1
|
Costello A, Lao N, Clynes M, Barron N. Conditional Knockdown of Endogenous MicroRNAs in CHO Cells Using TET-ON-SanDI Sponge Vectors. Methods Mol Biol 2025; 2853:71-84. [PMID: 39460915 DOI: 10.1007/978-1-0716-4104-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs of about 22 nucleotides in length and have proven to be useful targets for genetic modifications for desirable phenotypes in the biotech industry. The use of constitutively expressed "miRNA sponge" vectors in which multiple, tandem miRNA-binding sites containing transcripts are transcriptionally regulated by a constitutive promoter for downregulating the levels of endogenous microRNAs in Chinese hamster ovary (CHO) cells has shown to be more advantageous than using synthetic antisense oligonucleotides. The application of miRNA sponges in biotechnological processes, however, could be more effective, if the expression of miRNA sponges could be tuned. In this chapter, we present a method for the generation of stable CHO cell lines expressing a TET-ON-SanDI-miRNA sponge which is in theory expressed only in the presence of an inducer.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Nga Lao
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Niall Barron
- National Institute for Bioprocessing Research and Training, Dublin, Ireland.
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Guo MMH, Huang YH, Kuo HC. Corticosteroid effects on IL-10 and IL-1β in U937-derived macrophages: A model for Kawasaki disease-associated inflammation. Cytokine 2025; 185:156809. [PMID: 39577337 DOI: 10.1016/j.cyto.2024.156809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/18/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Kawasaki disease (KD) is a pediatric vasculitis that has a predilection for coronary artery involvement. Activated macrophages play an important role in the destruction of the coronary arteries in KD. Although intravenous immunoglobulin (IVIG) is standard therapy, corticosteroids are sometimes given to patients at a higher risk of IVIG non-responsiveness. In this study, we examined the effect of IVIG and corticosteroids in U937 derived M1 and M2 a macrophages. METHODS A total of 40 children with KD and 30 healthy controls were enrolled. U937-derived macrophages were stimulated with patient plasma to examine its effect on macrophage polarization. U937 derived M1 and M2 macrophages were then stimulated with IVIG and methylprednisolone. RNA was extracted from cell cultures and the expression levels of STAT1, interleukin (IL)-1β, PPARγ and IL-10 were determined by RT-PCR. RESULTS IVIG was effective at suppressing IL-10 expression in M2 macrophages (relative mRNA expression mean ± SE, high dose IVIG Vs. untreated 0.304 ± 0.095 Vs. 2.541 ± 0.157, p = 0.002), but did not suppress the production of IL-1β in M1 macrophages. In contrast, methylprednisolone both suppressed the IL-1β in M1 macrophages and also enhanced IL-10 in M2 macrophages even at low doses (relative mRNA expression mean ± SE, low dose methylprednisolone Vs. untreated IL-1β 6.353 ± 0.414 Vs. 93.838 ± 1.321, p < 0.001, IL-10 61.117 ± 2.319 Vs. 46.867 ± 2.893, p = 0.005). DISCUSSION In this study we found that methylprednisolone was effective at suppressing the inflammatory cytokine IL-1β in M1 macrophages, and enhanced the production of anti-inflammatory IL-10 in M2 macrophages, an effect that could not be produced by IVIG. Our findings provide further mechanistic evidence that corticosteroid therapy, even at low doses may be a cost-effective adjuvant to IVIG therapy in patients with high-risk KD.
Collapse
Affiliation(s)
- Mindy Ming-Huey Guo
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, Chung Shan Medical University, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| |
Collapse
|
3
|
Klausing AD, Fukuwatari T, DeAngeli N, Bucci DJ, Schwarcz R. Adrenalectomy exacerbates stress-induced impairment in fear discrimination: A causal role for kynurenic acid? Biochem Pharmacol 2024; 228:116350. [PMID: 38852644 DOI: 10.1016/j.bcp.2024.116350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Impaired activity of the hypothalamic-pituitary axis and reduced blood levels of glucocorticoids (GCs) are signature features of stress-related maladies. Recent evidence suggests a possible role of the tryptophan metabolite kynurenic acid (KYNA) in this context. Here we investigated possible causal relationships in adult male rats, using stress-induced fear discrimination as a translationally relevant behavioral outcome measure. One week following adrenalectomy (ADX) or sham surgery, animals were for 2 h either physically restrained or exposed to a predator odor, which caused a much milder stress response. Extracellular KYNA levels were determined before, during and after stress by in vivo microdialysis in the prefrontal cortex. Separate cohorts underwent a fear discrimination procedure starting immediately after stress termination. Different auditory conditioned stimuli (CS) were either paired with a foot shock (CS+) or non-reinforced (CS-). One week later, fear was assessed by re-exposing the animals to each CS. Separate groups of rats were treated with the KYNA synthesis inhibitor BFF-816 prior to stress initiation to test a causal role of KYNA in fear discrimination. Restraint stress raised extracellular KYNA levels by ∼85 % in ADX rats for several hours, and these animals were unable to discriminate between CS+ and CS-. Both effects were prevented by BFF-816 and were not observed after exposure to predator odor or in sham-operated rats. These findings suggest that a causal connection exists between adrenal function, stress-induced KYNA increases, and behavioral deficits. Pharmacological inhibition of KYNA synthesis may therefore be an attractive, novel option for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Alex D Klausing
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tsutomu Fukuwatari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicole DeAngeli
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - David J Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Pokhylko V, Cherniavska Y, Fishchuk L, Rossokha Z, Popova O, Vershyhora V, Ievseienkova O, Soloviova H, Zhuk L, Gorovenko N. Association of the C3953T (rs1143634) variant of the interleukin 1 beta gene with the features of a complicated course of COVID-19-associated pneumonia. Mol Biol Rep 2024; 51:630. [PMID: 38720147 DOI: 10.1007/s11033-024-09569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The pro-inflammatory cytokine IL-1 plays an important role in severe COVID-19. A change in IL-1 production may be associated with a mutation in the IL1Β gene. Our study analyzed the impact of the IL1Β gene variants (rs1143634) on disease progression in patients with severe COVID-19 pneumonia, taking into account treatment strategies. METHODS AND RESULTS The study enrolled 117 patients with severe COVID-19 pneumonia. The IL1Β gene variants were identified using the polymerase chain reaction-restriction fragment length polymorphism method. In the group of patients, the following genotype frequencies were found based on the investigated rs1143634 variant of the IL1Β gene: CC-65.8%, CT-28.2%, and TT-6.0%. Our results showed that the group of patients with the T allele of the IL1Β gene had higher leukocyte counts (p = 0.040) and more pronounced lymphopenia (p = 0.007). It was determined that patients carrying the T allele stayed on ventilators significantly longer (p = 0.049) and required longer treatment with corticosteroids (p = 0.045). CONCLUSION Identifying variants of the IL1Β gene can be used as a predictive tool for assessing the severity of COVID-19 pneumonia and tailoring personalized treatment strategies. Further research with a larger patient cohort is required to validate these findings.
Collapse
Affiliation(s)
| | | | - Liliia Fishchuk
- Department of Genetic Diagnostics, Institute of Genetic and Regenerative Medicine, SI "M.D. Strazhesko National Scientific Center of the NAMS of Ukraine", Kyiv, Ukraine.
| | - Zoia Rossokha
- SI "Reference-Center for Molecular Diagnostics of the Ministry of Public Health of Ukraine", Kyiv, Ukraine
| | - Olena Popova
- SI "Reference-Center for Molecular Diagnostics of the Ministry of Public Health of Ukraine", Kyiv, Ukraine
| | - Viktoriia Vershyhora
- SI "Reference-Center for Molecular Diagnostics of the Ministry of Public Health of Ukraine", Kyiv, Ukraine
| | - Olena Ievseienkova
- Department of Genetic Diagnostics, Institute of Genetic and Regenerative Medicine, SI "M.D. Strazhesko National Scientific Center of the NAMS of Ukraine", Kyiv, Ukraine
| | | | | | - Nataliia Gorovenko
- Department of Genetic Diagnostics, Institute of Genetic and Regenerative Medicine, SI "M.D. Strazhesko National Scientific Center of the NAMS of Ukraine", Kyiv, Ukraine
| |
Collapse
|
5
|
Praska CE, Tamburrini R, Danobeitia JS. Innate immune modulation in transplantation: mechanisms, challenges, and opportunities. FRONTIERS IN TRANSPLANTATION 2023; 2:1277669. [PMID: 38993914 PMCID: PMC11235239 DOI: 10.3389/frtra.2023.1277669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/23/2023] [Indexed: 07/13/2024]
Abstract
Organ transplantation is characterized by a sequence of steps that involve operative trauma, organ preservation, and ischemia-reperfusion injury in the transplant recipient. During this process, the release of damage-associated molecular patterns (DAMPs) promotes the activation of innate immune cells via engagement of the toll-like receptor (TLR) system, the complement system, and coagulation cascade. Different classes of effector responses are then carried out by specialized populations of macrophages, dendritic cells, and T and B lymphocytes; these play a central role in the orchestration and regulation of the inflammatory response and modulation of the ensuing adaptive immune response to transplant allografts. Organ function and rejection of human allografts have traditionally been studied through the lens of adaptive immunity; however, an increasing body of work has provided a more comprehensive picture of the pivotal role of innate regulation of adaptive immune responses in transplant and the potential therapeutic implications. Herein we review literature that examines the repercussions of inflammatory injury to transplantable organs. We highlight novel concepts in the pathophysiology and mechanisms involved in innate control of adaptive immunity and rejection. Furthermore, we discuss existing evidence on novel therapies aimed at innate immunomodulation and how this could be harnessed in the transplant setting.
Collapse
Affiliation(s)
- Corinne E. Praska
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Riccardo Tamburrini
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Juan Sebastian Danobeitia
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
- Baylor Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX, United States
| |
Collapse
|
6
|
Rudeen KM, Liu W, Mieler WF, Kang-Mieler JJ. Simultaneous Release of Aflibercept and Dexamethasone from an Ocular Drug Delivery System. Curr Eye Res 2022; 47:1034-1042. [PMID: 35343355 PMCID: PMC9906966 DOI: 10.1080/02713683.2022.2053166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE Intravitreal injections of anti-vascular endothelial growth factors (anti-VEGF) are the current standard of care for patients with choroidal neovascularization (CNV) secondary to age-related macular degeneration (AMD). There is a growing subset of patients that does not respond to anti-VEGF monotherapy treatment. Some patients, however, do respond to combination therapy of corticosteroids and anti-VEGF. This treatment requires monthly/bimonthly injections of anti-VEGF and semi-annual injections of corticosteroid. A drug delivery system (DDS) that simultaneously releases multiple drugs could benefit these patients by reducing the number of injections. The purpose of this study was to characterize the simultaneous release of aflibercept and dexamethasone from a biodegradable microparticle- and nanoparticle-hydrogel DDS. METHODS Dexamethasone-loaded nanoparticles and aflibercept-loaded microparticles were created using modified single- and double-emulsion techniques, respectively. Then, microparticles and nanoparticles were embedded into a thermoresponsive, biodegradable poly(ethylene glycol)-co-(L-lactic acid) diacrylate (PEG-PLLA-DA)-N-isopropylacrylamide (NIPAAm) hydrogel DDS. Drug release studies and characterization of DDS were conducted with varying doses of microparticles and nanoparticles. RESULTS The combination aflibercept-loaded microparticle- and dexamethasone-loaded nanoparticle- hydrogel (Combo-DDS) achieved a total release time of 224 days. Small decreases were seen in swelling ratio and equilibrium water content for Combo-DDS compared to monotherapy aflibercept-loaded microparticle-hydrogel DDS (AFL-DDS) and monotherapy dexamethasone-loaded nanoparticle-hydrogel DDS (DEX-DDS). Bioactivity of aflibercept was maintained in Combo-DDS compared to AFL-DDS. CONCLUSIONS The Combo-DDS was able to extend and control the release of both aflibercept and dexamethasone simultaneously from a single DDS. This may eliminate the need for separate dosing regiments of anti-VEGF and corticosteroids for wet AMD patients.
Collapse
Affiliation(s)
- Kayla M. Rudeen
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, USA
| | - Wenqiang Liu
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, USA
| | - William F. Mieler
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| | | |
Collapse
|
7
|
Jones C, Gwenin C. Cortisol level dysregulation and its prevalence-Is it nature's alarm clock? Physiol Rep 2021; 8:e14644. [PMID: 33340273 PMCID: PMC7749606 DOI: 10.14814/phy2.14644] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
This review examines the stress hormone cortisol which plays an important role in regulating and supporting different bodily functions. Disruption in cortisol production has an impact on health and this review looks at a wide range of papers where cortisol has been indicated as a factor in numerous chronic conditions—especially those which are classed as “noncommunicable diseases” (NCDs). Timely detection, screening, and treatment for NCDs are vital to address the growing problem of NCDs worldwide—this would have health and socioeconomic benefits. Interestingly, many of the papers highlight the pro‐inflammatory consequences of cortisol dysregulation and its deleterious effects on the body. This is particularly relevant given the recent findings concerning COVID‐19 where pro‐inflammatory cytokines have been implicated in severe inflammation.
Collapse
Affiliation(s)
- Carol Jones
- School of Natural Sciences, Bangor University, Bangor, UK
| | - Christopher Gwenin
- School of Natural Sciences, Bangor University, Bangor, UK.,Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, P.R. China
| |
Collapse
|
8
|
Tomani JCD, Kagisha V, Tchinda AT, Jansen O, Ledoux A, Vanhamme L, Frederich M, Muganga R, Souopgui J. The Inhibition of NLRP3 Inflammasome and IL-6 Production by Hibiscus noldeae Baker f. Derived Constituents Provides a Link to Its Anti-Inflammatory Therapeutic Potentials. Molecules 2020; 25:molecules25204693. [PMID: 33066442 PMCID: PMC7587372 DOI: 10.3390/molecules25204693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
The activation of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome and/or its components is associated with the physio-pathogenesis of many respiratory diseases including asthma, COPD (chronic obstructive pulmonary disease), SARS Cov-2 (severe acute respiratory syndrome coronavirus 2), and in several autoimmune diseases. Hibiscus noldeae Baker f. has been widely reported to be traditionally used in the treatment of different ailments, some of which are of inflammatory background such as asthma, wounds, headache, etc. However, the claims have not been supported by evidence at the molecular and functional levels. Here, we report on the bio-guided fractionation of H. noldeae and assessment of the inhibitory properties of some fractions and purified compounds on NLRP3 inflammasome and Interleukin 6 (IL-6). The activation of the NLRP3 inflammasome was determined by detecting the activity of caspase-1 and the production of Interleukin 1β (IL-1β) in Lipopolysaccharide (LPS) and ATP-stimulated Tamm-Horsfall Protein 1 (THP-1) macrophages, while the production of IL-6 was studied in LPS-stimulated RAW264.7 mouse macrophages. It was observed that hexane and ethyl acetate fractions of the crude extract of the aerial parts of H. noldeae, as well as caffeic acid, isoquercetin, and ER2.4 and ER2.7 fractions revealed significant inhibitory effects on Caspase-1 activities, and on IL-1β and IL-6 production. The ER2.4 and ER2.7 fractions downregulated the production of IL-1β and IL-6, in a similar range as the caspase-1 inhibitor AC-YVAD-CHO and the drug Dexamethasone, both used as controls, respectively. Overall, our work does provide the very first scientific based evidence for Hibiscus noldeae anti-inflammatory effects and widespread use by traditional healers in Rwanda for a variety of ailments.
Collapse
Affiliation(s)
- Jean Claude Didelot Tomani
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286 Kigali, Rwanda; (J.C.D.T.); (V.K.); (R.M.)
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium;
| | - Vedaste Kagisha
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286 Kigali, Rwanda; (J.C.D.T.); (V.K.); (R.M.)
- Laboratory of Pharmacognosy, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, B36, 4000 Liège, Belgium; (O.J.); (A.L.); (M.F.)
| | - Alembert Tiabou Tchinda
- Laboratory of Phytochemistry, Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaoundé P.O. Box 6163, Cameroon;
| | - Olivia Jansen
- Laboratory of Pharmacognosy, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, B36, 4000 Liège, Belgium; (O.J.); (A.L.); (M.F.)
| | - Allison Ledoux
- Laboratory of Pharmacognosy, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, B36, 4000 Liège, Belgium; (O.J.); (A.L.); (M.F.)
| | - Luc Vanhamme
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium;
| | - Michel Frederich
- Laboratory of Pharmacognosy, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, B36, 4000 Liège, Belgium; (O.J.); (A.L.); (M.F.)
| | - Raymond Muganga
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286 Kigali, Rwanda; (J.C.D.T.); (V.K.); (R.M.)
| | - Jacob Souopgui
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium;
- Correspondence: ; Tel.: +32-2-650-9936
| |
Collapse
|
9
|
Pellesi L, De Icco R, Al-Karagholi MAM, Ashina M. Reducing Episodic Cluster Headaches: Focus on Galcanezumab. J Pain Res 2020; 13:1591-1599. [PMID: 32753938 PMCID: PMC7342329 DOI: 10.2147/jpr.s222604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
The involvement of calcitonin gene-related peptide in migraine and cluster headache has led to the recent development of new therapies. Galcanezumab, a novel monoclonal antibody targeting the calcitonin gene-related peptide, is approved for the migraine prevention and has recently been tested for the prevention of cluster headache. Two clinical trials have been conducted to investigate the efficacy and safety of galcanezumab in episodic cluster headache and chronic cluster headache. While efficacy endpoints were not met in the chronic subtype, galcanezumab reduced the weekly frequency of attacks in patients with episodic cluster headaches. In both studies, the antibody was well tolerated. This review summarizes and critically reviews the available data regarding the rationale behind targeting the calcitonin gene-related peptide with galcanezumab for the prevention of cluster headache.
Collapse
Affiliation(s)
- Lanfranco Pellesi
- Danish Headache Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roberto De Icco
- Headache Science Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Messoud Ashina
- Danish Headache Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Headache Knowledge Center, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
10
|
Hueston CM, Deak T. Corticosterone and progesterone differentially regulate HPA axis and neuroimmune responses to stress in male rats. Stress 2020; 23:368-385. [PMID: 31591928 DOI: 10.1080/10253890.2019.1678025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In response to stressor exposure, expression of the inflammatory cytokine interleukin-1β (IL-1) is increased within the paraventricular nucleus of the hypothalamus (PVN). Surgical removal of the adrenal glands (ADX) potentiated stress-induced IL-1 expression, suggesting a role for adrenal-derived hormones in constraining stress-evoked increases in IL-1. While corticosterone (CORT) is a primary factor inhibiting IL-1 expression, progesterone (PROG) is also released by the adrenal glands in male rats in response to stress and also has potent anti-inflammatory properties. This series of studies first established doses of CORT and PROG that adequately recapitulate the normal stress-induced rise, and then tested for individual and combined roles of CORT and PROG in mitigating stress-induced expression of inflammatory genes. We found that CORT injection alone attenuated ADX-induced increases in IL-1 expression and normalized the HPA axis response to stress. In general, PROG replacement had little effect on changes in HPA axis responsivity or stress-induced inflammatory measures. When CORT and PROG were co-administered, a small effect on expression of the decoy receptor, IL-1R2 was observed, suggestive of an anti-inflammatory response. Overall, these results suggest that although CORT is likely to be the primary stress-related hormone responsible for constraining cytokine expression evoked by stress, CORT and PROG may exert certain combined actions that temper stress-induced neuroinflammation.LAY SUMMARYExposure to stress promoted expression of inflammation-related genes in the PVN and BNST. This inflammation was mainly suppressed by the adrenal hormone corticosterone, whereas progesterone had a smaller role in mitigating post-stress inflammation.
Collapse
Affiliation(s)
- Cara M Hueston
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY, USA
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY, USA
| |
Collapse
|
11
|
Abstract
INTRODUCTION The involvement of the calcitonin gene-related peptide (CGRP) pathway in primary headache disorders, especially migraine, had led to recent success in the development of new migraine therapies. The CGRP pathway also plays a role in the pathophysiology of cluster headache, so CGRP pathway monoclonal antibodies have been studied in the prevention of cluster headache attacks. AREAS COVERED This review will outline the trials of fremanezumab and galcanezumab, the two CGRP pathway monoclonal antibodies that have undergone trials in cluster headache prevention. This review will highlight key efficacy and safety outcomes from the trials. EXPERT OPINION Galcanezumab was shown to be efficacious, reducing the frequency of attacks in episodic cluster headache, while fremanezumab failed its primary endpoint in episodic cluster headache. Both fremanezumab and galcanezumab trials in chronic cluster headache were terminated after futility analysis predicting the failure of both trials to fulfil their primary endpoint. The role of CGRP in cluster headache supports ongoing trials of the remaining CGRP pathway monoclonal antibodies and gepants for preventive and acute treatment. A broad view would include targeting neuropeptides involved in parasympathetic signaling in cluster headache, such as pituitary adenylate cyclase-activating peptide (PACAP); such targets warrant exploration in the search of new treatments.
Collapse
Affiliation(s)
- Calvin Chan
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London
| | - Peter J Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital , London, UK
| |
Collapse
|
12
|
Zaza G, Leventhal J, Signorini L, Gambaro G, Cravedi P. Effects of Antirejection Drugs on Innate Immune Cells After Kidney Transplantation. Front Immunol 2019; 10:2978. [PMID: 31921213 PMCID: PMC6930910 DOI: 10.3389/fimmu.2019.02978] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Over the last decades, our understanding of adaptive immune responses to solid organ transplantation increased considerably and allowed development of immunosuppressive drugs targeting key alloreactive T cells mechanism. As a result, rates of acute rejection dropped and short-term graft survival improved significantly. However, long-term outcomes are still disappointing. Recently, increasing evidence supports that innate immune responses plays roles in allograft rejection and represents a valuable target to further improve long-term allograft survival. Innate immune cells are activated by molecules with stereotypical motifs produced during injury (i.e., damage-associated molecular patterns, DAMPS) or infection (i.e., pathogen-associated molecular patterns, PAMPs). Activated innate immune cells can exert direct pro- and anti-inflammatory effects, while also priming adaptive immune responses. These cells are activated after transplantation by multiple stimuli, including ischemia-reperfusion injury, rejection, and infections. Data from animal models of graft rejection, show that inhibition of innate immunity promotes development of tolerance. Therefore, understanding mechanisms of innate immunity is important to improve graft outcomes. This review discusses effects of currently used immunosuppressive agents on innate immune responses in kidney transplantation.
Collapse
Affiliation(s)
- Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Jeremy Leventhal
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lorenzo Signorini
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Giovanni Gambaro
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
13
|
Petrillo MG, Oakley RH, Cidlowski JA. β-Arrestin-1 inhibits glucocorticoid receptor turnover and alters glucocorticoid signaling. J Biol Chem 2019; 294:11225-11239. [PMID: 31167788 DOI: 10.1074/jbc.ra118.007150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/30/2019] [Indexed: 01/14/2023] Open
Abstract
Glucocorticoids are among the most widely used drugs to treat many autoimmune and inflammatory diseases. Although much research has been focused on investigating glucocorticoid activity, it remains unclear how glucocorticoids regulate distinct processes in different cells. Glucocorticoids exert their effects through the glucocorticoid receptor (GR), which, upon glucocorticoid binding, interacts with regulatory proteins, affecting its activity and function. These protein-protein interactions are necessary for the resolution of glucocorticoid-dependent physiological and pharmacological processes. In this study, we discovered a novel protein interaction between the glucocorticoid receptor and β-arrestin-1, a scaffold protein with a well-established role in G protein-coupled receptor signaling. Using co-immunoprecipitation and in situ proximity ligation assays in A549 cells, we observed that β-arrestin-1 and unliganded GR interact in the cytoplasm and that, following glucocorticoid binding, the protein complex is found in the nucleus. We show that siRNA-mediated β-arrestin-1 knockdown alters GR protein turnover by up-regulating the E3 ubiquitin ligase Pellino-1, which catalyzes GR ubiquitination and thereby marks the receptor for proteasomal degradation. The enhanced GR turnover observed in β-arrestin-1-deficient cells limits the duration of the glucocorticoid response on GR target genes. These results demonstrate that β-arrestin-1 is a crucial player for the stability of the glucocorticoid receptor. The GR/β-arrestin-1 interaction uncovered here may help unravel mechanisms that contribute to the cell type-specific activities of glucocorticoids.
Collapse
Affiliation(s)
- Maria G Petrillo
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Robert H Oakley
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - John A Cidlowski
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| |
Collapse
|
14
|
Akinyi MY, Jansen D, Habig B, Gesquiere LR, Alberts SC, Archie EA. Costs and drivers of helminth parasite infection in wild female baboons. J Anim Ecol 2019; 88:1029-1043. [PMID: 30972751 DOI: 10.1111/1365-2656.12994] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/08/2019] [Indexed: 11/30/2022]
Abstract
Helminth parasites can have wide-ranging, detrimental effects on host reproduction and survival. These effects are best documented in humans and domestic animals, while only a few studies in wild mammals have identified both the forces that drive helminth infection risk and their costs to individual fitness. Working in a well-studied population of wild baboons (Papio cynocephalus) in the Amboseli ecosystem in Kenya, we pursued two goals, to (a) examine the costs of helminth infections in terms of female fertility and glucocorticoid hormone levels and (b) test how processes operating at multiple scales-from individual hosts to social groups and the population at large-work together to predict variation in female infection risk. To accomplish these goals, we measured helminth parasite burdens in 745 faecal samples collected over 5 years from 122 female baboons. We combine these data with detailed observations of host environments, social behaviours, hormone levels and interbirth intervals (IBIs). We found that helminths are costly to female fertility: females infected with more diverse parasite communities (i.e., higher parasite richness) exhibited longer IBIs than females infected by fewer parasite taxa. We also found that females exhibiting high Trichuris trichiura egg counts also had high glucocorticoid levels. Female infection risk was best predicted by factors at the host, social group and population level: females facing the highest risk were old, socially isolated, living in dry conditions and infected with other helminths. Our results provide an unusually holistic understanding of the factors that contribute to inter-individual differences in parasite infection, and they contribute to just a handful of studies linking helminths to host fitness in wild mammals.
Collapse
Affiliation(s)
- Mercy Y Akinyi
- Department of Biology, Duke University, Durham, North Carolina.,Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - David Jansen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Bobby Habig
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana.,Department of Biology, Queens college, City University of New York, Flushing, New York
| | | | - Susan C Alberts
- Department of Biology, Duke University, Durham, North Carolina.,Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Elizabeth A Archie
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya.,Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
15
|
Bondade S, Hosthota A, Basavaraju V. Stressful life events and psychiatric comorbidity in acne-a case control study. Asia Pac Psychiatry 2019; 11:e12340. [PMID: 30406964 DOI: 10.1111/appy.12340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 09/18/2018] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Possibility of a causal influence of emotional stress, on the course of various skin diseases, has been postulated. However, it is still inconclusive about the role of stressful life events in acne. In this background, the present study was carried out to know its role in acne. METHODS Consecutive one hundred patients who were diagnosed with acne vulgaris in the age group of 12 to 45 years were included. Age and sex matched controls were taken. A semistructured proforma was used to collect sociodemographic details. Stressful life events were assessed using presumptive stressful life event scale. Anxiety was evaluated using Hamilton Anxiety Rating scale and Depression by Hamilton Depression Rating Scale. RESULTS There was no difference in total stressful life events in past one year between patients and controls. The undesirable life event was present in 65 patients and 50 controls, this difference was statistically significant. Getting married or appearing for exams were the most common stressful life event in patients. Forty patients had comorbid psychiatric illness whereas in controls comorbidity was in 24 and this difference was statistically significant. DISCUSSION The undesirable stressful life events and psychiatric comorbidity were more in acne patients than in controls.
Collapse
Affiliation(s)
- Swapna Bondade
- Department of Psychiatry, The Oxford Medical College, Hospital and Research Center, Bangalore, India
| | - Abhineetha Hosthota
- Department of Dermatology, The Oxford Medical College, Hospital and Research Center, Bangalore, India
| | - Vinay Basavaraju
- Department of Psychiatry, The Oxford Medical College, Hospital and Research Center, Bangalore, India
| |
Collapse
|
16
|
Esnault S, Kelly EA, Johnson SH, DeLain LP, Haedt MJ, Noll AL, Sandbo N, Jarjour NN. Matrix Metalloproteinase-9-Dependent Release of IL-1 β by Human Eosinophils. Mediators Inflamm 2019; 2019:7479107. [PMID: 30906226 PMCID: PMC6398033 DOI: 10.1155/2019/7479107] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022] Open
Abstract
Asthma is often associated with airway eosinophilia, and therapies targeting eosinophils are now available to treat severe eosinophilic asthma. Eosinophilic asthma is often due to a type-2 immune response and production of IL-5, which leads to eosinophilopiesis and recruitment of mature eosinophils in the airways. A concomitant type-2 and type-17 response has been reported in some individuals. IL-17 may be enhanced by IL-1β production and can lead to neutrophilic inflammation. In fact, both eosinophilic and neutrophilic (mixed granulocytic) inflammation are simultaneously present in a large population of patients with asthma. In monocyte/macrophage cell populations, release of mature IL-1β occurs via toll-like receptor ligand-induced activation of the inflammasome. Within the inflammasome, a cascade of events leads to the activation of caspase-1, which cleaves pro-IL-1β protein into a mature, releasable, and active form. We have demonstrated that eosinophils can release IL-1β in a Toll-like receptor ligand-independent fashion. The objective of this study was to determine the mechanisms underlying the production and maturation of IL-1β in cytokine-activated eosinophils. Using eosinophils from circulating blood and from bronchoalveolar lavage fluid after an airway allergen challenge, the present study demonstrates that cytokine-activated eosinophils express and release a bioactive form of IL-1β with an apparent size less than the typical 17 kDa mature form produced by macrophages. Using a zymography approach and pharmacological inhibitors, we identified matrix metalloproteinase-9 (MMP-9) as a protease that cleaves pro-IL-1β into a ~15 kDa form and allows the release of IL-1β from cytokine-activated eosinophils. Therefore, we conclude that activated eosinophils produce MMP-9, which causes the release of IL-1β in an inflammasome/caspase-1-independent manner. The production of IL-1β by eosinophils may be a link between the eosinophilic/type-2 immune response and the neutrophilic/type-17 immune response that is often associated with a more severe and treatment-refractory type of asthma.
Collapse
Affiliation(s)
- Stephane Esnault
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Madison, WI, USA
| | - Elizabeth A. Kelly
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Madison, WI, USA
| | - Sean H. Johnson
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Madison, WI, USA
| | - Larissa P. DeLain
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Madison, WI, USA
| | - Madeline J. Haedt
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Madison, WI, USA
| | - Andrea L. Noll
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Madison, WI, USA
| | - Nathan Sandbo
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Madison, WI, USA
| | - Nizar N. Jarjour
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Madison, WI, USA
| |
Collapse
|
17
|
Chuang TY, Cheng AJ, Chen IT, Lan TY, Huang IH, Shiau CW, Hsu CL, Liu YW, Chang ZF, Tseng PH, Kuo JC. Suppression of LPS-induced inflammatory responses by the hydroxyl groups of dexamethasone. Oncotarget 2018; 8:49735-49748. [PMID: 28537905 PMCID: PMC5564803 DOI: 10.18632/oncotarget.17683] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/15/2017] [Indexed: 01/09/2023] Open
Abstract
The innate immune response is a central process that is activated during pathogenic infection in order to maintain physiological homeostasis. It is well known that dexamethasone (Dex), a synthetic glucocorticoid, is a potent immunosuppressant that inhibits the cytokine production induced by bacterial lipopolysaccharides (LPS). Nevertheless, the extent to which the functional groups of Dex control the excessive activation of inflammatory reactions remains unknown. Furthermore, importantly, the role of Dex in the innate immune response remains unclear. Here we explore the mechanism of LPS-induced TNF-α secretion and reveal p38 MAPK signaling as a target of Dex that is involved in control of tumor necrosis factor-α (TNF-α)-converting enzyme (TACE) activity; that later mediates the shedding of TNF-α that allows its secretion. We further demonstrate that the 11-hydroxyl and 21-hydroxyl groups of Dex are the main groups that are involved in reducing LPS-induced TNF-α secretion by activated macrophages. Blockage of the hydroxyl groups of Dex inhibits immunosuppressant effect of Dex during LPS-induced TNF-α secretion and mouse mortality. Our findings demonstrate Dex signaling is involved in the control of innate immunity.
Collapse
Affiliation(s)
- Ting-Yun Chuang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - An-Jie Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - I-Ting Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Tien-Yun Lan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - I-Hsuan Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chia-Lin Hsu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Zee-Fen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Ping-Hui Tseng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan.,Biophotonics & Molecular Imaging Research Center, National Yang-Ming University, Taipei 11221, Taiwan.,Proteomics Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
18
|
Costello A, Lao N, Clynes M, Barron N. Conditional Knockdown of Endogenous MicroRNAs in CHO Cells Using TET-ON-SanDI Sponge Vectors. Methods Mol Biol 2018; 1603:87-100. [PMID: 28493125 DOI: 10.1007/978-1-4939-6972-2_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs of about 22 nucleotides in length and have proven to be useful targets for genetic modifications for desirable phenotype in the biotech industry. The use of constitutively expressed "miRNA sponge" vectors in which multiple, tandem miRNA binding sites containing transcripts are transcriptionally regulated by a constitutive promoter for down regulating the levels of endogenous microRNAs in Chinese hamster ovary (CHO) cells has shown to be more advantageous than using synthetic antisense oligonucleotides. The application of miRNA sponges in biotechnological processes, however, could be more effective, if expression of miRNA sponges could be tuned. In this chapter, we present a method for the generation of stable CHO cell lines expressing a TET-ON-SanDI-miRNA-sponge that is in theory expressed only in the presence of an inducer.
Collapse
Affiliation(s)
- Alan Costello
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland.
| | - Nga Lao
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Niall Barron
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
19
|
Almawi WY, Hess DA, Rieder MJ. Multiplicity of Glucocorticoid Action in Inhibiting Allograft Rejection. Cell Transplant 2017; 7:511-23. [PMID: 9853580 DOI: 10.1177/096368979800700602] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoids (GCs) are used as immunosuppressive and antiinflammatory agents in organ transplantation and in treating autoimmune diseases and inflammatory disorders. GCs were shown to exert their antiproliferative effects directly through blockade of certain elements of an early membrane-associated signal transduction pathway, modulation of the expression of select adhesion molecules, and by suppression of cytokine synthesis and action. GCs may act indirectly by inducing lipocortin synthesis, which in turn, inhibits arachidonic acid release from membrane-bound stores, and also by inducing transforming growth factor (TGF)-β expression that subsequently blocks cytokine synthesis and T cell activation. Furthermore, by preferentially inhibiting the production of Th1 cytokines, GCs may enhance Th2 cell activity and, hence, precipitate a long-lasting state of tolerance through a preferential promotion of a Th2 cytokine-secreting profile. In exerting their antiproliferative effects, GCs influence both transcriptional and posttranscriptional events by binding their cytosolic receptor (GR), which subsequently binds the promoter region of cytokine genes on select DNA sites compatible with the GCs responsible elements (GRE) motif. In addition to direct DNA binding, GCs may also directly bind to, and hence antagonize, nuclear factors required for efficient gene expression, thereby markedly reducing transcriptional rate. The pleiotrophy of the GCs action, coupled with the diverse experimental conditions employed in assessing the GCs effects, indicate that GCs may utilize more than one mechanism in inhibiting T cell activation, and warrant careful scrutiny in assigning a mechanism by which GCs exert their antiproliferative effects. © 1998 Elsevier Science Inc.
Collapse
Affiliation(s)
- W Y Almawi
- Medical Sciences Unit, Lebanese National Council for Scientific Research, Beirut
| | | | | |
Collapse
|
20
|
Yuandani, Jantan I, Husain K. 4,5,4'-Trihydroxychalcone, 8,8'-(ethene-1,2-diyl)-dinaphtalene-1,4,5-triol and rutin from Gynura segetum inhibit phagocytosis, lymphocyte proliferation, cytokine release and nitric oxide production from phagocytic cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:211. [PMID: 28399868 PMCID: PMC5387197 DOI: 10.1186/s12906-017-1726-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/05/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Gynura segetum is used traditionally to treat various ailments related to the immune system, which include cancer, inflammation, rheumatism, diabetes, hypertension, and viral infections but little studies have been carried out to validate their ethnopharmacological aspects. In this study the immunosuppressive effects of G. segetum and its constituents were investigated. METHODS Isolation of compounds from G. segetum leaves was conducted using vacuum liquid chromatography (VLC) and column chromatography (CC). Two new compounds, namely 4,5,4'-trihydroxychalcone and 8,8'-(ethene-1,2-diyl)-dinaphtalene-1,4,5-triol, together with stigmasterol and β-sitosterol were isolated from G. segetum methanol extract and their structures were determined spectroscopically. The presence of gallic acid and rutin in the extract was determined quantitatively by a validated HPLC method. G. segetum methanol extract and its constituents were investigated for their effects on chemotaxis, phagocytosis, β2 integrin (CD18) expression, and reactive oxygen species (ROS) of polymorphonuclear leukocytes (PMNs), lymphocytes proliferation, cytokine release and nitric oxide (NO) production of phagocytes. RESULTS All the samples significantly inhibited all the innate immune responses tested except CD 18 expression on surface of leukocytes. Among the samples, 8,8'-(ethene-1,2-diyl)-dinaphtalene-1,4,5-triol exhibited the strongest inhibitory on chemotaxis, phagocytosis, ROS and NO production. The compound exhibited exceptionally strong inhibitions on ROS and chemotaxis activities with IC50 values lower than the positive controls, aspirin and ibuprofen, respectively. 4,5,4'-Trihydroxychalcone revealed the strongest immunosuppressive activity on proliferation of lymphocytes (IC50 value of 1.52 μM) and on release of IL-1β (IC50 value of 6.69 μM). Meanwhile rutin was the most potent sample against release of TNF-α from monocytes (IC50, 16.96 μM). CONCLUSION The extract showed strong immunosuppressive effects on various components of the immune system and these activities were possibly contributed mainly by 4,5,4'-trihydroxychalcone, 8,8'-(ethene-1,2-diyl)-dinaphtalene-1,4,5-triol and rutin.
Collapse
Affiliation(s)
- Yuandani
- Fakultas Farmasi, Universitas Sumatera Utara, 5 Jalan Almamater, USU-Kampus, Medan, 20155 Indonesia
| | - Ibrahim Jantan
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Lymphadenectomy promotes tumor growth and cancer cell dissemination in the spontaneous RET mouse model of human uveal melanoma. Oncotarget 2016; 6:44806-18. [PMID: 26575174 PMCID: PMC4792593 DOI: 10.18632/oncotarget.6326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/23/2015] [Indexed: 01/01/2023] Open
Abstract
Resection of infiltrated tumor-draining lymph nodes (TDLNs) is a standard practice for the treatment of several cancers including breast cancer and melanoma. However, many randomized prospective trials have failed to show convincing clinical benefits associated with LN removal and the role of TDLNs in cancer dissemination is poorly understood. Here, we found in a well-characterized spontaneous mouse model of uveal melanoma that the growth of the primary tumor was accompanied by increased lymphangiogenesis and cancer cell colonization in the LNs draining the eyes. But, unexpectedly, early resection of the TDLNs increased the growth of the primary tumor and associated blood vessels as well as promoted cancer cell survival and dissemination. These effects were accompanied by increased tumor cell proliferation and expression of phosphorylated AKT. Topical application of a broad anti-inflammatory agent, Tobradex, or an oral treatment with cyclooxygenase-2 specific inhibitor, Celecoxib, reversed tumor progression observed after complete lymphadenectomy. Our study confirms the importance of tumor homeostasis in cancer progression by showing the enhancing effects of TDLN removal on tumor growth and cancer cell dissemination, and suggests that TDLN resection may only be beneficial if used in combination with anti-inflammatory drugs such as Tobradex and Celecoxib.
Collapse
|
22
|
Zeng Q, Dong X, Ruan C, Hu B, Luo Y, Luo Z, Xu L, Zhou H, Wang R, Yang H. CD14 +CD16 ++ monocytes are increased in patients with NMO and are selectively suppressed by glucocorticoids therapy. J Neuroimmunol 2016; 300:1-8. [PMID: 27806868 DOI: 10.1016/j.jneuroim.2016.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/09/2016] [Accepted: 09/19/2016] [Indexed: 11/30/2022]
Abstract
The pathophysiologic significance of the CD16+ monocyte subset has been demonstrated by its expansion in various autoimmune disorders. To date, the characteristics and roles of monocyte subpopulations in patients with neuromyelitis optica (NMO) have been poorly defined. We measured the percentages of the monocyte subsets in the peripheral blood, the levels of IL-1β and TNF-α mRNA in monocyte subsets and the concentrations of IL-1β and TNF-α in plasma and CSF from NMO patients. Our results showed that nonclassical monocytes were up-regulated in NMO patients and significantly elevated IL-1β and TNF-α expression was detected in it. In addition the increased nonclassical monocytes could be selectively suppressed by GC in patients with NMO.
Collapse
Affiliation(s)
- Qiuming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, PR China
| | - Xiaohua Dong
- Department of Neurology, Xiangya Hospital, Central South University, PR China
| | - Chunyun Ruan
- Department of Neurology, Xiangya Hospital, Central South University, PR China
| | - Bo Hu
- Department of Neurology, Xiangya Hospital, Central South University, PR China
| | - Yuebei Luo
- Department of Neurology, Xiangya Hospital, Central South University, PR China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, PR China
| | - Liqun Xu
- Department of Neurology, Xiangya Hospital, Central South University, PR China
| | - Hao Zhou
- Department of Neurology, Xiangya Hospital, Central South University, PR China
| | - Runqi Wang
- Department of Neurology, Xiangya Hospital, Central South University, PR China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, PR China.
| |
Collapse
|
23
|
Piskunov A, Stepanichev M, Tishkina A, Novikova M, Levshina I, Gulyaeva N. Chronic combined stress induces selective and long-lasting inflammatory response evoked by changes in corticosterone accumulation and signaling in rat hippocampus. Metab Brain Dis 2016; 31:445-54. [PMID: 26780087 DOI: 10.1007/s11011-015-9785-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/22/2015] [Indexed: 12/23/2022]
Abstract
Hippocampus is believed to be selectively vulnerable to stress. We hypothesized that this phenomenon may be mediated by relatively high vulnerability to neuroinflammation related to impairments of local glucocorticoid metabolism and signaling. We have evaluated inflammatory responses induced by acute or chronic combined stress in the cerebral cortex and hippocampus as well as circulating and brain corticosterone (CS) levels as well as expression of corticosterone target genes. The hippocampus showed higher stress-induced expression of the proinflammatory cytokine IL-1β as compared to the cerebral cortex. A month after the termination of the chronic stress, IL-1β mRNA in the cerebral cortex reached control level, while in the hippocampus it remained significantly increased. Under chronic stress, the maladaptive inflammatory response in hippocampus was accompanied by a significant increase in local CS levels, as compared to cerebral cortex. Under acute stress, the increased CS level induced changes in CS-regulated genes expression (CRF and IGF1), while this phenomenon was not observed after chronic stress. Thus, the hippocampus appears to be more vulnerable to stress-induced inflammation as compared to the neocortex and demonstrates persistent inflammatory response induced by chronic stress. Stress-induced maladaptive inflammatory response is associated with a selective increase in hippocampal CS accumulation and changes in CS signaling.
Collapse
Affiliation(s)
- Aleksey Piskunov
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova str., 5A, Moscow, 117485, Russia
| | - Mikhail Stepanichev
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova str., 5A, Moscow, 117485, Russia
| | - Anna Tishkina
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova str., 5A, Moscow, 117485, Russia
| | - Margarita Novikova
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova str., 5A, Moscow, 117485, Russia
| | - Irina Levshina
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova str., 5A, Moscow, 117485, Russia
| | - Natalia Gulyaeva
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova str., 5A, Moscow, 117485, Russia.
| |
Collapse
|
24
|
The UK joint specialist societies guideline on the diagnosis and management of acute meningitis and meningococcal sepsis in immunocompetent adults. J Infect 2016; 72:405-38. [PMID: 26845731 DOI: 10.1016/j.jinf.2016.01.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/14/2016] [Accepted: 01/23/2016] [Indexed: 02/06/2023]
Abstract
Bacterial meningitis and meningococcal sepsis are rare conditions with high case fatality rates. Early recognition and prompt treatment saves lives. In 1999 the British Infection Society produced a consensus statement for the management of immunocompetent adults with meningitis and meningococcal sepsis. Since 1999 there have been many changes. We therefore set out to produce revised guidelines which provide a standardised evidence-based approach to the management of acute community acquired meningitis and meningococcal sepsis in adults. A working party consisting of infectious diseases physicians, neurologists, acute physicians, intensivists, microbiologists, public health experts and patient group representatives was formed. Key questions were identified and the literature reviewed. All recommendations were graded and agreed upon by the working party. The guidelines, which for the first time include viral meningitis, are written in accordance with the AGREE 2 tool and recommendations graded according to the GRADE system. Main changes from the original statement include the indications for pre-hospital antibiotics, timing of the lumbar puncture and the indications for neuroimaging. The list of investigations has been updated and more emphasis is placed on molecular diagnosis. Approaches to both antibiotic and steroid therapy have been revised. Several recommendations have been given regarding the follow-up of patients.
Collapse
|
25
|
Reduced Contextual Discrimination following Alcohol Consumption or MDMA Administration in Mice. PLoS One 2015; 10:e0142978. [PMID: 26566284 PMCID: PMC4643963 DOI: 10.1371/journal.pone.0142978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/29/2015] [Indexed: 01/19/2023] Open
Abstract
The recreational drugs, alcohol and 3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy") have both been shown to cause immune activation in vivo, and they are linked to cognitive impairment and anxiety-like behaviors in rodents. The neuronal effects of these drugs in the hippocampal area, an area that has been a focus of studies aiming to explain the mechanisms underlying anxiety related-disorders, remains poorly understood. Therefore we investigated the specific inflammatory impact of alcohol and MDMA on this area of the brain and on a hippocampal-related behavioral task. We centered our study on two inflammatory factors linked to anxiety-related disorders, namely Interleukin-1β (IL-1β) and brain-derived neurotrophic factor (BDNF). We subjected drug-consuming mice to a battery of behavioral tests to evaluate general activity, anxiety-like and depressive-live behaviors. We then introduced them to a contextual fear discrimination task and immune-related effects were examined by immunohistochemical and biochemical studies. Our results suggest that there is a relationship between the induction of immune activated pathways by voluntary alcohol consumption and a high-dose MDMA. Furthermore, the ability of mice to perform a contextual fear discrimination task was impaired by drug consumption and we report long term inflammatory alterations in the hippocampus even several weeks after drug intake. This information will be helpful for discovering new selective drug targets, and to develop treatments and preventive approaches for patients with anxiety-related disorders.
Collapse
|
26
|
Hazeldine J, Lord JM, Belli A. Traumatic Brain Injury and Peripheral Immune Suppression: Primer and Prospectus. Front Neurol 2015; 6:235. [PMID: 26594196 PMCID: PMC4633482 DOI: 10.3389/fneur.2015.00235] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022] Open
Abstract
Nosocomial infections are a common occurrence in patients following traumatic brain injury (TBI) and are associated with an increased risk of mortality, longer length of hospital stay, and poor neurological outcome. Systemic immune suppression arising as a direct result of injury to the central nervous system (CNS) is considered to be primarily responsible for this increased incidence of infection, a view strengthened by recent studies that have reported novel changes in the composition and function of the innate and adaptive arms of the immune system post-TBI. However, our knowledge of the mechanisms that underlie TBI-induced immune suppression is equivocal at best. Here, after summarizing our current understanding of the impact of TBI on peripheral immunity and discussing CNS-mediated regulation of immune function, we propose roles for a series of novel mechanisms in driving the immune suppression that is observed post-TBI. These mechanisms, which have never been considered before in the context of TBI-induced immune paresis, include the CNS-driven emergence into the circulation of myeloid-derived suppressor cells and suppressive neutrophil subsets, and the release from injured tissue of nuclear and mitochondria-derived damage associated molecular patterns. Moreover, in an effort to further our understanding of the mechanisms that underlie TBI-induced changes in immunity, we pose throughout the review a series of questions, which if answered would address a number of key issues, such as establishing whether manipulating peripheral immune function has potential as a future therapeutic strategy by which to treat and/or prevent infections in the hospitalized TBI patient.
Collapse
Affiliation(s)
- Jon Hazeldine
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham , Birmingham , UK ; Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Janet M Lord
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham , Birmingham , UK ; Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Antonio Belli
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham , Birmingham , UK ; Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| |
Collapse
|
27
|
Ingiosi AM, Raymond RM, Pavlova MN, Opp MR. Selective contributions of neuronal and astroglial interleukin-1 receptor 1 to the regulation of sleep. Brain Behav Immun 2015; 48:244-57. [PMID: 25849975 DOI: 10.1016/j.bbi.2015.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/20/2015] [Accepted: 03/28/2015] [Indexed: 12/26/2022] Open
Abstract
Interactions between sleep and immune function are bidirectional. Although the mechanisms that govern these interactions are not fully elucidated, the pro-inflammatory cytokine, interleukin-1β (IL-1), is a known regulator of sleep and mediator of immune responses. To further clarify the underlying substrates of sleep and immune interactions, we engineered two transgenic mouse lines that express interleukin-1 receptor 1 (IL1R1) only in the central nervous system (CNS) and selectively on neurons (NSE-IL1R1) or astrocytes (GFAP-IL1R1). During spontaneous sleep, compared to wild type (WT) animals, NSE-IL1R1 and GFAP-IL1R1 mice have more rapid eye movement sleep (REMS) that is characterized by reduced theta power in the electroencephalogram (EEG) spectra. The non-REM sleep (NREMS) EEG of each of the IL1R1 transgenic mouse strains also is characterized by enhanced power in the delta frequency band. In response to 6h of sleep deprivation, sleep of both IL1R1 transgenic mouse strains is more consolidated than that of WT animals. Additionally, the NREMS EEG of NSE-IL1R1 mice contains less delta power after sleep deprivation, suggesting astroglial IL1R1 activity may modulate sleep homeostasis. Intracerebroventricular injection of IL-1 fails to alter sleep or brain temperature of NSE-IL1R1 or GFAP-IL1R1 mice. These data suggest that selective IL1R1 expression on neurons or on astrocytes is not sufficient for centrally-administered IL-1 to induce sleep or fever. Lack of sleep and febrile responses to IL-1 in these IL1R1 transgenic mouse strains may be due to their inability to produce IL-6 in brain. Overall, these studies demonstrate, through the use of novel transgenic mice, that IL1R1 on neurons and astrocytes differentially mediates aspects of sleep under physiological conditions and in response to central IL-1 administration.
Collapse
Affiliation(s)
- Ashley M Ingiosi
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Program in Biomedical Sciences, University of Michigan, Ann Arbor, MI, United States; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
| | - Richard M Raymond
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
| | - Maria N Pavlova
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
| | - Mark R Opp
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States; Program of Neurobiology and Behavior, University of Washington, Seattle, WA, United States.
| |
Collapse
|
28
|
Sustained interleukin-1β exposure modulates multiple steps in glucocorticoid receptor signaling, promoting split-resistance to the transactivation of prominent anti-inflammatory genes by glucocorticoids. Mediators Inflamm 2015; 2015:347965. [PMID: 25977599 PMCID: PMC4421076 DOI: 10.1155/2015/347965] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/22/2015] [Accepted: 02/26/2015] [Indexed: 12/12/2022] Open
Abstract
Clinical treatment with glucocorticoids (GC) can be complicated by cytokine-induced glucocorticoid low-responsiveness (GC-resistance, GCR), a condition associated with a homogeneous reduction in the expression of GC-receptor- (GR-) driven anti-inflammatory genes. However, GR level and phosphorylation changes modify the expression of individual GR-responsive genes differently. As sustained IL-1β exposure is key in the pathogenesis of several major diseases with prevalent GCR, we examined GR signaling and the mRNA expression of six GR-driven genes in cells cultured in IL-1β and afterwards challenged with GC. After a GC challenge, sustained IL-1β exposure reduced the cytoplasmic GR level, GR(Ser203) and GR(Ser211) phosphorylation, and GR nuclear translocation and led to selective GCR in the expression of the studied genes. Compared to GC alone, in a broad range of GC doses plus sustained IL-1β, FKBP51 mRNA expression was reduced by 1/3, TTP by 2/3, and IRF8 was completely knocked down. In contrast, high GC doses did not change the expression of GILZ and DUSP1, while IGFBP1 was increased by 5-fold. These effects were cytokine-selective, IL-1β dose- and IL-1R1-dependent. The integrated gain and loss of gene functions in the "split GCR" model may provide target cells with a survival advantage by conferring resistance to apoptosis, chemotherapy, and GC.
Collapse
|
29
|
Le Coz GM, Anton F, Hanesch U. Glucocorticoid-mediated enhancement of glutamatergic transmission may outweigh anti-inflammatory effects under conditions of neuropathic pain. PLoS One 2014; 9:e91393. [PMID: 24618816 PMCID: PMC3950185 DOI: 10.1371/journal.pone.0091393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 02/12/2014] [Indexed: 12/30/2022] Open
Abstract
At the clinical level comorbidity between chronic pain and dysfunctional hypothalamus-pituitary-adrenal (HPA) axis is well established. We aimed to identify causal relationships in a model of neuropathic pain (chronic constriction injury, CCI) by studying the effects of glucocorticoid receptor agonist (dexamethasone) and antagonist (RU-486) administration on pain behavior and spinal biochemical mediators. Daily injections were performed in Sprague Dawley rats. Weight, plasma corticosterone levels and mechanical pain thresholds were assessed before and during 21 days post-CCI. At days four and 21 we investigated the mRNA expression of spinal mediators. In the dexamethasone-injected group, we observed a diminution of body weight and plasma corticosterone levels during the 21 days post surgery period and a more pronounced pain sensitivity until day 7 post-CCI. This enhanced pain sensitivity in the early period following nerve injury was accompanied by a transient increase of the glutamate receptors mGluR5 and NMDA at day 4. However, at this time point we did not observe any effect of the agonist/antagonist injections on the mRNA expression of pro-inflammatory cytokines. The RU-486-injected rats showed a slight mechanical hypoalgesia until 7 days post-CCI, but without any significant correlation with the expression of the measured markers. Our results indicate that glucocorticoid-related modulations of neuropathic pain processing may rather depend on a modification of glutamatergic transmission than on a change in pro-inflammatory cytokine expression.
Collapse
Affiliation(s)
- Glenn-Marie Le Coz
- Laboratory of Neurophysiology & Psychobiology, University of Luxembourg, Luxembourg, Luxembourg
| | - Fernand Anton
- Laboratory of Neurophysiology & Psychobiology, University of Luxembourg, Luxembourg, Luxembourg
| | - Ulrike Hanesch
- Laboratory of Neurophysiology & Psychobiology, University of Luxembourg, Luxembourg, Luxembourg
- * E-mail:
| |
Collapse
|
30
|
Fischer HJ, Schweingruber N, Lühder F, Reichardt HM. The potential role of T cell migration and chemotaxis as targets of glucocorticoids in multiple sclerosis and experimental autoimmune encephalomyelitis. Mol Cell Endocrinol 2013; 380:99-107. [PMID: 23578583 DOI: 10.1016/j.mce.2013.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/31/2013] [Accepted: 04/01/2013] [Indexed: 12/14/2022]
Abstract
Glucocorticoids (GCs) are the most commonly prescribed drugs for the treatment of acute disease bouts in multiple sclerosis (MS) patients. While T lymphocytes were shown to be essential targets of GC therapy, at least in animal models of MS, the mechanisms by which GCs modulate T cell function are less clear. Until now, apoptosis induction and repression of pro-inflammatory cytokines in T cells have been considered the most critical mechanisms in ameliorating disease symptoms. However, this notion is being challenged by increasing evidence that the control of T cell migration and chemotaxis by GCs might be even more important for the treatment of neuroinflammatory diseases. In this review we aim to provide an overview of how GCs impact the morphological alterations that T cells undergo during activation and migration as well as the influences that GCs have on the directed movement of T cells under the influence of chemokines. A deeper understanding of these processes should not only help to advance our understanding of how GCs exert their beneficial effects in MS therapy but may reveal future strategies to intervene in the pathogenesis of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Henrike J Fischer
- Institute for Cellular and Molecular Immunology, University of Göttingen Medical School, Humboldtallee 34, 37073 Göttingen, Germany
| | | | | | | |
Collapse
|
31
|
Krishnapuram R, Dhurandhar EJ, Dubuisson O, Hegde V, Dhurandhar NV. Doxycycline-regulated 3T3-L1 preadipocyte cell line with inducible, stable expression of adenoviral E4orf1 gene: a cell model to study insulin-independent glucose disposal. PLoS One 2013; 8:e60651. [PMID: 23544159 PMCID: PMC3609787 DOI: 10.1371/journal.pone.0060651] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/01/2013] [Indexed: 01/12/2023] Open
Abstract
Impaired glycemic control and excessive adiposity are major risk factors for Type 2 Diabetes mellitus. In rodent models, Ad36, a human adenovirus, improves glycemic control, independent of dietary fat intake or adiposity. It is impractical to use Ad36 for therapeutic action. Instead, we identified that E4orf1 protein of Ad36, mediates its anti-hyperglycemic action independent of insulin signaling. To further evaluate the therapeutic potential of E4orf1 to improve glycemic control, we established a stable 3T3-L1 cell system in which E4orf1 expression can be regulated. The development and characterization of this cell line is described here. Full-length adenoviral-36 E4orf1 cDNA obtained by PCR was cloned into a tetracycline responsive element containing vector (pTRE-Tight-E4orf1). Upon screening dozens of pTRE-Tight-E4orf1 clones, we identified the one with the highest expression of E4orf1 in response to doxycycline treatment. Furthermore, using this inducible system we characterized the ability of E4orf1 to improve glucose disposal in a time dependent manner. This stable cell line offers a valuable resource to carefully study the novel signaling pathways E4orf1 uses to enhance cellular glucose disposal independent of insulin.
Collapse
Affiliation(s)
- Rashmi Krishnapuram
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Emily J. Dhurandhar
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Olga Dubuisson
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Vijay Hegde
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Nikhil V. Dhurandhar
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
32
|
Agnihotri R, Gaur S. Rheumatoid arthritis in the elderly and its relationship with periodontitis: a review. Geriatr Gerontol Int 2013; 14:8-22. [PMID: 23530652 DOI: 10.1111/ggi.12062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2013] [Indexed: 12/11/2022]
Abstract
Periodontitis and rheumatoid arthritis are chronic inflammatory diseases commonly seen in the elderly. It has been proposed that the two conditions are interrelated and influence the severity of each other. Recently, the role of Porphyromonas gingivalis, a periodontopathogen, has been explained in the pathogenesis and progression of rheumatoid arthritis. It can be inferred from the present review that the two conditions share a common pathobiology, genetics and environmental risk factors. Furthermore, a thorough understanding of the aforementioned mechanisms might enable the development of conjoint treatment modalities beneficial in treating the geriatric population afflicted by both the disorders.
Collapse
|
33
|
Cecilio CA, Costa EH, Ucelli P, Chaves CA, Toffoli MC, Flores CA, Cunha FQ, Ferreira SH, Tamashiro WM. The neutrophil migration induced by tumour necrosis factor alpha in mice is unaffected by glucocorticoids. Mediators Inflamm 2012; 6:46-52. [PMID: 18472833 PMCID: PMC2365842 DOI: 10.1080/09629359791929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Macrophages harvested from the peritoneal cavities of rats release a neutrophil chemotactic factor (MNCF) in response to stimulation with Gram-negative bacterial lipopolysaccharide (LPS). MNCF has been shown to be active in rats treated with dexamethasone, a glucocorticoid that usually inhibits the neutrophil migration induced in this species by interleukin (IL)-1, tumour necrosis factor alpha (TNFalpha), IL-8, C5a and leukotriene B(4) (LTB(4)). Here we report that macrophages harvested from peritoneal cavities of mice, and stimulated in vitro with LPS, also release a factor that induces neutrophil migration in dexamethasone-treated animals. This chemotactic activity was neutralized by the incubation of the LPS-stimulated macrophage supernatants with a purified polyclonal IgG anti-mouse TNFalpha. In addition, significant amounts of TNF were detected in the supernatants. The neutrophil migration induced by intraperitoneal administration of recombinant murine TNFalpha was also unaffected by pretreatment of the mice with dexamethasone. Moreover, neutrophil migration induced by intraperitoneal injection of LPS was completely blocked by pretreatment of the mice with a monoclonal antibody against murine TNFalpha. In conclusion, our results support the hypothesis that, in contrast to the role of TNF in rats (where it indirectly induces neutrophil migration), in mice, it may be an important mediator in the recruitment of neutrophils to inflammatory sites.
Collapse
Affiliation(s)
- C A Cecilio
- Department of Microbiology and Immunology Institute of Biology UNICAMP Campinas SP 13081-970 Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Glucocorticoids as cytokine inhibitors: role in neuroendocrine control and therapy of inflammatory diseases. Mediators Inflamm 2012; 2:263-70. [PMID: 18475532 PMCID: PMC2365417 DOI: 10.1155/s0962935193000365] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1993] [Accepted: 05/03/1993] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoids are potent inhibitors of inflammation and endotoxic shock. This probably occurs through an inhibition of the synthesis of pro-inflammatory cytokines as well as of many of their toxic activities. Therefore, endogenous glucocorticoids (GC) might represent a major mechanism in the control of cytokine mediated pathologies. GC inhibit the synthesis of cytokines in various experimental models. Adrenalectomy or GC antagonists potentiate TNF, IL-1 and IL-6 production in LPS treated mice. GC inhibit the formation of arachidonic acid metabolites and the induction of NO synthase. They also inhibit various activities of cytokines including toxicity, haemodynamic shock and fever. Adrenalectomy sensitizes to the toxic effects of LPS, TNF and IL-1. On the other hand, GC potentiate the synthesis of several cytokine induced APP by the liver. Since many of these proteins have anti-toxic activities (antioxidant, antiprotease etc.) or bind cytokines, this might well represent a GC mediated protective feedback mechanism involving the liver. Not only do GC inhibit cytokines, but in vivo LPS and various cytokines (TNF, IL-1, IL-6) increase blood GC levels through a central mechanism involving the activation of the HPA. Thus, this neuroendocrine response to cytokines constitutes an important immunoregulatory feedback involving the brain.
Collapse
|
35
|
Arrode-Brusés G, Brusés JL. Maternal immune activation by poly I:C induces expression of cytokines IL-1β and IL-13, chemokine MCP-1 and colony stimulating factor VEGF in fetal mouse brain. J Neuroinflammation 2012; 9:83. [PMID: 22546005 PMCID: PMC3413576 DOI: 10.1186/1742-2094-9-83] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/30/2012] [Indexed: 01/19/2023] Open
Abstract
Background Maternal viral infection during pregnancy is associated with an increase in the incidence of psychiatric disorders with presumed neurodevelopmental origin, including autism spectrum disorders and schizophrenia. The enhanced risk for developing mental illness appears to be caused by deleterious effects of innate immune response-associated factors on the development of the central nervous system, which predispose the offspring to pathological behaviors in adolescence and adulthood. To identify the immune response-associated soluble factors that may affect central nervous system development, we examined the effect of innate immune response activation by polyriboinosinic-polyribocytidylic acid (poly(I:C)), a synthetic analogue of viral double-stranded RNA, on the expression levels of pro- and anti-inflammatory cytokines, chemokines and colony stimulating factors in fetal and postnatal mouse brain 6 h and 24 h after treatment. Methods C57BL/6J pregnant mice (gestational day 16) or newborn mice (postnatal day 4) received a single intraperitoneal injection of the synthetic analogue of viral double-stranded RNA poly(I:C) (20 mg/kg). Thirty-two immune response-associated soluble factors, including pro- and anti-inflammatory cytokines, chemokines and colony stimulating factors, were assayed 6 h and 24 h after poly(I:C) injection using multiplexed bead-based immunoassay (Milliplex Map) and processed in a Luminex 100 IS instrument. Results Maternal exposure to poly(I:C) at gestational day 16 induced a significant increase in cytokines interleukin (IL)-1β, IL-7 and IL-13; chemokines monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein (MIP)-1α, interferon gamma-induced protein (IP)-10 and monokine induced by IFN-gamma (MIG); and in the colony stimulating factor vascular endothelial growth factor (VEGF) in the fetal brain. IL-1β showed the highest concentration levels in fetal brains and was the only cytokine significantly up-regulated 24 h after maternal poly(I:C) injection, suggesting that IL-1β may have a deleterious impact on central nervous system development. In contrast, poly(I:C) treatment of postnatal day 4 pups induced a pronounced rise in chemokines and colony stimulating factors in their brains instead of the pro-inflammatory cytokine IL-1β. Conclusions This study identified a significant increase in the concentration levels of the cytokines IL-1β and IL-13, the chemokine MCP-1 and the colony stimulating factor VEGF in the developing central nervous system during activation of an innate immune response, suggesting that these factors are mediators of the noxious effects of maternal immune activation on central nervous system development, with potential long-lasting effects on animal behavior.
Collapse
Affiliation(s)
- Géraldine Arrode-Brusés
- Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | | |
Collapse
|
36
|
Schott J, Stoecklin G. Networks controlling mRNA decay in the immune system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:432-56. [PMID: 21956941 DOI: 10.1002/wrna.13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The active control of mRNA degradation has emerged as a key regulatory mechanism required for proper gene expression in the immune system. An adenosine/uridine (AU)-rich element (ARE) is at the heart of a first regulatory system that promotes the rapid degradation of a multitude of cytokine and chemokine mRNAs. AREs serve as binding sites for a number of regulatory proteins that either destabilize or stabilize the mRNA. Several kinase pathways regulate the activity of ARE-binding proteins and thereby coordinate the expression of their target mRNAs. Small regulatory micro (mi)-RNAs represent a second system that enhances the degradation of several mRNAs encoding important components of signal transduction cascades that are activated during adaptive and innate immune responses. Specific miRNAs are important for the differentiation of T helper cells, class switch recombination in B cells, and the maturation of dendritic cells. Excitement in this area of research is fueled by the discovery of novel RNA elements and regulatory proteins that exert control over specific mRNAs, as exemplified by an endonuclease that was found to directly cleave interleukin-6 mRNA. Together, these systems make up an extensive regulatory network that controls decay rates of individual mRNAs in a precise manner and thereby orchestrates the dynamic expression of many factors essential for adaptive and innate immune responses. In this review, we provide an overview of relevant factors regulated at the level of mRNA stability, summarize RNA-binding proteins and miRNAs that control their degradation rates, and discuss signaling pathways operating within this regulatory network.
Collapse
Affiliation(s)
- Johanna Schott
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | |
Collapse
|
37
|
|
38
|
Busillo JM, Azzam KM, Cidlowski JA. Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. J Biol Chem 2011; 286:38703-38713. [PMID: 21940629 DOI: 10.1074/jbc.m111.275370] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids have long been recognized as powerful anti-inflammatory compounds that are one of the most widely prescribed classes of drugs in the world. However, their role in the regulation of innate immunity is not well understood. We sought to examine the effects of glucocorticoids on the NOD-like receptors (NLRs), a central component of the inflammasome and innate immunity. Surprisingly, we show that glucocorticoids induce both NLRP3 messenger RNA and protein, which is a critical component of the inflammasome. The glucocorticoid-dependent induction of NLRP3 sensitizes the cells to extracellular ATP and significantly enhances the ATP-mediated release of proinflammatory molecules, including mature IL-1β, TNF-α, and IL-6. This effect was specific for glucocorticoids and dependent on the glucocorticoid receptor. These studies demonstrate a novel role for glucocorticoids in sensitizing the initial inflammatory response by the innate immune system.
Collapse
Affiliation(s)
- John M Busillo
- Laboratory of Signal Transduction, Department of Health and Human Services, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Kathleen M Azzam
- Laboratory of Respiratory Biology, Department of Health and Human Services, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - John A Cidlowski
- Laboratory of Signal Transduction, Department of Health and Human Services, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709.
| |
Collapse
|
39
|
Zimomra ZR, Porterfield VM, Camp RM, Johnson JD. Time-dependent mediators of HPA axis activation following live Escherichia coli. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1648-57. [PMID: 21917906 DOI: 10.1152/ajpregu.00301.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis is activated during an immune challenge to liberate energy and modulate immune responses via feedback and regulatory mechanisms. Inflammatory cytokines and prostaglandins are known contributors to HPA activation; however, most previous studies only looked at specific time points following LPS administration. Since whole bacteria have different immune stimulatory properties compared with LPS, the aim of the present studies was to determine whether different immune products contribute to HPA activation at different times following live Escherichia coli challenge. Sprague-Dawley rats were injected intraperitoneally with E. coli (2.5 × 10(7) CFU) and a time course of circulating corticosterone, ACTH, inflammatory cytokines, and PGE(2) was developed. Plasma corticosterone peaked 0.5 h after E. coli and steadily returned to baseline by 4 h. Plasma PGE(2) correlated with the early rise in plasma corticosterone, whereas inflammatory cytokines were not detected until 2 h. Pretreatment with indomethacin, a nonselective cyclooxygenase inhibitor, completely blocked the early rise in plasma corticosterone, but not at 2 h, whereas pretreatment with IL-6 antibodies had no effect on the early rise in corticosterone but attenuated corticosterone at 2 h. Interestingly, indomethacin pretreatment did not completely block the early rise in corticosterone following a higher concentration of E. coli (2.5 × 10(8) CFU). Further studies revealed that only animals receiving indomethacin prior to E. coli displayed elevated plasma and liver cytokines at early time points (0.5 and 1 h), suggesting prostaglandins suppress early inflammatory cytokine production. Overall, these data indicate prostaglandins largely mediate the early rise in plasma corticosterone, while inflammatory cytokines contribute to maintaining levels of corticosterone at later time points.
Collapse
Affiliation(s)
- Z R Zimomra
- Kent State University, Department of Biological Sciences, Kent, Ohio, USA
| | | | | | | |
Collapse
|
40
|
Pathak S, Goldofsky E, Vivas EX, Bonagura VR, Vambutas A. IL-1β is overexpressed and aberrantly regulated in corticosteroid nonresponders with autoimmune inner ear disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:1870-9. [PMID: 21199898 PMCID: PMC3031454 DOI: 10.4049/jimmunol.1002275] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autoimmune inner ear disease is an enigmatic disorder characterized by recurring episodes of sudden or progressive sensorineural hearing loss. Hearing loss can be improved by timely corticosteroid administration, but only half of those treated respond, and for many responders, that response is lost over time. The mechanisms that control corticosteroid responsiveness in this disorder are largely uncharacterized. We have previously identified that the induction by dexamethasone of IL-1R type II (IL-1R2) expression in PBMC predicts corticosteroid responsiveness in this disorder. In this study, we asked whether IL-1β was overexpressed, and whether clinical corticosteroid responders differentially regulated IL-1β expression or release in response to dexamethasone, as compared with nonresponders. IL-1β has been reported to induce matrix metalloproteinase-9 (MMP-9) expression. Given that metalloproteinases can cleave IL-1R2, we also asked whether MMP-9 expression was altered in this disorder. In this study, we demonstrate that corticosteroid nonresponders have elevated plasma levels of IL-1β and MMP-9 as compared with clinically responsive patients (p = 0.0008 and p = 0.037, respectively). Increasing MMP-9 expression correlated with increasing IL-1β concentration, suggesting that IL-1β expression regulates MMP-9 expression. As expected, monocytes were the predominant producers of IL-1β. In vitro exposure of PBMC to dexamethasone from clinical corticosteroid responders suppressed IL-1β release. PBMC of corticosteroid nonresponders have substantially higher release of IL-1β into the conditioned media, and when exposed to dexamethasone, failed to repress IL-1β release (p = 0.05). Treatment of PBMC from clinical corticosteroid nonresponders with anakinra resulted in repression of IL-1β release, suggesting that IL-1β blockade may be a viable therapy for these patients.
Collapse
Affiliation(s)
- Shresh Pathak
- Feinstein Institute for Medical Research, Hofstra North Shore-Long Island Jewish School of Medicine, Manhasset, NY 11030
| | - Elliot Goldofsky
- Department of Otolaryngology, Albert Einstein College of Medicine, Bronx, NY 10467
| | - Esther X. Vivas
- Department of Otolaryngology, Albert Einstein College of Medicine, Bronx, NY 10467
| | - Vincent R. Bonagura
- Feinstein Institute for Medical Research, Hofstra North Shore-Long Island Jewish School of Medicine, Manhasset, NY 11030
- Department of Molecular Medicine, Hofstra North Shore-Long Island Jewish School of Medicine, Manhasset, NY 11030
| | - Andrea Vambutas
- Feinstein Institute for Medical Research, Hofstra North Shore-Long Island Jewish School of Medicine, Manhasset, NY 11030
- Department of Otolaryngology, Albert Einstein College of Medicine, Bronx, NY 10467
- Department of Molecular Medicine, Hofstra North Shore-Long Island Jewish School of Medicine, Manhasset, NY 11030
- Department of Otolaryngology, Hofstra North Shore-Long Island Jewish School of Medicine, Manhasset, NY 11030
| |
Collapse
|
41
|
Spencer RL, Kalman BA, Dhabhar FS. Role of Endogenous Glucocorticoids in Immune System Function: Regulation and Counterregulation. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
42
|
Abstract
A direct causal association between corticosteroid use and laminitis has yet to be proven scientifically, and there have been few studies specifically addressing this aspect. New evidence, however, is improving the understanding of the causes of laminitis, particularly related to endocrine factors. The focus of this article is discussing the circumstances under which steroids might cause this condition.
Collapse
|
43
|
Davis D, Cyriac M, Ge D, You Z, Savoie FH. In vitro cytotoxic effects of benzalkonium chloride in corticosteroid injection suspension. J Bone Joint Surg Am 2010; 92:129-37. [PMID: 20048105 DOI: 10.2106/jbjs.h.01561] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Some deleterious effects on cartilage and even severe arthropathy have been reported after intra-articular corticosteroid injections. The objective of the present in vitro study was to determine if an injectable corticosteroid suspension is toxic to articular chondrocytes and synovial cells. METHODS Human and bovine articular chondrocytes, bovine synovial cells, mouse C3H10T1/2 cells, and human osteosarcoma MG-63 cells were treated for thirty minutes in monolayer or suspension culture with an injectable corticosteroid suspension or its chemical components, including betamethasone sodium phosphate, betamethasone acetate, and benzalkonium chloride (as preservative). Cell viability was determined by means of microscopy or flow cytometry analysis. RESULTS In monolayer culture, the betamethasone corticosteroids per se did not cause cell death, whereas benzalkonium chloride caused death of articular chondrocytes. In suspension culture, betamethasone sodium phosphate at dosages of as high as 6 mg/mL did not cause significant death of human or bovine articular chondrocytes (p > 0.05). In contrast, benzalkonium chloride caused a death rate of 10.6% in human articular chondrocytes at a dosage of 10 microg/mL (p < 0.01), 21.0% at a dosage of 13.3 microg/mL (p < 0.01), and 99.3% and 99.4% at dosages of 20 and 200 microg/mL, respectively (p < 0.001 for both). Similarly, benzalkonium chloride caused death of bovine articular chondrocytes, bovine synovial cells, C3H10T1/2 cells, and MG-63 cells in a dose-dependent manner. When treated with a combination of betamethasone sodium phosphate and 200 microg/mL benzalkonium chloride, >99% of human or bovine articular chondrocytes were dead (p < 0.001). CONCLUSIONS The injectable corticosteroid suspension caused death in in vitro culture of human and bovine articular chondrocytes as well as bovine synovial cells because of its preservative benzalkonium chloride. The betamethasone corticosteroids per se did not cause significant chondrocyte death under the conditions tested.
Collapse
Affiliation(s)
- Daniel Davis
- Tulane Institute of Sports Medicine, Department of Orthopaedic Surgery, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
44
|
Newton R, Leigh R, Giembycz MA. Pharmacological strategies for improving the efficacy and therapeutic ratio of glucocorticoids in inflammatory lung diseases. Pharmacol Ther 2009; 125:286-327. [PMID: 19932713 DOI: 10.1016/j.pharmthera.2009.11.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
Abstract
Glucocorticoids are widely used to treat various inflammatory lung diseases. Acting via the glucocorticoid receptor (GR), they exert clinical effects predominantly by modulating gene transcription. This may be to either induce (transactivate) or repress (transrepress) gene transcription. However, certain individuals, including those who smoke, have certain asthma phenotypes, chronic obstructive pulmonary disease (COPD) or some interstitial diseases may respond poorly to the beneficial effects of glucocorticoids. In these cases, high dose, often oral or parental, glucocorticoids are typically prescribed. This generally leads to adverse effects that compromise clinical utility. There is, therefore, a need to enhance the clinical efficacy of glucocorticoids while minimizing adverse effects. In this context, a long-acting beta(2)-adrenoceptor agonist (LABA) can enhance the clinical efficacy of an inhaled corticosteroid (ICS) in asthma and COPD. Furthermore, LABAs can augment glucocorticoid-dependent gene expression and this action may account for some of the benefits of LABA/ICS combination therapies when compared to ICS given as a monotherapy. In addition to metabolic genes and other adverse effects that are induced by glucocorticoids, there are many other glucocorticoid-inducible genes that have significant anti-inflammatory potential. We therefore advocate a move away from the search for ligands of GR that dissociate transactivation from transrepression. Instead, we submit that ligands should be functionally screened by virtue of their ability to induce or repress biologically-relevant genes in target tissues. In this review, we discuss pharmacological methods by which selective GR modulators and "add-on" therapies may be exploited to improve the clinical efficacy of glucocorticoids while reducing potential adverse effects.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Airway Inflammation Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
45
|
Bose M, Oliván B, Laferrère B. Stress and obesity: the role of the hypothalamic-pituitary-adrenal axis in metabolic disease. Curr Opin Endocrinol Diabetes Obes 2009; 16:340-6. [PMID: 19584720 PMCID: PMC2858344 DOI: 10.1097/med.0b013e32832fa137] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Chronic stress, combined with positive energy balance, may be a contributor to the increased risk for obesity, especially upper body obesity, and other metabolic diseases. This association may be mediated by alterations in the hypothalamic-pituitary-adrenal (HPA) axis. In this review, we summarize the major research that has been conducted on the role of the HPA axis in obesity and metabolic disease. RECENT FINDINGS Dysregulation in the HPA axis has been associated with upper body obesity, but data are inconsistent, possibly due to methodological differences across studies. In addition to systemic effects, changes in local cortisol metabolism in adipose tissue may also influence the risk for obesity. HPA axis dysregulation may be the causal link between conditions such as maternal malnutrition and sleep deprivation with metabolic disease. SUMMARY The present review provides evidence for the relationship between chronic stress, alterations in HPA activity, and obesity. Understanding these associations and its interactions with other factors will be important in developing effective treatments for obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Mousumi Bose
- New York Obesity Research Center, St Luke's Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, New York, USA.
| | | | | |
Collapse
|
46
|
Castillo J, Teles M, Mackenzie S, Tort L. Stress-related hormones modulate cytokine expression in the head kidney of gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2009; 27:493-499. [PMID: 19591943 DOI: 10.1016/j.fsi.2009.06.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 06/21/2009] [Accepted: 06/27/2009] [Indexed: 05/28/2023]
Abstract
Neuro-endocrine and immune systems closely interact in fish, and their regulation is crucial for the maintenance of good health of cultured fish. We have used the seabream head kidney to study whether stress-related hormones can modulate the immune response. For this purpose, the effects of adrenaline, adrenocorticotropic hormone (ACTH) and cortisol on the expression of pro-inflammatory cytokines (TNF-alpha, IL-1beta, IL-6) and the anti-inflammatory cytokine TGF-beta1 were determined by means of quantitative real-time PCR on isolated head kidney cells. ACTH (150 ng mL(-1)) caused an acute increase of TNF-alpha and IL-6 mRNA levels as well as an inhibition of IL-1beta expression. The expression of the anti-inflammatory cytokine TGF-beta1 was also increased, although in a lower extent. Adrenaline (1 muM) early effects were only clear inhibiting IL-1beta expression but not TNF-alpha, IL-6 or TGF-beta1 mRNA levels, while a longer exposure to the hormone inhibited all cytokines. Moreover, cortisol (50 and 100 ng mL(-1)) reduced the expression of all cytokines in a dose-dependent manner. Bacterial lipopolysaccharide (LPS) stimulated IL-1beta expression and inhibited that of the anti-inflammatory TGF-beta1, although it was ineffective on TNF-alpha and IL-6. In addition, adrenaline and cortisol decreased the LPS-stimulated IL-1beta expression, further demonstrating their previously reported anti-inflammatory effects. The combination of ACTH and LPS, on the other hand, did not affect LPS-stimulated IL-1beta expression but was effective increasing TNF-alpha expression. Taking all these results in consideration, we conclude that the expression of pro- and anti-inflammatory cytokines in the seabream head kidney is highly influenced by stress-related hormones, thus indicating an important role for the endocrine system in the modulation of the immune response in teleost fish.
Collapse
Affiliation(s)
- Juan Castillo
- Unitat de Fisiologia Animal, Departament de Biologia Cel.lular, Fisiologia i d'Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
47
|
Fialho SL, Rêgo MB, Siqueira RC, Jorge R, Haddad A, Rodrigues AL, Maia-Filho A, Silva-Cunha A. Safety and Pharmacokinetics of an Intravitreal Biodegradable Implant of Dexamethasone Acetate in Rabbit Eyes. Curr Eye Res 2009; 31:525-34. [PMID: 16769612 DOI: 10.1080/02713680600719036] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The treatment of vitreoretinal diseases is limited and, nowadays, new drug delivery approaches have been reported in order to increase drug bioavailability. The objective of the current study was to determine the pharmacokinetic profile of a biodegradable dexamethasone acetate implant inserted into the vitreous of rabbits and to evaluate its potential signs of toxicity to the rabbits' eyes. The results showed that the intravitreous drug concentration remained within the therapeutic range along the 8-week period of evaluation. The system under study was not toxic to the normal rabbit retina, and no significant increase in intraocular pressure was observed.
Collapse
Affiliation(s)
- S L Fialho
- Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang YF, Hsu JY, Fu LS, Weng YS, Chu JJ. Asthma drugs counter-regulate interleukin-8 release stimulated by sodium sulfite in an A549 cell line. J Asthma 2009; 46:238-43. [PMID: 19373630 DOI: 10.1080/02770900802628508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Clinical manifestations suggest that air pollution may induce deterioration of respiratory health. Some air pollutants, including sulfite, may play a role in the exacerbation of asthma. Sulfites are formed at bronchial mucosa from inhaled sulfur dioxide. It has been previously reported that sodium sulfite (Na(2)SO(3)) has pro-inflammatory properties and enhances neutrophil adhesion to A549 cells. Interleukin-8 (IL-8) plays a critical role in attracting inflammatory cells and is an excellent marker of pulmonary cell activation. To date, there have not been any reports on the effect of asthma drugs on the suppression of IL-8 production induced by sulfite in A549 cells or the involvement of specific signal transduction pathways. Thus, our study assessed the effects of salmeterol, fluticasone, and montelukast on human epithelial lung cell inflammation as well as the inhibitors in different signal transduction pathways. METHODS A549 human lung epithelial cells were cultured under the following conditions: (1) treated with sodium sulfite (0, 100, 500, 1000, 2500 uM) for 16 hours; (2) cultured for 1 hour in the presence of SB203580, PD98059, SP600125, or wedeloactone, then co-incubated with sodium sulfite for another 16 hours; (3) cultured for 4 hours in the presence of salmeterol, fluticasone, or montelukast, then stimulated with sodium sulfite at a concentration of 1000 uM for 16 hours. We collected the supernatants from the above conditions and performed enzyme-linked immunosorbent assay (ELISA) to measure the IL-8 concentration. RESULTS IL-8 production increased after treatment with sodium sulfite at 1000 to 2500 uM (p <or= 0.001). SB203580, PD98059, and wedeloactone decreased IL-8 production stimulated by Na(2)SO(3) (p < 0.01). Salmeterol, fluticasone, and montelukast significantly suppressed IL-8 secretion from sodium sulfite-stimulated A549 cells (p < 0.01). CONCLUSIONS Sodium sulfite has pro-inflammatory properties in vitro and can induce potent chemotactic factor IL-8 production. Possible signal transduction pathways required for IL-8 gene expression following exposure to sulfite are the NF-kappa B, ERK, and p-38-dependent pathways. Salmeterol, fluticasone, and montelukast all have inhibitory effects on sodium sulfite-induced IL-8 production in A549 cells.
Collapse
Affiliation(s)
- Ya-Fang Yang
- Institute of Medicine, Chung-Shan Medical University, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
49
|
Goshen I, Yirmiya R. Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol 2009; 30:30-45. [PMID: 19017533 DOI: 10.1016/j.yfrne.2008.10.001] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 10/22/2008] [Accepted: 10/27/2008] [Indexed: 02/06/2023]
Abstract
Ample evidence demonstrates that the pro-inflammatory cytokine interleukin-1 (IL-1), produced following exposure to immunological and psychological challenges, plays an important role in the neuroendocrine and behavioral stress responses. Specifically, production of brain IL-1 is an important link in stress-induced activation of the hypothalamus-pituitary-adrenal axis and secretion of glucocorticoids, which mediate the effects of stress on memory functioning and neural plasticity, exerting beneficial effects at low levels and detrimental effects at high levels. Furthermore, IL-1 signaling and the resultant glucocorticoid secretion mediate the development of depressive symptoms associated with exposure to acute and chronic stressors, at least partly via suppression of hippocampal neurogenesis. These findings indicate that whereas under some physiological conditions low levels of IL-1 promote the adaptive stress responses necessary for efficient coping, under severe and chronic stress conditions blockade of IL-1 signaling can be used as a preventive and therapeutic procedure for alleviating stress-associated neuropathology and psychopathology.
Collapse
Affiliation(s)
- Inbal Goshen
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem, Israel
| | | |
Collapse
|
50
|
Nawata Y, Eugui EM, Lee SW, Allison AC. IL-6 is the principal factor produced by synovia of patients with rheumatoid arthritis that induces B-lymphocytes to secrete immunoglobulins. Ann N Y Acad Sci 2008; 557:230-8, discussion 239. [PMID: 2786697 DOI: 10.1111/j.1749-6632.1989.tb24016.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
First, IL-6 is produced by synovial tissue of patients with rheumatoid arthritis (RA) and is the principal mediator produced by that tissue inducing differentiation of B-lymphocytes into antibody-forming cells. The Leu-1+ subset of B-lymphocytes is induced by IL-6 to secrete rheumatoid factor (IgM with anti-Fc gamma specificity). Second, the main cell types producing IL-6 in cells dissociated from RA synovial tissue are mononuclear leukocytes. Connective tissue type cells (synoviocytes) cultured from RA synovial tissue produce IL-6 in response to IL-1 beta, and IL-6 formation is increased by TGF-beta. Glucocorticoids strongly inhibit and PGE2 slightly inhibits IL-1-induced IL-6 mRNA expression in synoviocytes. Production of IL-6 increases when undissociated RA synovial tissue is maintained in culture, thus suggesting release from inhibition by a factor or factors not yet identified. Third, the major known local effect of IL-6 in RA synovial tissue is the augmentation of antibody formation and the major known systemic effect is the induction of the synthesis by the liver of acute-phase proteins, especially C-reactive protein. Levels of circulating C-reactive protein are reported to decrease in RA patients receiving long-acting antirheumatic drugs, which would be consistent with the interpretation that immature monocyte-derived macrophages are major producers of IL-6 in these patients.
Collapse
Affiliation(s)
- Y Nawata
- Department of Immunology and Cell Biology, Syntex Research, Palo Alto, California 94304
| | | | | | | |
Collapse
|