1
|
Jiang M, Jia Y, Ma C, Zeng Z, Wu Y, Gan H, Zhang H. Akkermansia muciniphila Protects Against Trinitrobenzene Sulfonic Acid Induced Colitis by Inhibiting IL6/STAT3 Pathway. Inflamm Bowel Dis 2025:izaf057. [PMID: 40209092 DOI: 10.1093/ibd/izaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Indexed: 04/12/2025]
Abstract
BACKGROUND Inflammatory bowel disease is a long-standing inflammatory disorder that influences the intestinal tract. The intent of this research is to explore whether the relative abundance of Akkermansia muciniphila is related to the IL6/STAT3 pathway and the fundamental molecular mechanisms of A. muciniphila on a trinitrobenzene sulfonic acid (TNBS)-induced enteritis mouse model, including the expression of inflammatory cytokines and proteins in the IL6/STAT3 signaling pathway. METHODS The association between the A. muciniphila and IL6/STAT3 was investigated by using mucosal biopsies and fecal samples. TNBS-induced colitis mouse models were performed to elucidate the underlying mechanisms. The alteration of intestinal microbiota was organized by 16s rRNA sequencing. RESULTS In Crohn's disease patients, the level of STAT3 and IL-6 presented a negative relationship with A. muciniphila. The expression of IL-6, p-STAT3, and STAT3 was downregulated in A.m+TNBS group, indicating A. muciniphila may inhibit the IL6/STAT3 pathway in TNBS-induced enteritis in vivo. To investigate the potential defensive role of A. muciniphila supplementation in vivo with TNBS-induced enteritis, 16S rRNA sequencing was performed to analyze changes in the intestinal microbiota composition. The results revealed a marked increase in microbial diversity and abundance within the A. muciniphila-treated group, suggesting a beneficial modulation of the gut microbiome associated with the supplementation. CONCLUSIONS Our findings declared that A. muciniphila supplementation alleviates gastrointestinal inflammation through IL-6/STAT3 signaling pathway. This protective effect was mediated by the downregulation of the IL-6 and STAT3, highlighting a potential mechanism by which A. muciniphila modulates inflammatory responses. This work disclosed that A. muciniphila demonstrates a defensive influence against TNBS-induced enteritis in vivo, proposing it qualified as a unique therapeutic focusing on modulating IL-6, STAT3, or p-STAT3 in the treatment of colitis.
Collapse
Affiliation(s)
- Mingshan Jiang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yongbin Jia
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chunxiang Ma
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yushan Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Huatian Gan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Wang T, Wang M, Liu W, Zhang L, Zhang J, Zhao J, Wu Z, Lyu Y, Wu R. Intracellular CIRP promotes liver regeneration via STAT3 signaling pathway activation after partial hepatectomy in mice. Int J Mol Med 2025; 55:42. [PMID: 39791211 PMCID: PMC11758893 DOI: 10.3892/ijmm.2025.5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Cold‑inducible RNA‑binding protein (CIRP) is a cold shock protein implicated in the regulation of multiple biological processes depending on its cellular localization. However, to the best of our knowledge, the role of CIRP in liver regeneration and injury after hepatectomy has not been investigated. The present study was therefore designed to explore whether CIRP is involved in liver regeneration after hepatectomy and its specific role and underlying molecular mechanism. The overall involvement of CIRP in liver regeneration and injury after hepatectomy was evaluated in CIRP‑deficient mice. C23, an antagonist of extracellular CIRP, was used to assess the effect of extracellular CIRP on liver regeneration and injury after hepatectomy. CIRP overexpression and short hairpin RNA plasmids were transfected into HepG2 cells to study the effect of intracellular CIRP on cell proliferation. The effects of extracellular CIRP on cell proliferation and injury were determined via the use of recombinant CIRP protein to stimulate HepG2 cells in vitro. The results indicated that both hepatic and serum CIRP levels significantly increased after partial hepatectomy. Additionally, CIRP deficiency impaired liver regeneration but alleviated liver injury after partial hepatectomy in mice. C23 administration attenuated liver injury and suppressed endoplasmic reticulum (ER) stress and oxidative stress. Loss‑ and gain‑of‑function analyses in HepG2 cells indicated that an increase in intracellular CIRP promoted cell proliferation via signal transducers and activation of transcription 3 (STAT3) signaling pathway activation. Moreover, recombinant CIRP had no effect on cell proliferation or STAT3 phosphorylation but induced ER stress, which was blocked by TAK242, an inhibitor of Toll‑like receptor 4 (TLR4), in HepG2 cells. Taken together, the results of the present study demonstrated that intracellular CIRP promotes liver regeneration by activating the STAT3 pathway, whereas extracellular CIRP induces ER stress possibly via the TLR4 signaling pathway after hepatectomy.
Collapse
Affiliation(s)
- Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lin Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Junzhou Zhao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yi Lyu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
3
|
AlYafie R, Velayutham D, van Panhuys N, Jithesh PV. The genetics of hyper IgE syndromes. Front Immunol 2025; 16:1516068. [PMID: 40040707 PMCID: PMC11876172 DOI: 10.3389/fimmu.2025.1516068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Hyper IgE syndromes (HIES) form a rare group of primary immunodeficiency disorders (PIDs) distinguished by persistent skin abscesses, dermatitis, allergies, and infections, in addition to their characteristic high serum IgE levels. Autosomal dominant (AD) and autosomal recessive (AR) genetic defects have been reported in HIES. From a clinical perspective, AD-HIES cases generally exhibit several non-immunologic features, including connective tissue, dental and skeletal abnormalities, whilst AR-HIES conditions have a higher incidence of neurologic complications and cutaneous viral infections. Genetic defects associated with HIES lead to impaired immune signaling, affecting pathways crucial for immune cell development, function, and immune response to pathogens/allergens. As a result, HIES patients are predisposed to recurrent bacterial and/or fungal infections, as well as atopic allergic responses. In many cases, the exact biological mechanisms responsible for the variations observed in the clinical phenotypes between the two inherited forms of HIES are still unclear. In this review, we describe the genetic basis of HIES with a distinction between the AR-HIES and AD-HIES forms, to better comprehend the different underlying molecular mechanisms, a distinction which is imperative for the accurate diagnosis, management, and development of targeted therapies for HIES patients.
Collapse
Affiliation(s)
- Randa AlYafie
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
- Laboratory of Immunoregulation, Research Department, Sidra Medicine, Doha, Qatar
| | - Dinesh Velayutham
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
| | - Nicholas van Panhuys
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
- Laboratory of Immunoregulation, Research Department, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
4
|
Liu Z, Liu J, Wei Y, Li J, Zhang J, Yu R, Yang Q, Miao Y, Dong W. Ubiquitin-specific protease 25 ameliorates ulcerative colitis by regulating the degradation of phosphor-STAT3. Cell Death Dis 2025; 16:5. [PMID: 39773987 PMCID: PMC11707020 DOI: 10.1038/s41419-024-07315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Ubiquitin-specific protease 25 (USP25), a member of the deubiquitination family, plays an important role in protein ubiquitination, degradation, inflammation, and immune regulation. However, the role and mechanism of USP25 in ulcerative colitis (UC) remain unclear. To study the role and mechanism of USP25 in UC, bioinformatics analysis and research are conducted on clinical patients with UC, Usp25 knockout (Usp25-/-) mice, intestinal epithelial cell-specific knockout signal transducer and activator of transcription 3 (Stat3) (Villin-Cre Stat3fl/fl) mice, and human colonic epithelial cells. Results show that the expression of USP25 is decreased in patients with UC and mice with dextran sulfate sodium salt (DSS)-induced colitis and that USP25 deficiency exacerbates UC by destroying the intestinal mucosal barrier, however, overexpression of USP25 can alleviate colitis. Mechanistically, USP25 reduces the degradation of phosphor-STAT3Y705 at lysine 409 by catalyzing K48-linked deubiquitination. Further, this study demonstrates the aggravation of DSS-induced colitis by intestinal epithelial cell-specific knockout Stat3 in mice, while Stat3 overexpression by adeno-associated virus attenuates colitis in DSS-induced Usp25-/- mice. Together, these results showed that USP25 ameliorates UC by regulating the degradation of phosphor-STAT3. Collectively, USP25 is a specific STAT3 regulator that can be targeted in UC.
Collapse
Affiliation(s)
- Zhengru Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Jian Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuping Wei
- Department of Gastroenterology, The Third People's Hospital of Chengdu, Chengdu, 610000, China
| | - Jinting Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rong Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qian Yang
- Department of Gastroenterology, Guizhou provincial people's hospital, Guiyang, 550002, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
5
|
Feng N, Li Y, Guo F, Song J, Wang L, Li M, Gao K, Wang X, Chu D, Song Y, Wang L. Fibroblast growth factor 10 alleviates LPS-induced acute lung injury by promoting recruited macrophage M2 polarization. Inflammation 2024:10.1007/s10753-024-02158-4. [PMID: 39538090 DOI: 10.1007/s10753-024-02158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/03/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Acute lung injury (ALI) is characterized by damage to the alveoli and an overabundance of inflammation. Representing a serious inflammatory condition, ALI lacks a precise treatment approach. Despite the recognized benefit impacts of Fibroblast growth factor-10 (FGF10) on ALI, the underlying mechanisms remain unelucidated. To study the role of FGF10 in ALI, C57BL/6 J mice were intratracheally injected with 5 mg/kg Lipopolysaccharide (LPS) with FGF10 (5 mg/kg) or an equal volume of PBS. Inflammatory factors were quantified in bronchoalveolar lavage fluid (BALF) and plasma using ELISA. RNA sequencing of F4/80+Ly6G- macrophages in BALF explored changes in macrophage phenotype and potential mechanisms. Macrophage polarization in BALF was assessed using qRT-PCR, flow cytometry, and Western blot analysis. In vitro, a Transwell co-culture of mouse lung epithelial cells (MLE12) and bone marrow macrophages (BMDM) validated the role of FGF10 in modulating LPS-induced macrophage phenotypic changes. FGF10 ameliorated LPS-induced ALI by diminishing pro-inflammatory factors (IL-1β, TNF-α, and IL-6) and the neutrophil accumulation in BALF. FGF10 also increased the levels of anti-inflammatory factor IL-10. The FGF10 intervention group exhibited enhanced gene expression of macrophage arginine biosynthesis marker (ARG1), and expression of M2-type marker CD206 in monocytes and macrophages. In addition, phosphorylated STAT3 expression increased in isolated monocyte-derived macrophages. Experiments in vitro confirmed that FGF10 could elevate macrophage M2 marker ARG1 expression through the JAK2/STAT3 pathway. FGF10 ameliorates acute LPS-induced lung injury by modulating the polarization of monocyte-derived macrophages recruited in the alveolar space to the M2 type.
Collapse
Affiliation(s)
- Nana Feng
- Department of Respiratory and Critical Medicine, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Yufan Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fengxia Guo
- Department of Respiratory and Critical Medicine, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Juan Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Miao Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Kaijing Gao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaocen Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dejie Chu
- Department of Respiratory and Critical Medicine, Shanghai Eighth People's Hospital, Shanghai, 200235, China.
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China.
- Shanghai Respiratory Research Institute, Shanghai, 200032, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Jinshan Hospital of Fudan University, Shanghai, 201508, China.
| | - Linlin Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Sohrabi S, Masoumi J, Naseri B, Ghorbaninezhad F, Alipour S, Kazemi T, Ahmadian Heris J, Aghebati Maleki L, Basirjafar P, Zandvakili R, Doustvandi MA, Baradaran B. STATs signaling pathways in dendritic cells: As potential therapeutic targets? Int Rev Immunol 2024; 43:138-159. [PMID: 37886903 DOI: 10.1080/08830185.2023.2274576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/17/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs), including heterogenous populations with phenotypic and functional diversity that coordinate bridging innate and adaptive immunity. Signal transducer and activator of transcriptions (STAT) factors as key proteins in cytokine signaling were shown to play distinct roles in the maturation and antigen presentation of DCs and play a pivotal role in modulating immune responses mediated by DCs such as differentiation of T cells to T helper (Th) 1, Th2 or regulatory T (Treg) cells. This review sheds light on the importance of STAT transcription factors' signaling pathways in different subtypes of DCs and highlights their targeting potential usages for improving DC-based immunotherapies for patients who suffer from cancer or diverse autoimmune conditions according to the type of the STAT transcription factor and its specific activating or inhibitory agent.
Collapse
Affiliation(s)
- Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Pedram Basirjafar
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Sobah ML, Liongue C, Ward AC. Stat3 Regulates Developmental Hematopoiesis and Impacts Myeloid Cell Function via Canonical and Non-Canonical Modalities. J Innate Immun 2024; 16:262-282. [PMID: 38643762 PMCID: PMC11249464 DOI: 10.1159/000538364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024] Open
Abstract
INTRODUCTION Signal transducer and activator of transcription (STAT) 3 is extensively involved in the development, homeostasis, and function of immune cells, with STAT3 disruption associated with human immune-related disorders. The roles ascribed to STAT3 have been assumed to be due to its canonical mode of action as an inducible transcription factor downstream of multiple cytokines, although alternative noncanonical functional modalities have also been identified. The relative involvement of each mode was further explored in relevant zebrafish models. METHODS Genome editing with CRISPR/Cas9 was used to generate mutants of the conserved zebrafish Stat3 protein: a loss of function knockout (KO) mutant and a mutant lacking C-terminal sequences including the transactivation domain (ΔTAD). Lines harboring these mutations were analyzed with respect to blood and immune cell development and function in comparison to wild-type zebrafish. RESULTS The Stat3 KO mutant showed perturbation of hematopoietic lineages throughout primitive and early definitive hematopoiesis. Neutrophil numbers did not increase in response to lipopolysaccharide (LPS) or granulocyte colony-stimulating factor (G-CSF) and their migration was significantly diminished, the latter correlating with abrogation of the Cxcl8b/Cxcr2 pathway, with macrophage responses perturbed. Intriguingly, many of these phenotypes were not shared by the Stat3 ΔTAD mutant. Indeed, only neutrophil and macrophage development were disrupted in these mutants with responsiveness to LPS and G-CSF maintained, and neutrophil migration actually increased. CONCLUSION This study has identified roles for zebrafish Stat3 within hematopoietic stem cells impacting multiple lineages throughout primitive and early definitive hematopoiesis, myeloid cell responses to G-CSF and LPS and neutrophil migration. Many of these roles showed conservation, but notably several involved noncanonical modalities, providing additional insights for relevant diseases.
Collapse
Affiliation(s)
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| |
Collapse
|
8
|
Zhou L, Yan Z, Yang W, Buckley JA, Al Diffalha S, Benveniste EN, Qin H. Socs3 expression in myeloid cells modulates the pathogenesis of dextran sulfate sodium (DSS)-induced colitis. Front Immunol 2023; 14:1163987. [PMID: 37283760 PMCID: PMC10239850 DOI: 10.3389/fimmu.2023.1163987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Myeloid cells play a critical role in the pathogenesis of Inflammatory Bowel Diseases (IBDs), including Ulcerative Colitis (UC) and Crohn's Disease (CD). Dysregulation of the JAK/STAT pathway is associated with many pathological conditions, including IBD. Suppressors Of Cytokine Signaling (SOCS) are a family of proteins that negatively regulate the JAK/STAT pathway. Our previous studies identified that mice lacking Socs3 in myeloid cells developed a hyper-activated phenotype of macrophages and neutrophils in a pre-clinical model of Multiple Sclerosis. Methods To better understand the function of myeloid cell Socs3 in the pathogenesis of colitis, mice with Socs3 deletion in myeloid cells (Socs3 ΔLysM) were utilized in a DSS-induced colitis model. Results Our results indicate that Socs3 deficiency in myeloid cells leads to more severe colitis induced by DSS, which correlates with increased infiltration of monocytes and neutrophils in the colon and increased numbers of monocytes and neutrophils in the spleen. Furthermore, our results demonstrate that the expression of genes related to the pathogenesis and diagnosis of colitis such as Il1β, Lcn2, S100a8 and S100a9 were specifically enhanced in Socs3-deficient neutrophils localized to the colon and spleen. Conversely, there were no observable differences in gene expression in Ly6C+ monocytes. Depletion of neutrophils using a neutralizing antibody to Ly6G significantly improved the disease severity of DSS-induced colitis in Socs3-deficient mice. Discussion Thus, our results suggest that deficiency of Socs3 in myeloid cells exacerbates DSS-induced colitis and that Socs3 prevents overt activation of the immune system in IBD. This study may provide novel therapeutic strategies to IBD patients with hyperactivated neutrophils.
Collapse
Affiliation(s)
- Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhaoqi Yan
- Gladstone Institute of Neurological Disease, San Francisco, CA, United States
| | - Wei Yang
- Division of Gastroenterology and Hepatology, Weill Cornell College of Medicine, New York, NY, United States
| | - Jessica A. Buckley
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Etty N. Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Patel B, Zhou Y, Babcock RL, Ma F, Zal MA, Kumar D, Medik YB, Kahn LM, Pineda JE, Park EM, Tang X, Raso MG, Zal T, Clise-Dwyer K, Giancotti FG, Colla S, Watowich SS. STAT3 protects HSCs from intrinsic interferon signaling and loss of long-term blood-forming activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528069. [PMID: 36798265 PMCID: PMC9934695 DOI: 10.1101/2023.02.10.528069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
STAT3 function in hematopoietic stem and progenitor cells (HSPCs) has been difficult to discern as Stat3 deficiency in the hematopoietic system induces systemic inflammation, which can impact HSPC activity. To address this, we established mixed bone marrow (BM) chimeric mice with CreER-mediated Stat3 deletion in 20% of the hematopoietic compartment. Stat3-deficient HSPCs had impaired hematopoietic activity and failed to undergo expansion in BM in contrast to Stat3-sufficient (CreER) controls. Single-cell RNA sequencing of Lin-ckit+Sca1+ BM cells revealed altered transcriptional responses in Stat3-deficient hematopoietic stem cells (HSCs) and multipotent progenitors, including intrinsic activation of cell cycle, stress response, and interferon signaling pathways. Consistent with their deregulation, Stat3-deficient Lin-ckit+Sca1+ cells accumulated γH2AX over time. Following secondary BM transplantation, Stat3-deficient HSPCs failed to reconstitute peripheral blood effectively, indicating a severe functional defect in the HSC compartment. Our results reveal essential roles for STAT3 in HSCs and suggest the potential for using targeted synthetic lethal approaches with STAT3 inhibition to remove defective or diseased HSPCs.
Collapse
Affiliation(s)
- Bhakti Patel
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rachel L. Babcock
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Feiyang Ma
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Malgorzata A. Zal
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhiraj Kumar
- Herbert Irving Cancer Center and Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Yusra B. Medik
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura M. Kahn
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Josué E. Pineda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Elizabeth M. Park
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomasz Zal
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Filippo G. Giancotti
- Herbert Irving Cancer Center and Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Program for Innovative Microbiome and Translational Research (PRIME-TR), The University of Texas MD Anderson Cancer Center, Houston, TX, US
| |
Collapse
|
10
|
Zhu L, Wang Z, Sun X, Yu J, Li T, Zhao H, Ji Y, Peng B, Du M. STAT3/Mitophagy Axis Coordinates Macrophage NLRP3 Inflammasome Activation and Inflammatory Bone Loss. J Bone Miner Res 2023; 38:335-353. [PMID: 36502520 DOI: 10.1002/jbmr.4756] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/06/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3), a cytokine-responsive transcription factor, is known to play a role in immunity and bone remodeling. However, whether and how STAT3 impacts macrophage NLR family pyrin domain containing 3 (NLRP3) inflammasome activation associated with inflammatory bone loss remains unknown. Here, STAT3 signaling is hyperactivated in macrophages in the context of both non-sterile and sterile inflammatory osteolysis, and this was highly correlated with the cleaved interleukin-1β (IL-1β) expression pattern. Strikingly, pharmacological inhibition of STAT3 markedly blocks macrophage NLRP3 inflammasome activation in vitro, thereby relieving inflammatory macrophage-amplified osteoclast formation and bone-resorptive activity. Mechanistically, STAT3 inhibition in macrophages triggers PTEN-induced kinase 1 (PINK1)-dependent mitophagy that eliminates dysfunctional mitochondria, reverses mitochondrial membrane potential collapse, and inhibits mitochondrial reactive oxygen species release, thus inactivating the NLRP3 inflammasome. In vivo, STAT3 inhibition effectively protects mice from both infection-induced periapical lesions and aseptic titanium particle-mediated calvarial bone erosion with potent induction of PINK1 and downregulation of inflammasome activation, macrophage infiltration, and osteoclast formation. This study reveals the regulatory role of the STAT3/mitophagy axis at the osteo-immune interface and highlights a potential therapeutic intervention to prevent inflammatory bone loss. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zijun Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoyue Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingjing Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huan Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bin Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Davis CM, Lyon-Scott K, Varlamov EV, Zhang WH, Alkayed NJ. Role of Endothelial STAT3 in Cerebrovascular Function and Protection from Ischemic Brain Injury. Int J Mol Sci 2022; 23:12167. [PMID: 36293020 PMCID: PMC9602684 DOI: 10.3390/ijms232012167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 02/25/2024] Open
Abstract
STAT3 plays a protective role against ischemic brain injury; however, it is not clear which brain cell type mediates this effect, and by which mechanism. We tested the hypothesis that endothelial STAT3 contributes to protection from cerebral ischemia, by preserving cerebrovascular endothelial function and blood-brain barrier (BBB) integrity. The objective of this study was to determine the role of STAT3 in cerebrovascular endothelial cell (EC) survival and function, and its role in tissue outcome after cerebral ischemia. We found that in primary mouse brain microvascular ECs, STAT3 was constitutively active, and its phosphorylation was reduced by oxygen-glucose deprivation (OGD), recovering after re-oxygenation. STAT3 inhibition, using two mechanistically different pharmacological inhibitors, increased EC injury after OGD. The sub-lethal inhibition of STAT3 caused endothelial dysfunction, demonstrated by reduced nitric oxide release in response to acetylcholine and reduced barrier function of the endothelial monolayer. Finally, mice with reduced endothelial STAT3 (Tie2-Cre; STAT3flox/wt) sustained larger brain infarcts after middle cerebral artery occlusion (MCAO) compared to wild-type (WT) littermates. We conclude that STAT3 is vital to maintaining cerebrovascular integrity, playing a role in EC survival and function, and protection against cerebral ischemia. Endothelial STAT3 may serve as a potential target in preventing endothelial dysfunction after stroke.
Collapse
Affiliation(s)
- Catherine M. Davis
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Pk. Rd., UHN-2, Portland, OR 97239-3098, USA
| | - Kristin Lyon-Scott
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Pk. Rd., UHN-2, Portland, OR 97239-3098, USA
| | - Elena V. Varlamov
- Department of Medicine, Division of Endocrinology and Department of Neurological Surgery, Oregon Health & Science University, 3181 S.W. Sam Jackson Pk. Rd., UHN-2, Portland, OR 97239-3098, USA
| | - Wenri H. Zhang
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Pk. Rd., UHN-2, Portland, OR 97239-3098, USA
| | - Nabil J. Alkayed
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Pk. Rd., UHN-2, Portland, OR 97239-3098, USA
- The Knight Cardiovascular Institute, Oregon Health & Science University, 3181 S.W. Sam Jackson Pk. Rd., UHN-2, Portland, OR 97239-3098, USA
| |
Collapse
|
12
|
Dalod M, Scheu S. Dendritic cell functions in vivo: a user's guide to current and next generation mutant mouse models. Eur J Immunol 2022; 52:1712-1749. [PMID: 35099816 DOI: 10.1002/eji.202149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/14/2022] [Indexed: 11/11/2022]
Abstract
Dendritic cells (DCs) do not just excel in antigen presentation. They orchestrate information transfer from innate to adaptive immunity, by sensing and integrating a variety of danger signals, and translating them to naïve T cells, to mount specifically tailored immune responses. This is accomplished by distinct DC types specialized in different functions and because each DC is functionally plastic, assuming different activation states depending on the input signals received. Mouse models hold the key to untangle this complexity and determine which DC types and activation states contribute to which functions. Here, we aim to provide comprehensive information for selecting the most appropriate mutant mouse strains to address specific research questions on DCs, considering three in vivo experimental approaches: (i) interrogating the roles of DC types through their depletion; (ii) determining the underlying mechanisms by specific genetic manipulations; (iii) deciphering the spatiotemporal dynamics of DC responses. We summarize the advantages, caveats, suggested use and perspectives for a variety of mutant mouse strains, discussing in more detail the most widely used or accurate models. Finally, we discuss innovative strategies to improve targeting specificity, for the next generation mutant mouse models, and briefly address how humanized mouse models can accelerate translation into the clinic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marc Dalod
- CNRS, Inserm, Aix Marseille Univ, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Marseille, France
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
13
|
Abstract
The development of therapies to eliminate the latent HIV-1 reservoir is hampered by our incomplete understanding of the biomolecular mechanism governing HIV-1 latency. To further complicate matters, recent single cell RNA-seq studies reported extensive heterogeneity between latently HIV-1-infected primary T cells, implying that latent HIV-1 infection can persist in greatly differing host cell environments. We here show that transcriptomic heterogeneity is also found between latently infected T cell lines, which allowed us to study the underlying mechanisms of intercell heterogeneity at high signal resolution. Latently infected T cells exhibited a de-differentiated phenotype, characterized by the loss of T cell-specific markers and gene regulation profiles reminiscent of hematopoietic stem cells (HSC). These changes had functional consequences. As reported for stem cells, latently HIV-1 infected T cells efficiently forced lentiviral superinfections into a latent state and favored glycolysis. As a result, metabolic reprogramming or cell re-differentiation destabilized latent infection. Guided by these findings, data-mining of single cell RNA-seq data of latently HIV-1 infected primary T cells from patients revealed the presence of similar dedifferentiation motifs. >20% of the highly detectable genes that were differentially regulated in latently infected cells were associated with hematopoietic lineage development (e.g. HUWE1, IRF4, PRDM1, BATF3, TOX, ID2, IKZF3, CDK6) or were hematopoietic markers (SRGN; hematopoietic proteoglycan core protein). The data add to evidence that the biomolecular phenotype of latently HIV-1 infected cells differs from normal T cells and strategies to address their differential phenotype need to be considered in the design of therapeutic cure interventions. IMPORTANCE HIV-1 persists in a latent reservoir in memory CD4 T cells for the lifetime of a patient. Understanding the biomolecular mechanisms used by the host cells to suppress viral expression will provide essential insights required to develop curative therapeutic interventions. Unfortunately, our current understanding of these control mechanisms is still limited. By studying gene expression profiles, we demonstrated that latently HIV-1-infected T cells have a de-differentiated T cell phenotype. Software-based data integration allowed for the identification of drug targets that would re-differentiate viral host cells and, in extension, destabilize latent HIV-1 infection events. The importance of the presented data lies within the clear demonstration that HIV-1 latency is a host cell phenomenon. As such, therapeutic strategies must first restore proper host cell functionality to accomplish efficient HIV-1 reactivation.
Collapse
|
14
|
Malengier-Devlies B, Metzemaekers M, Wouters C, Proost P, Matthys P. Neutrophil Homeostasis and Emergency Granulopoiesis: The Example of Systemic Juvenile Idiopathic Arthritis. Front Immunol 2021; 12:766620. [PMID: 34966386 PMCID: PMC8710701 DOI: 10.3389/fimmu.2021.766620] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are key pathogen exterminators of the innate immune system endowed with oxidative and non-oxidative defense mechanisms. More recently, a more complex role for neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and adaptive immune responses has come into view. Under homeostatic conditions, neutrophils are short-lived cells that are continuously released from the bone marrow. Their development starts with undifferentiated hematopoietic stem cells that pass through different immature subtypes to eventually become fully equipped, mature neutrophils capable of launching fast and robust immune responses. During severe (systemic) inflammation, there is an increased need for neutrophils. The hematopoietic system rapidly adapts to this increased demand by switching from steady-state blood cell production to emergency granulopoiesis. During emergency granulopoiesis, the de novo production of neutrophils by the bone marrow and at extramedullary sites is augmented, while additional mature neutrophils are rapidly released from the marginated pools. Although neutrophils are indispensable for host protection against microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases. Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during emergency myelopoiesis and provide an overview of the different molecular players involved in this regulation. We substantiate this review with the example of an autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- Bert Malengier-Devlies
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Metzemaekers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Division of Pediatric Rheumatology, University Hospitals Leuven, Leuven, Belgium.,European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Effect Mechanism of Electroacupuncture at ST36 on the Injured Extensor Digitorum Longus in the Jumping Rat Model Based on mRNA-Seq Analysis. Biomedicines 2021; 9:biomedicines9121849. [PMID: 34944666 PMCID: PMC8698353 DOI: 10.3390/biomedicines9121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
The key target and regulatory mechanism of electroacupuncture of Zusanli (ST36) on extensor longus muscle injury in a jumping rat model were investigated. To this end, 24 female SD rats were randomly divided into the following four groups: no-treatment control group (NON), 6-week jumping group (J6O), electroacupuncture group after 6-week jumping (J6A), and natural recovery group after 6-week jumping (J6N). After 6 weeks of jumping, in the electroacupuncture group (J6A), electroacupuncture stimulation was applied at Zusanli(ST36) for 20 min per day over the course of 5 days. In the natural recovery group (J6N), rats were fastened with a special apparatus without electroacupuncture stimulation for 20 min at the same time. Transmission electron microscopy, transcriptome sequencing and analysis, Western blotting assay and immunofluorescence staining were performed at the end of our experiment. The recovery effect of J6A rats was more obvious than that of J6N rats and J6O rats as indicated by changes of infiltration of inflammatory cells and morphological structure. Notably, the morphological structure of J6A rats was closer to NON rats in the observation of transmission electron microscopy. CISH/STAT3 regulation was identified by mRNA-seq. The pro-inflammatory response to STAT3 activation was alleviated through up-regulating the expression of CISH protein in J6A rats relative to J6O rats. The level of BAX was decreased and the level of Bcl-2 level was increased in J6A rats relative to J6O rats. Moreover, when compared to J6N rats, the level of Bcl-2 was significantly up-regulated in J6A rats. Increased caspase-3 expression but decreased CDKN2α expression was shown in J6A rats relative to NON rats. These results indicate that the potential mechanism underlying electroacupuncture stimulation of Zusanli (ST36) in repairing the injured extensor digitorum longus following overused jumping may be attributed to CISH/STAT3 regulation of proteins associated with inflammation, apoptosis, and proliferation.
Collapse
|
16
|
Lee YY, Irfan M, Quah Y, Saba E, Kim SD, Park SC, Jeong MG, Kwak YS, Rhee MH. The increasing hematopoietic effect of the combined treatment of Korean Red Ginseng and Colla corii asini on cyclophosphamide-induced immunosuppression in mice. J Ginseng Res 2021; 45:591-598. [PMID: 34803429 PMCID: PMC8587481 DOI: 10.1016/j.jgr.2021.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/17/2021] [Indexed: 12/22/2022] Open
Abstract
Background Hematopoiesis is the production of blood cells from hematopoietic stem cells (HSCs) that reside in the bone marrow. Cyclophosphamide (CTX) is a chemotherapy drug that suppresses the immune system. Korean Red Ginseng (KRG) and Colla corii asini (CCA) have been traditionally used for boosting the immune system. Methods HSCs in the bone marrow, and immune cell subtype in splenocytes, PBMCs, and thymocytes were investigated. Serum levels of hematopoietic-related markers were analyzed using ELISA. Protein expression in spleen tissue was analyzed using western blot analysis. Hematoxylin & eosin staining in the femurs of mice were also conducted. Results The combination of KRG and CCA with a ratio of 3:2 increased HSCs, CD3 and CD8+ T cells in the circulation, and CD3 T cells in the spleen. A ratio of 2:3 (KRG:CCA) increased the thymic regulatory T cells and recovered the CD3 T cells in the spleen and circulation while recovering proteins in the JAK-STAT pathway in the spleen. Overall, blood cell population and differentiating factors vital for cell differentiation were also significantly recovered by all combinations especially in ratios of 3:2 and 2:3. Conclusion A ratio of 3:2 (KRG:CCA) is the most ideal combination as it recovered the HSC population in the bone marrow of mice.
Collapse
Affiliation(s)
- Yuan Yee Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Irfan
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Yixian Quah
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sung-Dae Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Chun Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Myung-Gyun Jeong
- R&D Headquarters, Korea Ginseng Cooperation, Daejeon, Republic of Korea
| | - Yi-Seong Kwak
- R&D Headquarters, Korea Ginseng Cooperation, Daejeon, Republic of Korea
- Corresponding author. Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Corresponding author. R&D Headquarters, Korea Ginseng Cooperation, Daejeon, 34520, Republic of Korea.
| |
Collapse
|
17
|
Wang L, Astone M, Alam SK, Zhu Z, Pei W, Frank DA, Burgess SM, Hoeppner LH. Suppressing STAT3 activity protects the endothelial barrier from VEGF-mediated vascular permeability. Dis Model Mech 2021; 14:272222. [PMID: 34542605 PMCID: PMC8592016 DOI: 10.1242/dmm.049029] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
Vascular permeability triggered by inflammation or ischemia promotes edema, exacerbates disease progression and impairs tissue recovery. Vascular endothelial growth factor (VEGF) is a potent inducer of vascular permeability. VEGF plays an integral role in regulating vascular barrier function physiologically and in pathologies, including cancer, stroke, cardiovascular disease, retinal conditions and COVID-19-associated pulmonary edema, sepsis and acute lung injury. Understanding temporal molecular regulation of VEGF-induced vascular permeability will facilitate developing therapeutics to inhibit vascular permeability, while preserving tissue-restorative angiogenesis. Here, we demonstrate that VEGF signals through signal transducer and activator of transcription 3 (STAT3) to promote vascular permeability. We show that genetic STAT3 ablation reduces vascular permeability in STAT3-deficient endothelium of mice and VEGF-inducible zebrafish crossed with CRISPR/Cas9-generated Stat3 knockout zebrafish. Intercellular adhesion molecule 1 (ICAM-1) expression is transcriptionally regulated by STAT3, and VEGF-dependent STAT3 activation is regulated by JAK2. Pyrimethamine, an FDA-approved antimicrobial agent that inhibits STAT3-dependent transcription, substantially reduces VEGF-induced vascular permeability in zebrafish, mouse and human endothelium. Collectively, our findings suggest that VEGF/VEGFR-2/JAK2/STAT3 signaling regulates vascular barrier integrity, and inhibition of STAT3-dependent activity reduces VEGF-induced vascular permeability. This article has an associated First Person interview with the first author of the paper. Summary: Genetic STAT3 ablation in mice and VEGF-inducible zebrafish reveals that VEGF signals through STAT3 to promote vascular permeability. Pyrimethamine reduces VEGF-induced permeability in animal models.
Collapse
Affiliation(s)
- Li Wang
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Matteo Astone
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Sk Kayum Alam
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Zhu Zhu
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Wuhong Pei
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Luke H Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Shrestha AK, Menon RT, Yallampalli C, Barrios R, Shivanna B. Adrenomedullin Deficiency Potentiates Lipopolysaccharide-Induced Experimental Bronchopulmonary Dysplasia in Neonatal Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2080-2090. [PMID: 34508690 DOI: 10.1016/j.ajpath.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 01/12/2023]
Abstract
Lung inflammation interrupts alveolarization and causes bronchopulmonary dysplasia (BPD). Besides mechanical ventilation and hyperoxia, sepsis contributes to BPD pathogenesis. Adrenomedullin (Adm) is a multifunctional peptide that exerts anti-inflammatory effects in the lungs of adult rodents. Whether Adm mitigates sepsis-induced neonatal lung injury is unknown. The lung phenotype of mice exposed to early postnatal lipopolysaccharide (LPS) was recently shown to be similar to that in human BPD. This model was used to test the hypothesis that Adm-deficient neonatal mice will display increased LPS-induced lung injury than their wild-type (WT) littermates. Adm-deficient mice or their WT littermates were intraperitoneally administered 6 mg/kg of LPS or vehicle daily on postnatal days (PNDs) 3 to 5. The lungs were harvested at several time points to quantify inflammation, alveolarization, and vascularization. The extent of LPS-induced lung inflammation in Adm-deficient mice was 1.6-fold to 10-fold higher than their WT littermates. Strikingly, Adm deficiency induced STAT1 activation and potentiated STAT3 activation in LPS-exposed lungs. The severity of LPS-induced interruption of lung development was also greater in Adm-deficient mice at PND7. At PND14, LPS-exposed WT littermates displayed substantial improvement in lung development, whereas LPS-exposed Adm-deficient mice continued to have decreased lung development. These data indicate that Adm is necessary to decrease lung inflammation and injury and promote repair of the injured lungs in LPS-exposed neonatal mice.
Collapse
Affiliation(s)
- Amrit K Shrestha
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Renuka T Menon
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Chandrasekhar Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
19
|
Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development. Cells 2021; 10:cells10082063. [PMID: 34440832 PMCID: PMC8392544 DOI: 10.3390/cells10082063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Heritability accounts for over 80% of adult human height, indicating that genetic variability is the main determinant of stature. The rapid technological development of Next-Generation Sequencing (NGS), particularly Whole Exome Sequencing (WES), has resulted in the characterization of several genetic conditions affecting growth and development. The greatest challenge of NGS remains the high number of candidate variants identified. In silico bioinformatic tools represent the first approach for classifying these variants. However, solving the complicated problem of variant interpretation requires the use of experimental approaches such as in vitro and, when needed, in vivo functional assays. In this review, we will discuss a rational approach to apply to the gene variants identified in children with growth and developmental defects including: (i) bioinformatic tools; (ii) in silico modeling tools; (iii) in vitro functional assays; and (iv) the development of in vivo models. While bioinformatic tools are useful for a preliminary selection of potentially pathogenic variants, in vitro—and sometimes also in vivo—functional assays are further required to unequivocally determine the pathogenicity of a novel genetic variant. This long, time-consuming, and expensive process is the only scientifically proven method to determine causality between a genetic variant and a human genetic disease.
Collapse
|
20
|
Christians A, Weiss AC, Martens H, Klopf MG, Hennies I, Haffner D, Kispert A, Weber RG. Inflammation-like changes in the urothelium of Lifr-deficient mice and LIFR-haploinsufficient humans with urinary tract anomalies. Hum Mol Genet 2021; 29:1192-1204. [PMID: 32179912 DOI: 10.1093/hmg/ddaa048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/16/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of end-stage kidney disease in children. While the genetic aberrations underlying CAKUT pathogenesis are increasingly being elucidated, their consequences on a cellular and molecular level commonly remain unclear. Recently, we reported rare heterozygous deleterious LIFR variants in 3.3% of CAKUT patients, including a novel de novo frameshift variant, identified by whole-exome sequencing, in a patient with severe bilateral CAKUT. We also demonstrated CAKUT phenotypes in Lifr-/- and Lifr+/- mice, including a narrowed ureteric lumen due to muscular hypertrophy and a thickened urothelium. Here, we show that both in the ureter and bladder of Lifr-/- and Lifr+/- embryos, differentiation of the three urothelial cell types (basal, intermediate and superficial cells) occurs normally but that the turnover of superficial cells is elevated due to increased proliferation, enhanced differentiation from their progenitor cells (intermediate cells) and, importantly, shedding into the ureteric lumen. Microarray-based analysis of genome-wide transcriptional changes in Lifr-/- versus Lifr+/+ ureters identified gene networks associated with an antimicrobial inflammatory response. Finally, in a reverse phenotyping effort, significantly more superficial cells were detected in the urine of CAKUT patients with versus without LIFR variants indicating conserved LIFR-dependent urinary tract changes in the murine and human context. Our data suggest that LIFR signaling is required in the epithelium of the urinary tract to suppress an antimicrobial response under homeostatic conditions and that genetically induced inflammation-like changes underlie CAKUT pathogenesis in Lifr deficiency and LIFR haploinsufficiency.
Collapse
Affiliation(s)
- Anne Christians
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anna-Carina Weiss
- Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Maximilian Georg Klopf
- Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
21
|
Yadav PS, Feng S, Cong Q, Kim H, Liu Y, Yang Y. Stat3 loss in mesenchymal progenitors causes Job syndrome-like skeletal defects by reducing Wnt/β-catenin signaling. Proc Natl Acad Sci U S A 2021; 118:e2020100118. [PMID: 34172578 PMCID: PMC8256036 DOI: 10.1073/pnas.2020100118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Job syndrome is a rare genetic disorder caused by STAT3 mutations and primarily characterized by immune dysfunction along with comorbid skeleton developmental abnormalities including osteopenia, recurrent fracture of long bones, and scoliosis. So far, there is no definitive cure for the skeletal defects in Job syndrome, and treatments are limited to management of clinical symptoms only. Here, we have investigated the molecular mechanism whereby Stat3 regulates skeletal development and osteoblast differentiation. We showed that removing Stat3 function in the developing limb mesenchyme or osteoprogenitor cells in mice resulted in shortened and bow limbs with multiple fractures in long bones that resembled the skeleton symptoms in the Job Syndrome. However, Stat3 loss did not alter chondrocyte differentiation and hypertrophy in embryonic development, while osteoblast differentiation was severely reduced. Genome-wide transcriptome analyses as well as biochemical and histological studies showed that Stat3 loss resulted in down-regulation of Wnt/β-catenin signaling. Restoration of Wnt/β-catenin signaling by injecting BIO, a small molecule inhibitor of GSK3, or crossing with a Lrp5 gain of function (GOF) allele, rescued the bone reduction phenotypes due to Stat3 loss to a great extent. These studies uncover the essential functions of Stat3 in maintaining Wnt/β-catenin signaling in early mesenchymal or osteoprogenitor cells and provide evidence that bone defects in the Job Syndrome are likely caused by Wnt/β-catenin signaling reduction due to reduced STAT3 activities in bone development. Enhancing Wnt/β-catenin signaling could be a therapeutic approach to reduce bone symptoms of Job syndrome patients.
Collapse
Affiliation(s)
- Prem Swaroop Yadav
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Shuhao Feng
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Hanjun Kim
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115;
- Harvard Stem Cell Institute, Cambridge, MA 02138
| |
Collapse
|
22
|
Ghafouri-Fard S, Hussen BM, Nicknafs F, Nazer N, Sayad A, Taheri M. Expression Analysis of Protein Inhibitor of Activated STAT in Inflammatory Demyelinating Polyradiculoneuropathy. Front Immunol 2021; 12:659038. [PMID: 34054823 PMCID: PMC8149797 DOI: 10.3389/fimmu.2021.659038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
Protein inhibitors of activated STAT (PIAS) are involved in the regulation of the JAK/STAT signaling pathway and have interactions with NF-κB, p73 and p53. These proteins regulate immune responses; therefore dysregulation in their expression leads to several immune-mediated disorders. In the present study, we examined expression of PIAS1-4 in peripheral blood of patients with acute/chronic inflammatory demyelinating polyradiculoneuropathy (AIDP/CIDP) compared with healthy subjects. We demonstrated down-regulation of all PIAS genes in both AIDP and CIDP cases compared with controls. Similarly, comparisons in gender-based groups revealed down-regulation of these gene0s in patients of each gender compared with gender-matched controls. There was no significant difference in expression of PIAS genes between AIDP and CIDP cases. Based on the area under the receiver operating characteristic curves, PIAS1-4 genes could distinguish between inflammatory demyelinating polyradiculoneuropathy and healthy status with accuracy values of 0.87, 0.87, 0.79 and 0.80, respectively. In differentiation between AIDP cases and healthy controls, these values were 0.92, 0.92, 0.83 and 0.86, respectively. Finally, PIAS1-4 genes could discriminate CIDP from healthy status with accuracy values of 0.82, 0.83, 0.75 and 0.75, respectively. The current study underscores the role of PIAS genes in the pathogenesis of inflammatory demyelinating polyradiculoneuropathy and their potential usage as biomarkers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Fwad Nicknafs
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghme Nazer
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Fantini MC, Guadagni I. From inflammation to colitis-associated colorectal cancer in inflammatory bowel disease: Pathogenesis and impact of current therapies. Dig Liver Dis 2021; 53:558-565. [PMID: 33541800 DOI: 10.1016/j.dld.2021.01.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The risk of colorectal cancer (CRC) is higher in patients with inflammatory bowel disease (IBD). Population-based data from patients with ulcerative colitis (UC) estimate that the risk of CRC is approximately 2- to 3-fold that of the general population; patients with Crohn's disease appear to have a similar increased risk. However, the true extent of colitis-associated cancer (CAC) in undertreated IBD is unclear. Data suggest that the size (i.e., severity and extent) and persistence of the inflammatory process is largely responsible for the development of CRC in IBD. As patients with IBD and CRC have a worse prognosis than those without a history of IBD, the impact of current therapies for IBD on CAC is of importance. Chronic inflammation of the gut has been shown to increase the risk of developing CAC in both UC and CD. Therefore, control of inflammation is pivotal to the prevention of CAC. This review presents an overview of the current knowledge of CAC in IBD patients, focusing on the role of inflammation in the pathogenesis of CAC and the potential for IBD drugs to interfere with the process of carcinogenesis by reducing the inflammatory process or by modulating pathways directly involved in carcinogenesis.
Collapse
Affiliation(s)
- Massimo Claudio Fantini
- Department of Medical Science and Public Health, Gastroenterology Unit, University of Cagliari, Cittadella Universitaria di Monserrato - Asse Didattico I, SS 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy.
| | | |
Collapse
|
24
|
Zhang ZQ, Hu XS, Lu YC, Zhang JP, Li WY, Zhang WY, Feng W, Ding DF, Xu JG. MEK1/2 Inhibitor (GDC0623) Promotes Osteogenic Differentiation of Primary Osteoblasts Inhibited by IL-1 β through the MEK-Erk1/2 and Jak/Stat3 Pathways. Int J Endocrinol 2021; 2021:5720145. [PMID: 34976051 PMCID: PMC8716208 DOI: 10.1155/2021/5720145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We evaluated the effects and mechanisms of GDC0623 on osteogenic differentiation of osteoblasts induced by IL-1β. Methodology. Osteoblasts were treated with 20 ng/ml IL-1β and 0.1 µM GDC0623. Cell proliferation levels were evaluated by the cell counting kit 8 (CCK8), EdU assay, and western blotting [proliferating cell nuclear antigen (PCNA) and Cyclin D1]. Osteoblasts were cultured in an osteogenic induction medium for 1-3 weeks after which their differentiations were assessed by alkaline phosphatase (ALP) staining, Alizarin Red staining, calcium concentration, immunocytochemistry staining, real-time quantitative PCR (RT-qPCR), and immunofluorescence staining. The osteogenesis-associated mechanisms were further evaluated by western blotting using appropriate antibodies. RESULTS Relative to the control group, IL-1β induced the rapid proliferation of osteoblasts and suppressed their osteogenic differentiations by upregulating the activities of MEK-Erk1/2 as well as Jak-Stat3 pathways and by elevating MMP13 and MMP9 levels. However, blocking of the MEK-Erk1/2 signaling pathway by GDC0623 treatment reversed these effects. CONCLUSION Inhibition of Jak-Stat3 pathway by C188-9 downregulated the expression levels of MMP9 and MMP13, activated MEK-Erk1/2 pathway, and inhibited osteogenic differentiation.
Collapse
Affiliation(s)
- Zeng-Qiao Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Shen Hu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye-Chen Lu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Yao Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Yang Zhang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Wei Feng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dao-Fang Ding
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
25
|
Sanpaolo ER, Rotondo C, Cici D, Corrado A, Cantatore FP. JAK/STAT pathway and molecular mechanism in bone remodeling. Mol Biol Rep 2020; 47:9087-9096. [PMID: 33099760 PMCID: PMC7674338 DOI: 10.1007/s11033-020-05910-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022]
Abstract
JAK/STAT signaling pathway is involved in many diseases, including autoimmune diseases, which are characterized by a close interconnection between immune and bone system. JAK/STAT pathway is involved in bone homeostasis and plays an important role in proliferation and differentiation of some cell types, including osteoblasts and osteoclasts. Different molecules, such as cytokines, hormones, and growth factors are responsible for the activation of the JAK/STAT pathway, which leads, at the nuclear level, to start DNA transcription of target genes. Bone cells and remodeling process are often influenced by many cytokines, which act as strong stimulators of bone formation and resorption. Our aim, through careful research in literature, has been to provide an overview of the role of the JAK/STAT pathway in bone remodeling and on bone cells, with a focus on cytokines involved in bone turnover through this signal cascade. The JAK/STAT pathway, through the signal cascade activation mediated by the interaction with many cytokines, acts on bone cells and appears to be involved in bone remodeling process. However, many other studies are needed to completely understand the molecular mechanism underlying these bone process.
Collapse
Affiliation(s)
- Eliana Rita Sanpaolo
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy.
| | - Cinzia Rotondo
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy
| | - Daniela Cici
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy
| | - Ada Corrado
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy
| | - Francesco Paolo Cantatore
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy
| |
Collapse
|
26
|
STAT3 Differentially Regulates TLR4-Mediated Inflammatory Responses in Early or Late Phases. Int J Mol Sci 2020; 21:ijms21207675. [PMID: 33081347 PMCID: PMC7589049 DOI: 10.3390/ijms21207675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor 4 (TLR4) signaling is an important therapeutic target to manage lipopolysaccharide (LPS)-induced inflammation. The transcription factor signal transducer and activator of transcription 3 (STAT3) has been identified as an important regulator of various immune-related diseases and has generated interest as a therapeutic target. Here, we investigated the time-dependent roles of STAT3 in LPS-stimulated RAW264.7 macrophages. STAT3 inhibition induced expression of the pro-inflammatory genes iNOS and COX-2 at early time points. STAT3 depletion resulted in regulation of nuclear translocation of nuclear factor (NF)-κB subunits p50 and p65 and IκBα/Akt/PI3K signaling. Moreover, we found that one Src family kinase, Lyn kinase, was phosphorylated in STAT3 knockout macrophages. In addition to using pharmacological inhibition of NF-κB, we found out that STAT3KO activation of NF-κB subunit p50 and p65 and expression of iNOS was significantly inhibited; furthermore, Akt tyrosine kinase inhibitors also inhibited iNOS and COX-2 gene expression during early time points of LPS stimulation, demonstrating an NF-κB- Akt-dependent mechanism. On the other hand, iNOS expression was downregulated after prolonged treatment with LPS. Activation of NF-κB signaling was also suppressed, and consequently, nitric oxide (NO) production and cell invasion were repressed. Overall, our data indicate that STAT3 differentially regulates early- and late-phase TLR4-mediated inflammatory responses.
Collapse
|
27
|
Shrestha AK, Menon RT, El-Saie A, Barrios R, Reynolds C, Shivanna B. Interactive and independent effects of early lipopolysaccharide and hyperoxia exposure on developing murine lungs. Am J Physiol Lung Cell Mol Physiol 2020; 319:L981-L996. [PMID: 32901520 DOI: 10.1152/ajplung.00013.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) is a chronic infantile lung disease that lacks curative therapies. Infants with BPD-associated PH are often exposed to hyperoxia and additional insults such as sepsis that contribute to disease pathogenesis. Animal models that simulate these scenarios are necessary to develop effective therapies; therefore, we investigated whether lipopolysaccharide (LPS) and hyperoxia exposure during saccular lung development cooperatively induce experimental BPD-PH in mice. C57BL/6J mice were exposed to normoxia or 70% O2 (hyperoxia) during postnatal days (PNDs) 1-5 and intraperitoneally injected with varying LPS doses or a vehicle on PNDs 3-5. On PND 14, we performed morphometry, echocardiography, and gene and protein expression studies to determine the effects of hyperoxia and LPS on lung development, vascular remodeling and function, inflammation, oxidative stress, cell proliferation, and apoptosis. LPS and hyperoxia independently and cooperatively affected lung development, inflammation, and apoptosis. Growth rate and antioxidant enzyme expression were predominantly affected by LPS and hyperoxia, respectively, while cell proliferation and vascular remodeling and function were mainly affected by combined exposure to LPS and hyperoxia. Mice treated with lower LPS doses developed adaptive responses and hyperoxia exposure did not worsen their BPD phenotype, whereas those mice treated with higher LPS doses displayed the most severe BPD phenotype when exposed to hyperoxia and were the only group that developed PH. Collectively, our data suggest that an additional insult such as LPS may be necessary for models utilizing short-term exposure to moderate hyperoxia to recapitulate human BPD-PH.
Collapse
Affiliation(s)
- Amrit Kumar Shrestha
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Renuka T Menon
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Ahmed El-Saie
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Corey Reynolds
- Mouse Phenotyping Core, Baylor College of Medicine, Houston, Texas
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
28
|
Abstract
INTRODUCTION Janus kinases inhibitors (JAKi) are new small molecules recently introduced in the armamentarium of treatments for Inflammatory Bowel Disease (IBD). Janus Kinases (JAK) are tyrosine kinases that act by linkage with different intracellular receptors, regulating cytokines gene transcription implicated in the inflammatory burden seen in IBD patients. AREAS COVERED A comprehensive literature search was performed to retrieve studies on JAKi and IBD to discuss the latest developments and how the selectivity of these drugs is changing the natural course of IBD. EXPERT OPINION Available data on efficacy and safety of JAKi in IBD are highly encouraging and because of their selectivity, these drugs might become among the foremost options in the treatment algorithm.
Collapse
Affiliation(s)
- Giulia Roda
- IBD Unit, Humanitas Clinical and Research Center - IRCCS - , Milan, Italy
| | - Arianna Dal Buono
- IBD Unit, Humanitas Clinical and Research Center - IRCCS - , Milan, Italy
| | - Marjorie Argollo
- Gastroenterology, Universidade Federal De São Paulo , São Paulo, Brazil
| | - Silvio Danese
- IBD Unit, Humanitas Clinical and Research Center - IRCCS - , Milan, Italy.,Department of Biomedical Sciences, Humanitas University , Milan, Italy
| |
Collapse
|
29
|
Sims NA. The JAK1/STAT3/SOCS3 axis in bone development, physiology, and pathology. Exp Mol Med 2020; 52:1185-1197. [PMID: 32788655 PMCID: PMC8080635 DOI: 10.1038/s12276-020-0445-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Bone growth and the maintenance of bone structure are controlled by multiple endocrine and paracrine factors, including cytokines expressed locally within the bone microenvironment and those that are elevated, both locally and systemically, under inflammatory conditions. This review focuses on those bone-active cytokines that initiate JAK–STAT signaling, and outlines the discoveries made from studying skeletal defects caused by induced or spontaneous modifications in this pathway. Specifically, this review describes defects in JAK1, STAT3, and SOCS3 signaling in mouse models and in humans, including mutations designed to modify these pathways downstream of the gp130 coreceptor. It is shown that osteoclast formation is generally stimulated indirectly by these pathways through JAK1 and STAT3 actions in inflammatory and other accessory cells, including osteoblasts. In addition, in bone remodeling, osteoblast differentiation is increased secondary to stimulated osteoclast formation through an IL-6-dependent pathway. In growth plate chondrocytes, STAT3 signaling promotes the normal differentiation process that leads to bone lengthening. Within the osteoblast lineage, STAT3 signaling promotes bone formation in normal physiology and in response to mechanical loading through direct signaling in osteocytes. This activity, particularly that of the IL-6/gp130 family of cytokines, must be suppressed by SOCS3 for the normal formation of cortical bone. Maintaining normal bone structure and strength depends on a group of signaling proteins called cytokines that bind to receptor molecules on cell surfaces. Natalie Sims at St. Vincent’s Institute of Medical Research and The University of Melbourne in Australia reviews the role of cytokines in a specific signaling pathway in bone development and disease. Two of the proteins in this pathway respond to cytokine activity, whereas the third inhibits the cytokines’ effects. Studies in mice and humans have identified links between specific bone defects and spontaneous or experimentally induced mutations in the genes that code for the three proteins. The review covers the significance of recent findings to several types of cells that form new bone, degrade bone as part of normal bone turnover, and sustain the structure of bone and cartilage.
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute of Medical Research, and Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
30
|
Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163 + Macrophages in Inflammatory and Malignant Diseases. Int J Mol Sci 2020; 21:E5497. [PMID: 32752088 PMCID: PMC7432735 DOI: 10.3390/ijms21155497] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
The macrophage is a key cell in the pro- and anti-inflammatory response including that of the inflammatory microenvironment of malignant tumors. Much current drug development in chronic inflammatory diseases and cancer therefore focuses on the macrophage as a target for immunotherapy. However, this strategy is complicated by the pleiotropic phenotype of the macrophage that is highly responsive to its microenvironment. The plasticity leads to numerous types of macrophages with rather different and, to some extent, opposing functionalities, as evident by the existence of macrophages with either stimulating or down-regulating effect on inflammation and tumor growth. The phenotypes are characterized by different surface markers and the present review describes recent progress in drug-targeting of the surface marker CD163 expressed in a subpopulation of macrophages. CD163 is an abundant endocytic receptor for multiple ligands, quantitatively important being the haptoglobin-hemoglobin complex. The microenvironment of inflammation and tumorigenesis is particular rich in CD163+ macrophages. The use of antibodies for directing anti-inflammatory (e.g., glucocorticoids) or tumoricidal (e.g., doxorubicin) drugs to CD163+ macrophages in animal models of inflammation and cancer has demonstrated a high efficacy of the conjugate drugs. This macrophage-targeting approach has a low toxicity profile that may highly improve the therapeutic window of many current drugs and drug candidates.
Collapse
Affiliation(s)
- Maria K. Skytthe
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Jonas Heilskov Graversen
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Søren K. Moestrup
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
31
|
Cordes F, Foell D, Ding JN, Varga G, Bettenworth D. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn's disease. World J Gastroenterol 2020; 26:4055-4075. [PMID: 32821070 PMCID: PMC7403801 DOI: 10.3748/wjg.v26.i28.4055] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/24/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
In 2018, the pan-Janus kinase (JAK) inhibitor tofacitinib was launched for the treatment of ulcerative colitis (UC). Although tofacitinib has proven efficacious in patients with active UC, it failed in patients with Crohn's disease (CD). This finding strongly hints at a different contribution of JAK signaling in both entities. Here, we review the current knowledge on the interplay between the JAK/signal transducer and activator of transcription (STAT) pathway and inflammatory bowel diseases (IBD). In particular, we provide a detailed overview of the differences and similarities of JAK/STAT-signaling in UC and CD, highlight the impact of the JAK/STAT pathway in experimental colitis models and summarize the published evidence on JAK/STAT-signaling in immune cells of IBD as well as the genetic association between the JAK/STAT pathway and IBD. Finally, we describe novel treatment strategies targeting JAK/STAT inhibition in UC and CD and comment on the limitations and challenges of the new drug class.
Collapse
Affiliation(s)
- Friederike Cordes
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster D-48149, Germany
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University Children’s Hospital Münster, Münster D-48149, Germany
| | - John Nik Ding
- Department of Gastroenterology, St. Vincent’s Hospital, Melbourne 3002, Australia
- Department of Medicine, University of Melbourne, East Melbourne 3002, Australia
| | - Georg Varga
- Department of Pediatric Rheumatology and Immunology, University Children’s Hospital Münster, Münster D-48149, Germany
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster D-48149, Germany
| |
Collapse
|
32
|
Jin K, Li D, Jin J, Song J, Zhang Y, Chang G, Chen G, Li B. C1EIP Functions as an Activator of ENO1 to Promote Chicken PGCs Formation via Inhibition of the Notch Signaling Pathway. Front Genet 2020; 11:751. [PMID: 32849782 PMCID: PMC7396672 DOI: 10.3389/fgene.2020.00751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
The production of germ cells, especially primordial germ cells (PGCs), is important for avian stem cells and reproduction biology. However, key factors involved in the regulation of PGCs remain unknown. Here, we report a PGC-related marker gene: C1EIP (Chromosome 1 Expression in PGCs), whose activation and expression are regulated by the transcription factor STAT3 (signal transducer and activator of transcription 3), histone acetylation, and promoter methylation. C1EIP regulates PGCs formation by mediating the expression of PGC-associated genes, such as CVH (Chicken Vasa Homologous) and CKIT (Chicken KIT proto-oncogene). C1EIP knockdown during embryonic development reduces PGC generation efficiency both in vitro and in ovo. Conversely, C1EIP overexpression increases the formation efficiency of PGCs. C1EIP encodes a cytoplasmic protein that interacts with ENO1 (Enolase 1) in the cytoplasm, inhibits the Notch signaling pathway, and positively regulates PGC generation. Collectively, our findings demonstrate C1EIP as a novel gene involved in PGC formation, which regulates genes involved in embryonic stem cell differentiation through interaction with ENO1 and subsequent inhibition of the Notch signaling pathway by the impression of Myc (MYC proto-oncogene).
Collapse
Affiliation(s)
- Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Dong Li
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China
| | - Jing Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, College Park, MD, United States
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guobing Chang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Su Y, Zhang W, Patro CPK, Zhao J, Mu T, Ma Z, Xu J, Ban K, Yi C, Zhou Y. STAT3 Regulates Mouse Neural Progenitor Proliferation and Differentiation by Promoting Mitochondrial Metabolism. Front Cell Dev Biol 2020; 8:362. [PMID: 32509786 PMCID: PMC7248371 DOI: 10.3389/fcell.2020.00362] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
The proliferation and differentiation of neural progenitor lay the foundation for brain development. In neural progenitors, activation of Signal Transducer and Activator of Transcription 3 (STAT3) has been found to promote proliferation and astrocytogenesis while suppressing neurogenesis. However, our study found that Stat3 conditional knockout in neural progenitors (Stat3 cKO) also results in increased proliferation and suppressed neurogenesis. To investigate how STAT3 regulates these processes, we attempted to identify potential STAT3 target genes by RNA-seq profiling of the control (CTL) and Stat3 cKO neural progenitors. We found that STAT3 promotes the expression of genes involved in the mitochondrial oxidative phosphorylation (OXPHOS), and thereby promotes mitochondrial respiration and negatively regulates reactive oxygen species (ROS) production. In addition, we demonstrated that Stat3 loss-of-function promotes proliferation via regulation of mitochondrial metabolism and downstream signaling pathways. Our study provides novel insights into the relation between STAT3, mitochondrial metabolism and the process of embryonic neurogenesis.
Collapse
Affiliation(s)
- Yixun Su
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Wenjun Zhang
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - C Pawan K Patro
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, Singapore, Singapore
| | - Jing Zhao
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Tianhao Mu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, Singapore, Singapore
| | - Zhongnan Ma
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,West China Hospital, Sichuan University, Chengdu, China.,Model Animal Research Center of Nanjing University, Nanjing, China
| | - Jianqiang Xu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kenneth Ban
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chenju Yi
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yi Zhou
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Hu Z, Han Y, Liu Y, Zhao Z, Ma F, Cui A, Zhang F, Liu Z, Xue Y, Bai J, Wu H, Bian H, Chin YE, Yu Y, Meng Z, Wang H, Liu Y, Fan J, Gao X, Chen Y, Li Y. CREBZF as a Key Regulator of STAT3 Pathway in the Control of Liver Regeneration in Mice. Hepatology 2020; 71:1421-1436. [PMID: 31469186 DOI: 10.1002/hep.30919] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS STAT3, a member of the signal transducer and activator of transcription (STAT) family, is strongly associated with liver injury, inflammation, regeneration, and hepatocellular carcinoma development. However, the signals that regulate STAT3 activity are not completely understood. APPROACH AND RESULTS Here we characterize CREB/ATF bZIP transcription factor CREBZF as a critical regulator of STAT3 in the hepatocyte to repress liver regeneration. We show that CREBZF deficiency stimulates the expression of the cyclin gene family and enhances liver regeneration after partial hepatectomy. Flow cytometry analysis reveals that CREBZF regulates cell cycle progression during liver regeneration in a hepatocyte-autonomous manner. Similar results were observed in another model of liver regeneration induced by intraperitoneal injection of carbon tetrachloride (CCl4 ). Mechanistically, CREBZF potently associates with the linker domain of STAT3 and represses its dimerization and transcriptional activity in vivo and in vitro. Importantly, hepatectomy-induced hyperactivation of cyclin D1 and liver regeneration in CREBZF liver-specific knockout mice was reversed by selective STAT3 inhibitor cucurbitacin I. In contrast, adeno-associated virus-mediated overexpression of CREBZF in the liver inhibits the expression of the cyclin gene family and attenuates liver regeneration in CCl4 -treated mice. CONCLUSIONS These results characterize CREBZF as a coregulator of STAT3 to inhibit regenerative capacity, which may represent an essential cellular signal to maintain liver mass homeostasis. Therapeutic approaches to inhibit CREBZF may benefit the compromised liver during liver transplantation.
Collapse
Affiliation(s)
- Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yamei Han
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zehua Zhao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feifei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinyun Bai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Haifu Wu
- Metabolic and Bariatric Surgery of Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Y Eugene Chin
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Ying Yu
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
35
|
Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev 2020; 72:486-526. [PMID: 32198236 PMCID: PMC7300325 DOI: 10.1124/pr.119.018440] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. SIGNIFICANCE STATEMENT: Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
36
|
Qin Z, Wang PY, Wan JJ, Zhang Y, Wei J, Sun Y, Liu X. MicroRNA124-IL6R Mediates the Effect of Nicotine in Inflammatory Bowel Disease by Shifting Th1/Th2 Balance Toward Th1. Front Immunol 2020; 11:235. [PMID: 32153570 PMCID: PMC7050625 DOI: 10.3389/fimmu.2020.00235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Epidemiological investigations have shown that smoking ameliorates ulcerative colitis (UC) but exacerbates Crohn's disease (CD), diseases that feature a Th2-mediated and Th1-mediated response, respectively. Cigarette extracts, especially nicotine, affect the Th1/Th2 balance. We previously reported that nicotine protects against mouse DSS colitis (similar to UC) by enhancing microRNA-124 (miR-124) expression. Intriguingly, elevation of miR-124 in CD is reported to aggravate the disease. Here we investigate the dual regulation of miR-124 in inflammatory bowel diseases (IBDs), which may explain the similar bidirectional regulation of tobacco. We found that overexpressed miR-124 protected against mouse DSS-induced colitis with a Th1 polarization in peripheral blood lymphocytes and colon tissues, which was also found in human peripheral blood lymphocytes. Conversely, miR-124 knockdown worsened DSS murine colitis with a Th2 polarization. Moreover, knockdown of miR-124 could eliminate the polarization toward Th1 after nicotine treatment, suggesting that miR-124 mediates the effect of nicotine on the Th1/Th2 balance. In addition, interference of IL-6R, which is a downstream target of miR-124, could remarkably weaken the Th1 polarization induced by miR-124. Taken together, these results suggest that nicotine shifts the balance of Th1/Th2 toward Th1 via a miR-124-mediated IL-6R pathway, which might explain its dual role in IBDs.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Peng-Yuan Wang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jing-Jing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yu Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jie Wei
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yang Sun
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
37
|
Mechanisms Underlying Bone Loss Associated with Gut Inflammation. Int J Mol Sci 2019; 20:ijms20246323. [PMID: 31847438 PMCID: PMC6940820 DOI: 10.3390/ijms20246323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Patients with gastrointestinal diseases frequently suffer from skeletal abnormality, characterized by reduced bone mineral density, increased fracture risk, and/or joint inflammation. This pathological process is characterized by altered immune cell activity and elevated inflammatory cytokines in the bone marrow microenvironment due to disrupted gut immune response. Gastrointestinal disease is recognized as an immune malfunction driven by multiple factors, including cytokines and signaling molecules. However, the mechanism by which intestinal inflammation magnified by gut-residing actors stimulates bone loss remains to be elucidated. In this article, we discuss the main risk factors potentially contributing to intestinal disease-associated bone loss, and summarize current animal models, illustrating gut-bone axis to bridge the gap between intestinal inflammation and skeletal disease.
Collapse
|
38
|
Yu X, Wan Q, Ye X, Cheng Y, Pathak JL, Li Z. Cellular hypoxia promotes osteogenic differentiation of mesenchymal stem cells and bone defect healing via STAT3 signaling. Cell Mol Biol Lett 2019; 24:64. [PMID: 31827540 PMCID: PMC6889321 DOI: 10.1186/s11658-019-0191-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background Hypoxia in the vicinity of bone defects triggers the osteogenic differentiation of precursor cells and promotes healing. The activation of STAT3 signaling in mesenchymal stem cells (MSCs) has similarly been reported to mediate bone regeneration. However, the interaction between hypoxia and STAT3 signaling in the osteogenic differentiation of precursor cells during bone defect healing is still unknown. Methods In this study, we assessed the impact of different durations of CoCl2-induced cellular hypoxia on the osteogenic differentiation of MSCs. Role of STAT3 signaling on hypoxia induced osteogenic differentiation was analyzed both in vitro and in vivo. The interaction between cellular hypoxia and STAT3 signaling in vivo was investigated in a mouse femoral bone defect model. Results The peak osteogenic differentiation and expression of vascular endothelial growth factor (VEGF) occurred after 3 days of hypoxia. Inhibiting STAT3 reversed this effect. Hypoxia enhanced the expression of hypoxia-inducible factor 1-alpha (HIF-1α) and STAT3 phosphorylation in MSCs. Histology and μ-CT results showed that CoCl2 treatment enhanced bone defect healing. Inhibiting STAT3 reduced this effect. Immunohistochemistry results showed that CoCl2 treatment enhanced Hif-1α, ALP and pSTAT3 expression in cells present in the bone defect area and that inhibiting STAT3 reduced this effect. Conclusions The in vitro study revealed that the duration of hypoxia is crucial for osteogenic differentiation of precursor cells. The results from both the in vitro and in vivo studies show the role of STAT3 signaling in hypoxia-induced osteogenic differentiation of precursor cells and bone defect healing.
Collapse
Affiliation(s)
- Xin Yu
- 1The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079 China.,2Department of Oral and Maxillofacial Trauma and Plastic Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079 China.,3Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Qilong Wan
- 2Department of Oral and Maxillofacial Trauma and Plastic Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079 China
| | - Xiaoling Ye
- 1The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079 China
| | - Yuet Cheng
- 1The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079 China
| | - Janak L Pathak
- 4Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140 China
| | - Zubing Li
- 1The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079 China.,2Department of Oral and Maxillofacial Trauma and Plastic Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079 China
| |
Collapse
|
39
|
Differential expression of STAT3 gene and its regulatory long non-coding RNAs, namely lnc-DC and THRIL, in two eastern Iranian ethnicities with multiple sclerosis. Neurol Sci 2019; 41:561-568. [PMID: 31713760 DOI: 10.1007/s10072-019-04092-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/28/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Genome-wide association studies (GWASs) revealed that variants of STAT3 are associated with multiple sclerosis (MS) risk. There are several studies showing the effect of ethnicity and genetic background on the characteristics of MS. Here, we aimed to investigate STAT3 gene expression status along with its two regulatory long non-coding RNAs, lnc-DC and THRIL, in order to compare the expression of these target genes among two different ethnicities in the east of Iran. METHODS A case-control study was performed between two groups of MS populations in east of Iran. We recruited individuals with Kurdish ethnicity from North Khorasan and Sistani ethnicity from southeast of Iran. The peripheral blood mononuclear cells were obtained from all participants, and total RNA was extracted. The gene expression of the selected genes was evaluated by qPCR. RESULTS The expression of THRIL in North Khorasan MS patients was significantly higher than controls (P = 0.03). The results of simultaneous analysis of expression of the target genes (STAT3, THRIL, and lnc-DC) in both ethnic groups failed to show any significant difference between the MS patients and controls (P > 0.05). In addition, the expression of STAT3 and THRIL genes in Sistani MS patients was statistically meaningful lower than healthy controls (P < 0.05). CONCLUSION To our knowledge, this is the first study that compared the expression of the STAT3 gene and its regulatory molecules between two ethnic groups of Iranian MS patients. We suggested that STAT3 and its associated molecules might be differentially expressed and regulated in MS patients with different genetic background.
Collapse
|
40
|
Evidence That the Anti-Inflammatory Effect of Rubiadin-1-methyl Ether Has an Immunomodulatory Context. Mediators Inflamm 2019; 2019:6474168. [PMID: 31780865 PMCID: PMC6874871 DOI: 10.1155/2019/6474168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background In spite of the latest therapeutic developments, no effective treatments for handling critical conditions such as acute lung injuries have yet been found. Such conditions, which may result from lung infections, sepsis, multiple trauma, or shock, represent a significant challenge in intensive care medicine. Seeking ways to better deal with this challenge, the scientific community has recently devoted much attention to small molecules derived from natural products with anti-inflammatory and immunomodulatory effects. Aims In this context, we investigated the anti-inflammatory effect of Rubiadin-1-methyl ether isolated from Pentas schimperi, using an in vitro model of RAW 264.7 macrophages induced by LPS and an in vivo model of acute lung injury (ALI) induced by LPS. Methods The macrophages were pretreated with the compound and induced by LPS (1 μg/mL). After 24 h, using the supernatant, we evaluated the cytotoxicity, NOx, and IL-6, IL-1β, and TNF-α levels, as well as the effect of the compound on macrophage apoptosis. Next, the compound was administered in mice with acute lung injury (ALI) induced by LPS (5 mg/kg), and the pro- and anti-inflammatory parameters were analyzed after 12 h using the bronchoalveolar lavage fluid (BALF). Results Rubiadin-1-methyl ether was able to inhibit the pro-inflammatory parameters studied in the in vitro assays (NOx, IL-6, and IL-1β) and, at the same time, increased the macrophage apoptosis rate. In the in vivo experiments, this compound was capable of decreasing leukocyte infiltration; fluid leakage; NOx; IL-6, IL-12p70, IFN-γ, TNF-α, and MCP-1 levels; and MPO activity. In addition, Rubiadin-1-methyl ether increased the IL-10 levels in the bronchoalveolar lavage fluid (BALF). Conclusions These findings support the evidence that Rubiadin-1-methyl ether has important anti-inflammatory activity, with evidence of an immunomodulatory effect.
Collapse
|
41
|
Pradhan A, Dunn A, Ustiyan V, Bolte C, Wang G, Whitsett JA, Zhang Y, Porollo A, Hu YC, Xiao R, Szafranski P, Shi D, Stankiewicz P, Kalin TV, Kalinichenko VV. The S52F FOXF1 Mutation Inhibits STAT3 Signaling and Causes Alveolar Capillary Dysplasia. Am J Respir Crit Care Med 2019; 200:1045-1056. [PMID: 31199666 PMCID: PMC6794119 DOI: 10.1164/rccm.201810-1897oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal congenital disorder causing respiratory failure and pulmonary hypertension shortly after birth. There are no effective treatments for ACDMPV other than lung transplant, and new therapeutic approaches are urgently needed. Although ACDMPV is linked to mutations in the FOXF1 gene, molecular mechanisms through which FOXF1 mutations cause ACDMPV are unknown.Objectives: To identify molecular mechanisms by which S52F FOXF1 mutations cause ACDMPV.Methods: We generated a clinically relevant mouse model of ACDMPV by introducing the S52F FOXF1 mutation into the mouse Foxf1 gene locus using CRISPR/Cas9 technology. Immunohistochemistry, whole-lung imaging, and biochemical methods were used to examine vasculature in Foxf1WT/S52F lungs and identify molecular mechanisms regulated by FOXF1.Measurements and Main Results: FOXF1 mutations were identified in 28 subjects with ACDMPV. Foxf1WT/S52F knock-in mice recapitulated histopathologic findings in ACDMPV infants. The S52F FOXF1 mutation disrupted STAT3-FOXF1 protein-protein interactions and inhibited transcription of Stat3, a critical transcriptional regulator of angiogenesis. STAT3 signaling and endothelial proliferation were reduced in Foxf1WT/S52F mice and human ACDMPV lungs. S52F FOXF1 mutant protein did not bind chromatin and was transcriptionally inactive. Furthermore, we have developed a novel formulation of highly efficient nanoparticles and demonstrated that nanoparticle delivery of STAT3 cDNA into the neonatal circulation restored endothelial proliferation and stimulated lung angiogenesis in Foxf1WT/S52F mice.Conclusions: FOXF1 acts through STAT3 to stimulate neonatal lung angiogenesis. Nanoparticle delivery of STAT3 is a promising strategy to treat ACDMPV associated with decreased STAT3 signaling.
Collapse
Affiliation(s)
- Arun Pradhan
- Department of Pediatrics
- Center for Lung Regenerative Medicine
| | - Andrew Dunn
- Department of Pediatrics
- Center for Lung Regenerative Medicine
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | | | - Craig Bolte
- Department of Pediatrics
- Center for Lung Regenerative Medicine
| | - Guolun Wang
- Department of Pediatrics
- Center for Lung Regenerative Medicine
| | | | - Yufang Zhang
- Department of Pediatrics
- Center for Lung Regenerative Medicine
| | - Alexey Porollo
- Department of Pediatrics
- Center for Autoimmune Genomics and Etiology, and
| | - Yueh-Chiang Hu
- Department of Pediatrics
- Transgenic Animal and Genome Editing Core Facility, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Rui Xiao
- Baylor Genetics, Houston, Texas; and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Pawel Stankiewicz
- Baylor Genetics, Houston, Texas; and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | | |
Collapse
|
42
|
Moll HP, Mohrherr J, Blaas L, Musteanu M, Stiedl P, Grabner B, Zboray K, König M, Stoiber D, Rülicke T, Strehl S, Eferl R, Casanova E. A Mouse Model to Assess STAT3 and STAT5A/B Combined Inhibition in Health and Disease Conditions. Cancers (Basel) 2019; 11:E1226. [PMID: 31443474 PMCID: PMC6770775 DOI: 10.3390/cancers11091226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/16/2019] [Indexed: 11/17/2022] Open
Abstract
Genetically-engineered mouse models (GEMMs) lacking diseased-associated gene(s) globally or in a tissue-specific manner represent an attractive tool with which to assess the efficacy and toxicity of targeted pharmacological inhibitors. Stat3 and Stat5a/b transcription factors have been implicated in several pathophysiological conditions, and pharmacological inhibition of both transcription factors has been proposed to treat certain diseases, such as malignancies. To model combined inhibition of Stat3 and Stat5a/b we have developed a GEMM harboring a flox Stat3-Stat5a/b allele (Stat5/3loxP/loxP mice) and generated mice lacking Stat3 and Stat5a/b in hepatocytes (Stat5/3Δhep/Δhep). Stat5/3Δhep/Δhep mice exhibited a marked reduction of STAT3, STAT5A and STAT5B proteins in the liver and developed steatosis, a phenotype that resembles mice lacking Stat5a/b in hepatocytes. In addition, embryonic deletion of Stat3 and Stat5a/b (Stat5/3Δ/Δ mice) resulted in lethality, similar to Stat3Δ/Δ mice. This data illustrates that Stat5/3loxP/loxP mice are functional and can be used as a valuable tool to model the combined inhibition of Stat3 and Stat5a/b in tumorigenesis and other diseases.
Collapse
Affiliation(s)
- Herwig P Moll
- Department of Physiology, Center of Physiology and Pharmacology, Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | - Julian Mohrherr
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), 1090 Vienna, Austria
| | - Leander Blaas
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), 1090 Vienna, Austria
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Novum, 14183 Huddinge, Sweden
| | - Monica Musteanu
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), 1090 Vienna, Austria
- CNIO (Spanish National Cancer Research Centre), E-28029 Madrid, Spain
| | - Patricia Stiedl
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), 1090 Vienna, Austria
| | - Beatrice Grabner
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), 1090 Vienna, Austria
| | - Katalin Zboray
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), 1090 Vienna, Austria
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Hungary
| | - Margit König
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090 Vienna, Austria
| | - Dagmar Stoiber
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), 1090 Vienna, Austria
- Department of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal, Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Sabine Strehl
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090 Vienna, Austria
| | - Robert Eferl
- Institute of Cancer Research, Medical University Vienna & Comprehensive Cancer Center (CCC), 1090 Vienna, Austria
| | - Emilio Casanova
- Department of Physiology, Center of Physiology and Pharmacology, Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), 1090 Vienna, Austria.
| |
Collapse
|
43
|
Abstract
Signal transducer and activator of transcription 3 (Stat3) is a member of the Stat family of proteins involved in signaling in many different cell types, including osteocytes. Osteocytes are considered major mechanosensing cells in bone due to their intricate dendritic networks able to sense changes in physical force and to orchestrate the response of osteoclasts and osteoblasts. We examined the role of Stat3 in osteocytes by generating mice lacking Stat3 in these cells using the Dmp-1(8kb)-Cre promoter (Stat3cKO mice). Compared to age-matched littermate controls, Stat3cKO mice of either sex (18 weeks old) exhibit reduced bone formation indices, decreased osteoblasts and increased osteoclasts, and altered material properties, without detectable changes in bone mineral density (BMD) or content of either trabecular or cortical bone. In addition, Stat3cKO mice of either sex show significantly decreased load-induced bone formation. Furthermore, pharmacologic inhibition of Stat3 in osteocytes in vitro with WP1066 blocked the increase in cytosolic calcium induced by ATP, a mediator of the cellular responses to sheer stress. WP1066 also increased reactive oxygen species (ROS) production in cultured MLO-Y4 osteocytes. These data demonstrate that Stat3 is a critical mediator of mechanical signals received by osteocytes and suggest that osteocytic Stat3 is a potential therapeutic target to stimulate bone anabolism.
Collapse
|
44
|
Fernández-Clotet A, Castro-Poceiro J, Panés J. JAK Inhibition: The Most Promising Agents in the IBD Pipeline? Curr Pharm Des 2019; 25:32-40. [DOI: 10.2174/1381612825666190405141410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/01/2019] [Indexed: 12/12/2022]
Abstract
Under current therapeutic algorithms, half of the patients with moderate-severe ulcerative colitis or
Crohn’s disease fail in achieving a sustained remission. New drugs with different mechanisms of action are
needed. After two decades of new drug avenues in inflammatory bowel disease dominated by the development of
monoclonal antibodies, in recent years we are witnessing promising developments of small molecules for these
conditions. Their intrinsic characteristics make them attractive compared to the monoclonal antibodies based on
their oral administration, short plasma half-life, lack of immunogenicity and predictable pharmacokinetics.
Among them, Janus kinase (JAK) inhibitors are a promising new class that have demonstrated efficacy with a
favorable safety profile in clinical trials. Tofacitinib has been the first JAK inhibitor approved for the treatment of
ulcerative colitis. This review discusses the molecular aspects of the JAK-STAT pathway, its role in the pathogenesis
of inflammatory bowel disease, and the rational use of JAK inhibitors in these conditions. The different
compounds with JAK inhibitory activity tested are reviewed and we provide an overview of recent evidence from
clinical trials. Finally, we consider the positioning of these drugs in the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Agnès Fernández-Clotet
- Inflammatory Bowel Disease Group, Institut d'Investigacions Biometiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Jesús Castro-Poceiro
- Inflammatory Bowel Disease Group, Institut d'Investigacions Biometiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Julián Panés
- Inflammatory Bowel Disease Group, Institut d'Investigacions Biometiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
45
|
Gozzi GJ, Gonzalez D, Boudesco C, Dias AMM, Gotthard G, Uyanik B, Dondaine L, Marcion G, Hermetet F, Denis C, Hardy L, Suzanne P, Douhard R, Jego G, Dubrez L, Demidov ON, Neiers F, Briand L, Sopková-de Oliveira Santos J, Voisin-Chiret AS, Garrido C. Selecting the first chemical molecule inhibitor of HSP110 for colorectal cancer therapy. Cell Death Differ 2019; 27:117-129. [PMID: 31068676 DOI: 10.1038/s41418-019-0343-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/04/2019] [Accepted: 04/12/2019] [Indexed: 01/10/2023] Open
Abstract
Pro-survival stress-inducible chaperone HSP110 is the only HSP for which a mutation has been found in a cancer. Multicenter clinical studies demonstrated a direct association between HSP110 inactivating mutation presence and excellent prognosis in colorectal cancer patients. Here, we have combined crystallographic studies on human HSP110 and in silico modeling to identify HSP110 inhibitors that could be used in colorectal cancer therapy. Two molecules (foldamers 33 and 52), binding to the same cleft of HSP110 nucleotide-binding domain, were selected from a chemical library (by co-immunoprecipitation, AlphaScreening, Interference-Biolayer, Duo-link). These molecules block HSP110 chaperone anti-aggregation activity and HSP110 association to its client protein STAT3, thereby inhibiting STAT3 phosphorylation and colorectal cancer cell growth. These effects were strongly decreased in HSP110 knockdown cells. Foldamer's 33 ability to inhibit tumor growth was confirmed in two colorectal cancer animal models. Although tumor cell death (apoptosis) was noted after treatment of the animals with foldamer 33, no apparent toxicity was observed, notably in epithelial cells from intestinal crypts. Taken together, we identified the first HSP110 inhibitor, a possible drug-candidate for colorectal cancer patients whose unfavorable outcome is associated to HSP110.
Collapse
Affiliation(s)
- Gustavo J Gozzi
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, Dijon, France.,University of Burgundy Franche-Comté, Dijon, France
| | - Daniel Gonzalez
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, Dijon, France.,University of Burgundy Franche-Comté, Dijon, France
| | - Christophe Boudesco
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, Dijon, France.,University of Burgundy Franche-Comté, Dijon, France
| | - Alexandre M M Dias
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, Dijon, France.,University of Burgundy Franche-Comté, Dijon, France
| | | | - Burhan Uyanik
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, Dijon, France.,University of Burgundy Franche-Comté, Dijon, France
| | - Lucile Dondaine
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, Dijon, France.,University of Burgundy Franche-Comté, Dijon, France
| | - Guillaume Marcion
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, Dijon, France.,University of Burgundy Franche-Comté, Dijon, France
| | - François Hermetet
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, Dijon, France.,University of Burgundy Franche-Comté, Dijon, France
| | - Camille Denis
- Normandie Université, UNICAEN, EA 4258 CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) - FR CNRS INC3M, Boulevard Becquerel, 14032, Caen, France
| | - Laurianne Hardy
- Normandie Université, UNICAEN, EA 4258 CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) - FR CNRS INC3M, Boulevard Becquerel, 14032, Caen, France
| | - Peggy Suzanne
- Normandie Université, UNICAEN, EA 4258 CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) - FR CNRS INC3M, Boulevard Becquerel, 14032, Caen, France
| | - Romain Douhard
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, Dijon, France.,University of Burgundy Franche-Comté, Dijon, France
| | - Gaetan Jego
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, Dijon, France.,University of Burgundy Franche-Comté, Dijon, France
| | - Laurence Dubrez
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, Dijon, France.,University of Burgundy Franche-Comté, Dijon, France
| | - Oleg N Demidov
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, Dijon, France.,University of Burgundy Franche-Comté, Dijon, France
| | - Fabrice Neiers
- University of Burgundy Franche-Comté, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, Dijon, France
| | - Loïc Briand
- University of Burgundy Franche-Comté, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, Dijon, France
| | - Jana Sopková-de Oliveira Santos
- Normandie Université, UNICAEN, EA 4258 CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) - FR CNRS INC3M, Boulevard Becquerel, 14032, Caen, France
| | - Anne-Sophie Voisin-Chiret
- Normandie Université, UNICAEN, EA 4258 CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) - FR CNRS INC3M, Boulevard Becquerel, 14032, Caen, France
| | - Carmen Garrido
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, Dijon, France. .,University of Burgundy Franche-Comté, Dijon, France. .,Georges François Leclerc Center (CGFL), Dijon, France.
| |
Collapse
|
46
|
Giuffrida P, Cococcia S, Delliponti M, Lenti MV, Di Sabatino A. Controlling Gut Inflammation by Restoring Anti-Inflammatory Pathways in Inflammatory Bowel Disease. Cells 2019; 8:E397. [PMID: 31052214 PMCID: PMC6562982 DOI: 10.3390/cells8050397] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is caused by a dysregulated immune response against normal components of the intestinal microflora combined with defective functioning of anti-inflammatory pathways. Currently, all therapies approved for IBD manipulate the immune system by inhibiting pro-inflammatory mechanisms, such as tumor necrosis factor-α, gut-homing α4β7 integrin, interleukin-12/interleukin-23, and Janus kinases. However, some IBD patients are non-responders to these drugs, which are also associated with serious side effects. Thus, it has been hypothesized that therapies aimed at restoring anti-inflammatory signals, by exploiting the tolerogenic potential of cytokines (interleukin-10, transforming growth factor-β, granulocyte macrophage colony-stimulating factor), immune cells (regulatory T cells, tolerogenic dendritic cells), or mesenchymal stem cells, might offer promising results in terms of clinical efficacy with fewer side effects. In this review, we provide new insights into putative novel treatments aimed at restoring anti-inflammatory signaling pathways in IBD.
Collapse
Affiliation(s)
- Paolo Giuffrida
- First Department of Internal Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Sara Cococcia
- First Department of Internal Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Mariangela Delliponti
- First Department of Internal Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Marco Vincenzo Lenti
- First Department of Internal Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Antonio Di Sabatino
- First Department of Internal Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| |
Collapse
|
47
|
Andersen MN, Etzerodt A, Graversen JH, Holthof LC, Moestrup SK, Hokland M, Møller HJ. STAT3 inhibition specifically in human monocytes and macrophages by CD163-targeted corosolic acid-containing liposomes. Cancer Immunol Immunother 2019; 68:489-502. [PMID: 30637473 PMCID: PMC11028169 DOI: 10.1007/s00262-019-02301-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/06/2019] [Indexed: 01/05/2023]
Abstract
Tumor-associated macrophages (TAMs) are of major importance in cancer-related immune suppression, and tumor infiltration by CD163pos TAMs is associated with poor outcome in most human cancers. Therefore, therapeutic strategies for reprogramming TAMs from a tumor-supporting (M2-like) phenotype towards a tumoricidal (M1-like) phenotype are of great interest. Activation of the transcription factor STAT3 within the tumor microenvironment is associated with worse prognosis, and STAT3 activation promotes the immunosuppressive phenotype of TAMs. Therefore, we aimed to develop a drug for inhibition of STAT3 specifically within human TAMs by targeting the endocytic CD163 scavenger receptor, which is highly expressed on TAMs. Here, we report the first data on a CD163-targeted STAT3-inhibitory drug consisting of corosolic acid (CA) packaged within long-circulating liposomes (LCLs), which are CD163-targeted by modification with monoclonal anti-CD163 antibodies (αCD163)-CA-LCL-αCD163. We show, that activation of STAT3 (by phosphorylation) was inhibited by CA-LCL-αCD163 specifically within CD163pos cells, with minor effect on CD163neg cells. Furthermore, CA-LCL-αCD163 inhibited STAT3-regulated gene expression of IL-10, and increased expression of TNFα, thus indicating a pro-inflammatory effect of the drug on human macrophages. This M1-like reprogramming at the mRNA level was confirmed by significantly elevated levels of pro-inflammatory cytokines (IFNγ, IL-12, TNFα, IL-2) in the culture medium. Since liposomes are attractive vehicles for novel anti-cancer drugs, and since direct TAM-targeting may decrease adverse effects of systemic inhibition of STAT3, the present results encourage future investigation of CA-LCL-αCD163 in the in vivo setting.
Collapse
Affiliation(s)
- Morten Nørgaard Andersen
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensen Boulevard 99, 8200, Aarhus N, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jonas H Graversen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lisa C Holthof
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Søren K Moestrup
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensen Boulevard 99, 8200, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensen Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|
48
|
Sackett SD, Otto T, Mohs A, Sander LE, Strauch S, Streetz KL, Kroy DC, Trautwein C. Myeloid cells require gp130 signaling for protective anti‐inflammatory functions during sepsis. FASEB J 2019; 33:6035-6044. [DOI: 10.1096/fj.201802118r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sara Dutton Sackett
- Department of Internal Medicine IIIUniversity Hospital Rheinisch‐Westfälische Technische Hochschule (RWTH) Aachen Aachen Germany
- Department of Surgery, Division of TransplantationUniversity of Wisconsin‐Madison Madison Wisconsin USA
| | - Tobias Otto
- Department of Internal Medicine IIIUniversity Hospital Rheinisch‐Westfälische Technische Hochschule (RWTH) Aachen Aachen Germany
| | - Antje Mohs
- Department of Internal Medicine IIIUniversity Hospital Rheinisch‐Westfälische Technische Hochschule (RWTH) Aachen Aachen Germany
| | - Leif E. Sander
- Department of Internal Medicine IIIUniversity Hospital Rheinisch‐Westfälische Technische Hochschule (RWTH) Aachen Aachen Germany
- Department of Infectious Diseases and Pulmonary MedicineCharité‐Universitätsmedizin BerlinCorporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health Berlin Germany
- German Center for Lung Research (DZL) Berlin Germany
| | - Sonja Strauch
- Department of Internal Medicine IIIUniversity Hospital Rheinisch‐Westfälische Technische Hochschule (RWTH) Aachen Aachen Germany
| | - Konrad L. Streetz
- Department of Internal Medicine IIIUniversity Hospital Rheinisch‐Westfälische Technische Hochschule (RWTH) Aachen Aachen Germany
| | - Daniela C. Kroy
- Department of Internal Medicine IIIUniversity Hospital Rheinisch‐Westfälische Technische Hochschule (RWTH) Aachen Aachen Germany
| | - Christian Trautwein
- Department of Internal Medicine IIIUniversity Hospital Rheinisch‐Westfälische Technische Hochschule (RWTH) Aachen Aachen Germany
| |
Collapse
|
49
|
Serrano C, Galán S, Rubio JF, Candelario-Martínez A, Montes-Gómez AE, Chánez-Paredes S, Cedillo-Barrón L, Schnoor M, Meraz-Ríos MA, Villegas-Sepúlveda N, Ortiz-Navarrete V, Nava P. Compartmentalized Response of IL-6/STAT3 Signaling in the Colonic Mucosa Mediates Colitis Development. THE JOURNAL OF IMMUNOLOGY 2019; 202:1239-1249. [DOI: 10.4049/jimmunol.1801060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
|
50
|
Two decades of research in discovery of anticancer drugs targeting STAT3, how close are we? Pharmacol Ther 2018; 191:74-91. [DOI: 10.1016/j.pharmthera.2018.06.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|