1
|
Betlej G, Bator E, Koziorowska A, Koziorowski M, Rzeszutek I. The In Vitro Enhancement of Retinal Cell Viability via m 6A and m 5C RNA Methylation-Mediated Changes in the Levels of Heme Oxygenase (HO-1) and DNA Damage Repair Molecules Using a 50 Hz Sinusoidal Electromagnetic Field (EMF). Int J Mol Sci 2024; 25:13606. [PMID: 39769368 PMCID: PMC11677922 DOI: 10.3390/ijms252413606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Degenerative retinal diseases can lead to blindness if left untreated. At present, there are no curative therapies for retinal diseases. Therefore, effective treatment strategies for slowing the progression of retinal diseases and thus improving patients' life standards are urgently needed. The present study aimed to assess the effect of sinusoidal electromagnetic field (EMF) (50 Hz, 1.3 mT) treatment for 15 and 30 min on spontaneously arising retinal pigment epithelial cells (ARPE-19) and retinal ganglion cells (RGC-5) and its short-term post-treatment significance. Our study indicated the beneficial impact of EMF treatment on the proliferative and migratory capacity of the tested cells. ARPE-19 and RGC-5 cells exposed to an EMF exhibited elevated levels of HO-1, increased N6-methyladenosine (m6A) and N5-methylcytosine (m5C) status mediated by METTL3 and NSUN2, respectively, and changes in levels of DNA damage repair factors, which may contribute to the regenerative properties of ARPE-19 and RGC-5 cells. Overall, this analysis showed that EMF (sinusoidal, 50 Hz, 1.3 mT) treatment may serve as a potential therapeutic strategy for retinal diseases.
Collapse
Affiliation(s)
- Gabriela Betlej
- Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland
| | - Ewelina Bator
- Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland
| | - Anna Koziorowska
- Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland
- Institute of Material Engineering, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Marek Koziorowski
- Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Iwona Rzeszutek
- Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland
| |
Collapse
|
2
|
Leineweber WD, Rowell MZ, Ranamukhaarachchi SK, Walker A, Li Y, Villazon J, Mestre-Farrera A, Hu Z, Yang J, Shi L, Fraley SI. Divergent iron regulatory states contribute to heterogeneity in breast cancer aggressiveness. iScience 2024; 27:110661. [PMID: 39262774 PMCID: PMC11387597 DOI: 10.1016/j.isci.2024.110661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024] Open
Abstract
Contact with dense collagen I (Col1) can induce collective invasion of triple negative breast cancer (TNBC) cells and transcriptional signatures linked to poor patient prognosis. However, this response is heterogeneous and not well understood. Using phenotype-guided sequencing analysis of invasive vs. noninvasive subpopulations, we show that these two phenotypes represent opposite sides of the iron response protein 1 (IRP1)-mediated response to cytoplasmic labile iron pool (cLIP) levels. Invasive cells upregulate iron uptake and utilization machinery characteristic of a low cLIP response, which includes contractility regulating genes that drive migration. Non-invasive cells upregulate iron sequestration machinery characteristic of a high cLIP response, which is accompanied by upregulation of actin sequestration genes. These divergent IRP1 responses result from Col1-induced transient expression of heme oxygenase I (HO-1), which cleaves heme and releases iron. These findings lend insight into the emerging theory that heme and iron fluxes regulate TNBC aggressiveness.
Collapse
Affiliation(s)
- William D. Leineweber
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maya Z. Rowell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Alyssa Walker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yajuan Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jorge Villazon
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aida Mestre-Farrera
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zhimin Hu
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Lingyan Shi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephanie I. Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Zheng C, Li S, Lyu H, Chen C, Mueller J, Dropmann A, Hammad S, Dooley S, He S, Mueller S. Direct Ingestion of Oxidized Red Blood Cells (Efferocytosis) by Hepatocytes. Hepat Med 2024; 16:65-77. [PMID: 39247515 PMCID: PMC11380495 DOI: 10.2147/hmer.s469990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose Both hepatic iron accumulation and hemolysis have been identified as independent prognostic factor in alcohol-related liver disease (ALD); however, the mechanisms still remain poorly understood. We here demonstrate that hepatocytes are able to directly ingest aged and ethanol-primed red blood cells (RBCs), a process termed efferocytosis. Methods Efferocytosis of RBCs was directly studied in vitro and observed by live microscopy for real-time visualization. RBCs pretreated with either CuSO4 or ethanol following co-incubation with Huh7 cells and murine primary hepatocytes. Heme oxygenase-1 (HO-1) and other targets were measured by q-PCR. Results As shown by live microscopy, oxidized RBCs, but not intact RBCs, are rapidly ingested by both Huh7 cells and murine primary hepatocytes within 10 minutes. In some cases, more than 10 RBCs were seen within hepatocytes, surrounding the nucleus. RBC efferocytosis also rapidly induces HO1, its upstream regulator Nuclear factor erythroid 2-related factor 2 (Nrf2) and ferritin, indicating efficient heme degradation. Preliminary data further suggest that hepatocyte efferocytosis of oxidized RBCs is, at least in part, mediated by scavenging receptors such as ASGPR1. Of note, pretreatment of RBCs with ethanol but also heme and bilirubin also initiated efferocytosis. In a cohort of heavy human drinkers, a significant correlation of hepatic ASGPR1 with the heme degradation pathway was observed. Conclusion We here demonstrate that hepatocytes can directly ingest and degrade oxidized RBCs through efferocytosis, a process that can be also triggered by ethanol, heme and bilirubin. Our findings are highly suggestive for a novel mechanism of hepatic iron overload in ALD patients.
Collapse
Affiliation(s)
- Chaowen Zheng
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Siyuan Li
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Huanran Lyu
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Cheng Chen
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Johannes Mueller
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Anne Dropmann
- Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Seddik Hammad
- Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Quena, Egypt
| | - Steven Dooley
- Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Songqing He
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Sebastian Mueller
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
- Viscera AG Bauchmedizin, Bern, Switzerland
| |
Collapse
|
4
|
Wang J, Cao Y, Shi D, Zhang Z, Li X, Chen C. Crucial Involvement of Heme Biosynthesis in Vegetative Growth, Development, Stress Response, and Fungicide Sensitivity of Fusarium graminearum. Int J Mol Sci 2024; 25:5268. [PMID: 38791308 PMCID: PMC11120706 DOI: 10.3390/ijms25105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Heme biosynthesis is a highly conserved pathway from bacteria to higher animals. Heme, which serves as a prosthetic group for various enzymes involved in multiple biochemical processes, is essential in almost all species, making heme homeostasis vital for life. However, studies on the biological functions of heme in filamentous fungi are scarce. In this study, we investigated the role of heme in Fusarium graminearum. A mutant lacking the rate-limiting enzymes in heme synthesis, coproporphyrinogen III oxidase (Cpo) or ferrochelatase (Fc), was constructed using a homologous recombination strategy. The results showed that the absence of these enzymes was lethal to F. graminearum, but the growth defect could be rescued by the addition of hemin, so we carried out further studies with the help of hemin. The results demonstrated that heme was required for the activity of FgCyp51, and its absence increased the sensitivity to tebuconazole and led to the upregulation of FgCYP51 in F. graminearum. Additionally, heme plays an indispensable role in the life cycle of F. graminearum, which is essential for vegetative growth, conidiation, external stress response (especially oxidative stress), lipid accumulation, fatty acid β-oxidation, autophagy, and virulence.
Collapse
Affiliation(s)
| | | | | | | | | | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (Y.C.); (D.S.); (Z.Z.); (X.L.)
| |
Collapse
|
5
|
Dunaway LS, Loeb SA, Petrillo S, Tolosano E, Isakson BE. Heme metabolism in nonerythroid cells. J Biol Chem 2024; 300:107132. [PMID: 38432636 PMCID: PMC10988061 DOI: 10.1016/j.jbc.2024.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Heme is an iron-containing prosthetic group necessary for the function of several proteins termed "hemoproteins." Erythrocytes contain most of the body's heme in the form of hemoglobin and contain high concentrations of free heme. In nonerythroid cells, where cytosolic heme concentrations are 2 to 3 orders of magnitude lower, heme plays an essential and often overlooked role in a variety of cellular processes. Indeed, hemoproteins are found in almost every subcellular compartment and are integral in cellular operations such as oxidative phosphorylation, amino acid metabolism, xenobiotic metabolism, and transcriptional regulation. Growing evidence reveals the participation of heme in dynamic processes such as circadian rhythms, NO signaling, and the modulation of enzyme activity. This dynamic view of heme biology uncovers exciting possibilities as to how hemoproteins may participate in a range of physiologic systems. Here, we discuss how heme is regulated at the level of its synthesis, availability, redox state, transport, and degradation and highlight the implications for cellular function and whole organism physiology.
Collapse
Affiliation(s)
- Luke S Dunaway
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Skylar A Loeb
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Sara Petrillo
- Deptartment Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Emanuela Tolosano
- Deptartment Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
6
|
Mi D, Yanatori I, Zheng H, Kong Y, Hirayama T, Toyokuni S. Association of poly( rC)-binding protein-2 with sideroflexin-3 through TOM20 as an iron entry pathway to mitochondria. Free Radic Res 2024; 58:261-275. [PMID: 38599240 DOI: 10.1080/10715762.2024.2340711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Iron is essential for all the lives and mitochondria integrate iron into heme and Fe-S clusters for diverse use as cofactors. Here, we screened mitochondrial proteins in KU812 human chronic myelogenous leukemia cells by glutathione S-transferase pulldown assay with PCBP2 to identify mitochondrial receptors for PCBP2, a major cytosolic Fe(II) chaperone. LC-MS analyses identified TOM20, sideroflexin-3 (SFXN3), SFXN1 and TOM70 in the affinity-score sequence. Stimulated emission depletion microscopy and proteinase-K digestion of mitochondria in HeLa cells revealed that TOM20 is located in the outer membrane of mitochondria whereas SFXN3 is located in the inner membrane. Although direct association was not observed between PCBP2 and SFXN3 with co-immunoprecipitation, proximity ligation assay demonstrated proximal localization of PCBP2 with TOM20 and there was a direct binding between TOM20 and SFXN3. Single knockdown either of PCBP2 and SFXN3 in K562 leukemia cells significantly decreased mitochondrial catalytic Fe(II) and mitochondrial maximal respiration. SFXN3 but not MFRN1 knockout (KO) in mouse embryonic fibroblasts decreased FBXL5 and heme oxygenase-1 (HO-1) but increased transferrin uptake and induced ferritin, indicating that mitochondrial iron entry through SFXN3 is distinct. MFRN1 KO revealed more intense mitochondrial Fe(II) deficiency than SFXN3 KO. Insufficient mitochondrial heme synthesis was evident under iron overload both with SFXN3 and MFRN KO, which was partially reversed by HO-1 inhibitor. Conversely, SFXN3 overexpression caused cytosolic iron deficiency with mitochondrial excess Fe(II), which further sensitized HeLa cells to RSL3-induced ferroptosis. In conclusion, we discovered a novel pathway of iron entry into mitochondria from cytosol through PCBP2-TOM20-SFXN3 axis.
Collapse
Affiliation(s)
- Danyang Mi
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Izumi Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
- Center for Integrated Sciences of Low-temperature Plasma Core Research (iPlasma Core), Tokai National Higher Education and Research System, Nagoya, Japan
| |
Collapse
|
7
|
Hu S, Liu TCY. Mechanism of action of photobiomodulation with light-emitting diode on the glutamine-dependent CT26 cell. JOURNAL OF BIOPHOTONICS 2024; 17:e202300353. [PMID: 37824572 DOI: 10.1002/jbio.202300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
We investigated the mechanism of action of photobiomodulation (PBM) with light-emitting diode (led) 640 nm of glutamine-dependent CT26 cells. Cells were exposed to 0.147-10.979 mW/cm2 of 640 ± 15 nm laser light for 15 min/day for 10 days. Cell proliferation and apoptosis were detected by MTT (3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-diphenytetrazoliumromide) and annexin V-FITC assays. mRNA and protein levels of cell proliferation-related genes were measured by RT-PCR and western blotting, respectively. With Gln 7.94 mM, on Day 8 and 10, genes GLUT1, MEK1, ERK2, BCL2, E2F1, HO-1, Ctnnb1, and Per2 was significantly upregulated (p < 0.01) of glutamine addiction. In PBM therapy, compared with the non-illuminated group, 2.17 mW/cm2 can significantly reduce cell apoptosis, the mRNA level of gene mTOR1 was significantly upregulated, and the protein level of raptor of GLUT1 and mTOR1, MEK1/2, and ERK1/2 were upregulated. LED 640 nm inhibits cell apoptosis without increasing cell proliferation by regulating GLUT1, MEK/ERK, and PI3K/AKT/mTOR signals.
Collapse
Affiliation(s)
- Shaojuan Hu
- College of Physical Education and Sports Science, HengYang Normal University, Hengyang, China
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
8
|
Zeng Z, Wang B, Ibrar M, Ying M, Li S, Yang X. Schizochytrium sp. Extracted Lipids Prevent Alopecia by Enhancing Antioxidation and Inhibiting Ferroptosis of Dermal Papilla Cells. Antioxidants (Basel) 2023; 12:1332. [PMID: 37507872 PMCID: PMC10375984 DOI: 10.3390/antiox12071332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Alopecia has gradually become a problem that puzzles an increasing number of people. Dermal papilla cells (DPCs) play an important role in hair follicle (HF) growth; thus, exploring the effective chemicals or natural extracts that can remediate the growth of DPCs is vital. Our results showed that Schizochytrium sp.-extracted lipids (SEL) significantly promoted proliferation (up to 1.13 times) and survival ratio (up to 2.45 times) under oxidative stress. The treatment with SEL can protect DPCs against oxidative stress damage, reducing the reactive oxygen species (ROS) level by 90.7%. The relative gene transcription and translation were thoroughly analyzed using RNA-Seq, RT-qPCR, and Western blot to explore the mechanism. Results showed that SEL significantly inhibited the ferroptosis pathway and promoted the expression of antioxidant genes (up to 1.55-3.52 times). The in vivo application of SEL improved hair growth, with the length of new hair increasing by 16.7% and the length of new HF increasing by 92.6%, and the period of telogen shortening increased by 40.0%. This study proposes a novel therapeutic option for alopecia, with the effect and regulation mechanism of SEL on DPC systematically clarified.
Collapse
Affiliation(s)
- Zuye Zeng
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Boyu Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Muhammad Ibrar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ming Ying
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Innova Bay (Shenzhen) Technology Co., Ltd., Shenzhen 518118, China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Taheri P. Crosstalk of nitro-oxidative stress and iron in plant immunity. Free Radic Biol Med 2022; 191:137-149. [PMID: 36075546 DOI: 10.1016/j.freeradbiomed.2022.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Accumulation of oxygen and nitrogen radicals and their derivatives, known as reactive oxygen species (ROS) and reactive nitrogen species (RNS), occurs throughout various phases of plant growth in association with biotic and abiotic stresses. One of the consequences of environmental stresses is disruption of homeostasis between production and scavenging of ROS and RNS, which leads to nitro-oxidative burst and affects other defense-related mechanisms, such as polyamines levels, phenolics, lignin and callose as defense components related to plant cell wall reinforcement. Although this subject has attracted huge interest, the cross-talk between these signaling molecules and iron, as a main metal element involved in the activity of various enzymes and numerous vital processes in the living cells, remains largely unexplored. Therefore, it seems necessary to pay more in depth attention to the mechanisms of plant resistance against various environmental stimuli for designing novel and effective plant protection strategies. This review is focused on advances in recent knowledge related to the role of ROS, RNS, and association of these signaling molecules with iron in plant immunity. Furthermore, the role of cell wall fortification as a main physical barrier involved in plant defense have been discussed in association with reactive species and iron ions.
Collapse
Affiliation(s)
- Parissa Taheri
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
10
|
Abstract
The liver is the major target organ of continued alcohol consumption at risk and resulting alcoholic liver disease (ALD) is the most common liver disease worldwide. The underlying molecular mechanisms are still poorly understood despite decades of scientific effort limiting our abilities to identify those individuals who are at risk to develop the disease, to develop appropriate screening strategies and, in addition, to develop targeted therapeutic approaches. ALD is predestined for the newly evolving translational medicine, as conventional clinical and health care structures seem to be constrained to fully appreciate this disease. This concept paper aims at summarizing the 15 years translational experience at the Center of Alcohol Research in Heidelberg, namely based on the long-term prospective and detailed characterization of heavy drinkers with mortality data. In addition, novel experimental findings will be presented. A special focus will be the long-known hepatic iron accumulation, the somewhat overlooked role of the hematopoietic system and novel insights into iron sensing and the role of hepcidin. Our preliminary work indicates that enhanced red blood cell (RBC) turnover is critical for survival in ALD patients. RBC turnover is not primarily due to vitamin deficiency but rather to ethanol toxicity directly targeted to erythrocytes but also to the bone marrow stem cell compartment. These novel insights also help to explain long-known aspects of ALD such as mean corpuscular volume of erythrocytes (MCV) and elevated aspartate transaminase (GOT/AST) levels. This work also aims at identifying future projects, naming unresolved observations, and presenting novel hypothetical concepts still requiring future validation.
Collapse
|
11
|
Heme Oxygenase-1: An Anti-Inflammatory Effector in Cardiovascular, Lung, and Related Metabolic Disorders. Antioxidants (Basel) 2022; 11:antiox11030555. [PMID: 35326205 PMCID: PMC8944973 DOI: 10.3390/antiox11030555] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The heme oxygenase (HO) enzyme system catabolizes heme to carbon monoxide (CO), ferrous iron, and biliverdin-IXα (BV), which is reduced to bilirubin-IXα (BR) by biliverdin reductase (BVR). HO activity is represented by two distinct isozymes, the inducible form, HO-1, and a constitutive form, HO-2, encoded by distinct genes (HMOX1, HMOX2, respectively). HO-1 responds to transcriptional activation in response to a wide variety of chemical and physical stimuli, including its natural substrate heme, oxidants, and phytochemical antioxidants. The expression of HO-1 is regulated by NF-E2-related factor-2 and counter-regulated by Bach-1, in a heme-sensitive manner. Additionally, HMOX1 promoter polymorphisms have been associated with human disease. The induction of HO-1 can confer protection in inflammatory conditions through removal of heme, a pro-oxidant and potential catalyst of lipid peroxidation, whereas iron released from HO activity may trigger ferritin synthesis or ferroptosis. The production of heme-derived reaction products (i.e., BV, BR) may contribute to HO-dependent cytoprotection via antioxidant and immunomodulatory effects. Additionally, BVR and BR have newly recognized roles in lipid regulation. CO may alter mitochondrial function leading to modulation of downstream signaling pathways that culminate in anti-apoptotic, anti-inflammatory, anti-proliferative and immunomodulatory effects. This review will present evidence for beneficial effects of HO-1 and its reaction products in human diseases, including cardiovascular disease (CVD), metabolic conditions, including diabetes and obesity, as well as acute and chronic diseases of the liver, kidney, or lung. Strategies targeting the HO-1 pathway, including genetic or chemical modulation of HO-1 expression, or application of BR, CO gas, or CO donor compounds show therapeutic potential in inflammatory conditions, including organ ischemia/reperfusion injury. Evidence from human studies indicate that HO-1 expression may represent a biomarker of oxidative stress in various clinical conditions, while increases in serum BR levels have been correlated inversely to risk of CVD and metabolic disease. Ongoing human clinical trials investigate the potential of CO as a therapeutic in human disease.
Collapse
|
12
|
Wang Y, Gao L, Chen J, Li Q, Huo L, Wang Y, Wang H, Du J. Pharmacological Modulation of Nrf2/HO-1 Signaling Pathway as a Therapeutic Target of Parkinson's Disease. Front Pharmacol 2021; 12:757161. [PMID: 34887759 PMCID: PMC8650509 DOI: 10.3389/fphar.2021.757161] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress (OS) has been implicated in the pathogenesis of PD. Genetic and environmental factors can produce OS, which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates activation of multiple protective genes, including heme oxygenase-1 (HO-1), which protects cells from OS. Nrf2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. Recently, a series of studies have reported that different bioactive compounds were shown to be able to activate Nrf2/antioxidant response element (ARE) and can ameliorate PD-associated neurotoxin, both in animal models and in tissue culture. In this review, we briefly overview the sources of OS and the association between OS and the pathogenesis of PD. Then, we provided a concise overview of Nrf2/ARE pathway and delineated the role played by activation of Nrf2/HO-1 in PD. At last, we expand our discussion to the neuroprotective effects of pharmacological modulation of Nrf2/HO-1 by bioactive compounds and the potential application of Nrf2 activators for the treatment of PD. This review suggests that pharmacological modulation of Nrf2/HO-1 signaling pathway by bioactive compounds is a therapeutic target of PD.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Luyan Gao
- Department of Neurology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Liang Huo
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanchao Wang
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Hongquan Wang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jichen Du
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| |
Collapse
|
13
|
OncomiR miR-182-5p Enhances Radiosensitivity by Inhibiting the Radiation-Induced Antioxidant Effect through SESN2 in Head and Neck Cancer. Antioxidants (Basel) 2021; 10:antiox10111808. [PMID: 34829679 PMCID: PMC8614815 DOI: 10.3390/antiox10111808] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 01/22/2023] Open
Abstract
Radiotherapy is routinely used for the treatment of head and neck squamous cell carcinoma (HNSCC). However, the therapeutic efficacy is usually reduced by acquired radioresistance and locoregional recurrence. In this study, The Cancer Genome Atlas (TCGA) analysis showed that radiotherapy upregulated the miR-182/96/183 cluster and that miR-182 was the most significantly upregulated. Overexpression of miR-182-5p enhanced the radiosensitivity of HNSCC cells by increasing intracellular reactive oxygen species (ROS) levels, suggesting that expression of the miR-182 family is beneficial for radiotherapy. By intersecting the gene targeting results from three microRNA target prediction databases, we noticed that sestrin2 (SESN2), a molecule resistant to oxidative stress, was involved in 91 genes predicted in all three databases to be directly recognized by miR-182-5p. Knockdown of SESN2 enhanced radiation-induced ROS and cytotoxicity in HNSCC cells. In addition, the radiation-induced expression of SESN2 was repressed by overexpression of miR-182-5p. Reciprocal expression of the miR-182-5p and SESN2 genes was also analyzed in the TCGA database, and a high expression of miR-182-5p combined with a low expression of SESN2 was associated with a better survival rate in patients receiving radiotherapy. Taken together, the current data suggest that miR-182-5p may regulate radiation-induced antioxidant effects and mediate the efficacy of radiotherapy.
Collapse
|
14
|
McClung JA, Levy L, Garcia V, Stec DE, Peterson SJ, Abraham NG. Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: Therapeutic implications. Pharmacol Ther 2021; 231:107975. [PMID: 34499923 DOI: 10.1016/j.pharmthera.2021.107975] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity-mediated metabolic syndrome remains the leading cause of death worldwide. Among many potential targets for pharmacological intervention, a promising strategy involves the heme oxygenase (HO) system, specifically its inducible form, HO-1. This review collects and updates much of the current knowledge relevant to pharmacology and clinical medicine concerning HO-1 in metabolic diseases and its effect on lipid metabolism. HO-1 has pleotropic effects that collectively reduce inflammation, while increasing vasodilation and insulin and leptin sensitivity. Recent reports indicate that HO-1 with its antioxidants via the effect of bilirubin increases formation of biologically active lipid metabolites such as epoxyeicosatrienoic acid (EET), omega-3 and other polyunsaturated fatty acids (PUFAs). Similarly, HO-1and bilirubin are potential therapeutic targets in the treatment of fat-induced liver diseases. HO-1-mediated upregulation of EET is capable not only of reversing endothelial dysfunction and hypertension, but also of reversing cardiac remodeling, a hallmark of the metabolic syndrome. This process involves browning of white fat tissue (i.e. formation of healthy adipocytes) and reduced lipotoxicity, which otherwise will be toxic to the heart. More importantly, this review examines the activity of EET in biological systems and a series of pathways that explain its mechanism of action and discusses how these might be exploited for potential therapeutic use. We also discuss the link between cardiac ectopic fat deposition and cardiac function in humans, which is similar to that described in obese mice and is regulated by HO-1-EET-PGC1α signaling, a potent negative regulator of the inflammatory adipokine NOV.
Collapse
Affiliation(s)
- John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Lior Levy
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States of America; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, United States of America
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America.
| |
Collapse
|
15
|
Reyes-Ramos CA, Gaxiola-Robles R, Vázquez-Medina JP, Ramírez-Jirano LJ, Bitzer-Quintero OK, Zenteno-Savín T. In silico Characterization of the Heme Oxygenase 1 From Bottlenose Dolphin ( Tursiops truncatus): Evidence of Changes in the Active Site and Purifying Selection. Front Physiol 2021; 12:711645. [PMID: 34456750 PMCID: PMC8388933 DOI: 10.3389/fphys.2021.711645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cetacea is a clade well-adapted to the aquatic lifestyle, with diverse adaptations and physiological responses, as well as a robust antioxidant defense system. Serious injuries caused by boats and fishing nets are common in bottlenose dolphins (Tursiops truncatus); however, these animals do not show signs of serious infections. Evidence suggests an adaptive response to tissue damage and associated infections in cetaceans. Heme oxygenase (HO) is a cytoprotective protein that participates in the anti-inflammatory response. HO catalyzes the first step in the oxidative degradation of the heme group. Various stimuli, including inflammatory mediators, regulate the inducible HO-1 isoform. This study aims to characterize HO-1 of the bottlenose dolphin in silico and compare its structure to the terrestrial mammal protein. Upstream HO-1 sequence of the bottlenose dolphin was obtained from NCBI and Ensemble databases, and the gene structure was determined using bioinformatics tools. Five exons and four introns were identified, and proximal regulatory elements were detected in the upstream region. The presence of 10 α-helices, three 310 helices, the heme group lodged between the proximal and distal helices, and a histidine-25 in the proximal helix serving as a ligand to the heme group were inferred for T. truncatus. Amino acid sequence alignment suggests HO-1 is a conserved protein. The HO-1 "fingerprint" and histidine-25 appear to be fully conserved among all species analyzed. Evidence of positive selection within an α-helix configuration without changes in protein configuration and evidence of purifying selection were found, indicating evolutionary conservation of the coding sequence structure.
Collapse
Affiliation(s)
- Carlos A. Reyes-Ramos
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, La Paz, Mexico
| | - Ramón Gaxiola-Robles
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, La Paz, Mexico
- Hospital General de Zona No. 1, Instituto Mexicano del Seguro Social, La Paz, Mexico
| | | | - Luis Javier Ramírez-Jirano
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Oscar Kurt Bitzer-Quintero
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, La Paz, Mexico
| |
Collapse
|
16
|
Rashdan NA, Zhai B, Lovern PC. Fluid shear stress regulates placental growth factor expression via heme oxygenase 1 and iron. Sci Rep 2021; 11:14912. [PMID: 34290391 PMCID: PMC8295300 DOI: 10.1038/s41598-021-94559-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
Increased fluid shear stress (FSS) is a key initiating stimulus for arteriogenesis, the outward remodeling of collateral arterioles in response to upstream occlusion. Placental growth factor (PLGF) is an important arteriogenic mediator. We previously showed that elevated FSS increases PLGF in a reactive oxygen species (ROS)-dependent fashion both in vitro and ex vivo. Heme oxygenase 1 (HO-1) is a cytoprotective enzyme that is upregulated by stress and has arteriogenic effects. In the current study, we used isolated murine mesentery arterioles and co-cultures of human coronary artery endothelial cells (EC) and smooth muscle cells (SMC) to test the hypothesis that HO-1 mediates the effects of FSS on PLGF. HO-1 mRNA was increased by conditions of increased flow and shear stress in both co-cultures and vessels. Both inhibition of HO-1 with zinc protoporphyrin and HO-1 knockdown abolished the effect of FSS on PLGF. Conversely, induction of HO-1 activity increased PLGF. To determine which HO-1 product upregulates PLGF, co-cultures were treated with a CO donor (CORM-A1), biliverdin, ferric ammonium citrate (FAC), or iron-nitrilotriacetic acid (iron-NTA). Of these FAC and iron-NTA induced an increase PLGF expression. This study demonstrates that FSS acts through iron to induce pro-arteriogenic PLGF, suggesting iron supplementation as a novel potential treatment for revascularization.
Collapse
Affiliation(s)
- Nabil A Rashdan
- Department of Molecular and Cellular Physiology, Louisiana State University, Shreveport, LA, USA
| | - Bo Zhai
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pamela C Lovern
- Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA.
| |
Collapse
|
17
|
Loss of the transcriptional repressor Rev-erbα upregulates metabolism and proliferation in cultured mouse embryonic fibroblasts. Sci Rep 2021; 11:12356. [PMID: 34117285 PMCID: PMC8196003 DOI: 10.1038/s41598-021-91516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 05/19/2021] [Indexed: 12/04/2022] Open
Abstract
The transcriptional repressor Rev-erbα is known to down-regulate fatty acid metabolism and gluconeogenesis gene expression. In animal models, disruption of Rev-erbα results in global changes in exercise performance, oxidative capacity, and blood glucose levels. However, the complete extent to which Rev-erbα-mediated transcriptional repression of metabolism impacts cell function remains unknown. We hypothesized that loss of Rev-erbα in a mouse embryonic fibroblast (MEF) model would result in global changes in metabolism. MEFs lacking Rev-erbα exhibited a hypermetabolic phenotype, demonstrating increased levels of glycolysis and oxidative phosphorylation. Rev-erbα deletion increased expression of hexokinase II, transketolase, and ribose-5-phosphate isomerase genes involved in glycolysis and the pentose phosphate pathway (PPP), and these effects were not mediated by the transcriptional activator BMAL1. Upregulation of oxidative phosphorylation was not accompanied by an increase in mitochondrial biogenesis or numbers. Rev-erbα repressed proliferation via glycolysis, but not the PPP. When treated with H2O2, cell viability was reduced in Rev-erbα knockout MEFs, accompanied by increased ratio of oxidized/reduced NADPH, suggesting that perturbation of the PPP reduces capacity to mount an antioxidant defense. These findings uncover novel mechanisms by which glycolysis and the PPP are modulated through Rev-erbα, and provide new insights into how Rev-erbα impacts proliferation.
Collapse
|
18
|
Ryter SW. Significance of Heme and Heme Degradation in the Pathogenesis of Acute Lung and Inflammatory Disorders. Int J Mol Sci 2021; 22:ijms22115509. [PMID: 34073678 PMCID: PMC8197128 DOI: 10.3390/ijms22115509] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
The heme molecule serves as an essential prosthetic group for oxygen transport and storage proteins, as well for cellular metabolic enzyme activities, including those involved in mitochondrial respiration, xenobiotic metabolism, and antioxidant responses. Dysfunction in both heme synthesis and degradation pathways can promote human disease. Heme is a pro-oxidant via iron catalysis that can induce cytotoxicity and injury to the vascular endothelium. Additionally, heme can modulate inflammatory and immune system functions. Thus, the synthesis, utilization and turnover of heme are by necessity tightly regulated. The microsomal heme oxygenase (HO) system degrades heme to carbon monoxide (CO), iron, and biliverdin-IXα, that latter which is converted to bilirubin-IXα by biliverdin reductase. Heme degradation by heme oxygenase-1 (HO-1) is linked to cytoprotection via heme removal, as well as by activity-dependent end-product generation (i.e., bile pigments and CO), and other potential mechanisms. Therapeutic strategies targeting the heme/HO-1 pathway, including therapeutic modulation of heme levels, elevation (or inhibition) of HO-1 protein and activity, and application of CO donor compounds or gas show potential in inflammatory conditions including sepsis and pulmonary diseases.
Collapse
|
19
|
Heme Oxygenase-1 Signaling and Redox Homeostasis in Physiopathological Conditions. Biomolecules 2021; 11:biom11040589. [PMID: 33923744 PMCID: PMC8072688 DOI: 10.3390/biom11040589] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Heme-oxygenase is the enzyme responsible for degradation of endogenous iron protoporphyirin heme; it catalyzes the reaction’s rate-limiting step, resulting in the release of carbon monoxide (CO), ferrous ions, and biliverdin (BV), which is successively reduced in bilirubin (BR) by biliverdin reductase. Several studies have drawn attention to the controversial role of HO-1, the enzyme inducible isoform, pointing out its implications in cancer and other diseases development, but also underlining the importance of its antioxidant activity. The contribution of HO-1 in redox homeostasis leads to a relevant decrease in cells oxidative damage, which can be reconducted to its cytoprotective effects explicated alongside other endogenous mechanisms involving genes like TIGAR (TP53-induced glycolysis and apoptosis regulator), but also to the therapeutic functions of heme main transformation products, especially carbon monoxide (CO), which has been shown to be effective on GSH levels implementation sustaining body’s antioxidant response to oxidative stress. The aim of this review was to collect most of the knowledge on HO-1 from literature, analyzing different perspectives to try and put forward a hypothesis on revealing yet unknown HO-1-involved pathways that could be useful to promote development of new therapeutical strategies, and lay the foundation for further investigation to fully understand this important antioxidant system.
Collapse
|
20
|
Rossi M, Korpak K, Doerfler A, Zouaoui Boudjeltia K. Deciphering the Role of Heme Oxygenase-1 (HO-1) Expressing Macrophages in Renal Ischemia-Reperfusion Injury. Biomedicines 2021; 9:biomedicines9030306. [PMID: 33809696 PMCID: PMC8002311 DOI: 10.3390/biomedicines9030306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), which contributes to the development of chronic kidney disease (CKD). Renal IRI combines major events, including a strong inflammatory immune response leading to extensive cell injuries, necrosis and late interstitial fibrosis. Macrophages act as key players in IRI-induced AKI by polarizing into proinflammatory M1 and anti-inflammatory M2 phenotypes. Compelling evidence exists that the stress-responsive enzyme, heme oxygenase-1 (HO-1), mediates protection against renal IRI and modulates macrophage polarization by enhancing a M2 subset. Hereafter, we review the dual effect of macrophages in the pathogenesis of IRI-induced AKI and discuss the critical role of HO-1 expressing macrophages.
Collapse
Affiliation(s)
- Maxime Rossi
- Department of Urology, CHU de Charleroi, Université libre de Bruxelles (ULB), 6000 Charleroi, Belgium;
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium;
- Correspondence: (M.R.); (K.Z.B.)
| | - Kéziah Korpak
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium;
- Department of Geriatric Medicine, CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium
| | - Arnaud Doerfler
- Department of Urology, CHU de Charleroi, Université libre de Bruxelles (ULB), 6000 Charleroi, Belgium;
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium;
- Correspondence: (M.R.); (K.Z.B.)
| |
Collapse
|
21
|
Heme Oxgenase-1, a Cardinal Modulator of Regulated Cell Death and Inflammation. Cells 2021; 10:cells10030515. [PMID: 33671004 PMCID: PMC7997353 DOI: 10.3390/cells10030515] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Heme oxygenase catalyzes the rate-limiting step in heme degradation in order to generate biliverdin, carbon monoxide (CO), and iron. The inducible form of the enzyme, heme oxygenase-1 (HO-1), exerts a central role in cellular protection. The substrate, heme, is a potent pro-oxidant that can accelerate inflammatory injury and promote cell death. HO-1 has been implicated as a key mediator of inflammatory cell and tissue injury, as validated in preclinical models of acute lung injury and sepsis. A large body of work has also implicated HO-1 as a cytoprotective molecule against various forms of cell death, including necrosis, apoptosis and newly recognized regulated cell death (RCD) programs such as necroptosis, pyroptosis, and ferroptosis. While the antiapoptotic potential of HO-1 and its reaction product CO in apoptosis regulation has been extensively characterized, relatively fewer studies have explored the regulatory role of HO-1 in other forms of necrotic and inflammatory RCD (i.e., pyroptosis, necroptosis and ferroptosis). HO-1 may provide anti-inflammatory protection in necroptosis or pyroptosis. In contrast, in ferroptosis, HO-1 may play a pro-death role via enhancing iron release. HO-1 has also been implicated in co-regulation of autophagy, a cellular homeostatic program for catabolic recycling of proteins and organelles. While autophagy is primarily associated with cell survival, its occurrence can coincide with RCD programs. This review will summarize the roles of HO-1 and its reaction products in co-regulating RCD and autophagy programs, with its implication for both protective and detrimental tissue responses, with emphasis on how these impact HO-1 as a candidate therapeutic target in disease.
Collapse
|
22
|
Ilhan C. Retrospective investigation of peripheric blood sampling in pediatric chalazion patients. Int Ophthalmol 2021; 41:1241-1245. [PMID: 33389367 DOI: 10.1007/s10792-020-01680-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE To compare serum thyroid hormone, vitamin B12, vitamin D3, folic acid, and ferritin levels between pediatric chalazion patients and healthy children. METHODS Under 18-year-old chalazion patients and age- and sex-matched healthy controls were included into this retrospective case-control study. The peripheric blood sampling results obtained within six months from ophthalmological examination were investigated for statistical analysis. Free triiodothyronine (FT3), free thyroxine (FT4), thyroid-stimulating hormone (TSH), vitamin B12, vitamin D3, folic acid, and ferritin levels of the chalazion and control groups were compared. RESULTS The male-to-female ratio was 8/28 in the chalazion group and 22/48 in the control group (p > 0.05). The mean age was 13.891 ± 3.924 years (3-17) and 12.346 ± 3.963 years (4-17) in the groups, respectively (p > 0.05). The mean time between ophthalmological examination and peripheric blood sampling was 3.012 ± 2.201 months (0-6) and 2.092 ± 1.906 months (0-6) in the groups, respectively (p > 0.05). The mean value of ferritin was 18.641 ± 8.971 μg/L (5.900-38.600) in the chalazion group and 35.455 ± 24.561 μg/L (11.850-106.100) in the control group (p = 0.019). The mean values of FT3, FT4, TSH, vitamin B12, vitamin D3, and folic acid levels were similar between the groups (p > 0.05 for all). CONCLUSION This study reports that pediatric chalazion patients have lower serum ferritin level than healthy children.
Collapse
Affiliation(s)
- Cagri Ilhan
- Department of Ophthalmology, Hatay State Hospital, Ekinci Mah. Cevreyolu Cad. Royals Park 13/1 No: 23, Antakya, Hatay, Turkey.
| |
Collapse
|
23
|
Interacting with Hemoglobin: Paracoccidioides spp. Recruits hsp30 on Its Cell Surface for Enhanced Ability to Use This Iron Source. J Fungi (Basel) 2021; 7:jof7010021. [PMID: 33401497 PMCID: PMC7823998 DOI: 10.3390/jof7010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022] Open
Abstract
Paracoccidioides spp. are thermally dimorphic fungi that cause paracoccidioidomycosis and can affect both immunocompetent and immunocompromised individuals. The infection can lead to moderate or severe illness and death. Paracoccidioides spp. undergo micronutrients deprivation within the host, including iron. To overcome such cellular stress, this genus of fungi responds in multiple ways, such as the utilization of hemoglobin. A glycosylphosphatidylinositol (GPI)-anchored fungal receptor, Rbt5, has the primary role of acquiring the essential nutrient iron from hemoglobin. Conversely, it is not clear if additional proteins participate in the process of using hemoglobin by the fungus. Therefore, in order to investigate changes in the proteomic level of P. lutzii cell wall, we deprived the fungus of iron and then treated those cells with hemoglobin. Deprived iron cells were used as control. Next, we performed cell wall fractionation and the obtained proteins were submitted to nanoUPLC-MSE. Protein expression levels of the cell wall F1 fraction of cells exposed to hemoglobin were compared with the protein expression of the cell wall F1 fraction of iron-deprived cells. Our results showed that P. lutzii exposure to hemoglobin increased the level of adhesins expression by the fungus, according to the proteomic data. We confirmed that the exposure of the fungus to hemoglobin increased its ability to adhere to macrophages by flow cytometry. In addition, we found that HSP30 of P. lutzii is a novel hemoglobin-binding protein and a possible heme oxygenase. In order to investigate the importance of HSP30 in the Paracoccidioides genus, we developed a Paracoccidioides brasiliensis knockdown strain of HSP30 via Agrobacterium tumefaciens-mediated transformation and demonstrated that silencing this gene decreases the ability of P. brasiliensis to use hemoglobin as a nutrient source. Additional studies are needed to establish HSP30 as a virulence factor, which can support the development of new therapeutic and/or diagnostic approaches.
Collapse
|
24
|
Ilhan C. Serum Levels of Thyroid Hormone, Vitamin B12, Vitamin D3, Folic Acid, and Ferritin in Chalazion. Ocul Immunol Inflamm 2020; 30:776-780. [PMID: 33054475 DOI: 10.1080/09273948.2020.1828490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To compare serum thyroid hormone, vitamin B12, vitamin D3, folic acid, and ferritin levels between chalazion patients and control. METHODS 18-65-year-old chalazion patients and controls were included. The peripheric blood sampling results were investigated. Free triiodothyronine (FT3), free thyroxine (FT4), thyroid stimulating hormone (TSH), vitamin B12, vitamin D3, folic acid, and ferritin levels of chalazion and control groups were compared. RESULTS The male-to-female ratio was 41/107 in chalazion group and 52/106 in control group (p > .05).The mean age was 37.123 ± 13.252 years (18-65) and 39.912 ± 13.747 years (18-65) in the groups, respectively (p > .05).The mean value of vitamin B12 was 304.894 ± 131.592 pg/mL (122.700-985.300) in chalazion group and 353.200 ± 184.341 pg/mL (134.800-1127.000) in control group (p = .038).The mean values of FT3, FT4, TSH, vitamin D3, folic acid, and ferritin levels were similar between the groups (p > .05 for all). CONCLUSION This study reports that chalazion patients have less serum vitamin B12 level than healthy subjects.
Collapse
Affiliation(s)
- Cagri Ilhan
- Department of Ophthalmology, Hatay State Hospital, Hatay, Turkey
| |
Collapse
|
25
|
Estrogen Receptors and Estrogen-Induced Uterine Vasodilation in Pregnancy. Int J Mol Sci 2020; 21:ijms21124349. [PMID: 32570961 PMCID: PMC7352873 DOI: 10.3390/ijms21124349] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Normal pregnancy is associated with dramatic increases in uterine blood flow to facilitate the bidirectional maternal–fetal exchanges of respiratory gases and to provide sole nutrient support for fetal growth and survival. The mechanism(s) underlying pregnancy-associated uterine vasodilation remain incompletely understood, but this is associated with elevated estrogens, which stimulate specific estrogen receptor (ER)-dependent vasodilator production in the uterine artery (UA). The classical ERs (ERα and ERβ) and the plasma-bound G protein-coupled ER (GPR30/GPER) are expressed in UA endothelial cells and smooth muscle cells, mediating the vasodilatory effects of estrogens through genomic and/or nongenomic pathways that are likely epigenetically modified. The activation of these three ERs by estrogens enhances the endothelial production of nitric oxide (NO), which has been shown to play a key role in uterine vasodilation during pregnancy. However, the local blockade of NO biosynthesis only partially attenuates estrogen-induced and pregnancy-associated uterine vasodilation, suggesting that mechanisms other than NO exist to mediate uterine vasodilation. In this review, we summarize the literature on the role of NO in ER-mediated mechanisms controlling estrogen-induced and pregnancy-associated uterine vasodilation and our recent work on a “new” UA vasodilator hydrogen sulfide (H2S) that has dramatically changed our view of how estrogens regulate uterine vasodilation in pregnancy.
Collapse
|
26
|
Elwan NM, Salah SM, Abdelsalam SF, Elfar NN. Role of ferritin in pathogenesis of rosacea and its value in efficacy of 595 nm pulsed dye laser in treatment of different variants of rosacea: a clinical and immunohistochemical study. J COSMET LASER THER 2020; 22:130-136. [PMID: 32441163 DOI: 10.1080/14764172.2020.1761549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Current rosacea treatment focused on symptom suppression to improve patient's quality of life, prevent progression, and sustain remission. The progress of laser therapy has brought about a paradigm shift in the world of treating erythema and telangiectasia. We appraised role of ferritin in pathogenesis of rosacea and consider its value in efficacy of 595 nm pulsed dye laser (PDL) in treatment of rosacea. MATERIALS/METHODS 20 patients had rosacea were treated with PDL; received 4 sessions, 4 weeks apart. They were assessed before and after treatment by rosacea grading scale and skin biopsies were taken to detect changes in ferritin expression before and after treatment. RESULTS Ferritin expression in lesional skin was positively expressed in all patients proportional to severity of rosacea that showed statistically significant reduction of ferritin expression after PDL. There was a statistically significant reduction in rosacea grading scale after PDL (p value = .005*); the highest efficacy was in phymatous then papulopustular and erythrotelangiectatic types. CONCLUSIONS The reduction of ferritin expression after PDL opens a new era for antioxidant agents to be added as a relevant approach for the therapy of rosacea via attenuation of oxidative stress.
Collapse
Affiliation(s)
- Nagwa Mohamed Elwan
- Dermatology and Venereology Department, Tanta University Faculty of Medicine , Tanta, Egypt
| | - Salwa Mohamed Salah
- Dermatology and Venereology Department, Tanta University Faculty of Medicine , Tanta, Egypt
| | - Shady F Abdelsalam
- Dermatology and Venereology Department, Tanta University Faculty of Medicine , Tanta, Egypt
| | - Nashwa Naeem Elfar
- Dermatology and Venereology Department, Tanta University Faculty of Medicine , Tanta, Egypt
| |
Collapse
|
27
|
Glycofullerenes Inhibit Particulate Matter Induced Inflammation and Loss of Barrier Proteins in HaCaT Human Keratinocytes. Biomolecules 2020; 10:biom10040514. [PMID: 32231102 PMCID: PMC7225947 DOI: 10.3390/biom10040514] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Exposure to particulate matter (PM) has been linked to pulmonary and cardiovascular dysfunctions, as well as skin diseases, etc. PM impairs the skin barrier functions and is also involved in the initiation or exacerbation of skin inflammation, which is linked to the activation of reactive oxygen species (ROS) pathways. Fullerene is a single C60 molecule which has been reported to act as a good radical scavenger. However, its poor water solubility limits its biological applications. The glyco-modification of fullerenes increases their water solubility and anti-bacterial and anti-virus functions. However, it is still unclear whether it affects their anti-inflammatory function against PM-induced skin diseases. Hence, glycofullerenes were synthesized to investigate their effects on PM-exposed HaCaT human keratinocytes. Our results showed that glycofullerenes could reduce the rate of PM-induced apoptosis and ROS production, as well as decrease the expression of downstream mitogen-activated protein kinase and Akt pathways. Moreover, PM-induced increases in inflammatory-related signals, such as cyclooxygenase-2, heme oxygenase-1, and prostaglandin E2, were also suppressed by glycofullerenes. Notably, our results suggested that PM-induced impairment of skin barrier proteins, such as filaggrin, involucrin, repetin, and loricrin, could be reduced by pre-treatment with glycofullerenes. The results of this study indicate that glycofullerenes could be potential candidates for treatments against PM-induced skin diseases and that they exert their protective effects via ROS scavenging, anti-inflammation, and maintenance of the expression of barrier proteins.
Collapse
|
28
|
Bonham CA, Kuehlmann B, Gurtner GC. Impaired Neovascularization in Aging. Adv Wound Care (New Rochelle) 2020; 9:111-126. [PMID: 31993253 DOI: 10.1089/wound.2018.0912] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Significance: The skin undergoes an inevitable degeneration as an individual ages. As intrinsic and extrinsic factors degrade the structural integrity of the skin, it experiences a critical loss of function and homeostatic stability. Thus, aged skin becomes increasingly susceptible to injury and displays a prolonged healing process. Recent Advances: Several studies have found significant differences during wound healing between younger and older individuals. The hypoxia-inducible factor 1-alpha (HIF-1α) signaling pathway has recently been identified as a major player in wound healing. Hypoxia-inducible factors (HIFs) are pleiotropic key regulators of oxygen homeostasis. HIF-1α is essential to neovascularization through its regulation of cytokines, such as SDF-1α (stromal cell-derived factor 1-alpha) and has been shown to upregulate the expression of genes important for a hypoxic response. Prolyl hydroxylase domain proteins (PHDs) and factor inhibiting HIF effectively block HIF-1α signaling in normoxia through hydroxylation, preventing the signaling cascade from activating, leading to impaired tissue survival. Critical Issues: Aged wounds are a major clinical burden, resisting modern treatment and costing millions in health care each year. At the molecular level, aging has been shown to interfere with PHD regulation, which in turn prevents HIF-1α from activating gene expression, ultimately leading to impaired healing. Other studies have identified loss of function in cells during aging, impeding processes such as angiogenesis. Future Directions: An improved understanding of the regulation of molecular mediators, such as HIF-1α and PHD, will allow for manipulation of the various factors underlying delayed wound healing in the aged. The findings highlighted in this may facilitate the development of potential therapeutic approaches involved in the alteration of cellular dynamics and aging.
Collapse
Affiliation(s)
- Clark A. Bonham
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| | - Britta Kuehlmann
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
- Center for Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Regensburg and Caritas Hospital St. Josef, Regensburg, Germany
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| |
Collapse
|
29
|
Autophagy: Multiple Mechanisms to Protect Skin from Ultraviolet Radiation-Driven Photoaging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8135985. [PMID: 31915514 PMCID: PMC6930764 DOI: 10.1155/2019/8135985] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/26/2019] [Indexed: 01/07/2023]
Abstract
Autophagy is an essential cellular process that maintains balanced cell life. Restriction in autophagy may induce degenerative changes in humans. Natural or pathological aging of susceptible tissues has been linked with reduced autophagic activity. Skin photoaging is an example of such pathological condition caused by ambient solar UV radiation exposure. The UV-induced production of reaction oxygen species (ROS) has been linked to the promotion and progression of the photoaging process in exposed tissues. Accordingly, it has been suggested that autophagy is capable of delaying the skin photoaging process caused by solar ultraviolet (UV), although the underlying mechanism is still under debate. This review highlights several plausible mechanisms by which UV-induced ROS activates the cellular signaling pathways and modulates the autophagy. More specifically, the UV-mediated regulation of autophagy and age-related transcription factors is discussed to pinpoint the contribution of autophagy to antiphotoaging effects in the skin. The outcome of this review will provide insights into design intervention strategies for delaying the phenomenon of sunlight-induced photodamage, photoaging, and other aging-related chronic diseases based on factors that activate the autophagy process in the skin.
Collapse
|
30
|
Jamil MU, Kim J, Yum HW, Kim SH, Kim SJ, Kim DH, Cho NC, Na HK, Surh YJ. 17-Oxo-docosahexaenoic acid induces Nrf2-mediated expression of heme oxygenase-1 in mouse skin in vivo and in cultured murine epidermal cells. Arch Biochem Biophys 2019; 679:108156. [PMID: 31629711 DOI: 10.1016/j.abb.2019.108156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022]
Abstract
Recently, growing attention has been given to new classes of bioactive lipid mediators derived from ω-3 polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), especially in the context of their role as endogenous signal modulators. One such molecule is 17-oxo-DHA, generated from DHA by the action of COX2 and a dehydrogenase. The redox-sensitive transcription factor, Nrf2 plays a key role in cellular stress responses. In the present study, the effects of 17-oxo-DHA on Nrf2-mediated expression of cytoprotective enzymes were examined in mouse skin in vivo and cultured murine epidermal JB6 cells. Topical application of 17-oxo-DHA markedly elevated the nuclear localization of Nrf2 and expression of heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase-1 in hairless mouse skin. In contrast to 17-oxo-DHA, the non-electrophilic metabolic precursor 17-hydroxy-DHA was a much weaker inducer of Nrf2 activation and its target protein expression. Likewise, 17-oxo-DHA significantly enhanced nuclear translocation and transcriptional activity of Nrf2 with concomitant upregulation of HO-1 expression in cultured JB6 cells. 17-Oxo-DHA was a much stronger inducer of Nrf2-mediated antioxidant response than its parent molecule, DHA. HO-1 expression was abolished in Nrf2 knockdown JB6 cells or embryo fibroblasts from Nrf2 knock out mice. 17-Oxo-DHA also markedly reduced the level of Keap1 protein by inducing ubiquitination. Mutation of Cys151 and Cys273 in Keap1 abrogated 17-oxo-DHA-induced ubiquitination and proteasome-mediated degradation of Keap1 as well as HO-1 expression, suggesting that these cysteine residues are putative sites for 17-oxo-DHA binding. Further, Keap1 degradation stimulated by 17-oxo-DHA coincided with accumulation of the autophagy substrate, p62/SQSTM1.
Collapse
Affiliation(s)
- Muhammad Usman Jamil
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Jimin Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Hye-Won Yum
- Tumor Microenvironment Global Core Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Seong Hoon Kim
- Tumor Microenvironment Global Core Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Su-Jung Kim
- Tumor Microenvironment Global Core Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Do-Hee Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea; Tumor Microenvironment Global Core Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Nam-Chul Cho
- C&C Research Laboratories, DRC, Sungyunkwan University, Suwon, 16419, South Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-based Services Engineering, Sungshin Women's University, Seoul, 01133, South Korea
| | - Young-Joon Surh
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea; Tumor Microenvironment Global Core Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea.
| |
Collapse
|
31
|
Lysosomal Destabilizing Drug Siramesine and the Dual Tyrosine Kinase Inhibitor Lapatinib Induce a Synergistic Ferroptosis through Reduced Heme Oxygenase-1 (HO-1) Levels. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9561281. [PMID: 31636810 PMCID: PMC6766165 DOI: 10.1155/2019/9561281] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/01/2019] [Accepted: 06/25/2019] [Indexed: 01/13/2023]
Abstract
Ferroptosis is an iron-dependent type of cell death distinct from apoptosis or necrosis characterized by accumulation of reactive oxygen species. The combination of siramesine, a lysosomotropic agent, and lapatinib, a dual tyrosine kinase inhibitor (TKI), synergistically induced cell death in breast cancer cells mediated by ferroptosis. In this study, we showed that this combination of siramesine and lapatinib induces synergistic cell death in glioma cell line U87 and lung adenocarcinoma cell line A549. This cell death was characterized by the increase in iron content, reactive oxygen species (ROS) production, and lipid peroxidation accumulation after 24 hours of treatment. Moreover, iron chelator DFO and ferrostatin-1, a ferroptosis inhibitor, significantly reduced cell death. The mechanism underlying the activation of the ferroptotic pathway involves lysosomal permeabilization and increase in reactive iron levels in these cells. In addition, the downregulation of heme oxygenase-1 (HO-1) protein occurred. Overexpression of HO-1 resulted in reduction of ROS and lipid peroxidation production and cell death. Furthermore, knocking down of HO-1 combined with siramesine treatment resulted in increased cell death. Finally, we found that the inhibition of the proteasome system rescued HO-1 expression levels. Our results suggest that the induction of ferroptosis by combining a lysosomotropic agent and a tyrosine kinase inhibitor is mediated by iron release from lysosomes and HO-1 degradation by the proteasome system.
Collapse
|
32
|
Lee CW, Chi MC, Peng KT, Chiang YC, Hsu LF, Yan YL, Li HY, Chen MC, Lee IT, Lai CH. Water-Soluble Fullerenol C 60(OH) 36 toward Effective Anti-Air Pollution Induced by Urban Particulate Matter in HaCaT Cell. Int J Mol Sci 2019; 20:ijms20174259. [PMID: 31480310 PMCID: PMC6747515 DOI: 10.3390/ijms20174259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
Particulate matter (PM), a widespread air pollutant, consists of a complex mixture of solid and liquid particles suspended in air. Many diseases have been linked to PM exposure, which induces an imbalance in reactive oxygen species (ROS) generated in cells, and might result in skin diseases (such as aging and atopic dermatitis). New techniques involving nanomedicine and nano-delivery systems are being rapidly developed in the medicinal field. Fullerene, a kind of nanomaterial, acts as a super radical scavenger. Lower water solubility levels limit the bio-applications of fullerene. Hence, to improve the water solubility of fullerene, while retaining its radical scavenger functions, a fullerene derivative, fullerenol C60(OH)36, was synthesized, to examine its biofunctions in PM-exposed human keratinocyte (HaCaT) cells. The PM-induced increase in ROS levels and expression of phosphorylated mitogen-activated protein kinase and Akt could be inhibited via fullerenol pre-treatment. Furthermore, the expression of inflammation-related proteins, cyclooxygenase-2, heme oxygenase-1, and prostaglandin E2 was also suppressed. Fullerenol could preserve the impaired state of skin barrier proteins (filaggrin, involucrin, repetin, and loricrin), which was attributable to PM exposure. These results suggest that fullerenol could act against PM-induced cytotoxicity via ROS scavenging and anti-inflammatory mechanisms, and the maintenance of expression of barrier proteins, and is a potential candidate compound for the treatment of skin diseases.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Guishan District, Taoyuan City 333, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan
| | - Miao-Ching Chi
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
- Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan
- College of Medicine, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan
| | - Yao-Chang Chiang
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan
| | - Lee-Fen Hsu
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan
| | - Yi-Ling Yan
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsing-Yen Li
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Chun Chen
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chian-Hui Lai
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
33
|
Equol’s efficacy is greater than astaxanthin for antioxidants, extracellular matrix integrity & breakdown, growth factors and inflammatory biomarkers via human skin gene expression analysis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
34
|
Cesna V, Sukovas A, Jasukaitiene A, Silkuniene G, Paskauskas S, Dambrauskas Z, Gulbinas A. Stimulated upregulation of HO-1 is associated with inadequate response of gastric and ovarian cancer cell lines to hyperthermia and cisplatin treatment. Oncol Lett 2019; 18:1961-1968. [PMID: 31423266 PMCID: PMC6607092 DOI: 10.3892/ol.2019.10489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/21/2019] [Indexed: 01/18/2023] Open
Abstract
Heme oxygenase (HO)-1 is a heat shock protein induced by hyperthermia, responsible for cellular resistance to temperature. The aim of this in vitro study was to clarify the response of gastric and ovarian cancer cells to hyperthermic intraperitoneal chemotherapy, following the modulation of HO-1 expression. AGS and OVCAR-3 cells were treated with different temperature regimens, either alone or in combination with an IC50 dose of cisplatin for 1 h. Prior to treatment, HO-1 expression was silenced by short interfering RNA transfection. In OVCAR-3 cells, cisplatin increased HO-1 mRNA expression by 3.73-fold under normothermia and 2.4-fold under hyperthermia; furthermore, these factors similarly increased HO-1 protein expression levels. Exposure to cisplatin under hyperthermia reduced the viability of OVCAR-3 cells by 36% and HO-1-silencing enhanced this effect by 20%. HO-1-silencing under normothermia increased apoptotic rates in cisplatin-treated OVCAR-3 cells by 2.07-fold, and hyperthermia enhanced the effect by 3.09-fold. Semi-quantitative polymerase chain reaction (PCR) cell analysis indicated that exposure to cisplatin decreased the cell index under normothermia, and that hyperthermia boosted this effect in OVCAR-3. In AGS cells, only temperature increased cellular HO-1 levels. Silencing HO-1 in AGS cells at 37°C reduced viability by 16% and increased apoptotic rates 2.63-fold. Hyperthermia did not affect AGS viability; however, apoptosis was increased 6.84-fold. PCR analysis indicated no additional effects of hyperthermia on the AGS cell index. HO-1 is induced in cancer cells by different stressors in a variable manner. In tumors with highly inducible HO-1, prior silencing of this gene could improve the cellular response to hyperthermia and cisplatin.
Collapse
Affiliation(s)
- Vaidotas Cesna
- Department of Surgery, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Arturas Sukovas
- Department of Obstetrics and Gynaecology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Aldona Jasukaitiene
- Institute for Digestive Research, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Giedre Silkuniene
- Institute for Digestive Research, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Saulius Paskauskas
- Department of Obstetrics and Gynaecology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Zilvinas Dambrauskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Antanas Gulbinas
- Institute for Digestive Research, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
35
|
Abstract
Hyperbilirubinemia is the most frequent clinical problem neonatologists must deal with during the newborn period. It has been suggested that bilirubin is involved in the balance between antioxidant and pro-oxidant agents due to its antioxidant properties. However, the relevance of these effects in vivo in term and preterm infants is still debated. We performed a literature review of studies that investigated the association between total serum bilirubin (TSB) and oxidative stress in newborn infants. We found that studies in term infants give contradictory results, while studies in preterm infants suggest that the TSB increase is associated with an oxidative stress increase due to concurrent factors other than bilirubin level, such as heme oxygenase (HO) activity. Moreover, it could be speculated that low physiologic TSB values are associated with antioxidant effects, while high pathologic TSB values are associated with pro-oxidant effects. Literature data do not allow the establishment of whether if the antioxidant properties of bilirubin are important from a clinical point of view and can affect the outcome in ill infants.
Collapse
Affiliation(s)
- Carlo Dani
- a Division of Neonatology , Careggi University Hospital of Florence , Florence , Italy.,b Department of Neurosciences, Psychology , Drug Research and Child Health, Careggi University Hospital of Florence , Florence , Italy
| | - Chiara Poggi
- a Division of Neonatology , Careggi University Hospital of Florence , Florence , Italy
| | - Simone Pratesi
- a Division of Neonatology , Careggi University Hospital of Florence , Florence , Italy
| |
Collapse
|
36
|
Kao YR, Chen J, Narayanagari SR, Todorova TI, Aivalioti MM, Ferreira M, Ramos-Marques P, Pallaud C, Mantzaris I, Shastri A, Bussel JB, Verma A, Steidl U, Will B. Thrombopoietin receptor-independent stimulation of hematopoietic stem cells by eltrombopag. Sci Transl Med 2018; 10:10/458/eaas9563. [PMID: 30209246 PMCID: PMC9899005 DOI: 10.1126/scitranslmed.aas9563] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/13/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
Eltrombopag (EP), a small-molecule thrombopoietin receptor (TPO-R) agonist and potent intracellular iron chelator, has shown remarkable efficacy in stimulating sustained multilineage hematopoiesis in patients with bone marrow failure syndromes, suggesting an effect at the most immature hematopoietic stem and multipotent progenitor level. Although the functional and molecular effects of EP on megakaryopoiesis have been studied in the past, mechanistic insights into its effects on the earliest stages of hematopoiesis have been limited. We investigated the effects of EP treatment on hematopoietic stem cell (HSC) function using purified primary HSCs in separation-of-function mouse models, including a TPO-R-deficient strain, and stem cells isolated from patients undergoing TPO-R agonist treatment. Our mechanistic studies showed a stimulatory effect on stem cell self-renewal independently of TPO-R. Human and mouse HSCs responded to acute EP treatment with metabolic and gene expression alterations consistent with a reduction of intracellular labile iron pools that are essential for stem cell maintenance. Iron preloading prevented the stem cell stimulatory effects of EP. Moreover, comparative analysis of stem cells in the bone marrow of patients receiving EP showed a marked increase in the number of functional stem cells compared to patients undergoing therapy with romiplostim, another TPO-R agonist lacking an iron-chelating ability. Together, our study demonstrates that EP stimulates hematopoiesis at the stem cell level through iron chelation-mediated molecular reprogramming and indicates that labile iron pool-regulated pathways can modulate HSC function.
Collapse
Affiliation(s)
- Yun-Ruei Kao
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jiahao Chen
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Tihomira I. Todorova
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Maria M. Aivalioti
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Mariana Ferreira
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | - Ioannis Mantzaris
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Aditi Shastri
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - James B. Bussel
- Pediatric Hematology/Oncology, Weill Cornell Medicine, New York, NY 10065
| | - Amit Verma
- Department of Medicine, Albert Einstein College, Bronx, NY 10461,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461,Department of Medicine, Albert Einstein College, Bronx, NY 10461,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461,Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461,Corresponding authors: Britta Will or Ulrich Steidl
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461,Department of Medicine, Albert Einstein College, Bronx, NY 10461,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461,Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461,Corresponding authors: Britta Will or Ulrich Steidl
| |
Collapse
|
37
|
Tacheau C, Weisgerber F, Fagot D, Bastien P, Verdier MP, Liboutet M, Sore G, Bernard BA. Vichy Thermal Spring Water (VTSW), a cosmetic ingredient of potential interest in the frame of skin ageing exposome: anin vitrostudy. Int J Cosmet Sci 2018; 40:377-387. [DOI: 10.1111/ics.12470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/31/2018] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - D. Fagot
- L'Oréal R&I; Aulnay-sous-Bois; France
| | | | | | | | | | | |
Collapse
|
38
|
Yang X, Liu H, Jiang X, Jin C, Xu Z, Li T, Wang Z, Wang J. Cyclooxygenase‑2‑mediated upregulation of heme oxygenase 1 mitigates the toxicity of deuterium‑tritium fusion radiation. Int J Mol Med 2018; 42:1945-1954. [PMID: 30085341 PMCID: PMC6108879 DOI: 10.3892/ijmm.2018.3799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
Utilizing the energy released from the nuclear fusion of deuterium with tritium (D-T) may be an important method of supplying energy in the future. The ionizing radiation emitted from nuclear fusion is a potential health risk to humans, including scientists who are currently performing nuclear fusion experiments and the employees of fusion nuclear plants, in the future. However, there have been few reports on the biological effects of fusion radiation. In the present study, using the High Intensity D-T Fusion Neutron Generator, the DNA damage and its regulation in normal human fibroblasts exposed to fusion radiation were investigated. Heme oxygenase 1 (HO-1), which is reported to induce anti-inflammatory activity, was upregulated in the irradiated cells. Pretreatment with the HO-1 inhibitor, protoporphyrin IX zinc (II), exacerbated double strand break formation following exposure to fusion radiation. The expression of cyclooxygenase-2 (COX-2) contributed to the upregulation of HO-1, as demonstrated by the result that its inhibitor, NS-398, inhibited the induction of HO-1 in irradiated cells. It was further clarified that the ataxia telangiectasia mutated DNA damage response was activated and it stimulated the phosphorylation of p38 mitogen-activated protein kinase, which was responsible for the upregulation of COX-2 and HO-1. These results provide novel information on fusion radiation-induced biological effects and potential targets for decreasing the associated health risks.
Collapse
Affiliation(s)
- Xiaoyao Yang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Hui Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Xu Jiang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Chufeng Jin
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Zhao Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Taosheng Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Zhigang Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Jun Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
39
|
Castañeda AR, Pinkerton KE, Bein KJ, Magaña-Méndez A, Yang HT, Ashwood P, Vogel CFA. Ambient particulate matter activates the aryl hydrocarbon receptor in dendritic cells and enhances Th17 polarization. Toxicol Lett 2018; 292:85-96. [PMID: 29689377 PMCID: PMC5971007 DOI: 10.1016/j.toxlet.2018.04.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/01/2018] [Accepted: 04/18/2018] [Indexed: 02/02/2023]
Abstract
The objective of this study was to explore the role of the aryl hydrocarbon receptor (AhR) in ambient particulate matter (PM)-mediated activation of dendritic cells (DCs) and Th17-immune responses in vitro. To assess the potential role of the AhR in PM-mediated activation of DCs, co-stimulation, and cytokine expression, bone marrow (BM)-derived macrophages and DCs from C57BL/6 wildtype or AhR knockout (AhR-/-) mice were treated with PM. Th17 differentiation was assessed via co-cultures of wildtype or AhR-/- BMDCs with autologous naive T cells. PM2.5 significantly induced AhR DNA binding activity to dioxin responsive elements (DRE) and expression of the AhR repressor (AhRR), cytochrome P450 (CYP) 1A1, and CYP1B1, indicating activation of the AhR. In activated (OVA sensitized) BMDCs, PM2.5 induced interleukin (IL)-1β, CD80, CD86, and MHC class II, suggesting enhanced DC activation, co-stimulation, and antigen presentation; responses that were abolished in AhR deficient DCs. DC-T cell co-cultures treated with PM and lipopolysaccharide (LPS) led to elevated IL-17A and IL-22 expression at the mRNA level, which is mediated by the AhR. PM-treated DCs were essential in endowing T cells with a Th17-phenotype, which was associated with enhanced expression of MHC class II and cyclooxygenase (COX)-2. In conclusion, PM enhances DC activation that primes naive T cell differentiation towards a Th17-like phenotype in an AhR-dependent manner.
Collapse
Affiliation(s)
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, 95616, USA; Department of Pediatrics, School of Medicine, University of California, Davis, 95817, USA
| | - Keith J Bein
- Center for Health and the Environment, University of California, Davis, 95616, USA; Air Quality Research Center, University of California, Davis, CA, 95616, USA
| | - Alfonso Magaña-Méndez
- Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada, C.P. 22860, Mexico
| | - Houa T Yang
- M.I.N.D. Institute, University of California, Davis, 95817, USA
| | - Paul Ashwood
- M.I.N.D. Institute, University of California, Davis, 95817, USA
| | - Christoph F A Vogel
- Center for Health and the Environment, University of California, Davis, 95616, USA; Department of Environmental Toxicology, University of California, Davis, 95616, USA.
| |
Collapse
|
40
|
Functional pharmacogenomics and toxicity of PolyPurine Reverse Hoogsteen hairpins directed against survivin in human cells. Biochem Pharmacol 2018; 155:8-20. [PMID: 29940174 DOI: 10.1016/j.bcp.2018.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/14/2018] [Indexed: 01/27/2023]
Abstract
PolyPurine Reverse Hoogsteen (PPRH) hairpins constitute a relatively new pharmacological agent for gene silencing that has been applied for a growing number of gene targets. Previously we reported that specific PPRHs against the antiapoptotic gene survivin were able to decrease viability of PC3 prostate cancer cells by increasing apoptosis, while not acting on HUVEC non-tumoral cells. These PPRHs were efficient both in vitro and in vivo. In the present work, we performed a functional pharmacogenomics study on the effects of specific and unspecific hairpins against survivin. Incubation of PC3 cells with the specific HpsPr-C-WT led to 244 differentially expressed genes when applying the p < 0.05, FC > 2, Benjamini-Hochberg filtering. Importantly, the unspecific or control Hp-WC did not originate differentially expressed genes using the same settings. Gene Set Enrichment Analysis (GSEA) revealed that the differentially expressed genes clustered very significantly within the gene sets of Regulation of cell proliferation, Cellular response to stress, Apoptosis and Prostate cancer. Network analyses using STRING identified important interacting gene-nodes within the response of PC3 cells to treatment with the PPRH against survivin, mainly POLR2G, PAK1IP1, SMC3, SF3A1, PPARGC1A, NCOA6, UGT2B7, ALG5, VAMP7 and HIST1H2BE, the former six present in the Gene Sets detected in the GSEA. Additionally, HepG2 and 786-O cell lines were used to carry out in vitro experiments of hepatotoxicity and nephrotoxicity, respectively. The unspecific hairpin did not cause toxicity in cell survival assays (MTT) and produced minor changes in gene expression for selected genes in RT-qPCR arrays specifically developed for hepatic and renal toxicity screening.
Collapse
|
41
|
Huang X, Zheng J, Li J, Che X, Tan W, Tan W, Shao M, Cheng X, Du Z, Zhao Y, Wang C, Wu C, Lin D. Functional role of BTB and CNC Homology 1 gene in pancreatic cancer and its association with survival in patients treated with gemcitabine. Am J Cancer Res 2018; 8:3366-3379. [PMID: 29930735 PMCID: PMC6010980 DOI: 10.7150/thno.23978] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
Genetic variation (rs372883C/T) in the 3'-untranslated region of BTB and CNC homology 1 (BACH1) has been associated with pancreatic ductal adenocarcinoma (PDAC) risk in our previous genome-wide association study; however, the action roles of this genetic variation in PDAC remains unknown. Methods:BACH1 expression was measured by quantitative real-time PCR, Western blot and immunohistochemistry. The effects of BACH1 on cell proliferation and sensitivity to gemcitabine were examined by alteration of BACH1 expression in PDAC cells. Angiogenesis was determined in vitro using a human umbilical vein endothelial cell model. Reporter gene assays were conducted to compare the effects of microRNA-1257 on rs372883 variation. The associations between rs372883 variants and survival time in patients treated with gemcitabine were estimated by logistic regression. Results: We found substantially lower BACH1 expression in PDAC compared with normal pancreatic tissues and the rs372883T allele had significantly lower BACH1 levels than the rs372883C allele in both tumor and normal tissues. Knockdown of BACH1 expression provoked proliferation of PDAC cells and angiogenesis, which might result from upregulation of hemeoxygenase-1 that evokes oncogenic AKT and ERK signaling. The rs372883T>C change inhibits interaction of BACH1 with microRNA-1257, resulting in increased BACH1 expression. PDAC patients with the rs372883T allele were more resistant to gemcitabine and had shorter survival time compared with those with the rs372883C allele. Conclusion: These results shed light on the mechanism underlying the associations of BACH1 rs372883 variation with risk of developing PDAC and differential gemcitabine sensitivity in patients.
Collapse
|
42
|
Son HJ, Han SH, Lee JA, Shin EJ, Hwang O. Potential repositioning of exemestane as a neuroprotective agent for Parkinson's disease. Free Radic Res 2018; 51:633-645. [PMID: 28770670 DOI: 10.1080/10715762.2017.1353688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterised by selective degeneration of the nigral dopaminergic neurons, and neuroinflammation and oxidative stress are believed to be involved in its pathogenesis. In the present study, we provide data that the synthetic steroid exemestane, which is currently being used to treat breast cancer, may be useful for PD therapy. In BV-2 microglial cells, exemestane activated the transcription factor Nrf2 and induced expression of the Nrf2-dependent genes that encode the antioxidant enzymes NAD(P)H: quinone oxidoreductase 1, haem oxygenase-1, and glutamylcysteine ligase. It also downregulated gene expression of inducible nitric oxide (NO) synthase, lowered the levels of NO and reactive oxygen species, interleukin-1β and tumour necrosis factor-α in lipopolysaccharide-activated microglial cells. In CATH.a dopaminergic neuronal cells, exemestane also induced the same set of Nrf2-dependent antioxidant enzyme genes and provided neuroprotection against oxidative damage. In vivo, the drug protected the nigral dopaminergic neurons, decreased microglial activation, and prevented motor deficits in C57Bl/6 male mice that had been administered with the dopaminergic neurotoxin MPTP. Taken together, the results suggested a utility of repositioning exemestane towards disease-modifying therapy for PD.
Collapse
Affiliation(s)
- Hyo Jin Son
- a Department of Biochemistry and Molecular Biology , University of Ulsan College of Medicine , Seoul , South Korea
| | - Se Hee Han
- a Department of Biochemistry and Molecular Biology , University of Ulsan College of Medicine , Seoul , South Korea
| | - Ji Ae Lee
- a Department of Biochemistry and Molecular Biology , University of Ulsan College of Medicine , Seoul , South Korea
| | - Eun Jung Shin
- a Department of Biochemistry and Molecular Biology , University of Ulsan College of Medicine , Seoul , South Korea
| | - Onyou Hwang
- a Department of Biochemistry and Molecular Biology , University of Ulsan College of Medicine , Seoul , South Korea
| |
Collapse
|
43
|
Gill AJ, Garza R, Ambegaokar SS, Gelman BB, Kolson DL. Heme oxygenase-1 promoter region (GT)n polymorphism associates with increased neuroimmune activation and risk for encephalitis in HIV infection. J Neuroinflammation 2018; 15:70. [PMID: 29510721 PMCID: PMC5838989 DOI: 10.1186/s12974-018-1102-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/21/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Heme oxygenase-1 (HO-1) is a critical cytoprotective enzyme that limits oxidative stress, inflammation, and cellular injury within the central nervous system (CNS) and other tissues. We previously demonstrated that HO-1 protein expression is decreased within the brains of HIV+ subjects and that this HO-1 reduction correlates with CNS immune activation and neurocognitive dysfunction. To define a potential CNS protective role for HO-1 against HIV, we analyzed a well-characterized HIV autopsy cohort for two common HO-1 promoter region polymorphisms that are implicated in regulating HO-1 promoter transcriptional activity, a (GT)n dinucleotide repeat polymorphism and a single nucleotide polymorphism (A(-413)T). Shorter HO-1 (GT)n repeats and the 'A' SNP allele associate with higher HO-1 promoter activity. METHODS Brain dorsolateral prefrontal cortex tissue samples from an autopsy cohort of HIV-, HIV+, and HIV encephalitis (HIVE) subjects (n = 554) were analyzed as follows: HO-1 (GT)n polymorphism allele lengths were determined by PCR and capillary electrophoresis, A(-413)T SNP alleles were determined by PCR with allele specific probes, and RNA expression of selected neuroimmune markers was analyzed by quantitative PCR. RESULTS HIV+ subjects with shorter HO-1 (GT)n alleles had a significantly lower risk of HIVE; however, shorter HO-1 (GT)n alleles did not correlate with CNS or peripheral viral loads. In HIV+ subjects without HIVE, shorter HO-1 (GT)n alleles associated significantly with lower expression of brain type I interferon response markers (MX1, ISG15, and IRF1) and T-lymphocyte activation markers (CD38 and GZMB). No significant correlations were found between the HO-1 (GT)n repeat length and brain expression of macrophage markers (CD163, CD68), endothelial markers (PECAM1, VWF), the T-lymphocyte marker CD8A, or the B-lymphocyte maker CD19. Finally, we found no significant associations between the A(-413)T SNP and HIVE diagnosis, HIV viral loads, or any neuroimmune markers. CONCLUSION Our data suggest that an individual's HO-1 promoter region (GT)n polymorphism allele repeat length exerts unique modifying risk effects on HIV-induced CNS neuroinflammation and associated neuropathogenesis. Shorter HO-1 (GT)n alleles increase HO-1 promoter activity, which could provide neuroprotection through decreased neuroimmune activation. Therapeutic strategies that induce HO-1 expression could decrease HIV-associated CNS neuroinflammation and decrease the risk for development of HIV neurological disease.
Collapse
Affiliation(s)
- Alexander J. Gill
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 280C Clinical Research Building, Philadelphia, PA 19104 USA
| | - Rolando Garza
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 280C Clinical Research Building, Philadelphia, PA 19104 USA
| | - Surendra S. Ambegaokar
- Department of Botany & Microbiology, Robbins Program in Neuroscience, Ohio Wesleyan University, Delaware, OH 43016 USA
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Dennis L. Kolson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 280C Clinical Research Building, Philadelphia, PA 19104 USA
| |
Collapse
|
44
|
Ghio AJ, Case MW, Soukup JM. Heme oxygenase activity increases after exercise in healthy volunteers. Free Radic Res 2018; 52:267-272. [PMID: 29343136 DOI: 10.1080/10715762.2018.1428965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Heme oxygenase (HO) is an essential, rate-limiting protein which catalyses the breakdown of heme to iron, carbon monoxide (CO), and biliverdin. The alpha methene bridge of the heme is eliminated as CO which can be measured as blood carboxyhaemoglobin (COHb). Using blood concentrations of COHb as a measure reflecting HO activity, we tested the postulate that the activity of HO changes with exercise. Ten healthy, nonsmoking volunteers (5 females and 5 males with a mean age ± standard deviation of 25.7 ± 3.2 years), lifetime nonsmokers with no history of respiratory diseases and not taking any medication, were included in the study. Subjects were exposed to filtered air for 2 hrs while alternating exercise for 15 minutes on a cycle ergometer with rest for 15 minutes. Workload was adjusted so that subjects breathed at a ventilatory rate, normalised for body surface area, of 25 L/m2/minute. Immediately before, immediately after, and the day following exercise, blood was drawn by standard venipuncture technique. COHb was determined using the interleukin (IL) 682 Co-Oximeter (Instrumentation Laboratory, Bedford, MA). COHb increased in each participant during the exercise session with the mean value (± standard deviation) almost doubling (1.1 ± 1.6 to 2.1 ± 1.6%) and returned to baseline by the following day (1.3 ± 1.3%). We conclude that exercise increases HO activity.
Collapse
Affiliation(s)
- Andrew J Ghio
- a National Health and Environmental Effects Research Laboratory , Environmental Protection Agency , Chapel Hill , NC , USA
| | - Martin W Case
- a National Health and Environmental Effects Research Laboratory , Environmental Protection Agency , Chapel Hill , NC , USA
| | - Joleen M Soukup
- a National Health and Environmental Effects Research Laboratory , Environmental Protection Agency , Chapel Hill , NC , USA
| |
Collapse
|
45
|
Kudryavtseva A, Krasnov G, Lipatova A, Alekseev B, Maganova F, Shaposhnikov M, Fedorova M, Snezhkina A, Moskalev A. Effects of Abies sibirica terpenes on cancer- and aging-associated pathways in human cells. Oncotarget 2018; 7:83744-83754. [PMID: 27888805 PMCID: PMC5347801 DOI: 10.18632/oncotarget.13467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Abstract
A large number of terpenoids exhibit potential geroprotector and anti-cancer properties. Here, we studied whole transcriptomic effects of Abisil, the extract of fir (Abies sibirica) terpenes, on normal and cancer cell lines. We used early passaged and senescent none-immortalized fibroblasts as cellular aging models. It was revealed that in normal fibroblasts, terpenes induced genes of stress response, apoptosis regulation and tissue regeneration. The restoration of the expression level of some prolongevity genes after fir extract treatment was shown in old cells. In Caco-2 and AsPC-1 cancer cell lines, Abisil induced expression of both onco-suppressors (members of GADD45, DUSP, and DDIT gene families), and proto-oncogenes (c-Myc, c-Jun, EGR and others). Thus, the study demonstrates the potential anti-aging and anti-cancer effects of Abisil on senescent and cancer cell lines.
Collapse
Affiliation(s)
- Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasiya Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Boris Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | | | - Mikhail Shaposhnikov
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, Russia
| | - Maria Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| |
Collapse
|
46
|
Elbirt KK, Bonkovsky HL. Heme Oxygenase: Recent Advances in Understanding Its Regulation and Role. ACTA ACUST UNITED AC 2018. [DOI: 10.1111/paa.1999.111.5.438] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res 2017; 341:154-175. [PMID: 29289598 DOI: 10.1016/j.bbr.2017.12.036] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a unique form of programmed death, characterised by cytosolic accumulation of iron, lipid hydroperoxides and their metabolites, and effected by the fatal peroxidation of polyunsaturated fatty acids in the plasma membrane. It is a major driver of cell death in neurodegenerative neurological diseases. Moreover, cascades underpinning ferroptosis could be active drivers of neuropathology in major psychiatric disorders. Oxidative and nitrosative stress can adversely affect mechanisms and proteins governing cellular iron homeostasis, such as the iron regulatory protein/iron response element system, and can ultimately be a source of abnormally high levels of iron and a source of lethal levels of lipid membrane peroxidation. Furthermore, neuroinflammation leads to the upregulation of divalent metal transporter1 on the surface of astrocytes, microglia and neurones, making them highly sensitive to iron overload in the presence of high levels of non-transferrin-bound iron, thereby affording such levels a dominant role in respect of the induction of iron-mediated neuropathology. Mechanisms governing systemic and cellular iron homeostasis, and the related roles of ferritin and mitochondria are detailed, as are mechanisms explaining the negative regulation of ferroptosis by glutathione, glutathione peroxidase 4, the cysteine/glutamate antiporter system, heat shock protein 27 and nuclear factor erythroid 2-related factor 2. The potential role of DJ-1 inactivation in the precipitation of ferroptosis and the assessment of lipid peroxidation are described. Finally, a rational approach to therapy is considered, with a discussion on the roles of coenzyme Q10, iron chelation therapy, in the form of deferiprone, deferoxamine (desferrioxamine) and deferasirox, and N-acetylcysteine.
Collapse
|
48
|
Santos J, Milthorpe BK, Herbert BR, Padula MP. Proteomic Analysis of Human Adipose Derived Stem Cells during Small Molecule Chemical Stimulated Pre-neuronal Differentiation. Int J Stem Cells 2017; 10:193-217. [PMID: 28844130 PMCID: PMC5741201 DOI: 10.15283/ijsc17036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2017] [Indexed: 11/09/2022] Open
Abstract
Background Adipose derived stem cells (ADSCs) are acquired from abdominal liposuction yielding a thousand fold more stem cells per millilitre than those from bone marrow. A large research void exists as to whether ADSCs are capable of transdermal differentiation toward neuronal phenotypes. Previous studies have investigated the use of chemical cocktails with varying inconclusive results. Methods Human ADSCs were treated with a chemical stimulant, beta-mercaptoethanol, to direct them toward a neuronal-like lineage within 24 hours. Quantitative proteomics using iTRAQ was then performed to ascertain protein abundance differences between ADSCs, beta-mercaptoethanol treated ADSCs and a glioblastoma cell line. Results The soluble proteome of ADSCs differentiated for 12 hours and 24 hours was significantly different from basal ADSCs and control cells, expressing a number of remodeling, neuroprotective and neuroproliferative proteins. However toward the later time point presented stress and shock related proteins were observed to be up regulated with a large down regulation of structural proteins. Cytokine profiles support a large cellular remodeling shift as well indicating cellular distress. Conclusion The earlier time point indicates an initiation of differentiation. At the latter time point there is a vast loss of cell population during treatment. At 24 hours drastically decreased cytokine profiles and overexpression of stress proteins reveal that exposure to beta-mercaptoethanol beyond 24 hours may not be suitable for clinical application as our results indicate that the cells are in trauma whilst producing neuronal-like morphologies. The shorter treatment time is promising, indicating a reducing agent has fast acting potential to initiate neuronal differentiation of ADSCs.
Collapse
Affiliation(s)
- Jerran Santos
- Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, NSW, Australia.,Proteomics Core Facility, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Bruce K Milthorpe
- Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Benjamin R Herbert
- Northern Clinical School, Sydney Medical School, University of Sydney, NSW, Australia
| | - Matthew P Padula
- Proteomics Core Facility, School of Life Sciences, University of Technology Sydney, NSW, Australia
| |
Collapse
|
49
|
Pan W, Miao L, Lin Y, Huang X, Ge X, Moosa SL, Liu B, Ren M, Zhou Q, Liang H, Zhang W, Pan L. Regulation mechanism of oxidative stress induced by high glucose through PI3K/Akt/Nrf2 pathway in juvenile blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2017; 70:66-75. [PMID: 28882793 DOI: 10.1016/j.fsi.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
This study was conducted to investigate the effects of oral administration of a high concentration of glucose on the respiratory burst, antioxidant status, and hepatic gene expression of heme oxygenase-1 (ho1) and PI3K/Akt/Nrf2-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala). Blunt snout bream juveniles with an initial body weight of 19.94 ± 0.58 g were orally fed with a high concentration of glucose (3 g/kg body weight). The results indicated that plasma glucose exhibited a biphasic response. Acute and persistent hyperglycemia due to the oral glucose administration significantly reduced (P < 0.05) the white blood cell count, red blood cell count, and hemoglobin content and caused oxidative stress (significantly increased alanine aminotransferase, aspartate transaminase, alkaline phosphatase, and glucose levels) and early apoptosis of hepatocytes in the fish. Hepatic superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities increased rapidly (P < 0.05) as protection from oxidative stress and were downregulated (P < 0.05) because of persistent hyperglycemia. Blood respiratory burst was significantly reduced (P < 0.05) because of hyperglycemia and showed a trend that was opposite to that of plasma glucose. Slight upregulation of nrf2 mRNA and antioxidants acts as a compensative protection mechanism, and the downregulated PI3K/Akt pathway blocked this function of Nrf2. In conclusion, the PI3K/Akt pathway and Nrf2 mediated the antioxidative mechanism independently in the blunt snout bream juveniles subjected to the oral administration of a high glucose concentration.
Collapse
Affiliation(s)
- Wenjing Pan
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Linghong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Yan Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Xin Huang
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China.
| | - Silli Laban Moosa
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Mingchun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Wuxiao Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Liangkun Pan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| |
Collapse
|
50
|
Ibáñez FJ, Farías MA, Retamal-Díaz A, Espinoza JA, Kalergis AM, González PA. Pharmacological Induction of Heme Oxygenase-1 Impairs Nuclear Accumulation of Herpes Simplex Virus Capsids upon Infection. Front Microbiol 2017; 8:2108. [PMID: 29163402 PMCID: PMC5671570 DOI: 10.3389/fmicb.2017.02108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible enzyme that is expressed in response to physical and chemical stresses, such as ultraviolet radiation, hyperthermia, hypoxia, reactive oxygen species (ROS), as well as cytokines, among others. Its activity can be positively modulated by cobalt protoporphyrin (CoPP) and negatively by tin protoporphirin (SnPP). Once induced, HO-1 degrades iron-containing heme into ferrous iron (Fe2+), carbon monoxide (CO) and biliverdin. Importantly, numerous products of HO-1 are cytoprotective with anti-apoptotic, anti-oxidant, anti-inflammatory, and anti-cancer effects. The products of HO-1 also display antiviral properties against several viruses, such as the human immunodeficiency virus (HIV), influenza, hepatitis B, hepatitis C, and Ebola virus. Here, we sought to assess the effect of modulating HO-1 activity over herpes simplex virus type 2 (HSV-2) infection in epithelial cells and neurons. There are no vaccines against HSV-2 and treatment options are scarce in the immunosuppressed, in which drug-resistant variants emerge. By using HSV strains that encode structural and non-structural forms of the green fluorescent protein (GFP), we found that pharmacological induction of HO-1 activity with CoPP significantly decreases virus plaque formation and the expression of virus-encoded genes in epithelial cells as determined by flow cytometry and western blot assays. CoPP treatment did not affect virus binding to the cell surface or entry into the cytoplasm, but rather downstream events in the virus infection cycle. Furthermore, we observed that treating cells with a CO-releasing molecule (CORM-2) recapitulated some of the anti-HSV effects elicited by CoPP. Taken together, these findings indicate that HO-1 activity interferes with the replication cycle of HSV and that its antiviral effects can be recapitulated by CO.
Collapse
Affiliation(s)
- Francisco J Ibáñez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Janyra A Espinoza
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institut National de la Santé et de la Recherche Médicale U1064, Nantes, France
| | - Pablo A González
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|