1
|
Zhang H, Yan Y, Yi S, Sun Q. Advancements in targeting CD30 for lymphoma therapy: a historical perspective and future directions. Expert Rev Hematol 2025:1-14. [PMID: 40227173 DOI: 10.1080/17474086.2025.2492936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
INTRODUCTION CD30 is a transmembrane protein of the tumor necrosis factor receptor superfamily. It is expressed on a small subset of activated T and B lymphocytes, and various lymphoid neoplasms, including classical Hodgkin lymphoma and many non-Hodgkin lymphomas in both pediatric and adult populations. AREAS COVERED This review delves into the significance of CD30 as a therapeutic target and a prognostic indicator for various lymphomas. It provides a comprehensive overview of anti-CD30 therapeutic interventions developed to date, offering insights into the future direction of lymphoma treatment research. Literature search was conducted from January 1987 to December 2024 using PubMed, Scopus, and Web of Science databases to identify relevant studies. EXPERT OPINION CD30 has emerged as a critical marker of diagnosis, prognosis, and therapeutic strategies of lymphomas. The introduction of brentuximab vedotin (BV) (Adcetris), an antibody-drug conjugate targeting CD30, has significantly advanced the treatment landscape for multiple lymphoma types, demonstrating enhanced efficacy and manageable safety profiles in CD30+ lymphomas patients. However, drug resistance is observed in few patients. Concurrently, innovative therapeutic strategies targeting CD30, such as chimeric antigen receptor T-cells therapies and bispecific antibodies, are in development. This underscores a strong and ongoing research effort aimed at improving the management of patients with CD30+ lymphomas.
Collapse
Affiliation(s)
- Hongju Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Hematologic Pathology Center, Tianjin Institutes of Health Science, Tianjin, China
| | - Yuting Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Lymphoma Diagnosis and Treatment Center, Tianjin Institutes of Health Science, Tianjin, China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Lymphoma Diagnosis and Treatment Center, Tianjin Institutes of Health Science, Tianjin, China
| | - Qi Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Hematologic Pathology Center, Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
2
|
Chang HP, Shah DK. A translational physiologically-based pharmacokinetic model for MMAE-based antibody-drug conjugates. J Pharmacokinet Pharmacodyn 2025; 52:27. [PMID: 40325253 PMCID: PMC12053227 DOI: 10.1007/s10928-025-09978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
The objective of this work was to develop a translational physiologically-based pharmacokinetic (PBPK) model for antibody-drug conjugates (ADCs), using monomethyl auristatin E (MMAE)-based ADCs. A previously established dual-structured whole-body PBPK model for MMAE-based ADCs in mice was scaled to higher species (i.e., rats and monkeys) and humans. Species-specific physiological and drug-related parameters for the payload and antibody backbone of ADCs were obtained from literature. Parameters associated with payload release, including the deconjugation rate, were optimized using an allometric scaling approach, and antibody degradation rate was adjusted to account for the enhanced clearance of ADCs due to conjugation across different species. The translational PBPK model predicted the PK profiles for various ADC analytes in rats, monkeys, and humans reasonably well. The optimized PBPK model suggested decreased rate of deconjugation for ADCs in higher species, whereas the effects of payload conjugation on ADC clearance were more pronounced in higher species and humans. The translational PBPK model presented here may enable prediction of different ADC analyte PK at the site-of-action, offering valuable insights for the development of exposure-response relationships for ADCs. The modeling framework presented here can also serve as a platform for the development of PBPK model for other ADCs.
Collapse
Affiliation(s)
- Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
3
|
Voena C, Ambrogio C, Iannelli F, Chiarle R. ALK in cancer: from function to therapeutic targeting. Nat Rev Cancer 2025; 25:359-378. [PMID: 40055571 DOI: 10.1038/s41568-025-00797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 05/01/2025]
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that acts as an oncogenic driver in solid and haematological malignancies in both children and adults. Although ALK-expressing (ALK+) tumours show strong initial responses to the series of ALK inhibitors currently available, many patients will develop resistance. In this Review, we discuss recent advances in ALK oncogenic signalling, together with existing and promising new modalities to treat ALK-driven tumours, including currently approved ALK-directed therapies, namely tyrosine kinase inhibitors, and novel approaches such as ALK-specific immune therapies. Although ALK inhibitors have changed the management and clinical history of ALK+ tumours, they are still insufficient to cure most of the patients. Therefore, more effort is needed to further improve outcomes and prevent the tumour resistance, recurrence and metastatic spread that many patients with ALK+ tumours experience. Here, we outline how a multipronged approach directed against ALK and other essential pathways that sustain the persistence of ALK+ tumours, together with potent or specific immunotherapies, could achieve this goal. We envision that the lessons learned from treating ALK+ tumours in the clinic could ultimately accelerate the implementation of innovative combination therapies to treat tumours driven by other tyrosine kinases or oncogenes with similar properties.
Collapse
Affiliation(s)
- Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fabio Iannelli
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy.
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Mortaja M, Adams SR, McKay RR, Gutkind JS, Advani SJ. Spatially precise chemo-radio-immunotherapy by antibody drug conjugate directed tumor radiosensitization to potentiate immunotherapies. NPJ Precis Oncol 2025; 9:97. [PMID: 40181161 PMCID: PMC11968929 DOI: 10.1038/s41698-025-00885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025] Open
Abstract
Concurrent chemo-radiotherapy is standard of care for locally advanced cancer patients. While radiotherapy and immuno-oncology have advanced precision oncology, chemotherapies in the chemo-radiotherapy paradigm remain non-targeted cytotoxins. Antibody drug conjugates offer an opportunity for targeted radiosensitization that stimulates immune responses while protecting normal tissues. Here, we discuss the rationale for combining antibody drug conjugates, radiotherapy and immunotherapies and opportunities for clinical translation to advance towards targeted chemo-radio-immunotherapy precision cancer care.
Collapse
Affiliation(s)
- Mahsa Mortaja
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Stephen R Adams
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rana R McKay
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- UC San Diego, Moores Cancer Center, La Jolla, CA, 92093, USA
- Department of Urology, University of California San Diego, La Jolla, CA, 92093, USA
| | - J Silvio Gutkind
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
- UC San Diego, Moores Cancer Center, La Jolla, CA, 92093, USA
| | - Sunil J Advani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
- UC San Diego, Moores Cancer Center, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Wang C, Irons L, Kimko H, Shah DK. Meta-Analysis of Exposure-Adverse Event Relationships for Antibody-Drug Conjugates. J Clin Pharmacol 2025; 65:486-498. [PMID: 39539040 DOI: 10.1002/jcph.6160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Antibody-drug conjugates (ADCs) have become a vital class of therapeutics in oncology because of their ability to selectively deliver potent drug molecules to tumor cells. However, ADC-associated toxicities cause high failure rates in the clinic and hinder their full potential. Due to the complex structure and pharmacokinetics of ADCs, it is challenging to identify the drivers of their toxicities. Here, quantitative analysis was performed to correlate the incidence of clinical adverse events (AEs) with nine different commonly measured exposure parameters collected from study-level summary data. We considered ADC analytes for different classes of ADCs, to identify ADC analytes that are strongly associated with the AEs for ADCs. Published clinical exposure and safety data for any grade and grade ≥3 AEs from 40 publications across six ADCs and three payloads were collected and analyzed. Exposure-AE relationships were quantified using logit models, and the strength of the correlations and rank order were determined. The analysis suggests that deruxtecan ADC-related toxicities correlated most strongly with the exposure of the free payload; monomethyl auristatin E (MMAE) ADC-related toxicities correlated with the free MMAE area under the curve; and pyrrolobenzodiazepine ADC-related toxicities correlated with no specific analyte but the dose. These findings agree with the published literature and support the notion that AE profiles are often shared by ADCs that deliver the same cytotoxic payload. The exposure-AE relationships presented here, together with identification of the most informative ADC analytes, may facilitate more focused mechanistic studies on the drivers of clinical AEs and could support dosing decisions during clinical development of ADCs.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Linda Irons
- Systems Medicine, Clinical Pharmacology & Quantitative Pharmacology, R&D BioPharmaceuticals, AstraZeneca, Waltham, MA, USA
| | - Holly Kimko
- Systems Medicine, Clinical Pharmacology & Quantitative Pharmacology, R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, MD, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
6
|
Jiang Y, Dong S, Wang Y. Antibody-Drug Conjugates Targeting CD30 in T-Cell Lymphomas: Clinical Progression and Mechanism. Cancers (Basel) 2025; 17:496. [PMID: 39941862 PMCID: PMC11815818 DOI: 10.3390/cancers17030496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
CD30 is overexpressed in many T-cell lymphoma (TCL) entities, including subsets of peripheral T-cell lymphomas (PTCL) and cutaneous T-cell lymphomas (CTCL). The antibody-drug conjugate brentuximab vedotin (BV), targeting CD30-positive cells, has been approved for the treatment of relapsed or refractory (R/R) systemic anaplastic large cell lymphoma (sALCL), and primary cutaneous anaplastic large cell lymphoma or mycosis fungoides in patients who have received previous systemic therapy. However, many patients still experience disease progression after BV monotherapy. Extensive efforts have been dedicated to investigating effective combinations of BV. A phase III clinical study demonstrated that the combination of BV with cyclophosphamide, doxorubicin, and prednisone (CHP) is superior to cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) for CD30-positive PTCL. This study led to the approval of BV with CHP as the first-line therapy for CD30-positive PTCL (sALCL in Europe). We summarize the encouraging combination applications of BV in this review. Ongoing studies on combination therapies of BV are also listed, highlighting potential directions for the future application of BV. We focus on dissecting the underlying mechanisms of BV, discussing its effects on both tumor cells and the tumor microenvironment. Exploring resistance mechanisms in TCL provide valuable insights for optimizing BV-based therapies in the future.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China; (Y.J.); (S.D.)
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing 100034, China
| | - Sai Dong
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China; (Y.J.); (S.D.)
- The Second Clinical Medical School, Peking University, Beijing 100044, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China; (Y.J.); (S.D.)
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing 100034, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Chen W, Zhang Z. Recent Advances in Understanding the Clinical Responses of Brentuximab Vedotin in Lymphoma and the Correlation with CD30 Expression. Onco Targets Ther 2025; 18:1-14. [PMID: 39802262 PMCID: PMC11720807 DOI: 10.2147/ott.s487088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
Brentuximab vedotin (BV) is an antibody-drug conjugate that combines the CD30 monoclonal antibody with the microtubule-disrupting agent, monomethyl auristatin E, which induces apoptosis in the tumor cell upon its release from the conjugate. The safety and efficacy of BV have been assessed in several studies in patients with T- and B-cell lymphomas. This article reviews the currently available data on the distribution of CD30 expression in T- and B-cell lymphomas, as well as the various levels of CD30 positivity cutoff used in the literature. It also analyzes the relationship between CD30 expression levels and the clinical response to BV in clinical trials for both T- and B-cell lymphomas and investigates BV efficacy in patients with low or undetectable levels of CD30 and examines potential mechanisms by which BV exerts its effect on these patients. This review contributes to the growing evidence suggesting that CD30 expression levels do not predict the clinical benefit of BV as the drug demonstrated substantial efficacy in patients across a wide range of CD30 expression levels while suggesting that the antitumor activity was not associated with CD30 expression levels. Furthermore, the potential of BV as a targeted approach along with its mechanism of action is also summarized to explain its key role in the future treatments of lymphomas, especially for CD30-expressing lymphomas.
Collapse
Affiliation(s)
- Wen Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| |
Collapse
|
8
|
Liu Y, Yuan X, Yang X, Yang B, Liu G, Xu X, Wang S, He Z, Wang F, Li Y. Risk analysis of cardiovascular toxicity in patients with lymphoma treated with CD19 CAR T cells. J Transl Med 2025; 23:8. [PMID: 39754193 PMCID: PMC11699784 DOI: 10.1186/s12967-024-06035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Anti-CD19 chimeric antigen receptor (CAR) T cell therapy is a common, yet highly efficient, cellular immunotherapy for lymphoma. However, many recent studies have reported on its cardiovascular (CV) toxicity. This study analyzes the cardiotoxicity of CD19 CAR T cell therapy in the treatment of lymphoma for providing a more valuable reference for clinicians. METHODS The PubMed, Embase, Cochrane library, and Web of Science databases were comprehensively searched from the time of their establishment to May 2024. The ClinicalTrials.gov English database is a comprehensive repository of the original studies of CD19 CAR T cell therapy and associated adverse outcomes, such as arrhythmia, CV events, and hypotension, in patients with lymphoma. The Cochrane Collaboration tool and the Newcastle-Ottawa Scale (NOS) were used to assess the quality of the included original studies. For RCTs, the Cochrane Collaboration tool was used to assess the risk of bias. For non-randomized studies, the risk of bias was assessed using the NOS quality assessment scale. RESULTS A risk analysis of two randomized controlled trials and nine cohort studies, totaling 1379 patients with lymphoma receiving CD19 CAR-T, is conducted. The incidences for all-cause mortality, CV events, and hypotension were found to be 17.8%, 17.8%, and 52.8%, respectively. Additionally, the incidences of heart failure (HF), cardiomyopathy, cardiac arrest, and other CV events are 3%, 0.6%, 1.3%, and 2.5%, respectively. In addition to cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) as adverse events, patients treated with CD19 CAR T cells are also at risk of CV events. The most common CV events are arrhythmia and HF. Our further analysis showed that the incidence of CV events was 28.7% in the elderly and 13.5% in adults. The incidence of CV events in the elderly was higher than that in adults, and it was statistically significant. Furthermore, the incidence of CV events and hypotension is strongly associated with patients with CRS. CONCLUSION Therefore, clinicians should pay close attention to the occurrence of such CV events and take timely prevention and intervention measures to further improve the safety of CD19 CAR T cell therapy.
Collapse
Affiliation(s)
- Yang Liu
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou, China
| | - Xiaoshuang Yuan
- Department of Hematology Oncology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Xu Yang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou, China
| | - Bo Yang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou, China
| | - Guangyang Liu
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou, China
| | - Xiao Xu
- Fourth Medical Center, General Hospital of People's Liberation Army: Chinese PLA General Hospital, Beijing, 100089, China
| | - Sanbin Wang
- People's Liberation Army Joint Logistic Support Force 920, Hospital, Kunming, Yunnan, China
| | - Zhixu He
- Center of Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou, China
| | - Feiqing Wang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou, China.
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
| | - Yanju Li
- Department of Hematology Oncology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
9
|
Perales MA, Ahmed S. When to use stem cell transplantation for classical Hodgkin lymphoma. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:517-523. [PMID: 39644064 DOI: 10.1182/hematology.2024000575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Hodgkin lymphoma (HL) is a rare hematologic malignancy with a bimodal distribution of incidence, with most patients diagnosed between the ages of 15 and 30 years and another peak in patients older than 55 years. It is estimated that in 2023, almost 9000 people were diagnosed with HL in the United States. Most patients will be cured using conventional chemotherapy and radiotherapy. The treatment of HL has changed significantly over the past decade following the approval of highly effective novel therapies, including brentuximab vedotin and the checkpoint inhibitors (CPIs) nivolumab and pembrolizumab. The increasing use of these novel therapies has resulted in decreased utilization of both autologous and allogeneic hematopoietic cell transplantation (HCT) in patients with HL. In this review, we discuss the role of stem cell transplantation in patients with HL, with a particular focus on recent data supporting allogeneic HCT as a curative option in patients who progress on or are intolerant to CPI treatment.
Collapse
Affiliation(s)
- Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Sairah Ahmed
- Department of Lymphoma/Myeloma and Department of Stem Cell Transplantation/Cellular Therapy, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
10
|
Hu Q, Wang L, Yang Y, Lee JB. Review of dose justifications for antibody-drug conjugate approvals from clinical pharmacology perspective: A focus on exposure-response analyses. J Pharm Sci 2024; 113:3434-3446. [PMID: 39374692 DOI: 10.1016/j.xphs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
Antibody-drug conjugates (ADCs) are revolutionizing cancer treatment by specific targeting of the cancer cells thereby improving the therapeutic window of the drugs. Nevertheless, they are not free from unwanted toxicities mainly resulting from non-specific targeting and release of the payload. Therefore, the dosing regimen must be optimized through integrated analysis of the risk-benefit profile, to maximize the therapeutic potential. Exposure-response (E-R) analysis is one of the most widely used tools for risk-benefit assessment and it plays a pivotal role in dose optimization of ADCs. However, compared to conventional E-R analysis, ADCs pose unique challenges since they feature properties of both small molecules and antibodies. In this article, we review the E-R analyses that have formed the key basis of dose justification for each of the 12 ADCs approved in the USA. We discuss the multiple analytes and exposure metrics that can be utilized for such analysis and their relevance for safety and efficacy of the treatment. For the endpoints used for the E-R analysis, we were able to uncover commonalities across different ADCs for both safety and efficacy. Additionally, we discuss dose optimization strategies for ADCs which are now a critical component in clinical development of oncology drugs.
Collapse
Affiliation(s)
- Qianqian Hu
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, 33620, USA
| | - Lujing Wang
- Clinical Pharmacology and Pharmacometrics, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, NJ, 08543, USA
| | - Yuqing Yang
- Pharmacokinetic Sciences, Biomedical Research, Novartis, East Hanover, NJ, 07936, USA.
| | - Jong Bong Lee
- Pharmacokinetic Sciences, Biomedical Research, Novartis, East Hanover, NJ, 07936, USA.
| |
Collapse
|
11
|
Mortaja M, Cheng MM, Ali A, Lesperance J, Hingorani DV, Allevato MM, Dhawan K, Camargo MF, McKay RR, Adams SR, Gutkind JS, Advani SJ. Tumor-Targeted Cell-Penetrating Peptides Reveal That Monomethyl Auristatin E Temporally Modulates the Tumor Immune Microenvironment. Molecules 2024; 29:5618. [PMID: 39683778 PMCID: PMC11643828 DOI: 10.3390/molecules29235618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Chemotherapies remain standard therapy for cancers but have limited efficacy and cause significant side effects, highlighting the need for targeted approaches. In the progression of cancer, tumors increase matrix metalloproteinase (MMP) activity. Leveraging and therapeutically redirecting tumor MMPs through activatable cell-penetrating peptide (ACPP) technology offers new approaches for tumor-selective drug delivery and for studying how drug payloads engage the tumor immune microenvironment. ACPPs are biosensing peptides consisting of a drug-conjugated polycationic cell-penetrating peptide masked by an autoinhibitory polyanionic peptide through an interlinking peptide linker. Since tumors overexpress MMPs, ACPP tumor-targeting is achieved using an MMP cleavable linker. Monomethyl auristatin E (MMAE) is a potent anti-tubulin and common drug payload in antibody drug conjugates; however there are limited pre-clinical studies on how this clinically effective drug modulates the interplay of cancer cells and the immune system. Here, we report the versatility of ACPP conjugates in syngeneic murine cancer models and interrogate how MMAE temporally alters the tumor immune microenvironment. We show that cRGD-ACPP-MMAE preferentially delivered MMAE to tumors in murine models. Targeted cRGD-ACPP-MMAE demonstrated anti-tumor kill activity that activated the innate and adaptive arms of the immune system. Understanding how targeted MMAE engages tumors can optimize MMAE tumor kill activity and inform rational combinations with other cancer therapeutics.
Collapse
Affiliation(s)
- Mahsa Mortaja
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Marcus M. Cheng
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Alina Ali
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Jacqueline Lesperance
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Dina V. Hingorani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Mike M. Allevato
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA; (M.M.A.); (S.R.A.); (J.S.G.)
| | - Kanika Dhawan
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Maria F. Camargo
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Rana R. McKay
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Stephen R. Adams
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA; (M.M.A.); (S.R.A.); (J.S.G.)
| | - J. Silvio Gutkind
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA; (M.M.A.); (S.R.A.); (J.S.G.)
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Sunil J. Advani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Fasih S, Welch S, Lohmann AE. Antibody-Drug Conjugates: A Start of a New Era in Gynecological Cancers. Curr Oncol 2024; 31:7088-7106. [PMID: 39590153 PMCID: PMC11593302 DOI: 10.3390/curroncol31110522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Antibody-drug conjugates (ADCs) are a new class of therapeutic agents designed to target specific antigens on tumor cells, combining the specificity of monoclonal antibodies with the cytotoxicity of chemotherapy agents. ADCs have been available for over a decade, but in gynecological cancers, these agents are relatively new with great promise ahead. More than 80% of ongoing trials in gynecological cancers are evaluating ADCs' safety and efficacy, of which 40% are early-phase trials. Around twenty ADCs are currently under investigation, either alone or in combination with chemotherapies or immune checkpoint inhibitors. Among them, mirvetuximab soravtansine has been recently approved by the Food and Drug Administration (FDA) in platinum-resistant ovarian cancer with high folate-α receptor expression, as a single agent or in combination. Tisotumab vedotin and trastuzumab deruxtecan are also now approved by the FDA in patients with pre-treated cervical and uterine cancers and further investigation is ongoing. Overall, the toxicity profiles of ADCs are acceptable. Ocular toxicity is one of the specific side effects of some ADCs, but most of the cases are manageable with the use of prophylactic steroids and dose adjustments. This review aims to provide an overview of the fundamental and operational features of ADCs and examine the latest and most promising data, with a particular focus on the Canadian viewpoint.
Collapse
Affiliation(s)
- Samir Fasih
- Department of Oncology, Division of Medical Oncology, University of Western Ontario, London, ON N6A 5W9, Canada; (S.F.); (S.W.)
| | - Stephen Welch
- Department of Oncology, Division of Medical Oncology, University of Western Ontario, London, ON N6A 5W9, Canada; (S.F.); (S.W.)
| | - Ana Elisa Lohmann
- Department of Oncology, Division of Medical Oncology, University of Western Ontario, London, ON N6A 5W9, Canada; (S.F.); (S.W.)
- Department of Epidemiology and Biostatistics, University of Western Ontario, London, ON N6A 5W9, Canada
| |
Collapse
|
13
|
Armitage JO, Longo DL. Therapy for Hodgkin's Lymphoma - Can It Get Any Better? N Engl J Med 2024; 391:1452-1454. [PMID: 39413381 DOI: 10.1056/nejme2408724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Affiliation(s)
- James O Armitage
- From the University of Nebraska School of Medicine, Omaha (J.O.A.)
| | - Dan L Longo
- From the University of Nebraska School of Medicine, Omaha (J.O.A.)
| |
Collapse
|
14
|
Chen Y, Ren X, Dai Y, Wang Y. Pharmacovigilance study of the association between peripheral neuropathy and antibody-drug conjugates using the FDA adverse event reporting system. Sci Rep 2024; 14:21386. [PMID: 39271716 PMCID: PMC11399297 DOI: 10.1038/s41598-024-71977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Antibody-drug conjugates (ADCs) are among the fastest-growing classes of anticancer drugs, making it crucial to evaluate their potential for causing peripheral neuropathy. We analyzed data from the FAERS database (January 1, 2014, to June 30, 2023) using disproportionality and Bayesian methods. We identified 3076 cases of ADC-associated peripheral neuropathy. Our study revealed significant signals for all ADCs (ROR 1.82, 95% CI 1.76-1.89). ADCs with tubulin-binding payloads showed significant peripheral neuropathy signals (ROR 2.31, 95% CI 2.23-2.40), whereas those with DNA-targeting (ROR 0.48, 95% CI 0.39-0.59) and topoisomerase 1 inhibitor (ROR 0.56, 95% CI 0.48-0.66) payloads exhibited non-significant signals. Signals for peripheral sensory neuropathy were 4.83, 2.44, 2.74, and 2.21 (calculated based on IC025) for brentuximab vedotin, trastuzumab emtansine, enfortumab vedotin, and polatuzumab vedotin, while signals for peripheral motor neuropathy were 5.31, 0.34, 2.27, and 0.03, respectively. The median time to onset for all ADCs was 127 days (interquartile range 40-457). Tisotumab vedotin had the highest hospitalization rate at 26.67%, followed by brentuximab vedotin at 25.5%. Trastuzumab emtansine had the highest mortality rate ,with 80 deaths (11.96%) among 669 cases. Based on FAERS database, only ADCs with tubulin-binding payloads exhibited significant peripheral neuropathy signals. Brentuximab vedotin and enfortumab vedotin showed similar profiles for peripheral sensory neuropathy and motor neuropathy. Given the delayed time to onset and potentially poor outcomes, ADC-related peripheral neuropathy warrants significant attention.
Collapse
Affiliation(s)
- Yuheng Chen
- Party Committee Office, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiayang Ren
- Department of Pharmacy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyuan Dai
- Department of Pharmacy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanfeng Wang
- Department of Comprehensive Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
15
|
Lica JJ, Pradhan B, Safi K, Jakóbkiewicz-Banecka J, Hellmann A. Promising Therapeutic Strategies for Hematologic Malignancies: Innovations and Potential. Molecules 2024; 29:4280. [PMID: 39275127 PMCID: PMC11397263 DOI: 10.3390/molecules29174280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
In this review we explore innovative approaches in the treatment of hematologic cancers by combining various therapeutic modalities. We discuss the synergistic potential of combining inhibitors targeting different cellular pathways with immunotherapies, molecular therapies, and hormonal therapies. Examples include combining PI3K inhibitors with proteasome inhibitors, NF-κB inhibitors with immunotherapy checkpoint inhibitors, and neddylation inhibitors with therapies targeting the tumor microenvironment. Additionally, we discuss the potential use of small molecules and peptide inhibitors in hematologic cancer treatment. These multidimensional therapeutic combinations present promising strategies for enhancing treatment efficacy and overcoming resistance mechanisms. However, further clinical research is required to validate their effectiveness and safety profiles in hematologic cancer patients.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Faculty of Health Science, Powiśle University, 80-214 Gdańsk, Poland
| | - Bhaskar Pradhan
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Kawthar Safi
- Department of Biochemistry and Clinical Chemistry, Faculty of Biology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| |
Collapse
|
16
|
Zhang D, Zhang Z, Lee A, Fenton K, Jain S, Garg A, Chia YL. Time-varying brentuximab vedotin pharmacokinetics and weight-based dosing in paediatric patients despite lower exposure in those aged 2 to <6 and 6-11 years. Br J Clin Pharmacol 2024; 90:2299-2313. [PMID: 38866401 DOI: 10.1111/bcp.16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/14/2024] Open
Abstract
AIMS We studied the pharmacokinetics and exposure-response relationships of the brentuximab vedotin (BV) antibody-drug conjugate (ADC) and unconjugated monomethyl auristatin E in haematologic malignancies. METHODS This population pharmacokinetic analysis included data from five adult and three paediatric studies. Exposures in virtual adult and paediatric populations following BV 1.8 mg/kg (maximum 180 mg) intravenously every 3 weeks were simulated. Clinical endpoints included overall response rate, grade ≥2 peripheral neuropathy (PN) and grade ≥3 neutropenia. RESULTS BV ADC exhibited linear pharmacokinetics, well-described by a three-compartment model, with body weight being the only significant covariate for exposure. Monomethyl auristatin E exhibited time-varying formation rate. Simulated steady-state BV ADC exposures in patients aged 12 to <18 years were similar to those of adult patients, but 23%-38% lower in patients aged 2 to <12 years. Despite lower exposure, clinical activity was observed with BV 1.8 mg/kg every 3 weeks in those aged 2 to <12 years (overall response rate: 2 to <12 years, 60%; 12 to <18 years, 43%). In adult, but not paediatric patients, increased BV ADC exposures were associated with grade ≥2 PN and grade ≥3 neutropenia occurrence. CONCLUSIONS BV pharmacokinetics in adult and paediatric patients were consistent. BV ADC exposures were lower in patients aged 2 to <12 years vs. ≥12 years, but no apparent clinically relevant differences in efficacy, grade ≥2 PN or grade ≥3 neutropenia were observed. These data support body weight-based dosing of BV in patients irrespective of age; thus, dose adjustment in those 2 to <12 years does not appear warranted.
Collapse
Affiliation(s)
- Daping Zhang
- Translational Clinical Sciences, Research and Development, Pfizer, Bothell, Washington, USA
| | - Zufei Zhang
- Clinical Pharmacology and Translational Sciences, Oncology Research and Development, Pfizer, Bothell, Washington, USA
| | - Anthony Lee
- Clinical Pharmacology and Translational Sciences, Oncology Research and Development, Pfizer, Bothell, Washington, USA
| | - Keenan Fenton
- Oncology Statistics, Oncology Research and Development, Pfizer, Bothell, Washington, USA
| | - Shweta Jain
- Oncology Research and Development, Pfizer, Bothell, Washington, USA
| | - Amit Garg
- Clinical Pharmacology and Translational Sciences, Oncology Research and Development, Pfizer, South San Francisco, California, USA
| | - Yen Lin Chia
- Translational Clinical Sciences, Research and Development, Pfizer, South San Francisco, California, USA
| |
Collapse
|
17
|
O'Connor OA, Ma H, Chan JYS, Kim SJ, Yoon SE, Kim WS. Peripheral T-cell lymphoma: From biology to practice to the future. Cancer Treat Rev 2024; 129:102793. [PMID: 39002211 DOI: 10.1016/j.ctrv.2024.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Recent advancements in comprehending peripheral T-cell lymphomas (PTCLs) validate and broaden our perspective, highlighting their diverse nature and the varying molecular mechanisms underlying the entities. Based on a comprehensive accumulated understanding, the PTCLs currently overcome the most challenging features of any disease: rarity, incredible heterogeneity, and a lack of any established standard of care. The treatments deployed in the front-line are extrapolated from regimens developed for other diseases. The recent approval of the three drugs brentuximab vedotin (BV), pralatrexate, and belinostat for patients with relapsed or refractory disease has provided clues about pathophysiology and future directions, though challenges satisfying post-marketing requirements (PMR) for those accelerated approvals have led to one of those drugs being withdrawn and put the other two in jeopardy. Edits of the front-line regimens, often called CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone)-plus approaches, look more like CHOP-minus strategies, as the toxicity of five-drug regimens often reduces the dose intensity of the added 'novel' drug, nullifying any hope of an advance. The turmoil in the field produced by the aforementioned, coupled with an ever-changing classification, has left the field uncertain about the path forward. Despite these challenges, empiric findings from studies of novel drug approaches, coupled with a logic emerging from studies of PTCL lymphomagenesis, have begun to illuminate, albeit faintly for some, a potential direction. The empiric finding that drugs targeting the discrete components of the PTCL epigenome, coupled with the description of multiple mutations in genes that govern epigenetic biology, offers, at the very least, an opportunity to finally be hypothesis-driven. The most recent recognition that the only combination of drugs shown to markedly improve progression-free survival (PFS) in patients with relapsed disease is one based on dual targeting of different and discrete components of that epigenetic biology has established a possibility that circumnavigating chemotherapy addition studies is both plausible, feasible, and likely the best prospect for a quantum advance in this disease. Herein, we analyze PTCL through a 2025 lens, highlighting and underscoring walls that have impeded progress. We will critically explore all the clues and the panoramic view of PTCL research.
Collapse
Affiliation(s)
- Owen A O'Connor
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA, United States
| | - Helen Ma
- VA Long Beach Healthcare System, Long Beach, CA, United States; University of California-Irvine, Orange, CA, United States
| | | | - Seok Jin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Zhang Z, Zhang D, Guo W, Fenton K, Narayanan S, Jain S, Jiang J, Castellino SM, Kelly KM, Cole PD, Keller FG, Garg A, Chia YL. Exposure-Response and Subgroup Analyses to Support Body Weight-Based Dosing of Brentuximab Vedotin in Children and Young Adults with Newly Diagnosed High-risk Classical Hodgkin Lymphoma. Clin Cancer Res 2024; 30:3273-3281. [PMID: 38810021 PMCID: PMC11292200 DOI: 10.1158/1078-0432.ccr-23-3655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/15/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE The purpose of the study was to evaluate the relationships between brentuximab vedotin (BV) pharmacokinetics, age, and body weight (BW) with efficacy and safety in pediatric and young adult patients with previously untreated, high-risk classical Hodgkin lymphoma in the phase III AHOD1331 study. EXPERIMENTAL DESIGN Overall, 296 patients (age 2-21 years) in the overall population were randomized to and received BV + chemotherapy; the pharmacokinetic subpopulation comprised 24 patients (age <13 years). Age- and/or BW-based (pharmacokinetic surrogates) subgroup analyses of efficacy and safety were conducted for the overall population. Exposure-response analyses were limited to the pharmacokinetic subpopulation. RESULTS There were no visible trends in disease characteristics across pediatric age subgroups, whereas BW increased with age. Observed antibody-drug conjugate exposures in patients ages <12 years were lower than those in adults administered BV 1.8 mg/kg every 3 weeks, as exposure increased with BW. Nevertheless, no detrimental impact on event-free survival was seen in younger subgroups: 3-year event-free survival rates were 96.2% (2-<12 years) and 92.0% (12-<18 years), with no events observed in those ages <6 years. Neither early response nor lack of need for radiation therapy was associated with high pharmacokinetic exposure. No evidence of exposure-driven grade ≥2 or ≥3 peripheral neuropathy or grade ≥3 neutropenia was seen in exposure-safety and BW-based subgroup analyses; the incidence of these safety events was comparable across pediatric age subgroups, despite lower exposure in younger children. CONCLUSIONS No further adjustments based on age or BW are required for the BV dosage (1.8 mg/kg every 3 weeks) approved in children.
Collapse
Affiliation(s)
- Zufei Zhang
- Clinical Pharmacology and Translational Sciences, Oncology Research and Development, Pfizer, Bothell, Washington.
| | - Daping Zhang
- Translational Clinical Sciences, Research and Development, Pfizer, Bothell, Washington.
| | - Wenchuan Guo
- Oncology Statistics, Oncology Research and Development, Pfizer, Bothell, Washington.
| | - Keenan Fenton
- Oncology Statistics, Oncology Research and Development, Pfizer, Bothell, Washington.
| | | | - Shweta Jain
- Oncology Research and Development, Pfizer, Bothell, Washington.
| | - Joy Jiang
- SERM Safety Evaluation and Risk Management, Oncology Research and Development, Pfizer, Bothell, Washington.
| | - Sharon M. Castellino
- Emory University School of Medicine, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia.
| | - Kara M. Kelly
- Roswell Park Comprehensive Cancer Center, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York.
| | - Peter D. Cole
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
| | - Frank G. Keller
- Emory University School of Medicine, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia.
| | - Amit Garg
- Clinical Pharmacology and Translational Sciences, Oncology Research and Development, Pfizer, South San Franciso, California.
| | - Yen Lin Chia
- Translational Clinical Sciences, Research and Development, Pfizer, South San Francisco, California.
| |
Collapse
|
19
|
He J, Zeng X, Wang C, Wang E, Li Y. Antibody-drug conjugates in cancer therapy: mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e671. [PMID: 39070179 PMCID: PMC11283588 DOI: 10.1002/mco2.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Antibody-drug conjugates (ADCs) consist of monoclonal antibodies that target tumor cells and cytotoxic drugs linked through linkers. By leveraging antibodies' targeting properties, ADCs deliver cytotoxic drugs into tumor cells via endocytosis after identifying the tumor antigen. This precise method aims to kill tumor cells selectively while minimizing harm to normal cells, offering safe and effective therapeutic benefits. Recent years have seen significant progress in antitumor treatment with ADC development, providing patients with new and potent treatment options. With over 300 ADCs explored for various tumor indications and some already approved for clinical use, challenges such as resistance due to factors like antigen expression, ADC processing, and payload have emerged. This review aims to outline the history of ADC development, their structure, mechanism of action, recent composition advancements, target selection, completed and ongoing clinical trials, resistance mechanisms, and intervention strategies. Additionally, it will delve into the potential of ADCs with novel markers, linkers, payloads, and innovative action mechanisms to enhance cancer treatment options. The evolution of ADCs has also led to the emergence of combination therapy as a new therapeutic approach to improve drug efficacy.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University Jiande Zhejiang China
| | - Xianghua Zeng
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Chunmei Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Enwen Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Yongsheng Li
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| |
Collapse
|
20
|
Hirai Y, Sakurai J, Yoshida S, Kikuchi T, Mitsuhashi T, Miyake T, Fujimura T, Abe R, Fujikawa H, Boki H, Suga H, Shibata S, Miyagaki T, Shimauchi T, Kiyohara E, Kawakami Y, Morizane S. Phase I/II clinical trial of brentuximab vedotin for pretreated Japanese patients with CD30-positive cutaneous T-cell lymphoma. J Dermatol 2024; 51:1037-1049. [PMID: 38874430 PMCID: PMC11483954 DOI: 10.1111/1346-8138.17324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/11/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
Brentuximab vedotin (BV), a conjugate of anti-CD30 antibody and monomethyl auristatin E, has emerged as a promising treatment option for refractory CD30+ mycosis fungoides (MF) and primary cutaneous anaplastic large-cell lymphoma (pcALCL). BV has been shown to be safe and effective in treating Hodgkin's lymphoma and peripheral T-cell lymphoma. This multicenter, prospective, single-arm phase I/II study evaluated the efficacy of BV in Japanese patients with CD30+ cutaneous lymphomas, namely CD30+ cutaneous T-cell lymphoma. Participants were divided into two groups: those with CD30+ MF or pcALCL (cohort 1, n = 13) and those with CD30+ lymphoproliferative disorders other than those in cohort 1 (cohort 2, n = 3). The studied population included the full analysis set (FAS), modified FAS (mFAS), and safety analysis set (SAF). These sets were identified in cohorts 1 and 1 + 2 and labeled FAS1 and FAS2, mFAS1 and mFAS2, and SAF1 and SAF2, respectively. Each treatment cycle lasted 3 weeks, and BV was continued for up to 16 cycles after the third cycle based on treatment response. The primary endpoint was the 4-month objective response rate (ORR4) determined by the Independent Review Forum (IRF). ORR4 was 69.2% for FAS1 and 62.5% for FAS2 (P < 0.0001). Secondary endpoints of ORR, assessed using the global response score (53.8% in FAS1) and modified severity-weighted assessment tool (62.5% in FAS1), using the IRF, provided results comparable to the primary findings. The incidence of ≥grade 3 adverse events (≥15%) in SAF1 was peripheral neuropathy in three patients (23%) and fever and eosinophilia in two patients (15%). In conclusion, BV showed favorable efficacy, tolerability, and safety profile in Japanese patients with relapsed or refractory CD30+ primary cutaneous T-cell lymphoma. The trial was registered with University Hospital Medical Information Network Clinical Trials Registry, Japan (protocol ID: UMIN000034205).
Collapse
Affiliation(s)
- Yoji Hirai
- Department of DermatologyGraduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama UniversityOkayamaJapan
| | - Jun Sakurai
- Center for Innovative Clinical MedicineOkayama University HospitalOkayamaJapan
| | - Shiho Yoshida
- Center for Innovative Clinical MedicineOkayama University HospitalOkayamaJapan
| | - Takashi Kikuchi
- Center for Innovative Clinical MedicineOkayama University HospitalOkayamaJapan
| | | | - Tomoko Miyake
- Department of DermatologyGraduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama UniversityOkayamaJapan
| | - Taku Fujimura
- Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan
| | - Riichiro Abe
- Department of DermatologyNiigata UniversityNiigataJapan
| | | | - Hikari Boki
- Department of DermatologyTokyo UniversityTokyoJapan
| | - Hiraku Suga
- Department of DermatologyTokyo UniversityTokyoJapan
| | | | | | - Takatoshi Shimauchi
- Department of DermatologyHamamatsu University School of MedicineHamamatsuJapan
| | | | - Yoshio Kawakami
- Department of DermatologyGraduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama UniversityOkayamaJapan
| | - Shin Morizane
- Department of DermatologyGraduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama UniversityOkayamaJapan
| |
Collapse
|
21
|
Ke C, Chen M, Huang Y, Chen Y, Lin C, Huang P. Cardiac toxicity of brentuximab vedotin: a real-word disproportionality analysis of the FDA Adverse Event Reporting System (FAERS) database. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5253-5264. [PMID: 38270617 DOI: 10.1007/s00210-024-02955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Brentuximab vedotin (BV) has obtained approval for the therapeutic management of classical Hodgkin lymphoma as well as systemic anaplastic large cell lymphoma. Given the inherent constraints of conventional clinical trials, the correlation between BV and cardiac adverse events (AEs) remains enigmatic. The objective of this investigation is to comprehensively assess cardiac AEs attributed to BV by employing advanced data mining techniques, utilizing the FDA Adverse Event Reporting System (FAERS). The indices for the assessment of disproportionality encompass the reporting odds ratio (ROR), the proportional reporting ratio, the information component, and the empirical Bayesian geometric mean. Employing these sophisticated metrics, we gauged the extent of disproportionate occurrences. The dataset was sourced from the FAERS from the first quarter of 2012 to first quarter of 2023, facilitating a comprehensive analysis of the potential correlation between BV and cardiac AEs. This scrutiny encompassed a comparative analysis of both cardiac and non-cardiac AEs. A total of 495 cases of BV's cardiac AEs were discerned, with the identification of 31 preferred terms (PTs). Among these, 8 PTs emerged as conspicuous signals of cardiac AEs, notably encompassing ventricular hypokinesia (ROR 7.59), tachyarrhythmia (ROR 7.06), sinus tachycardia (ROR 6.18), cardiopulmonary failure (ROR 4.44), pericardial effusion (ROR 4.32), acute coronary syndrome (ROR 4.02), cardiomyopathy (ROR 3.30), and tachycardia (ROR 2.76). The manifestation of severe outcomes demonstrates a discernible correlation with the cardiac AEs (P < 0.001). Our investigation furnishes invaluable insights for healthcare practitioners to proactively mitigate the incidence of BV-associated cardiac AEs.
Collapse
Affiliation(s)
- Chengjie Ke
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Maohua Chen
- Department of Pharmacy, Pingtan Comprehensive Experimental Area Hospital, Pingtan Comprehensive Experimental Area, Fuzhou, 350400, China
| | - Yaping Huang
- Department of Pharmacy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350005, China
| | - Yan Chen
- Department of Pharmacy, Pingtan Comprehensive Experimental Area Hospital, Pingtan Comprehensive Experimental Area, Fuzhou, 350400, China
| | - Cuihong Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Pinfang Huang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
22
|
Chang HP, Cheung YK, Liu S, Shah DK. Development of a generalized pharmacokinetic model to characterize clinical pharmacokinetics of monomethyl auristatin E-based antibody-drug conjugates. Br J Clin Pharmacol 2024; 90:1637-1655. [PMID: 38566392 DOI: 10.1111/bcp.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 04/04/2024] Open
Abstract
AIMS This study aims to develop a generalized pharmacokinetic (PK) model for monomethyl auristatin E (MMAE)-based antibody-drug conjugates (ADCs) that can simultaneously capture the PK of multiple ADC analytes commonly measured in the clinic. METHODS A comprehensive literature review was conducted to collect PK data on MMAE-based ADCs from clinical trials. From each study, PK profiles of total antibody, the ADC, conjugated MMAE, and unconjugated MMAE, were extracted. These data were pooled and dose-normalized to evaluate the generalizability of PK across various ADCs and dose levels. Upon confirming PK generalizability, a generalized PK model for MMAE-based ADCs was developed using the entire dataset. Furthermore, exposure metrics ( C max and AUC) reported across the range of doses were combined to establish linear relationships between dose and exposure metrics for MMAE-based ADCs. RESULTS A total of 109 PK profiles from 18 distinct MMAE-based ADCs were gathered. The dose-normalized PK profiles supported the generalizability of PK for MMAE-based ADCs. A generalized PK model was developed, which enabled capturing the PK data for 4 ADC analytes across all collected MMAE-based ADCs. A linear relationship between dose and PK exposure metrics was established, enabling the prediction of typical exposure values across different doses for MMAE-based ADCs. CONCLUSIONS This study comprehensively analysed clinical PK data from different valine-citrulline (vc)-MMAE-based ADCs. The generalized PK model developed here serves as an important tool for a priori prediction of the PK for multiple ADC analytes in clinical settings and lays the foundation for establishing generalized exposure-response and exposure-toxicity correlations for MMAE-based ADCs.
Collapse
Affiliation(s)
- Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Yuen Kiu Cheung
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
23
|
Panaampon J, Okada S. Promising immunotherapeutic approaches for primary effusion lymphoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:699-713. [PMID: 38966176 PMCID: PMC11220309 DOI: 10.37349/etat.2024.00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 07/06/2024] Open
Abstract
Primary effusion lymphoma (PEL) is a large B-cell neoplasm usually presenting as a serious effusion in body cavities without detectable tumor masses. It is an AIDS-related non-Hodgkin's lymphoma (HL) with human herpes virus 8 (HHV8)/Kaposi sarcoma-associated herpes virus (KSHV) infection. A combination antiretroviral therapy (cART) prolongs the lifespan of AIDS and AIDS-related malignant lymphoma patients, but PEL continues to have a dismal prognosis. PEL showed disappointing outcomes with standard chemotherapy such as CHOP or CHOP-like regimens. A PEL status highlights the urgent need for new therapeutic approaches and treatment strategies and improve clinical outcomes. This review discusses the current knowledge and some recent clinical trials for PEL in the platform of immunotherapy as well as promising future immunotherapeutic approaches for PEL.
Collapse
Affiliation(s)
- Jutatip Panaampon
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
24
|
Vlachou E, Johnson BA, Baraban E, Nadal R, Hoffman-Censits J. Current Advances in the Management of Nonurothelial Subtypes of Bladder Cancer. Am Soc Clin Oncol Educ Book 2024; 44:e438640. [PMID: 38870453 DOI: 10.1200/edbk_438640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Urothelial cancer (UC) is the most common histology seen in bladder tumors. The 2022 WHO classification of urinary tract tumors includes a list of less common subtypes (formerly known as variants) for invasive UC which are considered high-grade tumors. This review summarizes the most recent advances in the management of selected nonurothelial subtypes of bladder cancer: squamous cell carcinoma, small cell carcinoma, sarcomatoid urothelial carcinoma, micropapillary carcinoma, plasmacytoid carcinoma, adenocarcinoma, and urachal carcinoma. The role of neoadjuvant and adjuvant chemotherapy has not been well characterized for most of these histologies, and prospective data are extremely limited. Participation in clinical trials is recommended in advanced disease.
Collapse
Affiliation(s)
- Evangelia Vlachou
- Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
- The Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD
| | - Burles Avner Johnson
- Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
- The Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD
| | - Ezra Baraban
- Department of Pathology, Johns Hopkins Hospital, Baltimore, MD
| | - Rosa Nadal
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jean Hoffman-Censits
- Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
- The Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD
- Department of Pathology, Johns Hopkins Hospital, Baltimore, MD
| |
Collapse
|
25
|
Benevolo Savelli C, Bisio M, Legato L, Fasano F, Santambrogio E, Nicolosi M, Morra D, Boccomini C, Freilone R, Botto B, Novo M. Advances in Hodgkin Lymphoma Treatment: From Molecular Biology to Clinical Practice. Cancers (Basel) 2024; 16:1830. [PMID: 38791909 PMCID: PMC11120540 DOI: 10.3390/cancers16101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Classical Hodgkin Lymphoma (cHL) is a highly curable disease, but around 20% of patients experience progression or relapse after standard frontline chemotherapy regimens. Salvage regimens followed by autologous stem cell transplants represent the historical treatment approach for these cases. In the last decade, with the increasing understanding of cHL biology and tumor microenvironment role in disease course, novel molecules have been introduced in clinical practice, improving outcomes in the relapsed/refractory setting. The anti-CD30 antibody-drug conjugated brentuximab vedotin and PD-1/PD-L1 checkpoint inhibitors represent nowadays curative options for chemorefractory patients, and randomized trials recently demonstrated their efficacy in frontline immune-chemo-combined modalities. Several drugs able to modulate the patients' T-lymphocytes and NK cell activity are under development, as well as many anti-CD30 chimeric antigen receptor T-cell products. Multiple tumor aberrant epigenetic mechanisms are being investigated as targets for antineoplastic compounds such as histone deacetylase inhibitors and hypomethylating agents. Moreover, JAK2 inhibition combined with anti-PD1 blockade revealed a potential complementary therapeutic pathway in cHL. In this review, we will summarize recent findings on cHL biology and novel treatment options clinically available, as well as promising future perspectives in the field.
Collapse
Affiliation(s)
- Corrado Benevolo Savelli
- Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (M.B.); (L.L.); (F.F.); (E.S.); (M.N.); (D.M.); (C.B.); (R.F.); (B.B.)
| | | | | | | | | | | | | | | | | | | | - Mattia Novo
- Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (M.B.); (L.L.); (F.F.); (E.S.); (M.N.); (D.M.); (C.B.); (R.F.); (B.B.)
| |
Collapse
|
26
|
Jia L, Yang H, Liu Y, Zhou Y, Li G, Zhou Q, Xu Y, Huang Z, Ye F, Ye J, Liu A, Ji C. Targeted delivery of HSP90 inhibitors for efficient therapy of CD44-positive acute myeloid leukemia and solid tumor-colon cancer. J Nanobiotechnology 2024; 22:198. [PMID: 38649957 PMCID: PMC11036589 DOI: 10.1186/s12951-024-02460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Heat shock protein 90 (HSP90) is overexpressed in numerous cancers, promotes the maturation of numerous oncoproteins and facilitates cancer cell growth. Certain HSP90 inhibitors have entered clinical trials. Although less than satisfactory clinical effects or insurmountable toxicity have compelled these trials to be terminated or postponed, these results of preclinical and clinical studies demonstrated that the prospects of targeting therapeutic strategies involving HSP90 inhibitors deserve enough attention. Nanoparticulate-based drug delivery systems have been generally supposed as one of the most promising formulations especially for targeting strategies. However, so far, no active targeting nano-formulations have succeeded in clinical translation, mainly due to complicated preparation, complex formulations leading to difficult industrialization, incomplete biocompatibility or nontoxicity. In this study, HSP90 and CD44-targeted A6 peptide functionalized biomimetic nanoparticles (A6-NP) was designed and various degrees of A6-modification on nanoparticles were fabricated to evaluate targeting ability and anticancer efficiency. With no excipients, the hydrophobic HSP90 inhibitor G2111 and A6-conjugated human serum albumin could self-assemble into nanoparticles with a uniform particle size of approximately 200 nm, easy fabrication, well biocompatibility and avoidance of hepatotoxicity. Besides, G2111 encapsulated in A6-NP was only released less than 5% in 12 h, which may avoid off-target cell toxicity before entering into cancer cells. A6 peptide modification could significantly enhance uptake within a short time. Moreover, A6-NP continues to exert the broad anticancer spectrum of Hsp90 inhibitors and displays remarkable targeting ability and anticancer efficacy both in hematological malignancies and solid tumors (with colon tumors as the model cancer) both in vitro and in vivo. Overall, A6-NP, as a simple, biomimetic and active dual-targeting (CD44 and HSP90) nanomedicine, displays high potential for clinical translation.
Collapse
Affiliation(s)
- Lejiao Jia
- Department of Pharmacy, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Huatian Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yue Liu
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine (TCM), Jinan, Shandong, 250014, China
| | - Ying Zhou
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Guosheng Li
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Qian Zhou
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yan Xu
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhiping Huang
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Ye
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingjing Ye
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| | - Anchang Liu
- Department of Pharmacy, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| | - Chunyan Ji
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
27
|
Liu Y, Yu S, Chen Y, Hu Z, Fan L, Liang G. The clinical regimens and cell membrane camouflaged nanodrug delivery systems in hematologic malignancies treatment. Front Pharmacol 2024; 15:1376955. [PMID: 38689664 PMCID: PMC11059051 DOI: 10.3389/fphar.2024.1376955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Hematologic malignancies (HMs), also referred to as hematological or blood cancers, pose significant threats to patients as they impact the blood, bone marrow, and lymphatic system. Despite significant clinical strategies using chemotherapy, radiotherapy, stem cell transplantation, targeted molecular therapy, or immunotherapy, the five-year overall survival of patients with HMs is still low. Fortunately, recent studies demonstrate that the nanodrug delivery system holds the potential to address these challenges and foster effective anti-HMs with precise treatment. In particular, cell membrane camouflaged nanodrug offers enhanced drug targeting, reduced toxicity and side effects, and/or improved immune response to HMs. This review firstly introduces the merits and demerits of clinical strategies in HMs treatment, and then summarizes the types, advantages, and disadvantages of current nanocarriers helping drug delivery in HMs treatment. Furthermore, the types, functions, and mechanisms of cell membrane fragments that help nanodrugs specifically targeted to and accumulate in HM lesions are introduced in detail. Finally, suggestions are given about their clinical translation and future designs on the surface of nanodrugs with multiple functions to improve therapeutic efficiency for cancers.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shanwu Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yixiang Chen
- Luoyang Vocational and Technical College, Luoyang, Henan, China
| | - Zhihong Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Lingling Fan
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Gaofeng Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
28
|
Peeters G, Verhaegen A. Severe insulin resistance in a patient with diabetes after treatment with brentuximab vedotin. BMJ Case Rep 2024; 17:e251867. [PMID: 38569738 PMCID: PMC10989180 DOI: 10.1136/bcr-2022-251867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
A man in his late 60s with a history of well-controlled type 2 diabetes and hepatic cirrhosis presented to the emergency department due to uncontrollable hyperglycaemia following the initial brentuximab vedotin (BV) infusion. BV was initiated as a treatment for mycosis fungoides, a form of cutaneous T-cell lymphoma. The patient was diagnosed with severe hyperglycaemia with ketosis. Empiric treatment with amoxicillin-clavulanic acid, hydration and intravenous insulin infusion was initiated. Hyperglycaemia persisted despite receiving massive amounts of insulin and was corrected only after treatment with high-dose methylprednisolone for suspected type B insulin resistance. Extremely high and difficult-to-treat hyperglycaemia is a rare side effect of BV. Unfortunately, the patient died of upper gastrointestinal bleeding 22 days after discharge. In patients with obesity and/or diabetes mellitus, the blood glucose levels should be carefully monitored when treated with BV.
Collapse
Affiliation(s)
- Greet Peeters
- Endocrinology-Diabetology, ZNA Jan Palfijn, Merksem, Belgium
| | - Ann Verhaegen
- Endocrinology-Diabetology, ZNA Jan Palfijn, Merksem, Belgium
| |
Collapse
|
29
|
Klimentova M, Perminova M, Shelikhova L, Abugova Y, Kobyzeva D, Pershin D, Balashov D, Myakova N, Maschan A, Maschan M. Allogeneic Hematopoietic Stem Cell Transplantation for Mature T/NK-Cell Lymphomas in Children. Transplant Cell Ther 2024; 30:437.e1-437.e11. [PMID: 38286354 DOI: 10.1016/j.jtct.2024.01.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Mature T/NK-cell lymphomas (MTCLs) are a heterogeneous group of lymphoproliferative disorders, relatively rare in adults and children. Allogeneic hematopoietic stem cell transplantation (HSCT) can be considered in some cases as a consolidation and is the first choice for refractory forms and relapses. We retrospectively analyzed 19 pediatric patients with MTCL who received allogeneic hematopoietic stem cell transplantation from a haploidentical or unrelated donor on the αβ T cell depletion platform. Among the studied patients, cutaneous T-cell lymphoma was diagnosed in 5, hepatosplenic γδT-cell lymphoma in 4, ALK-positive anaplastic large cell lymphoma in 9 patients, and 1 had nasal T/NK cell lymphoma. All patients received myeloablative conditioning based on treosulfan or total body irradiation. Non-relapse mortality was 5%, the cumulative incidence of relapse or progression at 5 years was 27%, 5-year event-free survival was 67%, and 5-year overall survival was 78%. Thus, our data support that allogeneic αβ T-cell-depleted HSCT can provide long-term overall survival of children with high-risk mature T-cell lymphomas.
Collapse
Affiliation(s)
- Maria Klimentova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russia
| | - Margarita Perminova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russia
| | - Larisa Shelikhova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russia
| | - Yulia Abugova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russia
| | - Daria Kobyzeva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russia
| | - Dmitry Pershin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russia
| | - Dmitry Balashov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russia
| | - Natalia Myakova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russia
| | - Alexei Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russia
| | - Michael Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russia.
| |
Collapse
|
30
|
Jabbour SK, Kumar R, Anderson B, Chino JP, Jethwa KR, McDowell L, Lo AC, Owen D, Pollom EL, Tree AC, Tsang DS, Yom SS. Combinatorial Approaches for Chemotherapies and Targeted Therapies With Radiation: United Efforts to Innovate in Patient Care. Int J Radiat Oncol Biol Phys 2024; 118:1240-1261. [PMID: 38216094 DOI: 10.1016/j.ijrobp.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Combinatorial therapies consisting of radiation therapy (RT) with systemic therapies, particularly chemotherapy and targeted therapies, have moved the needle to augment disease control across nearly all disease sites for locally advanced disease. Evaluating these important combinations to incorporate more potent therapies with RT will aid our understanding of toxicity and efficacy for patients. This article discusses multiple disease sites and includes a compilation of contributions from expert Red Journal editors from each disease site. Leveraging improved systemic control with novel agents, we must continue efforts to study novel treatment combinations with RT.
Collapse
Affiliation(s)
- Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Jersey.
| | - Ritesh Kumar
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Jersey
| | - Bethany Anderson
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Junzo P Chino
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Krishan R Jethwa
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Lachlan McDowell
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Australia
| | - Andrea C Lo
- Department of Radiation Oncology, BC Cancer Vancouver Centre, Vancouver, British Columbia, Canada
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Alison C Tree
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Derek S Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, California
| |
Collapse
|
31
|
Liu K, Li M, Li Y, Li Y, Chen Z, Tang Y, Yang M, Deng G, Liu H. A review of the clinical efficacy of FDA-approved antibody‒drug conjugates in human cancers. Mol Cancer 2024; 23:62. [PMID: 38519953 PMCID: PMC10960395 DOI: 10.1186/s12943-024-01963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/21/2024] [Indexed: 03/25/2024] Open
Abstract
While strategies such as chemotherapy and immunotherapy have become the first-line standard therapies for patients with advanced or metastatic cancer, acquired resistance is still inevitable in most cases. The introduction of antibody‒drug conjugates (ADCs) provides a novel alternative. ADCs are a new class of anticancer drugs comprising the coupling of antitumor mAbs with cytotoxic drugs. Compared with chemotherapeutic drugs, ADCs have the advantages of good tolerance, accurate target recognition, and small effects on noncancerous cells. ADCs occupy an increasingly important position in the therapeutic field. Currently, there are 13 Food and Drug Administration (FDA)‒approved ADCs and more than 100 ADC drugs at different stages of clinical trials. This review briefly describes the efficacy and safety of FDA-approved ADCs, and discusses the related problems and challenges to provide a reference for clinical work.
Collapse
Affiliation(s)
- Kaifeng Liu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, China
| | - Meijia Li
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yudong Li
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yutong Li
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, China
| | - Zixin Chen
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yiqi Tang
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, China
| | - Meitian Yang
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, China
| | - Guoquan Deng
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, China
| | - Hongwei Liu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
32
|
Youssef S, Tsang E, Samanta A, Kumar V, Gothelf KV. Reversible Protection and Targeted Delivery of DNA Origami with a Disulfide-Containing Cationic Polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301058. [PMID: 37916910 DOI: 10.1002/smll.202301058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/08/2023] [Indexed: 11/03/2023]
Abstract
DNA nanostructures have considerable biomedical potential as intracellular delivery vehicles as they are highly homogeneous and can be functionalized with high spatial resolution. However, challenges like instability under physiological conditions, limited cellular uptake, and lysosomal degradation limit their use. This paper presents a bio-reducible, cationic polymer poly(cystaminebisacrylamide-1,6-diaminohexane) (PCD) as a reversible DNA origami protector. PCD displays a stronger DNA affinity than other cationic polymers. DNA nanostructures with PCD protection are shielded from low salt conditions and DNase I degradation and show a 40-fold increase in cell-association when linked to targeting antibodies. Confocal microscopy reveals a potential secondary cell uptake mechanism, directly delivering the nanostructures to the cytoplasm. Additionally, PCD can be removed by cleaving its backbone disulfides using the intracellular reductant, glutathione. Finally, the application of these constructs is demonstrated for targeted delivery of a cytotoxic agent to cancer cells, which efficiently decreases their viability. The PCD protective agent that is reported here is a simple and efficient method for the stabilization of DNA origami structures. With the ability to deprotect the DNA nanostructures upon entry of the intracellular space, the possibility for the use of DNA origami in pharmaceutical applications is enhanced.
Collapse
Affiliation(s)
- Sarah Youssef
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Emily Tsang
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Anirban Samanta
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Vipin Kumar
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
33
|
Kaur S, Saini AK, Tuli HS, Garg N, Joshi H, Varol M, Kaur J, Chhillar AK, Saini RV. Polymer-mediated nanoformulations: a promising strategy for cancer immunotherapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1311-1326. [PMID: 37695334 DOI: 10.1007/s00210-023-02699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Engineering polymer-based nano-systems have attracted many researchers owing to their unique qualities like shape, size, porosity, mechanical strength, biocompatibility, and biodegradability. Both natural and synthetic polymers can be tuned to get desired surface chemistry and functionalization to improve the efficacy of cancer therapy by promoting targeted delivery to the tumor site. Recent advancements in cancer immunoediting have been able to manage both primary tumor and metastatic lesions via activation of the immune system. The combinations of nano-biotechnology and immunotherapeutic agents have provided positive outcomes by enhancing the host immune response in cancer therapy. The nanoparticles have been functionalized using antibodies, targeted antigens, small molecule ligands, and other novel agents that can interact with biological systems at nanoscale levels. Several polymers, such as polyethylene glycol (PEG), poly(lactic-co-glycolic acid) (PLGA), poly(ε-caprolactone) (PCL), and chitosan, have been approved by the Food and Drug Administration for clinical use in biomedicine. The polymeric nanoformulations such as polymers-antibody/antigen conjugates and polymeric drug conjugates are currently being explored as nanomedicines that can target cancer cells directly or target immune cells to promote anti-cancer immunotherapy. In this review, we focus on scientific developments and advancements on engineered polymeric nano-systems in conjugation with immunotherapeutic agents targeting the tumor microenvironment to improve their efficacy and the safety for better clinical outcomes.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Adesh K Saini
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
- Central Research Cell, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hardeep Singh Tuli
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Nancy Garg
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Anil K Chhillar
- Centre for Biotechnology, M.D. University, Rohtak, Haryana, 124 001, India
| | - Reena V Saini
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
- Central Research Cell, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| |
Collapse
|
34
|
Calabretta E, di Trani M, Corrado F, Sollini M, Cristaldi V, Marino F, Terzi di Bergamo L, Bruscaggin A, Pirosa MC, Bramanti S, Chiti A, Rossi D, Carlo-Stella C. Baseline circulating tumour DNA and interim PET predict response in relapsed/refractory classical Hodgkin lymphoma. Br J Haematol 2024; 204:514-524. [PMID: 37853658 DOI: 10.1111/bjh.19162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Reliable biomarkers for early identification of treatment failure in relapsed/refractory (r/r) classical Hodgkin lymphoma (cHL) are lacking. Circulating tumour DNA (ctDNA) profiling has emerged as a powerful predictive and prognostic tool in several haemopoietic and non-haemopoietic malignancies and may guide rational treatment choices in r/r cHL. To assess the predictive and prognostic value of ctDNA, we performed a retrospective analysis on 55 r/r cHL patients treated with the bendamustine, gemcitabine and vinorelbine (BEGEV) regimen and additionally evaluated the potential utility of integrating ctDNA with interim [18 F]-FDG positron emission tomography (iPET). Baseline ctDNA genotyping in r/r cHL mirrored gene mutations and pathways involved in newly diagnosed cHL. We found that baseline ctDNA quantification and serial ctDNA monitoring have prognostic value in r/r cHL receiving salvage chemotherapy. Lastly, integrating ctDNA quantification with iPET evaluation may improve the early identification of patients at high risk of failing standard salvage therapy, who may benefit from an early switch to immunotherapeutic agents. Collectively, our results support the implementation of non-invasive methods to detect minimal residual disease in recurrent cHL and justify its prospective evaluation in appropriately designed clinical trials.
Collapse
Affiliation(s)
- Eleonora Calabretta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina di Trani
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesco Corrado
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Vanessa Cristaldi
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabrizio Marino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Lodovico Terzi di Bergamo
- Laboratory of Experimental Hematology, Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alessio Bruscaggin
- Laboratory of Experimental Hematology, Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Maria Cristina Pirosa
- Laboratory of Experimental Hematology, Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Stefania Bramanti
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Davide Rossi
- Laboratory of Experimental Hematology, Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Carmelo Carlo-Stella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
35
|
Stein T, Robak T, Biernat W, Robak E. Primary Cutaneous CD30-Positive Lymphoproliferative Disorders-Current Therapeutic Approaches with a Focus on Brentuximab Vedotin. J Clin Med 2024; 13:823. [PMID: 38337516 PMCID: PMC10856748 DOI: 10.3390/jcm13030823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
One of the most common subgroups of cutaneous T-cell lymphomas is that of primary cutaneous CD30-positive lymphoproliferative disorders. The group includes lymphomatoid papulosis (LyP) and primary cutaneous anaplastic large cell lymphoma (pcALCL), as well as some borderline cases. Recently, significant progress has been made in understanding the genetics and treatment of these disorders. This review article summarises the clinical evidence supporting the current treatment options for these diseases. Recent years have seen the introduction of novel agents into clinical practice; most of these target CD30, such as anti-CD30 monoclonal antibodies and conjugated antibodies (brentuximab vedotin), bispecific antibodies and cellular therapies, particularly anti-CD30 CAR-T cells. This paper briefly reviews the biology of CD30 that makes it a good therapeutic target and describes the anti-CD30 therapies that have emerged to date.
Collapse
Affiliation(s)
- Tomasz Stein
- Department of Dermatology, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, 93-510 Lodz, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Ewa Robak
- Department of Dermatology, Medical University of Lodz, 90-647 Lodz, Poland;
| |
Collapse
|
36
|
Johnson WT, McBride DA, Kerr MD, Nguyen A, Zoccheddu M, Bollmann M, Wei X, Jones RM, Wang W, Svensson MN, Bottini N, Shah NJ. Immunomodulatory Nanoparticles for Modulating Arthritis Flares. ACS NANO 2024; 18:1892-1906. [PMID: 38016062 PMCID: PMC11755865 DOI: 10.1021/acsnano.3c05298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Disease-modifying drugs have improved the treatment for autoimmune joint disorders, such as rheumatoid arthritis, but inflammatory flares are a common experience. This work reports the development and application of flare-modulating poly(lactic-co-glycolic acid)-poly(ethylene glycol)-maleimide (PLGA-PEG-MAL)-based nanoparticles conjugated with joint-relevant peptide antigens, aggrecan70-84 and type 2 bovine collagen256-270. Peptide-conjugated PLGA-PEG-MAL nanoparticles encapsulated calcitriol, which acted as an immunoregulatory agent, and were termed calcitriol-loaded nanoparticles (CLNP). CLNP had a ∼200 nm hydrodynamic diameter with a low polydispersity index. In vitro, CLNP induced phenotypic changes in bone marrow derived dendritic cells (DC), reducing the expression of costimulatory and major histocompatibility complex class II molecules, and proinflammatory cytokines. Bulk RNA sequencing of DC showed that CLNP enhanced expression of Ctla4, a gene associated with downregulation of immune responses. In vivo, CLNP accumulated in the proximal lymph nodes after intramuscular injection. Administration of CLNP was not associated with changes in peripheral blood cell numbers or cytokine levels. In the collagen-induced arthritis and SKG mouse models of autoimmune joint disorders, CLNP reduced clinical scores, prevented bone erosion, and preserved cartilage proteoglycan, as assessed by high-resolution microcomputed tomography and histomorphometry analysis. The disease protective effects were associated with increased CTLA-4 expression in joint-localized DC and CD4+ T cells but without generalized suppression of T cell-dependent immune response. The results support the potential of CLNP as modulators of disease flares in autoimmune arthropathies.
Collapse
Affiliation(s)
- Wade T. Johnson
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - David A. McBride
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew D. Kerr
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anders Nguyen
- Department of Rheumatology and Inflammation Research, University of Gothenburg 41346, Sweden
- SciLifeLab, University of Gothenburg, 41346, Sweden
| | - Martina Zoccheddu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Miriam Bollmann
- Department of Rheumatology and Inflammation Research, University of Gothenburg 41346, Sweden
- SciLifeLab, University of Gothenburg, 41346, Sweden
| | - Xiaofu Wei
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ryan M. Jones
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mattias N.D. Svensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg 41346, Sweden
- SciLifeLab, University of Gothenburg, 41346, Sweden
| | - Nunzio Bottini
- Kao Autoimmunity Institute and Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nisarg J. Shah
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
37
|
Teodori L, Omer M, Kjems J. RNA nanostructures for targeted drug delivery and imaging. RNA Biol 2024; 21:1-19. [PMID: 38555519 PMCID: PMC10984137 DOI: 10.1080/15476286.2024.2328440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
The RNA molecule plays a pivotal role in many biological processes by relaying genetic information, regulating gene expression, and serving as molecular machines and catalyzers. This inherent versatility of RNA has fueled significant advancements in the field of RNA nanotechnology, driving the engineering of complex nanoscale architectures toward biomedical applications, including targeted drug delivery and bioimaging. RNA polymers, serving as building blocks, offer programmability and predictability of Watson-Crick base pairing, as well as non-canonical base pairing, for the construction of nanostructures with high precision and stoichiometry. Leveraging the ease of chemical modifications to protect the RNA from degradation, researchers have developed highly functional and biocompatible RNA architectures and integrated them into preclinical studies for the delivery of payloads and imaging agents. This review offers an educational introduction to the use of RNA as a biopolymer in the design of multifunctional nanostructures applied to targeted delivery in vivo, summarizing physical and biological barriers along with strategies to overcome them. Furthermore, we highlight the most recent progress in the development of both small and larger RNA nanostructures, with a particular focus on imaging reagents and targeted cancer therapeutics in pre-clinical models and provide insights into the prospects of this rapidly evolving field.
Collapse
Affiliation(s)
- Laura Teodori
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
- Center for RNA Therapeutics towards Metabolic Diseases (RNA-META), Aarhus University, Aarhus, Denmark
| | - Marjan Omer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
- Center for RNA Therapeutics towards Metabolic Diseases (RNA-META), Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
38
|
Li Z, Guo W, Bai O. Mechanism of action and therapeutic targeting of CD30 molecule in lymphomas. Front Oncol 2023; 13:1301437. [PMID: 38188299 PMCID: PMC10767573 DOI: 10.3389/fonc.2023.1301437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
At present, the treatment of lymphoma has entered the era of precision medicine, and CD30, as a transmembrane protein, has become an important marker to help the diagnosis and formulation of treatment plans for lymphomas. This protein is widely expressed in various types of lymphomas and can play a role through nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and other pathways, and ultimately lead to the up-regulation of CD30 expression to give tumor cells a survival advantage. Brentuximab vedotin (BV), as an antibody-drug conjugate (ADC) targeting CD30, is one of the first new drugs to significantly improve survival in patients with CD30+lymphomas. However, the biological function of CD30 has not been fully elucidated. Therefore, this review highlights the CD30-mediated tumor-promoting mechanisms and the molecular factors that regulate CD30 expression. We hope that a better understanding of CD30 biology will provide new insights into clinical treatment and improve the survival and quality of life of lymphoma patients.
Collapse
Affiliation(s)
| | | | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
39
|
Abstract
Natural killer (NK)/T cell lymphoma (NKTCL) is a rare subtype of Epstein-Barr virus (EBV)-associated non-Hodgkin lymphoma characterized by poor clinical outcomes. It is more common in East Asian and Latin American countries. Despite the introduction of asparaginase/pegaspargase-based chemotherapy, the prognosis of patients with advanced NKTCL needs to be improved, and few salvage treatment options are available for relapsed/refractory patients who fail chemotherapy. Although many unknowns remain, novel treatment strategies to further improve outcomes are urgently needed. Immunotherapy has emerged and shown favorable antitumor activity in NKTCL, including monoclonal antibodies targeting immune checkpoint inhibitors, other receptors on the cellular membrane, and cellular immunotherapy, which could enhance immune cells attack on tumor cells. In this review, we provide an overview of recent immunotherapy in NKTCL, focusing on programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1), cytotoxic T lymphocyte-associated protein 4 (CTLA-4), chimeric antigen receptor (CAR) T cells, EBV-specific cytotoxic T lymphocytes, immunomodulatory agents, and other targeted agents, as well as the current progress and challenges in the field.
Collapse
Affiliation(s)
- Ling He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Na Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
40
|
Sasso J, Tenchov R, Bird R, Iyer KA, Ralhan K, Rodriguez Y, Zhou QA. The Evolving Landscape of Antibody-Drug Conjugates: In Depth Analysis of Recent Research Progress. Bioconjug Chem 2023; 34:1951-2000. [PMID: 37821099 PMCID: PMC10655051 DOI: 10.1021/acs.bioconjchem.3c00374] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Antibody-drug conjugates (ADCs) are targeted immunoconjugate constructs that integrate the potency of cytotoxic drugs with the selectivity of monoclonal antibodies, minimizing damage to healthy cells and reducing systemic toxicity. Their design allows for higher doses of the cytotoxic drug to be administered, potentially increasing efficacy. They are currently among the most promising drug classes in oncology, with efforts to expand their application for nononcological indications and in combination therapies. Here we provide a detailed overview of the recent advances in ADC research and consider future directions and challenges in promoting this promising platform to widespread therapeutic use. We examine data from the CAS Content Collection, the largest human-curated collection of published scientific information, and analyze the publication landscape of recent research to reveal the exploration trends in published documents and to provide insights into the scientific advances in the area. We also discuss the evolution of the key concepts in the field, the major technologies, and their development pipelines with company research focuses, disease targets, development stages, and publication and investment trends. A comprehensive concept map has been created based on the documents in the CAS Content Collection. We hope that this report can serve as a useful resource for understanding the current state of knowledge in the field of ADCs and the remaining challenges to fulfill their potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
41
|
Wang C, Wang J, Che S, Zhao H. CAR-T cell therapy for hematological malignancies: History, status and promise. Heliyon 2023; 9:e21776. [PMID: 38027932 PMCID: PMC10658259 DOI: 10.1016/j.heliyon.2023.e21776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
For many years, the methods of cancer treatment are usually surgery, chemotherapy and radiation therapy. Although these methods help to improve the condition, most tumors still have a poor prognosis. In recent years, immunotherapy has great potential in tumor treatment. Chimeric antigen receptor T-cell immunotherapy (CAR-T) uses the patient's own T cells to express chimeric antigen receptors. Chimeric antigen receptor (CAR) recognizes tumor-associated antigens and kills tumor cells. CAR-T has achieved good results in the treatment of hematological tumors. In 2017, the FDA approved the first CAR-T for the treatment of B-cell acute lymphoblastic leukemia (ALL). In October of the same year, the FDA approved CAR-T to treat B-cell lymphoma. In order to improve and enhance the therapeutic effect, CAR-T has become a research focus in recent years. The structure of CAR, the targets of CAR-T treatment, adverse reactions and improvement measures during the treatment process are summarized. This review is an attempt to highlight recent and possibly forgotten findings of advances in chimeric antigen receptor T cell for treatment of hematological tumors.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Jianpeng Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| |
Collapse
|
42
|
Püsküllüoğlu M, Rudzińska A, Pacholczak-Madej R. Antibody-drug conjugates in HER-2 negative breast cancers with poor prognosis. Biochim Biophys Acta Rev Cancer 2023; 1878:188991. [PMID: 37758021 DOI: 10.1016/j.bbcan.2023.188991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Antibody drug conjugates (ADCs) comprise a rapidly growing class of targeted drugs that selectively deliver a cytotoxic agent to cancer cells, reducing the side effects associated with conventional chemotherapy. Breast cancer (BC) is a heterogeneous entity. The need for effective therapies for HER-2 negative BCs with poor prognosis, such as triple-negative or endocrine-resistant BC, remains unmet due to the lack of potential targets for treatments. These BC subtypes are not candidates for hormonal or anti-HER-2 agents. However, ongoing clinical trials exploring the use of ADCs with a wide range of targets have shown potential for this treatment modality. In this review, we present the current state of knowledge regarding the role of ADC and speculate on novel approaches including ADC combination therapies, new molecular targets, and the role of other subclasses of ADCs (bicycle drug conjugates, bispecific ADCs, immune modulating ADCs) in this clinical scenario.
Collapse
Affiliation(s)
- Mirosława Püsküllüoğlu
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Garncarska Street 11, 31-115 Krakow, Poland.
| | - Agnieszka Rudzińska
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Garncarska Street 11, 31-115 Krakow, Poland
| | - Renata Pacholczak-Madej
- Department of Anatomy, Jagiellonian University, Medical College, Kopernika Street 12, 31-034 Krakow, Poland; Department of Chemotherapy, The District Hospital, 22 Szpitalna Street, 34-200 Sucha Beskidzka, Poland
| |
Collapse
|
43
|
Amengual JE, Pro B. How I treat posttransplant lymphoproliferative disorder. Blood 2023; 142:1426-1437. [PMID: 37540819 PMCID: PMC10731918 DOI: 10.1182/blood.2023020075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023] Open
Abstract
Posttransplant lymphoproliferative disorder (PTLD) is an important and potentially life-threatening complication of solid organ transplant and hematopoietic stem cell transplant (HSCT). Given the heterogeneity of PTLD and the risk of infectious complications in patients with immunosuppression, the treatment of this disease remains challenging. Monomorphic PTLD and lymphoma of B-cell origin account for the majority of cases. Treatment strategies for PTLD consist of response-adapted, risk-stratified methods using immunosuppression reduction, immunotherapy, and/or chemotherapy. With this approach, ∼25% of the patients do not need chemotherapy. Outcomes for patients with high risk or those who do not respond to frontline therapies remain dismal, and novel treatments are needed in this setting. PTLD is associated with Epstein-Barr virus (EBV) infection in 60% to 80% of cases, making EBV-directed therapy an attractive treatment modality. Recently, the introduction of adoptive immunotherapies has become a promising option for refractory cases; hopefully, these treatment strategies can be used as earlier lines of therapy in the future.
Collapse
Affiliation(s)
- Jennifer E. Amengual
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Barbara Pro
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| |
Collapse
|
44
|
Fu Z, Gao C, Wu T, Wang L, Li S, Zhang Y, Shi C. Peripheral neuropathy associated with monomethyl auristatin E-based antibody-drug conjugates. iScience 2023; 26:107778. [PMID: 37727735 PMCID: PMC10505985 DOI: 10.1016/j.isci.2023.107778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Since the successful approval of gemtuzumab ozogamicin, antibody-drug conjugates (ADCs) have emerged as a pivotal category of targeted therapies for cancer. Among these ADCs, the use of monomethyl auristatin E (MMAE) as a payload is prevalent in the development of ADC drugs, which has significantly improved overall therapeutic efficacy against various malignancies. However, increasing clinical observations have raised concerns regarding the potential nervous system toxicity associated with MMAE-based ADCs. Specifically, a higher incidence of peripheral neuropathy has been reported in ADCs incorporating MMAE as payloads. Considering the increasing global use of MMAE-based ADCs, it is imperative to provide an inclusive overview of diagnostic and management strategies for this adverse event. In this review, we examine current information and what future research directions are required to better understand and manage this type of clinical challenge.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Lulu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| |
Collapse
|
45
|
Hejmady S, Pradhan R, Kumari S, Pandey M, Dubey SK, Taliyan R. Pharmacokinetics and toxicity considerations for antibody-drug conjugates: an overview. Bioanalysis 2023; 15:1193-1202. [PMID: 37724472 DOI: 10.4155/bio-2023-0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Antibody-drug conjugates (ADCs) is one of the fastest-growing drug-delivery systems. It involves a monoclonal antibody conjugated with payload via a ligand that directly targets the expressive protein of diseased cell. Hence, it reduces systemic exposure and provides site-specific delivery along with reduced toxicity. Because of this advantage, researchers have gained interest in this novel system. ADCs have displayed great promise in drug delivery and biomedical applications. However, a lack of understanding exists on their mechanisms of biodistribution, metabolism and side effects. To gain a better understanding of the therapeutics, careful consideration of the pharmacokinetics and toxicity needs to be undertaken. In this review, different pharmacokinetics parameters including distribution, bioanalysis and heterogeneity are discussed for developing novel therapeutics.
Collapse
Affiliation(s)
- Siddhanth Hejmady
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Shobha Kumari
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Meghna Pandey
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
- Medical Research, R&D Healthcare Division, Emami Ltd, Kolkata 700056, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| |
Collapse
|
46
|
Chohan KL, Ansell SM. SOHO State of the Art Updates and Next Questions | From Biology to Therapy: Progress in Hodgkin Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:705-713. [PMID: 37344332 DOI: 10.1016/j.clml.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
Classic Hodgkin lymphoma (HL) is a unique lymphoid malignancy where the malignant cells comprise only 1% to 2% of the total tumor cellularity. Over the past 2 decades, the treatment of HL has evolved drastically based on the advent of novel targeted therapies. Novel agents including programmed death-1 (PD-1) inhibitors, antibody-drug conjugates such as brentuximab vedotin, bispecific antibodies, and chimeric antigen receptor (CAR) T cell therapies have served to shape the management of HL in the frontline as well as the relapsed and refractory (R/R) setting. Some of these agents have been incorporated into treatment algorithms, while others are currently under investigation demonstrating promising results. This review focuses on highlighting the underlying tumor biology forming the basis of therapeutics in HL, and reviews some of the emerging and established novel therapies.
Collapse
|
47
|
Li J, Shen G, Liu Z, Liu Y, Wang M, Zhao F, Ren D, Xie Q, Li Z, Liu Z, Zhao Y, Ma F, Liu X, Xu Z, Zhao J. Treatment-related adverse events of antibody-drug conjugates in clinical trials: A systematic review and meta-analysis. CANCER INNOVATION 2023; 2:346-375. [PMID: 38090386 PMCID: PMC10686142 DOI: 10.1002/cai2.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2024]
Abstract
Background The wide use of antibody-drug conjugates (ADCs) is transforming the cancer-treatment landscape. Understanding the treatment-related adverse events (AEs) of ADCs is crucial for their clinical application. We conducted a meta-analysis to analyze the profile and incidence of AEs related to ADC use in the treatment of solid tumors and hematological malignancies. Methods We searched the PubMed, Embase, and Cochrane Library databases for articles published from January 2001 to October 2022. The overall profile and incidence of all-grade and grade ≥ 3 treatment-related AEs were the primary outcomes of the analysis. Results A total of 138 trials involving 15,473 patients were included in this study. The overall incidence of any-grade treatment-related AEs was 100.0% (95% confidence interval [CI]: 99.9%-100.0%; I 2 = 89%) and the incidence of grade ≥ 3 treatment-related AEs was 6.2% (95% CI: 3.0%-12.4%; I² = 99%). Conclusions This study provides a comprehensive overview of AEs related to ADCs used for cancer treatment. ADC use resulted in a high incidence of any-grade AEs but a low incidence of grade ≥ 3 AEs. The AE profiles and incidence differed according to cancer type, ADC type, and ADC components.
Collapse
Affiliation(s)
- Jinming Li
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Zhen Liu
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Yaobang Liu
- Department of Surgical OncologyGeneral Hospital of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Miaozhou Wang
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Zitao Li
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Zhilin Liu
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Yi Zhao
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Fei Ma
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Xinlan Liu
- Department of Surgical OncologyGeneral Hospital of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | | | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| |
Collapse
|
48
|
Ribeiro T, Jónsdóttir K, Hernandez-Bautista R, Silva NG, Sánchez-Astráin B, Samadi A, Eiriksson FF, Thorsteinsdóttir M, Ussar S, Urbatzka R. Metabolite Profile Characterization of Cyanobacterial Strains with Bioactivity on Lipid Metabolism Using In Vivo and In Vitro Approaches. Mar Drugs 2023; 21:498. [PMID: 37755111 PMCID: PMC10533020 DOI: 10.3390/md21090498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Cyanobacteria have demonstrated their therapeutic potential for many human diseases. In this work, cyanobacterial extracts were screened for lipid reducing activity in zebrafish larvae and in fatty-acid-overloaded human hepatocytes, as well as for glucose uptake in human hepatocytes and ucp1 mRNA induction in murine brown adipocytes. A total of 39 cyanobacteria strains were grown and their biomass fractionated, resulting in 117 chemical fractions. Reduction of neutral lipids in zebrafish larvae was observed for 12 fractions and in the human hepatocyte steatosis cell model for five fractions. The induction of ucp1 expression in murine brown adipocytes was observed in six fractions, resulting in a total of 23 bioactive non-toxic fractions. All extracts were analyzed by untargeted UPLC-Q-TOF-MS mass spectrometry followed by multivariate statistical analysis to prioritize bioactive strains. The metabolite profiling led to the identification of two markers with lipid reducing activity in zebrafish larvae. Putative compound identification using mass spectrometry databases identified them as phosphatidic acid and aromatic polyketides derivatives-two compound classes, which were previously associated with effects on metabolic disorders. In summary, we have identified cyanobacterial strains with promising lipid reducing activity, whose bioactive compounds needs to be identified in the future.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (T.R.); (N.G.S.); (B.S.-A.)
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal
| | - Kristín Jónsdóttir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (K.J.); (A.S.); (F.F.E.); (M.T.)
| | - Rene Hernandez-Bautista
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Munich, 85764 Neuherberg, Germany; (R.H.-B.); (S.U.)
| | - Natália Gonçalves Silva
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (T.R.); (N.G.S.); (B.S.-A.)
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal
| | - Begoña Sánchez-Astráin
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (T.R.); (N.G.S.); (B.S.-A.)
| | - Afshin Samadi
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (K.J.); (A.S.); (F.F.E.); (M.T.)
- Joint Laboratory of Applied Ecotoxicology, Korea Institute of Science and Technology Europe (KIST EU), Campus E7.1, 66123 Saarbrucken, Germany
| | - Finnur F. Eiriksson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (K.J.); (A.S.); (F.F.E.); (M.T.)
- ArcticMass, Sturlugata 8, 102 Reykjavik, Iceland
| | - Margrét Thorsteinsdóttir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (K.J.); (A.S.); (F.F.E.); (M.T.)
- ArcticMass, Sturlugata 8, 102 Reykjavik, Iceland
| | - Siegfried Ussar
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Munich, 85764 Neuherberg, Germany; (R.H.-B.); (S.U.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (T.R.); (N.G.S.); (B.S.-A.)
| |
Collapse
|
49
|
Frachet S, Danigo A, Duchesne M, Richard L, Sturtz F, Magy L, Demiot C. A mouse model of sensory neuropathy induced by a long course of monomethyl-auristatin E treatment. Toxicol Appl Pharmacol 2023; 474:116624. [PMID: 37419214 DOI: 10.1016/j.taap.2023.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Antibody-drug conjugates (ADCs) are anticancer drugs consisting of a monoclonal antibody, targeting selective tumor antigens, to which has been frequently associated a highly potent cytotoxic agent, the monomethyl auristatin E (MMAE) using a chemical linker. MMAE is a tubulin polymerization inhibitor derived from dolastin-10. These MMAE-ADCs are responsible for peripheral nerve toxicities. Our objective was to develop and characterize a mouse model of MMAE-induced peripheral neuropathy induced by free MMAE injections. MMAE was injected in Swiss mice at 50 μg/kg i.p. every other day for 7 weeks. Assessments of motor and sensory nerve functions were performed once a week on MMAE and Vehicle-treated mice. Sciatic nerve and paw skin were removed at the end of experiment for subsequent immunofluorescence and morphological analysis. MMAE did not affect motor coordination, muscular strength and heat nociception, but significantly induced tactile allodynia in MMAE-treated mice compared with Vehicle-treated mice from day 35 to day 49. MMAE significantly reduced myelinated and unmyelinated axon densities in sciatic nerves and led to a loss of intraepidermal nerve fiber in paw skin. In summary, long course of low dose of MMAE induced a peripheral sensory neuropathy associated with nerve degeneration, without general state alteration. This model may represent a ready accessible tool to screen neuroprotective strategies in the context of peripheral neuropathies induced by MMAE-ADCs.
Collapse
Affiliation(s)
- Simon Frachet
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France; Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges 87042, France.
| | - Aurore Danigo
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France.
| | - Mathilde Duchesne
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France; Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges 87042, France; Department of Pathology, University Hospital of Limoges, Limoges 87042, France.
| | - Laurence Richard
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France; Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges 87042, France; Department of Pathology, University Hospital of Limoges, Limoges 87042, France.
| | - Franck Sturtz
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France.
| | - Laurent Magy
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France; Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges 87042, France.
| | - Claire Demiot
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France.
| |
Collapse
|
50
|
Vassilakopoulos TP, Liaskas A, Pereyra P, Panayiotidis P, Angelopoulou MK, Gallamini A. Incorporating Monoclonal Antibodies into the First-Line Treatment of Classical Hodgkin Lymphoma. Int J Mol Sci 2023; 24:13187. [PMID: 37685994 PMCID: PMC10487754 DOI: 10.3390/ijms241713187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
The long-term survival of Hodgkin lymphoma (HL) patients treated according to the current standard of care is excellent. Combined-modality schedules (ABVD plus radiotherapy) in early-stage disease, along with treatment intensity adaptation to early metabolic response assessed by PET/CT in advanced stage HL, have been the cornerstones of risk stratification and treatment decision-making, minimizing treatment-related complications while keeping efficacy. Nevertheless, a non-negligible number of patients are primary refractory or relapse after front-line treatment. Novel immunotherapeutic agents, namely Brentuximab Vedotin (BV) and immune checkpoint inhibitors (CPI), have already shown outstanding efficacy in a relapsed/refractory setting in recent landmark studies. Several phase 2 single-arm studies suggest that the addition of these agents in the frontline setting could further improve long-term disease control permitting one to reduce the exposure to cytotoxic drugs. However, a longer follow-up is needed. At the time of this writing, the only randomized phase 3 trial so far published is the ECHELON-1, which compares 1 to 1 BV-AVD (Bleomycin is replaced by BV) with standard ABVD in untreated advanced-stage III and IV HL. The ECHELON-1 trial has proven that BV-AVD is safe and more effective both in terms of long-term disease control and overall survival. Just recently, the results of the S1826 SWOG trial demonstrated that the combination nivolumab-AVD (N-AVD) is better than BV-AVD, while preliminary results of other randomized ongoing phase 3 trials incorporating anti-PD-1 in this setting will be soon available. The aim of this review is to present the recent data regarding these novel agents in first-line treatment of HL and to highlight current and future trends which will hopefully reshape the overall management of this disease.
Collapse
Affiliation(s)
- Theodoros P. Vassilakopoulos
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.L.); (P.P.); (M.K.A.)
| | - Athanasios Liaskas
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.L.); (P.P.); (M.K.A.)
| | - Patricio Pereyra
- Department of Hematology, National Hospital Alejandro Posadas, Buenos Aires 1684, Argentina;
| | - Panayiotis Panayiotidis
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.L.); (P.P.); (M.K.A.)
| | - Maria K. Angelopoulou
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.L.); (P.P.); (M.K.A.)
| | - Andrea Gallamini
- Research and Clinical Innovation Department, Antoine Lacassagne Cancer Center, 06100 Nice, France;
| |
Collapse
|