1
|
Yang J, Li X, Li T, Mei J, Chen Y. Recent advances in biomimetic nanodelivery systems for cancer Immunotherapy. Mater Today Bio 2025; 32:101726. [PMID: 40270890 PMCID: PMC12017925 DOI: 10.1016/j.mtbio.2025.101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/26/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Tumor immunotherapy is a developing and promising therapeutic method. However, the mechanism of tumor immune microenvironment and individual differences of patients make the clinical application of immunotherapy still very limited. The resulting targeting of the tumor environment and immune system is a suitable strategy for tumor therapy. Biomimetic nanodelivery systems (BNDS) coated with nanoparticles has brought new hope for tumor immunotherapy. Due to its high targeting, maximum drug delivery efficiency and immune escape, BNDS has become one of the options for tumor immunotherapy in the future. BNDS combines the advantages of natural cell membranes and nanoparticles and has good targeting properties. This review summarizes the relationship between tumor and immune microenvironment, classification of immunotherapy, engineering modification of cell membrane, and a comprehensive overview of different types of membrane BNDS in immunotherapy. Furthermore, the prospects and challenges of biomimetic nanoparticles coated with membranes in tumor immunotherapy are further discussed.
Collapse
Affiliation(s)
- Jiawei Yang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China, No. 508 North Second Ring East Road, Ningbo, 315302, Zhejiang, China
| | - Xueqi Li
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China, No. 508 North Second Ring East Road, Ningbo, 315302, Zhejiang, China
| | - Tongyu Li
- Department of Hematology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, China
| | - Jin Mei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China, No. 508 North Second Ring East Road, Ningbo, 315302, Zhejiang, China
- Institute of Engineering Medicine, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, China
| | - Ying Chen
- Institute of Engineering Medicine, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, China
| |
Collapse
|
2
|
Arabi S, Fadaee M, Kazemi T, Rahmani M. Advancements in colorectal cancer immunotherapy: from CAR-T cells to exosome-based therapies. J Drug Target 2025; 33:749-760. [PMID: 39754507 DOI: 10.1080/1061186x.2024.2449482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Colorectal cancer (CRC) continues to be a major worldwide health issue, with elevated death rates linked to late stages of the illness. Immunotherapy has made significant progress in developing effective techniques to improve the immune system's capacity to identify and eradicate cancerous cells. This study examines the most recent advancements in CAR-T cell treatment and exosome-based immunotherapy for CRC. CAR-T cell therapy, although effective in treating blood cancers, encounters obstacles when used against solid tumours such as CRC. These obstacles include the presence of an immunosuppressive tumour microenvironment and a scarcity of tumour-specific antigens. Nevertheless, novel strategies like dual-receptor CAR-T cells and combination therapy involving cytokines have demonstrated promise in surmounting these obstacles. Exosome-based immunotherapy is a promising approach for targeted delivery of therapeutic drugs to tumour cells, with high specificity and minimal off-target effects. However, there are still obstacles to overcome in the field, such as resistance to treatment, adverse effects associated with the immune system, and the necessity for more individualised methods. The current research is focused on enhancing these therapies, enhancing the results for patients, and ultimately incorporating these innovative immunotherapeutic approaches into the standard treatment protocols for CRC.
Collapse
Affiliation(s)
- Sepideh Arabi
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammadreza Rahmani
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
3
|
Franco-Fuquen P, Figueroa-Aguirre J, Martínez DA, Moreno-Cortes EF, Garcia-Robledo JE, Vargas-Cely F, Castro-Martínez DA, Almaini M, Castro JE. Cellular therapies in rheumatic and musculoskeletal diseases. J Transl Autoimmun 2025; 10:100264. [PMID: 39931050 PMCID: PMC11808717 DOI: 10.1016/j.jtauto.2024.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 02/13/2025] Open
Abstract
A substantial proportion of patients diagnosed with rheumatologic and musculoskeletal diseases (RMDs) exhibit resistance to conventional therapies or experience recurrent symptoms. These diseases, which include autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus, are marked by the presence of autoreactive B cells that play a critical role in their pathogenesis. The persistence of these autoreactive B cells within lymphatic organs and inflamed tissues impairs the effectiveness of B-cell-depleting monoclonal antibodies like rituximab. A promising therapeutic approach involves using T cells genetically engineered to express chimeric antigen receptors (CARs) that target specific antigens. This strategy has demonstrated efficacy in treating B-cell malignancies by achieving long-term depletion of malignant and normal B cells. Preliminary data from patients with RMDs, particularly those with lupus erythematosus and dermatomyositis, suggest that CAR T-cells targeting CD19 can induce rapid and sustained depletion of circulating B cells, leading to complete clinical and serological responses in cases that were previously unresponsive to conventional therapies. This review will provide an overview of the current state of preclinical and clinical studies on the use of CAR T-cells and other cellular therapies for RMDs. Additionally, it will explore potential future applications of these innovative treatment modalities for managing patients with refractory and recurrent manifestations of these diseases.
Collapse
Affiliation(s)
- Pedro Franco-Fuquen
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Juana Figueroa-Aguirre
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - David A. Martínez
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Eider F. Moreno-Cortes
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Juan E. Garcia-Robledo
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Fabio Vargas-Cely
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | | | - Mustafa Almaini
- Rheumatology, Allergy & Clinical Immunology Division, Mafraq Hospital, United Arab Emirates
| | - Januario E. Castro
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
4
|
Xiong S, Zhang S, Yue N, Cao J, Wu C. CAR-T cell therapy in the treatment of relapsed or refractory primary central nervous system lymphoma: recent advances and challenges. Leuk Lymphoma 2025; 66:1045-1057. [PMID: 39898872 DOI: 10.1080/10428194.2025.2458214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/01/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare and aggressive lymphoma that is isolated in the central nervous system (CNS) or vitreoretinal space. High-dose methotrexate (HD-MTX)-based immunochemotherapy is the frontline for its treatment, with a high early response rate. However, relapsed or refractory (R/R) patients present numerous difficulties and challenges in clinical treatment. Chimeric antigen receptor (CAR)-T cells offer a promising option for the treatment of hematologic malignancies, especially in the R/R B-cell lymphoma and multiple myeloma. Despite the exclusion of most PCNSL cases from pivotal CAR-T cell trials due to their specific tumor microenvironment (TME), available preclinical and clinical studies with small cohorts suggest an overall acceptable safety profile and remarkable anti-tumor effects. In this review, we will provide the development process of CAR-T cells and summarize the research progress, limitations, and future perspectives of CAR-T cell therapy in patients with R/R PCNSL.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Central Nervous System Neoplasms/therapy
- Central Nervous System Neoplasms/pathology
- Central Nervous System Neoplasms/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Tumor Microenvironment/immunology
- Neoplasm Recurrence, Local/therapy
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/immunology
- Drug Resistance, Neoplasm
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
- Lymphoma/therapy
- Lymphoma/pathology
- Lymphoma/immunology
- Animals
- Clinical Trials as Topic
- Receptors, Antigen, T-Cell
Collapse
Affiliation(s)
- Shuzhen Xiong
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | | | | | | | | |
Collapse
|
5
|
Zheng Y, Gu Z, Shudde CE, Piper TL, Wang X, Aleck GA, Zhou J, King D, Chanda MK, Trinch L, Zou W, Courtney AH. An engineered viral protein activates STAT5 to prevent T cell suppression. Sci Immunol 2025; 10:eadn9633. [PMID: 40408430 DOI: 10.1126/sciimmunol.adn9633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 01/08/2025] [Accepted: 04/30/2025] [Indexed: 05/25/2025]
Abstract
T cell therapy efficacy can be compromised if cytokine-induced Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling is dysregulated or insufficient to sustain functionality. Here, we demonstrate that LCK kinase activity can be recruited to noncanonical protein substrates to directly activate targeted STAT proteins in T cells. STAT activation was accomplished by engineering the herpesvirus saimiri tyrosine kinase interacting protein (TIP) to provide a platform for the enforced recruitment of LCK to STAT proteins. We determined that a minimal region of TIP that binds to LCK could be combined with STAT binding sites derived from endogenous cytokine receptors. These constructs activated targeted STAT proteins in a cytokine-independent manner. We identified a STAT5 activator that sustained CD8+ T cell survival and cytotoxic function ex vivo in the absence of interleukin-2. Tumor outgrowth was reduced in vivo because of enhanced T cell persistence and functionality. Single-cell transcriptomics revealed that the STAT5 activator prevented the expression of genes associated with an exhausted T cell fate. Our findings demonstrate that signaling pathways can be rewired in T cells to sustain their function in solid tumors.
Collapse
Affiliation(s)
- Yating Zheng
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zehui Gu
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claire E Shudde
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Taylor L Piper
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xinyu Wang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Grace A Aleck
- Cellular and Molecular Biology Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiajia Zhou
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana King
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Monica K Chanda
- Cancer Biology Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lilliana Trinch
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam H Courtney
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Hushmandi K, Imani Fooladi AA, Reiter RJ, Farahani N, Liang L, Aref AR, Nabavi N, Alimohammadi M, Liu L, Sethi G. Next-generation immunotherapeutic approaches for blood cancers: Exploring the efficacy of CAR-T and cancer vaccines. Exp Hematol Oncol 2025; 14:75. [PMID: 40382583 DOI: 10.1186/s40164-025-00662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/25/2025] [Indexed: 05/20/2025] Open
Abstract
Recent advancements in immunotherapy, particularly Chimeric antigen receptor (CAR)-T cell therapy and cancer vaccines, have significantly transformed the treatment landscape for leukemia. CAR-T cell therapy, initially promising in hematologic cancers, faces notable obstacles in solid tumors due to the complex and immunosuppressive tumor microenvironment. Challenges include the heterogeneous immune profiles of tumors, variability in antigen expression, difficulties in therapeutic delivery, T cell exhaustion, and reduced cytotoxic activity at the tumor site. Additionally, the physical barriers within tumors and the immunological camouflage used by cancer cells further complicate treatment efficacy. To overcome these hurdles, ongoing research explores the synergistic potential of combining CAR-T cell therapy with cancer vaccines and other therapeutic strategies such as checkpoint inhibitors and cytokine therapy. This review describes the various immunotherapeutic approaches targeting leukemia, emphasizing the roles and interplay of cancer vaccines and CAR-T cell therapy. In addition, by discussing how these therapies individually and collectively contribute to tumor regression, this article aims to highlight innovative treatment paradigms that could enhance clinical outcomes for leukemia patients. This integrative approach promises to pave the way for more effective and durable treatment strategies in the oncology field. These combined immunotherapeutic strategies hold great promise for achieving more complete and lasting remissions in leukemia patients. Future research should prioritize optimizing treatment sequencing, personalizing therapeutic combinations based on individual patient and tumor characteristics, and developing novel strategies to enhance T cell persistence and function within the tumor microenvironment. Ultimately, these efforts will advance the development of more effective and less toxic immunotherapeutic interventions, offering new hope for patients battling this challenging disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Liping Liang
- Guangzhou Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | | | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Le Liu
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China.
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
7
|
Jouret M, Viel S, Fournier B, Benezech S, Avouac J, Scherlinger M, Belot A. CAR-T cell therapy for juvenile-onset autoimmune diseases: a promising future? Arthritis Res Ther 2025; 27:102. [PMID: 40349090 PMCID: PMC12065196 DOI: 10.1186/s13075-025-03564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 04/20/2025] [Indexed: 05/14/2025] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy targeting B cells has shown promising results, including drug-free remission, in adult-onset autoimmune diseases. Extending this therapeutic approach to the pediatric population, particularly for juvenile autoimmune diseases, presents an exciting opportunity. However, challenges specific to juvenile-onset autoimmune conditions, such as long-term adverse events, heightened disease activity, and the imperative to reduce steroid exposure, must be considered. While this strategy appears viable for these severe conditions, the limited data available for this population and the absence of evidence on cases with a high genetic component, such as monogenic lupus, represent significant challenges. Most monogenic lupus cases are associated with innate immune defects, and the involvement of B cells in these genetic anomalies remains poorly understood. In this review, we examine the potential indications, current knowledge, and limitations of CAR-T cell therapy in juvenile-onset autoimmune diseases, extending the discussion beyond early-onset lupus.
Collapse
Affiliation(s)
- Maurine Jouret
- National Referee Centre for Pediatric-Onset Rheumatic and Autoimmune Diseases (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, HFME, Hospices Civils de Lyon, Bron Cedex, 69677, France
| | - Sebastien Viel
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- Bank of Tissues and Cells, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Benjamin Fournier
- Department for Immunology, Hematology and Pediatric Rheumatology, Necker Hospital, APHP, Institut IMAGINE, Paris, France
| | - Sarah Benezech
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- Institute of Pediatric Hematology and Oncology, Léon Bérard Center, Lyon, France
| | - Jérome Avouac
- Rheumatology Department, Cochin Hospital, AP-HP. Centre Université Paris-Cité, Paris, France
- INSERM U1016 and CNRS UMR8104, Cochin Institute, Paris, France
| | - Marc Scherlinger
- Rheumatology Department, Strasbourg University Hospital, 1 Avenue Molière, Strasbourg, 67000, France
- UMR_S INSERM 1109, Immuno-Rhumatologie Moléculaire, 1 Place de L'hôpital, Strasbourg, 67000, France
| | - Alexandre Belot
- National Referee Centre for Pediatric-Onset Rheumatic and Autoimmune Diseases (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, HFME, Hospices Civils de Lyon, Bron Cedex, 69677, France.
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France.
| |
Collapse
|
8
|
Patel KK, Tariveranmoshabad M, Kadu S, Shobaki N, June C. From concept to cure: The evolution of CAR-T cell therapy. Mol Ther 2025; 33:2123-2140. [PMID: 40070120 DOI: 10.1016/j.ymthe.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/21/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer immunotherapy in the 21st century, providing innovative solutions and life-saving therapies for previously untreatable diseases. This approach has shown remarkable success in treating various hematological malignancies and is now expanding into clinical trials for solid tumors, such as prostate cancer and glioblastoma, as well as infectious and autoimmune diseases. CAR-T cell therapy involves harvesting a patient's T cells, genetically engineering them with viral vectors to express CARs targeting specific antigens and reinfusing the modified cells into the patient. These CAR-T cells function independently of major histocompatibility complex (MHC) antigen presentation, selectively identifying and eliminating target cells. This review highlights the key milestones in CAR-T cell evolution, from its invention to its clinical applications. It outlines the historical timeline leading to the invention of CAR-T cells, discusses the major achievements that have transformed them into a breakthrough therapy, and addresses remaining challenges, including high manufacturing costs, limited accessibility, and toxicity issues such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Additionally, the review explores future directions and advances in the field, such as developing next-generation CAR-T cells aiming to maximize efficacy, minimize toxicity, and broaden therapeutic applications.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/trends
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Neoplasms/therapy
- Neoplasms/immunology
- Animals
Collapse
Affiliation(s)
- Kisha K Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mito Tariveranmoshabad
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Siddhant Kadu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nour Shobaki
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Fordyce BA, Roth BL. Chemogenetics for sensing antigens. Cell Res 2025; 35:328-329. [PMID: 39809849 PMCID: PMC12012011 DOI: 10.1038/s41422-025-01072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Affiliation(s)
- Blake A Fordyce
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Porter DL, Grupp SA. Profile of a Pioneer: Carl H. June. Transplant Cell Ther 2025; 31:273-278. [PMID: 40335259 DOI: 10.1016/j.jtct.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Affiliation(s)
| | - Stephan A Grupp
- University of Pennsylvania Perelman School of Medicine; Children's Hospital of Philadelphia
| |
Collapse
|
11
|
Tulsian K, Thakker D, Vyas VK. Overcoming chimeric antigen receptor-T (CAR-T) resistance with checkpoint inhibitors: Existing methods, challenges, clinical success, and future prospects : A comprehensive review. Int J Biol Macromol 2025; 306:141364. [PMID: 39988153 DOI: 10.1016/j.ijbiomac.2025.141364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Immune checkpoint blockade is, as of today, the most successful form of cancer immunotherapy, with more than 43 % of cancer patients in the US eligible to receive it; however, only up to 12.5 % of patients respond to it. Similarly, adoptive cell therapy using bioengineered chimeric antigen receptorT (CAR-T) cells and T-cell receptor (TCR) cells has provided excellent responses against liquid tumours, but both forms of immunotherapy have encountered challenges within a tumour microenvironment that is both lacking in tumour-specific T-cells and is strongly immunosuppressive toward externally administered CAR-T and TCR cells. This review focuses on understanding approved checkpoint blockade and adoptive cell therapy at both biological and clinical levels before delving into how and why their combination holds significant promise in overcoming their individual shortcomings. The advent of next-generation checkpoint inhibitors has further strengthened the immune checkpoint field, and a special section explores how these inhibitors can address existing hurdles in combining checkpoint blockade with adoptive cell therapy and homing in on our cancer target for long-term immunity.
Collapse
Affiliation(s)
- Kartik Tulsian
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Dhinal Thakker
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
12
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
13
|
Zhang W, Zeng M, Ma X, Chen J, Qiao J, He Z, Zhong G, Li Y, Yu L. CLDN18.2-targeting STAR-T cell therapy for pancreatic cancer: a strategy to minimize gastric off-tumor toxicity compared to CLDN18.2 CAR-T. Oncogene 2025:10.1038/s41388-025-03414-z. [PMID: 40301544 DOI: 10.1038/s41388-025-03414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025]
Abstract
Claudin18 isoform 2 (CLDN18.2), primarily expressed in gastric tissue and upregulated in pancreatic cancer (PC), is a key target for innovative treatments like chimeric antigen receptor T (CAR-T) cell therapy. However, CAR-T's effectiveness comes with a significant risk of on-target, off-tumor (OTOT) toxicity due to CLDN18.2's presence in normal gastric mucosa. To address this, we developed CLDN18.2-specific synthetic T cell receptor and antigen receptor T (STAR-T) cells. Our research shows that STAR-T and CAR-T cells have comparable in vitro cytotoxicity, but STAR-T cells cause less gastric damage in vivo despite having weaker antitumor effects than CAR-T cells. Clinical tests with gastroscopes confirmed the gastric safety of STAR-T cell therapy, which effectively controlled the disease. Additionally, incorporating the IL12β p40 subunit into STAR-T cells enhanced their function in both lab and animal studies. This evidence suggests that CLDN18.2 STAR-T cell could be a safer alternative to CAR-T cell therapy for PC, meriting further clinical trials.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Xingyu Ma
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Jinghong Chen
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Jingqiao Qiao
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Ziqian He
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Guocheng Zhong
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, China.
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co. Ltd, Shenzhen, 518125, China.
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|
14
|
Mueller N, de la Roche MA, de la Roche M. Insights from the bottom-up development of LGR5-targeting immunotherapeutics. IMMUNOTHERAPY ADVANCES 2025; 5:ltaf017. [PMID: 40405910 PMCID: PMC12095797 DOI: 10.1093/immadv/ltaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/22/2025] [Indexed: 05/26/2025] Open
Abstract
Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a transcriptional target gene of the Wnt signalling pathway, is overexpressed in multiple cancers, including colorectal cancer (CRC), hepatocellular carcinoma (HCC) and pre-B acute lymphoblastic leukaemia (pre-B ALL) and has emerged as a promising therapeutic target. Here, we reflect on the bottom-up development of a novel α-LGR5 therapeutic antibody we have recently reported, into a palette of LGR5-targeting immunotherapeutic modalities: antibody-drug conjugates (ADCs), bispecific T cell engagers (bispecific engagers), and chimeric antigen receptor (CAR) T cells. The α-LGR5 antibody is highly specific and accurately detects LGR5 protein expression levels, enabling its use as a prognostic biomarker for identifying LGR5+ tumour types. Preclinical studies road-testing the various α-LGR5-based modalities established potent and safe elimination of LGR5-expressing cancer cells in vitro and efficacy in a mouse model of human cancer in vivo. In this review, we discuss the utility of our antibody as the building block for a novel set of immunotherapeutics and highlight the importance of matching specific α-LGR5-based therapeutic modalities to individual tumour type and patient characteristics.
Collapse
Affiliation(s)
- Nico Mueller
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | | | - Maike de la Roche
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
15
|
Barkat MQ, Manzoor M, Xu C, Hussain N, Salawi A, Yang H, Hussain M. Severe asthma beyond bronchodilators: Emerging therapeutic approaches. Int Immunopharmacol 2025; 152:114360. [PMID: 40049087 DOI: 10.1016/j.intimp.2025.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/24/2025]
Abstract
Asthma is characterized by reversible airway inflammation, obstruction, and structural remodeling, which lead to the eosinophils and lymphocytes accumulation at inflammation sites and the release of inflammatory cells, like mast cells and dendritic cells, from lungs' epithelial and smooth muscle cells that trigger the activation and release of cytokines and chemokines, attracting more cells and contributing to asthma development. Available pharmacological interventions, like bronchodilators and anti-inflammatory agents, are considered generally safe and effective to treat asthma, but many affected individuals with severe asthma still struggle with symptom control. This review highlights recent innovative therapies, such as chemoattractant receptor-homologous molecule expressed on Th2 cell (CRTH2) antagonists, S-nitrosoglutathione reductase (GSNOR) and phosphodiesterase (PDE) inhibitors, and other novel biological agents, which offer potential new strategies for managing severe asthma and may alter the disease's course. Kew words. Inflammation; CRTH2; GSNOR; PDE; Interleukins; Biological agents.
Collapse
Affiliation(s)
| | - Majid Manzoor
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Chengyun Xu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310015, China
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates; AAU Health and Biomedical Research center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Musaddique Hussain
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
16
|
Simon S, Bugos G, Prins R, Rajan A, Palani A, Heyer K, Stevens A, Zeng L, Thompson KA, Atilla PA, Price JP, Kluesner MG, Jaeger-Ruckstuhl CA, Shabaneh TB, Olson JM, Su X, Riddell SR. Design of sensitive monospecific and bispecific synthetic chimeric T cell receptors for cancer therapy. NATURE CANCER 2025; 6:647-665. [PMID: 40097658 PMCID: PMC12037409 DOI: 10.1038/s43018-025-00927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
The adoptive transfer of T cells expressing chimeric antigen receptors (CARs) is effective in B cell malignancies. However, the persistence of cancer cells with low levels or complete absence of the target antigen, thereby evading detection by CAR T cells, leads to relapse. These evasion mechanisms highlight the need for receptors with enhanced sensitivity and multispecificity. We introduce a synthetic chimeric T cell receptor (ChTCR) that confers superior antigen sensitivity compared with CARS and previous hybrid TCR designs and is readily adapted for bispecific targeting. ChTCRs replicate the structure of natural TCRs, form classical immune synapses and demonstrate TCR-like signaling. T cells expressing bispecific ChTCRs (Bi-ChTCRs) are more effective than bispecific CAR T cells in eradicating tumors with heterogeneous antigen expression in vivo in female mice. The Bi-ChTCR architecture is resilient and can be designed to target pairs of B cell and multiple myeloma antigens. These findings provide a widely applicable strategy to combat tumor heterogeneity and prevent relapse.
Collapse
Affiliation(s)
- Sylvain Simon
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Grace Bugos
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Rachel Prins
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anusha Rajan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Arulmozhi Palani
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kersten Heyer
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew Stevens
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Longhui Zeng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Kirsten A Thompson
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Pinar A Atilla
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jason P Price
- Seattle Children's Research Institute, Ben Towne Center for Childhood Cancer Research, Seattle, WA, USA
| | | | - Carla A Jaeger-Ruckstuhl
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tamer B Shabaneh
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James M Olson
- Seattle Children's Research Institute, Ben Towne Center for Childhood Cancer Research, Seattle, WA, USA
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Stanley R Riddell
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
17
|
Gorin NC. Not just a combination: a fully-integrated strategy of cellular therapy for acute myeloid leukemia expressing CD7, a heretofore elusive target. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1202-1204. [PMID: 39724395 DOI: 10.1007/s11427-024-2711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 12/28/2024]
Affiliation(s)
- Norbert-Claude Gorin
- Department of Hematology and Cell Therapy, EBMT Global Committee and Paris Office, Hôpital Saint Antoine APHP, Paris, 75012, France.
- Paris Sorbonne University, Paris, 75006, France.
| |
Collapse
|
18
|
Sarangi R, Mishra S, Mahapatra S. Cancer Vaccines: A Novel Revolutionized Approach to Cancer Therapy. Indian J Clin Biochem 2025; 40:191-200. [PMID: 40123637 PMCID: PMC11928706 DOI: 10.1007/s12291-024-01201-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/19/2024] [Indexed: 03/25/2025]
Abstract
Over the past few decades, there has been significant advancement in the field of tumor immunotherapy. For many years vaccination against infectious diseases have been available. On the other hand very few cancer vaccines have been approved for human use. Ideal Cancer vaccines are biological response modifier work by stimulating both humoral and cellular immunity while overcoming the immunological suppression found in tumor. Two types of cancer vaccine: Prophylactic and therapeutic cancer vaccines are recommended for clinical use of individuals. HPV and HBV vaccines are the two widely used preventive vaccine used for treatment of cervical and hepatocellular carcinoma respectively and are approved by Food and Drug Administration (FDA). In therapeutic vaccine only three are approved: Sipuleucel T-cell vaccine for treatment refractory prostatic cancer, BCG vaccine for early bladder cancer and T-VEC for inoperable melanoma. Active ingredient in all cancer vaccines is an antigen. Antigens used for formulating cancer vaccines along with adjuvants optimizes immunogenicity in it. Heterogeneity within and between cancer types, screening and identifying suitable antigen specific to tumors and selection of vaccine delivery platforms are challenges in the development of vaccines. Adoptive cell therapy, Chimeric antigen receptor T cell therapy are recent breakthrough for cancer treatment.
Collapse
Affiliation(s)
- RajLaxmi Sarangi
- Departments of Biochemistry, Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar, Odisha 751024 India
| | - Sanjukta Mishra
- Departments of Biochemistry, Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar, Odisha 751024 India
| | - Srikrushna Mahapatra
- Departments of Biochemistry, Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar, Odisha 751024 India
| |
Collapse
|
19
|
Batool A, Kopp I, Kubeil M, Bachmann M, Andrews PC, Stephan H. Targeted bismuth-based materials for cancer. Dalton Trans 2025; 54:5614-5639. [PMID: 40040450 DOI: 10.1039/d5dt00163c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The use of bismuth and its compounds in biomedicine has developed rapidly in recent years. Due to their unique properties, there are great opportunities for the development of new non-invasive strategies for the early diagnosis and effective treatment of cancers. This perspective highlights key fabrication methods to generate well-defined and clinically relevant bismuth materials of varying characteristics. On the one hand, this opens up a wide range of possibilities for unimodal and multimodal imaging. On the other hand, effective treatment strategies, which are increasingly based on combinatorial therapies, are given a great deal of attention. One of the biggest challenges remains the selective tumour targeting, whether active or passive. Here we present an overview on new developments of bismuth based materials moving forward from a simple enrichment at the tumour site via uptake by the mononuclear phagocytic system (MPS) to a more active tumour specific targeting via covalent modification with tumour-seeking molecules based on either small or antibody-derived molecules.
Collapse
Affiliation(s)
- Amna Batool
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Ina Kopp
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| |
Collapse
|
20
|
Gaoual Y, Mahyaoui A, Yachi L, Bouatia M, Aliat Z, Rahali Y. Advancements and challenges in CAR T cell therapy for pediatric brain tumors: A review. J Oncol Pharm Pract 2025:10781552251331609. [PMID: 40156311 DOI: 10.1177/10781552251331609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy represents a groundbreaking advancement in immunotherapy, initially gaining FDA approval for treating hematological malignancies. This therapy has shown promising results in solid tumors, particularly in pediatric brain tumors, which are the leading cause of cancer-related death in children. CAR T cells are engineered to target specific antigens on tumor cells, thereby reducing off-target effects and increasing the cytotoxic impact on cancer cells. Over the years, CAR T cell technology has evolved through five generations, each enhancing the structure, functionality, and safety of these cells. Despite these advancements, the application of CAR T cells in solid tumors, especially within the central nervous system (CNS), faces significant challenges. These include the physical barrier posed by the blood-brain barrier (BBB), the immunosuppressive tumor microenvironment (TME), and the heterogeneity of tumor antigens. The review discusses several promising antigenic targets for CAR T cells in pediatric brain tumors, such as HER2, EphA2, IL-13Rα2, and Survivin, which have been explored in recent clinical trials. These trials have shown early promise in improving patient outcomes, though the risks of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) remain concerns. The future of CAR T cell therapy lies in overcoming these barriers through innovative approaches like "Armored CARs" or TRUCKs, designed to modulate the TME and improve CAR T cell efficacy in solid tumors. Additionally, combination therapies and safety switches in next-generation CAR T cells are being explored to enhance therapeutic potential while minimizing adverse effects.
Collapse
Affiliation(s)
- Yasmina Gaoual
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Specialties Hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
| | - Adam Mahyaoui
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Specialties Hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
| | - Lamyae Yachi
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Children's hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
- Team of analytical chemistry and bromatology, Faculty of Medicine and Pharmacy, Mohammed V University- Rabat, 10 170 Rabat, Morocco
| | - Mustapha Bouatia
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Children's hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
- Team of analytical chemistry and bromatology, Faculty of Medicine and Pharmacy, Mohammed V University- Rabat, 10 170 Rabat, Morocco
- Ibn Sina University Hospital Center, 10 170 Rabat, Morocco
| | - Zineb Aliat
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Specialties Hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
- Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University- Rabat, 10 170 Rabat, Morocco
| | - Younes Rahali
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Specialties Hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
- Ibn Sina University Hospital Center, 10 170 Rabat, Morocco
- Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University- Rabat, 10 170 Rabat, Morocco
| |
Collapse
|
21
|
Wiewiórska-Krata N, Foroncewicz B, Mucha K, Zagożdżon R. Cell therapies for immune-mediated disorders. Front Med (Lausanne) 2025; 12:1550527. [PMID: 40206475 PMCID: PMC11980423 DOI: 10.3389/fmed.2025.1550527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 04/11/2025] Open
Abstract
Immune-mediated disorders are a broad range of diseases, arising as consequence of immune defects, exaggerated/misguided immune response or a mixture of both conditions. Their frequency is on a rise in the developed societies and they pose a significant challenge for diagnosis and treatment. Traditional pharmacological, monoclonal antibody-based or polyclonal antibody replacement-based therapies aiming at modulation of the immune responses give very often dissatisfactory results and/or are burdened with unacceptable adverse effects. In recent years, a new group of treatment modalities has emerged, utilizing cells as living drugs, especially with the use of the up-to-date genetic engineering. These modern cellular therapies are designed to offer a high potential for more targeted, safe, durable, and personalized treatment options. This work briefly reviews the latest advances in the treatment of immune-mediated disorders, mainly those related to exaggeration of the immune response, with such cellular therapies as hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), regulatory T cells (Tregs), chimeric antigen receptor (CAR) T cells and others. We highlight the main features of these therapies as new treatment options for taming the dysregulated immune system. Undoubtfully, in near future such therapies can provide lasting remissions in a range of immune-mediated disorders with reduced treatment burden and improved quality of life for the patients.
Collapse
Affiliation(s)
- Natalia Wiewiórska-Krata
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- ProMix Center (ProteogenOmix in Medicine), Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Bartosz Foroncewicz
- ProMix Center (ProteogenOmix in Medicine), Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
- Department of Transplantology, Immunology, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Mucha
- ProMix Center (ProteogenOmix in Medicine), Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
- Department of Transplantology, Immunology, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Department of Transplantology, Immunology, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
22
|
Yassin AAK, Banerji R, Bhattacharya B, Radinsky O, Hadad U, Kaufman B, Porgador A. Enhancing the Efficacy of CAR-T Cell Production Using BX795 and Rosuvastatin in a Serum-Free Medium. Int J Mol Sci 2025; 26:2988. [PMID: 40243610 PMCID: PMC11988885 DOI: 10.3390/ijms26072988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Chimeric Antigen Receptor T-cell (CAR-T) therapy has emerged as a transformative approach for cancer treatment, demonstrating remarkable success in patients with relapsed and refractory hematological malignancies. However, challenges persist in optimizing CAR-T cell production and improving therapeutic outcomes. One of the major hurdles is the efficiency of retroviral or lentiviral transduction during CAR-T cell manufacturing. Additionally, the heterogeneity of T-cell populations isolated from patients can impact CAR-T cell effectiveness and persistence in vivo. This article explores a novel strategy to address these challenges by focusing on serum-free medium and additive optimization. We propose a unique approach that incorporates the culturing of T cells in Nutri-T medium, along with 24 h of exposure to combined low concentrations of BX795 and rosuvastatin, to enhance the transduction efficacy and functionality of CAR-T cells. The results presented here provide promising insights into the potential of this strategy to produce more effective CAR-T cells for immunotherapy, ultimately advancing the field and benefiting cancer patients worldwide.
Collapse
Affiliation(s)
- Abed Al-Kader Yassin
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (A.A.-K.Y.); (R.B.); (B.B.); (O.R.); (B.K.)
| | - Rajashri Banerji
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (A.A.-K.Y.); (R.B.); (B.B.); (O.R.); (B.K.)
| | - Baisali Bhattacharya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (A.A.-K.Y.); (R.B.); (B.B.); (O.R.); (B.K.)
| | - Olga Radinsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (A.A.-K.Y.); (R.B.); (B.B.); (O.R.); (B.K.)
| | - Uzi Hadad
- The Ilse Katz Institute for Nanoscale Science and Technology, Marcus Campus, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Bar Kaufman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (A.A.-K.Y.); (R.B.); (B.B.); (O.R.); (B.K.)
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (A.A.-K.Y.); (R.B.); (B.B.); (O.R.); (B.K.)
| |
Collapse
|
23
|
Huang Y, Wang H. Tonic signaling in CAR-T therapy: the lever long enough to move the planet. Front Med 2025:10.1007/s11684-025-1130-x. [PMID: 40117019 DOI: 10.1007/s11684-025-1130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/16/2024] [Indexed: 03/23/2025]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has shown remarkable efficacy in treating hematological malignancies and is expanding into other indications such as autoimmune diseases, fibrosis, aging and viral infection. However, clinical challenges persist in treating solid tumors, including physical barriers, tumor heterogeneity, poor in vivo persistence, and T-cell exhaustion, all of which hinder therapeutic efficacy. This review focuses on the critical role of tonic signaling in CAR-T therapy. Tonic signaling is a low-level constitutive signaling occurring in both natural and engineered antigen receptors without antigen stimulation. It plays a pivotal role in regulating immune cell homeostasis, exhaustion, persistence, and effector functions. The "Peak Theory" suggests an optimal level of tonic signaling for CAR-T function: while weak tonic signaling may result in poor proliferation and persistence, excessively strong signaling can cause T cell exhaustion. This review also summarizes the recent progress in mechanisms underlying the tonic signaling and strategies to fine-tune the CAR tonic signaling. By understanding and precisely modulating tonic signaling, the efficacy of CAR-T therapies can be further optimized, offering new avenues for treatment across a broader spectrum of diseases. These findings have implications beyond CAR-T cells, potentially impacting other engineered immune cell therapies such as CAR-NK and CAR-M.
Collapse
Affiliation(s)
- Yuwei Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
24
|
Chen W, Hong L, Lin S, Xian N, Yan C, Zhao N, Xiao Y, Liao W, Huang Y, Chen M. Enhanced anti-tumor efficacy of "IL-15 and CCL19" -secreting CAR-T cells in human glioblastoma orthotopic xenograft model. Front Oncol 2025; 15:1539055. [PMID: 40177238 PMCID: PMC11962218 DOI: 10.3389/fonc.2025.1539055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Despite the remarkable success of CAR-T cell therapy in hematologic malignancies, its progress in solid tumors has been slow. Overcoming challenges such as the recruitment and infiltration of CAR-T cells into the tumor site and the survival issues in the harsh tumor microenvironment are crucial for successful application in solid tumors. In this study, CAR-T cells were engineered to secrete both IL-15 and CCL19, and their efficacy was evaluated in a human glioblastoma orthotopic xenograft model. The results reveal that 15 × 19 CAR-T cells exhibit superior proliferation, chemotaxis, and phenotypic characteristics compared to conventional CAR-T cells in vitro. In vivo, 15 × 19 CAR-T cells exhibit superior control over tumors compared to conventional counterparts. Mechanistically, the improved efficacy can be attributed, in part, to IL-15 and CCL19 enhancing T-cell infiltration at the tumor site and fortifying resistance to exhaustion within the tumor microenvironment. In conclusion, the incorporation of IL-15 and CCL19 into CAR-T cells emerges as a promising strategy to elevate the anti-tumor efficacy of CAR-T cell therapy, positioning 15 × 19 CAR-T cells as a potential breakthrough for enhancing the application of CAR-T therapy in solid tumors.
Collapse
Affiliation(s)
- Wanqiong Chen
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Limian Hong
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Shaomei Lin
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Na Xian
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
- Tcelltech Biological Science and Technology Inc., Fuzhou, Fujian, China
| | - Cailing Yan
- Public Technology Service Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Ningning Zhao
- Laboratory Animal Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Yonglei Xiao
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
| | - Wanting Liao
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Yuxiang Huang
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Mingzhu Chen
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| |
Collapse
|
25
|
Galati D, Zanotta S, Florio F, Mele S, De Filippi R, Pinto A. Immunotherapies Targeting CD123 and CD303: A New Frontier in Treating Blastic Plasmacytoid Dendritic Cell Neoplasm. Int J Mol Sci 2025; 26:2732. [PMID: 40141368 PMCID: PMC11942551 DOI: 10.3390/ijms26062732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy characterized by the overexpression of CD123 and CD303 surface antigens. These molecular markers play a crucial role in diagnosing diseases and developing targeted therapies. Traditional treatment options for BPDCN have demonstrated limited effectiveness, highlighting the need for new and innovative therapeutic strategies. Recent advances in immunotherapy, particularly therapeutic monoclonal antibodies, bispecific T-cell engagers, and CAR T-cell therapy, have provided promising alternatives. Tagraxofusp, the first FDA-approved CD123-targeted therapy, has significantly improved patient outcomes. Additionally, emerging CD303-targeting strategies offer the potential for further advancements. Despite these breakthroughs, challenges such as treatment resistance and toxicity remain. This review explores the latest developments in BPDCN treatment, emphasizing the potential of CD123 and CD303 as targets for precision medicine interventions. The ongoing evolution of targeted immunotherapies holds promise for improving patient survival and redefining treatment paradigms in hematologic malignancies.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (F.F.); (S.M.); (A.P.)
| | - Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (F.F.); (S.M.); (A.P.)
| | - Fabrizia Florio
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (F.F.); (S.M.); (A.P.)
| | - Sara Mele
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (F.F.); (S.M.); (A.P.)
| | - Rosaria De Filippi
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy;
| | - Antonio Pinto
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (F.F.); (S.M.); (A.P.)
| |
Collapse
|
26
|
Pan X, Zhang YWQ, Dai C, Zhang J, Zhang M, Chen X. Applications of mRNA Delivery in Cancer Immunotherapy. Int J Nanomedicine 2025; 20:3339-3361. [PMID: 40125430 PMCID: PMC11928443 DOI: 10.2147/ijn.s500520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/08/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer treatment is continually advancing, with immunotherapy gaining prominence as a standard modality that has markedly improved the management of various malignancies. Despite these advancements, the efficacy of immunotherapy remains variable, with certain cancers exhibiting limited response and patient outcomes differing considerably. Thus, enhancing the effectiveness of immunotherapy is imperative. A promising avenue is mRNA delivery, employing carriers such as liposomes, peptide nanoparticles, inorganic nanoparticles, and exosomes to introduce mRNA cargos encoding tumor antigens, immune-stimulatory, or immune-modulatory molecules into the tumor immune microenvironment (TIME). This method aims to activate the immune system to target and eradicate tumor cells. In this review, we introduce the characteristics and limitations of these carriers and summarize the application and mechanisms of currently prevalent cargos in mRNA-based tumor treatment. Additionally, given the significant clinical application of immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR)-based cell therapies in solid tumors (including melanoma, non-small-cell lung cancer, head and neck squamous cell carcinoma, triple-negative breast cancer, gastric cancer) and leukemia, which have become first-line treatments, we highlight and discuss recent progress in combining mRNA delivery with ICIs, CAR-T, CAR-NK, and CAR-macrophage therapies. This combination enhances the targeting capabilities and efficacy of ICIs and CAR-cell-based therapies, while also mitigating the long-term off-target toxicities associated with conventional methods. Finally, we analyze the limitations of current mRNA delivery systems, such as nuclease-induced mRNA instability, immunogenicity risks, complex carrier production, and knowledge gaps concerning dosing and safety. Addressing these challenges is crucial for unlocking the potential of mRNA in cancer immunotherapy. Overall, exploring mRNA delivery enriches our comprehension of cancer immunotherapy and holds promise for developing personalized and effective treatment strategies, potentially enhancing the immune responses of cancer patients and extending their survival time.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yang-Wen-Qing Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Caixia Dai
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Junyu Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Minghe Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| |
Collapse
|
27
|
Guo S, Xi X. Nanobody-enhanced chimeric antigen receptor T-cell therapy: overcoming barriers in solid tumors with VHH and VNAR-based constructs. Biomark Res 2025; 13:41. [PMID: 40069884 PMCID: PMC11899093 DOI: 10.1186/s40364-025-00755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
CAR-T cells are genetically modified T lymphocytes that express chimeric antigen receptors (CAR) on their surfaces. These receptors enable T lymphocytes to recognize specific antigens on target cells, triggering a response that leads to targeted cytotoxicity. While CAR-T therapy has effectively treated various blood cancers, it faces significant challenges in addressing solid tumors. These challenges include identifying precise tumor antigens, overcoming antigen evasion, and enhancing the function of CAR-T cells within the tumor microenvironment. Single domain antibody, versatile tools with low immunogenicity, high stability, and strong affinity, show promise for improving the efficacy of CAR-T cells against solid tumors. By addressing these challenges, single domain antibody has the potential to overcome the limitations associated with ScFv antibody-based CAR-T therapies. This review highlights the benefits of utilizing single domain antibody in CAR-T therapy, particularly in targeting tumor antigens, and explores development strategies that could advance the field.
Collapse
Affiliation(s)
- Shasha Guo
- Shandong Women's University, Jinan, 250300, People's Republic of China.
| | - Xiaozhi Xi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, People's Republic of China.
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, 250023, People's Republic of China.
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
28
|
Yi E, Lee E, Park HJ, Lee HH, Yun SH, Kim HS. A chimeric antigen receptor tailored to integrate complementary activation signals potentiates the antitumor activity of NK cells. J Exp Clin Cancer Res 2025; 44:86. [PMID: 40045373 PMCID: PMC11884141 DOI: 10.1186/s13046-025-03351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Chimeric antigen receptors (CARs) are synthetic receptors that reprogram the target specificity and functions of CAR-expressing effector cells. The design of CAR constructs typically includes an extracellular antigen-binding moiety, hinge (H), transmembrane (TM), and intracellular signaling domains. Conventional CAR constructs are primarily designed for T cells but have been directly adopted for other effector cells, including natural killer (NK) cells, without tailored optimization. Given the benefits of CAR-NK cells over CAR-T cells in terms of safety, off-the-shelf utility, and antigen escape, there is an increasing emphasis on tailoring them to NK cell activation mechanisms. METHODS We first have taken a stepwise approach to modifying CAR components such as the combination and order of the H, TM, and signaling domains to achieve such tailoring in NK cells. Functionality of NK-tailored CARs were evaluated in vitro and in vivo in a model of CD19-expressing lymphoma, along with their expression and signaling properties in NK cells. RESULTS We found that NK-CAR driven by the synergistic combination of NK receptors NKG2D and 2B4 rather than DNAM-1 and 2B4 induces potent activation in NK cells. Further, more effective CAR-mediated cytotoxicity was observed following the sequential combination of DAP10, but not NKG2D TM, with 2B4 signaling domain despite the capacity of NKG2D TM to recruit endogenous DAP10 for signaling. Accordingly, an NK-CAR incorporating DAP10, 2B4, and CD3ζ signaling domains coupled to CD8α H and CD28 TM domains was identified as the most promising candidate to improve CAR-mediated cytotoxicity. This NK-tailored CAR provided more potent antitumor activity than a conventional T-CAR when delivered to NK cells both in vitro and in vivo. CONCLUSIONS Hence, NK receptor-based domains hold great promise for the future of NK-CAR design with potentially significant therapeutic benefits.
Collapse
Affiliation(s)
- Eunbi Yi
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunbi Lee
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo Jin Park
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyeon Ho Lee
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - So Hyeon Yun
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hun Sik Kim
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Cui Y, David M, Bouchareychas L, Rouquier S, Sajuthi S, Ayrault M, Navarin C, Lara G, Lafon A, Saviane G, Boulakirba S, Menardi A, Demory A, Frikeche J, de la Forest Divonne Beghelli S, Lu HH, Dumont C, Abel T, Fenard D, de la Rosa M, Gertner-Dardenne J. IL23R-Specific CAR Tregs for the Treatment of Crohn's Disease. J Crohns Colitis 2025; 19:jjae135. [PMID: 39252592 PMCID: PMC11945296 DOI: 10.1093/ecco-jcc/jjae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND AND AIMS Regulatory T cells (Tregs) are key regulators in maintaining tissue homeostasis. Disrupted immune homeostasis is associated with Crohn's disease (CD) pathogenesis. Thus, Treg therapy represents a promising long-acting treatment to restore immune balance in the diseased intestine. Chimeric antigen receptor (CAR) T-cell therapy has revolutionized cancer treatment. This innovative approach also provides the opportunity to improve therapy for CD. By targeting a disease-relevant protein, interleukin-23 receptor (IL23R), we engineered Tregs expressing IL23R-CAR for treating active CD. METHODS Intestinal IL23R expression from active CD was verified by immunohistochemical analysis. Phenotypic and functional characteristics of IL23R-CAR Tregs were assessed using in vitro assays and their migration capacity was monitored in a xenograft tumor model. Transcriptomic and proteomic analyses were performed to associate molecular profiles with IL23R-CAR Treg activation against colon biopsy-derived cells from active CD patients. RESULTS Our study showed that IL23R-CAR displayed negligible tonic signaling and a strong signal-to-noise ratio. IL23R-CAR Tregs maintained regulatory phenotype during in vitro expansion, even when chronically exposed to proinflammatory cytokines and target antigen. IL23R engagement on IL23R-CAR Tregs triggered CAR-specific activation and significantly enhanced their suppressive activity. Also, IL23R-CAR Tregs migrated to IL23R-expressing tissue in humanized mice. Finally, IL23R-CAR Tregs elicited a specific activation against colon biopsy-derived cells from active CD, suggesting an efficient CAR engagement in active CD. Molecular profiling of CD patient biopsies also revealed transcriptomic and proteomic patterns associated with IL23R-CAR activation. CONCLUSIONS Overall, our results demonstrate that IL23R-CAR Tregs represent a promising therapy for active CD.
Collapse
Affiliation(s)
- Yue Cui
- Research, Sangamo Therapeutics, Valbonne, France
| | - Marion David
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | | | | | | | | - Gregory Lara
- Research, Sangamo Therapeutics, Valbonne, France
| | - Audrey Lafon
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | | | | | | | | | | | | | | - Tobias Abel
- Research, Sangamo Therapeutics, Valbonne, France
| | - David Fenard
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | |
Collapse
|
30
|
Ji X, Sun Y, Xie Y, Gao J, Zhang J. Advance in chimeric antigen receptor T therapy in autoimmune diseases. Front Immunol 2025; 16:1533254. [PMID: 40103816 PMCID: PMC11913860 DOI: 10.3389/fimmu.2025.1533254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Autoimmune diseases are a group of diseases in which the body's immune system misrecognizes its own antigens resulting in an abnormal immune response, which can lead to pathological damage to or abnormal functioning of its own tissues. Current treatments are mainly hormones and broad-spectrum immunosuppressants, but these can lead to a decline in the patient's immunity. Chimeric antigen receptor T (CAR-T) Cell therapy has emerged, and now the structure of CAR has changed from first generation to fourth generation of CAR. The significant achievement of CAR-T therapy to B-cell leukemia has also inspired the treatment of autoimmune diseases, and by investigating the mechanisms of different autoimmune diseases, different designs of CAR-T can be used to specifically treat autoimmune diseases. In this review, we will discuss the therapeutic strategies of CAR-T cells in different autoimmune diseases and the limitations of the treatment.
Collapse
Affiliation(s)
- Xiaolan Ji
- Department of Ophthalmology, The Second Affiliated Hospital of Suzhou University, Suzhou, China
| | - Yunfan Sun
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Yuyang Xie
- The First Clinical Medicine School, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jianling Gao
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Ji Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Suzhou University, Suzhou, China
| |
Collapse
|
31
|
Almawash S. Revolutionary Cancer Therapy for Personalization and Improved Efficacy: Strategies to Overcome Resistance to Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2025; 17:880. [PMID: 40075727 PMCID: PMC11899125 DOI: 10.3390/cancers17050880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a significant public health issue worldwide, standing as a primary contributor to global mortality, accounting for approximately 10 million fatalities in 2020 [...].
Collapse
Affiliation(s)
- Saud Almawash
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
32
|
Minguet S, Maus MV, Schamel WW. From TCR fundamental research to innovative chimeric antigen receptor design. Nat Rev Immunol 2025; 25:212-224. [PMID: 39433885 DOI: 10.1038/s41577-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
Engineered T cells that express chimeric antigen receptors (CARs) have transformed the treatment of haematological cancers. CARs combine the tumour-antigen-binding function of antibodies with the signalling functions of the T cell receptor (TCR) ζ chain and co-stimulatory receptors. The resulting constructs aim to mimic the TCR-based and co-receptor-based activation of T cells. Although these have been successful for some types of cancer, new CAR formats are needed, to limit side effects and broaden their use to solid cancers. Insights into the mechanisms of TCR signalling, including the identification of signalling motifs that are not present in the TCR ζ chain and mechanistic insights in TCR activation, have enabled the development of CAR formats that outcompete the current CARs in preclinical mouse models and clinical trials. In this Perspective, we explore the mechanistic rationale behind new CAR designs.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- Immunotherapy, Adoptive/methods
- Signal Transduction/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Mice
- Lymphocyte Activation/immunology
Collapse
Affiliation(s)
- Susana Minguet
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Department of Synthetic Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Marcela V Maus
- Cellular Immunotherapy Program and Krantz Family Center for Cancer Research, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wolfgang W Schamel
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
33
|
Xia B, Feng H, Jiang X, Guo J, Lin K, Zhang W, Xing F, Cao L, Li Y, Zhang H, Zhang X, Li W, Yu F. Development of chimeric Nanobody-Granzyme B functionalized ferritin nanoparticles for precise tumor therapy. Pharmacol Res 2025; 213:107628. [PMID: 39880067 DOI: 10.1016/j.phrs.2025.107628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
T-cell lymphomas (TCLs) are heterogeneous malignancies with limited treatment options and poor outcomes. The efficacy of traditional T-cell therapies, including chimeric antigen receptor (CAR) T cells, is often constrained by immunosuppressive factors and the tumor microenvironment. On the other hand, although direct Granzyme B (GrB) administration can effectively induce tumor cell apoptosis, it lacks universal tumor targeting and efficient cellular entry mechanisms. To address these limitations, we developed a novel nanoparticle-based therapy for the precise targeting of TCL tumor cells and the delivery of GrB. We fused nanobody (Nb) targeting CD30 and CD5 with GrB and coupled them to human ferritin (h-HFn) using the Gv/Sd system, creating a novel therapeutic nanoparticle named BiCD30/5-GF, which specifically targets CD30 and CD5 receptors on TCL tumor cells. The Nb-GrB conjugation enhances tumor targeting, while a Gv/Sd linker coupled to h-HFn further improves cellular transport and targeting. Additionally, the multimerization of GrB enhances its effectiveness. These nanoparticles demonstrated superior binding affinity and cytotoxicity in vitro compared to conventional treatments. In vivo studies on tumor-bearing mice showed significant tumor suppression and prolonged survival following treatment with BiCD30/5-GF nanoparticles. We also extended similar nanoparticle strategies for gastric cancer therapy, targeting FGFR4-expressing tumor cells. Our findings highlight the potential of engineered nanoparticles as effective and targeted therapeutic agents across various tumor types, offering promising prospects for clinical translation in cancer treatment.
Collapse
Affiliation(s)
- Baijin Xia
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Huolun Feng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Xinmiao Jiang
- Lymphoma Department, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jialing Guo
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Keming Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wenxing Zhang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Fan Xing
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Lixue Cao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Xu Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Wenyu Li
- Lymphoma Department, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Fei Yu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
34
|
Nasiri F, Safarzadeh Kozani P, Salem F, Mahboubi Kancha M, Dashti Shokoohi S, Safarzadeh Kozani P. Mechanisms of antigen-dependent resistance to chimeric antigen receptor (CAR)-T cell therapies. Cancer Cell Int 2025; 25:64. [PMID: 39994651 PMCID: PMC11849274 DOI: 10.1186/s12935-025-03697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Cancer immunotherapy has reshaped the landscape of cancer treatment over the past decades. Genetic manipulation of T cells to express synthetic receptors, known as chimeric antigen receptors (CAR), has led to the creation of tremendous commercial and therapeutic success for the treatment of certain hematologic malignancies. However, since the engagement of CAR-T cells with their respective antigens is solely what triggers their cytotoxic reactions against target cells, the slightest changes to the availability and/or structure of the target antigen often result in the incapacitation of CAR-T cells to enforce tumoricidal responses. This results in the resistance of tumor cells to a particular CAR-T cell therapy that requires meticulous heeding to sustain remissions in cancer patients. In this review, we highlight the antigen-dependent resistance mechanisms by which tumor cells dodge being recognized and targeted by CAR-T cells. Moreover, since substituting the target antigen is the most potent strategy for overcoming antigen-dependent disease relapse, we tend to highlight the current status of some target antigens that might be considered suitable alternatives to the currently available antigens in various cancers. We also propose target antigens whose targeting might reduce the off-tumor adverse events of CAR-T cells in certain malignancies.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Faeze Salem
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maral Mahboubi Kancha
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | | | - Pooria Safarzadeh Kozani
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
35
|
Wang Z, Kelley SO. Microfluidic technologies for enhancing the potency, predictability and affordability of adoptive cell therapies. Nat Biomed Eng 2025:10.1038/s41551-024-01315-2. [PMID: 39953325 DOI: 10.1038/s41551-024-01315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/31/2024] [Indexed: 02/17/2025]
Abstract
The development and wider adoption of adoptive cell therapies is constrained by complex and costly manufacturing processes and by inconsistent efficacy across patients. Here we discuss how microfluidic and other fluidic devices can be implemented at each stage of cell manufacturing for adoptive cell therapies, from the harvesting and isolation of the cells to their editing, culturing and functional selection. We suggest that precise and controllable microfluidic systems can streamline the development of these therapies by offering scalability in cell production, bolstering the efficacy and predictability of the therapies and improving their cost-effectiveness and accessibility for broader populations of patients with cancer.
Collapse
Affiliation(s)
- Zongjie Wang
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Shana O Kelley
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA.
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
36
|
Gallus M, Young JS, Cook Quackenbush S, Khasraw M, de Groot J, Okada H. Chimeric antigen receptor T-cell therapy in patients with malignant glioma-From neuroimmunology to clinical trial design considerations. Neuro Oncol 2025; 27:352-368. [PMID: 39450490 PMCID: PMC11812040 DOI: 10.1093/neuonc/noae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Clinical trials evaluating chimeric antigen receptor (CAR) T-cell therapy in patients with malignant gliomas have shown some early promise in pediatric and adult patients. However, the long-term benefits and safety for patients remain to be established. The ultimate success of CAR T-cell therapy for malignant glioma will require the integration of an in-depth understanding of the immunology of the central nervous system (CNS) parenchyma with strategies to overcome the paucity and heterogeneous expression of glioma-specific antigens. We also need to address the cold (immunosuppressive) microenvironment, exhaustion of the CAR T-cells, as well as local and systemic immunosuppression. Here, we discuss the basics and scientific considerations for CAR T-cell therapies and highlight recent clinical trials. To help identify optimal CAR T-cell administration routes, we summarize our current understanding of CNS immunology and T-cell homing to the CNS. We also discuss challenges and opportunities related to clinical trial design and patient safety/monitoring. Finally, we provide our perspective on future prospects in CAR T-cell therapy for malignant gliomas by discussing combinations and novel engineering strategies to overcome immuno-regulatory mechanisms. We hope this review will serve as a basis for advancing the field in a multiple discipline-based and collaborative manner.
Collapse
Affiliation(s)
- Marco Gallus
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | | | - Mustafa Khasraw
- The Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - John de Groot
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | - Hideho Okada
- The Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| |
Collapse
|
37
|
Kar S, Verma D, Mehrotra S, Prajapati VK. Reconfiguring the immune system to target cancer: Therapies based on T cells, cytokines, and vaccines. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:77-150. [PMID: 39978976 DOI: 10.1016/bs.apcsb.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Over the years, extensive research has been dedicated to performing in-depth analysis of cancer to uncover the intricate details of its nature - including the types of cancer, causative agents, stimulators of disease progression, factors contributing to poor prognosis, and efficient therapies to restrict the metastatic aggressiveness. This chapter highlights the mechanisms through which different arms of the host immune system - namely cytokines, lymphocytes, antigen-presenting cells (APCs) -can be mobilized to eradicate cancer. Most malignant tumors are either poorly immunogenic, or are harbored in a highly immuno-suppressive microenvironment. This is why reinforcing the host's anti-tumor defenses, through infusion of pro-inflammatory cytokines, tumor antigen-loaded APCs, and anti-tumor cytotoxic cells has emerged as a viable treatment option against cancer. The chapter also highlights the ongoing preclinical and clinical studies in different malignancies and the outcome of various therapies. Although these methods are not foolproof, and antigen escape variants can still evade or develop resistance to customized therapies, they achieve disease stabilization in several cases when conventional treatments fail. In many instances, combination therapies involving cytokines, T cells, and vaccinations prove more effective than monotherapies. The limitations of the current therapies are also discussed, along with ongoing modifications aimed at improving efficacy.
Collapse
Affiliation(s)
- Sramona Kar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Divya Verma
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
38
|
Ren T, Huang Y. Recent advancements in improving the efficacy and safety of chimeric antigen receptor (CAR)-T cell therapy for hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1433-1446. [PMID: 39316087 DOI: 10.1007/s00210-024-03443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
The liver is one of the most frequent sites of primary malignancies in humans. Hepatocellular carcinoma (HCC) is one of the most prevalent solid tumors with poor prognosis. Current treatments showed limited efficacy in some patients, and, therefore, alternative strategies, such as immunotherapy, cancer vaccines, adoptive cell therapy (ACT), and recently chimeric antigen receptors (CAR)-T cells, are developed to offer better efficacy and safety profile in patients with HCC. Unlike other ACTs like tumor-infiltrating lymphocytes (TILs), CAR-T cells are equipped with engineered CAR receptors that effectively identify tumor antigens and eliminate cancer cells without major histocompatibility complex (MHC) restriction. This process induces intracellular signaling, leading to T lymphocyte recruitment and subsequent activation of other effector cells in the tumor microenvironment (TME). Until today, novel approaches have been used to develop more potent CAR-T cells with robust persistence, specificity, trafficking, and safety. However, the clinical application of CAR-T cells in solid tumors is still challenging. Therefore, this study aims to review the advancement, prospects, and possible avenues of CAR-T cell application in HCC following an outline of the CAR structure and function.
Collapse
Affiliation(s)
- Tuo Ren
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Yonghui Huang
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
39
|
Kushwaha N, Panjwani D, Patel S, Ahlawat P, Yadav MR, Patel AS. Emerging advances in nano-biomaterial assisted amyloid beta chimeric antigen receptor macrophages (CAR-M) therapy: reducing plaque burden in Alzheimer's disease. J Drug Target 2025; 33:185-205. [PMID: 39403775 DOI: 10.1080/1061186x.2024.2417012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease is the most common form, accounting for 60-70% of 55 million dementia cases. Even though the precise pathophysiology of AD is not completely understood, clinical trials focused on antibodies targeting aggregated forms of β amyloid (Aβ) have demonstrated that reducing amyloid plaques can arrest cognitive decline in patients in the early stages of AD. In this study, we provide an overview of current research and innovations for controlled release from nano-biomaterial-assisted chimeric antigen receptor macrophage (CAR-M) therapeutic strategies targeted at AD. Nano-bio materials, such as iron-oxide nanoparticles (IONPs), can be made selectively (Hp-Hb/mannose) to bind and take up Aβ plaques like CAR-M cells. By using nano-bio materials, both the delivery and stability of CAR-M cells in brain tissue can be improved to overcome the barriers of the BBB and enhance therapeutic effects. By enhancing the targeting capabilities and stability of CAR-M cells, mRNA-loaded nano-biomaterials can significantly improve the efficacy of immunotherapy for plaque reduction in AD. This novel strategy holds promise for translating preclinical successes into clinical applications, potentially revolutionising the management of AD.
Collapse
Affiliation(s)
- Nishabh Kushwaha
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, India
| | - Asha S Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| |
Collapse
|
40
|
Tharakan S, Tremblay D, Azzi J. Adoptive cell therapy in acute myeloid leukemia: the current landscape and emerging strategies. Leuk Lymphoma 2025; 66:204-217. [PMID: 39453877 DOI: 10.1080/10428194.2024.2414112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/27/2024]
Abstract
Efforts to produce adoptive cell therapies in AML have been largely unfruitful, despite the success seen in lymphoid malignancies. Identifying targetable antigens on leukemic cells that are absent on normal progenitor cells remains a major obstacle, as is the hostile tumor microenvironment created by AML blasts. In this review, we summarize the challenges in the development of adoptive cell therapies such as CAR-T, CAR-NK, and TCR-T cells in AML, discussing both autologous and allogeneic therapies. We also discuss methods to address myelotoxicity associated with these therapies, including rapidly switchable CAR platforms and CRISPR-Cas9 genetic engineering of hematopoietic stem cells. Finally, we present the current clinical landscape in these areas, along with future directions in the field.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/trends
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Tumor Microenvironment/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Animals
- Hematopoietic Stem Cell Transplantation
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
Collapse
Affiliation(s)
- Serena Tharakan
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Tremblay
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacques Azzi
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
41
|
van den Berg J, Läubli H, Khanna N, Jeker LT, Holbro A. Basic Concepts and Indications of CAR T Cells. Hamostaseologie 2025; 45:14-23. [PMID: 39970899 DOI: 10.1055/a-2491-3652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized cancer immunotherapy, particularly for hematological malignancies. This personalized approach is based on genetically engineering T cells derived from the patient to target antigens expressed-among others-on malignant cells. Nowadays they offer new hope where conventional therapies, such as chemotherapy and radiation, have often failed. Since the first FDA approval in 2017, CAR T cell therapy has rapidly expanded, proving highly effective against previously refractory diseases with otherwise a dismal outcome. Despite its promise, CAR T cell therapy continues to face significant challenges, including complex manufacturing, the management of toxicities, resistance mechanisms that impact long-term efficacy, and limited access as well as high costs, which continue to shape ongoing research and clinical applications. This review aims to provide an overview of CAR T cell therapy, including its fundamental concepts, clinical applications, current challenges, and future directions in hematological malignancies.
Collapse
Affiliation(s)
- Jana van den Berg
- Division of Hematology, University Hospital Basel, Basel, Switzerland
- Innovation Focus Cell Therapies, University Hospital Basel, Basel, Switzerland
| | - Heinz Läubli
- Innovation Focus Cell Therapies, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Nina Khanna
- Innovation Focus Cell Therapies, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Lukas T Jeker
- Innovation Focus Cell Therapies, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Andreas Holbro
- Division of Hematology, University Hospital Basel, Basel, Switzerland
- Innovation Focus Cell Therapies, University Hospital Basel, Basel, Switzerland
- Regional Blood Transfusion Service, Swiss Red Cross, Basel, Switzerland
| |
Collapse
|
42
|
Kong Y, Li J, Zhao X, Wu Y, Chen L. CAR-T cell therapy: developments, challenges and expanded applications from cancer to autoimmunity. Front Immunol 2025; 15:1519671. [PMID: 39850899 PMCID: PMC11754230 DOI: 10.3389/fimmu.2024.1519671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors. Also, key innovations were discussed including specialized CAR-T, combination therapies and the novel use of CAR-Treg, CAR-NK and CAR-M cells. Besides, CAR-based cell therapy have extended its reach beyond oncology to autoimmune disorders. We reviewed preclinical experiments and clinical trials involving CAR-T, Car-Treg and CAAR-T cell therapies in various autoimmune diseases. By highlighting these cutting-edge developments, this review underscores the transformative potential of CAR technologies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yanwei Wu
- School of Medicine, Shanghai University, Shanghai, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
43
|
Murphy GF. White Depressed Areas and Tumor Infiltrating Lymphocytes: The Cancer Cure That Lies Within? J Cutan Pathol 2025. [PMID: 39777741 DOI: 10.1111/cup.14768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 01/11/2025]
Abstract
This brief overview is inspired by seminal contributions by the late Dr. Martin C. Mihm, Jr. who provided a basis for recognition and better understanding of interactions between lymphocytes (tumor-infiltrating lymphocytes [TILs]) that home to and permeate cancers. In primary melanomas, this phenomenon may produce what Dr. Mihm called white depressed areas, prescient clues to what would fuel future attempts at harnessing anticancer immunity. The critical and sequential TIL attributes of antigenic stimulation, homing, and effector-target cell apoptotic injury herein are briefly reviewed in light of more recent advances in the field of immuno-oncology. The intent is to emphasize how fundamental clinical and histopathological observations, as forged by Dr. Mihm and his associates, have led to critically important prognostic paradigms as well as to translational insights that now have become transformative in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- George F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital/Mass General Brigham, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Pinto E, Lione L, Compagnone M, Paccagnella M, Salvatori E, Greco M, Frezza V, Marra E, Aurisicchio L, Roscilli G, Conforti A. From ex vivo to in vivo chimeric antigen T cells manufacturing: new horizons for CAR T-cell based therapy. J Transl Med 2025; 23:10. [PMID: 39755643 PMCID: PMC11700462 DOI: 10.1186/s12967-024-06052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025] Open
Abstract
In the past decades, Chimeric Antigen Receptor (CAR)-T cell therapy has achieved remarkable success, leading to the approval of six therapeutic products for haematological malignancies. Recently, the therapeutic potential of this therapy has also been demonstrated in non-tumoral diseases. Currently, the manufacturing process to produce clinical-grade CAR-T cells is complex, time-consuming, and highly expensive. It involves multiple steps, including the collection of T cells from patients or healthy donors, in vitro engineering and expansion, and finally reinfusion into patients. Therefore, despite the impressive clinical outcomes, ex vivo manufacturing process makes CAR-T cells out of reach for many cancer patients. Direct in vivo engineering of T cells could be a more rapid solution able to circumvent both the complexity and the costs associated with ex vivo manufactured CAR-T cells. This novel approach allows to completely eliminate ex vivo cell manipulation and expansion while producing therapeutic cell populations directly in vivo. To date, several studies have demonstrated the feasibility of in vivo T cell reprogramming, by employing injectable viral- or nanocarrier-based delivery platforms in tumour animal models. Additionally, in vivo production of CAR-T cells might reduce the incidence, or at least the severity, of systemic toxicities frequently occurring with ex vivo produced CAR-T cells, such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. In this review, we highlight the challenges associated with the current ex vivo manufacturing protocols and review the latest progresses in the emerging field of in vivo CAR-T therapy, by comparing the various platforms so far investigated. Moreover, we offer an overview of the advantages deriving from in vivo reprogramming of other immune cell types, such as Natural Killer and macrophages, with CAR constructs.
Collapse
Affiliation(s)
- E Pinto
- Evvivax Biotech, Via Castel Romano 100, 00128, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - L Lione
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - M Compagnone
- Evvivax Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - M Paccagnella
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - E Salvatori
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - M Greco
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - V Frezza
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - E Marra
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - L Aurisicchio
- Evvivax Biotech, Via Castel Romano 100, 00128, Rome, Italy
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - G Roscilli
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - A Conforti
- Evvivax Biotech, Via Castel Romano 100, 00128, Rome, Italy.
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy.
| |
Collapse
|
45
|
Bu T, Yang Z, Zhao J, Gao Y, Li F, Yang R. Expanding the Potential of Circular RNA (CircRNA) Vaccines: A Promising Therapeutic Approach. Int J Mol Sci 2025; 26:379. [PMID: 39796233 PMCID: PMC11722184 DOI: 10.3390/ijms26010379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
In recent years, circular RNAs (circRNAs) have garnered significant attention due to their unique structure and function, positioning them as promising candidates for next-generation vaccines. The circRNA vaccine, as an RNA vaccine, offers significant advantages in preventing infectious diseases by serving as a vector for protein expression through non-canonical translation. Notably, circRNA vaccines have demonstrated enduring antigenic expression and generate a larger percentage of neutralizing antibodies compared to mRNA vaccines administered at the same dosage. Furthermore, circRNA vaccines can elicit robust cellular and humoral immunity, indicating their potential for tumor vaccine development. However, certain challenges must be addressed to facilitate the widespread use of circRNA vaccines in both infectious disease prevention and tumor treatment. These challenges include the low efficiency of linear RNA circularization, the suboptimal targeting of delivery systems, and the assessment of potential side effects. This work aims to describe the characteristics and functions of circRNAs, elucidate the mechanism behind circRNA vaccines, and discuss their applications in the prevention of infectious diseases and the treatment of tumors, along with their potential future applications.
Collapse
Affiliation(s)
- Tian Bu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (T.B.); (Z.Y.); (J.Z.); (Y.G.)
| | - Ziyu Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (T.B.); (Z.Y.); (J.Z.); (Y.G.)
| | - Jian Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (T.B.); (Z.Y.); (J.Z.); (Y.G.)
| | - Yanmei Gao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (T.B.); (Z.Y.); (J.Z.); (Y.G.)
| | - Faxiang Li
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410081, China
| | - Rong Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (T.B.); (Z.Y.); (J.Z.); (Y.G.)
| |
Collapse
|
46
|
Chhabra L, Pandey RK, Kumar R, Sundar S, Mehrotra S. Navigating the Roadblocks: Progress and Challenges in Cell-Based Therapies for Human Immunodeficiency Virus. J Cell Biochem 2025; 126:e30669. [PMID: 39485037 DOI: 10.1002/jcb.30669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Cell-based therapies represent a major advancement in the treatment and management of HIV/AIDS, with a goal to overcome the limitations of traditional antiretroviral therapy (ART). These innovative approaches not only promise a functional cure by reconstructing the immune landscape but also address the persistent viral reservoirs. For example, stem cell therapies have emerged from the foundational success of allogeneic hematopoietic stem cell transplantation in curing HIV infection in a limited number of cases. B cell therapies make use of genetically modified B cells constitutively expressing broadly neutralizing antibodies (bNAbs) against target viral particles and infected cells. Adoptive cell transfer (ACT), including TCR-T therapy, CAR-T cells, NK-CAR cells, and DC-based therapy, is adapted from cancer immunotherapy and repurposed for HIV eradication. In this review, we summarize the mechanisms through which these engineered cells recognize and destroy HIV-infected cells, the modification strategies, and their role in sustaining remission in the absence of ART. The review also addresses the challenges to cell-based therapies against HIV and discusses the recent advancements aimed at overcoming them.
Collapse
Affiliation(s)
- Lakshay Chhabra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
47
|
Zeng L, Li Y, Xiang W, Xiao W, Long Z, Sun L. Advances in chimeric antigen receptor T cell therapy for autoimmune and autoinflammatory diseases and their complications. J Autoimmun 2025; 150:103350. [PMID: 39700677 DOI: 10.1016/j.jaut.2024.103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cells are genetically engineered T cells expressing transmembrane chimeric antigen receptors with specific targeting abilities. As an emerging immunotherapy, the use of CAR-T cells has made significant breakthroughs in cancer treatment, particularly for hematological malignancies. The success of CAR-T cell therapy in blood cancers highlights its potential for other conditions in which the clearance of pathological cells is therapeutic, such as liver diseases, infectious diseases, heart failure, and diabetes. Given the limitations of current therapies for autoimmune diseases, researchers have actively explored the potential therapeutic value of CAR-T cells and their derivatives in the field of autoimmune diseases. This review focuses on the research progress and current challenges of CAR-T cells in autoimmune diseases with the aim of providing a theoretical basis for the precise treatment of autoimmune diseases. In the future, CAR-T cells may present new therapeutic modalities and ultimately provide hope for patients with autoimmune diseases.
Collapse
MESH Headings
- Humans
- Autoimmune Diseases/therapy
- Autoimmune Diseases/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Inflammation/therapy
- Inflammation/immunology
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Yan Li
- People's Hospital of Ningxiang City, Ningxiang City, China
| | - Wang Xiang
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde City, China
| | - Wei Xiao
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde City, China.
| | - Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
48
|
Canciani G, Fabozzi F, Pinacchio C, Ceccarelli M, Del Bufalo F. Developing CAR T-Cell Therapies for Pediatric Solid Tumors. Paediatr Drugs 2025; 27:5-18. [PMID: 39382819 DOI: 10.1007/s40272-024-00653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/10/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have revolutionized the treatment of hematological malignancies, inducing notable and durable clinical responses. However, for solid tumors, including but not limited to pediatric tumors, several peculiar biological features posed substantial challenges for achieving comparable results. Despite sound pre-clinical evidence of the ability of CAR T cells to eradicate solid malignancies, their activity remains suboptimal when facing the in vivo complexity of solid tumors, characterized by antigen heterogeneity, scarce T-cell infiltration, and an immunosuppressive microenvironment. Neuroblastoma was amongst the first tumors to be evaluated as a potential candidate for GD2-targeting CAR T cells, which recently documented promising results in high-risk, heavily pre-treated patients. Moreover, innovative engineering strategies for generating more potent and persistent CAR T cells suggest the possibility to reproduce, and potentially improve, these promising results on a larger scale. In the next years, harnessing the full therapeutic potential of CAR T cells and other immunotherapeutic strategies may open new possibilities for effectively treating the most aggressive forms of pediatric tumors.
Collapse
Affiliation(s)
- Gabriele Canciani
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Residency School of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Claudia Pinacchio
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Manuela Ceccarelli
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.
| |
Collapse
|
49
|
Börding T, Janik T, Bischoff P, Morkel M, Sers C, Horst D. GPA33 expression in colorectal cancer can be induced by WNT inhibition and targeted by cellular therapy. Oncogene 2025; 44:30-41. [PMID: 39472498 DOI: 10.1038/s41388-024-03200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 01/07/2025]
Abstract
GPA33 is a promising surface antigen for targeted therapy in colorectal cancer (CRC). It is expressed almost exclusively in CRC and intestinal epithelia. However, previous clinical studies have not achieved expected response rates. We investigated GPA33 expression and regulation in CRC and developed a GPA33-targeted cellular therapy. We examined GPA33 expression in CRC cohorts using immunohistochemistry and immunofluorescence. We analyzed GPA33 regulation by interference with oncogenic signaling in vitro and in vivo using inhibitors and conditional inducible regulators. Furthermore, we engineered anti-GPA33-CAR T cells and assessed their activity in vitro and in vivo. GPA33 expression showed consistent intratumoral heterogeneity in CRC with antigen loss at the infiltrative tumor edge. This pattern was preserved at metastatic sites. GPA33-positive cells had a differentiated phenotype and low WNT activity. Low GPA33 expression levels were linked to tumor progression in patients with CRC. Downregulation of WNT activity induced GPA33 expression in vitro and in GPA33-negative tumor cell subpopulations in xenografts. GPA33-CAR T cells were activated in response to GPA33 and reduced xenograft growth in mice after intratumoral application. GPA33-targeted therapy may be improved by simultaneous WNT inhibition to enhance GPA33 expression. Furthermore, GPA33 is a promising target for cellular immunotherapy in CRC.
Collapse
Affiliation(s)
- Teresa Börding
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Janik
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philip Bischoff
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Markus Morkel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Sers
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
50
|
Schmidt D, Tirapelle MC, Ebrahimabadi S, Biggi AFB, Dos Santos MH, da Silva-Januário ME, Picanço E Castro V. Engineered CAR-NK Cells for Cancer Immunotherapy: Lentiviral-Based CAR Transduction of NK-92 Cells. Methods Mol Biol 2025; 2930:267-275. [PMID: 40402461 DOI: 10.1007/978-1-0716-4558-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has emerged as a groundbreaking immunotherapeutic approach to cancer treatment. However, despite its remarkable results, challenges persist, such as manufacturing complexity, side effects, and cost. Allogeneic therapies offer potential solutions to these challenges by enhancing accessibility, reducing cost, and increasing scalability. Due to their innate cytotoxicity and reduced risks of side effects to the patients, natural killer cells are an up-and-coming option for allogeneic CAR therapy. The NK-92 cell line use allows large-scale expansion suitable for clinical grade applications, providing a uniform and highly cytotoxic source. Nevertheless, gene delivery using viral vectors is still an obstacle related to CAR-NK therapies due to their natural antiviral activity. Thus, the present protocol offers an efficient approach for CAR-NK-92 cell generation via lentiviral transduction, thereby advancing the potential of this promising cancer therapy.
Collapse
Affiliation(s)
- Dayane Schmidt
- Center for Cell-Based Therapy - CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Mariane Cariati Tirapelle
- Center for Cell-Based Therapy - CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Sima Ebrahimabadi
- Center for Cell-Based Therapy - CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Alison Felipe Bordini Biggi
- Center for Cell-Based Therapy - CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Matheus Henrique Dos Santos
- Center for Cell-Based Therapy - CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Mara Elisama da Silva-Januário
- Center for Cell-Based Therapy - CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil.
| | - Virginia Picanço E Castro
- Center for Cell-Based Therapy - CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|