1
|
Li K, Zheng Y, Cai S, Fan Z, Yang J, Liu Y, Liang S, Song M, Du S, Qi L. The subventricular zone structure, function and implications for neurological disease. Genes Dis 2025; 12:101398. [PMID: 39935607 PMCID: PMC11810716 DOI: 10.1016/j.gendis.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/28/2024] [Accepted: 07/28/2024] [Indexed: 02/13/2025] Open
Abstract
The subventricular zone (SVZ) is a region surrounding the lateral ventricles that contains neural stem cells and neural progenitor cells, which can proliferate and differentiate into various neural and glial cells. SVZ cells play important roles in neurological diseases like neurodegeneration, neural injury, and glioblastoma multiforme. Investigating the anatomy, structure, composition, physiology, disease associations, and related mechanisms of SVZ is significant for neural stem cell therapy and treatment/prevention of neurological disorders. However, challenges remain regarding the mechanisms regulating SVZ cell proliferation, differentiation, and migration, delivering cells to damaged areas, and immune responses. In-depth studies of SVZ functions and related therapeutic developments may provide new insights and approaches for treating brain injuries and degenerative diseases, as well as a scientific basis for neural stem cell therapy. This review summarizes research findings on SVZ and neurological diseases to provide references for relevant therapies.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Yin Zheng
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Shubing Cai
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Zhiming Fan
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Junyi Yang
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Yuanrun Liu
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Shengqi Liang
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Meihui Song
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Siyuan Du
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Ling Qi
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| |
Collapse
|
2
|
Al Ghafari M, El Jaafari N, Mouallem M, Maassarani T, El-Sibai M, Abi-Habib R. Key genes altered in glioblastoma based on bioinformatics (Review). Oncol Lett 2025; 29:243. [PMID: 40182607 PMCID: PMC11966088 DOI: 10.3892/ol.2025.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/03/2025] [Indexed: 04/05/2025] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with poor prognosis. Recent advancements in bioinformatics have contributed to uncovering the genetic alterations that underlie the development and progression of GBM. Analysis of extensive genomic data led to the identification of significant pathways involved in GBM, such as the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways, alongside key genes such as EGFR, TP53 and TERT. These findings have enhanced our understanding of GBM biology and led to the identification of new therapeutic targets. Bioinformatics has become an indispensable tool in pinpointing the genetic modifications that drive GBM, paving the way for innovative treatment strategies. This approach not only aids in comprehending the complexities of GBM but also holds promise for improving outcomes in patients suffering from this devastating disease. The ongoing integration of bioinformatics in GBM research continues to be vital for advancing therapeutic options.
Collapse
Affiliation(s)
- Marcelino Al Ghafari
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Nour El Jaafari
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mariam Mouallem
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Tala Maassarani
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El-Sibai
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Ralph Abi-Habib
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| |
Collapse
|
3
|
Rana M, Liou KC, Thakur A, Nepali K, Liou JP. Advancing glioblastoma therapy: Learning from the past and innovations for the future. Cancer Lett 2025; 617:217601. [PMID: 40037502 DOI: 10.1016/j.canlet.2025.217601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Marred by a median survival of only around 12-15 months coupled with poor prognosis and effective therapeutic deprived drug armory, treatment/management of glioblastoma has proved to be a daunting task. Surgical resection, flanked by radiotherapy and chemotherapy with temozolomide, stands as the standard of care; however, this trimodal therapy often manifests limited efficacy due to the heterogeneous and highly infiltrative nature of GBM cells. In addition, the existence of the blood-brain barrier, tumor microenvironment, and the immunosuppressive nature of GBM, along with the encountered resistance of GBM cells towards conventional therapy, also hinders the therapeutic applications of chemotherapeutics in GBM. This review presents key insights into the molecular pathology of GBM, including genetic mutations, signaling pathways, and tumor microenvironment characteristics. Recent innovations such as immunotherapy, oncolytic viral therapies, vaccines, nanotechnology, electric field, and cancer neuroscience, as well as their clinical progress, have been covered. In addition, this compilation also encompasses a discussion on the role of personalized medicine in tailoring treatments based on individual tumor profiles, an approach that is gradually shifting the paradigm in GBM management. Endowed with the learnings imbibed from past failures coupled with the zeal to embrace novel/multidisciplinary approaches, researchers appear to be on the right track to pinpoint more effective and durable solutions in the context of GBM treatment.
Collapse
Affiliation(s)
- Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
4
|
Zhang B, Zhou Q, Xue C, Zhang P, Ke X, Wang Y, Zhang Y, Deng L, Jing M, Han T, Zhou F, Dong W, Zhou J. Predicting telomerase reverse transcriptase promoter mutation status in glioblastoma by whole-tumor multi-sequence magnetic resonance texture analysis. Magn Reson Imaging 2025; 118:110360. [PMID: 39983804 DOI: 10.1016/j.mri.2025.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
OBJECTIVE This study aimed to determine the feasibility of preoperative multi-sequence magnetic resonance texture analysis (MRTA) for predicting TERT promoter mutation status in IDH-wildtype glioblastoma (IDHwt GB). METHODS The clinical and imaging data of 111 patients with IDHwt GB at our hospital between November 2018 and June 2023 were retrospectively analyzed as the training set, and those of 23 patients with IDHwt GB between July 2023 and November 2023 were interpreted as the validation set. We used molecular sequencing results to classify the training set into TERT promoter mutation and wildtype groups. Textural features of the whole-tumor volume were extracted, including T2-weighted imaging (T2WI), T2-fluid-attenuated inversion recovery, apparent diffusion coefficient (ADC) map, and contrast-enhanced T1-weighted imaging (CE-T1). All textural features were obtained using open-source pyradiomics. After feature selection, logistic regression was used to build prediction models, and a nomogram was generated. Finally, the model was validated using validation cohort. RESULTS The CE-T1_Model (AUC 0.704) had a better predictive ability than the T2_Model (AUC 0.684) and ADC_Model (AUC 0.624). The MRI_Combined_Model (CE-T1, T2, and ADC texture features) (AUC 0.780) had a better predictive ability than the Clinical_Model (AUC 0.758). The Combined_Model (CE-T1, T2, ADC texture features, and clinical features) had the best predictive performance (AUC 0.871), with a sensitivity, specificity, and accuracy of 82.60 %, 83.30 %, and 80.18 %, respectively. The AUC, sensitivity, specificity, and accuracy in the validation cohort were 0.775, 86.70 %, 75.00 %, and 69.57 %, respectively. CONCLUSIONS Whole-tumor multi-sequence MRTA can be used as non-invasive quantitative parameters to assist in the preoperative clinical prediction of TERT promoter mutation status in IDHwt GB.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Peng Zhang
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Yige Wang
- Medical Department, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yuting Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Liangna Deng
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Mengyuan Jing
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Tao Han
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Fengyu Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Wenjie Dong
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China.
| |
Collapse
|
5
|
Andreikos D, Spandidos DA, Georgakopoulou VE. Telomeres and telomerase in mesothelioma: Pathophysiology, biomarkers and emerging therapeutic strategies (Review). Int J Oncol 2025; 66:23. [PMID: 39981889 PMCID: PMC11844339 DOI: 10.3892/ijo.2025.5729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Malignant mesothelioma (MM) is a rare but aggressive cancer linked to asbestos exposure and characterized by advanced‑stage disease at presentation. Despite advances in treatment, prognosis remains abysmal, highlighting the imperative for the development of novel biomarkers and treatment approaches. Telomere biology plays a pivotal role in the tumorigenic process and has emerged as a key area in oncology research. Short telomeres have been associated with genomic instability, and substantially shorter telomere length (TL) has been identified in MM, showcasing the potential of TL in risk assessment, early detection, and disease progression monitoring. MM predominantly maintains TL through telomerase activity (TA), which in research has been identified in >90% of MM cases, underscoring the potential of TA as a biomarker in MM. Telomerase reverse transcriptase (TERT) polymorphisms may serve as valuable biomarkers, with research identifying associations between single nucleotide polymorphisms (SNPs) and the risk and prognosis of MM. Additionally, TERT promoter mutations have been associated with poor prognosis and advanced‑stage disease, with the non‑canonical functions of TERT hypothesized to contribute to the development of MM. TERT promoter mutations occur in ~12% of MM cases; C228T, C250T and A161C are the most common, while the distribution and frequency differ depending on histological subtype. Research reveals the promise of the various approaches therapeutically targeting telomerase, with favorable results in pre‑clinical models and inconclusive findings in clinical trials. The present review examines the role of telomere biology in MM and its implications in diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Dimitrios Andreikos
- School of Medicine, Democritus University of Thrace, 68110 Alexandroupolis, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
6
|
Kumaresan T, Rodriguez D, Preece J, Kmeid M, Foulke L, Gildener-Leapman N. Oral Tongue Spontaneous Tumor Regression after Biopsy: A Case Report and Genomic Profile. EAR, NOSE & THROAT JOURNAL 2025; 104:151-154. [PMID: 35536761 DOI: 10.1177/01455613221100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spontaneous regression of a neoplasm is a rare oncologic phenomenon. Certain neoplasms, such as melanomas and neuroblastomas, display this phenomenon. To date, spontaneous regression of oral cavity squamous cell carcinomas has been documented in only a handful of case reports. We present a novel case of spontaneous regression of an oral tongue squamous cell carcinoma following biopsy. We discuss the tumor's unique genetic profile, immune response to cancer, and review the literature on possible mechanisms of spontaneous regression. Small-volume persistent cancer in our patient reinforces that tissue confirmation remains crucial to avoid missing remaining tumor. Further investigation is required to understand mechanisms of spontaneous regression and how these may be exploited to improve head and neck squamous cell carcinoma treatment.
Collapse
Affiliation(s)
| | | | | | - Michel Kmeid
- Department of Pathology, Albany Medical Center, Albany, NY, USA
| | | | - Neil Gildener-Leapman
- Department of Otolaryngology and Head-Neck Surgery, Albany Medical Center, Albany, NY, USA
| |
Collapse
|
7
|
Jin Y, Zhang B, Li J, Guo Z, Zhang C, Chen X, Ma L, Wang Z, Yang H, Li Y, Weng Y, Huang Y, Yan X, Fan K. Bioengineered protein nanocarrier facilitating siRNA escape from lysosomes for targeted RNAi therapy in glioblastoma. SCIENCE ADVANCES 2025; 11:eadr9266. [PMID: 39970222 PMCID: PMC11838010 DOI: 10.1126/sciadv.adr9266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
RNA interference (RNAi) represents a promising gene-specific therapy against tumors. However, its clinical translation is impeded by poor performance of lysosomal escape and tumor targeting. This challenge is especially prominent in glioblastoma (GBM) therapy, necessitating the penetration of the blood-brain barrier (BBB). Leveraging the intrinsic tumor-targeting and BBB traversing capability of human H-ferritin, we designed a series of ferritin variants with positively charged cavity and truncated carboxyl terminus, termed tHFn(+). These nanocarriers respond to weak acid and disassemble in endosomal compartments, exposing the internal positive charges to facilitate the lysosomal escape of loaded small interfering RNA (siRNA). Functioning as universal siRNA nanocarriers, tHFn(+) significantly enhanced the uptake of different siRNAs and suppressed gene expressions associated with GBM progression. Furthermore, tHFn(+) traversed the BBB and targeted glioma in vivo by binding to its receptors (e.g., transferrin receptor 1). tHFn(+)-delivered siRNAs exhibited exceptional therapeutic effects against glioma in vivo, advancing RNAi therapeutics beyond GBM for the treatment of various diseases.
Collapse
Affiliation(s)
- Yiliang Jin
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoli Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianru Li
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenxi Guo
- Cryo-EM platform, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Chen Zhang
- Cryo-EM platform, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Xuehui Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Long Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuoran Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyin Yang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; School of Medical Technology; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Yong Li
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; School of Medical Technology; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhua Weng
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; School of Medical Technology; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; School of Medical Technology; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
| |
Collapse
|
8
|
Florez-Vargas O, Ho M, Hogshead MH, Papenberg BW, Lee CH, Forsythe K, Jones K, Luo W, Teshome K, Blauwendraat C, Billingsley KJ, Kolmogorov M, Meredith M, Paten B, Chari R, Zhang C, Schneekloth JS, Machiela MJ, Chanock SJ, Gadalla SM, Savage SA, Mbulaiteye SM, Prokunina-Olsson L. Genetic regulation of TERT splicing affects cancer risk by altering cellular longevity and replicative potential. Nat Commun 2025; 16:1676. [PMID: 39956830 PMCID: PMC11830802 DOI: 10.1038/s41467-025-56947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
The chromosome 5p15.33 region, which encodes telomerase reverse transcriptase (TERT), harbors multiple germline variants identified by genome-wide association studies (GWAS) as risk for some cancers but protective for others. Here, we characterize a variable number tandem repeat within TERT intron 6, VNTR6-1 (38-bp repeat unit), and detect a strong link between VNTR6-1 alleles (Short: 24-27 repeats, Long: 40.5-66.5 repeats) and GWAS signals rs2242652 and rs10069690 within TERT intron 4. Bioinformatics analyses reveal that rs10069690-T allele increases intron 4 retention while VNTR6-1-Long allele expands a polymorphic G-quadruplex (G4, 35-113 copies) within intron 6, with both variants contributing to variable TERT expression through alternative splicing and nonsense-mediated decay. In two cell lines, CRISPR/Cas9 deletion of VNTR6-1 increases the ratio of TERT-full-length (FL) to the alternative TERT-β isoform, promoting apoptosis and reducing cell proliferation. In contrast, treatment with G4-stabilizing ligands shifts splicing from TERT-FL to TERT-β isoform, implicating VNTR6-1 as a splicing switch. We associate the functional variants VNTR6-1, rs10069690, and their haplotypes with multi-cancer risk and age-related telomere shortening. By regulating TERT splicing, these variants may contribute to fine-tuning cellular longevity and replicative potential in the context of stress due to tissue-specific endogenous and exogenous exposures, thereby influencing the cancer risk conferred by this locus.
Collapse
Affiliation(s)
- Oscar Florez-Vargas
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Michelle Ho
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Maxwell H Hogshead
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Brenen W Papenberg
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Chia-Han Lee
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Kaitlin Forsythe
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kedest Teshome
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute of Aging and National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Kimberly J Billingsley
- Center for Alzheimer's and Related Dementias, National Institute of Aging and National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mikhail Kolmogorov
- Cancer Data Science Laboratory, CCR, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chi Zhang
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, CCR, National Cancer Institute, Frederick, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Stephen J Chanock
- Laboratory of Genetic Susceptibility, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Sam M Mbulaiteye
- Infections and Immunoepidemiology Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | | |
Collapse
|
9
|
Abi-Raad R, Shi Q, Chen F, Antony V, Hsiao WY, Simsir A, Liu X, Brandler TC, Cai G. TERT promoter mutations and additional molecular alterations in thyroid fine-needle aspiration specimens: A multi-institutional study with histopathologic follow-up. Am J Clin Pathol 2025; 163:251-257. [PMID: 39250709 DOI: 10.1093/ajcp/aqae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVES TERT promoter mutations are not infrequently encountered in thyroid carcinomas; however, it is unclear if additional molecular alterations may play a role in determining tumor behavior. METHODS Fine-needle aspiration (FNA) specimens from 32 patients with TERT promoter mutations detected by ThyroSeq v3 from 4 institutions were included in the study. FNA diagnoses, molecular results, and surgical follow-up were retrospectively reviewed and analyzed. RESULTS There were 5 benign and 27 malignant neoplasms, including 7 high-grade thyroid carcinomas (HGCs) on histopathologic follow-up. Of 4 cases with an isolated TERT mutation, 3 (75%) cases were malignant. Of 17 cases harboring a co-occurring TERT mutation with 1 additional molecular alteration, 13 (76%) displayed malignancy on histopathologic follow-up. All 11 cases with TERT mutations plus 2 or more additional molecular alterations were malignant on follow-up. Furthermore, HGC was not seen in cases with an isolated TERT mutation, while 80% of cases harboring TERT mutations plus 3 additional molecular alterations showed HGC. CONCLUSIONS TERT promoter mutations are commonly associated with malignancy, particularly HGCs, when multiple co-occurring molecular alterations are present. However, TERT promoter mutations may occasionally be detected in benign thyroid neoplasms when encountered in isolation or with fewer than 2 additional molecular alterations.
Collapse
Affiliation(s)
- Rita Abi-Raad
- Department of Pathology, Yale University School of Medicine, New Haven, CT, US
| | - Qiuying Shi
- Department of Pathology, Emory University Hospital, Atlanta, GA, US
| | - Fei Chen
- Department of Pathology, New York University Langone Health, New York, NY, US
| | - Vijay Antony
- Department of Pathology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, US
| | - Wen-Yu Hsiao
- Department of Pathology, Emory University Hospital, Atlanta, GA, US
| | - Aylin Simsir
- Department of Pathology, New York University Langone Health, New York, NY, US
| | - Xiaoying Liu
- Department of Pathology and Laboratory Medicine, Dartmouth Health and Geisel School of Medicine at Dartmouth, Lebanon, NH, US
| | - Tamar C Brandler
- Department of Pathology, New York University Langone Health, New York, NY, US
| | - Guoping Cai
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, US
| |
Collapse
|
10
|
Regner MJ, Garcia-Recio S, Thennavan A, Wisniewska K, Mendez-Giraldez R, Felsheim B, Spanheimer PM, Parker JS, Perou CM, Franco HL. Defining the regulatory logic of breast cancer using single-cell epigenetic and transcriptome profiling. CELL GENOMICS 2025; 5:100765. [PMID: 39914387 PMCID: PMC11872555 DOI: 10.1016/j.xgen.2025.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/04/2024] [Accepted: 01/08/2025] [Indexed: 02/12/2025]
Abstract
Annotation of cis-regulatory elements that drive transcriptional dysregulation in cancer cells is critical to understanding tumor biology. Herein, we present matched chromatin accessibility (single-cell assay for transposase-accessible chromatin by sequencing [scATAC-seq]) and transcriptome (single-cell RNA sequencing [scRNA-seq]) profiles at single-cell resolution from human breast tumors and healthy mammary tissues processed immediately following surgical resection. We identify the most likely cell of origin for subtype-specific breast tumors and implement linear mixed-effects modeling to quantify associations between regulatory elements and gene expression in malignant versus normal cells. These data unveil cancer-specific regulatory elements and putative silencer-to-enhancer switching events in cells that lead to the upregulation of clinically relevant oncogenes. In addition, we generate matched scATAC-seq and scRNA-seq profiles for breast cancer cell lines, revealing a conserved oncogenic gene expression program between in vitro and in vivo cells. This work highlights the importance of non-coding regulatory mechanisms that underlie oncogenic processes and the ability of single-cell multi-omics to define the regulatory logic of cancer cells.
Collapse
Affiliation(s)
- Matthew J Regner
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Susana Garcia-Recio
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Aatish Thennavan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kamila Wisniewska
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raul Mendez-Giraldez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brooke Felsheim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Philip M Spanheimer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hector L Franco
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA.
| |
Collapse
|
11
|
Schmid A, Lausch U, Runkel A, Kiefer J, Pauli T, Boerries M, Bogner B, Eisenhardt SU, Braig D. Improved Quantification of Circulating Tumor DNA in Translocation-Associated Myxoid Liposarcoma by Simultaneous Detection of Breakpoints and Single Nucleotide Variants. Cancer Med 2025; 14:e70704. [PMID: 39980272 PMCID: PMC11842865 DOI: 10.1002/cam4.70704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/19/2024] [Accepted: 02/08/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Myxoid liposarcomas (MLS) can exhibit a disseminated metastatic pattern, necessitating extensive diagnostics during follow-up. With no tumor markers available, early diagnosis of recurrences and tumor monitoring is difficult. The detection of circulating tumor DNA (ctDNA; liquid biopsy) in MLS with the characteristic translocations t(12;16) and t(12;22) can provide an additional diagnostic. However, due to the often very low tumor fraction, distinguishing actual tumor variants from sequencing artifacts remains a key challenge. METHODS Using MLS as a model for translocation-driven tumors, this study evaluates a refined analytical approach for detecting both single nucleotide variants (SNVs) and structural variants (SVs) with the highest possible sensitivity and specificity. Different analysis pipelines using Unique Molecular Identifiers (UMIs) were compared in dilution series of tumor DNA from MLS patients (n = 11) and a cell line. The results were validated on plasma samples (n = 36) from two MLS patients and one patient with Synovial Sarcoma (SS). RESULTS In dilution series, the use of UMIs significantly reduced false positive events in SNV analysis while maintaining high sensitivity without significant differences. In SV analysis, the effect of UMIs was not consistently detectable, as some dilution series exhibited no false positive events even without UMI correction. Additional filter criteria further improved specificity without significantly compromising assay sensitivity. Validation on patient plasma samples confirmed these findings, demonstrating the advantages of the differentiated analytical approach. CONCLUSION By integrating a refined analytical approach for SNVs and SVs, we achieved reliable ctDNA detection that corresponded with the clinical course of the patients' disease. This method enables non-invasive tumor detection in translocation-driven tumors with low mutational burden and can easily be adapted into routine clinical diagnostics.
Collapse
Affiliation(s)
- A. Schmid
- Department of Plastic and Hand SurgeryMedical Center ‐ University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - U. Lausch
- Department of Plastic and Hand SurgeryMedical Center ‐ University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - A. Runkel
- Department of Plastic and Hand SurgeryMedical Center ‐ University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - J. Kiefer
- Department of Plastic and Hand SurgeryMedical Center ‐ University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - T. Pauli
- Institute of Medical Bioinformatics and Systems MedicineMedical Center–University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - M. Boerries
- Institute of Medical Bioinformatics and Systems MedicineMedical Center–University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - B. Bogner
- Department of RadiologyMedical Center–University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - S. U. Eisenhardt
- Department of Plastic and Hand SurgeryMedical Center ‐ University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - D. Braig
- Department of Plastic and Hand SurgeryMedical Center ‐ University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| |
Collapse
|
12
|
Giunco S, Del Mistro A, Morello M, Lidonnici J, Frayle H, Gori S, De Rossi A, Boscolo-Rizzo P. From infection to immortality: The role of HPV and telomerase in head and neck cancer. Oral Oncol 2025; 161:107169. [PMID: 39755000 DOI: 10.1016/j.oraloncology.2024.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of malignancies with multifactorial aetiologies. High-risk human papillomavirus (hrHPV) infections, particularly HPV16, and the dysregulation of telomerase activity, specifically through its catalytic subunit, telomerase reverse transcriptase (TERT) are among the key contributors to HNSCC development and progression. HPV promotes oncogenesis via the E6 and E7 oncoproteins, which inactivate tumour suppressors TP53 and RB1, leading to unchecked cellular proliferation. Concurrently, telomerase activation plays a critical role in HNSCC by maintaining telomere length, thus enabling cellular immortality, and facilitating tumour development and progression. The interplay between HPV and telomerase is significant; HPV oncoprotein E6 enhances telomerase activity through multiple regulatory mechanisms, including upregulating TERT expression. Beyond telomere maintenance, TERT influences signalling pathways, cellular metabolism, and the tumour microenvironment, contributing to aggressive tumour behaviour and poor prognosis. This review integrates the roles of HPV and telomerase in HNSCC, focusing on their molecular mechanisms and interactions that drive carcinogenesis and influence disease progression. Understanding the synergistic effects of HPV and TERT in HNSCC may be crucial for risk stratification, prognostic assessment, and the development of novel therapeutic strategies targeting these specific molecular pathways.
Collapse
Affiliation(s)
- Silvia Giunco
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy; Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, 35128 Padova, Italy
| | - Annarosa Del Mistro
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, 35128 Padova, Italy
| | - Marzia Morello
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, 35128 Padova, Italy
| | - Jacopo Lidonnici
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy
| | - Helena Frayle
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, 35128 Padova, Italy
| | - Silvia Gori
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, 35128 Padova, Italy
| | - Anita De Rossi
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy.
| | - Paolo Boscolo-Rizzo
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
13
|
Murugan AK, Kannan S, Alzahrani AS. TERT promoter mutations in gliomas: Molecular roles in tumorigenesis, metastasis, diagnosis, prognosis, therapeutic targeting, and drug resistance. Biochim Biophys Acta Rev Cancer 2025; 1880:189243. [PMID: 39674418 DOI: 10.1016/j.bbcan.2024.189243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Telomerase reverse transcriptase (TERT), a critical player in cellular immortalization, has emerged as a focal point of investigation due to its frequent promoter mutations in various human malignancies. TERT promoter mutations exhibit a significant role in tumorigenesis, fostering unbridled cellular proliferation and survival. This comprehensive review delves into the landscape of TERT promoter mutations and their profound implications in cancer, particularly within the context of gliomas. This article meticulously examines the intricate interplay between TERT promoter mutations and the metastatic cascade, shedding light on their capacity to orchestrate invasive behavior in gliomas. Moreover, this review describes the recent trends in therapeutic targeting of the TERT and dissects the evolving landscape of drug resistance associated with TERT mutations, providing insights into potential therapeutic challenges. In addition, the diagnostic and prognostic implications of TERT promoter mutations in gliomas are scrutinized, unraveling their potential as robust biomarkers. It also discusses the recent advancements in molecular diagnostics, illustrating the promise of TERT mutations as diagnostic tools and prognostic indicators. This review collectively aims to contribute to a deeper understanding of TERT promoter mutations in gliomas, offering a foundation for future research endeavors and paving the way for innovative strategies in glioma management.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.
| | - Siddarth Kannan
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| | - Ali S Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
14
|
Khilar S, Dembinska-Kenner A, Hall H, Syrmos N, Ligarotti GKI, Plaha P, Apostolopoulos V, Chibbaro S, Barbagallo GMV, Ganau M. Towards a New Dawn for Neuro-Oncology: Nanomedicine at the Service of Drug Delivery for Primary and Secondary Brain Tumours. Brain Sci 2025; 15:136. [PMID: 40002469 PMCID: PMC11852924 DOI: 10.3390/brainsci15020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
(1) Background/Objectives: Primary and secondary brain tumours often hold devastating prognoses and low survival rates despite the application of maximal neurosurgical resection, and state-of-the-art radiotherapy and chemotherapy. One limiting factor in their management is that several antineoplastic agents are unable to cross the blood-brain barrier (BBB) to reach the tumour microenvironment. Nanomedicine could hold the potential to become an effective means of drug delivery to overcome previous hurdles towards effective neuro-oncological treatments. (2) Methods: A scoping review following the PRISMA-ScR guidelines and checklist was conducted using key terms input into PubMed to find articles that reflect emerging trends in the utilisation of nanomedicine in drug delivery for primary and secondary brain tumours. (3) Results: The review highlights various strategies by which different nanoparticles can be exploited to bypass the BBB; we provide a synthesis of the literature on the ongoing contributions to therapeutic protocols based on chemotherapy, immunotherapy, focused ultrasound, radiotherapy/radiosurgery, and radio-immunotherapy. (4) Conclusions: The emerging trends summarised in this scoping review indicate encouraging advantageous properties of nanoparticles as potential effective drug delivery mechanisms; however, there are still nanotoxicity issues that largely remain to be addressed before the translation of these innovations from laboratory to clinical practice.
Collapse
Affiliation(s)
- Smita Khilar
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
| | - Antonina Dembinska-Kenner
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
| | - Helen Hall
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
| | - Nikolaos Syrmos
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
| | - Vasileios Apostolopoulos
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
| | - Salvatore Chibbaro
- Neurosurgery Unit, Department of Medical and Surgical Sciences and Neurosciences, Siena University, 53100 Siena, Italy
| | | | - Mario Ganau
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
15
|
Shou S, Maolan A, Zhang D, Jiang X, Liu F, Li Y, Zhang X, Geer E, Pu Z, Hua B, Guo Q, Zhang X, Pang B. Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics. Exp Hematol Oncol 2025; 14:8. [PMID: 39871386 PMCID: PMC11771031 DOI: 10.1186/s40164-025-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging. Many candidate drugs remain in the experimental stage, with only a few advancing to clinical trials. This review explores the relationship between telomeres, telomerase, and cancer, synthesizing their roles as biomarkers and reviewing the outcomes of completed trials. We propose that changes in telomere length and telomerase activity can be used to stratify cancer stages. Furthermore, we suggest that differential expression of telomere and telomerase components at the subcellular level holds promise as a biomarker. From a therapeutic standpoint, combining telomerase-targeted therapies with drugs that mitigate the adverse effects of telomerase inhibition may offer a viable strategy.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ayidana Maolan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiujun Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
16
|
Gu W, Li H, Sun L, Shen Z, Wang Y, Hu X, Wu Y, Liu W, Wan CC, Cai Y, Yan T. The RNA-binding protein CMSS1 promotes the progression of non-small cell lung cancer by regulating the telomerase protein subunit hTERT. Life Sci 2025; 361:123321. [PMID: 39710061 DOI: 10.1016/j.lfs.2024.123321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
AIMS High telomerase activity has been detected in over 85 % of tumors, with the activation of hTERT being the most crucial mechanism for re-establishing telomerase activity. Activation of hTERT maintains telomere length in cells, enabling cancer cells to proliferate indefinitely. Nevertheless, the specific mechanism of telomerase activation in non-small cell lung cancer (NSCLC) remains unclear, and post-transcriptional regulation of hTERT could be a potential activation mechanism. MATERIALS AND METHODS We explored the regulatory impact of CMSS1 on hTERT expression in NSCLC cells using several methods: Yeast three-hybrid system, Reporter gene assay, Western blot, RNA decay assay, and Telomere length measurement. Our analysis revealed significant overexpression of CMSS1 in NSCLC, which correlated with poor prognosis, as determined by bioinformatics and tissue microarray techniques. RNA sequencing analysis showed that CMSS1 knockdown influenced the adhesion capabilities of NSCLC cells. Additionally, potential interacting proteins with CMSS1 were identified through mass spectrometry and co-immunoprecipitation experiments. KEY FINDINGS We discovered that CMSS1 regulates hTERT expression in NSCLC cells by binding to the 5' UTR of hTERT mRNA, impacting its mRNA stability and thereby influencing NSCLC progression. RNA-Seq results and adhesion experiments indicated that CMSS1 knockdown disrupts cell adhesion. hTERT also affects cell adhesion in NSCLC, underscoring CMSS1's role as an upstream regulator of hTERT. Mass spectrometry and Co-IP studies suggest potential interactions between CMSS1, RBM34, and DDX5 that further modulate hTERT expression. SIGNIFICANCE These findings indicate that CMSS1 plays a crucial role in NSCLC progression through its interaction with hTERT, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Wei Gu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China
| | - Hongshui Li
- The Second People Hospital of Dezhou, Dezhou 253022, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ziyi Shen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yuanhui Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xiaomeng Hu
- Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Yan Wu
- Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Tingdong Yan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
17
|
Gough R, Treffy RW, Krucoff MO, Desai R. Advances in Glioblastoma Diagnosis: Integrating Genetics, Noninvasive Sampling, and Advanced Imaging. Cancers (Basel) 2025; 17:124. [PMID: 39796751 PMCID: PMC11720166 DOI: 10.3390/cancers17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Glioblastoma is the most common primary brain tumor in adult patients, and despite standard-of-care treatment, median survival has remained less than two years. Advances in our understanding of molecular mutations have led to changes in the diagnostic criteria of glioblastoma, with the WHO classification integrating important mutations into the grading system in 2021. We sought to review the basics of the important genetic mutations associated with glioblastoma, including known mechanisms and roles in disease pathogenesis/treatment. We also examined new advances in image processing as well as less invasive and noninvasive diagnostic tools that can aid in the diagnosis and surveillance of those undergoing treatment for glioblastoma. Our review is intended to serve as an overview of the current state-of-the-art in the diagnosis and management of glioblastoma.
Collapse
Affiliation(s)
| | | | | | - Rupen Desai
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.G.); (R.W.T.); (M.O.K.)
| |
Collapse
|
18
|
Savitskaya VY, Novoselov KA, Dolinnaya NG, Monakhova MV, Snyga VG, Diatlova EA, Peskovatskova ES, Golyshev VM, Kitaeva MI, Eroshenko DA, Zvereva MI, Zharkov DO, Kubareva EA. Position-Dependent Effects of AP Sites Within an hTERT Promoter G-Quadruplex Scaffold on Quadruplex Stability and Repair Activity of the APE1 Enzyme. Int J Mol Sci 2025; 26:337. [PMID: 39796192 PMCID: PMC11720163 DOI: 10.3390/ijms26010337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1). Although AP sites' repair in regular B-DNA has been studied extensively, their processing in G-quadruplexes (G4s) has received much less attention. Here, we used the hTERT promoter region that is capable of forming three stacked parallel G4s to understand how AP sites can influence higher-order quadruplex folding and stability and how a G4 affects the efficiency of human APE1-mediated AP site processing. We designed a series of synthetic single- and double-stranded DNA constructs of varying lengths containing a stable AP site analog in both G- and C-rich strands at positions corresponding to somatic driver mutations. Using circular dichroism, we studied the effect of the AP site on hTERT G4 structure and stability. Bio-layer interferometry and gel-based approaches were employed to characterize APE1 binding to the designed DNA substrates and AP site processing. It was shown that (i) an AP site leads to G4 destabilization, which depends on the lesion location in the G4 scaffold; (ii) APE1 binds tightly to hTERT G4 structure but exhibits greatly reduced cleavage activity at AP sites embedded in the quadruplex; and (iii) a clear correlation was revealed between AP site-induced hTERT G4 destabilization and APE1 activity. We can hypothesize that reduced repair of AP sites in the hTERT G4 is one of the reasons for the high mutation rate in this promoter region.
Collapse
Affiliation(s)
- Viktoriia Yu. Savitskaya
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Kirill A. Novoselov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Mayya V. Monakhova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Viktoriia G. Snyga
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Evgeniia A. Diatlova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
| | - Elizaveta S. Peskovatskova
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Victor M. Golyshev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
| | - Mariia I. Kitaeva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Daria A. Eroshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maria I. Zvereva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Dmitry O. Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena A. Kubareva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
19
|
Xing H, Liu D, Li J, Ge Y, Guo X, Chen W, Zhao D, Shi Y, Li Y, Wang Y, Wang Y, Xia Y, Wu J, Liang T, Wang H, Liu Q, Jin S, Qu T, Guo S, Li H, Yang T, Zhang K, Wang Y, Ma W. TERTp Mutation and its Prognostic Value in Glioma Patients Under the 2021 WHO Classification: A Real-World Study. Cancer Med 2025; 14:e70533. [PMID: 39804195 PMCID: PMC11727134 DOI: 10.1002/cam4.70533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/16/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The 2021 WHO Classification of Central Nervous System Tumors introduces more molecular markers for glioma reclassification, including TERT promoter (TERTp) mutation as a key feature in glioblastoma diagnosis. AIMS Given the changes in the entities included in each subtype under the new classification, this research investigated the distribution, prognostic value, and correlations with other molecular alterations of TERTp mutation in different subgroups under this latest classification. METHODS All glioma patients admitted to Peking Union Medical College Hospital for surgical resection or biopsy from 2011 to 2022 were included. Samples were analyzed for TERTp mutation and 59 other gene alterations and chromosome copy number variations. RESULTS A total of 207 patients were included. The occurrence of TERTp mutations varied with percentages of 4.55%, 100%, and 77.92% in astrocytoma, oligodendroglioma, and glioblastoma, respectively. 65% of all adult-type glioma patients and 42.6% of IDH-wildtype histology grade 2 or 3 patients were TERTp-mutant. Survival analysis showed that TERTp mutation was a predictor of better prognosis in IDH-mutant grade 2 gliomas (median OS (mOS): not reached (NA) (95% CI: NA-NA) vs. 75.9 (95% CI: 55.4-NA) months, HR = 0.077 (95% CI: 0.01-0.64), p = 0.003), while poor OS was associated with all Grade 4 gliomas (mOS: 17.5 (95% CI: 12.6-24.2) vs. 40.5 (95% CI: 24.4-83.8) months, HR = 2.014 (95% CI: 1.17-3.47), p = 0.01) and all IDH-wildtype histology grade 2 or 3 gliomas (median OS: 12.6 (95% CI: 11-24.2) vs. 83.8 (95% CI: 35.2-NA) months, HR = 3.768 (95% CI: 1.83-7.78), p < 0.001). Moreover, TERTp mutation tended to co-occur with EGFR, KRAS, and MET in glioblastoma. In the IDH-mutant subgroup, it tended to co-occur with CIC and FUBP1 alterations, while being mutually exclusive with ATRX and TP53 alterations. These correlations may further refine prognostic predictions.
Collapse
Affiliation(s)
- Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yulu Ge
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| | - Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dachun Zhao
- Department of PathologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| |
Collapse
|
20
|
Casalini R, Romei C, Ciampi R, Ramone T, Prete A, Gambale C, Matrone A, Torregrossa L, Ugolini C, Elisei R. Minor role of TP53 and TERT promoter mutations in medullary thyroid carcinoma: report of new cases and revision of the literature. Endocrine 2025; 87:243-251. [PMID: 39179735 DOI: 10.1007/s12020-024-03990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE Aims of this study were to investigate the prevalence of TP53 and TERT mutations in Medullary Thyroid carcinoma (MTC) and their role in inducing aggressiveness in positive cases. METHODS We performed a literature search in PubMed to identify studies investigating the prevalence of TERT and TP53 mutations in MTC. We also included data on MTC cases (n = 193) obtained at our center and unpublished. The in-silico pathogenicity of the TP53 mutations has been evaluated by predictor tools. RESULTS We identified a total of 25 and 11 published papers: all together 1280 cases have been investigated for the presence of TP53 mutations and 974 for TERT promoter mutation. Twenty-five out of 1280 (2%) cases had a TP53 mutation while only 3/974 MTC cases (0.3%) have been found to be positive for TERT promoter mutations. Among all, we identified 19 different TP53 mutations that in 12 cases were demonstrated to have an in silico predicted high pathogenic role and a high impact on protein function. Three non-sense and 4 probably not damaging mutations were also reported. The pathogenic role of the TERT promoter mutations has been previously in vitro determined. No correlation between TP53 and/or TERT mutations and aggressiveness of MTC has been demonstrated. CONCLUSION The prevalence of TP53 and TERT promoter mutations is very low in MTC. The reported mutations are pathogenic in the majority of cases. Because of their rarity it is not possible to clarify if they play or not a role in the pathogenesis and/or aggressiveness of this specific thyroid tumor.
Collapse
Affiliation(s)
- Roberta Casalini
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Cristina Romei
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Raffaele Ciampi
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Teresa Ramone
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Alessandro Prete
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Carla Gambale
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Antonio Matrone
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Liborio Torregrossa
- Department of Surgical, Medical, Molecular Pathology and Critical Area, Unit of Pathology, University Hospital of Pisa, Pisa, Italy
| | - Clara Ugolini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, Unit of Pathology, University Hospital of Pisa, Pisa, Italy
| | - Rossella Elisei
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy.
| |
Collapse
|
21
|
Chen L, Wu M, Li Y, Tang L, Tang C, Huang L, Li T, Zhu L. Assessment of MGMT and TERT Subtypes and Prognosis of Glioblastoma by Whole Tumor Apparent Diffusion Coefficient Histogram Analysis. Brain Behav 2025; 15:e70175. [PMID: 39739534 DOI: 10.1002/brb3.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Adult glioblastomas (GBMs) are associated with high recurrence and mortality. Personalized treatment based on molecular markers may help improve the prognosis. We aimed to evaluate whether apparent diffusion coefficient (ADC) histogram analysis can better predict MGMT and TERT molecular characteristics and to determine the prognostic relevance of genetic profile in patients with GBM. MATERIALS AND METHODS MRI, clinical, and pathological data of 79 patients with GBM were retrospectively collected. The ADC values based on histogram analysis were described using 10th percentile (p10), 90th percentile (p90), mean, median, minimum, maximum, skewness, kurtosis, and entropy. The independent-sample t test, linear correlation analysis, receiver operating characteristics (ROC) curve analysis, Kaplan-Meier analysis, and Cox proportional hazard regression were performed. RESULTS MGMT promoter methylation and TERT promoter mutation were detected in 53.2% and 44.3% of GBM patients, respectively. The ADCp10 in MGMT promoter unmethylated group was significantly lower than that in the MGMT promoter methylated group (p = 0.005). There were significant differences in ADCmin, ADCp10, ADCmean, and entropy between TERT promoter mutant and wild-type groups. Entropy showed the best diagnostic performance in differentiating between positive and negative TERT groups (AUC = 0.722, p = 0.001). Overall survival (OS) showed a positive correlation with ADCmin. The TERT promoter mutation was the only independent prognostic factor for GBM. CONCLUSIONS ADC histogram analysis may be a potential noninvasive biomarker for differentiating MGMT and TERT molecular markers and providing prognostic information for GBM patients.
Collapse
Affiliation(s)
- Ling Chen
- Department of Radiology, Liuzhou Worker's Hospital, Guangxi, China
| | - Min Wu
- Department of Radiology, Liuzhou Worker's Hospital, Guangxi, China
| | - Yao Li
- Department of Neurosurgery, Liuzhou Worker's Hospital, Guangxi, China
| | - Lifang Tang
- Department of Radiology, Liuzhou Worker's Hospital, Guangxi, China
| | - Chuyun Tang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Lizhao Huang
- Department of Radiology, Liuzhou Worker's Hospital, Guangxi, China
| | - Tao Li
- Department of Radiology, Liuzhou Worker's Hospital, Guangxi, China
| | - Li Zhu
- Department of Radiology, Liuzhou Worker's Hospital, Guangxi, China
| |
Collapse
|
22
|
Hwang I, Kang SY, Kim DG, Jang KT, Kim KM. Clinicopathologic and genomic characteristics of biliary tract carcinomas with TERT promoter mutations among East Asian population. Pathol Res Pract 2024; 266:155806. [PMID: 39793339 DOI: 10.1016/j.prp.2024.155806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/22/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025]
Abstract
Telomerase reverse transcriptase gene promoter (TERT) mutations are biomarkers that predict survival and responses to immune checkpoint inhibitors in various malignancies. However, their prevalence and clinicopathologic characteristics in biliary tract carcinomas are largely unknown. We performed a comprehensive genomic profiling of formalin-fixed paraffin-embedded tumor tissue from 485 carcinomas, including intrahepatic (n = 220), perihilar (n = 54), distal biliary tract (n = 110), and gallbladder (n = 101) cancers, using next-generation sequencing. TERT mutations were observed in 50 out of 485 biliary tract cancers (10.3 %) consisting of 39 C228T (78.0 %) and 11 C250T (22.0 %) variants. Among the different anatomic locations, TERT mutations were most frequent in the gallbladder (20.8 %), followed by perihilar (9.3 %), intrahepatic (7.7 %), and distal bile ducts (6.4 %) (p < 0.01). Genetically, TERT mutations were significantly associated with TP53 mutations (p = 0.04), ERBB2 amplification (p < 0.01), and high tumor mutational burdens (TMB) (p < 0.01); moreover, they were negatively correlated with KRAS (p < 0.01), SMAD4 (p = 0.01), and PBRM1 mutations (p = 0.01). In addition, TERT mutations were associated with a poor progression-free survival (PFS, p = 0.01). Specifically, in cases of intrahepatic cholangiocarcinoma, TERT mutations were more frequent in patients with cirrhosis (p = 0.01), hepatitis B virus infection (p = 0.04), and advanced disease stages (p < 0.01). In gallbladder carcinoma, TERT mutations were also associated with poor PFS. In conclusion, TERT mutations in biliary tract carcinomas had unique clinicopathologic and genetic characteristics. Despite its poor PFS, the concomitant presence of ERBB2 amplification and a high TMB indicated a potential for targeted therapy and immunotherapy in this specific subtype.
Collapse
Affiliation(s)
- Inwoo Hwang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Deok Geun Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Center for Companion Diagnostics, Precision Medicine Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
23
|
Lopes-Bastos B, Nabais J, Ferreira T, Allavena G, El Maï M, Bird M, Targen S, Tattini L, Kang D, Yue JX, Liti G, Carvalho TG, Godinho Ferreira M. The absence of telomerase leads to immune response and tumor regression in zebrafish melanoma. Cell Rep 2024; 43:115035. [PMID: 39643971 DOI: 10.1016/j.celrep.2024.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
Most cancers re-activate telomerase to maintain telomere length and thus acquire immortality. Activating telomerase promoter mutations are found in many cancers, including melanoma. However, it is unclear when and if telomerase is strictly required during tumorigenesis. We combined the telomerase mutant (tert-/-) with two established zebrafish melanoma models. We show that tert-/- melanomas initially develop with similar incidence and invasiveness to tert+/+ tumors. However, they eventually decline in growth and regress. Late tert-/- tumors exhibit reduced cell proliferation, increased apoptosis, and melanocyte differentiation. Notably, these tumors show enhanced immune cell infiltration and can resume growth when transplanted into immunocompromised hosts. We propose that telomerase is required for melanoma in zebrafish, albeit at later stages of progression, to sustain tumor growth while avoiding immune rejection and regression. Thus, the absence of telomerase restricts melanoma through tumor-autonomous mechanisms (cell-cycle arrest, apoptosis, and melanocyte differentiation) and a non-tumor-autonomous mechanism (immune rejection).
Collapse
Affiliation(s)
- Bruno Lopes-Bastos
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Joana Nabais
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Tânia Ferreira
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Giulia Allavena
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | - Mounir El Maï
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Malia Bird
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | - Seniye Targen
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | - Lorenzo Tattini
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | - Da Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gianni Liti
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | | | - Miguel Godinho Ferreira
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
24
|
Varachev V, Susova O, Mitrofanov A, Naskhletashvili D, Krasnov G, Ikonnikova A, Bezhanova S, Semenova V, Sevyan N, Prozorenko E, Ammour Y, Bekyashev A, Nasedkina T. Genomic Profiling in Glioma Patients to Explore Clinically Relevant Markers. Int J Mol Sci 2024; 25:13004. [PMID: 39684714 PMCID: PMC11641329 DOI: 10.3390/ijms252313004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Gliomas are a heterogeneous group of brain tumors, among which the most aggressive subtype is glioblastoma, accounting for 60% of cases in adults. Available systemic treatment options are few and ineffective, so new approaches to therapies for glioblastoma are in high demand. In total, 131 patients with diffuse glioma were studied. Paired tumor–normal samples were sequenced on the Illumina platform; the panel included 812 genes associated with cancer development. Molecular profiles in clinically distinct groups were investigated. In low-grade glioma (LGG) patients (n = 18), the most common mutations were IDH1/2 (78%), ATRX (33%), TP53 (44%), PIK3CA (17%), and co-deletion 1p/19q (22%). In high-grade glioma (HGG) patients (n = 113), more frequently affected genes were CDKN2A/B (33%), TERTp (71%), PTEN (60%), TP53 (27%), and EGFR (40%). The independent predictors of better prognosis were tumor grade and IDH1/2 mutations. In IDH—wildtype glioblastoma patients, a history of other precedent cancer was associated with worse overall survival (OS), while re-operation and bevacizumab therapy increased OS. Also, among genetic alterations, TERTp mutation and PTEN deletion were markers of poor prognosis. Nine patients received molecular targeted therapy, and the results were evaluated. The search for molecular changes associated with tumor growth and progression is important for diagnosis and choice of therapy.
Collapse
Affiliation(s)
- Viacheslav Varachev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (G.K.); (A.I.); (V.S.)
| | - Olga Susova
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (D.N.); (S.B.); (N.S.); (E.P.); (A.B.)
| | - Alexei Mitrofanov
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (D.N.); (S.B.); (N.S.); (E.P.); (A.B.)
| | - David Naskhletashvili
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (D.N.); (S.B.); (N.S.); (E.P.); (A.B.)
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (G.K.); (A.I.); (V.S.)
| | - Anna Ikonnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (G.K.); (A.I.); (V.S.)
| | - Svetlana Bezhanova
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (D.N.); (S.B.); (N.S.); (E.P.); (A.B.)
| | - Vera Semenova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (G.K.); (A.I.); (V.S.)
| | - Nadezhda Sevyan
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (D.N.); (S.B.); (N.S.); (E.P.); (A.B.)
| | - Evgenii Prozorenko
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (D.N.); (S.B.); (N.S.); (E.P.); (A.B.)
| | - Yulia Ammour
- I.I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia;
| | - Ali Bekyashev
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (D.N.); (S.B.); (N.S.); (E.P.); (A.B.)
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (G.K.); (A.I.); (V.S.)
| |
Collapse
|
25
|
Denham J, Bliss ES, Bryan TM, O'Brien BJ, Mills D. Exercise to combat cancer: focusing on the ends. Physiol Genomics 2024; 56:869-875. [PMID: 39374082 DOI: 10.1152/physiolgenomics.00075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Cancer remains a leading cause of death worldwide and although prognosis and survivorship after therapy have improved significantly, current cancer treatments have long-term health consequences. For decades telomerase-mediated telomere maintenance has been an attractive anti-cancer therapeutic target due to its abundance and role in telomere maintenance, pathogenesis, and growth in neoplasms. Telomere maintenance-specific cancer therapies, however, are marred by off-target side effects that must be addressed before they reach clinical practice. Regular exercise training is associated with telomerase-mediated telomere maintenance in normal cells, which is associated with healthy aging. A single bout of endurance exercise training dynamically, but temporarily, increases TERT mRNA and telomerase activity, as well as several molecules that control genomic stability and telomere length (i.e., shelterin and TERRA). Considering the epidemiological findings and accumulating research highlighting that exercise significantly reduces the risk of many types of cancers and the anti-carcinogenic effects of exercise on tumor growth in vitro, investigating the governing molecular mechanisms of telomerase control in context with exercise and cancer may provide important new insights to explain these findings. Specifically, the molecular mechanisms controlling telomerase in both healthy cells and tumors after exercise could reveal novel therapeutic targets for tumor-specific telomere maintenance and offer important evidence that may refine current physical activity and exercise guidelines for all stages of cancer care.
Collapse
Affiliation(s)
- Joshua Denham
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, Toowoomba, Queensland, Australia
| | - Edward S Bliss
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, Toowoomba, Queensland, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Brendan J O'Brien
- Institute of Health and Wellbeing, Federation University Australia, Ballarat, Victoria, Australia
| | - Dean Mills
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, Toowoomba, Queensland, Australia
| |
Collapse
|
26
|
Ishikawa T, Matsuda M, Ishikawa H, Toyomura J, Ohyama A, Sakamoto N, Zaboronok A, Ishikawa E. Establishment of a novel benign meningioma cell line spontaneously immortalized under hypoxic conditions. Hum Cell 2024; 38:22. [PMID: 39612090 DOI: 10.1007/s13577-024-01151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Meningiomas are the most frequent brain tumors, typically benign and curable by surgery. However, some patients experience repeated recurrences from residual tumors. To address such cases, the development of novel therapeutic options is crucial. For this purpose, the availability of cell lines that possess the characteristics of benign meningiomas is essential. Here, we established a benign meningioma cell line under 3% O2 hypoxic conditions without the induction of immortalization genes. This cell line, named TKB-MEN2, has been stably grown for over two years with more than 20 passages. There were no hotspot telomerase reverse transcriptase (TERT) promoter mutations or cyclin-dependent kinase inhibitor 2A/2B (CDKN2A/2B) homozygous deletions, which are genetic features typical of malignant meningiomas. Cultured under hypoxic conditions, this cell line showed fewer characteristics of cellular senescence, such as morphological changes, IL-6 secretion, and lower senescence-associated b-galactosidase activity, compared to the same cell line cultured under 20% O2 conditions. This immortalized non-transgenic cell line appears to reflect the characteristics of a genuine benign meningioma, potentially allowing the identification of new therapeutic targets and the development of novel therapies for benign meningiomas.
Collapse
Affiliation(s)
- Takaaki Ishikawa
- Graduate School of Comprehensive Human Sciences, Doctoral Program in Medical Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Masahide Matsuda
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan.
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Junko Toyomura
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Akihiro Ohyama
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Noriaki Sakamoto
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Alexander Zaboronok
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| |
Collapse
|
27
|
Elliott K, Singh VK, Bäckerholm A, Ögren L, Lindberg M, Soczek KM, Hoberg E, Luijts T, Van den Eynden J, Falkenberg M, Doudna J, Ståhlberg A, Larsson E. Mechanistic basis of atypical TERT promoter mutations. Nat Commun 2024; 15:9965. [PMID: 39557834 PMCID: PMC11574208 DOI: 10.1038/s41467-024-54158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Non-coding mutations in the TERT promoter (TERTp), typically at one of two bases -124 and -146 bp upstream of the start codon, are among the most prevalent driver mutations in human cancer. Several additional recurrent TERTp mutations have been reported but their functions and origins remain largely unexplained. Here, we show that atypical TERTp mutations arise secondary to canonical TERTp mutations in a two-step process. Canonical TERTp mutations create de novo binding sites for ETS family transcription factors that induce favourable conditions for DNA damage formation by UV light, thus creating a hotspot effect but only after a first mutational hit. In agreement, atypical TERTp mutations co-occur with canonical driver mutations in large cancer cohorts and arise subclonally specifically on the TERTp driver mutant chromosome homolog of melanoma cells treated with UV light in vitro. Our study gives an in-depth view of TERTp mutations in cancer and provides a mechanistic explanation for atypical TERTp mutations.
Collapse
Affiliation(s)
- Kerryn Elliott
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Vinod Kumar Singh
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alan Bäckerholm
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linnea Ögren
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Lindberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katarzyna M Soczek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Emily Hoberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tom Luijts
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Anders Ståhlberg
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
28
|
Bessa-Gonçalves M, Brás JP, Jesus TT, Prazeres H, Soares P, Vinagre J. TERTmonitor Efficacy and Performance in Detecting Mutations by Droplet Digital PCR. Genes (Basel) 2024; 15:1424. [PMID: 39596624 PMCID: PMC11594489 DOI: 10.3390/genes15111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The screening of TERT promoter (TERTp) mutations is essential in cancer research and diagnostics, due to its prevalence in tumours associated with low self-renewal rates. TERTmonitor is a diagnosis kit primarily designed for real-time qPCR qualitative detection of -124C>T and -146C>T TERTp mutations, which are highly prevalent in several malignancies, particularly in bladder carcinoma. OBJECTIVE This study aims to investigate TERTmonitor performance in droplet digital PCR (ddPCR) in urine samples from bladder cancer patients. METHODS A total of 45 urine samples were examined by real-time qPCR and ddPCR techniques, and their performances were compared. RESULTS TERTmonitor had similar performance in both real-time qPCR and ddPCR platforms. Specifically, the methods exhibited a concordance rate of 95.45% and 90% for -124C>T and -146C>T mutations, respectively. Importantly, an enhanced sensitivity in certain scenarios was exhibited by ddPCR when compared to real-time qPCR, detecting mutations that the latter failed to identify in approximately 4.55% and 10% of the samples for -124C>T and -146C>T mutations, respectively. This enhanced sensitivity of ddPCR was particularly evident in samples with low-frequency mutations. CONCLUSIONS The findings highlight the usefulness of TERTmonitor for cancer surveillance either in real-time qPCR or ddPCR platforms.
Collapse
Affiliation(s)
- Mafalda Bessa-Gonçalves
- U-Monitor Lda, 4200-135 Porto, Portugal; (M.B.-G.); (J.P.B.); (H.P.); (J.V.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal;
| | - João Paulo Brás
- U-Monitor Lda, 4200-135 Porto, Portugal; (M.B.-G.); (J.P.B.); (H.P.); (J.V.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal;
| | - Tito Teles Jesus
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal;
| | - Hugo Prazeres
- U-Monitor Lda, 4200-135 Porto, Portugal; (M.B.-G.); (J.P.B.); (H.P.); (J.V.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal;
| | - Paula Soares
- U-Monitor Lda, 4200-135 Porto, Portugal; (M.B.-G.); (J.P.B.); (H.P.); (J.V.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal;
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Medicina, Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - João Vinagre
- U-Monitor Lda, 4200-135 Porto, Portugal; (M.B.-G.); (J.P.B.); (H.P.); (J.V.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal;
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Medicina, Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| |
Collapse
|
29
|
Choate KA, Pratt EPS, Jennings MJ, Winn RJ, Mann PB. IDH Mutations in Glioma: Molecular, Cellular, Diagnostic, and Clinical Implications. BIOLOGY 2024; 13:885. [PMID: 39596840 PMCID: PMC11592129 DOI: 10.3390/biology13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
In 2021, the World Health Organization classified isocitrate dehydrogenase (IDH) mutant gliomas as a distinct subgroup of tumors with genetic changes sufficient to enable a complete diagnosis. Patients with an IDH mutant glioma have improved survival which has been further enhanced by the advent of targeted therapies. IDH enzymes contribute to cellular metabolism, and mutations to specific catalytic residues result in the neomorphic production of D-2-hydroxyglutarate (D-2-HG). The accumulation of D-2-HG results in epigenetic alterations, oncogenesis and impacts the tumor microenvironment via immunological modulations. Here, we summarize the molecular, cellular, and clinical implications of IDH mutations in gliomas as well as current diagnostic techniques.
Collapse
Affiliation(s)
- Kristian A. Choate
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
| | - Evan P. S. Pratt
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Chemistry, Northern Michigan University, Marquette, MI 49855, USA
| | - Matthew J. Jennings
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| | - Robert J. Winn
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Paul B. Mann
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| |
Collapse
|
30
|
Yuan K, Tang Y, Ding Z, Peng L, Zeng J, Wu H, Yi Q. Mutant ATRX: pathogenesis of ATRX syndrome and cancer. Front Mol Biosci 2024; 11:1434398. [PMID: 39479502 PMCID: PMC11521912 DOI: 10.3389/fmolb.2024.1434398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
The transcriptional regulator ATRX, a genetic factor, is associated with a range of disabilities, including intellectual, hematopoietic, skeletal, facial, and urogenital disabilities. ATRX mutations substantially contribute to the pathogenesis of ATRX syndrome and are frequently detected in gliomas and many other cancers. These mutations disrupt the organization, subcellular localization, and transcriptional activity of ATRX, leading to chromosomal instability and affecting interactions with key regulatory proteins such as DAXX, EZH2, and TERRA. ATRX also functions as a transcriptional regulator involved in the pathogenesis of neuronal disorders and various diseases. In conclusion, ATRX is a central protein whose abnormalities lead to multiple diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Huaying Wu
- Key Laboratory of Model Animals and Stem Cell Biology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Qi Yi
- Key Laboratory of Model Animals and Stem Cell Biology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
31
|
Li Z, Deng Z, Liu F, Li C, Yang K, Gong X, Feng S, Zeng Y, Zhou H, Fan F, Luo C, Liu Z, Zhang M. Clinical sequencing reveals diagnostic, therapeutic, and prognostic biomarkers for adult-type diffuse gliomas. Heliyon 2024; 10:e37712. [PMID: 39315202 PMCID: PMC11417559 DOI: 10.1016/j.heliyon.2024.e37712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Diffuse gliomas in adults are highly infiltrative and largely incurable. Whole exome sequencing (WES) has been demonstrated very useful in genetic analysis. Here WES was performed to characterize genomic landscape of adult-type diffuse gliomas to discover the diagnostic, therapeutic and prognostic biomarkers. Somatic and germline variants of 66 patients with adult-type diffuse gliomas were detected by WES based on the next-generation sequencing. TCGA and CGGA datasets were included to analyze the integrated diagnosis and prognosis. Among 66 patients, the diagnosis of 9 cases was changed, in which 8 cases of astrocytoma were corrected into IDH-wildtype glioblastoma (GBM), and 1 oligodendroglioma without 1p/19q co-deletion into astrocytoma. The distribution of mutations including ATRX/TP53 differed in three cohorts. The genetic mutations in GBM mainly concentrated on the cell cycle, PI3K and RTK pathways. The mutational landscape of astrocytoma was more similar to that of GBM, with the highest frequency in germline variants. Patients with IDH-mutant astrocytoma harboring SNVs of PIK3CA and PIK3R1 showed a significantly worse overall survival (OS) than wild-type patients. AEBP1 amplification was associated with shorter OS in GBM. Our study suggests that clinical sequencing can recapitulate previous findings, which may provide a powerful approach to discover diagnostic, therapeutic and prognostic markers for precision medicine in adult-type diffuse gliomas.
Collapse
Affiliation(s)
- Zhenyan Li
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Zhenghao Deng
- Department of Pathology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Chuntao Li
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Kui Yang
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xuan Gong
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Hongshu Zhou
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Chengke Luo
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| |
Collapse
|
32
|
Meireles S, Dias C, Martins D, Marques A, Dias N, Pacheco-Figueiredo L, Silva J, Silva CM, Barbosa M, Costa L, Lopes JM, Soares P. Biomarker Profiling of Upper Tract Urothelial Carcinoma Only and with Synchronous or Metachronous Bladder Cancer. Biomedicines 2024; 12:2154. [PMID: 39335667 PMCID: PMC11429062 DOI: 10.3390/biomedicines12092154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Molecular profiling in upper tract urothelial carcinoma (UTUC) with synchronous or metachronous urothelial bladder cancer (UBC) is scarce. We intended to assess immunohistochemical (IHC) and genetic differences between UTUC-only and UTUC with synchronous or metachronous UBC (UTUC + UBC) and evaluate the effect of subsequent UBC on the outcome of UTUC patients stratified by luminal-basal subtypes. METHODS A retrospective cohort of UTUC was divided into UTUC-only (n = 71) and UTUC + UBC (n = 43). IHC expression of cytokeratin 5/6 (CK5/6), CK20, GATA3, and p53 was evaluated to assess relevant subtypes. Genetic characterization comprised TERTp, FGFR3, RAS, and TP53 status. Kaplan-Meier and Cox regression analyses estimated the effect of clinicopathological variables and molecular profiles on progression-free survival (PFS) and overall survival (OS) of UTUC patients. RESULTS No meaningful differences were detected among both subgroups according to luminal-basal stratification and genetic analysis. UTUC + UBC was independently associated with a worse PFS when stratified by luminal-basal phenotype (HR 3.570, CI 95% 1.508-8.453, p = 0.004) but with no impact in OS (HR 1.279, CI 95% 0.513-3.190, p = 0.597). CONCLUSIONS This study reveals that both subgroups exhibited equivalent genomic features and luminal-basal subtypes. The involvement of the bladder relates to shorter PFS but does not seem to influence the survival outcome of UTUC, independently of the IHC phenotype.
Collapse
Affiliation(s)
- Sara Meireles
- Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Medical Oncology Department, Centro Hospitalar Universitário de São João (CHUSJ), Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carolina Dias
- Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Diana Martins
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Pathology Department, Centro Hospitalar Universitário de São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Marques
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Pathology Department, Centro Hospitalar Universitário de São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Dias
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Urology Department, Centro Hospitalar Universitário de São João (CHUSJ), Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Luís Pacheco-Figueiredo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- Department of Urology, Trofa Saúde Private Hospitals, 4785-409 Trofa, Portugal
| | - João Silva
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Urology Department, Centro Hospitalar Universitário de São João (CHUSJ), Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carlos Martins Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Urology Department, Centro Hospitalar Universitário de São João (CHUSJ), Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Miguel Barbosa
- Medical Oncology Department, Centro Hospitalar Universitário de São João (CHUSJ), Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Luís Costa
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, Avenida Professor Egas Moniz MB, 1649-028 Lisboa, Portugal
- Institute of Molecular Medicine-João Lobo Antunes, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz MB, 1649-028 Lisboa, Portugal
| | - José Manuel Lopes
- Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Pathology Department, Centro Hospitalar Universitário de São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Paula Soares
- Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
33
|
Evans MM, Liu S, Krautner JS, Seguin CG, Leung R, Ronald JA. Evaluation of DNA minicircles for delivery of adenine and cytosine base editors using activatable gene on "GO" reporter imaging systems. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102248. [PMID: 39040503 PMCID: PMC11260848 DOI: 10.1016/j.omtn.2024.102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/07/2024] [Indexed: 07/24/2024]
Abstract
Over 30,000 point mutations are associated with debilitating diseases, including many cancer types, underscoring a critical need for targeted genomic solutions. CRISPR base editors, like adenine base editors (ABEs) and cytosine base editors (CBEs), enable precise modifications by converting adenine to guanine and cytosine to thymine, respectively. Challenges in efficiency and safety concerns regarding viral vectors used in delivery limit the scope of base editing. This study introduces non-viral minicircles, bacterial-backbone-free plasmids, as a delivery vehicle for ABEs and CBEs. The research uses cells engineered with the "Gene On" (GO) reporter gene systems for tracking minicircle-delivered ABEs, CBEs, or Cas9 nickase (control), using green fluorescent protein (GFPGO), bioluminescence reporter firefly luciferase (LUCGO), or a highly sensitive Akaluciferase (AkalucGO) designed in this study. The results show that transfection of minicircles expressing CBE or ABE resulted in significantly higher GFP expression and luminescence signals over controls, with minicircles demonstrating the most substantial editing. This study presents minicircles as a new strategy for base editor delivery and develops an enhanced bioluminescence imaging reporter system for tracking ABE activity. Future studies aim to evaluate the use of minicircles in preclinical cancer models, facilitating potential clinical applications.
Collapse
Affiliation(s)
- Melissa M. Evans
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Shirley Liu
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Joshua S. Krautner
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Caroline G. Seguin
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Rajan Leung
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 5C1, Canada
| | - John A. Ronald
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 5C1, Canada
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
34
|
Shou S, Li Y, Chen J, Zhang X, Zhang C, Jiang X, Liu F, Yi L, Zhang X, Geer E, Pu Z, Pang B. Understanding, diagnosing, and treating pancreatic cancer from the perspective of telomeres and telomerase. Cancer Gene Ther 2024; 31:1292-1305. [PMID: 38594465 PMCID: PMC11405285 DOI: 10.1038/s41417-024-00768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Telomerase is associated with cellular aging, and its presence limits cellular lifespan. Telomerase by preventing telomere shortening can extend the number of cell divisions for cancer cells. In adult pancreatic cells, telomeres gradually shorten, while in precancerous lesions of cancer, telomeres in cells are usually significantly shortened. At this time, telomerase is still in an inactive state, and it is not until before and after the onset of cancer that telomerase is reactivated, causing cancer cells to proliferate. Methylation of the telomerase reverse transcriptase (TERT) promoter and regulation of telomerase by lactate dehydrogenase B (LDHB) is the mechanism of telomerase reactivation in pancreatic cancer. Understanding the role of telomeres and telomerase in pancreatic cancer will help to diagnose and initiate targeted therapy as early as possible. This article reviews the role of telomeres and telomerase as biomarkers in the development of pancreatic cancer and the progress of research on telomeres and telomerase as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanliang Li
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaqin Chen
- Department of Gastroenterology, Dongzhimen Hospital, Beijing, China
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanlong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Yi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
35
|
Kageler L, Aquilanti E. Discovery of telomerase inhibitors: existing strategies and emerging innovations. Biochem Soc Trans 2024; 52:1957-1968. [PMID: 39194999 DOI: 10.1042/bst20230264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Telomerase, crucial for maintaining telomere length, is an attractive target for cancer therapy due to its role in cellular immortality. Despite three decades of research efforts, no small-molecule telomerase inhibitors have been clinically approved, highlighting the extensive challenges in developing effective telomerase-based therapeutics. This review examines conventional and emerging methods to measure telomerase activity and discusses existing inhibitors, including oligonucleotides and small molecules. Furthermore, this review highlights recent breakthroughs in structural studies of telomerase using cryo-electron microscopy, which can facilitate improved structure-based drug design. Altogether, advancements in structural methodologies and high-throughput screening offer promising prospects for telomerase-based cancer therapeutic development.
Collapse
Affiliation(s)
- Lauren Kageler
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, U.S.A
| | - Elisa Aquilanti
- Division of Neuro Oncology, Dana Farber Cancer Institute, Boston, MA, U.S.A
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, U.S.A
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
| |
Collapse
|
36
|
Hasegawa K, Zhao Y, Garbuzov A, Corces MR, Neuhöfer P, Gillespie VM, Cheung P, Belk JA, Huang YH, Wei Y, Chen L, Chang HY, Artandi SE. Clonal inactivation of TERT impairs stem cell competition. Nature 2024; 632:201-208. [PMID: 39020172 PMCID: PMC11291281 DOI: 10.1038/s41586-024-07700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Telomerase is intimately associated with stem cells and cancer, because it catalytically elongates telomeres-nucleoprotein caps that protect chromosome ends1. Overexpression of telomerase reverse transcriptase (TERT) enhances the proliferation of cells in a telomere-independent manner2-8, but so far, loss-of-function studies have provided no evidence that TERT has a direct role in stem cell function. In many tissues, homeostasis is shaped by stem cell competition, a process in which stem cells compete on the basis of inherent fitness. Here we show that conditional deletion of Tert in the spermatogonial stem cell (SSC)-containing population in mice markedly impairs competitive clone formation. Using lineage tracing from the Tert locus, we find that TERT-expressing SSCs yield long-lived clones, but that clonal inactivation of TERT promotes stem cell differentiation and a genome-wide reduction in open chromatin. This role for TERT in competitive clone formation occurs independently of both its reverse transcriptase activity and the canonical telomerase complex. Inactivation of TERT causes reduced activity of the MYC oncogene, and transgenic expression of MYC in the TERT-deleted pool of SSCs efficiently rescues clone formation. Together, these data reveal a catalytic-activity-independent requirement for TERT in enhancing stem cell competition, uncover a genetic connection between TERT and MYC and suggest that a selective advantage for stem cells with high levels of TERT contributes to telomere elongation in the male germline during homeostasis and ageing.
Collapse
Affiliation(s)
- Kazuteru Hasegawa
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Zhao
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
| | - Alina Garbuzov
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ryan Corces
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
| | - Patrick Neuhöfer
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Victoria M Gillespie
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peggie Cheung
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A Belk
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Yuning Wei
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
| | - Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
37
|
Li J, Han Z, Ma C, Chi H, Jia D, Zhang K, Feng Z, Han B, Qi M, Li G, Li X, Xue H. Intraoperative rapid molecular diagnosis aids glioma subtyping and guides precise surgical resection. Ann Clin Transl Neurol 2024; 11:2176-2187. [PMID: 38924338 PMCID: PMC11330232 DOI: 10.1002/acn3.52138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE The molecular era of glioma diagnosis and treatment has arrived, and a single rapid histopathology is no longer sufficient for surgery. This study sought to present an automatic integrated gene detection system (AIGS), which enables rapid intraoperative detection of IDH/TERTp mutations. METHODS A total of 78 patients with gliomas were included in this study. IDH/TERTp mutations were detected intraoperatively using AIGS in 41 of these patients, and they were guided to surgical resection (AIGS detection group). The remaining 37 underwent histopathology-guided conventional surgical resection (non-AIGS detection group). The clinical utility of this technique was evaluated by comparing the accuracy of glioma subtype diagnosis before and after TERTp mutation results were obtained by pathologists and the extent of resection (EOR) and patient prognosis for molecular pathology-guided glioma surgery. RESULTS With NGS/Sanger sequencing and chromosome detection as the gold standard, the accuracy of AIGS results was 100%. And the timing was well matched to the intraoperative rapid pathology report. After obtaining the TERTp mutation detection results, the accuracy of the glioma subtype diagnosis made by the pathologists increased by 19.51%. Molecular pathology-guided surgical resection of gliomas significantly increased EOR (99.06% vs. 93.73%, p < 0.0001) and also improved median OS (26.77 vs. 13.47 months, p = 0.0289) and median PFS (15.90 vs. 10.57 months, p = 0.0181) in patients with glioblastoma. INTERPRETATION Using AIGS intraoperatively to detect IDH/TERTp mutations to accurately diagnose glioma subtypes can help achieve maximum safe resection of gliomas, which in turn improves the survival prognosis of patients.
Collapse
Affiliation(s)
- Jia Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Zhe Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Caizhi Ma
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Huizhong Chi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Deze Jia
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Kailiang Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Bo Han
- Department of PathologyShandong University Qilu HospitalJinanShandongChina
- Department of PathologyShandong University School of Basic Medical SciencesJinanShandongChina
| | - Mei Qi
- Department of PathologyShandong University Qilu HospitalJinanShandongChina
- Department of PathologyShandong University School of Basic Medical SciencesJinanShandongChina
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Xueen Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| |
Collapse
|
38
|
Barsouk A, Elghawy O, Stone S, Singh A. Patient with mediastinal carcinoma of unknown primary with RET fusion achieves durable response with RET inhibition. Anticancer Drugs 2024; 35:653-657. [PMID: 38696710 DOI: 10.1097/cad.0000000000001618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Selective RET inhibitors have shown promise in thyroid cancer (TC) and nonsmall cell lung cancer (NSCLC) harboring RET fusions on next-generation sequencing (NGS), although rarity of the rearrangement has led to limited data for certain tumor types, such as carcinoma of unknown primary. We present a 65-year-old female with no history of malignancy, smoking or radiation exposure, who was found to have an anterior mediastinum malignancy of unknown primary, with metastases to supraclavicular lymph nodes. Core biopsy of the mediastinum revealed poorly differentiated carcinoma, while a biopsy of the thyroid revealed atypia of indeterminate significance (Bethesda III). PD-L1 immunohistochemistry was positive (90%), and liquid NGS revealed mutations in TP53 and the TERT promoter (c.-124C>T), as well as a CCDC6-RET fusion. This genetic profile resembled an anaplastic TC vs. NSCLC primary, although thymic primary and poorly differentiated TC remained on the differential. The patient was initiated on selpercatinib, which was held after 3 weeks due to thrombocytopenia and hypertension. At a reduced dosage, patient developed transaminitis, and selpercatinib was switched to pralsetinib. Brain MRI showed a nonenhancing temporal lobe signal abnormality, which on biopsy proved to be glioblastoma (GBM) with TERT promoter c.-124C>T mutation and FGFR3-TACC3 fusion by NGS. Pralsetinib was held during adjuvant chemoradiation for the GBM, and again for 4 weeks due to pneumonitis that resolved with steroids, and pralsetinib was restarted at a reduced dose. The patient has since demonstrated a stable reduction of the mediastinal mass for >15 months with RET inhibition therapy, despite several treatment interruptions.
Collapse
Affiliation(s)
- Adam Barsouk
- Department of Medical Oncology, Abramson Cancer Center, Hospital of the University of Pennsylvania
| | - Omar Elghawy
- Department of Medical Oncology, Abramson Cancer Center, Hospital of the University of Pennsylvania
| | - Sara Stone
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aditi Singh
- Department of Medical Oncology, Abramson Cancer Center, Hospital of the University of Pennsylvania
| |
Collapse
|
39
|
Riddle N, Parkash V, Guo CC, Shen SS, Perincheri S, Ramirez AS, Auerbach A, Belchis D, Humphrey PA. Recent Advances in Genitourinary Tumors: Updates From the 5th Edition of the World Health Organization Blue Book Series. Arch Pathol Lab Med 2024; 148:952-964. [PMID: 38031818 DOI: 10.5858/arpa.2022-0509-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 12/01/2023]
Abstract
CONTEXT.— Urinary and Male Genital Tumours is the 8th volume of the World Health Organization Classification of Tumours series, 5th edition. Released in hard copy in September 2022, it presents an update to the classification of male genital and urinary tumors in the molecular age. Building upon previous volumes in this series, significant effort has been made to harmonize terminology across organ systems for biologically similar tumors (eg, neuroendocrine tumors). Genomic terminology has been standardized and genetic syndromes covered more comprehensively. This review presents a concise summary of this volume, highlighting new entities, notable modifications relative to the 4th edition, and elements of relevance to routine clinical practice. OBJECTIVE.— To provide a comprehensive update on the World Health Organization classification of urinary and male genital tumors, highlighting updated diagnostic criteria and terminology. DATA SOURCES.— The 4th and 5th editions of the World Health Organization Classification of Tumours: Urinary and Male Genital Tumours. CONCLUSIONS.— The World Health Organization has made several changes in the 5th edition of the update on urinary and male genital tumors that pathologists need to be aware of for up-to-date clinical practice.
Collapse
Affiliation(s)
- Nicole Riddle
- From the Department of Pathology, Tampa General Hospital, Tampa, Florida (Riddle)
- Pathology and Laboratory Medicine, Ruffolo, Hooper, and Associates, University of South Florida Health, Tampa (Riddle)
| | - Vinita Parkash
- the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut (Parkash, Perincheri, Humphrey)
| | - Charles C Guo
- the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Guo)
| | - Steven S Shen
- the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Shen)
| | - Sudhir Perincheri
- the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut (Parkash, Perincheri, Humphrey)
| | | | - Aaron Auerbach
- the Department of Hematopathology, The Joint Pathology Center, Silver Spring, Maryland (Auerbach)
| | - Deborah Belchis
- the Department of Pathology, Luminis Health, Baltimore, Maryland (Belchis)
| | - Peter A Humphrey
- the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut (Parkash, Perincheri, Humphrey)
| |
Collapse
|
40
|
Tang C, Chen L, Xu Y, Huang L, Zeng Z. Prediction of TERT mutation status in gliomas using conventional MRI radiogenomic features. Front Neurol 2024; 15:1439598. [PMID: 39131044 PMCID: PMC11310134 DOI: 10.3389/fneur.2024.1439598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Telomerase reverse transcriptase (TERT) promoter mutation status in gliomas is a key determinant of treatment strategy and prognosis. This study aimed to analyze the radiogenomic features and construct radiogenomic models utilizing medical imaging techniques to predict the TERT promoter mutation status in gliomas. Methods This was a retrospective study of 304 patients with gliomas. T1-weighted contrast-enhanced, apparent diffusion coefficient, and diffusion-weighted imaging MRI sequences were used for radiomic feature extraction. A total of 3,948 features were extracted from MRI images using the FAE software. These included 14 shape features, 18 histogram features, 24 gray level run length matrix, 14 gray level dependence matrix, 16 gray level run length matrix, 16 gray level size zone matrix (GLSZM), 5 neighboring gray tone difference matrix, and 744 wavelet transforms. The dataset was randomly divided into training and testing sets in a ratio of 7:3. Three feature selection methods and six classification algorithms were used to model the selected features. Predictive performance was evaluated using receiver operating characteristic curve analysis. Results Among the evaluated classification algorithms, the combination model of recursive feature elimination (RFE) with linear regression (LR) using six features showed the best diagnostic performance (area under the curve: 0.733, 0.562, and 0.633 in the training, validation, and testing sets, respectively). The next best-performing models were naive Bayes, linear discriminant analysis, autoencoder, and support vector machine. Regarding the three feature selection algorithms, RFE showed the most consistent performance, followed by relief and ANOVA. T1-enhanced entropy and GLSZM derived from T1-enhanced images were identified as the most critical radiomics features for distinguishing TERT promoter mutation status. Conclusion The LR and LRLasso models, mainly based on T1-enhanced entropy and GLSZM, showed good predictive ability for TERT promoter mutations in gliomas using radiomics models.
Collapse
Affiliation(s)
| | | | | | | | - Zisan Zeng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
41
|
Tan KT, Slevin MK, Leibowitz ML, Garrity-Janger M, Shan J, Li H, Meyerson M. Neotelomeres and telomere-spanning chromosomal arm fusions in cancer genomes revealed by long-read sequencing. CELL GENOMICS 2024; 4:100588. [PMID: 38917803 PMCID: PMC11293586 DOI: 10.1016/j.xgen.2024.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/09/2023] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Alterations in the structure and location of telomeres are pivotal in cancer genome evolution. Here, we applied both long-read and short-read genome sequencing to assess telomere repeat-containing structures in cancers and cancer cell lines. Using long-read genome sequences that span telomeric repeats, we defined four types of telomere repeat variations in cancer cells: neotelomeres where telomere addition heals chromosome breaks, chromosomal arm fusions spanning telomere repeats, fusions of neotelomeres, and peri-centromeric fusions with adjoined telomere and centromere repeats. These results provide a framework for the systematic study of telomeric repeats in cancer genomes, which could serve as a model for understanding the somatic evolution of other repetitive genomic elements.
Collapse
Affiliation(s)
- Kar-Tong Tan
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | | | - Mitchell L Leibowitz
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Max Garrity-Janger
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Jidong Shan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Heng Li
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA.
| | - Matthew Meyerson
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
42
|
Zhang B, Zhou Q, Xue C, Ke X, Zhang P, Han T, Deng L, Jing M, Zhou J. Nomogram of magnetic resonance imaging (MRI) histogram analysis to predict telomerase reverse transcriptase promoter mutation status in glioblastoma. Quant Imaging Med Surg 2024; 14:4840-4854. [PMID: 39022283 PMCID: PMC11250314 DOI: 10.21037/qims-24-71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Background Telomerase reverse transcriptase promoter (pTERT) status is a strong biomarker to diagnose and predict the prognosis of glioblastoma (GBM). In this study, we explored the predictive value of preoperative magnetic resonance imaging (MRI) histogram analysis in the form of nomogram for evaluating pTERT mutation status in GBM. Methods The clinical and imaging data of 181 patients with GBM at our hospital between November 2018 and April 2023 were retrospectively assessed. We used the molecular sequencing results to classify the datasets into pTERT mutations (C228T and C250T) and pTERT-wildtype groups. FireVoxel software was used to extract preoperative T1-weighted contrast-enhanced (T1C) histogram parameters of GBM patients. The T1C histogram parameters were compared between groups. Univariate and multivariate logistic regression analyses were used to construct the nomogram, and the predictive efficacy of model was evaluated using calibration and decision curves. Receiver operating characteristic curve was used to assess model performance. Results Patient age and percentage of unenhanced tumor area showed statistically significant differences between the pTERT mutation and pTERT-wildtype groups (P<0.001). Among the T1C histogram features, the maximum, standard deviation (SD), variance, coefficient of variation (CV), skewness, 5th, 10th, 25th, 95th and 99th percentiles were statistically significantly different between groups (P=0.000-0.040). Multivariate logistic regression analysis showed that age, percentage of unenhanced tumor area, SD and CV were independent risk factors for predicting pTERT mutation status in GBM patients. The logistic regression model based on these four features showed a better sample predictive performance, and the area under the curve (AUC) [95% confidence interval (CI)], accuracy, sensitivity, specificity were 0.842 (0.767-0.917), 0.796, 0.820, and 0.729, respectively. There were no significant differences in the T1C histogram parameters between the C228T and C250T groups (P=0.055-0.854). Conclusions T1C histogram parameters can be used to evaluate pTERT mutations status in GBM. A nomogram based on conventional MRI features and T1C histogram parameters is a reliable tool for the pTERT mutation status, allowing for non-invasive radiological prediction before surgery.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Peng Zhang
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, China
| | - Tao Han
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Liangna Deng
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Mengyuan Jing
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| |
Collapse
|
43
|
Ruan X, Xiong Y, Li X, Yang E, Wang J. Lower ratio of IMPDH1 to IMPDH2 sensitizes gliomas to chemotherapy. Cancer Gene Ther 2024; 31:1081-1089. [PMID: 38871858 DOI: 10.1038/s41417-024-00793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Gliomas are the most common primary tumors of the central nervous system, with approximately half of patients presenting with the most aggressive form of glioblastoma. Although several molecular markers for glioma have been identified, they are not sufficient to predict the prognosis due to the extensive genetic heterogeneity within glioma. Our study reveals that the ratio of IMPDH1 to IMPDH2 expression levels serves as a molecular indicator for glioma treatment prognosis. Patients with a higher IMPDH1/IMPDH2 ratio exhibit a worse prognosis, while those with a lower ratio display a more favorable prognosis. We further demonstrate that IMPDH1 plays a crucial role in maintaining cellular GTP/GDP levels following DNA damage compared to IMPDH2. In the absence of IMPDH1, cells experience an imbalance in the GTP/GDP ratio, impairing DNA damage repair capabilities and rendering them more sensitive to TMZ. This study not only introduces a novel prognostic indicator for glioma clinical diagnosis but also offers innovative insights for precise and stratified glioma treatment.
Collapse
Affiliation(s)
- Xiaoyu Ruan
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, 100191, Beijing, China
| | - Yundong Xiong
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, 100191, Beijing, China
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, 100191, Beijing, China.
| | - Ence Yang
- Department of Medical Bioinformatics, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, 100191, Beijing, China.
- Department of Gastrointestinal Translational Research, Peking University Cancer Hospital, 100142, Beijing, China.
| |
Collapse
|
44
|
Dixon S, O'connor AT, Brooks-Noreiga C, Clark MA, Levy A, Castejon AM. Role of renin angiotensin system inhibitors and metformin in Glioblastoma Therapy: a review. Cancer Chemother Pharmacol 2024; 94:1-23. [PMID: 38914751 DOI: 10.1007/s00280-024-04686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and incurable disease accounting for about 10,000 deaths in the USA each year. Despite the current treatment approach which includes surgery with chemotherapy and radiation therapy, there remains a high prevalence of recurrence. Notable improvements have been observed in persons receiving concurrent antihypertensive drugs such as renin angiotensin inhibitors (RAS) or the antidiabetic drug metformin with standard therapy. Anti-tumoral effects of RAS inhibitors and metformin have been observed in in vitro and in vivo studies. Although clinical trials have shown mixed results, the potential for the use of RAS inhibitors and metformin as adjuvant GBM therapy remains promising. Nevertheless, evidence suggest that these drugs exert multimodal antitumor actions; by particularly targeting several cancer hallmarks. In this review, we highlight the results of clinical studies using multidrug cocktails containing RAS inhibitors and or metformin added to standard therapy for GBM. In addition, we highlight the possible molecular mechanisms by which these repurposed drugs with an excellent safety profile might elicit their anti-tumoral effects. RAS inhibition elicits anti-inflammatory, anti-angiogenic, and immune sensitivity effects in GBM. However, metformin promotes anti-migratory, anti-proliferative and pro-apoptotic effects mainly through the activation of AMP-activated protein kinase. Also, we discussed metformin's potential in targeting both GBM cells as well as GBM associated-stem cells. Finally, we summarize a few drug interactions that may cause an additive or antagonistic effect that may lead to adverse effects and influence treatment outcome.
Collapse
Affiliation(s)
- Sashana Dixon
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA.
| | - Ann Tenneil O'connor
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Chloe Brooks-Noreiga
- Halmos College of Arts and Sciences, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Michelle A Clark
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Arkene Levy
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Ana M Castejon
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| |
Collapse
|
45
|
Read RD, Tapp ZM, Rajappa P, Hambardzumyan D. Glioblastoma microenvironment-from biology to therapy. Genes Dev 2024; 38:360-379. [PMID: 38811170 PMCID: PMC11216181 DOI: 10.1101/gad.351427.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain cancer. These tumors exhibit high intertumoral and intratumoral heterogeneity in neoplastic and nonneoplastic compartments, low lymphocyte infiltration, and high abundance of myeloid subsets that together create a highly protumorigenic immunosuppressive microenvironment. Moreover, heterogeneous GBM cells infiltrate adjacent brain tissue, remodeling the neural microenvironment to foster tumor electrochemical coupling with neurons and metabolic coupling with nonneoplastic astrocytes, thereby driving growth. Here, we review heterogeneity in the GBM microenvironment and its role in low-to-high-grade glioma transition, concluding with a discussion of the challenges of therapeutically targeting the tumor microenvironment and outlining future research opportunities.
Collapse
Affiliation(s)
- Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Zoe M Tapp
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA;
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43215, USA
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio 43215, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
46
|
Wang X, Luo LX. New targets for cancer promotion and therapy in gliomas: Scinderin. World J Clin Oncol 2024; 15:687-690. [PMID: 38946838 PMCID: PMC11212608 DOI: 10.5306/wjco.v15.i6.687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 06/24/2024] Open
Abstract
Glioma is one of the most common primary intracranial tumors, characterized by invasive growth and poor prognosis. Actin cytoskeletal rearrangement is an essential event in tumor cell migration. Scinderin (SCIN), an actin severing and capping protein that regulates the actin cytoskeleton, is involved in the proliferation and migration of certain cancer cells. However, its biological role and molecular mechanism in glioma remain unclear. Lin et al explored the role and mechanism of SCIN in gliomas. The results showed that SCIN mechanically affected cytoskeleton remodeling and inhibited the formation of lamellipodia via RhoA/FAK signaling pathway. This study identifies the cancer-promoting role of SCIN and provides a potential therapeutic target for SCIN in glioma treatment.
Collapse
Affiliation(s)
- Xi Wang
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China
| | - Lian-Xiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| |
Collapse
|
47
|
Regner MJ, Garcia-Recio S, Thennavan A, Wisniewska K, Mendez-Giraldez R, Felsheim B, Spanheimer PM, Parker JS, Perou CM, Franco HL. Defining the Regulatory Logic of Breast Cancer Using Single-Cell Epigenetic and Transcriptome Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598858. [PMID: 38948758 PMCID: PMC11212881 DOI: 10.1101/2024.06.13.598858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Annotation of the cis-regulatory elements that drive transcriptional dysregulation in cancer cells is critical to improving our understanding of tumor biology. Herein, we present a compendium of matched chromatin accessibility (scATAC-seq) and transcriptome (scRNA-seq) profiles at single-cell resolution from human breast tumors and healthy mammary tissues processed immediately following surgical resection. We identify the most likely cell-of-origin for luminal breast tumors and basal breast tumors and then introduce a novel methodology that implements linear mixed-effects models to systematically quantify associations between regions of chromatin accessibility (i.e. regulatory elements) and gene expression in malignant cells versus normal mammary epithelial cells. These data unveil regulatory elements with that switch from silencers of gene expression in normal cells to enhancers of gene expression in cancer cells, leading to the upregulation of clinically relevant oncogenes. To translate the utility of this dataset into tractable models, we generated matched scATAC-seq and scRNA-seq profiles for breast cancer cell lines, revealing, for each subtype, a conserved oncogenic gene expression program between in vitro and in vivo cells. Together, this work highlights the importance of non-coding regulatory mechanisms that underlie oncogenic processes and the ability of single-cell multi-omics to define the regulatory logic of BC cells at single-cell resolution.
Collapse
Affiliation(s)
- Matthew J. Regner
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Susana Garcia-Recio
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Aatish Thennavan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Kamila Wisniewska
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Raul Mendez-Giraldez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brooke Felsheim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Philip M. Spanheimer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joel S. Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hector L. Franco
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935
| |
Collapse
|
48
|
Waitkus MS, Erman EN, Reitman ZJ, Ashley DM. Mechanisms of telomere maintenance and associated therapeutic vulnerabilities in malignant gliomas. Neuro Oncol 2024; 26:1012-1024. [PMID: 38285162 PMCID: PMC11145458 DOI: 10.1093/neuonc/noae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 01/30/2024] Open
Abstract
A majority of cancers (~85%) activate the enzyme telomerase to maintain telomere length over multiple rounds of cellular division. Telomerase-negative cancers activate a distinct, telomerase-independent mechanism of telomere maintenance termed alternative lengthening of telomeres (ALT). ALT uses homologous recombination to maintain telomere length and exhibits features of break-induced DNA replication. In malignant gliomas, the activation of either telomerase or ALT is nearly ubiquitous in pediatric and adult tumors, and the frequency with which these distinct telomere maintenance mechanisms (TMMs) is activated varies according to genetically defined glioma subtypes. In this review, we summarize the current state of the field of TMMs and their relevance to glioma biology and therapy. We review the genetic alterations and molecular mechanisms leading to telomerase activation or ALT induction in pediatric and adult gliomas. With this background, we review emerging evidence on strategies for targeting TMMs for glioma therapy. Finally, we comment on critical gaps and issues for moving the field forward to translate our improved understanding of glioma telomere maintenance into better therapeutic strategies for patients.
Collapse
Affiliation(s)
- Matthew S Waitkus
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Elise N Erman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary J Reitman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
49
|
Barzegar Behrooz A, Darzi Ramandi H, Latifi-Navid H, Peymani P, Tarharoudi R, Momeni N, Sabaghpour Azarian MM, Eltonsy S, Pour-Rashidi A, Ghavami S. Genetic Prognostic Factors in Adult Diffuse Gliomas: A 10-Year Experience at a Single Institution. Cancers (Basel) 2024; 16:2121. [PMID: 38893240 PMCID: PMC11172038 DOI: 10.3390/cancers16112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Gliomas are primary brain lesions involving cerebral structures without well-defined boundaries and constitute the most prevalent central nervous system (CNS) neoplasms. Among gliomas, glioblastoma (GB) is a glioma of the highest grade and is associated with a grim prognosis. We examined how clinical variables and molecular profiles may have affected overall survival (OS) over the past ten years. A retrospective study was conducted at Sina Hospital in Tehran, Iran and examined patients with confirmed glioma diagnoses between 2012 and 2020. We evaluated the correlation between OS in GB patients and sociodemographic as well as clinical factors and molecular profiling based on IDH1, O-6-Methylguanine-DNA Methyltransferase (MGMT), TERTp, and epidermal growth factor receptor (EGFR) amplification (EGFR-amp) status. Kaplan-Meier and multivariate Cox regression models were used to assess patient survival. A total of 178 patients were enrolled in the study. The median OS was 20 months, with a 2-year survival rate of 61.0%. Among the 127 patients with available IDH measurements, 100 (78.7%) exhibited mutated IDH1 (IDH1-mut) tumors. Of the 127 patients with assessed MGMT promoter methylation (MGMTp-met), 89 (70.1%) had MGMT methylated tumors. Mutant TERTp (TERTp-mut) was detected in 20 out of 127 cases (15.7%), while wildtype TERTp (wildtype TERTp-wt) was observed in 107 cases (84.3%). Analyses using multivariable models revealed that age at histological grade (p < 0.0001), adjuvant radiotherapy (p < 0.018), IDH1 status (p < 0.043), and TERT-p status (p < 0.014) were independently associated with OS. Our study demonstrates that patients with higher tumor histological grades who had received adjuvant radiotherapy exhibited IDH1-mut or presented with TERTp-wt experienced improved OS. Besides, an interesting finding showed an association between methylation of MGMTp and TERTp status with tumor location.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada;
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran;
- Brain Cancer Research Group, Department of Cancer, Asu Vanda Gene Industrial Research Company, Tehran 1533666398, Iran; (R.T.); (N.M.)
| | - Hadi Darzi Ramandi
- Department of Plant Production and Genetics, Bu-Ali Sina University, Hamedan 6517838623, Iran;
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj 7155863511, Iran
- Department of Biostatistics, Asu Vanda Gene Industrial Research Company, Tehran 1533666398, Iran
| | - Hamid Latifi-Navid
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran;
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran 1497716316, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran 1953833511, Iran
| | - Payam Peymani
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (P.P.); (S.E.)
| | - Rahil Tarharoudi
- Brain Cancer Research Group, Department of Cancer, Asu Vanda Gene Industrial Research Company, Tehran 1533666398, Iran; (R.T.); (N.M.)
- Department of Molecular and Cellular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Nasrin Momeni
- Brain Cancer Research Group, Department of Cancer, Asu Vanda Gene Industrial Research Company, Tehran 1533666398, Iran; (R.T.); (N.M.)
- Department of Molecular and Cellular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | | | - Sherif Eltonsy
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (P.P.); (S.E.)
| | - Ahmad Pour-Rashidi
- Brain Cancer Research Group, Department of Cancer, Asu Vanda Gene Industrial Research Company, Tehran 1533666398, Iran; (R.T.); (N.M.)
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada;
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
50
|
Dasgupta A, Prensner JR. Upstream open reading frames: new players in the landscape of cancer gene regulation. NAR Cancer 2024; 6:zcae023. [PMID: 38774471 PMCID: PMC11106035 DOI: 10.1093/narcan/zcae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
The translation of RNA by ribosomes represents a central biological process and one of the most dysregulated processes in cancer. While translation is traditionally thought to occur exclusively in the protein-coding regions of messenger RNAs (mRNAs), recent transcriptome-wide approaches have shown abundant ribosome activity across diverse stretches of RNA transcripts. The most common type of this kind of ribosome activity occurs in gene leader sequences, also known as 5' untranslated regions (UTRs) of the mRNA, that precede the main coding sequence. Translation of these upstream open reading frames (uORFs) is now known to occur in upwards of 25% of all protein-coding genes. With diverse functions from RNA regulation to microprotein generation, uORFs are rapidly igniting a new arena of cancer biology, where they are linked to cancer genetics, cancer signaling, and tumor-immune interactions. This review focuses on the contributions of uORFs and their associated 5'UTR sequences to cancer biology.
Collapse
Affiliation(s)
- Anwesha Dasgupta
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John R Prensner
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|