1
|
Xu C, Du D, Han Z, Si H, Li W, Li L, Tang B. Separation and Analysis of Rare Tumor Cells in Various Body Fluids Based on Microfluidic Technology for Clinical Applications. Anal Chem 2025; 97:7567-7588. [PMID: 40186540 DOI: 10.1021/acs.analchem.4c06925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Affiliation(s)
- Chang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Dexin Du
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Zhaojun Han
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
2
|
Kurelac I, Sollazzo M, De Luise M, Nanetti F, Lanteri L, D’Angelo L, Cavina B, Corrà S, Miglietta S, Milioni S, Luppi E, Iommarini L, Di Costanzo S, Ricciardi AM, Coluccelli S, Maloberti T, Grillini M, Coadă CA, Perrone AM, De Iaco P, de Biase D, Ragazzi M, Gasparre G, Porcelli AM. Immunomagnetic enrichment coupled to PAX8/TP53 molecular pathology approach increases sensitivity in the detection of ovarian cancer cells in ascites. Front Mol Biosci 2025; 12:1537407. [PMID: 40051502 PMCID: PMC11882402 DOI: 10.3389/fmolb.2025.1537407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is one of the deadliest malignancies in female population and the cause of 70% of all ovarian cancer-related deaths. Among its hallmarks, the fluid accumulation in the peritoneal cavity, or ascites, is a peculiar pathological sign during late stages and in recurrent patients. Besides cancer cells, ascitic fluids contain a heterogeneous cellular composition, representing a precious source to dissect molecular mechanisms underlying invasion and metastatization or find new biomarkers to predict therapy response. However, malignant cells are often a minority population in ascites making the detection and analysis of cancer cells a challenge. Here we propose a combinatorial approach for the detection of malignant cells in OC ascites based on TP53 deep sequencing and PAX8 cytological staining. In addition, we improve the procedure by implementing a cancer cell enrichment step, increasing the sensitivity in the detection of neoplastic fraction and potentiating downstream research and diagnostics applications.
Collapse
Affiliation(s)
- Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Nanetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Laura Lanteri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Luigi D’Angelo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Beatrice Cavina
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Simona Corrà
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Stefano Miglietta
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Sara Milioni
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Elena Luppi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - Stella Di Costanzo
- Division of Gynecologic Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Sara Coluccelli
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Thais Maloberti
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Grillini
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Camelia Alexandra Coadă
- Division of Gynecologic Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Anna Myriam Perrone
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Division of Gynecologic Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pierandrea De Iaco
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Division of Gynecologic Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche, University of Bologna, Bologna, Italy
| | - Anna Maria Porcelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Sasmal R, Som A, Kumari P, Nair RV, Show S, Barge NS, Pahwa M, Das Saha N, Rao S, Vasu S, Agarwal R, Agasti SS. Supramolecular Guest Exchange in Cucurbit[7]uril for Bioorthogonal Fluorogenic Imaging across the Visible Spectrum. ACS CENTRAL SCIENCE 2024; 10:1945-1959. [PMID: 39463826 PMCID: PMC11503495 DOI: 10.1021/acscentsci.4c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024]
Abstract
Fluorogenic probes that unmask fluorescence signals in response to bioorthogonal reactions are a powerful new addition to biological imaging. They can significantly reduce background fluorescence and minimize nonspecific signals, potentially enabling real-time, high-contrast imaging without the need to wash out excess fluorophores. While diverse classes of highly refined synthetic fluorophores are now readily available, integrating them into a bioorthogonal fluorogenic scheme still requires extensive design efforts and customized structural alterations to optimize quenching mechanisms for each specific fluorophore scaffold. Herein, we present a highly generalizable strategy that can produce an efficient bioorthogonal fluorogenic response from essentially any readily available fluorophore without further structural alterations. We designed this strategy based on the macrocyclic cucurbit[7]uril (CB7) host, where a fluorogenic response is achieved by programming a guest exchange reaction within the macrocyclic cavity. We employed this strategy to rapidly create fluorogenic probes across the visible spectrum from diverse fluorophore scaffolds, which enabled no-wash imaging in live cells and tissues with minimal background signal. Finally, we demonstrated that this strategy can be combined with metabolic labeling for fluorogenic detection of metabolically tagged mycobacteria under no-wash conditions and paired with covalently clickable probes for high-contrast super-resolution and multiplexed imaging in cells and tissues.
Collapse
Affiliation(s)
- Ranjan Sasmal
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Arka Som
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Pratibha Kumari
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Resmi V. Nair
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sushanta Show
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Nisha Sanjay Barge
- Department
of Bioengineering, Indian Institute of Science, Bengaluru 560012, Karnataka India
| | - Meenakshi Pahwa
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Nilanjana Das Saha
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sushma Rao
- Evolutionary
and Integrative Biology Unit and Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sheeba Vasu
- Evolutionary
and Integrative Biology Unit and Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Rachit Agarwal
- Department
of Bioengineering, Indian Institute of Science, Bengaluru 560012, Karnataka India
| | - Sarit S. Agasti
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| |
Collapse
|
4
|
Basnet S, Van der Heijden M, Quixabeira DCA, Jirovec E, Grönberg-Vähä-Koskela SAM, Clubb JHA, Kanerva A, Pakola S, Haybout L, Arias V, Hemminki O, Kudling T, Zafar S, Cervera-Carrascon V, Santos JM, Hemminki A. Overcoming effector T cell exhaustion in ovarian cancer ascites with a novel adenovirus encoding for a MUC1 bispecific antibody engager and IL-2 cytokine. Mol Ther 2024; 32:3114-3127. [PMID: 38910324 PMCID: PMC11403222 DOI: 10.1016/j.ymthe.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/18/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
T cell-focused cancer immunotherapy including checkpoint inhibitors and cell therapies has been rapidly evolving over the past decade. Nevertheless, there remains a major unmet medical need in oncology generally and immuno-oncology specifically. We have constructed an oncolytic adenovirus, Ad5/3-E2F-d24-aMUC1aCD3-IL-2 (TILT-322), which is armed with a human aMUC1aCD3 T cell engager and IL-2. TILT-322 treatment stimulated T cell cytotoxicity through the increased presence of granzyme B, perforin, and interferon-gamma. Additional immune profiling indicated TILT-322 increased gamma delta T cell activation and impacted other cell types such as natural killer cells and natural killer-like T cells that are traditionally involved in cancer immunotherapy. TILT-322 treatment also decreased the proportion of exhausted CD8+ T cells as demarked by immune checkpoint expression in ovarian ascites samples. Overall, our data showed that TILT-322 treatment led to an enhanced T cell activation and reversed T cell exhaustion translating into high antitumor efficacy when given locally or intravenously. The analysis of blood and tumors isolated from an in vivo patient-derived ovarian cancer xenograft model suggested TILT-322 mediated tumor control through improved T cell functions. Therefore, TILT-322 is a promising novel anti-tumor agent for clinical translation.
Collapse
Affiliation(s)
- Saru Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Mirte Van der Heijden
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Dafne C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Elise Jirovec
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Susanna A M Grönberg-Vähä-Koskela
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki University Hospital (HUS), Comprehensive Cancer Center, Helsinki, Finland
| | - James H A Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Gynecology and Obstetrics, Helsinki University Hospital, Helsinki, Finland
| | - Santeri Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland; Helsinki University Hospital (HUS), Comprehensive Cancer Center, Helsinki, Finland
| | - Lyna Haybout
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Victor Arias
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Otto Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Tatiana Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Sadia Zafar
- Applied Tumor Genomics HUS Comprehensive Cancer Center, Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland; Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Joao M Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland; Helsinki University Hospital (HUS), Comprehensive Cancer Center, Helsinki, Finland.
| |
Collapse
|
5
|
Zhou H, Yin J, Wang A, Yin X, Jin T, Xu K, Zhu L, Wang J, Wang W, Zhang W, Li X, Hu Z, Li X. Single-cell landscape of malignant ascites from patients with metastatic colorectal cancer. Cancer Commun (Lond) 2024; 44:713-717. [PMID: 38532531 PMCID: PMC11260760 DOI: 10.1002/cac2.12541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Affiliation(s)
- Haiyang Zhou
- Division of Colorectal SurgeryChangzheng Hospital, Navy Medical UniversityShanghaiP. R. China
| | - Jiahui Yin
- Institute of Higher Education, Tongji UniversityShanghaiP. R. China
| | - Anqi Wang
- Division of Colorectal SurgeryChangzheng Hospital, Navy Medical UniversityShanghaiP. R. China
| | - Xiaomao Yin
- Department of Gastrointestinal SurgeryTongji Hospital, Tongji University School of MedicineShanghaiP. R. China
| | - Taojun Jin
- Department of GastroenterologyShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Kai Xu
- Department of Gastrointestinal SurgeryTongji Hospital, Tongji University School of MedicineShanghaiP. R. China
| | - Lin Zhu
- Department of Gastrointestinal SurgeryTongji Hospital, Tongji University School of MedicineShanghaiP. R. China
| | - Jiexuan Wang
- Department of Gastrointestinal SurgeryTongji Hospital, Tongji University School of MedicineShanghaiP. R. China
| | - Wenqiang Wang
- Department of Gastrointestinal SurgeryTongji Hospital, Tongji University School of MedicineShanghaiP. R. China
| | - Wei Zhang
- Department of Gastrointestinal SurgeryTongji Hospital, Tongji University School of MedicineShanghaiP. R. China
| | - Xinxiang Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiP. R. China
| | - Zhiqian Hu
- Division of Colorectal SurgeryChangzheng Hospital, Navy Medical UniversityShanghaiP. R. China
- Department of Gastrointestinal SurgeryTongji Hospital, Tongji University School of MedicineShanghaiP. R. China
| | - Xinxing Li
- Department of Gastrointestinal SurgeryTongji Hospital, Tongji University School of MedicineShanghaiP. R. China
| |
Collapse
|
6
|
Roh YH, Lee CY, Lee S, Kim H, Ly A, Castro CM, Cheon J, Lee J, Lee H. CRISPR-Enhanced Hydrogel Microparticles for Multiplexed Detection of Nucleic Acids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206872. [PMID: 36725305 PMCID: PMC10074104 DOI: 10.1002/advs.202206872] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
CRISPR/Cas systems offer a powerful sensing mechanism to transduce sequence-specific information into amplified analytical signals. However, performing multiplexed CRISPR/Cas assays remains challenging and often requires complex approaches for multiplexed assays. Here, a hydrogel-based CRISPR/Cas12 system termed CLAMP (Cas-Loaded Annotated Micro-Particles) is described. The approach compartmentalizes the CRISPR/Cas reaction in spatially-encoded hydrogel microparticles (HMPs). Each HMP is identifiable by its face code and becomes fluorescent when target DNA is present. The assay is further streamlined by capturing HMPs inside a microfluidic device; the captured particles are then automatically recognized by a machine-learning algorithm. The CLAMP assay is fast, highly sensitive (attomolar detection limits with preamplification), and capable of multiplexing in a single-pot assay. As a proof-of-concept clinical application, CLAMP is applied to detect nucleic acid targets of human papillomavirus in cervical brushing samples.
Collapse
Affiliation(s)
- Yoon Ho Roh
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute Yonsei UniversitySeoul03722Republic of Korea
| | - Chang Yeol Lee
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Center for Systems BiologyMassachusetts General Hospital Research InstituteBostonMA02114USA
| | - Sujin Lee
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute Yonsei UniversitySeoul03722Republic of Korea
| | - Hyunho Kim
- Center for Systems BiologyMassachusetts General Hospital Research InstituteBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Amy Ly
- Department of PathologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Cesar M. Castro
- Center for Systems BiologyMassachusetts General Hospital Research InstituteBostonMA02114USA
- Department of MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Jinwoo Cheon
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute Yonsei UniversitySeoul03722Republic of Korea
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Jae‐Hyun Lee
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute Yonsei UniversitySeoul03722Republic of Korea
| | - Hakho Lee
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute Yonsei UniversitySeoul03722Republic of Korea
- Center for Systems BiologyMassachusetts General Hospital Research InstituteBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| |
Collapse
|
7
|
Luan Y, Li L, Xun X, Wang Y, Wei X, Zheng Y, Fan Z, Sun X. A Microfluidic System for Detecting Tumor Cells Based on Biomarker Hexaminolevulinate (HAL): Applications in Pleural Effusion. MICROMACHINES 2023; 14:771. [PMID: 37421004 DOI: 10.3390/mi14040771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 07/09/2023]
Abstract
Malignant pleural effusion is a common clinical problem, which often occurs in cases of malignant tumors, especially in lung cancer. In this paper, a pleural effusion detection system based on a microfluidic chip, combined with specific tumor biomarker, hexaminolevulinate (HAL), used to concentrate and identify tumor cells in pleural effusion was reported. The lung adenocarcinoma cell line A549 and mesothelial cell line Met-5A were cultured as the tumor cells and non-tumor cells, respectively. The optimum enrichment effect was achieved in the microfluidic chip when the flow rates of cell suspension and phosphate-buffered saline achieved 2 mL/h and 4 mL/h, respectively. At the optimal flow rate, the proportion of A549 increased from 28.04% to 70.01% due to the concentration effect of the chip, indicating that tumor cells could be enriched by a factor of 2.5 times. In addition, HAL staining results revealed that HAL can be used to identify tumor cells and non-tumor cells in chip and clinical samples. Additionally, the tumor cells obtained from the patients diagnosed with lung cancer were confirmed to be captured in the microfluidic chip, proving the validity of the microfluidic detection system. This study preliminarily demonstrates the microfluidic system is a promising method with which to assist clinical detection in pleural effusion.
Collapse
Affiliation(s)
- Yiran Luan
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Lei Li
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Xiaoyi Xun
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Yang Wang
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Xinyue Wei
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Yuqun Zheng
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Zhijuan Fan
- Department of Laboratory, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Xuguo Sun
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| |
Collapse
|
8
|
Al-Marzouki L, Stavrakos VS, Pal S, Giannias B, Bourdeau F, Rayes R, Bertos N, Najmeh S, Spicer JD, Cools-Lartigue J, Bailey SD, Ferri L, Sangwan V. Soluble factors in malignant ascites promote the metastatic adhesion of gastric adenocarcinoma cells. Gastric Cancer 2023; 26:55-68. [PMID: 36059037 DOI: 10.1007/s10120-022-01338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/25/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Adenocarcinoma of the proximal stomach is the fastest rising malignancy in North America. It is commonly associated with peritoneal accumulation of malignant ascites (MA), a fluid containing cancer and inflammatory cells and soluble proteins. Peritoneal metastasis (PM) is the most common site of gastric cancer (GC) progression after curative-intent surgery and is the leading cause of death among GC patients. METHODS/RESULTS Using a panel of gastric adenocarcinoma cell lines (human: MKN 45, SNU-5; murine: NCC-S1M), we demonstrate that prior incubation of GC cells with MA results in a significant (> 1.7-fold) increase in the number of cells capable of adhering to human peritoneal mesothelial cells (HPMC) (p < 0.05). We then corroborate these findings using an ex vivo PM model and show that MA also significantly enhances the ability of GC cells to adhere to strips of human peritoneum (p < 0.05). Using a multiplex ELISA, we identify MIF and VEGF as consistently elevated across MA samples from GC patients (p < 0.05). We demonstrate that agents that block the effects of MIF or VEGF abrogate the ability of MA to stimulate the adhesion of GC cells to adhere to human peritoneum and promote both ex vivo and in vivo metastases. CONCLUSION Agents targeting MIF or VEGF may be relevant to the treatment or prevention of PM in GC patients.
Collapse
Affiliation(s)
- Luai Al-Marzouki
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Surgery, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Vivian S Stavrakos
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Surgery, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Sanjima Pal
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Betty Giannias
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - France Bourdeau
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Roni Rayes
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nicholas Bertos
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Sara Najmeh
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Surgery, Department of Medicine, McGill University, Montreal, QC, Canada
- Division of Thoracic and Upper GI Surgery, Montreal General Hospital, 1650 Cedar Avenue, Room L8-325, Montreal, QC, H3G 1A4, Canada
| | - Jonathan D Spicer
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Surgery, Department of Medicine, McGill University, Montreal, QC, Canada
- Division of Thoracic and Upper GI Surgery, Montreal General Hospital, 1650 Cedar Avenue, Room L8-325, Montreal, QC, H3G 1A4, Canada
| | - Jonathan Cools-Lartigue
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Surgery, Department of Medicine, McGill University, Montreal, QC, Canada
- Division of Thoracic and Upper GI Surgery, Montreal General Hospital, 1650 Cedar Avenue, Room L8-325, Montreal, QC, H3G 1A4, Canada
| | - Swneke D Bailey
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Surgery, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Lorenzo Ferri
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Division of Experimental Surgery, Department of Medicine, McGill University, Montreal, QC, Canada.
- Division of Thoracic and Upper GI Surgery, Montreal General Hospital, 1650 Cedar Avenue, Room L8-325, Montreal, QC, H3G 1A4, Canada.
| | - Veena Sangwan
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Division of Experimental Surgery, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Xie H, Li W, Hu Y, Yang C, Lu J, Guo Y, Wen L, Tang F. De novo assembly of human genome at single-cell levels. Nucleic Acids Res 2022; 50:7479-7492. [PMID: 35819189 PMCID: PMC9303314 DOI: 10.1093/nar/gkac586] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/17/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Genome assembly has been benefited from long-read sequencing technologies with higher accuracy and higher continuity. However, most human genome assembly require large amount of DNAs from homogeneous cell lines without keeping cell heterogeneities, since cell heterogeneity could profoundly affect haplotype assembly results. Herein, using single-cell genome long-read sequencing technology (SMOOTH-seq), we have sequenced K562 and HG002 cells on PacBio HiFi and Oxford Nanopore Technologies (ONT) platforms and conducted de novo genome assembly. For the first time, we have completed the human genome assembly with high continuity (with NG50 of ∼2 Mb using 95 individual K562 cells) at single-cell levels, and explored the impact of different assemblers and sequencing strategies on genome assembly. With sequencing data from 30 diploid individual HG002 cells of relatively high genome coverage (average coverage ∼41.7%) on ONT platform, the NG50 can reach over 1.3 Mb. Furthermore, with the assembled genome from K562 single-cell dataset, more complete and accurate set of insertion events and complex structural variations could be identified. This study opened a new chapter on the practice of single-cell genome de novo assembly.
Collapse
Affiliation(s)
- Haoling Xie
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Wen Li
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yuqiong Hu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Cheng Yang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jiansen Lu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yuqing Guo
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Lu Wen
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Fuchou Tang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| |
Collapse
|
10
|
He J, Xi N, Han Z, Luo W, Shen J, Wang S, Li J, Guo Z, Cheng H. The Role of Liquid Biopsy Analytes in Diagnosis, Treatment and Prognosis of Colorectal Cancer. Front Endocrinol (Lausanne) 2022; 13:875442. [PMID: 35846270 PMCID: PMC9279561 DOI: 10.3389/fendo.2022.875442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract worldwide and is a serious threat to human life and health. CRC occurs and develops in a multi-step, multi-stage, and multi-gene process, in which abnormal gene expression plays an important role. CRC is currently diagnosed via endoscopy combined with tissue biopsy. Compared with tissue biopsy, liquid biopsy technology has received increasingly more attention and applications in the field of molecular detection due to its non-invasive, safe, comprehensive, and real-time dynamic nature. This review article discusses the application and limitations of current liquid biopsy analytes in the diagnosis, treatment, and prognosis of CRC, as well as directions for their future development.
Collapse
Affiliation(s)
- JinHua He
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - NaiTe Xi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - ZePing Han
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - WenFeng Luo
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - ShengBo Wang
- Department of Gastroenterology, Central Hospital of Panyu District, Guangzhou, China
| | - JianHao Li
- Institute of Cardiovascular Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - ZhongHui Guo
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - HanWei Cheng
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
11
|
Uno K, Iyoshi S, Yoshihara M, Kitami K, Mogi K, Fujimoto H, Sugiyama M, Koya Y, Yamakita Y, Nawa A, Kanayama T, Tomita H, Enomoto A, Kajiyama H. Metastatic Voyage of Ovarian Cancer Cells in Ascites with the Assistance of Various Cellular Components. Int J Mol Sci 2022; 23:4383. [PMID: 35457198 PMCID: PMC9031612 DOI: 10.3390/ijms23084383] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy and has a unique metastatic route using ascites, known as the transcoelomic root. However, studies on ascites and contained cellular components have not yet been sufficiently clarified. In this review, we focus on the significance of accumulating ascites, contained EOC cells in the form of spheroids, and interaction with non-malignant host cells. To become resistant against anoikis, EOC cells form spheroids in ascites, where epithelial-to-mesenchymal transition stimulated by transforming growth factor-β can be a key pathway. As spheroids form, EOC cells are also gaining the ability to attach and invade the peritoneum to induce intraperitoneal metastasis, as well as resistance to conventional chemotherapy. Recently, accumulating evidence suggests that EOC spheroids in ascites are composed of not only cancer cells, but also non-malignant cells existing with higher abundance than EOC cells in ascites, including macrophages, mesothelial cells, and lymphocytes. Moreover, hetero-cellular spheroids are demonstrated to form more aggregated spheroids and have higher adhesion ability for the mesothelial layer. To improve the poor prognosis, we need to elucidate the mechanisms of spheroid formation and interactions with non-malignant cells in ascites that are a unique tumor microenvironment for EOC.
Collapse
Affiliation(s)
- Kaname Uno
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (K.U.); (S.I.); (K.K.); (K.M.); (H.F.); (Y.Y.); (H.K.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 223-62 Lund, Sweden
| | - Shohei Iyoshi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (K.U.); (S.I.); (K.K.); (K.M.); (H.F.); (Y.Y.); (H.K.)
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (K.U.); (S.I.); (K.K.); (K.M.); (H.F.); (Y.Y.); (H.K.)
| | - Kazuhisa Kitami
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (K.U.); (S.I.); (K.K.); (K.M.); (H.F.); (Y.Y.); (H.K.)
| | - Kazumasa Mogi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (K.U.); (S.I.); (K.K.); (K.M.); (H.F.); (Y.Y.); (H.K.)
| | - Hiroki Fujimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (K.U.); (S.I.); (K.K.); (K.M.); (H.F.); (Y.Y.); (H.K.)
- Discipline of Obstetrics and Gynecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5005, Australia
| | - Mai Sugiyama
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (M.S.); (Y.K.); (A.N.)
| | - Yoshihiro Koya
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (M.S.); (Y.K.); (A.N.)
| | - Yoshihiko Yamakita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (K.U.); (S.I.); (K.K.); (K.M.); (H.F.); (Y.Y.); (H.K.)
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (M.S.); (Y.K.); (A.N.)
| | - Akihiro Nawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (M.S.); (Y.K.); (A.N.)
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (T.K.); (H.T.)
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (T.K.); (H.T.)
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan;
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (K.U.); (S.I.); (K.K.); (K.M.); (H.F.); (Y.Y.); (H.K.)
| |
Collapse
|
12
|
Wang C, Wang C, Wu Y, Gao J, Han Y, Chu Y, Qiang L, Qiu J, Gao Y, Wang Y, Song F, Wang Y, Shao X, Zhang Y, Han L. High-Throughput, Living Single-Cell, Multiple Secreted Biomarker Profiling Using Microfluidic Chip and Machine Learning for Tumor Cell Classification. Adv Healthc Mater 2022; 11:e2102800. [PMID: 35368151 DOI: 10.1002/adhm.202102800] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/02/2022] [Indexed: 11/09/2022]
Abstract
Secreted proteins provide abundant functional information on living cells and can be used as important tumor diagnostic markers, of which profiling at the single-cell level is helpful for accurate tumor cell classification. Currently, achieving living single-cell multi-index, high-sensitivity, and quantitative secretion biomarker profiling remains a great challenge. Here, a high-throughput living single-cell multi-index secreted biomarker profiling platform is proposed, combined with machine learning, to achieve accurate tumor cell classification. A single-cell culture microfluidic chip with self-assembled graphene oxide quantum dots (GOQDs) enables high-activity single-cell culture, ensuring normal secretion of biomarkers and high-throughput single-cell separation, providing sufficient statistical data for machine learning. At the same time, the antibody barcode chip with self-assembled GOQDs performs multi-index, highly sensitive, and quantitative detection of secreted biomarkers, in which each cell culture chamber covers a whole barcode array. Importantly, by combining the K-means strategy with machine learning, thousands of single tumor cell secretion data are analyzed, enabling tumor cell classification with a recognition accuracy of 95.0%. In addition, further profiling of the grouping results reveals the unique secretion characteristics of subgroups. This work provides an intelligent platform for high-throughput living single-cell multiple secretion biomarker profiling, which has broad implications for cancer investigation and biomedical research.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Chunhua Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yu Wu
- Obstetrics and Gynecology Department Peking University Third Hospital Beijing 100191 China
| | - Jianwei Gao
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yingkuan Han
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yujin Chu
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Le Qiang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Jiaoyan Qiu
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yakun Gao
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yanhao Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Fangteng Song
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yihe Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Xiaowei Shao
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yu Zhang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Lin Han
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| |
Collapse
|
13
|
Capellero S, Erriquez J, Battistini C, Porporato R, Scotto G, Borella F, Di Renzo MF, Valabrega G, Olivero M. Ovarian Cancer Cells in Ascites Form Aggregates That Display a Hybrid Epithelial-Mesenchymal Phenotype and Allows Survival and Proliferation of Metastasizing Cells. Int J Mol Sci 2022; 23:ijms23020833. [PMID: 35055018 PMCID: PMC8775835 DOI: 10.3390/ijms23020833] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/09/2022] [Indexed: 02/04/2023] Open
Abstract
Peritoneal metastases are the leading cause of morbidity and mortality in ovarian cancer. Cancer cells float in peritoneal fluid, named ascites, together with a definitely higher number of non neo-neoplastic cells, as single cells or multicellular aggregates. The aim of this work is to uncover the features that make these aggregates the metastasizing units. Immunofluorescence revealed that aggregates are made almost exclusively of ovarian cancer cells expressing the specific nuclear PAX8 protein. The same cells expressed epithelial and mesenchymal markers, such as EPCAM and αSMA, respectively. Expression of fibronectin further supported a hybrid epithelia-mesenchymal phenotype, that is maintained when aggregates are cultivated and proliferate. Hematopoietic cells as well as macrophages are negligible in the aggregates, while abundant in the ascitic fluid confirming their prominent role in establishing an eco-system necessary for the survival of ovarian cancer cells. Using ovarian cancer cell lines, we show that cells forming 3D structures neo-expressed thoroughly fibronectin and αSMA. Functional assays showed that αSMA and fibronectin are necessary for the compaction and survival of 3D structures. Altogether these data show that metastasizing units display a hybrid phenotype that allows maintenance of the 3D structures and the plasticity necessary for implant and seeding into peritoneal lining.
Collapse
Affiliation(s)
- Sonia Capellero
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (S.C.); (J.E.); (R.P.); (G.S.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
| | - Jessica Erriquez
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (S.C.); (J.E.); (R.P.); (G.S.); (M.F.D.R.); (M.O.)
| | - Chiara Battistini
- Unit of Gynaecological Oncology Research, European Institute of Oncology, IRCCS, 20100 Milan, Italy;
| | - Roberta Porporato
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (S.C.); (J.E.); (R.P.); (G.S.); (M.F.D.R.); (M.O.)
| | - Giulia Scotto
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (S.C.); (J.E.); (R.P.); (G.S.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
| | - Fulvio Borella
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Turin, 10100 Turin, Italy;
| | - Maria F. Di Renzo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (S.C.); (J.E.); (R.P.); (G.S.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
| | - Giorgio Valabrega
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (S.C.); (J.E.); (R.P.); (G.S.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
- Correspondence: ; Tel.: +39-011-993-3521
| | - Martina Olivero
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (S.C.); (J.E.); (R.P.); (G.S.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
| |
Collapse
|
14
|
Capturing tumour heterogeneity in pre- and post-chemotherapy colorectal cancer ascites-derived cells using single-cell RNA-sequencing. Biosci Rep 2021; 41:230018. [PMID: 34708245 PMCID: PMC8655500 DOI: 10.1042/bsr20212093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
Malignant ascites is an abnormal accumulation of fluid within the peritoneal cavity, caused by metastasis of several types of cancers, including colorectal cancer (CRC). Cancer cells in ascites reflect poor prognosis and serve as a good specimen to study tumour heterogeneity, as they represent a collection of multiple metastatic sites in the peritoneum. In the present study, we have employed single-cell RNA-sequencing (scRNA-seq) to explore and characterise ascites-derived cells from a CRC patient. The samples were prepared using mechanical and enzymatic dissociations, and obtained before and after a chemotherapy treatment. Unbiased clustering of 19,653 cells from four samples reveals 14 subclusters with unique transcriptomic patterns in four major cell types: epithelial cells, myeloid cells, fibroblasts, and lymphocytes. Interestingly, the percentages of cells recovered from different cell types appeared to be influenced by the preparation protocols, with more than 90% reduction in the number of myeloid cells recovered by enzymatic preparation. Analysis of epithelial cell subpopulations unveiled only three out of eleven subpopulations with clear contraction after the treatment, suggesting that the majority of the heterogeneous ascites-derived cells were resistant to the treatment, potentially reflecting the poor treatment outcome observed in the patient. Overall, our study showcases highly heterogeneous cancer subpopulations at single-cell resolution, which respond differently to a particular chemotherapy treatment. All in all, this work highlights the potential benefit of single-cell analyses in planning appropriate treatments and real-time monitoring of therapeutic response in cancer patients through routinely discarded ascites samples.
Collapse
|
15
|
Pascual-Antón L, Cardeñes B, Sainz de la Cuesta R, González-Cortijo L, López-Cabrera M, Cabañas C, Sandoval P. Mesothelial-to-Mesenchymal Transition and Exosomes in Peritoneal Metastasis of Ovarian Cancer. Int J Mol Sci 2021; 22:ijms222111496. [PMID: 34768926 PMCID: PMC8584135 DOI: 10.3390/ijms222111496] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Most patients with ovarian cancer (OvCA) present peritoneal disseminated disease at the time of diagnosis. During peritoneal metastasis, cancer cells detach from the primary tumor and disseminate through the intraperitoneal fluid. The peritoneal mesothelial cell (PMC) monolayer that lines the abdominal cavity is the first barrier encountered by OvCA cells. Subsequent progression of tumors through the peritoneum leads to the accumulation into the peritoneal stroma of a sizeable population of carcinoma-associated fibroblasts (CAFs), which is mainly originated from a mesothelial-to-mesenchymal transition (MMT) process. A common characteristic of OvCA patients is the intraperitoneal accumulation of ascitic fluid, which is composed of cytokines, chemokines, growth factors, miRNAs, and proteins contained in exosomes, as well as tumor and mesothelial suspended cells, among other components that vary in proportion between patients. Exosomes are small extracellular vesicles that have been shown to mediate peritoneal metastasis by educating a pre-metastatic niche, promoting the accumulation of CAFs via MMT, and inducing tumor growth and chemoresistance. This review summarizes and discusses the pivotal role of exosomes and MMT as mediators of OvCA peritoneal colonization and as emerging diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Lucía Pascual-Antón
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | - Beatriz Cardeñes
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | | | | | - Manuel López-Cabrera
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | - Carlos Cabañas
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Lymphocyte Immunobiology Group, Inflammatory and Immune Disorders Area, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
- Correspondence: (C.C.); (P.S.); Tel.: +34-91-196-4513 (C.C.); +34-91-196-4707 (P.S.)
| | - Pilar Sandoval
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
- Correspondence: (C.C.); (P.S.); Tel.: +34-91-196-4513 (C.C.); +34-91-196-4707 (P.S.)
| |
Collapse
|
16
|
Qian J, LeSavage BL, Hubka KM, Ma C, Natarajan S, Eggold JT, Xiao Y, Fuh KC, Krishnan V, Enejder A, Heilshorn SC, Dorigo O, Rankin EB. Cancer-associated mesothelial cells promote ovarian cancer chemoresistance through paracrine osteopontin signaling. J Clin Invest 2021; 131:e146186. [PMID: 34396988 DOI: 10.1172/jci146186] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer is the leading cause of gynecological malignancy-related deaths, due to its widespread intraperitoneal metastases and acquired chemoresistance. Mesothelial cells are an important cellular component of the ovarian cancer microenvironment that promote metastasis. However, their role in chemoresistance is unclear. Here, we investigated whether cancer-associated mesothelial cells promote ovarian cancer chemoresistance and stemness in vitro and in vivo. We found that osteopontin is a key secreted factor that drives mesothelial-mediated ovarian cancer chemoresistance and stemness. Osteopontin is a secreted glycoprotein that is clinically associated with poor prognosis and chemoresistance in ovarian cancer. Mechanistically, ovarian cancer cells induced osteopontin expression and secretion by mesothelial cells through TGF-β signaling. Osteopontin facilitated ovarian cancer cell chemoresistance via the activation of the CD44 receptor, PI3K/AKT signaling, and ABC drug efflux transporter activity. Importantly, therapeutic inhibition of osteopontin markedly improved the efficacy of cisplatin in both human and mouse ovarian tumor xenografts. Collectively, our results highlight mesothelial cells as a key driver of ovarian cancer chemoresistance and suggest that therapeutic targeting of osteopontin may be an effective strategy for enhancing platinum sensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Jin Qian
- Department of Radiation Oncology
| | | | - Kelsea M Hubka
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Chenkai Ma
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, North Ryde, New South Wales, Australia
| | | | | | | | - Katherine C Fuh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, Missouri, USA
| | - Venkatesh Krishnan
- Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| | - Annika Enejder
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Oliver Dorigo
- Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| | - Erinn B Rankin
- Department of Radiation Oncology.,Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| |
Collapse
|
17
|
Kim S, Han Y, Kim SI, Lee J, Jo H, Wang W, Cho U, Park WY, Rando TA, Dhanasekaran DN, Song YS. Computational modeling of malignant ascites reveals CCL5-SDC4 interaction in the immune microenvironment of ovarian cancer. Mol Carcinog 2021; 60:297-312. [PMID: 33721368 PMCID: PMC8080545 DOI: 10.1002/mc.23289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/23/2022]
Abstract
Fluid accumulation in the abdominal cavity is commonly found in advanced-stage ovarian cancer patients, which creates a specialized tumor microenvironment for cancer progression. Using single-cell RNA sequencing (scRNA-seq) of ascites cells from five patients with ovarian cancer, we identified seven cell types, including heterogeneous macrophages and ovarian cancer cells. We resolved a distinct polarization state of macrophages by MacSpectrum analysis and observed subtype-specific enrichment of pathways associated with their functions. The communication between immune and cancer cells was predicted through a putative ligand-receptor pair analysis using NicheNet. We found that CCL5, a chemotactic ligand, is enriched in immune cells (T cells and NK cells) and mediates ovarian cancer cell survival in the ascites, possibly through SDC4. Moreover, SDC4 expression correlated with poor overall survival in ovarian cancer patients. Our study highlights the potential role of T cells and NK cells in long-term survival patients with ovarian cancer, indicating SDC4 as a potential prognostic marker in ovarian cancer patients.
Collapse
Affiliation(s)
- Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA, USA
- These authors contributed equally: Soochi Kim, Youngjin Han
| | - Youngjin Han
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- These authors contributed equally: Soochi Kim, Youngjin Han
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Juwon Lee
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - HyunA Jo
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Wenyu Wang
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Untack Cho
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Korea
| | - Thomas A. Rando
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yong Sang Song
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
18
|
Yan H, Li Y, Cheng S, Zeng Y. Advances in Analytical Technologies for Extracellular Vesicles. Anal Chem 2021; 93:4739-4774. [PMID: 33635060 DOI: 10.1021/acs.analchem.1c00693] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- He Yan
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yutao Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Shibo Cheng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.,University of Florida Health Cancer Center, Gainesville, Florida 32610, United States
| |
Collapse
|
19
|
Li M, Zhao L, Zhou X, Zhang K, Yin P, Liu S, Zou Y, Li Q. Detection of carcinoma in serous effusions: a review. Am J Cancer Res 2021; 11:43-60. [PMID: 33520359 PMCID: PMC7840719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023] Open
Abstract
A malignant serous effusion is one of the most common complications of advanced tumors, indicating a poor prognosis and having a profound impact on diagnosis, treatment, and prognosis. It is of great significance to identify benign and malignant effusions quickly and accurately. Both cellular and non-cellular components in the effusion can be employed for detection, diagnostic methods are necessary to obtain a definite diagnosis and more relevant information such as tumor classification. In this review, we focus on the comparison of several widespread cytological preparation methods, enrichment technology of exfoliated cells, and present tests for serous effusions, mainly including routine and special stains, immunocytochemistry, electron microscopy, enzyme-linked immunosorbent assay, flow cytometry, and molecular analysis.
Collapse
Affiliation(s)
- Min Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, China
| | - Lanbo Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, China
| | - Xue Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, China
| | - Kailu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, China
| | - Panyue Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, China
| | - Shuhua Liu
- College of Chemistry Engineering, Tianjin UniversityTianjin 300350, China
| | - Yuliang Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, China
| | - Qiling Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, China
| |
Collapse
|
20
|
Izar B, Tirosh I, Stover EH, Wakiro I, Cuoco MS, Alter I, Rodman C, Leeson R, Su MJ, Shah P, Iwanicki M, Walker SR, Kanodia A, Melms JC, Mei S, Lin JR, Porter CBM, Slyper M, Waldman J, Jerby-Arnon L, Ashenberg O, Brinker TJ, Mills C, Rogava M, Vigneau S, Sorger PK, Garraway LA, Konstantinopoulos PA, Liu JF, Matulonis U, Johnson BE, Rozenblatt-Rosen O, Rotem A, Regev A. A single-cell landscape of high-grade serous ovarian cancer. Nat Med 2020; 26:1271-1279. [PMID: 32572264 PMCID: PMC7723336 DOI: 10.1038/s41591-020-0926-0] [Citation(s) in RCA: 305] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 05/07/2020] [Indexed: 01/04/2023]
Abstract
Malignant abdominal fluid (ascites) frequently develops in women with advanced high-grade serous ovarian cancer (HGSOC) and is associated with drug resistance and a poor prognosis1. To comprehensively characterize the HGSOC ascites ecosystem, we used single-cell RNA sequencing to profile ~11,000 cells from 22 ascites specimens from 11 patients with HGSOC. We found significant inter-patient variability in the composition and functional programs of ascites cells, including immunomodulatory fibroblast sub-populations and dichotomous macrophage populations. We found that the previously described immunoreactive and mesenchymal subtypes of HGSOC, which have prognostic implications, reflect the abundance of immune infiltrates and fibroblasts rather than distinct subsets of malignant cells2. Malignant cell variability was partly explained by heterogeneous copy number alteration patterns or expression of a stemness program. Malignant cells shared expression of inflammatory programs that were largely recapitulated in single-cell RNA sequencing of ~35,000 cells from additionally collected samples, including three ascites, two primary HGSOC tumors and three patient ascites-derived xenograft models. Inhibition of the JAK/STAT pathway, which was expressed in both malignant cells and cancer-associated fibroblasts, had potent anti-tumor activity in primary short-term cultures and patient-derived xenograft models. Our work contributes to resolving the HSGOC landscape3-5 and provides a resource for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Benjamin Izar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ludwig Center for Cancer Research at Harvard, Boston, MA, USA
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Columbia University Medical Center, Columbia Center for Translational Immunology, New York, NY, USA
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elizabeth H Stover
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Isaac Wakiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael S Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Idan Alter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Christopher Rodman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rachel Leeson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mei-Ju Su
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Parin Shah
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marcin Iwanicki
- Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Sarah R Walker
- Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA
| | - Abhay Kanodia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Johannes C Melms
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shaolin Mei
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jia-Ren Lin
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Livnat Jerby-Arnon
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Caitlin Mills
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Meri Rogava
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sébastien Vigneau
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter K Sorger
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | | - Joyce F Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ursula Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bruce E Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Asaf Rotem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Ludwig Center for Cancer Research at MIT, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
21
|
Kolenčík D, Shishido SN, Pitule P, Mason J, Hicks J, Kuhn P. Liquid Biopsy in Colorectal Carcinoma: Clinical Applications and Challenges. Cancers (Basel) 2020; 12:E1376. [PMID: 32471160 PMCID: PMC7352156 DOI: 10.3390/cancers12061376] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal carcinoma (CRC) is characterized by wide intratumor heterogeneity with general genomic instability and there is a need for improved diagnostic, prognostic, and therapeutic tools. The liquid biopsy provides a noninvasive route of sample collection for analysis of circulating tumor cells (CTCs) and genomic material, including cell-free DNA (cfDNA), as a complementary biopsy to the solid tumor tissue. The solid biopsy is critical for molecular characterization and diagnosis at the time of collection. The liquid biopsy has the advantage of longitudinal molecular characterization of the disease, which is crucial for precision medicine and patient-oriented treatment. In this review, we provide an overview of CRC and the different methodologies for the detection of CTCs and cfDNA, followed by a discussion on the potential clinical utility of the liquid biopsy in CRC patient care, and lastly, current challenges in the field.
Collapse
Affiliation(s)
- Drahomír Kolenčík
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (P.P.)
| | - Stephanie N. Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (J.M.); (J.H.)
| | - Pavel Pitule
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (P.P.)
| | - Jeremy Mason
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (J.M.); (J.H.)
- USC Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (J.M.); (J.H.)
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (J.M.); (J.H.)
| |
Collapse
|
22
|
CD24-targeted fluorescence imaging in patient-derived xenograft models of high-grade serous ovarian carcinoma. EBioMedicine 2020; 56:102782. [PMID: 32454401 PMCID: PMC7248428 DOI: 10.1016/j.ebiom.2020.102782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The survival rate of patients with advanced high-grade serous ovarian carcinoma (HGSOC) remains disappointing. Clinically translatable orthotopic cell line xenograft models and patient-derived xenografts (PDXs) may aid the implementation of more personalised treatment approaches. Although orthotopic PDX reflecting heterogeneous molecular subtypes are considered the most relevant preclinical models, their use in therapeutic development is limited by lack of appropriate imaging modalities. METHODS We developed novel orthotopic xenograft and PDX models for HGSOC, and applied a near-infrared fluorescently labelled monoclonal antibody targeting the cell surface antigen CD24 for non-invasive molecular imaging of epithelial ovarian cancer. CD24-Alexa Fluor 680 fluorescence imaging was compared to bioluminescence imaging in three orthotopic cell line xenograft models of ovarian cancer (OV-90luc+, Skov-3luc+ and Caov-3luc+, n = 3 per model). The application of fluorescence imaging to assess treatment efficacy was performed in carboplatin-paclitaxel treated orthotopic OV-90 xenografts (n = 10), before the probe was evaluated to detect disease progression in heterogenous PDX models (n = 7). FINDINGS Application of the near-infrared probe, CD24-AF680, enabled both spatio-temporal visualisation of tumour development, and longitudinal therapy monitoring of orthotopic xenografts. Notably, CD24-AF680 facilitated imaging of multiple PDX models representing different histological subtypes of the disease. INTERPRETATION The combined implementation of CD24-AF680 and orthotopic PDX models creates a state-of-the-art preclinical platform which will impact the identification and validation of new targeted therapies, fluorescence image-guided surgery, and ultimately the outcome for HGSOC patients. FUNDING This study was supported by the H2020 program MSCA-ITN [675743], Helse Vest RHF, and Helse Bergen HF [911809, 911852, 912171, 240222, HV1269], as well as by The Norwegian Cancer Society [182735], and The Research Council of Norway through its Centers of excellence funding scheme [223250, 262652].
Collapse
|
23
|
Tian S, Cheng SB, Guo YY, Xie M, Zhan N, Zeng Z, Huang WH, Dong WG. High Efficient Isolation of Tumor Cells by a Three Dimensional Scaffold Chip for Diagnosis of Malignant Effusions. ACS APPLIED BIO MATERIALS 2020; 3:2177-2184. [PMID: 35025269 DOI: 10.1021/acsabm.0c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shan Tian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Shi-Bo Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ying-Yun Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Min Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Na Zhan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei-Guo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
24
|
Zaborowski MP, Lee K, Na YJ, Sammarco A, Zhang X, Iwanicki M, Cheah PS, Lin HY, Zinter M, Chou CY, Fulci G, Tannous BA, Lai CPK, Birrer MJ, Weissleder R, Lee H, Breakefield XO. Methods for Systematic Identification of Membrane Proteins for Specific Capture of Cancer-Derived Extracellular Vesicles. Cell Rep 2019; 27:255-268.e6. [PMID: 30943406 PMCID: PMC6528836 DOI: 10.1016/j.celrep.2019.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/05/2018] [Accepted: 02/27/2019] [Indexed: 12/22/2022] Open
Abstract
Analysis of cancer-derived extracellular vesicles (EVs) in biofluids potentially provides a source of disease biomarkers. At present there is no procedure to systematically identify which antigens should be targeted to differentiate cancer-derived from normal host cell-derived EVs. Here, we propose a computational framework that integrates information about membrane proteins in tumors and normal tissues from databases: UniProt, The Cancer Genome Atlas, the Genotype-Tissue Expression Project, and the Human Protein Atlas. We developed two methods to assess capture of EVs from specific cell types. (1) We used palmitoylated fluorescent protein (palmtdTomato) to label tumor-derived EVs. Beads displaying antibodies of interest were incubated with conditioned medium from palmtdTomato-expressing cells. Bound EVs were quantified using flow cytometry. (2) We also showed that membrane-bound Gaussia luciferase allows the detection of cancer-derived EVs in blood of tumor-bearing animals. Our analytical and validation platform should be applicable to identify antigens on EVs from any tumor type.
Collapse
Affiliation(s)
- Mikołaj Piotr Zaborowski
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznań University of Medical Sciences, 60-535 Poznań, Poland.
| | - Kyungheon Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Young Jeong Na
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alessandro Sammarco
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy
| | - Xuan Zhang
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Marcin Iwanicki
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Pike See Cheah
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Seri Kembangan, Malaysia
| | - Hsing-Ying Lin
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Max Zinter
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Chung-Yu Chou
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320, Taiwan
| | - Giulia Fulci
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bakhos A Tannous
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Charles Pin-Kuang Lai
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Michael J Birrer
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xandra O Breakefield
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
25
|
Heublein S, Page S, Mayr D, Schmoeckel E, Trillsch F, Marmé F, Mahner S, Jeschke U, Vattai A. Potential Interplay of the Gatipotuzumab Epitope TA-MUC1 and Estrogen Receptors in Ovarian Cancer. Int J Mol Sci 2019; 20:ijms20020295. [PMID: 30642093 PMCID: PMC6359481 DOI: 10.3390/ijms20020295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/17/2018] [Accepted: 12/24/2018] [Indexed: 12/20/2022] Open
Abstract
Anti-tumor efficacy of Gatipotuzumab, a therapeutic antibody targeting Tumor-Associated Mucin-1 (TA-MUC1), in relapsed ovarian cancer (OC) appeared to be rather heterogeneous. Whether adding a second anti-neoplastic drug may augment response towards Gatipotuzumab, has not been elucidated so far. Since it is known that anti-MUC1 antibodies may alter estrogen receptor activity in breast cancer, this potential interplay was investigated in OC. The correlation between TA-MUC1, estrogen receptors (ERs) and another 12 protein markers as well as their correlation with clinico-pathological parameters in 138 ovarian cancer cases was studied. Finally, Gatipotuzumab and 4-Hydroxy-TTamoxifen (4-OHT) as well as the combination of both was tested for its impact on cell viability in COV318, OV-90, OVCAR-3, and SKOV-3 cells. A strong positive correlation between TA-MUC1 and ERs was detected in OC tissue. Those cases missing ERs but staining positive for TA-MUC1 had significantly reduced overall survival. The combination of 4-OHT and Gatipotuzumab significantly reduced cell viability and was more effective than treatment with Gatipotuzumab alone. Co-stimulation with Gatipotuzumab enhanced the efficacy of 4-OHT in OVCAR-3 and SKOV-3. The data suggest an interplay of TA-MUC1 and ERs in OC. Whether the combination of Gatipotuzumab and TTamoxifen may enhance efficacy of either of the two drugs in vivo, or may even translate into a clinically relevant benefit over the respective monotherapies, remains to be investigated.
Collapse
Affiliation(s)
- Sabine Heublein
- Department of Obstetrics and Gynecology, Ludwig-Maximilians University of Munich, University Hospital, 81377 Munich, Germany.
- Department of Obstetrics and Gynecology, University of Heidelberg, 69117 Heidelberg, Germany.
| | - Sabina Page
- Department of Obstetrics and Gynecology, Ludwig-Maximilians University of Munich, University Hospital, 81377 Munich, Germany.
| | - Doris Mayr
- Department of Pathology, Ludwig-Maximilians University of Munich, 81377 Munich, Germany.
| | - Elisa Schmoeckel
- Department of Pathology, Ludwig-Maximilians University of Munich, 81377 Munich, Germany.
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, Ludwig-Maximilians University of Munich, University Hospital, 81377 Munich, Germany.
| | - Frederik Marmé
- Department of Obstetrics and Gynecology, University of Heidelberg, 69117 Heidelberg, Germany.
| | - Sven Mahner
- Department of Obstetrics and Gynecology, Ludwig-Maximilians University of Munich, University Hospital, 81377 Munich, Germany.
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, Ludwig-Maximilians University of Munich, University Hospital, 81377 Munich, Germany.
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, Ludwig-Maximilians University of Munich, University Hospital, 81377 Munich, Germany.
| |
Collapse
|
26
|
Yang Y, Zeng Y. Microfluidic communicating vessel chip for expedited and automated immunomagnetic assays. LAB ON A CHIP 2018; 18:3830-3839. [PMID: 30394473 PMCID: PMC6279511 DOI: 10.1039/c8lc00927a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rapid, sensitive analysis of protein biomarkers is of tremendous biological and clinical significance. Immunoassays are workhorse tools for protein analysis and have been under continuous investigation to develop new methods and to improve the analytical performance. Herein we report a pneumatically gated microfluidic communicating vessel (μCOVE) chip for rapid and sensitive immunomagnetic ELISA. A distinct feature of our device is that it employs the communicating vessel principle as a simple means to generate a fast transient hydrodynamic flow to enable effective flow washing without the need for excessive incubation, which greatly simplifies and expedites the assay workflow, compared to conventional microfluidic flow-based immunoassays. Stationary multi-phase microfluidic techniques have been developed for fast bead washing. However, they have some limitations, such as the need for careful control of interfacial properties, large bead quantity required for reliable interphase bead transport, and relatively high bead loss during surface tension-gated traverse. Our single-phase μCOVE chip can overcome such limitations and facilitate the manipulation of magnetic beads to streamline the assay workflow. We showed that the μCOVE device affords highly sensitive quantification of the CEA and EGFR proteins with a LOD down to the sub-picogram per mL level. Direct detection of the EGFR in the crude A431 cell lysate was also demonstrated to further validate the ability of our device for rapid and quantitative analysis of complex biological samples. Overall, our work presents a unique platform that combines the merits of the stationary multi-phase systems and the flow-based microfluidics. This novel immunoassay microsystem has promising potential for a broad range of biological and clinical applications, owing to its simplicity and high performance.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | | |
Collapse
|
27
|
Coelho R, Marcos-Silva L, Mendes N, Pereira D, Brito C, Jacob F, Steentoft C, Mandel U, Clausen H, David L, Ricardo S. Mucins and Truncated O-Glycans Unveil Phenotypic Discrepancies between Serous Ovarian Cancer Cell Lines and Primary Tumours. Int J Mol Sci 2018; 19:ijms19072045. [PMID: 30011875 PMCID: PMC6073732 DOI: 10.3390/ijms19072045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/14/2023] Open
Abstract
Optimal research results rely on the selection of cellular models capable of recapitulating the characteristics of primary tumours from which they originate. The expression of mucins (MUC16 and MUC1) and truncated O-glycans (Tn, STn and T) represents a characteristic footprint of serous ovarian carcinomas (SOCs). Therefore, selecting ovarian cancer (OVCA) cell lines that reflect this phenotype is crucial to explore the putative biological role of these biomarkers in the SOC setting. Here, we investigated a panel of OVCA cell lines commonly used as SOC models, and tested whether, when cultured in 2D and 3D conditions, these recapitulate the mucin and O-glycan expression profiles of SOCs. We further explored the role of truncating the O-glycosylation capacity in OVCAR3 cells through knockout of the COSMC chaperone, using in vitro and in vivo assays. We found that the majority of OVCA cell lines of serous origin do not share the mucin and truncated O-glycan footprint of SOCs, although 3D cultures showed a higher resemblance. We also found that genetic truncation of the O-glycosylation capacity of OVCAR3 cells did not enhance oncogenic features either in vitro or in vivo. This study underscores the importance of well-characterized cellular models to study specific features of ovarian cancer.
Collapse
Affiliation(s)
- Ricardo Coelho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4099-002 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4099-002 Porto, Portugal.
- Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal.
| | - Lara Marcos-Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4099-002 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4099-002 Porto, Portugal.
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica (ITQB) António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Nuno Mendes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4099-002 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4099-002 Porto, Portugal.
| | - Daniela Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4099-002 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4099-002 Porto, Portugal.
| | - Catarina Brito
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica (ITQB) António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Francis Jacob
- Glyco-Oncology, Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland.
| | - Catharina Steentoft
- Copenhagen Center for Glycomics, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Leonor David
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4099-002 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4099-002 Porto, Portugal.
- Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal.
| | - Sara Ricardo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4099-002 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4099-002 Porto, Portugal.
- Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal.
| |
Collapse
|
28
|
Comparative proteomic analysis of human malignant ascitic fluids for the development of gastric cancer biomarkers. Clin Biochem 2018; 56:55-61. [PMID: 29654727 DOI: 10.1016/j.clinbiochem.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Malignant ascites is a sign of peritoneal seeding, which is one of the most frequent forms of incurable distant metastasis. Because the development of malignant ascites is associated with an extremely poor prognosis, determining whether it resulted from peritoneal seeding has critical clinical implications in diagnosis, choice of treatment, and active surveillance. At present, the molecular characterizations of malignant ascites are especially limited in case of gastric cancer. We aimed to identify malignant ascites-specific proteins that may contribute to the development of alternative methods for diagnosis and therapeutic monitoring and also increase our understanding of the pathophysiology of peritoneal seeding. DESIGN & METHODS First, comprehensive proteomic strategies were employed to construct an in-depth proteome of ascitic fluids. Label-free quantitative proteomic analysis was subsequently performed to identify candidates that can differentiate between malignant ascitic fluilds of gastric cancer patients from benign ascitic fluids. Finally, two candidate proteins were verified by ELISA in 84 samples with gastric cancer or liver cirrhosis. RESULTS Comprehensive proteome profiling resulted in the identification of 5347 ascites proteins. Using label-free quantification, we identified 299 proteins that were differentially expressed in ascitic fluids between liver cirrhosis and stage IV gastric cancer patients. In addition, we identified 645 proteins that were significantly expressed in ascitic fluids between liver cirrhosis and gastric cancer patients with peritoneal seeding. Finally, Gastriscin and Periostin that can distinguish malignant ascites from benign ascites were verified by ELISA. CONCLUSIONS This study identified and verified protein markers that can distinguish malignant ascites with or without peritoneal seeding from benign ascites. Consequently, our results could be a significant resource for gastric cancer research and biomarker discovery in the diagnosis of malignant ascites.
Collapse
|
29
|
Tucker DW, Getchell CR, McCarthy ET, Ohman AW, Sasamoto N, Xu S, Ko JY, Gupta M, Shafrir A, Medina JE, Lee JJ, MacDonald LA, Malik A, Hasselblatt KT, Li W, Zhang H, Kaplan SJ, Murphy GF, Hirsch MS, Liu JF, Matulonis UA, Terry KL, Lian CG, Dinulescu DM. Epigenetic Reprogramming Strategies to Reverse Global Loss of 5-Hydroxymethylcytosine, a Prognostic Factor for Poor Survival in High-grade Serous Ovarian Cancer. Clin Cancer Res 2018; 24:1389-1401. [PMID: 29263182 PMCID: PMC5951622 DOI: 10.1158/1078-0432.ccr-17-1958] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/11/2017] [Accepted: 12/14/2017] [Indexed: 01/10/2023]
Abstract
Purpose: A major challenge in platinum-based cancer therapy is the clinical management of chemoresistant tumors, which have a largely unknown pathogenesis at the level of epigenetic regulation.Experimental Design: We evaluated the potential of using global loss of 5-hydroxymethylcytosine (5-hmC) levels as a novel diagnostic and prognostic epigenetic marker to better assess platinum-based chemotherapy response and clinical outcome in high-grade serous tumors (HGSOC), the most common and deadliest subtype of ovarian cancer. Furthermore, we identified a targetable pathway to reverse these epigenetic changes, both genetically and pharmacologically.Results: This study shows that decreased 5-hmC levels are an epigenetic hallmark for malignancy and tumor progression in HGSOC. In addition, global 5-hmC loss is associated with a decreased response to platinum-based chemotherapy, shorter time to relapse, and poor overall survival in patients newly diagnosed with HGSOC. Interestingly, the rescue of 5-hmC loss restores sensitivity to platinum chemotherapy in vitro and in vivo, decreases the percentage of tumor cells with cancer stem cell markers, and increases overall survival in an aggressive animal model of platinum-resistant disease.Conclusions: Consequently, a global analysis of patient 5-hmC levels should be included in future clinical trials, which use pretreatment with epigenetic adjuvants to elevate 5-hmC levels and improve the efficacy of current chemotherapies. Identifying prognostic epigenetic markers and altering chemotherapeutic regimens to incorporate DNMTi pretreatment in tumors with low 5-hmC levels could have important clinical implications for newly diagnosed HGSOC disease. Clin Cancer Res; 24(6); 1389-401. ©2017 AACR.
Collapse
Affiliation(s)
- Douglass W Tucker
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher R Getchell
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eric T McCarthy
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anders W Ohman
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Naoko Sasamoto
- Epidemiology Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shuyun Xu
- Department of Pathology, Division of Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joo Yeon Ko
- Department of Dermatology, Hanyang University College of Medicine, Seoul, Korea
| | - Mamta Gupta
- Epidemiology Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amy Shafrir
- Epidemiology Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jamie E Medina
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jonathan J Lee
- Department of Pathology, Division of Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lauren A MacDonald
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts
| | - Ammara Malik
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts
| | - Kathleen T Hasselblatt
- Gynecologic Oncology Laboratory, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Wenjing Li
- Department of Medicine, Division of Endocrinology, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts
| | - Hong Zhang
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Samuel J Kaplan
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - George F Murphy
- Department of Pathology, Division of Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michelle S Hirsch
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joyce F Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts
| | - Kathryn L Terry
- Epidemiology Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Christine G Lian
- Department of Pathology, Division of Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Daniela M Dinulescu
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
30
|
Hassan W, Chitcholtan K, Sykes P, Garrill A. Ascitic fluid from advanced ovarian cancer patients compromises the activity of receptor tyrosine kinase inhibitors in 3D cell clusters of ovarian cancer cells. Cancer Lett 2018; 420:168-181. [PMID: 29432847 DOI: 10.1016/j.canlet.2018.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022]
Abstract
Ovarian cancer patients in the advanced stages of the disease show clinical ascites, which is associated with a poor prognosis. There is limited understanding of the effect of ascitic fluid on ovarian cancer cells and their response to anticancer drugs. We investigated the antitumour effects of EGFR/Her-2 (canertinib) and c-Met (PHA665752) inhibitors in a 3D cell model of three ovarian cancer lines. Single and combined inhibitor treatments affected cell growth of OVCAR-5 and SKOV-3 cell lines but not OV-90 cell line. Growth reduction was correlated with the down expression of PCNA, EGFR, HER-2, c-MET, ERK and AKT and their phosphorylation status in cells in growth factor supplemented media. However, these effects were not re-producible in OVCAR-5 and SKOV-3 cell lines when they were exposed to ascitic fluid obtained from three ovarian cancer patients. Serum albumin and protein components in the ascitic fluids may reduce the cellular uptake of the inhibitors.
Collapse
Affiliation(s)
- Wafaa Hassan
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand.
| | - Kenny Chitcholtan
- Gynaecological Oncology Research Group, Department of Obstetrics and Gynaecology, University of Otago, Christchurch Women's Hospital, 2 Riccarton Avenue, Christchurch, 8011, New Zealand.
| | - Peter Sykes
- Gynaecological Oncology Research Group, Department of Obstetrics and Gynaecology, University of Otago, Christchurch Women's Hospital, 2 Riccarton Avenue, Christchurch, 8011, New Zealand.
| | - Ashley Garrill
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand.
| |
Collapse
|
31
|
Neoh KH, Hassan AA, Chen A, Sun Y, Liu P, Xu KF, Wong AS, Han RP. Rethinking liquid biopsy: Microfluidic assays for mobile tumor cells in human body fluids. Biomaterials 2018; 150:112-124. [DOI: 10.1016/j.biomaterials.2017.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 12/27/2022]
|
32
|
Young AN, Moyle-Heyrman G, Kim JJ, Burdette JE. Microphysiologic systems in female reproductive biology. Exp Biol Med (Maywood) 2017; 242:1690-1700. [PMID: 29065798 PMCID: PMC5786365 DOI: 10.1177/1535370217697386] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Microphysiologic systems (MPS), including new organ-on-a-chip technologies, recapitulate tissue microenvironments by employing specially designed tissue or cell culturing techniques and microfluidic flow. Such systems are designed to incorporate physiologic factors that conventional 2D or even 3D systems cannot, such as the multicellular dynamics of a tissue-tissue interface or physical forces like fluid sheer stress. The female reproductive system is a series of interconnected organs that are necessary to produce eggs, support embryo development and female health, and impact the functioning of non-reproductive tissues throughout the body. Despite its importance, the human reproductive tract has received less attention than other organ systems, such as the liver and kidney, in terms of modeling with MPS. In this review, we discuss current gaps in the field and areas for technological advancement through the application of MPS. We explore current MPS research in female reproductive biology, including fertilization, pregnancy, and female reproductive tract diseases, with a focus on their clinical applications. Impact statement This review discusses existing microphysiologic systems technology that may be applied to study of the female reproductive tract, and those currently in development to specifically investigate gametes, fertilization, embryo development, pregnancy, and diseases of the female reproductive tract. We focus on the clinical applicability of these new technologies in fields such as assisted reproductive technologies, drug testing, disease diagnostics, and personalized medicine.
Collapse
Affiliation(s)
| | - Georgette Moyle-Heyrman
- College of Science & Technology, University of Wisconsin – Green Bay, Green Bay, WI 54311, USA
| | - J Julie Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
33
|
Combating subclonal evolution of resistant cancer phenotypes. Nat Commun 2017; 8:1231. [PMID: 29093439 PMCID: PMC5666005 DOI: 10.1038/s41467-017-01174-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 08/24/2017] [Indexed: 12/24/2022] Open
Abstract
Metastatic breast cancer remains challenging to treat, and most patients ultimately progress on therapy. This acquired drug resistance is largely due to drug-refractory sub-populations (subclones) within heterogeneous tumors. Here, we track the genetic and phenotypic subclonal evolution of four breast cancers through years of treatment to better understand how breast cancers become drug-resistant. Recurrently appearing post-chemotherapy mutations are rare. However, bulk and single-cell RNA sequencing reveal acquisition of malignant phenotypes after treatment, including enhanced mesenchymal and growth factor signaling, which may promote drug resistance, and decreased antigen presentation and TNF-α signaling, which may enable immune system avoidance. Some of these phenotypes pre-exist in pre-treatment subclones that become dominant after chemotherapy, indicating selection for resistance phenotypes. Post-chemotherapy cancer cells are effectively treated with drugs targeting acquired phenotypes. These findings highlight cancer's ability to evolve phenotypically and suggest a phenotype-targeted treatment strategy that adapts to cancer as it evolves.
Collapse
|
34
|
Moeker N, Peters S, Rauchenberger R, Ghinea N, Kunz C. Antibody Selection for Cancer Target Validation of FSH-Receptor in Immunohistochemical Settings. Antibodies (Basel) 2017; 6:antib6040015. [PMID: 31548530 PMCID: PMC6698838 DOI: 10.3390/antib6040015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The follicle-stimulating hormone (FSH)-receptor (FSHR) has been reported to be an attractive target for antibody therapy in human cancer. However, divergent immunohistochemical (IHC) findings have been reported for FSHR expression in tumor tissues, which could be due to the specificity of the antibodies used. METHODS Three frequently used antibodies (sc-7798, sc-13935, and FSHR323) were validated for their suitability in an immunohistochemical study for FSHR expression in different tissues. As quality control, two potential therapeutic anti-hFSHR Ylanthia® antibodies (Y010913, Y010916) were used. The specificity criteria for selection of antibodies were binding to native hFSHR of different sources, and no binding to non-related proteins. The ability of antibodies to stain the paraffin-embedded Flp-In Chinese hamster ovary (CHO)/FSHR cells was tested after application of different epitope retrieval methods. RESULTS From the five tested anti-hFSHR antibodies, only Y010913, Y010916, and FSHR323 showed specific binding to native, cell-presented hFSHR. Since Ylanthia® antibodies were selected to specifically recognize native FSHR, as required for a potential therapeutic antibody candidate, FSHR323 was the only antibody to detect the receptor in IHC/histochemical settings on transfected cells, and at markedly lower, physiological concentrations (ex., in Sertoli cells of human testes). The pattern of FSH323 staining noticed for ovarian, prostatic, and renal adenocarcinomas indicated that FSHR was expressed mainly in the peripheral tumor blood vessels. CONCLUSION Of all published IHC antibodies tested, only antibody FSHR323 proved suitable for target validation of hFSHR in an IHC setting for cancer. Our studies could not confirm the previously reported FSHR overexpression in ovarian and prostate cancer cells. Instead, specific overexpression in peripheral tumor blood vessels could be confirmed after thorough validation of the antibodies used.
Collapse
Affiliation(s)
- Nina Moeker
- MorphoSys AG, Discovery Alliance and Technologies, 82152 Planegg, Bavaria, Germany.
| | - Solveig Peters
- MorphoSys AG, Discovery Alliance and Technologies, 82152 Planegg, Bavaria, Germany.
| | - Robert Rauchenberger
- MorphoSys AG, Discovery Alliance and Technologies, 82152 Planegg, Bavaria, Germany.
| | - Nicolae Ghinea
- Curie Institute, Inserm-Tumoral Angiogenesis Unit, Translational Research Department, Curie Hospital, 75005-Paris, France.
| | - Christian Kunz
- MorphoSys AG, Discovery Alliance and Technologies, 82152 Planegg, Bavaria, Germany.
| |
Collapse
|
35
|
Deng Y, Davis SP, Yang F, Paulsen KS, Kumar M, Sinnott DeVaux R, Wang X, Conklin DS, Oberai A, Herschkowitz JI, Chung AJ. Inertial Microfluidic Cell Stretcher (iMCS): Fully Automated, High-Throughput, and Near Real-Time Cell Mechanotyping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201700705. [PMID: 28544415 PMCID: PMC5565626 DOI: 10.1002/smll.201700705] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/30/2017] [Indexed: 05/20/2023]
Abstract
Mechanical biomarkers associated with cytoskeletal structures have been reported as powerful label-free cell state identifiers. In order to measure cell mechanical properties, traditional biophysical (e.g., atomic force microscopy, micropipette aspiration, optical stretchers) and microfluidic approaches were mainly employed; however, they critically suffer from low-throughput, low-sensitivity, and/or time-consuming and labor-intensive processes, not allowing techniques to be practically used for cell biology research applications. Here, a novel inertial microfluidic cell stretcher (iMCS) capable of characterizing large populations of single-cell deformability near real-time is presented. The platform inertially controls cell positions in microchannels and deforms cells upon collision at a T-junction with large strain. The cell elongation motions are recorded, and thousands of cell deformability information is visualized near real-time similar to traditional flow cytometry. With a full automation, the entire cell mechanotyping process runs without any human intervention, realizing a user friendly and robust operation. Through iMCS, distinct cell stiffness changes in breast cancer progression and epithelial mesenchymal transition are reported, and the use of the platform for rapid cancer drug discovery is shown as well. The platform returns large populations of single-cell quantitative mechanical properties (e.g., shear modulus) on-the-fly with high statistical significances, enabling actual usages in clinical and biophysical studies.
Collapse
Affiliation(s)
- Yanxiang Deng
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| | - Steven P Davis
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Fan Yang
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| | - Kevin S Paulsen
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| | - Maneesh Kumar
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Rebecca Sinnott DeVaux
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Xianhui Wang
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Douglas S Conklin
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Assad Oberai
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Aram J Chung
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| |
Collapse
|
36
|
El Bairi K, Kandhro AH, Gouri A, Mahfoud W, Louanjli N, Saadani B, Afqir S, Amrani M. Emerging diagnostic, prognostic and therapeutic biomarkers for ovarian cancer. Cell Oncol (Dordr) 2017; 40:105-118. [PMID: 27981507 DOI: 10.1007/s13402-016-0309-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In spite of various treatment options currently available, ovarian cancer (OC) still remains a leading cause of death in women world-wide. Diagnosis at an early stage is one of the most important factors that determines survival. Current clinical diagnostic tools have, however, a limited efficacy in early OC detection. Therefore, there is a critical need for new (early) diagnostic biomarkers and tools. Through advances in genomic, proteomic and metabolomic techniques, several novel molecular OC biomarkers have recently been identified. These biomarkers are currently subject to validation. In addition, integration of genomic, proteomic and metabolomic data, in conjunction with epidemiologic and clinical data, is considered essential for obtaining useful results. Interesting recent work has already shown that specific diagnostic biomarkers, such as BRCA mutations, may have profound therapeutic implications. Here, we review the current state of OC research through literature and database searches, with a focus on various recently identified biomarkers via different technologies for the (early) diagnosis, prognosis and treatment of OC. CONCLUSIONS Multi-biomarker panels accompanied by a meticulous determination of their sensitivity and specificity, as well their validation, using multivariate analyses will be critical for its clinical application, including early OC detection and tailor-made OC treatment.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and Pharmacy, Oujda, Morocco.
- Independent Research Team in Cancer Biology and Bioactive Compounds, Mohammed 1st University, Oujda, Morocco.
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Wafaa Mahfoud
- Laboratory of Biology and Health, URAC-34, Faculty of Science Ben Msik, University Hassan II, Mohammedia, Casablanca, Morocco
| | | | - Brahim Saadani
- IVF center IRIFIV, Clinique des Iris, Casablanca, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohamed 1st University Hospital, Oujda, Morocco
| | - Mariam Amrani
- Equipe de Recherche ONCOGYMA, Faculty of Medicine, Pathology Department, National Institute of Oncology, Université Mohamed V, Rabat, Morocco
| |
Collapse
|
37
|
Gee MS, Ghazani AA, Haq R, Wargo JA, Sebas M, Sullivan RJ, Lee H, Weissleder R. Point of care assessment of melanoma tumor signaling and metastatic burden from μNMR analysis of tumor fine needle aspirates and peripheral blood. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:821-828. [PMID: 27993725 DOI: 10.1016/j.nano.2016.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/17/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022]
Abstract
This study evaluates μNMR technology for molecular profiling of tumor fine needle aspirates and peripheral blood of melanoma patients. In vitro assessment of melanocyte (MART-1, HMB45) and MAP kinase signaling (pERK, pS6K) molecule expression was performed in human cell lines, while clinical validation was performed in an IRB-approved study of melanoma patients undergoing biopsy and blood sampling. Tumor FNA and blood specimens were compared with BRAF genetic analysis and cross-sectional imaging. μNMR in vitro analysis showed increased expression of melanocyte markers in melanoma cells as well as increased expression of phosphorylated MAP kinase targets in BRAF-mutant melanoma cells. Melanoma patient FNA samples showed increased pERK and pS6K levels in BRAF mutant compared with BRAF WT melanomas, with μNMR blood circulating tumor cell level increased with higher metastatic burden visible on imaging. These results indicate that μNMR technology provides minimally invasive point-of-care evaluation of tumor signaling and metastatic burden in melanoma patients.
Collapse
Affiliation(s)
- Michael S Gee
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114.,Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Arezou A Ghazani
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Rizwan Haq
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
| | - Jennifer A Wargo
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
| | - Matthew Sebas
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Ryan J Sullivan
- Center for Melanoma, Massachusetts General Hospital Cancer Center, Boston, MA 02114
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Ralph Weissleder
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114.,Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
38
|
El Bairi K, Kandhro AH, Gouri A, Mahfoud W, Louanjli N, Saadani B, Afqir S, Amrani M. Emerging diagnostic, prognostic and therapeutic biomarkers for ovarian cancer. CELLULAR ONCOLOGY (DORDRECHT) 2016. [PMID: 27981507 DOI: 10.1007/s13402-016-0309-1] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND In spite of various treatment options currently available, ovarian cancer (OC) still remains a leading cause of death in women world-wide. Diagnosis at an early stage is one of the most important factors that determines survival. Current clinical diagnostic tools have, however, a limited efficacy in early OC detection. Therefore, there is a critical need for new (early) diagnostic biomarkers and tools. Through advances in genomic, proteomic and metabolomic techniques, several novel molecular OC biomarkers have recently been identified. These biomarkers are currently subject to validation. In addition, integration of genomic, proteomic and metabolomic data, in conjunction with epidemiologic and clinical data, is considered essential for obtaining useful results. Interesting recent work has already shown that specific diagnostic biomarkers, such as BRCA mutations, may have profound therapeutic implications. Here, we review the current state of OC research through literature and database searches, with a focus on various recently identified biomarkers via different technologies for the (early) diagnosis, prognosis and treatment of OC. CONCLUSIONS Multi-biomarker panels accompanied by a meticulous determination of their sensitivity and specificity, as well their validation, using multivariate analyses will be critical for its clinical application, including early OC detection and tailor-made OC treatment.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and Pharmacy, Oujda, Morocco. .,Independent Research Team in Cancer Biology and Bioactive Compounds, Mohammed 1st University, Oujda, Morocco.
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Wafaa Mahfoud
- Laboratory of Biology and Health, URAC-34, Faculty of Science Ben Msik, University Hassan II, Mohammedia, Casablanca, Morocco
| | | | - Brahim Saadani
- IVF center IRIFIV, Clinique des Iris, Casablanca, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohamed 1st University Hospital, Oujda, Morocco
| | - Mariam Amrani
- Equipe de Recherche ONCOGYMA, Faculty of Medicine, Pathology Department, National Institute of Oncology, Université Mohamed V, Rabat, Morocco
| |
Collapse
|
39
|
El Bairi K, Kandhro AH, Gouri A, Mahfoud W, Louanjli N, Saadani B, Afqir S, Amrani M. Emerging diagnostic, prognostic and therapeutic biomarkers for ovarian cancer. CELLULAR ONCOLOGY (DORDRECHT) 2016. [PMID: 27981507 DOI: 10.1007/s13402-016-0309-1]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND In spite of various treatment options currently available, ovarian cancer (OC) still remains a leading cause of death in women world-wide. Diagnosis at an early stage is one of the most important factors that determines survival. Current clinical diagnostic tools have, however, a limited efficacy in early OC detection. Therefore, there is a critical need for new (early) diagnostic biomarkers and tools. Through advances in genomic, proteomic and metabolomic techniques, several novel molecular OC biomarkers have recently been identified. These biomarkers are currently subject to validation. In addition, integration of genomic, proteomic and metabolomic data, in conjunction with epidemiologic and clinical data, is considered essential for obtaining useful results. Interesting recent work has already shown that specific diagnostic biomarkers, such as BRCA mutations, may have profound therapeutic implications. Here, we review the current state of OC research through literature and database searches, with a focus on various recently identified biomarkers via different technologies for the (early) diagnosis, prognosis and treatment of OC. CONCLUSIONS Multi-biomarker panels accompanied by a meticulous determination of their sensitivity and specificity, as well their validation, using multivariate analyses will be critical for its clinical application, including early OC detection and tailor-made OC treatment.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and Pharmacy, Oujda, Morocco. .,Independent Research Team in Cancer Biology and Bioactive Compounds, Mohammed 1st University, Oujda, Morocco.
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Wafaa Mahfoud
- Laboratory of Biology and Health, URAC-34, Faculty of Science Ben Msik, University Hassan II, Mohammedia, Casablanca, Morocco
| | | | - Brahim Saadani
- IVF center IRIFIV, Clinique des Iris, Casablanca, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohamed 1st University Hospital, Oujda, Morocco
| | - Mariam Amrani
- Equipe de Recherche ONCOGYMA, Faculty of Medicine, Pathology Department, National Institute of Oncology, Université Mohamed V, Rabat, Morocco
| |
Collapse
|
40
|
Trachana SP, Pilalis E, Gavalas NG, Tzannis K, Papadodima O, Liontos M, Rodolakis A, Vlachos G, Thomakos N, Haidopoulos D, Lykka M, Koutsoukos K, Kostouros E, Terpos E, Chatziioannou A, Dimopoulos MA, Bamias A. The Development of an Angiogenic Protein "Signature" in Ovarian Cancer Ascites as a Tool for Biologic and Prognostic Profiling. PLoS One 2016; 11:e0156403. [PMID: 27258020 PMCID: PMC4892506 DOI: 10.1371/journal.pone.0156403] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/13/2016] [Indexed: 01/07/2023] Open
Abstract
Advanced ovarian cancer (AOC) is one of the leading lethal gynecological cancers in developed countries. Based on the important role of angiogenesis in ovarian cancer oncogenesis and expansion, we hypothesized that the development of an "angiogenic signature" might be helpful in prediction of prognosis and efficacy of anti-angiogenic therapies in this disease. Sixty-nine samples of ascitic fluid- 35 from platinum sensitive and 34 from platinum resistant patients managed with cytoreductive surgery and 1st-line carboplatin-based chemotherapy- were analyzed using the Proteome ProfilerTM Human Angiogenesis Array Kit, screening for the presence of 55 soluble angiogenesis-related factors. A protein profile based on the expression of a subset of 25 factors could accurately separate resistant from sensitive patients with a success rate of approximately 90%. The protein profile corresponding to the "sensitive" subset was associated with significantly longer PFS (8 [95% Confidence Interval {CI}: 8-9] vs. 20 months [95% CI: 15-28]; Hazard ratio {HR}: 8.3, p<0.001) and OS (20.5 months [95% CI: 13.5-30] vs. 74 months [95% CI: 36-not reached]; HR: 5.6 [95% CI: 2.8-11.2]; p<0.001). This prognostic performance was superior to that of stage, histology and residual disease after cytoreductive surgery and the levels of vascular endothelial growth factor (VEGF) in ascites. In conclusion, we developed an "angiogenic signature" for patients with AOC, which can be used, after appropriate validation, as a prognostic marker and a tool for selection for anti-angiogenic therapies.
Collapse
Affiliation(s)
- Sofia-Paraskevi Trachana
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
- * E-mail:
| | - Eleftherios Pilalis
- Metabolic Engineering and Bioinformatics Program Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Nikos G. Gavalas
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Kimon Tzannis
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Olga Papadodima
- Metabolic Engineering and Bioinformatics Program Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Michalis Liontos
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Alexandros Rodolakis
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Georgios Vlachos
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Nikolaos Thomakos
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Dimitrios Haidopoulos
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Maria Lykka
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Konstantinos Koutsoukos
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Efthimios Kostouros
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Evagelos Terpos
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Aristotelis Chatziioannou
- Metabolic Engineering and Bioinformatics Program Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Aristotelis Bamias
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| |
Collapse
|
41
|
Castro CM, Im H, Le C, Lee H, Weissleder R, Birrer MJ. Exploring alternative ovarian cancer biomarkers using innovative nanotechnology strategies. Cancer Metastasis Rev 2016; 34:75-82. [PMID: 25543192 DOI: 10.1007/s10555-014-9546-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our increased understanding of ovarian cancer's blueprints (mediated by DNA and RNA) and behavior (mediated by proteins) points to wide differences across patients that cannot be depicted by histology alone. Conventional diagnosis usually entails an adequate tissue biopsy, which limits serial testing. There is thus a motivation to shift towards easier to obtain clinical samples (e.g., ascites or blood). In response, investigators are increasingly leveraging alternative circulating biomarkers in blood or proximal fluids and harnessing novel profiling platforms to help explore treatment-related effects on such biomarkers in serial fashion. In this review, we discuss how new nanotechnologies we developed intersect with alternative ovarian cancer biomarkers for improved understanding of metastases and therapeutic response.
Collapse
Affiliation(s)
- Cesar M Castro
- Massachusetts General Hospital Cancer Center, 55 Fruit St, Yawkey 9E, Boston, MA, 02114, USA,
| | | | | | | | | | | |
Collapse
|
42
|
Seeber A, Martowicz A, Spizzo G, Buratti T, Obrist P, Fong D, Gastl G, Untergasser G. Soluble EpCAM levels in ascites correlate with positive cytology and neutralize catumaxomab activity in vitro. BMC Cancer 2015; 15:372. [PMID: 25947366 PMCID: PMC4427982 DOI: 10.1186/s12885-015-1371-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 04/27/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND EpCAM is highly expressed on membrane of epithelial tumor cells and has been detected as soluble/secreted (sEpCAM) in serum of cancer patients. In this study we established an ELISA for in vitro diagnostics to measure sEpCAM concentrations in ascites. Moreover, we evaluated the influence of sEpCAM levels on catumaxomab (antibody)--dependent cellular cytotoxicity (ADCC). METHODS Ascites specimens from cancer patients with positive (C+, n = 49) and negative (C-, n = 22) cytology and ascites of patients with liver cirrhosis (LC, n = 31) were collected. All cell-free plasma samples were analyzed for sEpCAM levels with a sandwich ELISA system established and validated by a human recombinant EpCAM standard for measurements in ascites as biological matrix. In addition, we evaluated effects of different sEpCAM concentrations on catumaxomab-dependent cell-mediated cytotoxicity (ADCC) with human peripheral blood mononuclear cells (PBMNCs) and human tumor cells. RESULTS Our ELISA showed a high specificity for secreted EpCAM as determined by control HEK293FT cell lines stably expressing intracellular (EpICD), extracellular (EpEX) and the full-length protein (EpCAM) as fusion proteins. The lower limit of quantification was 200 pg/mL and the linear quantification range up to 5,000 pg/mL in ascites as biological matrix. Significant levels of sEpCAM were found in 39% of C+, 14% of C- and 13% of LC ascites samples. Higher concentrations of sEpCAM were detectable in C+ (mean: 1,015 pg/mL) than in C- (mean: 449 pg/mL; p = 0.04) or LC (mean: 326 pg/mL; p = 0.01). Soluble EpCAM concentration of 1 ng/mL significantly inhibited ADCC of PBMNCs on EpCAM overexpressing target cells. CONCLUSION Elevated concentrations of sEpCAM can be found in a subgroup of C+ and also in a small group of C- patients. We consider that sEpCAM levels in different tumor entities and individual patients should be evaluated prior to applying anti-EpCAM antibody-based cancer therapies, since sEpCAM neutralizes catumaxomab activity, making therapy less efficient.
Collapse
Affiliation(s)
- Andreas Seeber
- Experimental Oncogenomics, Tyrolean Cancer Research Institute, Innsbruck, Austria. .,Oncotyrol - Center for Personalized Cancer Medicine, Innsbruck, Austria. .,Department of Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Agnieszka Martowicz
- Experimental Oncogenomics, Tyrolean Cancer Research Institute, Innsbruck, Austria. .,Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Gilbert Spizzo
- Experimental Oncogenomics, Tyrolean Cancer Research Institute, Innsbruck, Austria. .,Oncotyrol - Center for Personalized Cancer Medicine, Innsbruck, Austria. .,Hemato-Oncological Day Hospital, Hospital of Merano, Merano, Italy.
| | - Thomas Buratti
- Department of Internal Medicine, Hospital of Merano, Merano, Italy.
| | - Peter Obrist
- Pathology Laboratory, Hospital of Zams, Zams, Austria.
| | - Dominic Fong
- Experimental Oncogenomics, Tyrolean Cancer Research Institute, Innsbruck, Austria. .,Hemato-Oncological Day Hospital, Hospital of Merano, Merano, Italy.
| | - Guenther Gastl
- Department of Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Gerold Untergasser
- Experimental Oncogenomics, Tyrolean Cancer Research Institute, Innsbruck, Austria. .,Oncotyrol - Center for Personalized Cancer Medicine, Innsbruck, Austria. .,Department of Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
43
|
Turetsky A, Lee K, Song J, Giedt RJ, Kim E, Kovach AE, Hochberg EP, Castro CM, Lee H, Weissleder R. On chip analysis of CNS lymphoma in cerebrospinal fluid. Am J Cancer Res 2015; 5:796-804. [PMID: 26000053 PMCID: PMC4440438 DOI: 10.7150/thno.11220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/02/2015] [Indexed: 12/11/2022] Open
Abstract
Molecular profiling of central nervous system lymphomas in cerebrospinal fluid (CSF) samples can be challenging due to the paucicellular and limited nature of the samples. Presented herein is a microfluidic platform for complete CSF lymphoid cell analysis, including single cell capture in sub-nanoliter traps, and molecular and chemotherapeutic response profiling via on-chip imaging, all in less than one hour. The system can detect scant lymphoma cells and quantitate their kappa/lambda immunoglobulin light chain restriction patterns. The approach can be further customized for measurement of additional biomarkers, such as those for differential diagnosis of lymphoma subtypes or for prognosis, as well as for imaging exposure to experimental drugs.
Collapse
|
44
|
Kagawa S, Shigeyasu K, Ishida M, Watanabe M, Tazawa H, Nagasaka T, Shirakawa Y, Fujiwara T. Molecular diagnosis and therapy for occult peritoneal metastasis in gastric cancer patients. World J Gastroenterol 2014; 20:17796-17803. [PMID: 25548478 PMCID: PMC4273130 DOI: 10.3748/wjg.v20.i47.17796] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/07/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
To apply an individualized oncological approach to gastric cancer patients, the accurate diagnosis of disease entities is required. Peritoneal metastasis is the most frequent mode of metastasis in gastric cancer, and the tumor-node-metastasis classification includes cytological detection of intraperitoneal cancer cells as part of the staging process, denoting metastatic disease. The accuracy of cytological diagnosis leaves room for improvement; therefore, highly sensitive molecular diagnostics, such as an enzyme immunoassay, reverse transcription polymerase chain reaction, and virus-guided imaging, have been developed to detect minute cancer cells in the peritoneal cavity. Molecular targeting therapy has also been spun off from basic research in the past decade. Although conventional cytology is still the mainstay, novel approaches could serve as practical complementary diagnostics to cytology in near future.
Collapse
|
45
|
Meimetis LG, Carlson JCT, Giedt RJ, Kohler RH, Weissleder R. Ultrafluorogenic coumarin-tetrazine probes for real-time biological imaging. Angew Chem Int Ed Engl 2014; 53:7531-4. [PMID: 24915832 DOI: 10.1002/anie.201403890] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Indexed: 01/08/2023]
Abstract
We have developed a series of new ultrafluorogenic probes in the blue-green region of the visible-light spectrum that display fluorescence enhancement exceeding 11,000-fold. These fluorogenic dyes integrate a coumarin fluorochrome with the bioorthogonal trans-cyclooctene(TCO)-tetrazine chemistry platform. By exploiting highly efficient through-bond energy transfer (TBET), these probes exhibit the highest brightness enhancements reported for any bioorthogonal fluorogenic dyes. No-wash, fluorogenic imaging of diverse targets including cell-surface receptors in cancer cells, mitochondria, and the actin cytoskeleton is possible within seconds, with minimal background signal and no appreciable nonspecific binding, opening the possibility for in vivo sensing.
Collapse
Affiliation(s)
- Labros G Meimetis
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 (USA)
| | | | | | | | | |
Collapse
|
46
|
Meimetis LG, Carlson JCT, Giedt RJ, Kohler RH, Weissleder R. Ultrafluorogenic Coumarin-Tetrazine Probes for Real-Time Biological Imaging. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403890] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Garibay-Cerdenares OL, Hernández-Ramírez VI, Osorio-Trujillo JC, Hernández-Ortíz M, Gallardo-Rincón D, Cantú de León D, Encarnación-Guevara S, Villegas-Pineda JC, Talamás-Rohana P. Proteomic identification of fucosylated haptoglobin alpha isoforms in ascitic fluids and its localization in ovarian carcinoma tissues from Mexican patients. J Ovarian Res 2014; 7:27. [PMID: 24576319 PMCID: PMC3943579 DOI: 10.1186/1757-2215-7-27] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/19/2014] [Indexed: 12/18/2022] Open
Abstract
Background Ovarian cancer is the most lethal gynecologic disease due to delayed diagnosis, and ascites production is a characteristic of patients in advanced stages. The aim of this study was to perform the proteomic analysis of ascitic fluids of Mexican patients with ovarian carcinoma, in order to detect proteins with a differential expression pattern in the continuing search to identify biomarkers for this disease. Methods Samples were collected from 50 patients from the Instituto Nacional de Cancerología of México under informed consent and with approval of the bioethics and scientific committees. After elimination of abundant proteins (Albumin/IgGs) samples were processed for 2D electrophoresis and further protein identification by Mass Spectrometry (MALDI-TOF). Molecules of interest were followed by western blot and lectin binding assays, and their tissue location by histo-immunofluorescence and confocal analysis. Results and discussion An area with a differential expression pattern among samples was located in the 2D gels. Identified proteins were 6 alpha 1 isoforms and 1 alpha 2 isoform of Haptoglobin, and 2 isoforms of Transthyretin. While Transthyretin isoforms were constitutively expressed in all samples, clear differences in the expression pattern of Haptoglobin alpha isoforms were found. Moreover, increased levels of fucosylation of Haptoglobin alpha isoforms analyzed in 40 samples by Aleuria aurantia lectin binding by 1D overlay assay showed a positive correlation with advanced stages of the disease. Tissue detection of Haptoglobin and its fucosylated form, by histo-immunofluorescence in biopsies of ovarian cancer, also showed a correlation with ovarian cancer progression. Moreover, results show that fucosylated Haptoglobin is produced by tumor cells. Conclusions Increased numbers of highly fucosylated Haptoglobin alpha isoforms in ascitic fluids and the presence of fucosylated Haptoglobin in tumor tissues of ovarian cancer Mexican patients associated with advanced stages of the disease, reinforce the potential of fucosylated Haptoglobin alpha isoforms to be characterized as biomarkers for disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Patricia Talamás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av, Instituto Politécnico Nacional 2508, Col, San Pedro Zacatenco, Delegación Gustavo A, Madero, México, D,F, 07360, México.
| |
Collapse
|