1
|
Ledogar JA, Benazzi S, Smith AL, Dechow PC, Wang Q, Cook RW, Neaux D, Ross CF, Grosse IR, Wright BW, Weber GW, Byron C, Wroe S, Strait DS. Bite force production and the origin of Homo. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241879. [PMID: 40271135 PMCID: PMC12014231 DOI: 10.1098/rsos.241879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/31/2025] [Accepted: 03/18/2025] [Indexed: 04/25/2025]
Abstract
The divergence of Homo from gracile australopiths has been described as a trend of decreasing dentognathic size and robusticity, precipitated by stone tool use and/or a shift to softer foods, including meat. Yet, mechanical evidence supporting this narrative is sparse, and isotopic and archaeological data have led to the suggestion that a shift away from a gracile australopith-like diet would not have occurred in the most basal members of Homo but rather only with the appearance of Homo erectus, implying that the origin of our genus is not rooted in dietary change. Here, we provide mechanical evidence that Homo habilis exhibits an australopith-like pattern of facial strain during biting but, unlike most australopiths, was not suited for a diet that required forceful processing by the molar teeth. Homo habilis was at elevated risk of distractive jaw joint forces during those bites, constraining muscle recruitment so as to avoid generating uncomfortable/dangerous levels of tension in the joint. Modern humans have similar limitations. This suggests that selection on skeletal traits favouring forceful postcanine processing was relaxed by the earliest stages in the evolution of our genus, implying that dietary or food processing changes played an important role in the emergence of Homo.
Collapse
Affiliation(s)
- Justin A. Ledogar
- Department of Biomedical Health Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Bologna, Emilia-Romagna, Italy
| | - Amanda L. Smith
- Department of Fundamental Biomedical Sciences, Touro University California, Vallejo, CA, USA
| | - Paul C. Dechow
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Qian Wang
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Rebecca W. Cook
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Dimitri Neaux
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris, France
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Ian R. Grosse
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
| | - Barth W. Wright
- Department of Surgery, University of Kansas Medical Center, KS, USA
| | - Gerhard W. Weber
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Craig Byron
- Department of Biology, Mercer University, Macon, GA, USA
| | - Stephen Wroe
- Department of Zoology, University of New England, Armidale, New South Wales, Australia
| | - David S. Strait
- Department of Anthropology, Washington University in St Louis, St Louis, MO, USA
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
- DFG Center for Advanced Studies ‘Words, Bones, Genes, Tools’, University of Tübingen, Tubingen, Baden-Württemberg, Germany
| |
Collapse
|
2
|
Fiorenza L, Mitchell DR, Kullmer O. Pongo's ecological diversity from dental macrowear analysis. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25031. [PMID: 39304994 DOI: 10.1002/ajpa.25031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 11/20/2024]
Abstract
OBJECTIVES Orangutans are found in tropical rainforests of Borneo (Pongo pygmaeus) and Sumatra (Pongo abelii and Pongo tapanuliensis), and they are primarily considered frugivorous species. However, ecological studies reported differences in feeding behavior between these species. P. pygmaeus spend more time feeding on low-quality foods, such as bark and tough vegetation than do P. abelii. The aim of this study is to investigate if there is any geographic variation in molar macrowear pattern between the two species. METHODS We analyzed the macrowear pattern of second mandibular molars of 58 orangutan specimens combining dental topographic measurements (occlusal relief index, percentage of dentine exposure, and percentage of enamel wear) with the occlusal fingerprint analysis method. RESULTS The molar macrowear patterns of P. abelii and P. pygmaeus show no significant differences in most of the variables examined in this study. While P. pygmaeus molars are generally characterized by flatter occlusal morphology with slightly larger crushing and grinding areas than those of P. abelii, these differences are not statistically significant. However, we do observe a more variable wear in P. pygmaeus. CONCLUSIONS Similarities in molar macrowear patterns between the two species could be linked to overlapping long-term diets, primarily composed of ripe and pulpy fruits. Dental macrowear is a cumulative process that occurs during the individual's lifetime, and it may be difficult to detect seasonal changes through its examination. Future studies could integrate tooth micro- and macrowear data for a better understanding of primate dental ecology.
Collapse
Affiliation(s)
- Luca Fiorenza
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - D Rex Mitchell
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Ottmar Kullmer
- Department of Paleoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
- Department of Paleobiology and Environment, Institute of Ecology, Evolution, and Diversity, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
3
|
Li H, Niu S, Pan H, Wang G, Xie J, Tian J, Zhang K, Xia Y, Li Z, Yu E, Xie W, Gong W. Modulation of the gut microbiota by processed food and natural food: evidence from the Siniperca chuatsi microbiome. PeerJ 2024; 12:e17520. [PMID: 38887619 PMCID: PMC11182020 DOI: 10.7717/peerj.17520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Habitual dietary changes have the potential to induce alterations in the host's gut microbiota. Mandarin fish (Siniperca chuatsi), an aquatic vertebrate species with distinct feeding habits, were fed with natural feeds (NF) and artificial feeds (AF) to simulate the effects of natural and processed food consumption on host gut microbiota assemblages. The results showed that the alpha diversity index was reduced in the AF diet treatment, as lower abundance and diversity of the gut microbiota were observed, which could be attributed to the colonized microorganisms of the diet itself and the incorporation of plant-derived proteins or carbohydrates. The β-diversity analysis indicated that the two dietary treatments were associated with distinct bacterial communities. The AF diet had a significantly higher abundance of Bacteroidota and a lower abundance of Actinomycetota, Acidobacteriota, and Chloroflexota compared to the NF group. In addition, Bacteroidota was the biomarker in the gut of mandarin fish from the AF treatment, while Acidobacteriota was distinguished in the NF treatments. Additionally, the increased abundance of Bacteroidota in the AF diet group contributed to the improved fermentation and nutrient assimilation, as supported by the metabolic functional prediction and transcriptome verification. Overall, the present work used the mandarin fish as a vertebrate model to uncover the effects of habitual dietary changes on the evolution of the host microbiota, which may provide potential insights for the substitution of natural foods by processed foods in mammals.
Collapse
Affiliation(s)
- Hongyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Shuhui Niu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Houjun Pan
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Guangjun Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Jun Xie
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Jingjing Tian
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Kai Zhang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Yun Xia
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Zhifei Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Ermeng Yu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Wenping Xie
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Wangbao Gong
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| |
Collapse
|
4
|
Pujiantari P, Delezene LK, Michael Plavcan J, Teaford MF, Ungar PS. Stubby versus stabby: A preliminary analysis of canine microwear in primates: Implication for inferring ingestive behaviors. Am J Primatol 2024; 86:e23608. [PMID: 38353023 DOI: 10.1002/ajp.23608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/08/2023] [Accepted: 02/03/2024] [Indexed: 04/13/2024]
Abstract
Molar and incisor microwear reflect aspects of food choice and ingestive behaviors in living primates and have both been used to infer the same for fossil samples. Canine microwear, however, has received less attention, perhaps because of the prominent role canines play in social display and because they are used as weapons-while outside of a few specialized cases, their involvement in diet related behaviors has not been obvious. Here, we posit that microwear can also provide glimpses into canine tooth use in ingestion. Canines of Sumatran long-tailed macaques (Macaca fascicularis), agile gibbons (Hylobates agilis), lar gibbons (Hylobates lar), Thomas' leaf monkeys (Presbytis thomasi), and orangutans (Pongo abelii), and two African great apes, bonobos (Pan paniscus) and common chimpanzees (Pan troglodytes schweinfurthii), were considered. The labial tips of maxillary canine replicas were scanned using a white-light confocal profiler, and both feature and texture analyses were used to characterize microwear surface patterning. The taxa exhibited significant differences in canine microwear. In some cases, these were consistent with variation in reported anterior tooth use such that, for example, the orangutans, known to use their front teeth extensively in ingestion, had the highest median number of microwear features on their canines, whereas the gibbons, reported to use their front teeth infrequently in food acquisition, had the lowest.
Collapse
Affiliation(s)
- Putu Pujiantari
- Environmental Dynamics Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Lucas K Delezene
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, USA
| | - J Michael Plavcan
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, USA
| | - Mark F Teaford
- College of Osteopathic Medicine, Touro University, New York, New York, USA
| | - Peter S Ungar
- Environmental Dynamics Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
5
|
Harizanova Z, Baltadjiev A, Popova F, Peycheva M. Few dental indices in modern Bulgarian population from southern Bulgaria. J Physiol Anthropol 2023; 42:15. [PMID: 37481566 PMCID: PMC10362602 DOI: 10.1186/s40101-023-00332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023] Open
Abstract
AIM The aim of the present study is to evaluate the reduction of the distal teeth towards the medial ones in one functional dental group in southern Bulgarian population. MATERIALS AND METHODS The study included 232 Bulgarians aged 20-40 years. Mesiodistal dimensions of the teeth were measured by Dentistry Sliding Vernier Caliper and analyzed with SPSS 23.0. Four interdental indices were calculated: inter-incisive, premolar, upper, and lower molar indices. RESULTS We found a decrease in the percentage ratio of the lateral to the central incisors of people from the Bulgarian population compared to those dating from the Eneolithic period on the territory of Bulgaria. Furthermore, we found a reduction in the percentage ratio of the upper and lower second molars compared to the first ones. The biggest reduction in the percentage ratio (more than 6%) was found in the lower second premolars compared to the first ones, which is characteristic for southern Bulgarians. CONCLUSION There was a dental reduction in all the distal members compared to the medial ones participating in one morphological dental group. As a result, we think that interdental indices can be used for explaining historical, cultural, and biological macro and microevolutionary processes and thus for understanding the origin, formation, contacts, and migration pathways of the different populations leading to ethnic variation of humanity. Therefore, they can be a reliable source of information in physiological anthropology.
Collapse
Affiliation(s)
- Zdravka Harizanova
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria.
| | - Atanas Baltadjiev
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Ferihan Popova
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Marieta Peycheva
- Department of Neurology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| |
Collapse
|
6
|
Elechi JOG, Sirianni R, Conforti FL, Cione E, Pellegrino M. Food System Transformation and Gut Microbiota Transition: Evidence on Advancing Obesity, Cardiovascular Diseases, and Cancers-A Narrative Review. Foods 2023; 12:2286. [PMID: 37372497 PMCID: PMC10297670 DOI: 10.3390/foods12122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Food, a vital component of our daily life, is fundamental to our health and well-being, and the knowledge and practices relating to food have been passed down from countless generations of ancestors. Systems may be used to describe this extremely extensive and varied body of agricultural and gastronomic knowledge that has been gathered via evolutionary processes. The gut microbiota also underwent changes as the food system did, and these alterations had a variety of effects on human health. In recent decades, the gut microbiome has gained attention due to its health benefits as well as its pathological effects on human health. Many studies have shown that a person's gut microbiota partially determines the nutritional value of food and that diet, in turn, shapes both the microbiota and the microbiome. The current narrative review aims to explain how changes in the food system over time affect the makeup and evolution of the gut microbiota, advancing obesity, cardiovascular disease (CVD), and cancer. After a brief discussion of the food system's variety and the gut microbiota's functions, we concentrate on the relationship between the evolution of food system transformation and gut microbiota system transition linked to the increase of non-communicable diseases (NCDs). Finally, we also describe sustainable food system transformation strategies to ensure healthy microbiota composition recovery and maintain the host gut barrier and immune functions to reverse advancing NCDs.
Collapse
Affiliation(s)
- Jasper Okoro Godwin Elechi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (R.S.); (F.L.C.); (E.C.); (M.P.)
| | | | | | | | | |
Collapse
|
7
|
Alemseged Z. Reappraising the palaeobiology of Australopithecus. Nature 2023; 617:45-54. [PMID: 37138108 DOI: 10.1038/s41586-023-05957-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2023] [Indexed: 05/05/2023]
Abstract
The naming of Australopithecus africanus in 1925, based on the Taung Child, heralded a new era in human evolutionary studies and turned the attention of the then Eurasian-centric palaeoanthropologists to Africa, albeit with reluctance. Almost one hundred years later, Africa is recognized as the cradle of humanity, where the entire evolutionary history of our lineage prior to two million years ago took place-after the Homo-Pan split. This Review examines data from diverse sources and offers a revised depiction of the genus and characterizes its role in human evolution. For a long time, our knowledge of Australopithecus came from both A. africanus and Australopithecus afarensis, and the members of this genus were portrayed as bipedal creatures that did not use stone tools, with a largely chimpanzee-like cranium, a prognathic face and a brain slightly larger than that of chimpanzees. Subsequent field and laboratory discoveries, however, have altered this portrayal, showing that Australopithecus species were habitual bipeds but also practised arboreality; that they occasionally used stone tools to supplement their diet with animal resources; and that their infants probably depended on adults to a greater extent than what is seen in apes. The genus gave rise to several taxa, including Homo, but its direct ancestor remains elusive. In sum, Australopithecus had a pivotal bridging role in our evolutionary history owing to its morphological, behavioural and temporal placement between the earliest archaic putative hominins and later hominins-including the genus Homo.
Collapse
|
8
|
Pejčić T, Zeković M, Bumbaširević U, Kalaba M, Vovk I, Bensa M, Popović L, Tešić Ž. The Role of Isoflavones in the Prevention of Breast Cancer and Prostate Cancer. Antioxidants (Basel) 2023; 12:antiox12020368. [PMID: 36829927 PMCID: PMC9952119 DOI: 10.3390/antiox12020368] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
This narrative review summarizes epidemiological studies on breast cancer and prostate cancer with an overview of their global incidence distribution to investigate the relationship between these diseases and diet. The biological properties, mechanisms of action, and available data supporting the potential role of isoflavones in the prevention of breast cancer and prostate cancer are discussed. Studies evaluating the effects of isoflavones in tissue cultures of normal and malignant breast and prostate cells, as well as the current body of research regarding the effects of isoflavones attained through multiple modifications of cellular molecular signaling pathways and control of oxidative stress, are summarized. Furthermore, this review compiles literature sources reporting on the following: (1) levels of estrogen in breast and prostate tissue; (2) levels of isoflavones in the normal and malignant tissue of these organs in European and Asian populations; (3) average concentrations of isoflavones in the secretion of these organs (milk and semen). Finally, particular emphasis is placed on studies investigating the effect of isoflavones on tissues via estrogen receptors (ER).
Collapse
Affiliation(s)
- Tomislav Pejčić
- Faculty of Medicine, University of Belgrade, dr Subotića 8, 11000 Belgrade, Serbia
- Clinic of Urology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
- Correspondence: (T.P.); (I.V.)
| | - Milica Zeković
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeusa Koscuska 1, 11000 Belgrade, Serbia
| | - Uroš Bumbaširević
- Faculty of Medicine, University of Belgrade, dr Subotića 8, 11000 Belgrade, Serbia
- Clinic of Urology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| | - Milica Kalaba
- Institute of General and Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Irena Vovk
- Laboratory for Food Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Correspondence: (T.P.); (I.V.)
| | - Maja Bensa
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Lazar Popović
- Department of Medical Oncology, Oncology Institute of Vojvodina, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
- Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
9
|
Richter C, Behringer V, Manig F, Henle T, Hohmann G, Zierau O. Traces of dietary patterns in saliva of hominids: Profiling salivary amino acid fingerprints in great apes and humans. J Hum Evol 2023; 175:103305. [PMID: 36586354 DOI: 10.1016/j.jhevol.2022.103305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/31/2022]
Abstract
Herbivorous animals that regularly consume tannin-rich food are known to secrete certain tannin-binding salivary proteins (TBSPs), especially proline-rich proteins and histidine-rich proteins, as an effective measure to counteract the antinutritive effects of dietary tannins. Due to their high binding capacity, TBSPs complex with tannins in the oral cavity, and thereby protect dietary proteins and digestive enzymes. Although the natural diet of great apes (Hominidae) is biased toward ripe fruits, analyses of food plants revealed that their natural diet contains considerable amounts of tannins, which is raising the question of possible counter-measures to cope with dietary tannins. In our study, we investigated the salivary amino acid profiles of zoo-housed Pan paniscus, Pan troglodytes, Gorilla gorilla, and Pongo abelii, and compared their results with corresponding data from Homo sapiens. Individual saliva samples of 42 apes and 17 humans were collected and quantitated by amino acid analysis, using cation-exchange chromatography with postcolumn derivatization, following acid hydrolysis. We found species-specific differences in the salivary amino acid profiles with average total salivary protein concentration ranging from 308.8 mg/dL in Po. abelii to 1165.6 mg/dL in G. gorilla. Total salivary protein was consistently higher in ape than in human saliva samples (174 mg/dL). All apes had on average also higher relative proline levels than humans did. Histidine levels had the highest concentration in the samples from Po. abelii followed by P. paniscus. In all ape species, the high salivary concentrations of proline and histidine are considered to be indicative of high concentrations of TBSPs in hominids. Given that the species differences in salivary composition obtained in this study correspond with overall patterns of secondary compound content in the diet of wild populations, we assume that salivary composition is resilient to acute and long-lasting changes in diet composition in general and tannin content in particular.
Collapse
Affiliation(s)
- Carolin Richter
- Institute of Zoology, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany.
| | - Verena Behringer
- Institute of Zoology, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany; Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Friederike Manig
- Institute of Food Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Thomas Henle
- Institute of Food Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Gottfried Hohmann
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Oliver Zierau
- Institute of Zoology, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| |
Collapse
|
10
|
Estimates of absolute crown strength and bite force in the lower postcanine dentition of Gigantopithecus blacki. J Hum Evol 2023; 175:103313. [PMID: 36709569 DOI: 10.1016/j.jhevol.2022.103313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/18/2022] [Accepted: 12/18/2022] [Indexed: 01/30/2023]
Abstract
Gigantopithecus blacki is hypothesized to have been capable of processing mechanically challenging foods, which likely required this species to have high dental resistance to fracture and/or large bite force. To test this hypothesis, we used two recently developed approaches to estimate absolute crown strength and bite force of the lower postcanine dentition. Sixteen Gigantopithecus mandibular permanent cheek teeth were scanned by micro-computed tomography. From virtual mesial cross-sections, we measured average enamel thickness and bi-cervical diameter to estimate absolute crown strength, and cuspal enamel thickness and dentine horn angle to estimate bite force. We compared G. blacki with a sample of extant great apes (Pan, Pongo, and Gorilla) and australopiths (Australopithecus anamensis, Australopithecus afarensis, Australopithecus africanus, Paranthropus robustus, and Paranthropus boisei). We also evaluated statistical differences in absolute crown strength and bite force between the premolars and molars for G. blacki. Results reveal that molar crown strength is absolutely greater, and molar bite force absolutely higher, in G. blacki than all other taxa except P. boisei, suggesting that G. blacki molars have exceptionally high resistance to fracture and the ability to generate exceptionally high bite force. In addition, G. blacki premolars have comparable absolute crown strength and larger bite force capabilities compared with its molars, implying possible functional specializations in premolars. The dental specialization of G. blacki could thus represent an adaptation to further facilitate the processing of mechanically challenging foods. While it is currently not possible to determine which types of foods were actually consumed by G. blacki through this study, direct evidence (e.g. dental chipping and microwear) left by the foods eaten by G. blacki could potentially lead to greater insights into its dietary ecology.
Collapse
|
11
|
Factors influencing terrestriality in primates of the Americas and Madagascar. Proc Natl Acad Sci U S A 2022; 119:e2121105119. [PMID: 36215474 PMCID: PMC9586308 DOI: 10.1073/pnas.2121105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (body mass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use.
Collapse
|
12
|
Winkler DE, Clauss M, Kubo MO, Schulz-Kornas E, Kaiser TM, Tschudin A, De Cuyper A, Kubo T, Tütken T. Microwear textures associated with experimental near-natural diets suggest that seeds and hard insect body parts cause high enamel surface complexity in small mammals. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.957427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In mammals, complex dental microwear textures (DMT) representing differently sized and shaped enamel lesions overlaying each other have traditionally been associated with the seeds and kernels in frugivorous diets, as well as with sclerotized insect cuticles. Recently, this notion has been challenged by field observations as well as in vitro experimental data. It remains unclear to what extent each food item contributes to the complexity level and is reflected by the surface texture of the respective tooth position along the molar tooth row. To clarify the potential of seeds and other abrasive dietary items to cause complex microwear textures, we conducted a controlled feeding experiment with rats. Six individual rats each received either a vegetable mix, a fruit mix, a seed mix, whole crickets, whole black soldier fly larvae, or whole day-old-chicks. These diets were subjected to material testing to obtain mechanical properties, such as Young’s modulus, yield strength, and food hardness (as indicated by texture profile analysis [TPA] tests). Seeds and crickets caused the highest surface complexity. The fruit mix, seed mix, and crickets caused the deepest wear features. Moreover, several diets resulted in an increasing wear gradient from the first to the second molar, suggesting that increasing bite force along the tooth row affects dental wear in rats on these diets. Mechanical properties of the diets showed different correlations with DMT obtained for the first and second molars. The first molar wear was mostly correlated with maximum TPA hardness, while the second molar wear was strongly correlated with maximum yield stress, mean TPA hardness, and maximum TPA hardness. This indicates a complex relationship between chewing mechanics, food mechanical properties, and observed DMT. Our results show that, in rats, seeds are the main cause of complex microwear textures but that hard insect body parts can also cause high complexity. However, the similarity in parameter values of surface textures resulting from seed and cricket consumption did not allow differentiation between these two diets in our experimental approach.
Collapse
|
13
|
Chai H. On the evolution of the morphology and resilience of molar cusps in fossil hominid teeth. J Mech Behav Biomed Mater 2022; 133:105357. [PMID: 35841750 DOI: 10.1016/j.jmbbm.2022.105357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Teeth play an important role in evolutionary studies due to their good preservation and direct link to diet. The present work makes use of a previously generated database on molar teeth of fossil hominids which consists of cuspal enamel thickness dc, dentin horn angle φ and section width D, all measured on a given histological tooth section. These data are here interpreted with the aid of "fracture stress" QF = PF/D2 and geological age t, where PF is the occlusal force needed to cause cusp failure as determined from dc and φ. QF is virtually a constant in non-hominins ("apes") while monotonically increasing toward present time in hominins. These two trends intersect at t = ts = 4.5 (0.11) mya, a value similar to other divergence estimates. QF was fitted with a function f(t) which is proportional to (dc/D)2. The monotonic variation of QF and in turn dc/D with t contrasts the more complex behavior generally characterizing other physical entities of fossil hominids. The increase in dc/D in hominins promotes tooth resilience and in turn life span. Finally, it is suggested that PF provides an upper bound to the maximum bite force produced by the jaw structure.
Collapse
Affiliation(s)
- Herzl Chai
- School of Mechanical Engineering, Tel-Aviv University, Israel.
| |
Collapse
|
14
|
Diet, Polyphenols, and Human Evolution. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although diet has contributed significantly to the evolution of human beings, the composition of the diet that has most affected this phenomenon is still an open issue. Diet has undoubtedly participated in the acquisition of the skills that underlie the differentiation of humans from other animal species and in this context the development of the nervous system has played a primary role. This paper aimed to: (1) outline the relationship between diet and human evolution; (2) evaluate how a variation in food consumption may have contributed to the enhancement of cognitive and adaptive capacities. The most widespread diet among the ancient populations that showed the highest levels of civilization (that is well-organized societies, using advanced technical tools, and promoting art and science) was very close to what is now defined as the Mediterranean diet. This suggests that a dietary approach typical of the Mediterranean basin (little meat and some fish; abundant cereals, legumes, fruit, vegetables and wine) significantly increased the intake of antioxidant molecules, including polyphenols, which along with other factors may have modulated the cognitive evolution of humans.
Collapse
|
15
|
Food as we knew it: Food processing as an evolutionary discourse. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Lavín EG, Polo P, Newton-Fisher NE, Izquierdo IB. Dominance style and intersexual hierarchy in wild bonobos from Wamba. Behav Processes 2022:104627. [PMID: 35364224 DOI: 10.1016/j.beproc.2022.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/02/2022]
Abstract
Dominance hierarchies vary between species and possess particular characteristics depending on the distribution and abundance of food resources that affect the competitive regime. Bonobos have been described as having female intersexual dominance, based mainly on female coalitionary support against males, and more egalitarian hierarchies than chimpanzees. In this study, we tested whether female intersexual dominance is dependent on female coalitions or whether it still arises when only dyadic interactions are considered. We also examined the role of food abundance in shaping dominance style in a wild population of bonobos in Wamba, Democratic Republic of Congo. We found partial support concerning our first prediction in which we expected a male dominance over females when only dyadic agonistic interactions were considered because females were not systematically dominant over males, finding instead an intersexual codominance pattern. We failed to find support for our second prediction that hierarchies become more despotic under low fruit abundance, in fact, we found the opposite pattern. We discuss that codominance based on dyadic interactions in this group may arise as a consequence of male deference rather than females winning conflicts against males and that more despotic hierarchies during high fruit season may arise as a consequence of competition for high-quality resources or variation in party size.
Collapse
Affiliation(s)
| | - Pablo Polo
- Centro de Investigación en Complejidad Social, Facultad de Gobierno Universidad del Desarrollo, Chile.
| | | | - Isabel Behncke Izquierdo
- Centro de Investigación en Complejidad Social, Facultad de Gobierno Universidad del Desarrollo, Chile; Social and Evolutionary Neuroscience Research Group, Oxford University, UK
| |
Collapse
|
17
|
Daujeard C, Prat S. What Are the “Costs and Benefits” of Meat-Eating in Human Evolution? The Challenging Contribution of Behavioral Ecology to Archeology. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.834638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the omnivorous diet of most human populations, meat foraging gradually increased during the Paleolithic, in parallel with the development of hunting capacities. There is evidence of regular meat consumption by extinct hominins from 2 Ma onward, with the first occurrence prior to 3 Ma in Eastern Africa. The number of sites with cut-marked animal remains and stone tools increased after 2 Ma. In addition, toolkits became increasingly complex, and various, facilitating carcass defleshing and marrow recovery, the removal of quarters of meat to avoid carnivore competition, and allowing the emergence of cooperative (i.e., social) hunting of large herbivores. How can we assess the energy costs and benefits of meat and fat acquisition and consumption for hunter-gatherers in the past, and is it possible to accurately evaluate them? Answering this question would provide a better understanding of extinct hominin land use, food resource management, foraging strategies, and cognitive abilities related to meat and fat acquisition, processing, and consumption. According to the Optimal Foraging Theory (OFT), resources may be chosen primarily on the basis of their efficiency rank in term of calories. But, could other factors, and not only calorific return, prevail in the choice of prey, such as the acquisition of non-food products, like pelts, bone tools or ornaments, or symbolic or traditional uses? Our main goal here is to question the direct application of behavioral ecology data to archeology. For this purpose, we focus on the issue of animal meat and fat consumption in human evolution. We propose a short review of available data from energetics and ethnographic records, and provide examples of several various-sized extant animals, such as elephants, reindeer, or lagomorphs, which were some of the most common preys of Paleolithic hominins.
Collapse
|
18
|
Berthaume MA, Kupczik K. Molar biomechanical function in South African hominins Australopithecus africanus and Paranthropus robustus. Interface Focus 2021; 11:20200085. [PMID: 34938434 DOI: 10.1098/rsfs.2020.0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/12/2022] Open
Abstract
Diet is a driving force in human evolution. Two species of Plio-Pleistocene hominins, Paranthropus robustus and Australopithecus africanus, have derived craniomandibular and dental morphologies which are often interpreted as P. robustus having a more biomechanically challenging diet. While dietary reconstructions based on dental microwear generally support this, they show extensive dietary overlap between species, and craniomandibular and dental biomechanical analyses can yield contradictory results. Using methods from anthropology and engineering (i.e. anthroengineering), we quantified the molar biomechanical performance of these hominins to investigate possible dietary differences between them. Thirty-one lower second molars were 3D printed and used to fracture gelatine blocks, and Bayesian generalized linear models were used to investigate the relationship between species and tooth wear, size and shape, and biomechanical performance. Our results demonstrate that P. robustus required more force and energy to fracture blocks but had a higher force transmission rate. Considering previous dietary reconstructions, we propose three evolutionary scenarios concerning the dietary ecologies of these hominins. These evolutionary scenarios cannot be reached by investigating morphological differences in isolation, but require combining several lines of evidence. This highlights the need for a holistic approach to reconstructing hominin dietary ecology.
Collapse
Affiliation(s)
- Michael A Berthaume
- Division of Mechanical Engineering and Design, London South Bank University, 103 Borough Road, London SE1 0AA, UK.,Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute of Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute of Evolutionary Anthropology, 04103 Leipzig, Germany.,Department of Human Evolution, Max Planck Institute of Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Amato KR, Mallott EK, D’Almeida Maia P, Savo Sardaro ML. Predigestion as an Evolutionary Impetus for Human Use of Fermented Food. CURRENT ANTHROPOLOGY 2021. [DOI: 10.1086/715238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Mallott EK, Amato KR. Butyrate-production pathway abundances are similar in human and nonhuman primate gut microbiomes. Mol Biol Evol 2021; 39:6372698. [PMID: 34542625 PMCID: PMC8763029 DOI: 10.1093/molbev/msab279] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Over the course of human evolution, shifts in dietary practices such as meat-eating and cooking, have resulted in reduced fiber intake, a trend that has been exaggerated more recently in industrialized populations. Reduced fiber consumption is associated with a loss of gut microbial taxa that degrade fiber, particularly butyrate. Therefore, this dietary shift in humans may have altered the abundance of microbial genes involved in butyrate production. This study uses a gene-targeted alignment approach to quantify the abundance of butyrate production pathway genes from published wild nonhuman primate and human gut metagenomes. Surprisingly, humans have higher diversity and relative abundances of butyrate production pathways compared with all groups of nonhuman primates except cercopithecoids. Industrialized populations of humans also differ only slightly in butyrate pathway abundance from nonindustrialized populations. This apparent resilience of butyrate production pathways to shifts in human diet across both evolutionary and modern populations may signal an evolutionary shift in host–microbe interactions in humans that increased SCFA production. Such a shift could have contributed to meeting the increased energy requirements of humans relative to nonhuman primates.
Collapse
Affiliation(s)
- Elizabeth K Mallott
- Department of Anthropology, Northwestern University, 1810 Hinman Ave, Evanston, IL 60208, USA;
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, 1810 Hinman Ave, Evanston, IL 60208, USA;
| |
Collapse
|
21
|
West EAL, Xu AX, Bohrer BM, Corradini MG, Joye IJ, Wright AJ, Rogers MA. Sous Vide Cook Temperature Alters the Physical Structure and Lipid Bioaccessibility of Beef Longissimus Muscle in TIM-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8394-8402. [PMID: 34313430 DOI: 10.1021/acs.jafc.1c03422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Changes in the physical states, induced with different sous vide cooking temperatures, significantly (P < 0.05) altered lipid bioaccessibility measured in the TNO-simulated gastrointestinal tract model-1 of AAA boneless beef striploin, containing the longissimus lumborum muscle. The denaturation of actin significantly correlates with the total cumulative free fatty acid (FFA) bioaccessibility, whereby the striploin cooked to 60 °C presents the maximum lipid bioaccessibility (15.8 ± 1.0%), rate constant (ka) for FFA hydrolysis (0.087 ± 0.003 min-1), and greatest actin denaturation enthalpy (-0.57 ± 0.06 ΔH). Thus, thermal treatments above 60 °C significantly decrease the kinetics of lipolysis (70 °C = 0.042 ± 0.002 min-1 and 80 °C = 0.047 ± 0.002 min-1) and the resultant total lipid bioaccessibility (70 °C = 8.6 ± 0.7 and 80 °C = 8.3 ± 0.5%). This research highlights the potential to manipulate the physical food structure to alter digestion kinetics, supporting the need to understand supramolecular structures in food and their nutritional outcomes.
Collapse
Affiliation(s)
- E A L West
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - A X Xu
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - B M Bohrer
- Department of Animal Science, Ohio State University, Columbus, Ohio 43201, United States
| | - M G Corradini
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
- Arrell Food Institute, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - I J Joye
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - A J Wright
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - M A Rogers
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
22
|
Paranthropus robustus tooth chipping patterns do not support regular hard food mastication. J Hum Evol 2021; 158:103044. [PMID: 34303928 DOI: 10.1016/j.jhevol.2021.103044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
|
23
|
Lawrence J, Kimbel WH. Morphological integration of the canine region within the hominine alveolar arch. J Hum Evol 2021; 154:102942. [PMID: 33838563 DOI: 10.1016/j.jhevol.2020.102942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 11/26/2022]
Abstract
The early hominin record is characterized by numerous shifts in dental proportions (e.g., canine reduction and megadontia) linked to changes in diet and social behavior. Recent studies suggest that hominins exhibit a reduction in the magnitude of covariation between the anterior and posterior dental components compared with other extant great apes. They point toward, but do not directly test, the relative independence of canine morphology within the hominin alveolar arch. This study focuses specifically on the how the canine region covaries with other regions of the dental arch because the canine region has drastically reduced in size and changed in shape across human evolution. We examine extant primate species most commonly used as a comparative framework for fossil hominin morphology: Gorilla gorilla (n = 27), Pan troglodytes (n = 27), and Homo sapiens (n = 30). We used geometric morphometric methods to test for size and shape covariation between the canine region with other dental regions. We also examined the influence of sexual dimorphism and allometry on intraspecific and interspecific patterns of covariation. The analysis of size and shape covariation between the mandibular canine and other individual tooth regions elucidated complex, species-specific, and sex-specific morphological relationships in the mandibular alveolar arch. There was little evidence to support different patterns of morphological integration between humans on the one hand and nonhuman apes on the other. Canine region morphology was relatively independent from other dental regions across species based on shape and did not significantly covary more with either the incisor or postcanine region in any species. The size correlations between the canine and other dental regions were moderate to high. The species-specific results of this study question the ability to make a priori assumptions about morphological integration in the extant hominin mandibular alveolar arch and its application to the fossil record.
Collapse
Affiliation(s)
- Julie Lawrence
- Institute of Human Origins, Arizona State University, Tempe, AZ, 85287, USA; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, USA.
| | - William H Kimbel
- Institute of Human Origins, Arizona State University, Tempe, AZ, 85287, USA; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
24
|
Amato KR, Chaves ÓM, Mallott EK, Eppley TM, Abreu F, Baden AL, Barnett AA, Bicca-Marques JC, Boyle SA, Campbell CJ, Chapman CA, De la Fuente MF, Fan P, Fashing PJ, Felton A, Fruth B, Fortes VB, Grueter CC, Hohmann G, Irwin M, Matthews JK, Mekonnen A, Melin AD, Morgan DB, Ostner J, Nguyen N, Piel AK, Pinacho-Guendulain B, Quintino-Arêdes EP, Razanaparany PT, Schiel N, Sanz CM, Schülke O, Shanee S, Souto A, Souza-Alves JP, Stewart F, Stewart KM, Stone A, Sun B, Tecot S, Valenta K, Vogel ER, Wich S, Zeng Y. Fermented food consumption in wild nonhuman primates and its ecological drivers. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:513-530. [PMID: 33650680 DOI: 10.1002/ajpa.24257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Although fermented food use is ubiquitous in humans, the ecological and evolutionary factors contributing to its emergence are unclear. Here we investigated the ecological contexts surrounding the consumption of fruits in the late stages of fermentation by wild primates to provide insight into its adaptive function. We hypothesized that climate, socioecological traits, and habitat patch size would influence the occurrence of this behavior due to effects on the environmental prevalence of late-stage fermented foods, the ability of primates to detect them, and potential nutritional benefits. MATERIALS AND METHODS We compiled data from field studies lasting at least 9 months to describe the contexts in which primates were observed consuming fruits in the late stages of fermentation. Using generalized linear mixed-effects models, we assessed the effects of 18 predictor variables on the occurrence of fermented food use in primates. RESULTS Late-stage fermented foods were consumed by a wide taxonomic breadth of primates. However, they generally made up 0.01%-3% of the annual diet and were limited to a subset of fruit species, many of which are reported to have mechanical and chemical defenses against herbivores when not fermented. Additionally, late-stage fermented food consumption was best predicted by climate and habitat patch size. It was more likely to occur in larger habitat patches with lower annual mean rainfall and higher annual mean maximum temperatures. DISCUSSION We posit that primates capitalize on the natural fermentation of some fruits as part of a nutritional strategy to maximize periods of fruit exploitation and/or access a wider range of plant species. We speculate that these factors contributed to the evolutionary emergence of the human propensity for fermented foods.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Óscar M Chaves
- Escuela de Biología, Universidad de Costa Rica, UCR, San José, Costa Rica
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Timothy M Eppley
- Institute for Conservation Research, San Diego Zoo Global, San Diego, California, USA.,Department of Anthropology, Portland State University, Portland, Oregon, USA
| | - Filipa Abreu
- Department of Biology, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Andrea L Baden
- Department of Anthropology, Hunter College of the City University of New York, New York, New York, USA.,The New York Consortium in Evolutionary Primatology (NYCEP), City University of New York, New York, New York, USA
| | - Adrian A Barnett
- Amazon Mammals Research Group, National Amazon Research Institute (INPA), Manaus, AM, Brazil & Department of. Zoology, Federal University of Pernambuco, Recife, Prince Edward Island, Brazil
| | - Julio Cesar Bicca-Marques
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil
| | - Sarah A Boyle
- Department of Biology, Rhodes College, Memphis, Tennessee, USA
| | - Christina J Campbell
- Department of Anthropology, California State University Northridge, Northridge, California, USA
| | - Colin A Chapman
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, District of Columbia, USA.,School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa.,Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
| | | | - Pengfei Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Peter J Fashing
- Department of Anthropology and Environmental Studies Program, California State University Fullerton, Fullerton, California, USA.,Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Annika Felton
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden
| | - Barbara Fruth
- Department of Human Behavior, Ecology and Culture, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Vanessa B Fortes
- Laboratório de Primatologia, Departamento de Zootecnia e Ciências Biológicas, Universidade Federal de Santa Maria, Palmeira das Missões, RS, Brazil
| | - Cyril C Grueter
- School of Human Sciences, The University of Western Australia, Perth, Australia.,Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Perth, Australia
| | - Gottfried Hohmann
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mitchell Irwin
- Department of Anthropology, Northern Illinois University, DeKalb, Illinois, USA
| | - Jaya K Matthews
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Perth, Australia.,Africa Research & Engagement Centre, The University of Western Australia, Crawley, Western Australia, Australia
| | - Addisu Mekonnen
- Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - David B Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Illinois, USA
| | - Julia Ostner
- Department of Behavioral Ecology, University of Goettingen, Goettingen, Germany.,Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Nga Nguyen
- Department of Anthropology and Environmental Studies Program, California State University Fullerton, Fullerton, California, USA.,Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Alex K Piel
- Department of Anthropology, University College London, London, United Kingdom
| | - Braulio Pinacho-Guendulain
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana (UAM), Lerma, Mexico.,Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Oaxaca, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Erika Patricia Quintino-Arêdes
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil
| | - Patrick Tojotanjona Razanaparany
- Graduate School of Asian and African Area Studies, Kyoto University, Kyoto, Japan.,Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Nicola Schiel
- Department of Biology, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA.,Congo Program, Wildlife Conservation Society, Brazzaville, Congo
| | - Oliver Schülke
- Department of Behavioral Ecology, University of Goettingen, Goettingen, Germany.,Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Sam Shanee
- Neotropical Primate Conservation, Cornwall, United Kingdom
| | - Antonio Souto
- Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - João Pedro Souza-Alves
- Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Fiona Stewart
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Kathrine M Stewart
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Anita Stone
- Biology Department, California Lutheran University, Thousand Oaks, California, USA
| | - Binghua Sun
- School of Resource and Environmental Engineering, Anhui University, Hefei, China
| | - Stacey Tecot
- School of Anthropology, University of Arizona, Tucson, Arizona, USA
| | - Kim Valenta
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| | - Erin R Vogel
- Department of Anthropology, Rutgers University, New Brunswick, New Jersey, USA
| | - Serge Wich
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
25
|
Can intermittent fasting be helpful for knee osteoarthritis? J Clin Orthop Trauma 2021; 16:70-74. [PMID: 33717941 PMCID: PMC7920092 DOI: 10.1016/j.jcot.2020.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/17/2020] [Indexed: 11/22/2022] Open
Abstract
Obesity and Knee Osteoarthritis (KOA) has a proven association. The obese individuals are likely to have early and more severe KOA, and the complications and overall results of surgery are also inferior. Hence, weight reduction is of paramount importance for these individuals. Due to the inability to do intense physical activities, these individuals cannot lose weight and instead perpetually kept gaining weight. Hence, intermittent fasting as a non-operative means of weight reduction is an attractive and viable option. This review article would help sensitize the Orthopaedic Surgeons about fasting in weight reduction and assisting the KOA. Hence, the choice of intermittent fasting should be offered to obese patients with KOA for weight reduction.
Collapse
|
26
|
Fotopoulou A. Mentalising allostasis: The sense that I should eat: Comment on "The sense of should: A biologically-based framework for modeling social pressure" by Jordan E. Theriault, Liane Young, and Lisa Feldman Barrett. Phys Life Rev 2020; 36:20-23. [PMID: 32981847 DOI: 10.1016/j.plrev.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
|
27
|
Clarifying relationships between cranial form and function in tapirs, with implications for the dietary ecology of early hominins. Sci Rep 2020; 10:8809. [PMID: 32483196 PMCID: PMC7264299 DOI: 10.1038/s41598-020-65586-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/20/2020] [Indexed: 11/11/2022] Open
Abstract
Paleontologists and paleoanthropologists have long debated relationships between cranial morphology and diet in a broad diversity of organisms. While the presence of larger temporalis muscle attachment area (via the presence of sagittal crests) in carnivorans is correlated with durophagy (i.e. hard-object feeding), many primates with similar morphologies consume an array of tough and hard foods—complicating dietary inferences of early hominins. We posit that tapirs, large herbivorous mammals showing variable sagittal crest development across species, are ideal models for examining correlations between textural properties of food and sagittal crest morphology. Here, we integrate dietary data, dental microwear texture analysis, and finite element analysis to clarify the functional significance of the sagittal crest in tapirs. Most notably, pronounced sagittal crests are negatively correlated with hard-object feeding in extant, and several extinct, tapirs and can actually increase stress and strain energy. Collectively, these data suggest that musculature associated with pronounced sagittal crests—and accompanied increases in muscle volume—assists with the processing of tough food items in tapirs and may yield similar benefits in other mammals including early hominins.
Collapse
|
28
|
Diekwisch TGH. Evolution: Herbivore-Type Teeth in a Cretaceous Tuatara Relative. Curr Biol 2020; 30:R395-R397. [PMID: 32369750 DOI: 10.1016/j.cub.2020.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In a new study, LeBlanc and co-workers have discovered an unusually complex dentition in a fossil relative of the modern-day tuatara that features compound occlusal surfaces, thick and prismatic enamel, and a novel enamel-to-bone tooth attachment. This finding suggests that complex dentitions arose independently in several reptilian lineages.
Collapse
Affiliation(s)
- Thomas G H Diekwisch
- Texas A&M University, Center for Craniofacial Research and Diagnosis, Dallas, TX 75246, USA.
| |
Collapse
|
29
|
Lockey AL, Alemseged Z, Hublin JJ, Skinner MM. Maxillary molar enamel thickness of Plio-Pleistocene hominins. J Hum Evol 2020; 142:102731. [DOI: 10.1016/j.jhevol.2019.102731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 11/30/2022]
|
30
|
Marcé-Nogué J, Püschel TA, Daasch A, Kaiser TM. Broad-scale morpho-functional traits of the mandible suggest no hard food adaptation in the hominin lineage. Sci Rep 2020; 10:6793. [PMID: 32322020 PMCID: PMC7176708 DOI: 10.1038/s41598-020-63739-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/01/2020] [Indexed: 11/14/2022] Open
Abstract
An on-going debate concerning the dietary adaptations of archaic hominins and early Homo has been fuelled by contradictory inferences obtained using different methodologies. This work presents an extensive comparative sample of 30 extant primate species that was assembled to perform a morpho-functional comparison of these taxa with 12 models corresponding to eight fossil hominin species. Finite Element Analysis and Geometric Morphometrics were employed to analyse chewing biomechanics and mandible morphology to, firstly, establish the variation of this clade, secondly, relate stress and shape variables, and finally, to classify fossil individuals into broad ingesta related hardness categories using a support vector machine algorithm. Our results suggest that some hominins previously assigned as hard food consumers (e.g. the members of the Paranthropus clade) in fact seem to rely more strongly on soft foods, which is consistent with most recent studies using either microwear or stable isotope analyses. By analysing morphometric and stress results in the context of the comparative framework, we conclude that in the hominin clade there were probably no hard-food specialists. Nonetheless, the biomechanical ability to comminute harder items, if required as fallback option, adds to their strategy of increased flexibility.
Collapse
Affiliation(s)
- Jordi Marcé-Nogué
- Centrum für Naturkunde, University of Hamburg, Martin-Luter-King-Platz 3, 20146, Hamburg, Germany.
- Institut Català de Paleontologia M. Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain.
| | - Thomas A Püschel
- Primate Models for Behavioural Evolution, Institute of Cognitive and Evolutionary Anthropology, University of Oxford, 64 Banbury Road, Oxford, OX2 6PN, United Kingdom
| | - Alexander Daasch
- Centrum für Naturkunde, University of Hamburg, Martin-Luter-King-Platz 3, 20146, Hamburg, Germany
| | - Thomas M Kaiser
- Centrum für Naturkunde, University of Hamburg, Martin-Luter-King-Platz 3, 20146, Hamburg, Germany
| |
Collapse
|
31
|
Molecular Mechanism of Functional Ingredients in Barley to Combat Human Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3836172. [PMID: 32318238 PMCID: PMC7149453 DOI: 10.1155/2020/3836172] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Barley plays an important role in health and civilization of human migration from Africa to Asia, later to Eurasia. We demonstrated the systematic mechanism of functional ingredients in barley to combat chronic diseases, based on PubMed, CNKI, and ISI Web of Science databases from 2004 to 2020. Barley and its extracts are rich in 30 ingredients to combat more than 20 chronic diseases, which include the 14 similar and 9 different chronic diseases between grains and grass, due to the major molecular mechanism of six functional ingredients of barley grass (GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan) and grains (β-glucans, polyphenols, arabinoxylan, phytosterols, tocols, and resistant starch). The antioxidant activity of barley grass and grain has the same and different functional components. These results support findings that barley grain and its grass are the best functional food, promoting ancient Babylonian and Egyptian civilizations, and further show the depending functional ingredients for diet from Pliocene hominids in Africa and Neanderthals in Europe to modern humans in the world. This review paper not only reveals the formation and action mechanism of barley diet overcoming human chronic diseases, but also provides scientific basis for the development of health products and drugs for the prevention and treatment of human chronic diseases.
Collapse
|
32
|
Fannin LD, Guatelli-Steinberg D, Geissler E, Morse PE, Constantino PJ, McGraw WS. Enamel chipping in Taï Forest cercopithecids: Implications for diet reconstruction in paleoanthropological contexts. J Hum Evol 2020; 141:102742. [PMID: 32179368 DOI: 10.1016/j.jhevol.2020.102742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/23/2022]
Abstract
Antemortem enamel chipping in living and fossil primates is often interpreted as evidence of hard-object feeding (i.e., 'durophagy'). Laboratory analyses of tooth fracture have modeled the theoretical diets and loading conditions that may produce such chips. Previous chipping studies of nonhuman primates tend to combine populations into species samples, despite the fact that species can vary significantly in diet across their ranges. Chipping is yet to be analyzed across population-specific species samples for which long-term dietary data are available. Here, we test the association between enamel chipping and diet in a community of cercopithecid primates inhabiting the Taï Forest, Ivory Coast. We examined fourth premolars and first molars (n = 867) from naturally deceased specimens of Cercocebus atys, Colobus polykomos, Piliocolobus badius,Procolobus verus, and three species of Cercopithecus. We found little support for a predictive relationship between enamel chipping and diet across the entire Taï monkey community. Cercocebus atys, a dedicated hard-object feeder, exhibited the highest frequencies of (1) chipped teeth and (2) chips of large size; however, the other monkey with a significant degree of granivory, Co. polykomos, exhibited the lowest chip frequency. In addition, primates with little evidence of mechanically challenging or hard-food diets-such as Cercopithecus spp., Pi. badius, and Pr. verus-evinced higher chipping frequencies than expected. The equivocal and stochastic nature of enamel chipping in the Taï monkeys suggests nondietary factors contribute significantly to chipping. A negative association between canopy preference and chipping suggests a role of exogenous particles in chip formation, whereby taxa foraging closer to the forest floor encounter more errant particulates during feeding than species foraging in higher strata. We conclude that current enamel chipping models may provide insight into the diets of fossil primates, but only in cases of extreme durophagy. Given the role of nondietary factors in chip formation, our ability to reliably reconstruct a range of diets from a gradient of chipping in fossil taxa is likely weak.
Collapse
Affiliation(s)
- Luke D Fannin
- Department of Anthropology, 4064 Smith Laboratory, The Ohio State University, 174 West 18th Avenue, Columbus, OH, 43210-1106, USA.
| | - Debbie Guatelli-Steinberg
- Department of Anthropology, 4064 Smith Laboratory, The Ohio State University, 174 West 18th Avenue, Columbus, OH, 43210-1106, USA
| | - Elise Geissler
- Department of Anthropology, University of Florida, Gainesville, FL, 32611-7305, USA
| | - Paul E Morse
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708-9976, USA; Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611-7800, USA
| | - Paul J Constantino
- Department of Biology, Saint Michael's College, Colchester, VT, 05439, USA
| | - W Scott McGraw
- Department of Anthropology, 4064 Smith Laboratory, The Ohio State University, 174 West 18th Avenue, Columbus, OH, 43210-1106, USA
| |
Collapse
|
33
|
Contact damage of human dental enamel under cyclic axial loading with abrasive particles. J Mech Behav Biomed Mater 2020; 102:103512. [DOI: 10.1016/j.jmbbm.2019.103512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022]
|
34
|
Ibrahim F, Stribling P. Reply to “A Gluten Reduction Is the Patients’ Choice for a Dietary ‘Bottom Up’ Approach in IBS—A Comment on “A 5Ad Dietary Protocol for Functional Bowel Disorders” Nutrients 2019, 11, 1938”. Nutrients 2020; 12:nu12010140. [PMID: 31947828 PMCID: PMC7019583 DOI: 10.3390/nu12010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 11/17/2022] Open
|
35
|
Pejčić T, Tosti T, Džamić Z, Gašić U, Vuksanović A, Dolićanin Z, Tešić Ž. The Polyphenols as Potential Agents in Prevention and Therapy of Prostate Diseases. Molecules 2019; 24:molecules24213982. [PMID: 31689909 PMCID: PMC6864651 DOI: 10.3390/molecules24213982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/28/2023] Open
Abstract
In recent years, the progress of science and medicine greatly has influenced human life span and health. However, lifestyle habits, like physical activity, smoking cessation, moderate alcohol consumption, diet, and maintaining a normal body weight represent measures that greatly reduce the risk of various diseases. The type of diet is very important for disease development. Numerous epidemiological clinical data confirm that longevity is linked to predominantly plant-based diets and it is related to a long life; whereas the western diet, rich in red meat and fats, increases the risk of oxidative stress and thus the risk of developing various diseases and pre-aging. This review is focused on the bioavailability of polyphenols and the use of polyphenols for the prevention of prostate diseases. Special focus in this paper is placed on the isoflavonoids and flavan-3-ols, subgroups of polyphenols, and their protective effects against the development of prostate diseases.
Collapse
Affiliation(s)
- Tomislav Pejčić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| | - Zoran Džamić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Uroš Gašić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Aleksandar Vuksanović
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Zana Dolićanin
- Department for Biomedical Sciences, State University at Novi Pazar, 36300 Novi Pazar, Serbia.
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| |
Collapse
|
36
|
McLester E, Brown M, Stewart FA, Piel AK. Food abundance and weather influence habitat-specific ranging patterns in forest- and savanna mosaic-dwelling red-tailed monkeys (Cercopithecus ascanius). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:217-231. [PMID: 31423563 DOI: 10.1002/ajpa.23920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/16/2019] [Accepted: 08/01/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Primates that live in predominantly forested habitats and open, savanna mosaics should exhibit behavioral responses to differing food distributions and weather. We compared ecological constraints on red-tailed monkey ranging behavior in forest and savanna mosaic environments. Intraspecific variation in adaptations to these conditions may reflect similar pressures faced by hominins during the Plio-Pleistocene. METHODS We followed six groups in moist evergreen forest at Ngogo (Uganda) and one group in a savanna-woodland mosaic at the Issa Valley (Tanzania). We used spatial analyses to compare home range sizes and daily travel distances (DTD) between sites. We used measures of vegetation density and phenology to interpolate spatially explicit indices of food (fruit, flower, and leaves) abundance. We modeled DTD and range use against food abundance. We modeled DTD and at Issa hourly travel distances (HTD), against temperature and rainfall. RESULTS Compared to Issa, monkeys at Ngogo exhibited significantly smaller home ranges and less variation in DTD. DTD related negatively to fruit abundance, which had a stronger effect at Issa. DTD and HTD related negatively to temperature but not rainfall. This effect did not differ significantly between sites. Home range use did not relate to food abundance at either site. CONCLUSIONS Our results indicate food availability and thermoregulatory constraints influence red-tailed monkey ranging patterns. Intraspecific variation in home range sizes and DTD likely reflects different food distributions in closed and open habitats. We compare our results with hypotheses of evolved hominin behavior associated with the Plio-Pleistocene shift from similar closed to open environments.
Collapse
Affiliation(s)
- Edward McLester
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Michelle Brown
- Department of Anthropology, University of California, Santa Barbara, California
| | - Fiona A Stewart
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom.,Greater Mahale Ecosystem Research and Conservation Project, Box 60118, Dar es Salaam, Tanzania
| | - Alex K Piel
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom.,Greater Mahale Ecosystem Research and Conservation Project, Box 60118, Dar es Salaam, Tanzania
| |
Collapse
|
37
|
Borrero-Lopez O, Constantino PJ, Lawn BR. Role of particulate concentration in tooth wear. J Mech Behav Biomed Mater 2019; 80:77-80. [PMID: 29414478 DOI: 10.1016/j.jmbbm.2018.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/31/2017] [Accepted: 01/22/2018] [Indexed: 11/18/2022]
Abstract
Results are presented for wear tests on human molar enamel in silica particle mediums. Data for different particle concentrations show severe wear indicative of material removal by plasticity-induced microcrack formation, in accordance with earlier studies. The wear rates are independent of low vol% particles, consistent with theoretical models in which occlusal loads are distributed evenly over all interfacial microcontacts. However, perhaps counter-intuitively, the wear rate diminishes substantially at higher vol%. This is attributed to a greater proportion of lower-load microcontacts transitioning into a region of mild wear, where microcracking is suppressed. Implications of these results in relation to evolutionary biology and dentistry are explored.
Collapse
Affiliation(s)
- Oscar Borrero-Lopez
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain.
| | - Paul J Constantino
- Department of Biology, Saint Michael's College, Colchester, VT 05439, USA
| | - Brian R Lawn
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
38
|
Earliest known Oldowan artifacts at >2.58 Ma from Ledi-Geraru, Ethiopia, highlight early technological diversity. Proc Natl Acad Sci U S A 2019; 116:11712-11717. [PMID: 31160451 DOI: 10.1073/pnas.1820177116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The manufacture of flaked stone artifacts represents a major milestone in the technology of the human lineage. Although the earliest production of primitive stone tools, predating the genus Homo and emphasizing percussive activities, has been reported at 3.3 million years ago (Ma) from Lomekwi, Kenya, the systematic production of sharp-edged stone tools is unknown before the 2.58-2.55 Ma Oldowan assemblages from Gona, Ethiopia. The organized production of Oldowan stone artifacts is part of a suite of characteristics that is often associated with the adaptive grade shift linked to the genus Homo Recent discoveries from Ledi-Geraru (LG), Ethiopia, place the first occurrence of Homo ∼250 thousand years earlier than the Oldowan at Gona. Here, we describe a substantial assemblage of systematically flaked stone tools excavated in situ from a stratigraphically constrained context [Bokol Dora 1, (BD 1) hereafter] at LG bracketed between 2.61 and 2.58 Ma. Although perhaps more primitive in some respects, quantitative analysis suggests the BD 1 assemblage fits more closely with the variability previously described for the Oldowan than with the earlier Lomekwian or with stone tools produced by modern nonhuman primates. These differences suggest that hominin technology is distinctly different from generalized tool use that may be a shared feature of much of the primate lineage. The BD 1 assemblage, near the origin of our genus, provides a link between behavioral adaptations-in the form of flaked stone artifacts-and the biological evolution of our ancestors.
Collapse
|
39
|
Lazagabaster IA. Dental microwear texture analysis of Pliocene Suidae from Hadar and Kanapoi in the context of early hominin dietary breadth expansion. J Hum Evol 2019; 132:80-100. [PMID: 31203853 DOI: 10.1016/j.jhevol.2019.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 01/12/2023]
Abstract
Stable carbon isotope studies suggest that early hominins may have diversified their diet as early as 3.76 Ma. Early Pliocene hominins, including Australopithecus anamensis, had diets that were dominated by C3 resources while Late Pliocene hominins, including Australopithecus afarensis-a putative descendant of A. anamensis-had diets that included both C3 and C4 resources. It has been hypothesized that the expansion of C4 grasslands in eastern Africa during the Pliocene could have prompted hominins to incorporate C4 resources in their diets. However, dental microwear analyses suggest that diet diversification did not involve changes in the mechanical properties of the foods consumed. To provide contextual and comparative information on this issue, the diet of suids from the A. anamensis site of Kanapoi and the A. afarensis site of Hadar is investigated. Using dental microwear texture analyses, it is shown that despite significant dietary overlap, there is evidence for dietary niche partitioning among suids. Based on comparisons with the diet of extant African suids, it is inferred that Nyanzachoerus pattersoni (n = 21) was a mixed feeder, Nyanzachoerus jaegeri (n = 4) and Notochoerus euilus (n = 61) were habitual grazers, and Kolpochoerus afarensis (n = 34) had a broad diet that included hard brittle foods and underground resources. The dental microwear of Ny. pattersoni and Ny. jaegeri/No. euilus do not differ significantly between Kanapoi and Hadar. Most differences are driven by K. afarensis, a suid absent at Kanapoi but present at Hadar. Food availability probably differed between Hadar and Kanapoi, and it is likely that A. afarensis did not exploit some of the foods (e.g., underground resources) consumed by suids. It is hypothesized that despite the incorporation of C4 resources in the diet, a significant dietary change towards flexible diets in the hominin lineage had yet to come.
Collapse
Affiliation(s)
- Ignacio A Lazagabaster
- The Leon Recanati Institute for Maritime Studies and Departments of Maritime Civilizations and Archaeology, University of Haifa, Haifa 3498838, Israel; Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85282, USA.
| |
Collapse
|
40
|
Motes-Rodrigo A, Majlesi P, Pickering TR, Laska M, Axelsen H, Minchin TC, Tennie C, Hernandez-Aguilar RA. Chimpanzee extractive foraging with excavating tools: Experimental modeling of the origins of human technology. PLoS One 2019; 14:e0215644. [PMID: 31091268 PMCID: PMC6519788 DOI: 10.1371/journal.pone.0215644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 04/06/2019] [Indexed: 11/29/2022] Open
Abstract
It is hypothesized that tool-assisted excavation of plant underground storage organs (USOs) played an adaptive role in hominin evolution and was also once considered a uniquely human behavior. Recent data indicate that savanna chimpanzees also use tools to excavate edible USOs. However, those chimpanzees remain largely unhabituated and we lack direct observations of this behavior in the wild. To fill this gap in our knowledge of hominoid USO extractive foraging, we conducted tool-mediated excavation experiments with captive chimpanzees naïve to this behavior. We presented the chimpanzees with the opportunity to use tools in order to excavate artificially-placed underground foods in their naturally forested outdoor enclosure. No guidance or demonstration was given to the chimpanzees at any time. The chimpanzees used tools spontaneously in order to excavate the underground foods. They exhibited six different tool use behaviors in the context of excavation: probe, perforate, dig, pound, enlarge and shovel. However, they still excavated manually more often than they did with tools. Chimpanzees were selective in their choice of tools that we provided, preferring longer tools for excavation. They also obtained their own tools mainly from naturally occurring vegetation and transported them to the excavation site. They reused some tools throughout the study. Our new data provide a direction for the study of variables relevant to modeling USO extractive foraging by early hominins.
Collapse
Affiliation(s)
- Alba Motes-Rodrigo
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany
| | - Parandis Majlesi
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Travis Rayne Pickering
- Department of Anthropology, University of Wisconsin-Madison, Madison, WI, United States of America
- Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum of Natural History (Transvaal Museum), Pretoria, South Africa
| | - Matthias Laska
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | | | | | - Claudio Tennie
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
41
|
The Masticatory Apparatus of Humans (Homo sapiens): Evolution and Comparative Functional Morphology. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-13739-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
42
|
Ungar P. Inference of Diets of Early Hominins from Primate Molar Form and Microwear. J Dent Res 2019; 98:398-405. [DOI: 10.1177/0022034518822981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Paleontologists use fossil teeth to reconstruct the diets of early hominins and other extinct species. Some evidence is adaptive: nature selects for tooth size, shape, and structure best suited to specific food types. Other evidence includes traces left by actual foods eaten, such as microscopic tooth wear. This critical review considers how molars work, how they are used, and how occlusal topography and dental microwear can be used to infer diet and food preferences in the past, particularly for hominins of the Pliocene and early Pleistocene. Understanding that cheek teeth function as guides for chewing and tools for fracturing allows us to characterize aspects of occlusal form that reflect mechanical properties of foods to which a species is adapted. Living primates that often eat leaves, for example, have longer crests and more sloping occlusal surfaces than those that prefer hard foods. Studies of feeding ecology have shown, however, that tooth shape does not always correspond to preferred food items. It often follows mechanically challenging foods whether eaten often or rarely. Other lines of evidence that reflect actual tooth use are required to work out food preferences. Microwear textures, for example, reflect foods eaten by individuals in the past such that hard seeds and bone tend to leave complex, pitted surface textures, whereas tough leaves and meat more often leave anisotropic ones covered in long, parallel scratches. The study of fossil hominin molars shows how these various attributes are combined to infer diet and food preference in the past. A trend in occlusal morphology suggests decreased dietary specialization from Australopithecus to early Homo, and increasing dispersion in microwear complexity values is consistent with this. On the other hand, occlusal morphology may suggest dietary specialization in Paranthropus, although different species of this genus have different microwear texture patterns despite similar craniodental adaptations.
Collapse
Affiliation(s)
- P.S. Ungar
- Department of Anthropology, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
43
|
Veneziano A, Irish JD, Meloro C, Stringer C, De Groote I. The functional significance of dental and mandibular reduction in
Homo
: A catarrhine perspective. Am J Primatol 2019; 81:e22953. [DOI: 10.1002/ajp.22953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Accepted: 12/22/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Alessio Veneziano
- School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK
| | - Joel D. Irish
- School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK
- Evolutionary Studies Institute and Centre for Excellence in PaleoSciencesUniversity of the Witwatersrand, Private Bag 3, WITS 2050JohannesburgSouth Africa
| | - Carlo Meloro
- School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK
| | - Chris Stringer
- Department of Earth SciencesThe Natural History MuseumLondonUK
| | - Isabelle De Groote
- School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK
- Department of Earth SciencesThe Natural History MuseumLondonUK
| |
Collapse
|
44
|
Abstract
Clumped and stable isotope data of paleosol carbonate and fossil tooth enamel inform about paleoenvironments of Early Pleistocene hominins. Data on woodland- vs. grassland-dominated ecosystems, soil temperatures, aridity, and the diet of Homo rudolfensis and Paranthropus boisei ca. 2.4 Ma show that they were adapted to C3 resources in wooded savanna environments in relatively cool and wet climates in the Malawi Rift. In contrast, time-equivalent Paranthropus living in open and drier settings in the northern East African Rift relied on C4 plants, a trend that became enhanced after 2 Ma, while southern African Paranthropus persistently relied mainly on C3 resources. In its early evolutionary history, Homo already showed a high versatility, suggesting that Pleistocene Homo and Paranthropus were already dietary generalists. New geochemical data from the Malawi Rift (Chiwondo Beds, Karonga Basin) fill a major spatial gap in our knowledge of hominin adaptations on a continental scale. Oxygen (δ18O), carbon (δ13C), and clumped (Δ47) isotope data on paleosols, hominins, and selected fauna elucidate an unexpected diversity in the Pleistocene hominin diet in the various habitats of the East African Rift System (EARS). Food sources of early Homo and Paranthropus thriving in relatively cool and wet wooded savanna ecosystems along the western shore of paleolake Malawi contained a large fraction of C3 plant material. Complementary water consumption reconstructions suggest that ca. 2.4 Ma, early Homo (Homo rudolfensis) and Paranthropus (Paranthropus boisei) remained rather stationary near freshwater sources along the lake margins. Time-equivalent Paranthropus aethiopicus from the Eastern Rift further north in the EARS consumed a higher fraction of C4 resources, an adaptation that grew more pronounced with increasing openness of the savanna setting after 2 Ma, while Homo maintained a high versatility. However, southern African Paranthropus robustus had, similar to the Malawi Rift individuals, C3-dominated feeding strategies throughout the Early Pleistocene. Collectively, the stable isotope and faunal data presented here document that early Homo and Paranthropus were dietary opportunists and able to cope with a wide range of paleohabitats, which clearly demonstrates their high behavioral flexibility in the African Early Pleistocene.
Collapse
|
45
|
van Casteren A, Oelze VM, Angedakin S, Kalan AK, Kambi M, Boesch C, Kühl HS, Langergraber KE, Piel AK, Stewart FA, Kupczik K. Food mechanical properties and isotopic signatures in forest versus savannah dwelling eastern chimpanzees. Commun Biol 2018; 1:109. [PMID: 30271989 PMCID: PMC6123729 DOI: 10.1038/s42003-018-0115-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/16/2018] [Indexed: 11/10/2022] Open
Abstract
Chimpanzees are traditionally described as ripe fruit specialists with large incisors but relatively small postcanine teeth, adhering to a somewhat narrow dietary niche. Field observations and isotopic analyses suggest that environmental conditions greatly affect habitat resource utilisation by chimpanzee populations. Here we combine measures of dietary mechanics with stable isotope signatures from eastern chimpanzees living in tropical forest (Ngogo, Uganda) and savannah woodland (Issa Valley, Tanzania). We show that foods at Issa can present a considerable mechanical challenge, most saliently in the external tissues of savannah woodland plants compared to their tropical forest equivalents. This pattern is concurrent with different isotopic signatures between sites. These findings demonstrate that chimpanzee foods in some habitats are mechanically more demanding than previously thought, elucidating the broader evolutionary constraints acting on chimpanzee dental morphology. Similarly, these data can help clarify the dietary mechanical landscape of extinct hominins often overlooked by broad C3/C4 isotopic categories.
Collapse
Affiliation(s)
- Adam van Casteren
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
| | - Vicky M Oelze
- Anthropology Department, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Samuel Angedakin
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Ammie K Kalan
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Mohamed Kambi
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Christophe Boesch
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Hjalmar S Kühl
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Kevin E Langergraber
- School of Human Evolution and Social Change and Institute of Human Origins, Arizona State University, Tempe, AZ, 85281, USA
| | - Alexander K Piel
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Fiona A Stewart
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| |
Collapse
|
46
|
Zhang Z, Li D. Thermal processing of food reduces gut microbiota diversity of the host and triggers adaptation of the microbiota: evidence from two vertebrates. MICROBIOME 2018; 6:99. [PMID: 29855351 PMCID: PMC5984331 DOI: 10.1186/s40168-018-0471-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Adoption of thermal processing of the diet drives human evolution and gut microbiota diversity changes in a dietary habit-dependent manner. However, whether thermal processing of food triggers gut microbial variation remains unknown. Herein, we compared the microbiota of non-thermally processed and thermally processed food (NF and TF) and investigated gut microbiota associated with NF and TF in catfish Silurus meridionalis and C57BL/6 mice to assess effects of thermal processing of food on gut microbiota and to further identify the differences in host responses. RESULTS We found no differences in overall microbial composition and structure in the pairwise NF and TF, but identified differential microbial communities between food and gut. Both fish and mice fed TF had significantly lower gut microbial diversity than those fed NF. Moreover, thermal processing of food triggered the changes in their microbial communities. Comparative host studies further indicated host species determined gut microbial assemblies, even if fed with the same food. Fusobacteria was the most abundant phylum in the fish, and Bacteroidetes and Firmicutes dominated in the mice. Besides the consistent reduction of Bacteroidetes and the balanced Protebacteria, the response of other dominated gut microbiota in the fish and mice to TF was taxonomically opposite at the phylum level, and those further found at the genus level. CONCLUSIONS Our results reveal that thermal processing of food strongly contributes to the reduction of gut microbial diversity and differentially drives microbial alterations in a host-dependent manner, suggesting specific adaptations of host-gut microbiota in vertebrates responding to thermal processing of food. These findings open a window of opportunity to understand the decline in gut microbial diversity and the community variation in human evolution and provide new insights into the host-specific microbial assemblages associated with the use of processing techniques in food preparation in humans and domesticated animals.
Collapse
Affiliation(s)
- Zhimin Zhang
- Department of Fishery Resources and Environment, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, People’s Republic of China
| | - Dapeng Li
- Department of Fishery Resources and Environment, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, People’s Republic of China
| |
Collapse
|
47
|
Martinez-Hurtado J, Calo-Fernandez B, Vazquez-Padin J. Preventing and Mitigating Alcohol Toxicity: A Review on Protective Substances. BEVERAGES 2018; 4:39. [DOI: 10.3390/beverages4020039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
This review covers three fundamental aspects of alcohol consumption and research efforts around the prevention and mitigation of its toxic effects in the human body. First, the sociocultural aspects of alcohol consumption are analysed, including drinking habits and strategies to combat intoxication. Second, we briefly introduce the biochemical aspects of ethanol metabolism and the biochemical pathways leading to its degradation, particularly the activation of toxic response pathways. Finally, we review current evidence and research efforts for finding compounds and substances able to prevent and mitigate the toxic effects of alcohol when over-indulgence has occurred. The toxic effects appear as a time-evolution process based on the stage of intoxication. We explore different compounds and formulations traditionally used to combat alcohol toxicity, as well as state-of-the-art research in the topic for novel molecules and formulations. Although we aimed to categorise which compounds are more effective for a particular level of alcohol intoxication, it is impossible to fully prevent or mitigate toxicity effects by only the compounds in isolation, further research is required to establish the long-term prevention and mitigation from the clinical point of view.
Collapse
|
48
|
How comparative psychology can shed light on human evolution: Response to Beran et al.'s discussion of "Cognitive capacities for cooking in chimpanzees". Learn Behav 2018; 44:109-15. [PMID: 27007910 DOI: 10.3758/s13420-016-0220-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We recently reported a study (Warneken & Rosati Proceedings of the Royal Society B, 282, 20150229, 2015) examining whether chimpanzees possess several cognitive capacities that are critical to engage in cooking. In a subsequent commentary, Beran, Hopper, de Waal, Sayers, and Brosnan Learning & Behavior (2015) asserted that our paper has several flaws. Their commentary (1) critiques some aspects of our methodology and argues that our work does not constitute evidence that chimpanzees can actually cook; (2) claims that these results are old news, as previous work had already demonstrated that chimpanzees possess most or all of these capacities; and, finally, (3) argues that comparative psychological studies of chimpanzees cannot adequately address questions about human evolution, anyway. However, their critique of the premise of our study simply reiterates several points we made in the original paper. To quote ourselves: "As chimpanzees neither control fire nor cook food in their natural behavior, these experiments therefore focus not on whether chimpanzees can actually cook food, but rather whether they can apply their cognitive skills to novel problems that emulate cooking" (Warneken & Rosati Proceedings of the Royal Society B, 282, 20150229, 2015, p. 2). Furthermore, the methodological issues they raise are standard points about psychological research with animals-many of which were addressed synthetically across our 9 experiments, or else are orthogonal to our claims. Finally, we argue that comparative studies of extant apes (and other nonhuman species) are a powerful and indispensable method for understanding human cognitive evolution.
Collapse
|
49
|
van Casteren A, Lucas PW, Strait DS, Michael S, Bierwisch N, Schwarzer N, Al-Fadhalah KJ, Almusallam AS, Thai LA, Saji S, Shekeban A, Swain MV. Evidence that metallic proxies are unsuitable for assessing the mechanics of microwear formation and a new theory of the meaning of microwear. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171699. [PMID: 29892367 PMCID: PMC5990759 DOI: 10.1098/rsos.171699] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/20/2018] [Indexed: 05/14/2023]
Abstract
Mammalian tooth wear research reveals contrasting patterns seemingly linked to diet: irregularly pitted enamel surfaces, possibly from consuming hard seeds, versus roughly aligned linearly grooved surfaces, associated with eating tough leaves. These patterns are important for assigning diet to fossils, including hominins. However, experiments establishing conditions necessary for such damage challenge this paradigm. Lucas et al. (Lucas et al. 2013 J. R. Soc. Interface10, 20120923. (doi:10.1098/rsif.2012.0923)) slid natural objects against enamel, concluding anything less hard than enamel would rub, not abrade, its surface (producing no immediate wear). This category includes all organic plant matter. Particles harder than enamel, with sufficiently angular surfaces, could abrade it immediately, prerequisites that silica/silicate particles alone possess. Xia et al. (Xia, Zheng, Huang, Tian, Chen, Zhou, Ungar, Qian. 2015 Proc. Natl Acad. Sci. USA112, 10 669-10 672. (doi:10.1073/pnas.1509491112)) countered with experiments using brass and aluminium balls. Their bulk hardness was lower than enamel, but the latter was abraded. We examined the ball exteriors to address this discrepancy. The aluminium was surfaced by a thin rough oxide layer harder than enamel. Brass surfaces were smoother, but work hardening during manufacture gave them comparable or higher hardness than enamel. We conclude that Xia et al.'s results are actually predicted by the mechanical model of Lucas et al. To explain wear patterns, we present a new model of textural formation, based on particle properties and presence/absence of silica(tes).
Collapse
Affiliation(s)
- Adam van Casteren
- Max Planck Weizmann Center for Integrative Archeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Peter W. Lucas
- Smithsonian Tropical Research Institute, Luis Clement Ave., Bldg. 401 Tupper Balboa Ancon, Panama, Republic of Panama
| | - David S. Strait
- Department of Anthropology, Washington University in St Louis, Campus Box 1114, One Brookings Drive, St Louis, MO 63130, USA
| | - Shaji Michael
- Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, PO Box 24923, Safat 11310, Kuwait
| | - Nick Bierwisch
- Saxonian Institute of Surface Mechanics SIO, Tankow 2, 18569 Ummanz, Rügen, Germany
| | - Norbert Schwarzer
- Saxonian Institute of Surface Mechanics SIO, Tankow 2, 18569 Ummanz, Rügen, Germany
| | - Khaled J. Al-Fadhalah
- Department of Mechanical Engineering, College of Engineering and Petroleum, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| | - Abdulwahab S. Almusallam
- Department of Chemical Engineering, College of Engineering and Petroleum, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| | - Lidia A. Thai
- Nanotechnology Research Facility, College of Engineering and Petroleum, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| | - Sreeja Saji
- Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, PO Box 24923, Safat 11310, Kuwait
| | - Ali Shekeban
- Nanotechnology Research Facility, College of Engineering and Petroleum, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| | - Michael V. Swain
- Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, PO Box 24923, Safat 11310, Kuwait
| |
Collapse
|
50
|
van Casteren A, Lucas PW, Strait DS, Michael S, Bierwisch N, Schwarzer N, Al-Fadhalah KJ, Almusallam AS, Thai LA, Saji S, Shekeban A, Swain MV. Evidence that metallic proxies are unsuitable for assessing the mechanics of microwear formation and a new theory of the meaning of microwear. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171699. [PMID: 29892367 DOI: 10.5061/dryad.72431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/20/2018] [Indexed: 05/27/2023]
Abstract
Mammalian tooth wear research reveals contrasting patterns seemingly linked to diet: irregularly pitted enamel surfaces, possibly from consuming hard seeds, versus roughly aligned linearly grooved surfaces, associated with eating tough leaves. These patterns are important for assigning diet to fossils, including hominins. However, experiments establishing conditions necessary for such damage challenge this paradigm. Lucas et al. (Lucas et al. 2013 J. R. Soc. Interface10, 20120923. (doi:10.1098/rsif.2012.0923)) slid natural objects against enamel, concluding anything less hard than enamel would rub, not abrade, its surface (producing no immediate wear). This category includes all organic plant matter. Particles harder than enamel, with sufficiently angular surfaces, could abrade it immediately, prerequisites that silica/silicate particles alone possess. Xia et al. (Xia, Zheng, Huang, Tian, Chen, Zhou, Ungar, Qian. 2015 Proc. Natl Acad. Sci. USA112, 10 669-10 672. (doi:10.1073/pnas.1509491112)) countered with experiments using brass and aluminium balls. Their bulk hardness was lower than enamel, but the latter was abraded. We examined the ball exteriors to address this discrepancy. The aluminium was surfaced by a thin rough oxide layer harder than enamel. Brass surfaces were smoother, but work hardening during manufacture gave them comparable or higher hardness than enamel. We conclude that Xia et al.'s results are actually predicted by the mechanical model of Lucas et al. To explain wear patterns, we present a new model of textural formation, based on particle properties and presence/absence of silica(tes).
Collapse
Affiliation(s)
- Adam van Casteren
- Max Planck Weizmann Center for Integrative Archeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Peter W Lucas
- Smithsonian Tropical Research Institute, Luis Clement Ave., Bldg. 401 Tupper Balboa Ancon, Panama, Republic of Panama
| | - David S Strait
- Department of Anthropology, Washington University in St Louis, Campus Box 1114, One Brookings Drive, St Louis, MO 63130, USA
| | - Shaji Michael
- Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, PO Box 24923, Safat 11310, Kuwait
| | - Nick Bierwisch
- Saxonian Institute of Surface Mechanics SIO, Tankow 2, 18569 Ummanz, Rügen, Germany
| | - Norbert Schwarzer
- Saxonian Institute of Surface Mechanics SIO, Tankow 2, 18569 Ummanz, Rügen, Germany
| | - Khaled J Al-Fadhalah
- Department of Mechanical Engineering, College of Engineering and Petroleum, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| | - Abdulwahab S Almusallam
- Department of Chemical Engineering, College of Engineering and Petroleum, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| | - Lidia A Thai
- Nanotechnology Research Facility, College of Engineering and Petroleum, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| | - Sreeja Saji
- Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, PO Box 24923, Safat 11310, Kuwait
| | - Ali Shekeban
- Nanotechnology Research Facility, College of Engineering and Petroleum, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| | - Michael V Swain
- Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, PO Box 24923, Safat 11310, Kuwait
| |
Collapse
|