. Cancer J 2024; 30:313-319. [PMID: 39312451 PMCID: PMC11424022 DOI: 10.1097/ppo.0000000000000745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ABSTRACT "Cancer chemoprevention" is a term referring to the slowing or reversal of this disease, using nontoxic natural or synthetic compounds. For about 50 years, there has been a strong scientific interest in discovering plant-derived compounds to prevent cancer, and strategies for this purpose using a concerted series of in vitro, ex vivo, and in vivo laboratory bioassays have been developed. Five examples of the more thoroughly investigated agents of this type are described herein, which are each supported by detailed literature reports, inclusive of ellagic acid, isoliquiritigenin, lycopene, trans-resveratrol, and sulforaphane. In addition, extracts of the plants avocado (Persea americana), noni (Morinda citrifolia), açai (Euterpe oleracea), and mangosteen (Garcinia mangostana) have all shown inhibitory activity in an in vivo or ex vivo bioassay using a carcinogen and germane to cancer chemoprevention, and selected in vitro-active constituents are described for each of these 4 species.
Collapse
Affiliation(s)
- Peter J Blanco Carcache
- From the College of Pharmacy and the College of Medicine, The Ohio State University, Columbus, OH
| | | | | |
Collapse
|
18
|
Jacquier EF, Kassis A, Marcu D, Contractor N, Hong J, Hu C, Kuehn M, Lenderink C, Rajgopal A. Phytonutrients in the promotion of healthspan: a new perspective. Front Nutr 2024; 11:1409339. [PMID: 39070259 PMCID: PMC11272662 DOI: 10.3389/fnut.2024.1409339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Considering a growing, aging population, the need for interventions to improve the healthspan in aging are tantamount. Diet and nutrition are important determinants of the aging trajectory. Plant-based diets that provide bioactive phytonutrients may contribute to offsetting hallmarks of aging and reducing the risk of chronic disease. Researchers now advocate moving toward a positive model of aging which focuses on the preservation of functional abilities, rather than an emphasis on the absence of disease. This narrative review discusses the modulatory effect of nutrition on aging, with an emphasis on promising phytonutrients, and their potential to influence cellular, organ and functional parameters in aging. The literature is discussed against the backdrop of a recent conceptual framework which describes vitality, intrinsic capacity and expressed capacities in aging. This aims to better elucidate the role of phytonutrients on vitality and intrinsic capacity in aging adults. Such a review contributes to this new scientific perspective-namely-how nutrition might help to preserve functional abilities in aging, rather than purely offsetting the risk of chronic disease.
Collapse
Affiliation(s)
| | | | - Diana Marcu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Jina Hong
- Amway Innovation and Science, Ada, MI, United States
| | - Chun Hu
- Amway Innovation and Science, Ada, MI, United States
| | - Marissa Kuehn
- Amway Innovation and Science, Ada, MI, United States
| | | | - Arun Rajgopal
- Amway Innovation and Science, Ada, MI, United States
| |
Collapse
|
19
|
Muraoka T, Imahori D, Miyagi R, Shinohara N, Tanaka H. Simultaneous high-performance liquid chromatography analysis of anthraquinones in sicklepod sprouts with α-glucosidase inhibitory activity. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1197-1206. [PMID: 38572825 DOI: 10.1002/pca.3353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Sicklepod [Cassia obtusifolia L. syn Senna obtusifolia (L.) H.S. Irwin & Barneby, Fabaceae] sprouts are promising ingredients with health-promoting benefits. Notwithstanding, the pharmacologically active compounds in sicklepod sprouts have not been studied or analysed in detail. OBJECTIVE This study aimed to isolate and structurally identify phytochemicals showing α-glucosidase inhibitory activity in sicklepod sprouts and simultaneously quantify the compounds in the sprouts to determine the optimal cultivation method and germination time to maximise active compounds. METHOD A simultaneous high-performance liquid chromatography-ultraviolet (HPLC-UV) method with high sensitivity and accuracy was developed and used to analyse time-dependent changes in anthraquinone content during sicklepod germination. RESULTS Thirteen anthraquinones were isolated and identified, of which six-chrysoobtusin, emodin, 1-O-methyl-2-methoxychrysophanol, 7-O-methylobtusin, chrysophanol, and physcion-showed moderate α-glucosidase inhibitory activity. The maximum content of anthraquinones in a sprout was observed on Day 5 under both light and dark conditions. CONCLUSION The findings of this study revealed that sicklepod sprouts which are promising functional food materials contain a variety of anthraquinones.
Collapse
Affiliation(s)
- Takuya Muraoka
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Daisuke Imahori
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Rina Miyagi
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Naoki Shinohara
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Hiroyuki Tanaka
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| |
Collapse
|
20
|
Rostkowska E, Poleszak E, Przekora A, Wójcik M, Typek R, Wojciechowska K, Dos Santos Szewczyk K. Novel Insights into Phaseolus vulgaris L. Sprouts: Phytochemical Analysis and Anti-Aging Properties. Molecules 2024; 29:3058. [PMID: 38999009 PMCID: PMC11243055 DOI: 10.3390/molecules29133058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Skin aging is an inevitable and intricate process instigated, among others, by oxidative stress. The search for natural sources that inhibit this mechanism is a promising approach to preventing skin aging. The purpose of our study was to evaluate the composition of phenolic compounds in the micellar extract of Phaseolus vulgaris sprouts. The results of a liquid chromatography-mass spectrometry (LC-MS) analysis revealed the presence of thirty-two constituents, including phenolic acids, flavanols, flavan-3-ols, flavanones, isoflavones, and other compounds. Subsequently, the extract was assessed for its antioxidant, anti-inflammatory, anti-collagenase, anti-elastase, anti-tyrosinase, and cytotoxic properties, as well as for the evaluation of collagen synthesis. It was demonstrated that micellar extract from common bean sprouts has strong anti-aging properties. The performed WST-8 (a water-soluble tetrazolium salt) assay revealed that selected concentrations of extract significantly increased proliferation of human dermal fibroblasts compared to the control cells in a dose-dependent manner. A similar tendency was observed with respect to collagen synthesis. Our results suggest that micellar extract from Phaseolus vulgaris sprouts can be considered a promising anti-aging compound for applications in cosmetic formulations.
Collapse
Affiliation(s)
- Ewelina Rostkowska
- Student Research Group belonging to Chair and Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Ewa Poleszak
- Chair and Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (E.P.); (K.W.)
| | - Agata Przekora
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland; (A.P.); (M.W.)
| | - Michał Wójcik
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland; (A.P.); (M.W.)
| | - Rafał Typek
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University in Lublin, 20-031 Lublin, Poland;
| | - Katarzyna Wojciechowska
- Chair and Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (E.P.); (K.W.)
| | | |
Collapse
|
21
|
Yamaguchi Y, Sugiki M, Shimizu M, Ogawa K, Kumagai H. Comparative analysis of isothiocyanates in eight cruciferous vegetables and evaluation of the hepatoprotective effects of 4-(methylsulfinyl)-3-butenyl isothiocyanate (sulforaphene) from daikon radish ( Raphanus sativus L.) sprouts. Food Funct 2024; 15:4894-4904. [PMID: 38597802 DOI: 10.1039/d4fo00133h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The contributions of cruciferous vegetables to human health are widely recognised, particularly at the molecular level, where their isothiocyanates play a significant role. However, compared to the well-studied isothiocyanate 4-(methylsulfinyl)butyl isothiocyanate (sulforaphane) produced from broccoli sprouts, less is known about the pharmacological effects of other isothiocyanates and the stage of vegetables preferable to obtain their benefits. We analysed the quantity and quality of isothiocyanates produced in both the sprouts and mature stages of eight cruciferous vegetables using gas chromatography-mass spectrometry (GC-MS). Additionally, we investigated the hepatoprotective effects of isothiocyanates in a mouse model of acute hepatitis induced by carbon tetrachloride (CCl4). Furthermore, we explored the detoxification enzyme-inducing activities of crude sprout extracts in normal rats. Among the eight cruciferous vegetables, daikon radish (Raphanus sativus L.) sprouts produced the highest amount of isothiocyanates, with 4-(methylsulfinyl)-3-butenyl isothiocyanate (sulforaphene) being the dominant compound. The amount of sulforaphene in daikon radish sprouts was approximately 30 times that of sulforaphane in broccoli sprouts. Sulforaphene demonstrated hepatoprotective effects similar to sulforaphane in ameliorating CCl4-induced hepatic injury in mice. A crude extract of 3-day-old daikon radish sprouts upregulated the detoxifying enzyme glutathione S-transferase (GST) in the liver, whereas the crude extract of broccoli sprouts showed limited upregulation. This study highlights that daikon radish sprouts and sulforaphene have the potential to serve as functional food materials with hepatoprotective effects. Furthermore, daikon radish sprouts may exhibit more potent hepatoprotective effects compared to broccoli sprouts.
Collapse
Affiliation(s)
- Yusuke Yamaguchi
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.
| | - Mikio Sugiki
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.
| | - Motomi Shimizu
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.
| | - Kazuki Ogawa
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.
| | - Hitomi Kumagai
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.
| |
Collapse
|
22
|
Glatt H, Weißenberg SY, Ehlers A, Lampen A, Seidel A, Schumacher F, Engst W, Meinl W. Formation of DNA Adducts by 1-Methoxy-3-indolylmethylalcohol, a Breakdown Product of a Glucosinolate, in the Mouse: Impact of the SULT1A1 Status-Wild-Type, Knockout or Humanised. Int J Mol Sci 2024; 25:3824. [PMID: 38612635 PMCID: PMC11012018 DOI: 10.3390/ijms25073824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
We previously found that feeding rats with broccoli or cauliflower leads to the formation of characteristic DNA adducts in the liver, intestine and various other tissues. We identified the critical substances in the plants as 1-methoxy-3-indolylmethyl (1-MIM) glucosinolate and its degradation product 1-MIM-OH. DNA adduct formation and the mutagenicity of 1-MIM-OH in cell models were drastically enhanced when human sulfotransferase (SULT) 1A1 was expressed. The aim of this study was to clarify the role of SULT1A1 in DNA adduct formation by 1-MIM-OH in mouse tissues in vivo. Furthermore, we compared the endogenous mouse Sult1a1 and transgenic human SULT1A1 in the activation of 1-MIM-OH using genetically modified mouse strains. We orally treated male wild-type (wt) and Sult1a1-knockout (ko) mice, as well as corresponding lines carrying the human SULT1A1-SULT1A2 gene cluster (tg and ko-tg), with 1-MIM-OH. N2-(1-MIM)-dG and N6-(1-MIM)-dA adducts in DNA were analysed using isotope-dilution UPLC-MS/MS. In the liver, caecum and colon adducts were abundant in mice expressing mouse and/or human SULT1A1, but were drastically reduced in ko mice (1.2-10.6% of wt). In the kidney and small intestine, adduct levels were high in mice carrying human SULT1A1-SULT1A2 genes, but low in wt and ko mice (1.8-6.3% of tg-ko). In bone marrow, adduct levels were very low, independently of the SULT1A1 status. In the stomach, they were high in all four lines. Thus, adduct formation was primarily controlled by SULT1A1 in five out of seven tissues studied, with a strong impact of differences in the tissue distribution of mouse and human SULT1A1. The behaviour of 1-MIM-OH in these models (levels and tissue distribution of DNA adducts; impact of SULTs) was similar to that of methyleugenol, classified as "probably carcinogenic to humans". Thus, there is a need to test 1-MIM-OH for carcinogenicity in animal models and to study its adduct formation in humans consuming brassicaceous foodstuff.
Collapse
Affiliation(s)
- Hansruedi Glatt
- Department Food Safety, Federal Institute of Risk Assessment (BfR), Max-Dohrn-Strasse 8–10, 10589 Berlin, Germany; (S.Y.W.); (A.E.); (A.L.)
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany; (F.S.); (W.E.); (W.M.)
| | - Sarah Yasmin Weißenberg
- Department Food Safety, Federal Institute of Risk Assessment (BfR), Max-Dohrn-Strasse 8–10, 10589 Berlin, Germany; (S.Y.W.); (A.E.); (A.L.)
| | - Anke Ehlers
- Department Food Safety, Federal Institute of Risk Assessment (BfR), Max-Dohrn-Strasse 8–10, 10589 Berlin, Germany; (S.Y.W.); (A.E.); (A.L.)
| | - Alfonso Lampen
- Department Food Safety, Federal Institute of Risk Assessment (BfR), Max-Dohrn-Strasse 8–10, 10589 Berlin, Germany; (S.Y.W.); (A.E.); (A.L.)
| | - Albrecht Seidel
- Biochemical Institute for Environmental Carcinogens (BIU), Prof. Dr. Gernot Grimmer-Foundation, Lurup 4, 22927 Grosshansdorf, Germany;
| | - Fabian Schumacher
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany; (F.S.); (W.E.); (W.M.)
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2–4, 14195 Berlin, Germany
| | - Wolfram Engst
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany; (F.S.); (W.E.); (W.M.)
| | - Walter Meinl
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany; (F.S.); (W.E.); (W.M.)
| |
Collapse
|
23
|
Wang J, Shen Y, Sheng X, Yu H, Song M, Wang Q, Gu H. Unravelling Glucoraphanin and Glucoerucin Metabolism across Broccoli Sprout Development: Insights from Metabolite and Transcriptome Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:750. [PMID: 38592746 PMCID: PMC10976094 DOI: 10.3390/plants13060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024]
Abstract
Variations in the concentration of glucoraphanin (GRA) and glucoerucin (GER), as well as the corresponding breakdown products, isothiocyanates (ITCs) and nitriles, were investigated during the growth of broccoli sprouts. The concentrations of GRA and GER decreased sharply from 33.66 µmol/g to 11.48 µmol/g and 12.98 µmol/g to 8.23 µmol/g, respectively, after seed germination. From the third to the seventh day, both GRA and GER were maintained as relatively stable. The highest concentrations of sulforaphane (17.16 µmol/g) and erucin (12.26 µmol/g) were observed on the first day. Hereafter, the concentrations of nitrile hydrolyzed from GRA or GER were higher than those of the corresponding ITCs. Moreover, the ratio of sulforaphane to sulforaphane nitrile decreased from 1.35 to 0.164 from 1 d to 5 d, with a similar trend exhibited for erucin/erucin nitrile after 2 d. RNA-seq analysis showed that BolMYB28 and BolCYP83A1, involved in aliphatic glucosinolate (GSL) biosynthesis, remained largely unexpressed until the third day. In contrast, the genes operating within the GSL-myrosinase hydrolysis pathway were highly expressed right from the beginning, with their expression levels increasing significantly after the third day. Additionally, we identified two BolESPs and six BolNSPs that might play important roles in promoting the production of nitriles during the development of broccoli sprouts.
Collapse
Affiliation(s)
- Jiansheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Yusen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Xiaoguang Sheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Huifang Yu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Mengfei Song
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China;
| | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| |
Collapse
|
24
|
Ross SA, Emenaker NJ, Kumar A, Riscuta G, Biswas K, Gupta S, Mohammed A, Shoemaker RH. Green Cancer Prevention and Beyond. Cancer Prev Res (Phila) 2024; 17:107-118. [PMID: 38251904 PMCID: PMC10911807 DOI: 10.1158/1940-6207.capr-23-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
The concept of green chemoprevention was introduced in 2012 by Drs. Jed Fahey and Thomas Kensler as whole-plant foods and/or extract-based interventions demonstrating cancer prevention activity. Refining concepts and research demonstrating proof-of-principle approaches are highlighted within this review. Early approaches included extensively investigated whole foods, including broccoli sprouts and black raspberries showing dose-responsive effects across a range of activities in both animals and humans with minimal or no apparent toxicity. A recent randomized crossover trial evaluating the detoxification of tobacco carcinogens by a broccoli seed and sprout extract in the high-risk cohort of current smokers highlights the use of a dietary supplement as a potential next-generation green chemoprevention or green cancer prevention approach. Challenges are addressed, including the selection of dose, duration and mode of delivery, choice of control group, and standardization of the plant food or extract. Identification and characterization of molecular targets and careful selection of high-risk cohorts for study are additional important considerations when designing studies. Goals for precision green cancer prevention include acquiring robust evidence from carefully controlled human studies linking plant foods, extracts, and compounds to modulation of targets for cancer risk reduction in individual cancer types.
Collapse
Affiliation(s)
- Sharon A. Ross
- Division of Cancer Prevention, Nutritional Sciences Research Group, National Cancer Institute, Rockville, Maryland
| | - Nancy J. Emenaker
- Division of Cancer Prevention, Nutritional Sciences Research Group, National Cancer Institute, Rockville, Maryland
| | - Amit Kumar
- Division of Cancer Prevention, Nutritional Sciences Research Group, National Cancer Institute, Rockville, Maryland
| | - Gabriela Riscuta
- Division of Cancer Prevention, Nutritional Sciences Research Group, National Cancer Institute, Rockville, Maryland
| | - Kajal Biswas
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, Rockville, Maryland
| | - Shanker Gupta
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, Rockville, Maryland
| | - Altaf Mohammed
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, Rockville, Maryland
| | - Robert H. Shoemaker
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
25
|
Dzakovich MP, Goggans ML, Thomas-Ahner JM, Moran NE, Clinton SK, Francis DM, Cooperstone JL. Transcriptomics and Metabolomics Reveal Tomato Consumption Alters Hepatic Xenobiotic Metabolism and Induces Steroidal Alkaloid Metabolite Accumulation in Mice. Mol Nutr Food Res 2024; 68:e2300239. [PMID: 38212250 DOI: 10.1002/mnfr.202300239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/18/2023] [Indexed: 01/13/2024]
Abstract
SCOPE Tomato consumption is associated with many health benefits including lowered risk for developing certain cancers. It is hypothesized that tomato phytochemicals are transported to the liver and other tissues where they alter gene expression in ways that lead to favorable health outcomes. However, the effects of tomato consumption on mammalian liver gene expression and chemical profile are not well defined. METHODS AND RESULTS The study hypothesizes that tomato consumption would alter mouse liver transcriptomes and metabolomes compared to a control diet. C57BL/6J mice (n = 11-12/group) are fed a macronutrient matched diet containing either 10% red tomato, 10% tangerine tomato, or no tomato powder for 6 weeks after weaning. RNA-Seq followed by gene set enrichment analyses indicates that tomato type and consumption, in general, altered expression of phase I and II xenobiotic metabolism genes. Untargeted metabolomics experiments reveal distinct clustering between control and tomato fed animals. Nineteen molecular formulas (representing 75 chemical features) are identified or tentatively identified as steroidal alkaloids and isomers of their phase I and II metabolites; many of which are reported for the first time in mammals. CONCLUSION These data together suggest tomato consumption may impart benefits partly through enhancing detoxification potential.
Collapse
Affiliation(s)
- Michael P Dzakovich
- Department of Horticulture and Crop Science, The Ohio State University, 2001 Fyffe Court, Columbus, OH, 43210, USA
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Ave., Houston, TX, 77030, USA
| | - Mallory L Goggans
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH, 43210, USA
| | - Jennifer M Thomas-Ahner
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Nancy E Moran
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Ave., Houston, TX, 77030, USA
| | - Steven K Clinton
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - David M Francis
- Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Jessica L Cooperstone
- Department of Horticulture and Crop Science, The Ohio State University, 2001 Fyffe Court, Columbus, OH, 43210, USA
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH, 43210, USA
| |
Collapse
|
26
|
Uvaraj D, Alharbi NS, Kadaikunnan S, Thiruvengadam M, Venkidasamy B. Comprehensive study on the differential extraction and comparison of bioactive health potential of the Broccoli ( Brassica oleracea). Int J Med Sci 2024; 21:593-600. [PMID: 38464834 PMCID: PMC10920836 DOI: 10.7150/ijms.92456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: Broccoli is a cruciferous vegetable that has been shown to have numerous potential therapeutic benefits because of its bioactive compounds. Methods: In this study, we compared the bioactive efficacy of cooked and uncooked (fresh) stems and florets of broccoli extracted with three different solvents: acetonitrile, methanol, and aqueous extracts. The extraction yield and antioxidant and antibacterial potential of different broccoli extracts were examined. Results: Fresh and boiled floret stem extracts increased the extraction yield. The extraction yields were higher for the methanol and acetonitrile extracts than for the aqueous extracts. The antioxidant efficacy of the different extracts was studied using ABTS, DPPH, and metal ion reduction assays. The acetonitrile and aqueous extracts exhibited higher antioxidant activities than the methanolic extracts in different antioxidant assays. In addition, increased antioxidant activity was observed in fresh florets and boiled broccoli stems. TPC and TFC contents were higher in the methanolic extracts than in the aqueous extracts. Similar to antioxidant activities, anti-inflammatory activities were found to be higher in the acetonitrile and aqueous extracts, particularly in boiled stems and fresh florets. Broccoli extracts have been shown to be active against Bacillus subtilis and moderately effective against Pseudomonas aeruginosa and Staphylococcus aureus. Conclusions: Acetonitrile and aqueous extraction of broccoli might be an ideal choice for extraction methods, which show increased extraction yield and antioxidant and anti-inflammatory potentials. Utilization of phytomolecules from natural sources is a promising alternative approach to synthetic drug development.
Collapse
Affiliation(s)
- Durga Uvaraj
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India. D.U
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| |
Collapse
|
27
|
Holcomb L, Holman JM, Hurd M, Lavoie B, Colucci L, Hunt B, Hunt T, Kinney M, Pathak J, Mawe GM, Moses PL, Perry E, Stratigakis A, Zhang T, Chen G, Ishaq SL, Li Y. Early life exposure to broccoli sprouts confers stronger protection against enterocolitis development in an immunological mouse model of inflammatory bowel disease. mSystems 2023; 8:e0068823. [PMID: 37942948 PMCID: PMC10734470 DOI: 10.1128/msystems.00688-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE To our knowledge, IL-10-KO mice have not previously been used to investigate the interactions of host, microbiota, and broccoli, broccoli sprouts, or broccoli bioactives in resolving symptoms of CD. We showed that a diet containing 10% raw broccoli sprouts increased the plasma concentration of the anti-inflammatory compound sulforaphane and protected mice to varying degrees against disease symptoms, including weight loss or stagnation, fecal blood, and diarrhea. Younger mice responded more strongly to the diet, further reducing symptoms, as well as increased gut bacterial richness, increased bacterial community similarity to each other, and more location-specific communities than older mice on the diet intervention. Crohn's disease disrupts the lives of patients and requires people to alter dietary and lifestyle habits to manage symptoms. The current medical treatment is expensive with significant side effects, and a dietary intervention represents an affordable, accessible, and simple strategy to reduce the burden of symptoms.
Collapse
Affiliation(s)
- Lola Holcomb
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Johanna M. Holman
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Molly Hurd
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Brigitte Lavoie
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Louisa Colucci
- Department of Biology, Husson University, Bangor, Maine, USA
| | - Benjamin Hunt
- Department of Biology, University of Maine, Orono, Maine, USA
| | - Timothy Hunt
- Department of Biology, University of Maine, Orono, Maine, USA
| | - Marissa Kinney
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Jahnavi Pathak
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Gary M. Mawe
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Peter L. Moses
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Finch Therapeutics, Somerville, Massachusetts, USA
| | - Emma Perry
- Electron Microscopy Laboratory, University of Maine, Orono, Maine, USA
| | - Allesandra Stratigakis
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA
| | - Grace Chen
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Suzanne L. Ishaq
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Yanyan Li
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|
28
|
Gurgul AA, Najjar Y, Chee A, An H, Che CT, Park TJ, Warpeha KM. Phenylpropanoid-enriched broccoli seedling extract can reduce inflammatory markers and pain behavior. J Transl Med 2023; 21:922. [PMID: 38115032 PMCID: PMC10731810 DOI: 10.1186/s12967-023-04777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Pain is a worldwide problem requiring an effective, affordable, non-addictive therapy. Using the edible plant broccoli, a growth protocol was developed to induce a concentrated combinatorial of potential anti-inflammatories in seedlings. METHODS A growth method was utilized to produce a phenylpropanoid-rich broccoli sprout extract, referred to as Original Extract (OE). OE was concentrated and then resuspended for study of the effects on inflammation events. A rabbit disc model of inflammation and degeneration, and, a mouse model of pain behavior were used for in vivo and in vitro tests. To address aspects of mammalian metabolic processing, the OE was treated with the S9 liver microsome fraction derived from mouse, for use in a mouse in vivo study. Analytical chemistry was performed to identify major chemical species. Continuous variables were analyzed with a number of methods including ANOVA, and two-tailed t tests, as appropriate. RESULTS In a rabbit spine (disc) injury model, inflammatory markers were reduced, and levels of regenerative markers were increased as a result of OE treatment, both in vivo and in vitro. In a mouse pain behavioral model, after treatment with S9 liver microsome fraction, the resultant extract significantly reduced early and late pain behavior in response to a pain stimulus. The OE itself reduced pain behavior in the mouse pain model, but did not achieve the level of significance observed for S9-treated extract. Analytical chemistry undertaken on the extract constituents revealed identities of the chemical species in OE, and how S9 liver microsome fraction treatment altered species identities and proportions. CONCLUSIONS In vitro and in vivo results indicate that the OE, and S9-treated OE broccoli extracts are worthwhile materials to develop a non-opiate inflammation and pain-reducing treatment.
Collapse
Affiliation(s)
- Aleksandra A Gurgul
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Yahya Najjar
- Department of Biological Sciences, University of Illinois Chicago, 900 S Ashland Ave, M/C 567, Chicago, IL, 60607, USA
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Howard An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Thomas J Park
- Department of Biological Sciences, University of Illinois Chicago, 900 S Ashland Ave, M/C 567, Chicago, IL, 60607, USA
| | - Katherine M Warpeha
- Department of Biological Sciences, University of Illinois Chicago, 900 S Ashland Ave, M/C 567, Chicago, IL, 60607, USA.
| |
Collapse
|
29
|
Rajaselvi ND, Jida MD, Ajeeshkumar KK, Nair SN, John P, Aziz Z, Nisha AR. Antineoplastic activity of plant-derived compounds mediated through inhibition of histone deacetylase: a review. Amino Acids 2023; 55:1803-1817. [PMID: 37389730 DOI: 10.1007/s00726-023-03298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
In the combat of treating cancer recent therapeutic approaches are focused towards enzymatic targets as they occupy a pivotal participation in the cascade of oncogenesis and malignancy. There are several enzymes that modulate the epigenetic pathways and chromatin structure related to cancer mutation. Among several epigenetic mechanisms such as methylation, phosphorylation, and sumoylation, acetylation status of histones is crucial and is governed by counteracting enzymes like histone acetyl transferase (HAT) and histone deacetylases (HDAC) which have contradictory effects on the histone acetylation. HDAC inhibition induces chromatin relaxation which forms euchromatin and thereby initiates the expression of certain transcription factors attributed with apoptosis, which are mostly correlated with the expression of the p21 gene and acetylation of H3 and H4 histones. Most of the synthetic and natural HDAC inhibitors elicit antineoplastic effect through activation of various apoptotic pathways and promoting cell cycle arrest at various phases. Due to their promising chemo preventive action and low cytotoxicity against normal host cells, bioactive substances like flavonoids, alkaloids, and polyphenolic compounds from plants have recently gained importance. Even though all bioactive compounds mentioned have an HDAC inhibitory action, some of them have a direct effect and others enhance the effects of the standard well known HDAC inhibitors. In this review, the action of plant derived compounds against histone deacetylases in a variety of in vitro cancer cell lines and in vivo animal models are articulated.
Collapse
Affiliation(s)
- N Divya Rajaselvi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - M D Jida
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - K K Ajeeshkumar
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Suresh N Nair
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - Preethy John
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Wayanad, 673 576, India
| | - Zarina Aziz
- Department of Veterinary Physiology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - A R Nisha
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India.
| |
Collapse
|
30
|
Baenas N, Vega-García A, Manjarrez-Marmolejo J, Moreno DA, Feria-Romero IA. The preventive effects of broccoli bioactives against cancer: Evidence from a validated rat glioma model. Biomed Pharmacother 2023; 168:115720. [PMID: 37839110 DOI: 10.1016/j.biopha.2023.115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
The aggressive and incurable diffuse gliomas constitute 80% of malignant brain tumors, and patients succumb to recurrent surgeries and drug resistance. Epidemiological research indicates that substantial consumption of fruits and vegetables diminishes the risk of developing this tumor type. Broccoli consumption has shown beneficial effects in both cancer and neurodegenerative diseases. These effects are partially attributed to the isothiocyanate sulforaphane (SFN), which can regulate the Keap1/Nrf2/ARE signaling pathway, stimulate detoxifying enzymes, and activate cellular antioxidant defense processes. This study employs a C6 rat glioma model to assess the chemoprotective potential of aqueous extracts from broccoli seeds, sprouts, and inflorescences, all rich in SFN, and pure SFN as positive control. The findings reveal that administering a dose of 100 mg/kg of broccoli sprout aqueous extract and 0.1 mg/kg of SFN to animals for 30 days before introducing 1 × 104 cells effectively halts tumor growth and progression. This study underscores the significance of exploring foods abundant in bioactive compounds, such as derivatives of broccoli, for potential preventive integration into daily diets. Using broccoli sprouts as a natural defense against cancer development might seem idealistic, yet this investigation establishes that administering this extract proves to be a valuable approach in designing strategies for glioma prevention. Although the findings stem from a rat glioma model, they offer promising insights for subsequent preclinical and clinical research endeavors.
Collapse
Affiliation(s)
- Nieves Baenas
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Angélica Vega-García
- Neurological Diseases Medical Research Unit, National Medical Center "Siglo XXI", IMSS, Av. Cuauhtémoc 330, Col. Doctores, 06720 Mexico City, Mexico
| | - Joaquín Manjarrez-Marmolejo
- Laboratory of Physiology of the Reticular Formation, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Insurgentes Sur 3877, La Fama, 14269 Mexico City, Mexico
| | - Diego A Moreno
- Phytochemistry and Healthy Food Lab (LabFAS), Department of Food Science Technology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo - 25, 30100 Murcia, Spain.
| | - Iris A Feria-Romero
- Neurological Diseases Medical Research Unit, National Medical Center "Siglo XXI", IMSS, Av. Cuauhtémoc 330, Col. Doctores, 06720 Mexico City, Mexico.
| |
Collapse
|
31
|
Lyu X, Chen Y, Gao S, Cao W, Fan D, Duan Z, Xia Z. Metabolomic and transcriptomic analysis of cold plasma promoting biosynthesis of active substances in broccoli sprouts. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:925-937. [PMID: 37443417 DOI: 10.1002/pca.3256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023]
Abstract
INTRODUCTION Broccoli sprouts have great health and commercial value because they are rich in sulforaphane, a special bioactive compound that helps to prevent chronic diseases, such as cancer and cardiovascular disease. OBJECTIVE The aim of this study was to increase the levels of active substances in broccoli sprouts and understand their metabolic mechanisms. METHODOLOGY Metabolomics based on liquid chromatography-tandem mass spectrometry and transcriptome analysis were combined to analyse the enrichment of metabolites in broccoli sprouts treated with cold plasma. RESULTS After 2 min of cold plasma treatment, the contents of sulforaphane, glucosinolates, total phenols, and flavonoids, as well as myrosinase activity, were greatly improved. Transcriptomics revealed 7460 differentially expressed genes in the untreated and treated sprouts. Metabolomics detected 6739 differential metabolites, including most amino acids, their derivatives, and organic acids. Enrichment analyses of metabolomics and transcriptomics identified the 20 most significantly differentially expressed metabolic pathways. CONCLUSIONS Overall, cold plasma treatment can induce changes in the expression and regulation of certain metabolites and genes encoding active substances in broccoli sprouts.
Collapse
Affiliation(s)
- Xingang Lyu
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Yi Chen
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Shiwei Gao
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zengrun Xia
- Ankang R&D Center for Se-enriched Products, Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang, Shaanxi, China
| |
Collapse
|
32
|
Shuang LS, Cuevas H, Lemke C, Kim C, Shehzad T, Paterson AH. Genetic dissection of morphological variation between cauliflower and a rapid cycling Brassica oleracea line. G3 (BETHESDA, MD.) 2023; 13:jkad163. [PMID: 37506262 PMCID: PMC10627287 DOI: 10.1093/g3journal/jkad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/10/2022] [Accepted: 03/14/2023] [Indexed: 07/30/2023]
Abstract
To improve resolution to small genomic regions and sensitivity to small-effect loci in the identification of genetic factors conferring the enlarged inflorescence and other traits of cauliflower while also expediting further genetic dissection, 104 near-isogenic introgression lines (NIILs) covering 78.56% of the cauliflower genome, were selected from an advanced backcross population using cauliflower [Brassica oleracea var. botrytis L., mutant for Orange gene (ORG)] as the donor parent and a rapid cycling line (TO1434) as recurrent parent. Subsets of the advanced backcross population and NIILs were planted in the field for 8 seasons, finding 141 marker-trait associations for 15 leaf-, stem-, and flower-traits. Exemplifying the usefulness of these lines, we delineated the previously known flower color gene to a 4.5 MB interval on C3; a gene for small plant size to a 3.4 MB region on C8; and a gene for large plant size and flowering time to a 6.1 MB region on C9. This approach unmasked closely linked QTL alleles with opposing effects (on chr. 8) and revealed both alleles with expected phenotypic effects and effects opposite the parental phenotypes. Selected B. oleracea NIILs with short generation time add new value to widely used research and teaching materials.
Collapse
Affiliation(s)
- Lan Shuan Shuang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Hugo Cuevas
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Cornelia Lemke
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Changsoo Kim
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Tariq Shehzad
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
33
|
Flockhart M, Nilsson LC, Tillqvist EN, Vinge F, Millbert F, Lännerström J, Nilsson PH, Samyn D, Apró W, Sundqvist ML, Larsen FJ. Glucosinolate-rich broccoli sprouts protect against oxidative stress and improve adaptations to intense exercise training. Redox Biol 2023; 67:102873. [PMID: 37688976 PMCID: PMC10493800 DOI: 10.1016/j.redox.2023.102873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Oxidative stress plays a vital role for the adaptive responses to physical training. However, excessive oxidative stress can precipitate cellular damage, necessitating protective mechanisms to mitigate this effect. Glucosinolates, found predominantly in cruciferous vegetables, can be converted into isothiocyanates, known for their antioxidative properties. These compounds activate crucial antioxidant defence pathways and support mitochondrial function and protein integrity under oxidative stress, in both Nrf2-dependent and independent manners. We here administered glucosinolate-rich broccoli sprouts (GRS), in a randomized double-blinded cross-over fashion to 9 healthy subjects in combination with daily intense exercise training for 7 days. We found that exercise in combination with GRS significantly decreased the levels of carbonylated proteins in skeletal muscle and the release of myeloperoxidase into blood. Moreover, it lowered lactate accumulation during submaximal exercise, and attenuated the severe nocturnal hypoglycaemic episodes seen during the placebo condition. Furthermore, GRS in combination with exercise improved physical performance, which was unchanged in the placebo condition.
Collapse
Affiliation(s)
- M Flockhart
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden.
| | - L C Nilsson
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - E N Tillqvist
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F Vinge
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F Millbert
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - J Lännerström
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - P H Nilsson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden; Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - D Samyn
- Department of Laboratory Medicine, Clinical Chemistry, Örebro University Hospital, Örebro, Sweden; School of Medicine, Faculty of Medicine, Örebro University, Örebro, Sweden
| | - W Apró
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - M L Sundqvist
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F J Larsen
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden.
| |
Collapse
|
34
|
Kasamatsu S, Owaki T, Komae S, Kinno A, Ida T, Akaike T, Ihara H. Untargeted polysulfide omics analysis of alternations in polysulfide production during the germination of broccoli sprouts. Redox Biol 2023; 67:102875. [PMID: 37699321 PMCID: PMC10500461 DOI: 10.1016/j.redox.2023.102875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/14/2023] Open
Abstract
Higher consumption of broccoli (Brassica oleracea var. italica) is associated with a reduced risk of cardiometabolic diseases, neurological disorders, diabetes, and cancer. Broccoli is rich in various phytochemicals, including glucosinolates, and isothiocyanates. Moreover, it has recently reported the endogenous production of polysulfides, such as cysteine hydropersulfide (CysS2H) and glutathione hydropersulfide (GS2H), in mammals including humans, and that these bioactive substances function as potent antioxidants and important regulators of redox signaling in vivo. However, few studies have focused on the endogenous polysulfide content of broccoli and the impact of germination on the polysulfide content and composition in broccoli. In this study, we investigated the alternations in polysulfide biosynthesis in broccoli during germination by performing untargeted polysulfide omics analysis and quantitative targeted polysulfide metabolomics through liquid chromatography-electrospray ionization-tandem mass spectrometry. We also performed 2,2-diphenyl-1-picrylhydrazyl radical-scavenging assay to determine the antioxidant properties of the polysulfides. The results revealed that the total polysulfide content of broccoli sprouts significantly increased during germination and growth; CysS2H and cysteine hydrotrisulfide were the predominant organic polysulfide metabolites. Furthermore, we determined that novel sulforaphane (SFN) derivatives conjugated with CysS2H and GS2H were endogenously produced in the broccoli sprouts, and the novel SFN conjugated with CysS2H exhibited a greater radical scavenging capacity than SFN and cysteine. These results suggest that the abundance of polysulfides in broccoli sprouts contribute to their health-promoting properties. Our findings have important biological implications for the development of novel pharmacological targets for the health-promoting effects of broccoli sprouts in humans.
Collapse
Affiliation(s)
- Shingo Kasamatsu
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, 599-8531, Japan; Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Takuma Owaki
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, 599-8531, Japan
| | - Somei Komae
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Ayaka Kinno
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Tomoaki Ida
- Organization for Research Promotion, Osaka Metropolitan University, Sakai, 599-8531, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Hideshi Ihara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, 599-8531, Japan; Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan.
| |
Collapse
|
35
|
Ye X, Toyama T, Taguchi K, Arisawa K, Kaneko T, Tsutsumi R, Yamamoto M, Saito Y. Sulforaphane decreases serum selenoprotein P levels through enhancement of lysosomal degradation independent of Nrf2. Commun Biol 2023; 6:1060. [PMID: 37857700 PMCID: PMC10587141 DOI: 10.1038/s42003-023-05449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Selenoprotein P (SeP) is a major selenoprotein in serum predominantly produced in the liver. Excess SeP impairs insulin secretion from the pancreas and insulin sensitivity in skeletal muscle, thus inhibition of SeP could be a therapeutic strategy for type 2 diabetes. In this study, we examine the effect of sulforaphane (SFN), a phytochemical of broccoli sprouts and an Nrf2 activator, on SeP expression in vitro and in vivo. Treatment of HepG2 cells with SFN decreases inter- and intra-cellular SeP levels. SFN enhances lysosomal acidification and expression of V-ATPase, and inhibition of this process cancels the decrease of SeP by SFN. SFN activates Nrf2 in the cells, while Nrf2 siRNA does not affect the decrease of SeP by SFN or lysosomal acidification. These results indicate that SFN decreases SeP by enhancing lysosomal degradation, independent of Nrf2. Injection of SFN to mice results in induction of cathepsin and a decrease of SeP in serum. The findings from this study are expected to contribute to developing SeP inhibitors in the future, thereby contributing to treating and preventing diseases related to increased SeP.
Collapse
Affiliation(s)
- Xinying Ye
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kotoko Arisawa
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Takayuki Kaneko
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Ryouhei Tsutsumi
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| |
Collapse
|
36
|
Bouranis JA, Wong CP, Beaver LM, Uesugi SL, Papenhausen EM, Choi J, Davis EW, Da Silva AN, Kalengamaliro N, Chaudhary R, Kharofa J, Takiar V, Herzog TJ, Barrett W, Ho E. Sulforaphane Bioavailability in Healthy Subjects Fed a Single Serving of Fresh Broccoli Microgreens. Foods 2023; 12:3784. [PMID: 37893677 PMCID: PMC10606698 DOI: 10.3390/foods12203784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Cruciferous vegetable consumption is associated with numerous health benefits attributed to the phytochemical sulforaphane (SFN) that exerts antioxidant and chemopreventive properties, among other bioactive compounds. Broccoli sprouts, rich in SFN precursor glucoraphanin (GRN), have been investigated in numerous clinical trials. Broccoli microgreens are similarly rich in GRN but have remained largely unexplored. The goal of this study was to examine SFN bioavailability and the microbiome profile in subjects fed a single serving of fresh broccoli microgreens. Eleven subjects participated in a broccoli microgreens feeding study. Broccoli microgreens GRN and SFN contents and stability were measured. Urine and stool SFN metabolite profiles and microbiome composition were examined. Broccoli microgreens had similar GRN content to values previously reported for broccoli sprouts, which was stable over time. Urine SFN metabolite profiles in broccoli microgreens-fed subjects were similar to those reported previously in broccoli sprouts-fed subjects, including the detection of SFN-nitriles. We also reported the detection of SFN metabolites in stool samples for the first time. A single serving of broccoli microgreens did not significantly alter microbiome composition. We showed in this study that broccoli microgreens are a significant source of SFN. Our work provides the foundation for future studies to establish the health benefits of broccoli microgreens consumption.
Collapse
Affiliation(s)
- John A. Bouranis
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P. Wong
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Laura M. Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Sandra L. Uesugi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Ethan M. Papenhausen
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Edward W. Davis
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | | | | | - Rekha Chaudhary
- Department of Medical Oncology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Jordan Kharofa
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Thomas J. Herzog
- Department of OB/GYN, Division of Gynecologic Oncology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - William Barrett
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
37
|
Iwamoto Y, Saito S, Teramoto T, Maruyama-Nakashita A, Kakuta Y. Crystal structure of Arabidopsis thaliana sulfotransferase SOT16 involved in glucosinolate biosynthesis. Biochem Biophys Res Commun 2023; 677:149-154. [PMID: 37586213 DOI: 10.1016/j.bbrc.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Glucosinolates (GSLs), a class of secondary metabolites found in Brassicaceae plants, play important roles in plant defense and contribute distinct flavors and aromas when used as food ingredients. Following tissue damage, GSLs undergo enzymatic hydrolysis to release bioactive volatile compounds. Understanding GSL biosynthesis and enzyme involvement is crucial for improving crop quality and advancing agriculture. Plant sulfotransferases (SOTs) play a key role in the final step of GSL biosynthesis by transferring sulfate groups to the precursor molecules. In the present study, we investigated the enzymatic reaction mechanism and broad substrate specificity of Arabidopsis thaliana sulfotransferase AtSOT16, which is involved in GSL biosynthesis, using crystal structure analysis. Our analysis revealed the specific catalytic residues involved in the sulfate transfer reaction and supported the hypothesis of a concerted acid-base catalytic mechanism. Furthermore, the docking models showed a strong correlation between the substrates with high predicted binding affinities and those experimentally reported to exhibit high activity. These findings provide valuable insights into the enzymatic reaction mechanisms and substrate specificity of GSL biosynthesis. The information obtained in this study may contribute to the development of novel strategies for manipulating GSL synthesis pathways in Brassica plants and has potential agricultural applications.
Collapse
Affiliation(s)
- Yuka Iwamoto
- Laboratory of Biophysical Chemistry, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; Kyushu University Future Creators in Science Project (QFC-SP), Japan
| | - Seira Saito
- Kyushu University Future Creators in Science Project (QFC-SP), Japan; Meizen High School, Fukuoka, 830-0022, Japan
| | - Takamasa Teramoto
- Laboratory of Biophysical Chemistry, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; Kyushu University Future Creators in Science Project (QFC-SP), Japan.
| | - Akiko Maruyama-Nakashita
- Laboratory of Plant Nutrition, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshimitsu Kakuta
- Laboratory of Biophysical Chemistry, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; Kyushu University Future Creators in Science Project (QFC-SP), Japan.
| |
Collapse
|
38
|
Lin Z, Huang L, Cao Q, Luo H, Yao W, Zhang JC. Inhibition of abnormal C/EBPβ/α-Syn signaling pathway through activation of Nrf2 ameliorates Parkinson's disease-like pathology. Aging Cell 2023; 22:e13958. [PMID: 37614147 PMCID: PMC10577548 DOI: 10.1111/acel.13958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/25/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the formation of Lewy bodies (LBs) in the brain. These LBs are primarily composed of α-Synuclein (α-Syn), which has aggregated. A recent report proposes that CCAAT/enhancer-binding proteins β (C/EBPβ) may act as an age-dependent transcription factor for α-Syn, thereby initiating PD pathologies by regulating its transcription. Potential therapeutic approaches to address PD could involve targeting the regulation of α-Syn by C/EBPβ. This study has revealed that Nrf2, also known as nuclear factor (erythroid-derived 2)-like 2 (NFE2L2), suppresses the transcription of C/EBPβ in SH-SY5Y cells when treated with MPP+ . To activate Nrf2, sulforaphane, an Nrf2 activator, was administered. Additionally, C/EBPβ was silenced using C/EBPβ-DNA/RNA heteroduplex oligonucleotide (HDO). Both approaches successfully reduced abnormal α-Syn expression in primary neurons treated with MPP+ . Furthermore, sustained activation of Nrf2 via its activator or inhibition of C/EBPβ using C/EBPβ-HDO resulted in a reduction of aberrant α-Syn expression, thus leading to an improvement in the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) in mouse models induced by 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) and those treated with preformed fibrils (PFFs). The data presented in this study illustrate that the activation of Nrf2 may provide a potential therapeutic strategy for PD by inhibiting the abnormal C/EBPβ/α-Syn signaling pathway.
Collapse
Affiliation(s)
- Zefang Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Lixuan Huang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Qianqian Cao
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Hanyue Luo
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Wei Yao
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ji-Chun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
39
|
Treasure K, Harris J, Williamson G. Exploring the anti-inflammatory activity of sulforaphane. Immunol Cell Biol 2023; 101:805-828. [PMID: 37650498 DOI: 10.1111/imcb.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Dysregulation of innate immune responses can result in chronic inflammatory conditions. Glucocorticoids, the current frontline therapy, are effective immunosuppressive drugs but come with a trade-off of cumulative and serious side effects. Therefore, alternative drug options with improved safety profiles are urgently needed. Sulforaphane, a phytochemical derived from plants of the brassica family, is a potent inducer of phase II detoxification enzymes via nuclear factor-erythroid factor 2-related factor 2 (NRF2) signaling. Moreover, a growing body of evidence suggests additional diverse anti-inflammatory properties of sulforaphane through interactions with mediators of key signaling pathways and inflammatory cytokines. Multiple studies support a role for sulforaphane as a negative regulator of nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) activation and subsequent cytokine release, inflammasome activation and direct regulation of the activity of macrophage migration inhibitory factor. Significantly, studies have also highlighted potential steroid-sparing activity for sulforaphane, suggesting that it may have potential as an adjunctive therapy for some inflammatory conditions. This review discusses published research on sulforaphane, including proposed mechanisms of action, and poses questions for future studies that might help progress our understanding of the potential clinical applications of this intriguing molecule.
Collapse
Affiliation(s)
- Katie Treasure
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Victorian Heart Hospital, Monash University, Clayton, VIC, Australia
| | - James Harris
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Victorian Heart Hospital, Monash University, Clayton, VIC, Australia
| |
Collapse
|
40
|
Waliat S, Arshad MS, Hanif H, Ejaz A, Khalid W, Kauser S, Al-Farga A. A review on bioactive compounds in sprouts: extraction techniques, food application and health functionality. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023; 26:647-665. [DOI: 10.1080/10942912.2023.2176001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Affiliation(s)
- Sadaf Waliat
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Hadia Hanif
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Afaf Ejaz
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Safura Kauser
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ammar Al-Farga
- Department of Food Science, Faculty of Agriculture, Ibb University, Ibb, Yemen
| |
Collapse
|
41
|
Kwa FAA, Bui BV, Thompson BR, Ayton LN. Preclinical investigations on broccoli-derived sulforaphane for the treatment of ophthalmic disease. Drug Discov Today 2023; 28:103718. [PMID: 37467881 DOI: 10.1016/j.drudis.2023.103718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Vision loss causes a significant burden on individuals and communities on a financial, emotional and social level. Common causes include age-related macular degeneration (AMD), diabetic retinopathy (DR), glaucoma and retinitis pigmentosa (RP; also known as 'rod-cone dystrophy'). As the population continues to grow and age globally, an increasing number of people will experience vision loss. Hence, there is an urgent need to develop therapies that can curb early pathological events. The broccoli-derived compound, sulforaphane (SFN), is reported to have multiple health benefits and modes of action. In this review, we outline the preclinical findings on SFN in ocular diseases and discuss the future clinical testing of this compound.
Collapse
Affiliation(s)
- Faith A A Kwa
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Bang V Bui
- Department of Optometry & Vision Sciences, Faculty Medicine, Dentistry & Health Sciences, The University of Melbourne, VIC 3010, Australia
| | - Bruce R Thompson
- School of Health Sciences, Faculty Medicine, Dentistry & Health Sciences, The University of Melbourne, VIC 3010, Australia
| | - Lauren N Ayton
- Department of Optometry & Vision Sciences, Faculty Medicine, Dentistry & Health Sciences, The University of Melbourne, VIC 3010, Australia; Department of Surgery (Ophthalmology), Faculty Medicine, Dentistry & Health Sciences, The University of Melbourne, VIC 3010, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| |
Collapse
|
42
|
Houghton CA. The Rationale for Sulforaphane Favourably Influencing Gut Homeostasis and Gut-Organ Dysfunction: A Clinician's Hypothesis. Int J Mol Sci 2023; 24:13448. [PMID: 37686253 PMCID: PMC10487861 DOI: 10.3390/ijms241713448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Given the increasing scientific, clinical and consumer interest in highly prevalent functional gastrointestinal disorders, appropriate therapeutic strategies are needed to address the many aspects of digestive dysfunction. Accumulating evidence for the crucifer-derived bioactive molecule sulforaphane in upstream cellular defence mechanisms highlights its potential as a therapeutic candidate in targeting functional gastrointestinal conditions, as well as systemic disorders. This article catalogues the evolution of and rationale for a hypothesis that multifunctional sulforaphane can be utilised as the initial step in restoring the ecology of the gut ecosystem; it can do this primarily by targeting the functions of intestinal epithelial cells. A growing body of work has identified the colonocyte as the driver of dysbiosis, such that targeting gut epithelial function could provide an alternative to targeting the microbes themselves for the remediation of microbial dysbiosis. The hypothesis discussed herein has evolved over several years and is supported by case studies showing the application of sulforaphane in gastrointestinal disorders, related food intolerance, and several systemic conditions. To the best of our knowledge, this is the first time the effects of sulforaphane have been reported in a clinical environment, with several of its key properties within the gut ecosystem appearing to be related to its nutrigenomic effects on gene expression.
Collapse
Affiliation(s)
- Christine A. Houghton
- Institute for Nutrigenomic Medicine, Cleveland, QLD 4163, Australia; ; Tel.: +617-3488-0385
- Cell-Logic, 132-140 Ross Court, Cleveland, QLD 4163, Australia
| |
Collapse
|
43
|
Chen SY, Kannan M. Neural crest cells and fetal alcohol spectrum disorders: Mechanisms and potential targets for prevention. Pharmacol Res 2023; 194:106855. [PMID: 37460002 PMCID: PMC10528842 DOI: 10.1016/j.phrs.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are a group of preventable and nongenetic birth defects caused by prenatal alcohol exposure that can result in a range of cognitive, behavioral, emotional, and functioning deficits, as well as craniofacial dysmorphology and other congenital defects. During embryonic development, neural crest cells (NCCs) play a critical role in giving rise to many cell types in the developing embryos, including those in the peripheral nervous system and craniofacial structures. Ethanol exposure during this critical period can have detrimental effects on NCC induction, migration, differentiation, and survival, leading to a broad range of structural and functional abnormalities observed in individuals with FASD. This review article provides an overview of the current knowledge on the detrimental effects of ethanol on NCC induction, migration, differentiation, and survival. The article also examines the molecular mechanisms involved in ethanol-induced NCC dysfunction, such as oxidative stress, altered gene expression, apoptosis, epigenetic modifications, and other signaling pathways. Furthermore, the review highlights potential therapeutic strategies for preventing or mitigating the detrimental effects of ethanol on NCCs and reducing the risk of FASD. Overall, this article offers a comprehensive overview of the current understanding of the impact of ethanol on NCCs and its role in FASD, shedding light on potential avenues for future research and intervention.
Collapse
Affiliation(s)
- Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| | - Maharajan Kannan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| |
Collapse
|
44
|
AbdElgawad H, Magdy Korany S, Reyad AM, Zahid I, Akhter N, Alsherif E, Sheteiwy MS, Shah AA, Selim S, Hassan AHA, Yaghoubi Khanghahi M, Beemster GTS, Crecchio C. Synergistic Impacts of Plant-Growth-Promoting Bacteria and Selenium Nanoparticles on Improving the Nutritional Value and Biological Activities of Three Cultivars of Brassica Sprouts. ACS OMEGA 2023; 8:26414-26424. [PMID: 37521602 PMCID: PMC10373182 DOI: 10.1021/acsomega.3c02957] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Due to the growing world population and increasing environmental stress, improving the production, nutritional quality, and pharmaceutical applications of plants have become an urgent need. Therefore, current research was designed to investigate the impact of seed priming using plant-growth-promoting bacteria (PGPB) along with selenium nanoparticles (SeNPs) treatment on chemical and biological properties of three Brassica oleracea cultivars [Southern star (VA1), Prominence (VA2), Monotop (VA3)]. With this aim, one out of five morphologically different strains of bacteria, namely, JM18, which was further identified via 16S rRNA gene sequencing as a Nocardiopsis species with strong plant-growth-promoting traits, isolated from soil, was used. To explore the growth-promoting potential of Nocardiopsis species, seeds of three varieties of B. oleracea were primed with JM18 individually or in combination with SeNP treatment. Seed treatments increased sprout growth (fresh and dry weights) and glucosinolate accumulation. The activity of myrosinase was significantly increased through brassica sprouts and consequently enhanced the amino-acid-derived glucosinolate induction. Notably, a reduction in effective sulforaphane nitrile was detected, being positively correlated with a decrease in epithiospecifier protein (EP). Consequently, the antioxidant activities of VA2 and VA3, determined by the ferric reducing antioxidant power (FRAP) assay, were increased by 74 and 79%, respectively. Additionally, the antibacterial activities of JM18-treated cultivars were improved. However, a decrease was observed in SeNP- and JM18 + SeNP-treated VA2 and VA3 against Serratia marcescens and Candida glabrata and VA1 against S. marcescens. In conclusion, seed priming with the JM18 extract is a promising method to enhance the health-promoting activities of B. oleracea sprouts.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Botany
and Microbiology Department, Faculty of Science, Beni-Suef University, Beni−Suef 62521, Egypt
- Integrated
Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Shereen Magdy Korany
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed Mohamed Reyad
- Botany
and Microbiology Department, Faculty of Science, Beni-Suef University, Beni−Suef 62521, Egypt
| | - Iqra Zahid
- Department
of Biological Sciences, Abasyn University
Islamabad Campus, Islamabad 44000, Pakistan
| | - Nosheen Akhter
- Department
of Biological Sciences, National University
of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Emad Alsherif
- Botany
and Microbiology Department, Faculty of Science, Beni-Suef University, Beni−Suef 62521, Egypt
| | - Mohamed S. Sheteiwy
- Department
of Agronomy, Faculty of Agriculture, Mansoura
University, Mansoura 35516, Egypt
| | - Anis Ali Shah
- Department
of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Samy Selim
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Mohammad Yaghoubi Khanghahi
- Department
of Soil, Plant and Food Sciences, University
of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Gerrit T. S. Beemster
- Integrated
Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Carmine Crecchio
- Department
of Soil, Plant and Food Sciences, University
of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
45
|
van Steenwijk HP, Winter E, Knaven E, Brouwers JF, van Baardwijk M, van Dalum JB, Luijendijk TJC, van Osch FHM, Troost FJ, Bast A, Semen KO, de Boer A. The beneficial effect of sulforaphane on platelet responsiveness during caloric load: a single-intake, double-blind, placebo-controlled, crossover trial in healthy participants. Front Nutr 2023; 10:1204561. [PMID: 37485383 PMCID: PMC10359317 DOI: 10.3389/fnut.2023.1204561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Background and aims As our understanding of platelet activation in response to infections and/or inflammatory conditions is growing, it is becoming clearer that safe, yet efficacious, platelet-targeted phytochemicals could improve public health beyond the field of cardiovascular diseases. The phytonutrient sulforaphane shows promise for clinical use due to its effect on inflammatory pathways, favorable pharmacokinetic profile, and high bioavailability. The potential of sulforaphane to improve platelet functionality in impaired metabolic processes has however hardly been studied in humans. This study investigated the effects of broccoli sprout consumption, as a source of sulforaphane, on urinary 11-dehydro-thromboxane B2 (TXB2), a stable thromboxane metabolite used to monitor eicosanoid biosynthesis and response to antithrombotic therapy, in healthy participants exposed to caloric overload. Methods In this double-blind, placebo-controlled, crossover trial 12 healthy participants were administered 16g of broccoli sprouts, or pea sprouts (placebo) followed by the standardized high-caloric drink PhenFlex given to challenge healthy homeostasis. Urine samples were collected during the study visits and analyzed for 11-dehydro-TXB2, sulforaphane and its metabolites. Genotyping was performed using Illumina GSA v3.0 DTCBooster. Results Administration of broccoli sprouts before the caloric load reduced urinary 11-dehydro-TXB2 levels by 50% (p = 0.018). The amount of sulforaphane excreted in the urine during the study visits correlated negatively with 11-dehydro-TXB2 (rs = -0.377, p = 0.025). Participants carrying the polymorphic variant NAD(P)H dehydrogenase quinone 1 (NQO1*2) showed decreased excretion of sulforaphane (p = 0.035). Conclusion Sulforaphane was shown to be effective in targeting platelet responsiveness after a single intake. Our results indicate an inverse causal relationship between sulforaphane and 11-dehydro-TXB2, which is unaffected by the concomitant intake of the metabolic challenge. 11-Dehydro-TXB2 shows promise as a non-invasive, sensitive, and suitable biomarker to investigate the effects of phytonutrients on platelet aggregation within hours. Clinical trial registration [https://clinicaltrials.gov/], identifier [NCT05146804].
Collapse
Affiliation(s)
- Hidde P. van Steenwijk
- Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Evi Winter
- Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Edward Knaven
- Research Group Analysis Techniques in the Life Sciences, Avans University of Applied Sciences, Breda, Netherlands
| | - Jos F. Brouwers
- Research Group Analysis Techniques in the Life Sciences, Avans University of Applied Sciences, Breda, Netherlands
| | - Myrthe van Baardwijk
- Omnigen B.V., Delft, Netherlands
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | | | - Frits H. M. van Osch
- Department of Clinical Epidemiology, VieCuri Medical Center, Venlo, Netherlands
- Department of Epidemiology, NUTRIM, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Freddy J. Troost
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University, Maastricht, Netherlands
| | - Aalt Bast
- University College Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Khrystyna O. Semen
- University College Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Alie de Boer
- Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
46
|
Ortega-Hernández E, Camero-Maldonado AV, Acevedo-Pacheco L, Jacobo-Velázquez DA, Antunes-Ricardo M. Immunomodulatory and Antioxidant Effects of Spray-Dried Encapsulated Kale Sprouts after In Vitro Gastrointestinal Digestion. Foods 2023; 12:foods12112149. [PMID: 37297394 DOI: 10.3390/foods12112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The health-related compounds present in kale are vulnerable to the digestive process or storage conditions. Encapsulation has become an alternative for their protection and takes advantage of their biological activity. In this study, 7-day-old Red Russian kale sprouts grown in the presence of selenium (Se) and sulfur (S) were spray-dried with maltodextrin to assess their capacity to protect kale sprout phytochemicals from degradation during the digestion process. Analyses were conducted on the encapsulation efficiency, particle morphology, and storage stability. Mouse macrophages (Raw 264.7) and human intestinal cells (Caco-2) were used to assess the effect of the intestinal-digested fraction of the encapsulated kale sprout extracts on the cellular antioxidant capacity, the production of nitric oxide (NOx), and the concentrations of different cytokines as indicators of the immunological response. The highest encapsulation efficiency was observed in capsules with a 50:50 proportion of the hydroalcoholic extract of kale and maltodextrin. Gastrointestinal digestion affected compounds' content in encapsulated and non-encapsulated kale sprouts. Spray-dried encapsulation reduced the phytochemicals' degradation during storage, and the kale sprouts germinated with S and Se showed less degradation of lutein (35.6%, 28.2%), glucosinolates (15.4%, 18.9%), and phenolic compounds (20.3%, 25.7%), compared to non-encapsulated ones, respectively. S-encapsulates exerted the highest cellular antioxidant activity (94.2%) and immunomodulatory activity by stimulating IL-10 production (88.9%) and COX-2 (84.1%) and NOx (92.2%) inhibition. Thus, encapsulation is an effective method to improve kale sprout phytochemicals' stability and bioactivity during storage and metabolism.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Ana Victoria Camero-Maldonado
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Ignacio Morones Prieto 3000, Monterrey 64710, Mexico
| | - Laura Acevedo-Pacheco
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Daniel A Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, Zapopan 45201, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan 45201, Mexico
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| |
Collapse
|
47
|
Bowen-Forbes C, Armstrong E, Moses A, Fahlman R, Koosha H, Yager JY. Broccoli, Kale, and Radish Sprouts: Key Phytochemical Constituents and DPPH Free Radical Scavenging Activity. Molecules 2023; 28:molecules28114266. [PMID: 37298743 DOI: 10.3390/molecules28114266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
Our research group previously found that broccoli sprouts possess neuroprotective effects during pregnancy. The active compound has been identified as sulforaphane (SFA), obtained from glucosinolate and glucoraphanin, which are also present in other crucifers, including kale. Sulforaphene (SFE), obtained from glucoraphenin in radish, also has numerous biological benefits, some of which supersede those of sulforaphane. It is likely that other components, such as phenolics, contribute to the biological activity of cruciferous vegetables. Notwithstanding their beneficial phytochemicals, crucifers are known to contain erucic acid, an antinutritional fatty acid. The aim of this research was to phytochemically examine broccoli, kale, and radish sprouts to determine good sources of SFA and SFE to inform future studies of the neuroprotective activity of cruciferous sprouts on the fetal brain, as well as product development. Three broccoli: Johnny's Sprouting Broccoli (JSB), Gypsy F1 (GYP), and Mumm's Sprouting Broccoli (MUM), one kale: Johnny's Toscano Kale (JTK), and three radish cultivars: Black Spanish Round (BSR), Miyashige (MIY), and Nero Tunda (NT), were analyzed. We first quantified the glucosinolate, isothiocyanate, phenolics, and DPPH free radical scavenging activity (AOC) of one-day-old dark- and light-grown sprouts by HPLC. Radish cultivars generally had the highest glucosinolate and isothiocyanate contents, and kale had higher glucoraphanin and significantly higher sulforaphane content than the broccoli cultivars. Lighting conditions did not significantly affect the phytochemistry of the one-day-old sprouts. Based on phytochemistry and economic factors, JSB, JTK, and BSR were chosen for further sprouting for three, five, and seven days and subsequently analyzed. The three-day-old JTK and radish cultivars were identified to be the best sources of SFA and SFE, respectively, both yielding the highest levels of the respective compound while retaining high levels of phenolics and AOC and markedly lower erucic acid levels compared to one-day-old sprouts.
Collapse
Affiliation(s)
| | - Edward Armstrong
- Department of Pediatrics, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Audric Moses
- Lipidomics Core Facility, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Richard Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Helia Koosha
- School of Public Health, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jerome Y Yager
- Department of Pediatrics, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| |
Collapse
|
48
|
Tossetta G, Fantone S, Goteri G, Giannubilo SR, Ciavattini A, Marzioni D. The Role of NQO1 in Ovarian Cancer. Int J Mol Sci 2023; 24:ijms24097839. [PMID: 37175546 PMCID: PMC10178676 DOI: 10.3390/ijms24097839] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer is one of the most dangerous gynecologic malignancies showing a high fatality rate because of late diagnosis and relapse occurrence due to chemoresistance onset. Several researchers reported that oxidative stress plays a key role in ovarian cancer occurrence, growth and development. The NAD(P)H:quinone oxidoreductase 1 (NQO1) is an antioxidant enzyme that, using NADH or NADPH as substrates to reduce quinones to hydroquinones, avoids the formation of the highly reactive semiquinones, then protecting cells against oxidative stress. In this review, we report evidence from the literature describing the effect of NQO1 on ovarian cancer onset and progression.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gaia Goteri
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, 60123 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
49
|
Yan L, Zhou G, Shahzad K, Zhang H, Yu X, Wang Y, Yang N, Wang M, Zhang X. Research progress on the utilization technology of broccoli stalk, leaf resources, and the mechanism of action of its bioactive substances. FRONTIERS IN PLANT SCIENCE 2023; 14:1138700. [PMID: 37063225 PMCID: PMC10090291 DOI: 10.3389/fpls.2023.1138700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Broccoli is a nutritious vegetable. It is high in protein, minerals, and vitamins. Also, it possesses antioxidant activities and is beneficial to the human body. Due to its active effect, broccoli is widely accepted by people in daily life. However, in terms of current utilization, only its florets are consumed as vegetables, while more than half of its stalks and leaves are not utilized. The stalks and leaves contain not only nutrients but also bioactive substances with physiologically regulating properties. Therefore research into the action and mechanism of its bioactive substances as well as its development and utilization technology will make contributions to the further promotion of its resource development and utilization. As a theoretical foundation for the resource utilization of broccoli stalks and leaves, this report will review the distribution and consumption of broccoli germplasm resources, the mechanism of action of bioactive substances, and innovative methods for their exploitation.
Collapse
Affiliation(s)
- Lu Yan
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| | - Gang Zhou
- Huaiyin Institute of Agricultural Sciences in Xuhuai Region, Huaian, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Haoran Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiang Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yusu Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Nan Yang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| | - Xin Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| |
Collapse
|
50
|
Amarakoon D, Lee WJ, Tamia G, Lee SH. Indole-3-Carbinol: Occurrence, Health-Beneficial Properties, and Cellular/Molecular Mechanisms. Annu Rev Food Sci Technol 2023; 14:347-366. [PMID: 36972159 DOI: 10.1146/annurev-food-060721-025531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Indole-3-carbinol (I3C) is a bioactive phytochemical abundant in cruciferous vegetables. One of its main in vivo metabolites is 3,3'-diindolylmethane (DIM), formed by the condensation of two molecules of I3C. Both I3C and DIM alter multiple signaling pathways and related molecules controlling diverse cellular events, including oxidation, inflammation, proliferation, differentiation, apoptosis, angiogenesis, and immunity. There is a growing body of evidence from both in vitro and in vivo models that these compounds possess strong potential to prevent several forms of chronic disease such as inflammation, obesity, diabetes, cardiovascular disease, cancer, hypertension, neurodegenerative diseases, and osteoporosis. This article reviews current knowledge of the occurrence of I3C in nature and foods, along with the beneficial effects of I3C and DIM concerning prevention and treatment of human chronic diseases, focusing on preclinical studies and their mechanisms of action at cellular and molecular levels.
Collapse
Affiliation(s)
- Darshika Amarakoon
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA;
| | - Wu-Joo Lee
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA;
| | - Gillian Tamia
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA;
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA;
| |
Collapse
|