1
|
Huang BXZ, Zhang X, Kang MP, Chua MLK. Personalising Nasopharyngeal Cancer: Systemic Therapy and Radiotherapy Treatment Volumes. Semin Radiat Oncol 2025; 35:173-189. [PMID: 40090744 DOI: 10.1016/j.semradonc.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 03/18/2025]
Abstract
Nasopharyngeal carcinoma (NPC) is sensitive to chemotherapy and radiotherapy, with current treatment recommendations largely based on TNM-stage. Radiotherapy remains the backbone of treatment for NPC. Over the past decades, the addition of concurrent chemotherapy to radiotherapy for early-stage disease, and the combination of induction chemotherapy (IC) or adjuvant chemotherapy (AC) with chemoradiotherapy vs chemoradiotherapy alone for advanced disease have led to substantial improvements in survival of patients with NPC. Nonetheless, in the era of precision oncology, there is growing recognition that patients with NPC are clinically heterogeneous even within the same stage-group, and future advances must focus on individualisation of systemic therapy and radiotherapy. In this review, we summarised the published evidence on EBV DNA as a biomarker for clinical stratification and treatment response in NPC, and discussed some of the ongoing clinical trials of EBV DNA-directed personalisation of systemic therapy in locoregionally-advanced disease. Next, we assessed the evidence concerning individualised radiotherapy strategies for target volume delineation of the primary tumour and cervical nodes that ought to be based on individual tumour extent and IC response (for locoregionally-advanced NPC) as opposed to the historical one-size fits all approach. In the same vein, radiotherapy dose de-escalation may be considered in good responders to IC, whereas for the poor responders, altered fractionation or dose escalation may be required to target resistant disease. These concepts are particularly relevant in the era of combinatorial immune checkpoint blockade therapy with radiotherapy, where preservation of circulating immune cells is crucial to evoke immune-mediated antitumour cytotoxicity.
Collapse
Affiliation(s)
- Benjamin X Z Huang
- Department of Head and Neck and Thoracic Cancers, Division of Radiation Oncology and Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Xin Zhang
- Radiation Oncology Centre, Chongqing University Cancer Hospital, Chongqing, China
| | - Megan P Kang
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Melvin L K Chua
- Department of Head and Neck and Thoracic Cancers, Division of Radiation Oncology and Division of Medical Sciences, National Cancer Centre Singapore, Singapore.; Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore..
| |
Collapse
|
2
|
Kobayashi S, Nakamura Y, Hashimoto T, Bando H, Oki E, Karasaki T, Horinouchi H, Ozaki Y, Iwata H, Kato T, Miyake H, Ohba A, Ikeda M, Chiyoda T, Hasegawa K, Fujisawa T, Matsuura K, Namikawa K, Yajima S, Yoshino T, Hasegawa K. Japan society of clinical oncology position paper on appropriate clinical use of molecular residual disease (MRD) testing. Int J Clin Oncol 2025; 30:605-654. [PMID: 39920551 PMCID: PMC11946966 DOI: 10.1007/s10147-024-02683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/09/2024] [Indexed: 02/09/2025]
Abstract
Although the 5-year relative survival rates for resectable solid tumors have improved over the past few years, the risk of postoperative recurrence necessitates effective monitoring strategies. Recent advancements in molecular residual disease (MRD) testing based on circulating tumor DNA (ctDNA) analysis have shown considerable promise in the context of predicting recurrence; however, significant barriers to widespread clinical implementation remain-mainly, low awareness among healthcare professionals, high costs, and lack of standardized assays and comprehensive evidence. This position paper, led by the Japan Society of Clinical Oncology, aims to establish a common framework for the appropriate clinical use of MRD testing in a tumor type-agnostic manner. It synthesizes currently available evidence, reviews region-specific clinical trends, addresses critical clinical questions related to MRD testing, and offers recommendations to guide healthcare professionals, biotechnology and pharmaceutical companies, and regulatory authorities. These recommendations were developed based on a voting process involving 15 expert members, ensuring a consensus-driven approach. These findings underscore the importance of collaborative efforts among various stakeholders in enhancing the clinical utility of MRD testing. This project aimed to foster consensus and provide clear guidelines to support the advancement of precision medicine in oncology and improve patient outcomes in the context of perioperative care.
Collapse
Affiliation(s)
- Shin Kobayashi
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan.
- Perioperative Treatment Development Promotion Office, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan.
| | - Yoshiaki Nakamura
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan.
- Translational Research Support Office, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan.
- International Research Promotion Office, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan.
| | - Tadayoshi Hashimoto
- Perioperative Treatment Development Promotion Office, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan
- Translational Research Support Office, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan
| | - Hideaki Bando
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan
- Translational Research Support Office, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Karasaki
- Department of Thoracic Surgery, Respiratory Center, Toranomon Hospital, Tokyo, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yukinori Ozaki
- Department of Breast Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroji Iwata
- Department of Advanced Clinical Research and Development, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideaki Miyake
- Division of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihiro Ohba
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tatsuyuki Chiyoda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Takao Fujisawa
- Translational Research Support Office, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kazuto Matsuura
- Department of Head and Neck Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kenjiro Namikawa
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shugo Yajima
- Department of Urology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan
- Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kiyoshi Hasegawa
- Department of Surgery, Graduate School of Medicine, Hepato-Biliary-Pancreatic Surgery Division, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Blanchard P, De Felice F, Chua MLK. Advances in individualization of systemic treatment for locoregionally advanced nasopharyngeal carcinoma: a systematic review. ESMO Open 2025; 10:104513. [PMID: 40138744 DOI: 10.1016/j.esmoop.2025.104513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The optimal treatment strategy (radiotherapy with induction, concurrent or adjuvant chemotherapy) for patients with locoregionally advanced nasopharyngeal carcinoma (LA-NPC) remains to be addressed. Identifying biomarkers related to precise prognostic risk stratification and treatment benefits gained have been explored in recent years. METHODS We carried out a systematic review of the published literature covering these topics. Of 3732 references screened, 26 articles were found eligible for inclusion. RESULTS Regarding the issue of treatment pathway in LA-NPC, induction chemotherapy is usually preferred over adjuvant chemotherapy. It is paramount to stress patient selection to identify those cases at high risk of relapse requiring systemic intensification. Concerning a role for Epstein-Barr virus (EBV) DNA-based personalized therapy, EBV DNA and its kinetics in plasma potentially represents a robust prognostic marker after (chemo)radiotherapy, but it is necessary to standardize test and cut-off levels. CONCLUSIONS This systematic review provides an overview of biomarker-guided systemic treatment designed to improve prognosis, including key aspects of current guidelines, biomolecular signature aspects and potential limitations between applicability to cancer treatment in endemic regions versus non-endemic regions.
Collapse
Affiliation(s)
- P Blanchard
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, INSERM U1018 Oncostat CESP, Villejuif, France
| | - F De Felice
- Radiation Oncology, AOU Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - M L K Chua
- Division of Radiation Oncology, Duke-NUS Medical School, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Duke-NUS Medical School, Singapore, Singapore; Division of Oncology Academic Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
4
|
He Q, Tuo Y, Zhou Y, Yan Y, Liu X, Zhao D, Wang Q, Luo H, Zhang Z, Meng F, Ying B, Wang D, Yang M, Huang Y. MB based RT-qPCR increase the clinical application of cfEBV DNA for NPC in non-endemic area of China. Sci Rep 2025; 15:9186. [PMID: 40097593 PMCID: PMC11914554 DOI: 10.1038/s41598-025-93406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
To compare the performance of magnetic bead (MB) and the concentrated precipitation (CP) based RT-qPCR to qualify cell free EBV DNA (cfEBV DNA) for nasopharyngeal carcinoma (NPC) in non-endemic area of China. From January 2014 to June 2024, a retrospective analysis of 2 cohort studies on cfEBV DNA in NPC patients was conducted to assess the diagnostic value, positive detection rate and clinical application. cfEBV DNA detection with CP based RT-qPCR in cohort 1 and MB based RT-qPCR method in cohort 2. The MB based RT-qPCR for the quantitative measurement of cfEBV DNA load was higher than the CP based RT-qPCR in the same plasma samples from NPC patients (P < 0.001). CP based RT-qPCR measured cfEBV DNA in 1405 NPC and 244 healthy controls in cohort 1 with 40.8% sensitivity (AUC = 0.704, 95% CI: 0.676-0.731). In cohort 2(683 naive NPC and 303 controls), cfEBV DNA had a sensitivity of 75.84% (AUC = 0.879, 95% CI: 0.86-0.90). There were no significant differences in TNM stage among NPC between the two cohorts (P > 0.05). The MB method considerably increased the positive detection rate of cfEBV DNA in NPCs at stages III-IV, T2-T4, N1-N3, and M0 (P < 0.001). At the end of treatment, 97.51% of patients had no detectable EBV and just 2.49% had detectable cfEBV DNA. Those who received ≤ 2 or ≥ 3 cycles of NAC had a median t1/2 clearance rate of 9.8 days and 12.6 days, respectively. MB based RT-qPCR increased the quantity of cfEBV DNA. MB based RT-qPCR demonstrated superior sensitivity and positive detection rates for cfEBV DNA. cfEBV DNA can be more positively noticed, with a higher diagnostic value and a broader variety of clinical applications among NPC in non-endemic areas.
Collapse
Affiliation(s)
- Qiao He
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Yi Tuo
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Yi Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Yan
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Xin Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dan Zhao
- Department of Clinical Laboratory, Chong Qing University Three Gorges Hospital, Chongqing, 404000, China
| | - Qiuju Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Hao Luo
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Zhengyao Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Fanping Meng
- Department of Clinical Laboratory, Chong Qing University Three Gorges Hospital, Chongqing, 404000, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Mu Yang
- Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Yecai Huang
- Department of radiation oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| |
Collapse
|
5
|
Liang YL, Liu X, Shen LF, Hu GY, Zou GR, Zhang N, Chen CB, Chen XZ, Zhu XD, Yuan YW, Yang KY, Jin F, Hu WH, Xie FY, Huang Y, Han F, Tang LL, Mao YP, Lu LX, Sun R, He YX, Zhou YY, Long GX, Tang J, Chen LS, Zong JF, Jin T, Li L, Lin J, Huang J, Gong XY, Zhou GQ, Chen L, Li WF, Chen YP, Xu C, Lin L, Huang SH, Huang SW, Wang YQ, Huang CL, Feng HX, Hou M, Chen CH, Zheng SF, Li YQ, Hong SB, Jie YS, Li H, Yun JP, Zang SB, Liu SR, Lin QG, Li HJ, Tian L, Liu LZ, Zhao HY, Li JB, Lin AH, Liu N, Zhang Y, Guo R, Ma J, Sun Y. Adjuvant PD-1 Blockade With Camrelizumab for Nasopharyngeal Carcinoma: The DIPPER Randomized Clinical Trial. JAMA 2025:2831625. [PMID: 40079940 PMCID: PMC11907361 DOI: 10.1001/jama.2025.1132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Importance Approximately 20% to 30% of patients with locoregionally advanced nasopharyngeal carcinoma (NPC) experience disease relapse despite definitive chemoradiotherapy. The programmed cell death 1 (PD-1) blockade camrelizumab has demonstrated considerable value in recurrent or metastatic NPC, while its role in locoregionally advanced NPC is unclear. Objective To evaluate the efficacy and safety of adjuvant camrelizumab for patients with locoregionally advanced NPC. Design, Setting, and Participants Randomized, open-label, multicenter, phase 3 clinical trial conducted from August 2018 to November 2021 at 11 centers in China and enrolling 450 patients with T4N1M0 or T1-4N2-3M0 NPC who had completed induction-concurrent chemoradiotherapy. The final date of follow-up was March 20, 2024. Interventions Patients were randomized (1:1) to receive adjuvant camrelizumab (200 mg intravenously once every 3 weeks for 12 cycles; n = 226) or observation (standard therapy group; n = 224). Main Outcomes and Measures The primary end point was event-free survival (freedom from distant metastasis, locoregional relapse, or death due to any cause). Secondary end points included distant metastasis-free survival, locoregional relapse-free survival, overall survival, safety, and health-related quality of life. Results Among the 450 participants (mean age, 45 [SD, 10] years; 24% women), after a median follow-up of 39 (IQR, 33-50) months, the camrelizumab group had a 3-year event-free survival rate of 86.9%, whereas the standard therapy group had a rate of 77.3% (stratified hazard ratio, 0.56; 95% CI, 0.36-0.89; P = .01). Grade 3 or 4 adverse events were reported in 23 patients (11.2%) in the camrelizumab and 7 (3.2%) in the standard therapy group. Reactive capillary endothelial proliferation was the most common adverse event related to camrelizumab, occurring in 85.8% of patients at grade 1 or 2, while 2% of patients had grade 3 or 4 events. There was no significant deterioration in quality of life associated with camrelizumab treatment. Conclusions and Relevance Adjuvant PD-1 blockade with camrelizumab significantly improved event-free survival with manageable toxicities, highlighting its potential role in the management of locoregionally advanced NPC. Trial Registration ClinicalTrials.gov Identifier: NCT03427827.
Collapse
Affiliation(s)
- Ye-Lin Liang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Xu Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Chinese Society of Clinical Oncology, Beijing, China
| | - Liang-Fang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Guang-Yuan Hu
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Rong Zou
- Department of Oncology, Panyu Central Hospital, Guangzhou, China
| | - Ning Zhang
- Department of Radiation Oncology, First People's Hospital of Foshan, Foshan, China
| | - Chuan-Ben Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Xiao-Zhong Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Ya-Wei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Kun-Yu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Jin
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Wei-Han Hu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Fang-Yun Xie
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Chinese Society of Clinical Oncology, Beijing, China
| | - Ying Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Fei Han
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Ling-Long Tang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Chinese Society of Clinical Oncology, Beijing, China
| | - Yan-Ping Mao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Chinese Society of Clinical Oncology, Beijing, China
| | - Li-Xia Lu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Rui Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Yu-Xiang He
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yang-Ying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Xian Long
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Tang
- Department of Oncology, Panyu Central Hospital, Guangzhou, China
| | - Lu-Si Chen
- Department of Radiation Oncology, First People's Hospital of Foshan, Foshan, China
| | - Jing-Feng Zong
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Ting Jin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ling Li
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiu-Yun Gong
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Guan-Qun Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Lei Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Wen-Fei Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Yu-Pei Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Chinese Society of Clinical Oncology, Beijing, China
| | - Cheng Xu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Li Lin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Shao-Hui Huang
- Department of Radiation Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Sai-Wei Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Ya-Qin Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Cheng-Long Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Hui-Xia Feng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Min Hou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Chun-Hua Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Su-Fen Zheng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Ying-Qing Li
- Emergency Department, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shu-Bin Hong
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Sheng Jie
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Ping Yun
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sheng-Bing Zang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Song-Ran Liu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qing-Guang Lin
- Department of Ultrasound, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao-Jiang Li
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Tian
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Zhi Liu
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hong-Yun Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ji-Bin Li
- Clinical Trials Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ai-Hua Lin
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Na Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Chinese Society of Clinical Oncology, Beijing, China
| | - Yuan Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Rui Guo
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Chinese Society of Clinical Oncology, Beijing, China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Chinese Society of Clinical Oncology, Beijing, China
| |
Collapse
|
6
|
Quan S, Tian X, Sun Y, Qi H, Jiao W, Sun B, Xu F, Fang M, Yang X, Zeng X, Duan K, Wang J, Fu X, Duan L, Sun L, Shen A. Cell-free DNA next-generation sequencing for Mycobacterium tuberculosis obtained from plasma of children with active tuberculosis. BMC Pediatr 2025; 25:164. [PMID: 40033239 DOI: 10.1186/s12887-025-05526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Difficulties in microbiologically confirming childhood tuberculosis (TB) can result in delayed treatment and increased disease severity. METHODS In this study, we for the first time used whole genome next-generation sequencing (NGS) to detect cell-free DNA (cfDNA) from Mycobacterium tuberculosis (MTB) in plasma from children. RESULTS We enrolled 94 children with active TB and 32 children with other respiratory infections. Combining NGS with probe capture enrichment (targeted cfNGS) showed higher coverage and detecting capability than did NGS alone. The targeted cfNGS showed slightly lower sensitivity (31.9% vs. 44.7%, P = 0.072) and specificity (96.9% vs. 100.0%, P = 0.236) to those of sputum tested using Xpert. Agreement between cfNGS-plasma and Xpert-sputum was weak (κ = 0.217). Concordant results were obtained for only 85 children (67.5%; 16 cases positive by both tests and 69 cases negative by both tests). A total of 40 children with MTB culture negative results were tested to have positive cfNGS-plasma or Xpert-sputum outcomes, yielding a significantly increased percentage of children with bacteriological evidence (20.2% [19/94] for MTB culture-positive only vs. 62.8% [59/94] for cfNGS-plasma, Xpert-sputum or culture positive). CONCLUSIONS These data suggest that cfNGS performed well for diagnosing TB using plasma from children. cfNGS may be a new method for diagnosing patients with paucibacillary TB.
Collapse
Affiliation(s)
- Shuting Quan
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Xue Tian
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Yuting Sun
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Hui Qi
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Weiwei Jiao
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Baixu Sun
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Fang Xu
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Min Fang
- The No. 1 People's Hospital of Liangshan Yizu Autonomous Prefecture, Liangshan, Sichuan, China
| | - Xuemei Yang
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Xi Zeng
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Kun Duan
- Hangzhou MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Jichao Wang
- Hangzhou MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Xue Fu
- Hangzhou MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Li Duan
- The No. 1 People's Hospital of Liangshan Yizu Autonomous Prefecture, Liangshan, Sichuan, China
| | - Lin Sun
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China.
| | - Adong Shen
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China.
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Wotman MT, Xiao W, Du RR, Jiang B, Akagi K, Liu S, Gillison ML. Development and Validation of an Assay to Quantify Plasma Circulating Tumor Human Papillomavirus DNA for 13 High-Risk Types that Cause 98% of HPV-Positive Cancers. Head Neck Pathol 2025; 19:25. [PMID: 39998590 PMCID: PMC11861489 DOI: 10.1007/s12105-025-01752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/18/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Plasma circulating tumor HPV DNA (ctHPVDNA) persistence after curative-intent treatment may identify patients with HPV-positive cancers at risk for recurrence. Technical validation is required for use as an integral biomarker in a prospective clinical trial. METHODS Development and analytical validation of a digital droplet PCR assay for detection and quantification of 13 high-risk HPV types (i.e., Cell-Free 13) was performed with oligonucleotides/plasmids encoding type-specific E6/E7 coding regions. Clinical performance, determinants of detection/quantification, and associations of pre-treatment ctHPVDNA with progression-free survival (PFS) were also evaluated in a prospective cohort of 272 head and neck cancer patients. RESULTS Limit of detection, limit of quantification, and linear range of quantification were 5, 16 and 16-200,000 virus copies for all 13 high-risk HPV types. No cross-reactivity was detected across all 13 HPV types. At 10,000 copies, inter-assay coefficients of variation ranged from 0.3 to 4.6%. Multiplexing, DNA purification method, input plasma volume, total input cell-free (< 1800 ng) or genomic (< 700 ng) DNA did not affect HPV detection or quantification. The assay had a sensitivity of 91.7% (95%CI 87.3-94.9%) and specificity of 97.7% (95%CI 87.7-99.9%) for ctHPVDNA detection in the setting of newly diagnosed HPV-positive oropharyngeal cancer. Tumor and nodal stage categories, tumor viral load (ρ = 0.41, p < 0.05), and HPV integration status were associated with ctHPVDNA quantitative level. Pre-treatment ctHPVDNA greater than the median (231 copies/ml) was associated with worse PFS (HR = 2.14, 95%CI 1.16-3.97, p = 0.0156) in univariate analysis. However, this was no longer significant after adjustment for clinical covariates (HRadj = 1.81, 95%CI 0.97-3.37, p = 0.0635). CONCLUSION Cell-Free 13 demonstrated excellent analytical performance and clinical sensitivity/specificity in HPV-positive oropharyngeal cancer. Pre-treatment ctHPVDNA may be associated with oncologic outcomes.
Collapse
Affiliation(s)
- Michael T Wotman
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weihong Xiao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 432, Houston, TX, 77030, USA
| | - Robyn R Du
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 432, Houston, TX, 77030, USA
| | - Bo Jiang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 432, Houston, TX, 77030, USA
| | - Keiko Akagi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 432, Houston, TX, 77030, USA
| | - Suyu Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maura L Gillison
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 432, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Gao K, Wei Z, Liu Z, Pei Y, Li H, Song G, Xiang J, Ge J, Qing Y, Wei Y, Ai P, Chen Y, Peng X. Neutrophil-to-Lymphocyte Ratio as a Predictor for PD-L1 Inhibitor Treatment in Recurrent or Metastatic Nasopharyngeal Carcinoma. Head Neck 2025. [PMID: 39943747 DOI: 10.1002/hed.28101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Neutrophil-to-lymphocyte ratio (NLR) can be treated as a simple indicator of patients' immune status by representing the state of the systemic inflammatory response. Immunotherapy now is the accepted second-line treatment for recurrent or metastatic nasopharyngeal carcinoma (R/M NPC). However, the significance of NLR in patients with R/M NPC undergoing treatment with PD-L1 (programmed cell death-ligand 1) inhibitors is still uncertain. METHODS We analyzed the relationship between baseline NLR with 153 patients' efficacy and survival from a multicenter, prospective, Phase 2 study. We employed restricted cubic spline plots to get the nonlinear relationship between NLR and progression-free survival (PFS) or overall survival (OS). We identified the ideal cut-off value through the analysis of the receiver operating characteristic curve (ROC curve). We used Logistic regression, Cox regression, Log-rank test, and Kaplan-Meier method to analyze the association between NLR and patients' disease control rate (DCR) and PFS or OS. RESULTS The ideal threshold value for NLR was 2.826. NLR was identified as a significant independent predictor of DCR (OR = 0.17, 95% CI = 0.05-0.48, p = 0.001), indicating that a higher NLR is associated with worse DCR. NLR (AUC = 0.634) showed superior predictive capability for DCR in comparison to lymphocytes (AUC = 0.602) and neutrophils (AUC = 0.593). High NLR values were risk factors both for poor PFS (HR = 2.53, 95% CI = 1.58-4.06, p < 0.001) and OS (HR = 3.89, 95% CI = 2.09-7.24, p < 0.001). CONCLUSION Elevated NLR is strongly associated with lower response to treatment and reduced survival rates in patients with R/M NPC being treated with PD-L1 inhibitors. Patients with high NLR values have poor efficacy and survival.
Collapse
Affiliation(s)
- Kun Gao
- Division of Head & Neck Tumor Multimodality Treatment, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhigong Wei
- Department of Targeting Therapy & Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheran Liu
- Department of Targeting Therapy & Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyan Pei
- Department of Targeting Therapy & Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huilin Li
- Department of Targeting Therapy & Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Song
- Department of Targeting Therapy & Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Xiang
- West China Lecheng Hospital, Sichuan University, Chengdu, China
| | - Junyou Ge
- Sichuan Kelun-Biotech Biopharmaceutical Co. Ltd, Chengdu, China
| | - Yan Qing
- Sichuan Kelun-Biotech Biopharmaceutical Co. Ltd, Chengdu, China
| | - Youneng Wei
- Sichuan Kelun-Biotech Biopharmaceutical Co. Ltd, Chengdu, China
| | - Ping Ai
- Division of Head & Neck Tumor Multimodality Treatment, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Chen
- Division of Abdominal Tumor Multimodality Treatment, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingchen Peng
- Department of Targeting Therapy & Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Cun F, Li H, Wang H, Yang B, Kong J, Chen H. A Fully Integrated ICP-Enriched and Nanozyme-Catalyzed Lateral Flow Assay for cfDNA Detection in Whole Blood. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408101. [PMID: 39846821 DOI: 10.1002/smll.202408101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Rapid and sensitive detection of Epstein-Barr virus cell-free DNA (EBV cfDNA) is crucial for early diagnosis and monitoring of nasopharyngeal carcinoma (NPC), but accessibility to screening is limited by complicated and costly conventional DNA isolation and purification approaches. Here, a fully integrated ion concentration polarization (ICP)-enriched and nanozyme-catalyzed lateral flow assay (ICP-cLFA) is developed, enabling total analysis of EBV cfDNA in whole blood samples, with DNA isolation, pre-concentration, and amplification performed on a microfluidic chip, consequently providing the signal readout within 75 min. Specifically, ICP preconcentration and amplification steps, together with target recognition catalyzed by a platinum-decorated mesoporous gold nanosphere (MGNS@Pt) nanozyme, result in an ultralow detection limit of 4 aM in standard cfDNA samples and 100 aM in whole blood from NPC-bearing rats. The high sensitivity and specificity of the ICP-cLFA suggest strong potential for cfDNA screening in resource-limited clinical and field applications.
Collapse
Affiliation(s)
- Fei Cun
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Hanxue Li
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Haonan Wang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Bin Yang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jilie Kong
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Hui Chen
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
10
|
Zhong LY, Xie C, Zhang LL, Yang YL, Liu YT, Zhao GX, Bu GL, Tian XS, Jiang ZY, Yuan BY, Li PL, Wu PH, Jia WH, Münz C, Gewurz BE, Zhong Q, Sun C, Zeng MS. Research landmarks on the 60th anniversary of Epstein-Barr virus. SCIENCE CHINA. LIFE SCIENCES 2025; 68:354-380. [PMID: 39505801 DOI: 10.1007/s11427-024-2766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 11/08/2024]
Abstract
Epstein-Barr virus (EBV), the first human oncovirus discovered in 1964, has become a focal point in virology, immunology, and oncology because of its unique biological characteristics and significant role in human diseases. As we commemorate the 60th anniversary of EBV's discovery, it is an opportune moment to reflect on the major advancements in our understanding of this complex virus. In this review, we highlight key milestones in EBV research, including its virion structure and life cycle, interactions with the host immune system, association with EBV-associated diseases, and targeted intervention strategies.
Collapse
Affiliation(s)
- Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Le-Le Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Lin Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuan-Tao Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xian-Shu Tian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zi-Ying Jiang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bo-Yu Yuan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Peng-Lin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Pei-Huang Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, 8092, Switzerland
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
11
|
Duan H, Peng S, He S, Tang S, Goda K, Wang CH, Li M. Wearable Electrochemical Biosensors for Advanced Healthcare Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411433. [PMID: 39588557 PMCID: PMC11727287 DOI: 10.1002/advs.202411433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Recent advancements in wearable electrochemical biosensors have opened new avenues for on-body and continuous detection of biomarkers, enabling personalized, real-time, and preventive healthcare. While glucose monitoring has set a precedent for wearable biosensors, the field is rapidly expanding to include a wider range of analytes crucial for disease diagnosis, treatment, and management. In this review, recent key innovations are examined in the design and manufacturing underpinning these biosensing platforms including biorecognition elements, signal transduction methods, electrode and substrate materials, and fabrication techniques. The applications of these biosensors are then highlighted in detecting a variety of biochemical markers, such as small molecules, hormones, drugs, and macromolecules, in biofluids including interstitial fluid, sweat, wound exudate, saliva, and tears. Additionally, the review also covers recent advances in wearable electrochemical biosensing platforms, such as multi-sensory integration, closed-loop control, and power supply. Furthermore, the challenges associated with critical issues are discussed, such as biocompatibility, biofouling, and sensor degradation, and the opportunities in materials science, nanotechnology, and artificial intelligence to overcome these limitations.
Collapse
Affiliation(s)
- Haowei Duan
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuai He
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shi‐Yang Tang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Keisuke Goda
- Department of ChemistryThe University of TokyoTokyo113‐0033Japan
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Institute of Technological SciencesWuhan UniversityHubei430072China
| | - Chun H. Wang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Ming Li
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
12
|
Lin HJ, Jiang JG, Lin PY, Lin YH, Hsu WL, Liao LJ. Systemic immune inflammation index combined with Epstein-Barr virus DNA for predicting the prognosis of nasopharyngeal carcinoma: A retrospective study. Am J Otolaryngol 2024; 46:104571. [PMID: 39709901 DOI: 10.1016/j.amjoto.2024.104571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Cancer has consistently been the leading cause of death worldwide, with head and neck cancer (HNC) being one of the top ten causes of cancer-related death. Nasopharyngeal carcinoma (NPC), in particular, is a cancer that is unique to East Asia. Numerous studies have shown that the Epstein-Barr virus (EBV) DNA load and the systemic immune inflammation (SII) index can serve as prognostic indicators for NPC patients. However, no studies have compared different predictive models of inflammatory factors. This study combines the SII and the EBV virus load in patients with stage I to IV NPC and compares different inflammatory factor models to determine the best predictive model. MATERIALS AND METHODS We reviewed 240 patients with stage I to IV NPC who were diagnosed between January 2016 and July 2023. We collected data from adult patients who were diagnosed with NPC and included those who completed the definitive staging workup and treatment in this analysis. We tested various inflammatory markers and the EBV DNA load via Cox regression for survival analysis. RESULTS We found that the EBV viral load, the SII, and the SIRI are related to the severity of nasopharyngeal cancer. In the univariate Cox regression analysis, clinical stage, EBV virus load (HR: 2.15, 95 % CI: 1.19-3.90), NLR (2.37, 1.29-4.34), PLR (2.7, 1.06-6.87), SIRI (2.02, 1.11-3.68), and SII (2.45, 1.251-4.89) were prognostic factors for overall survival. In the multivariate analysis, after adjusting for sex, age and clinical stage, a higher EBV virus load and SII were associated with a worse prognosis (HR: 4.71, 1.95-11.41). CONCLUSION The combination of the EBV viral load and the SII was a better predictor of NPC prognosis.
Collapse
Affiliation(s)
- Han Jie Lin
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Jing-Gu Jiang
- Department of Oncology and Hematology, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Ping-Yi Lin
- Department of Oral & Maxillofacial Surgery, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Yu-Hsin Lin
- Head and Neck Cancer Surveillance & Research Group, Far Eastern Memorial Hospital, New Taipei, Taiwan; Cancer Center, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Wan-Lun Hsu
- Master Program of Big Data in Medical Healthcare Industry, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Li-Jen Liao
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei, Taiwan; Head and Neck Cancer Surveillance & Research Group, Far Eastern Memorial Hospital, New Taipei, Taiwan; Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
13
|
Zhang Q, Zhu L, Lv W, Xu T, Shen C, Qian W, Liu P, Ying H, He X, Hu C, Zhou X, Lu X. Liquid biopsy with plasma Epstein-Barr virus DNA characterizes biological relapse for the prediction of cancer recurrence in non-disseminated nasopharyngeal carcinoma. Eur J Cancer 2024; 213:115098. [PMID: 39486162 DOI: 10.1016/j.ejca.2024.115098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
PURPOSE To investigate whether a bounce in plasma Epstein-Barr virus (EBV) DNA during posttreatment surveillance of nasopharyngeal carcinoma (NPC) informs the risk of clinical recurrence and its implication for early therapeutic intervention. METHODS 950 non-disseminated NPC patients with completed remission in 3 months after treatment were retrospectively screened. Detectable EBV DNA with no evidence of clinical relapse during follow-up was deemed as DNA bounce. The diagnostic and prognostic performance of EBV DNA bounce was assessed for subsequent failures. RESULTS Tumor recurrence occurred in 6.6 %, 10.1 % and 65.8 % in the group with persistently negative EBV DNA, single positive test and ≥ 2 positive tests, respectively. EBV DNA bounce over twice was associated with worse disease-free survival (DFS), locoregional recurrence-free survival (LRRFS), and distant metastasis-free survival (DMFS) than the other two groups. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy for the prediction of recurrence were 0.56, 0.95, 0.66, 0.93 and 0.90 using two positive tests, which were hence deemed as biological relapse. Serial cutoffs (EBV DNA 1 ≥ 40 copies/ml or EBV DNA 2 ≥100 copies/ml) further defined a high-risk subgroup with an eventual recurrence rate of 77.9 % and 3-year DFS of merely 20.5 %. Prophylactic medical intervention with capecitabine or S1 significantly improved the 3-year DFS when compared to those with observation. CONCLUSIONS The earliest two positive tests of EBV DNA represent a biomarker of biological relapse that allows early detection of clinical recurrence in EBV-related NPC. For high-risk biological relapse, preemptive intervention provides potential survival benefits.
Collapse
Affiliation(s)
- Qixian Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, 200032 Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, 200032 Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, 200032 Shanghai, China
| | - Lin Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, 200032 Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, 200032 Shanghai, China
| | - Wenjiao Lv
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, 200032 Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, 200032 Shanghai, China
| | - Tingting Xu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, 200032 Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, 200032 Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, 200032 Shanghai, China
| | - Chunying Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, 200032 Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, 200032 Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, 200032 Shanghai, China
| | - Wei Qian
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, 200032 Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, 200032 Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, 200032 Shanghai, China
| | - Peiyao Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, 200032 Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, 200032 Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, 200032 Shanghai, China
| | - Hongmei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, 200032 Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, 200032 Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, 200032 Shanghai, China
| | - Xiayun He
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, 200032 Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, 200032 Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, 200032 Shanghai, China
| | - Chaosu Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, 200032 Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, 200032 Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, 200032 Shanghai, China
| | - Xin Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, 200032 Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, 200032 Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, 200032 Shanghai, China.
| | - Xueguan Lu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, 200032 Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, 200032 Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, 200032 Shanghai, China.
| |
Collapse
|
14
|
Liu SL, Li XY, Yang JH, Wen DX, Guo SS, Liu LT, Li YF, Luo MJ, Xie SY, Liang YJ, Sun XS, Yang ZC, Lv XF, Luo DH, Li JB, Liu Q, Wang P, Guo L, Mo HY, Sun R, Yang Q, Lan KQ, Jia GD, Li R, Zhao C, Xu RH, Chen QY, Tang LQ, Mai HQ. Neoadjuvant and adjuvant toripalimab for locoregionally advanced nasopharyngeal carcinoma: a randomised, single-centre, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 2024; 25:1563-1575. [PMID: 39522541 DOI: 10.1016/s1470-2045(24)00504-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Patients with locoregionally advanced nasopharyngeal carcinoma with a high pretreatment plasma concentration of Epstein-Barr virus (EBV) DNA remain at high risk for recurrence after concurrent chemoradiotherapy. This study aimed to compare the efficacy and safety of neoadjuvant-adjuvant treatment with the PD-1 inhibitor toripalimab and concurrent chemoradiotherapy versus placebo and concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma. METHODS This randomised, single-centre, double-blind, placebo-controlled, phase 2 trial was conducted at Sun Yat-sen University Cancer Centre in Guangzhou, China. Adult patients (aged 18-65 years) with newly diagnosed high-risk stage III-IVa locoregionally advanced nasopharyngeal carcinoma, with a pretreatment plasma EBV DNA concentration of at least 1500 copies per mL and an Eastern Cooperative Oncology Group performance score of 0-1, were eligible. Patients were randomly assigned (2:1) using an interactive web response system (block size of six), stratified by TNM stage (III vs IVa), to neoadjuvant toripalimab (240 mg intravenously) or placebo once every 2 weeks for two cycles, followed by concurrent cisplatin (100 mg/m2 intravenously) on days 1, 22, and 43 during intensity-modulated radiotherapy and adjuvant toripalimab (240 mg intravenously) or placebo once every 3 weeks for up to eight cycles. The primary endpoint was 2-year progression-free survival in the intention-to-treat population. This study was registered with ClinicalTrials.gov, NCT03925090, and is closed to enrolment; follow-up is ongoing. FINDINGS Between Dec 6, 2019, and Dec 9, 2021, 150 patients were enrolled and randomly assigned to the toripalimab group (n=100) or placebo group (n=50). 115 (77%) patients were male and 35 (23%) were female. As of data cutoff (May 31, 2024), median follow-up for progression-free survival was 37·8 months (IQR 34·2-46·5) for the intention-to-treat population analyses. 2-year progression-free survival was higher in the toripalimab group (92·0% [95% CI 86·7-97·3]) than in the placebo group (74·0% [61·8-86·2]; stratified hazard ratio 0·40 [95% CI 0·18-0·89]; log-rank p=0·019). The most common grade 3 or worse acute adverse events (occurring within 1 year of randomisation) were leukopenia (40 [40%] of 99 patients in the toripalimab group vs 22 [44%] of 50 patients in the placebo group), mucositis (28 [28%] vs ten [20%]), neutropenia (17 [17%] vs nine [18%]), anaemia (16 [16%] vs five [10%]), and weight loss (12 [12%] vs six [12%]). The most common grade 3 or worse late adverse events (occurring >1 year after randomisation) was auditory or hearing loss (eight [8%] vs four [8%]). Immune-mediated adverse events of grade 3 or worse occurred in ten (10%) patients only in the toripalimab group. One (2%) of 50 patients in the placebo group died due to septic shock caused by bacteraemia considered not treatment related. There were no treatment-related deaths in the toripalimab group. INTERPRETATION Our findings suggested that a so-called sandwich approach involving toripalimab (in the neoadjuvant and adjuvant phases) combined with concurrent chemoradiotherapy could be a highly promising therapy for the treatment of locoregionally advanced nasopharyngeal carcinoma. Phase 3 non-inferiority trials are warranted comparing neoadjuvant and adjuvant toripalimab versus cisplatin plus gemcitabine neoadjuvant chemotherapy combined with concurrent chemoradiotherapy. FUNDING National Key Research and Development Program of China, National Natural Science Foundation of China, Guangdong Basic and Applied Basic Research Foundation, Science and Technology Program of Guangzhou, Sun Yat-sen University Clinical Research 5010 Program, Innovative Research Team of High-level Local Universities in Shanghai, Postdoctoral Innovative Talent Support Program, Planned Science and Technology Project of Guangdong Province, Key Youth Teacher Cultivating Program of Sun Yat-sen University, and Fundamental Research Funds for the Central Universities. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Sai-Lan Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Yun Li
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jin-Hao Yang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dong-Xiang Wen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shan-Shan Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Ting Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Fu Li
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mei-Juan Luo
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Si-Yi Xie
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Jing Liang
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xue-Song Sun
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhen-Chong Yang
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Fei Lv
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dong-Hua Luo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ji-Bin Li
- Clinical Trials Center, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qing Liu
- Clinical Trials Center, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pan Wang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao-Yuan Mo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Yang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kai-Qi Lan
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guo-Dong Jia
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ru Li
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chong Zhao
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiu-Yan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin-Quan Tang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
15
|
Liang Z, Luo C, Li S, Zhu Y, Huang W, Cao D, Liu Y, Ruan G, Liang S, Chen X, Kou KI, Zhang G, Liu L, Li H. Guiding induction chemotherapy of locoregionally advanced nasopharyngeal carcinoma with ternary classification of predicted individual treatment effect. Radiother Oncol 2024; 201:110571. [PMID: 39393470 DOI: 10.1016/j.radonc.2024.110571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND AND PURPOSE Induction chemotherapy (IC) before concurrent chemoradiotherapy does not universally improve long-term overall survival (OS) in locoregionally advanced nasopharyngeal carcinoma (LANPC). Conventional risk stratification often yields suboptimal IC decisions. Our study introduces a ternary classification of predicted individual treatment effect (PITE) to guide personalized IC decisions. MATERIALS AND METHODS A two-center retrospective analysis of 1,213 patients with LANPC was conducted to develop and validate prognostic models integrating magnetic resonance imaging and clinical data to estimate individual 5-year OS probabilities for IC and non-IC treatments. Differences in these probabilities defined PITE, facilitating patient stratification into three IC recommendation categories. Model effectiveness was validated using Kaplan-Meier estimators, decision curve-like analysis, and evaluations of variable importance and distribution. RESULTS The models exhibited strong predictive performance in both treatments across training and cross-validation sets, enabling accurate PITE calculations and patient classification. Compared with non-IC treatment, IC markedly improved OS in the IC-preferred group (HR = 0.62, p = 0.02), had no effect in the IC-neutral group (HR = 1.00, p = 0.70), and worsened OS in the IC-opposed group (HR = 2.00, p = 0.03). The ternary PITE classification effectively identified 41.7 % of high-risk patients not benefiting from IC, and yielded a 2.68 % higher mean 5-year OS probability over risk-based decisions. Significantly increasing distributions of key prognostic indicators, such as metastatic lymph node number and plasma Epstein-Barr virus DNA level from IC-opposed to IC-preferred groups, further validated the clinical relevance of PITE classification. CONCLUSION The ternary PITE classification offers an accurate and clinically advantageous approach to guide personalized IC decision-making in patients with LANPC.
Collapse
Affiliation(s)
- Zhiying Liang
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chao Luo
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuqi Li
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yuliang Zhu
- Nasopharyngeal Head and Neck Tumor Radiotherapy Department, Zhongshan City People's Hospital, Zhongshan 528400, China
| | - Wenjie Huang
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Di Cao
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yifei Liu
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Guangying Ruan
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shaobo Liang
- Department of Radiation Oncology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xi Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, China
| | - Kit-Ian Kou
- Department of Mathematics, Faculty of Science and Technology, University of Macau, Macao Special Administrative Region of China
| | - Guoyi Zhang
- Department of Radiation Oncology, First People's Hospital of Foshan, Foshan 528000, China
| | - Lizhi Liu
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Haojiang Li
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
16
|
Yang R, Li T, Zhang S, Shui C, Ma H, Li C. The effect of circulating tumor DNA on the prognosis of patients with head and neck squamous cell carcinoma: a systematic review and meta-analysis. BMC Cancer 2024; 24:1434. [PMID: 39574043 PMCID: PMC11580464 DOI: 10.1186/s12885-024-13116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Circulating tumour DNA (ctDNA) has emerged as a valuable liquid biopsy biomarker in the field of oncology, including head and neck squamous cell carcinomas (HNSCCs), offering potential insights into cancer diagnosis, progression, and prognosis. This review aims to comprehensively evaluate the utility of ctDNA as a prognostic biomarker in HNSCC. METHODS PubMed and Ovid were searched as part of our review. Studies that investigated the relationship between ctDNA and prognosis in HNSCC patients were included. Outcomes extracted included basic characteristics, ctDNA details and survival data. Meta-analysis was performed on eligible studies to determine pooled progression-free/recurrence-free survival (RFS/PFS) and overall survival (OS). RESULTS Twenty-two studies were included, involving 5062 HNSCC patients from 11 countries. The meta-analysis demonstrated that the positive ctDNA/methylation detection was associated with worse OS (HR = 2.00, 95% CI 1.35-2.96) and worse PFS/RFS (HR = 3.54, 95% CI 1.05-11.85). Positive ctEBV DNA was associated with poorer OS (HR = 2.86, 95% CI 1.84-4.45) and poorer PFS/RFS (HR = 1.93, 95% CI 1.74-2.13). Positive ctHPV DNA was associated with poorer OS (HR = 1.38, 95% CI 1.07-1.38) but not PFS/PFS (HR = 1.33, 95% CI 0.96-1.85). CONCLUSION Meta-analysis indicates that the status of ctDNA is significantly associated with the prognosis of HNSCC patients, with ctDNA/methylation-negative patients demonstrating better PFS/RFS and OS.
Collapse
Affiliation(s)
- Ruoyi Yang
- Head and Neck Surgery Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, Guiyang, 550004, China
| | - Teng Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, Guiyang, 550004, China
| | - Sicheng Zhang
- Head and Neck Surgery Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Chunyan Shui
- Head and Neck Surgery Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Hong Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, Guiyang, 550004, China.
| | - Chao Li
- Head and Neck Surgery Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
17
|
Weng Y, Cai S, Li C, Xu Y, Pan Y, Huang Z, Li Y, Wu Z, Chen Y, Qiu S. Selection of induction chemotherapy cycles for stage N3 nasopharyngeal carcinoma based on pre-treatment plasma EBV DNA. Sci Rep 2024; 14:24484. [PMID: 39424840 PMCID: PMC11489564 DOI: 10.1038/s41598-024-75396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
This study aimed to explore the selection of induction chemotherapy (IC) cycles for stage N3 nasopharyngeal carcinoma (NPC). We employed propensity score matching (PSM) to categorize patients into 3-cycle and 4-cycle IC groups (IC = 3 and IC = 4). The log-rank and chi-squared tests were used respectively to evaluate the differences in survival and acute toxicities. Survival outcomes including overall survival (OS), progression-free survival (PFS), distant metastasis-free survival (DMFS), and locoregional relapse-free survival (LRRFS) were evaluated among the two groups. After PSM, each group comprised 99 patients. The IC = 4 group exhibited markedly improved survival outcomes compared with the IC = 3 group. Multivariate analysis revealed that pre-EBV DNA was an independent risk factor affecting PFS and DMFS. For high-risk patients with pre-EBV DNA ≥ 7800 copies/ml, the IC = 4 group demonstrated greater survival compared to the IC = 3 group. Among low-risk patients with pre-EBV DNA < 7800 copies/ml, both groups showed comparable survival outcomes. In terms of acute adverse reactions, the IC = 4 group experienced higher incidences, particularly with grade 2-4 alanine transaminase elevation and thrombocytopenia. For stage N3 NPC, pre-EBV DNA could be a powerful predictor for guiding the selection of IC cycles. The IC = 4 regimen is probably more beneficial to high-risk patients due to superior survival, while for low-risk patients, the IC = 3 regimen may be sufficient.
Collapse
Affiliation(s)
- Youliang Weng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Sunqin Cai
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Chao Li
- Department of Oncology, Second Hospital of Sanming City, Sanming, China
| | - Yun Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yuhui Pan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Zongwei Huang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Ying Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Zijie Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yu Chen
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
| |
Collapse
|
18
|
Liao S, Zhang B, Su Y, Pan Y, Zhang J, Ye Z, Zhang R, Kong X, Qin G, Mo Y, Ruan X, Liu J, Gan C, Dai J, Zhang R, Luo G, Liao X, Jiang W. Intensity-modulated radiotherapy alone compared with intensity-modulated radiotherapy plus concurrent chemotherapy in intermediate-risk nasopharyngeal carcinoma : A prospective multicenter phase II trial. Strahlenther Onkol 2024; 200:867-875. [PMID: 38324078 DOI: 10.1007/s00066-024-02201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/07/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND This study aimed to investigate the clinical benefit of adding concurrent chemotherapy to intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC) patients with an intermediate risk (stage II and T3N0M0). METHODS A multicenter phase II randomized trial was conducted in intermediate-risk NPC patients. Enrolled patients were previously untreated and aged ranged from 18 to 70 years without severe coexisting diseases. Patients were randomly assigned to receive IMRT alone or IMRT+concurrent chemotherapy (CC; three cycles of 80 mg/m2 cisplatin every 3 weeks). Primary endpoint was defined as 3‑year progression-free survival (PFS). The secondary endpoints were distant metastasis-free survival (DMFS), locoregional relapse-free survival (LRRFS), overall survival (OS), and treatment-associated toxicity. We registered this study with Chinese Clinical Trial Registry (CliCTR1800017132; registered July 13, 2018, study start July 13, 2018). RESULTS From November 2015 to July 2019, 42 patients with stage II and T3N0M0 NPC were enrolled; 20 patients received IMRT alone while 22 patients received IMRT+CC. After a median of 58 months of follow-up, we estimated the 3‑year PFS rates as 90% (IMRT group) and 86.4% (IMRT+CC group; hazard ratio 1.387, 95% confidence interval 0.240-8.014; P = 0.719). The 3‑year PFS, OS, and cumulative DMFS and LRRFS showed no significant differences between the two groups (P > 0.05). However, the IMRT group displayed a lower incidence of nausea/vomiting, leucopenia, and dry mouth than the IMRT+CC group. CONCLUSION Adding CC to IMRT provided no survival benefit but increased treatment-associated toxicities in patients with intermediate-risk NPC.
Collapse
Affiliation(s)
- Shufang Liao
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, 15 Lequn Road, 541001, Guilin, China
| | - Bin Zhang
- Department of Radiation Oncology, Wuzhou Red Cross Hospital, 543002, Wuzhou, China
| | - Yixin Su
- Department of Radiation Oncology, Lingshan People's Hospital, Zhongxiu Road, 535400, Lingshan, China
| | - Yufei Pan
- Department of Oncology, Nan Xishan Hospital, 46 Chongxin Road, 541001, Guilin, China
| | - Jian Zhang
- Department of Oncology, the People's Hospital of Laibin, 546100, Laibin, China
| | - Zhenkai Ye
- Department of Radiation Oncology, the People's Hospital of Guangxi Zhuang Autonomous Region, 530001, Nanning, China
| | - Rongjun Zhang
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, 15 Lequn Road, 541001, Guilin, China
| | - Xiangyun Kong
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, 15 Lequn Road, 541001, Guilin, China
| | - Guanjie Qin
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, 15 Lequn Road, 541001, Guilin, China
| | - Yunyan Mo
- Department of Oncology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, 541001, Guilin, China
| | - Xiaolan Ruan
- Department of Oncology, Nan Xishan Hospital, 46 Chongxin Road, 541001, Guilin, China
| | - Jian Liu
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, 15 Lequn Road, 541001, Guilin, China
| | - Chunqiao Gan
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, 15 Lequn Road, 541001, Guilin, China
| | - Jinxuan Dai
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, 15 Lequn Road, 541001, Guilin, China
| | - Ruyun Zhang
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, 15 Lequn Road, 541001, Guilin, China
| | - Guanhong Luo
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, 15 Lequn Road, 541001, Guilin, China
| | - Xiaofei Liao
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, 15 Lequn Road, 541001, Guilin, China
| | - Wei Jiang
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, 15 Lequn Road, 541001, Guilin, China.
- Department of Oncology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, 541001, Guilin, China.
| |
Collapse
|
19
|
Chen Z, Ling J, Zhang S, Feng Y, Xie Y, Liu X, Hou T. Predicting the overall survival and progression-free survival of nasopharyngeal carcinoma patients based on hemoglobin, albumin, and globulin ratio and classical clinicopathological parameters. Head Neck 2024; 46:2600-2615. [PMID: 38646952 DOI: 10.1002/hed.27777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Serum biomarkers have a significant impact on the prediction of treatment outcomes in patients diagnosed with nasopharyngeal carcinoma (NPC). The primary aim of this study was to develop and validate a nomogram that incorporates hemoglobin, albumin, and globulin ratio (HAGR) and clinical data to accurately forecast treatment outcomes in patients with NPC. METHODS A total of 796 patients diagnosed with NPC were included in the study. RESULTS The results of the multivariate Cox analysis revealed that TNM stage and HAGR were found to be significant independent prognostic factors for OS and PFS. Furthermore, the utilization of the nomogram demonstrated a significant improvement in the evaluation of OS, PFS compared with the eighth TNM staging system. Additionally, the implementation of Kaplan-Meier curves and decision curve analysis curves further confirmed the discriminability and clinical effectiveness of the nomogram. CONCLUSIONS The HAGR, an innovative prognostic factor grounded in the realm of immunonutrition, has emerged as a promising prognostic marker for both OS and PFS in individuals afflicted with NPC.
Collapse
Affiliation(s)
- Zui Chen
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Ling
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sujuan Zhang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuhua Feng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao Hou
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Dakal TC, Dhakar R, Beura A, Moar K, Maurya PK, Sharma NK, Ranga V, Kumar A. Emerging methods and techniques for cancer biomarker discovery. Pathol Res Pract 2024; 262:155567. [PMID: 39232287 DOI: 10.1016/j.prp.2024.155567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Modern cancer research depends heavily on the identification and validation of biomarkers because they provide important information about the diagnosis, prognosis, and response to treatment of the cancer. This review will provide a comprehensive overview of cancer biomarkers, including their development phases and recent breakthroughs in transcriptomics and computational techniques for detecting these biomarkers. Blood-based biomarkers have great potential for non-invasive tumor dynamics and treatment response monitoring. These include circulating tumor DNA, exosomes, and microRNAs. Comprehensive molecular profiles are provided by multi-omic technologies, which combine proteomics, metabolomics, and genomes to support the identification of biomarkers and the targeting of therapeutic interventions. Genetic changes are detected by next-generation sequencing, and patterns of protein expression are found by protein arrays and mass spectrometry. Tumor heterogeneity and clonal evolution can be understood using metabolic profiling and single-cell studies. It is projected that the use of several biomarkers-genetic, protein, mRNA, microRNA, and DNA profiles, among others-will rise, enabling multi-biomarker analysis and improving individualised treatment plans. Biomarker identification and patient outcome prediction are further improved by developments in AI algorithms and imaging techniques. Robust biomarker validation and reproducibility require cooperation between industry, academia, and doctors. Biomarkers can provide individualized care, meet unmet clinical needs, and enhance patient outcomes despite some obstacles. Precision medicine will continue to take shape as scientific research advances and the integration of biomarkers with cutting-edge technologies continues to offer a more promising future for personalized cancer care.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India.
| | - Ramgopal Dhakar
- Deparment of Life Science, Mewar University, Chittorgarh, Rajasthan 312901, India
| | - Abhijit Beura
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Narendra Kumar Sharma
- Deparment of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan 304022, India
| | - Vipin Ranga
- DBT-NECAB, Assam Agriculture University, Jorhat, Assam 785013, India
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India; Manipal Academy of Higher Education (MAHE) Manipal, Karnataka, India.
| |
Collapse
|
21
|
Lim ESY, Ong Y, Chou Y, Then CK. Interconnected influences of tumour and host microbiota on treatment response and side effects in nasopharyngeal cancer. Crit Rev Oncol Hematol 2024; 202:104468. [PMID: 39103130 DOI: 10.1016/j.critrevonc.2024.104468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
This study elucidates the intricate relationship between nasopharyngeal carcinoma (NPC), a significant malignancy predominant in Asia with notable global incidence and mortality rates, and the host microbiota, including those of tumour, nasal, nasopharyngeal, oral, oropharyngeal, and gut communities. It underscores how the composition and diversity of microbiota are altered in NPC, delving into their implications for disease pathogenesis, treatment response, and the side effects of therapies. A consistent reduction in alpha diversity across oral, nasal, and gut microbiomes in NPC patients compared to healthy individuals signals a distinct microbial signature indicative of the diseased state. The study also shows unique microbial changes tied to different NPC stages, indicating a dynamic interplay between disease progression and microbiota composition. Patients with specific microbial profiles exhibit varied responses to chemotherapy and immunotherapy, underscoring the potential for treatment personalisation based on microbiota analysis. Furthermore, the side effects of NPC treatments, such as oral mucositis, are intensified by shifts in microbial communities, suggesting a direct link between microbiota composition and treatment tolerance. This nexus offers opportunities for interventions aimed at modulating the microbiota to alleviate side effects, improve quality of life, and potentially enhance treatment efficacy. Highlighting the dual potential of microbiota as both a therapeutic target and a biomarker for NPC, this review emphasises its significance in influencing treatment outcomes and side effects, heralding a new era in NPC management through personalised treatment strategies and innovative approaches.
Collapse
Affiliation(s)
- Eugene Sheng Yao Lim
- Jeffery Cheah School of Medicine and Health Sciences, Monash University, Malaysia
| | - Yenyi Ong
- Jeffery Cheah School of Medicine and Health Sciences, Monash University, Malaysia
| | - Yang Chou
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Chee Kin Then
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
22
|
Gu LW, Zhang X, Zhang J, Xiao BB, Wu LP, Tang LQ, Guo L, Liu LT. The prognostic value of pretreatment 18F-FDG PET-CT parameters with peripheral blood markers in patients with de novo metastatic nasopharyngeal carcinoma. Oral Oncol 2024; 156:106928. [PMID: 38968724 DOI: 10.1016/j.oraloncology.2024.106928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND AND PURPOSE To develop and validate a prognostic nomogram based on pretreatment 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET-CT)radiomics parameters and peripheral blood markers for risk stratification in patients with de novo metastatic nasopharyngeal carcinoma (dmNPC). MATERIALS AND METHODS A total of 558 patients with dmNPC were retrospectively enrolled between 2011 and 2019. Eligible patients were randomly divided into training and validation cohorts (7:3 ratio). A Cox regression model was used to identify prognostic factors for overall survival (OS). The predictive accuracy and discriminative ability of the prognostic nomogram were determined using the concordance index (C-index) and calibration curve. RESULTS Independent factors derived from multivariable analysis of the training cohort to predict death were lactate dehydrogenase levels, pretreatment Epstein-Barr virus DNA, total lesion glycolysis of locoregional lesions, number of metastatic lesions, and age, all of which were assembled into a nomogram with (nomogram B) or without PET-CT parameters (nomogram A). The C-index of nomogram B for predicting death was 0.70, which was significantly higher than the C-index values for nomogram A. Patients were then stratified into low- and high-risk groups based on the scores calculated using nomogram B for OS. The median OS was significantly higher in the low-risk group than in the high-risk group (69.60 months [95 % CI: 58.50-108.66] vs. 21.40 months [95 % CI: 19.20-23.90]; p<0.01). All the results were confirmed in the validation cohort. CONCLUSION The proposed nomogram including PET-CT parameters yielded accurate prognostic predictions for patients with dmNPC, enabling effective risk stratification for these patients.
Collapse
Affiliation(s)
- Li-Wen Gu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Xu Zhang
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China.
| | - Jing Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Bei-Bei Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Li-Ping Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Lin-Quan Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Ling Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Li-Ting Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| |
Collapse
|
23
|
Vemula A, Dhanasekaran SP. Uncommon Presentations of Nasopharyngeal Carcinoma: A Report of Two Cases. Cureus 2024; 16:e69643. [PMID: 39429308 PMCID: PMC11487618 DOI: 10.7759/cureus.69643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC), a rare form of squamous cell carcinoma originating from the nasopharynx epithelium, exhibits a higher prevalence in southern China, Southeast Asia, the Arctic, North Africa, and the Middle East, with significant incidence in northeastern India, particularly Nagaland. Commonly presenting with nasal and otological symptoms, NPC diagnosis is challenging due to its diverse clinical manifestations. This case report highlights two atypical NPC cases: a 32-year-old female presenting with chronic headache and giddiness and a 22-year-old male with severe right-sided facial pain and trismus. Both cases underwent extensive diagnostic procedures, including imaging and biopsies, ultimately confirming NPC. Treatment involved radiotherapy and chemotherapy, resulting in significant symptom improvement. These cases underscore the importance of recognizing unusual NPC presentations to facilitate early diagnosis and treatment, improving patient outcomes.
Collapse
Affiliation(s)
- Alekhya Vemula
- Otolaryngology, Head and Neck Surgery, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Shanthi Priya Dhanasekaran
- Otolaryngology, Head and Neck Surgery, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
24
|
Biswal D, Brijwal M, Choudhary A, Kakkar A, Pramanik R, Thakar A, Dar L. Association of Epstein-Barr virus (EBV) with nasopharyngeal carcinoma: Experience from a North Indian tertiary care hospital. Indian J Med Microbiol 2024; 51:100699. [PMID: 39111666 DOI: 10.1016/j.ijmmb.2024.100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Nasopharyngeal carcinoma (NPC), arising from nasopharyngeal epithelium is caused by Epstein-Barr virus (EBV). It is common in South China, South East Asia and North East India. The aim and objectives of this study were to determine the prevalence of EBV in formalin-fixed paraffin-embedded (FFPE) tissue sections of clinically suspected NPC patients, correlate the results of polymerase chain reaction (PCR) with histopathology findings, and to determine the utility of tissue EBV DNA as a diagnostic bio-marker. MATERIALS AND METHODS 31 FFPE tissue samples were collected from clinically suspected NPC patients from April 2018-December 2019. Histopathological diagnosis was done by examination of Hematoxylin and Eosin stained slides. Presence of EBV was detected by EBNA-1 PCR. IHC was performed using EBV Latent Membrane Protein 1. RESULTS Of the 31 clinically suspected NPC cases, 15 (48.4 %) were histopathological confirmed NPC. Of these15, 13 (86.6 %) were non-keratinising undifferentiated NPC, and one each were keratinising NPC and non-keratinising differentiated NPC respectively. EBV EBNA1 PCR was positive in 35.5 % (11/31) of clinically suspected NPC cases. Of the 11 PCR positive cases, 9 (81.8 %) were histopathological confirmed NPC. Of the 31 clinically suspected NPC cases, IHC was indicated in 23 biopsies. Of which, 12 (52.2 %) were positive for LMP1 in the abnormal cells. Of the 12 IHC positive samples, 10 were NPC cases. CONCLUSION EBV DNA as an indicator towards NPC among clinically suspected cases had a sensitivity of 60 % and specificity of 87.5 %. In this study, addition of EBV DNA detection by PCR from FFPE tissue sections could confirm EBV association in 20 % of cases where it was not detected by EBV LMP1 IHC, thus helped in increasing the detection of EBV positivity in NPC cases. Early diagnosis of NPC will improve the cure rate and hence reduce the morbidity and mortality rates.
Collapse
Affiliation(s)
- Debasish Biswal
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Centre, Faridabad, Haryana, India.
| | - Megha Brijwal
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Aashish Choudhary
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Aanchal Kakkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
| | - Raja Pramanik
- Department of Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, New Delhi, India.
| | - Alok Thakar
- Department of Otolaryngology & Head and Neck Surgery, All India Institute of Medical Sciences, New Delhi, India.
| | - Lalit Dar
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India; Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
25
|
Lv J, Xu LX, Li ZX, Lin L, Wu CF, Quan TQ, Zhen ZC, Li WF, Tang LL, Mao YP, Chen L, Guo R, Zhang LL, Ai XL, Wu SY, Hao MY, Wei D, Li JB, Ma J, Chen YP, Zhou GQ, Sun Y. Longitudinal on-treatment circulating tumor DNA as a biomarker for real-time dynamic risk monitoring in cancer patients: The EP-SEASON study. Cancer Cell 2024; 42:1401-1414.e4. [PMID: 39059389 DOI: 10.1016/j.ccell.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
Recurrence risks of cancer patient can change during treatment as a result of treatment-related tumor evolution. However, biomarkers that can monitor these changes are lacking. Here, we investigated whether tracking circulating tumor DNA (ctDNA) dynamics through liquid biopsy can inform real-time recurrence risk. Nasopharyngeal carcinoma (NPC) provides an ideal model where cell-free Epstein-Barr virus (EBV) DNA (cfEBV DNA), a ctDNA, can be sensitively detected. We conducted the EP-SEASON study (NCT03855020) and prospectively recruited 1,000 NPC patients undergoing per-protocol cfEBV DNA assessments at 11 time points and receiving sequential chemo-radiotherapy. Longitudinal cfEBV DNA displayed distinct patterns during neoadjuvant chemotherapy and radiotherapy. Despite the prognostic significance of cfEBV DNA at each time point, real-time recurrence risks changed in sync with cfEBV DNA dynamics. Furthermore, we identified phenotypes of whole-course ctDNA changing dynamics associated with different survival outcomes. In conclusion, tracking longitudinal on-treatment ctDNA can forecast real-time recurrence risk, facilitating risk-adapted, individualized patient management.
Collapse
Affiliation(s)
- Jiawei Lv
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China
| | - Ling-Xin Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China
| | - Zhi-Xuan Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China
| | - Li Lin
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China
| | - Chen-Fei Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China
| | - Ting-Qiu Quan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China
| | - Zi-Cheng Zhen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China
| | - Wen-Fei Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China
| | - Ling-Long Tang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China
| | - Yan-Ping Mao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China
| | - Lei Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China
| | - Rui Guo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China
| | - Lu-Lu Zhang
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xin-Lei Ai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China
| | - Shi-Yue Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China
| | - Meng-Yu Hao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China
| | - Ji-Bin Li
- Clinical Trial Centre, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China.
| | - Yu-Pei Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China.
| | - Guan-Qun Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China.
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou 510060, China.
| |
Collapse
|
26
|
Lin DF, Li HL, Liu T, Lv XF, Xie CM, Ou XM, Guan J, Zhang Y, Yan WB, He ML, Mao MY, Zhao X, Zhong LZ, Chen WH, Chen QY, Mai HQ, Peng RJ, Tian J, Tang LQ, Dong D. Radiomic signatures associated with tumor immune heterogeneity predict survival in locally recurrent nasopharyngeal carcinoma. J Natl Cancer Inst 2024; 116:1294-1302. [PMID: 38637942 DOI: 10.1093/jnci/djae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/09/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The prognostic value of traditional clinical indicators for locally recurrent nasopharyngeal carcinoma is limited because of their inability to reflect intratumor heterogeneity. We aimed to develop a radiomic signature to reveal tumor immune heterogeneity and predict survival in locally recurrent nasopharyngeal carcinoma. METHODS This multicenter, retrospective study included 921 patients with locally recurrent nasopharyngeal carcinoma. A machine learning signature and nomogram based on pretreatment magnetic resonance imaging features were developed for predicting overall survival in a training cohort and validated in 2 independent cohorts. A clinical nomogram and an integrated nomogram were constructed for comparison. Nomogram performance was evaluated by concordance index and receiver operating characteristic curve analysis. Accordingly, patients were classified into risk groups. The biological characteristics and immune infiltration of the signature were explored by RNA-sequencing analysis. RESULTS The machine learning signature and nomogram demonstrated comparable prognostic ability to a clinical nomogram, achieving concordance indexes of 0.729, 0.718, and 0.731 in the training, internal, and external validation cohorts, respectively. Integration of the signature and clinical variables statistically improved the predictive performance. The proposed signature effectively distinguished patients between risk groups with statistically distinct overall survival rates. Subgroup analysis indicated the recommendation of local salvage treatments for low-risk patients. Exploratory RNA-sequencing analysis revealed differences in interferon response and lymphocyte infiltration between risk groups. CONCLUSIONS A magnetic resonance imaging-based radiomic signature predicted overall survival more accurately. The proposed signature associated with tumor immune heterogeneity may serve as a valuable tool to facilitate prognostic stratification and guide individualized management for locally recurrent nasopharyngeal carcinoma patients.
Collapse
Affiliation(s)
- Da-Feng Lin
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Hai-Lin Li
- School of Engineering Medicine, Beihang University, Beijing, China
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Ting Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Breast Surgery, Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Fei Lv
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chuan-Miao Xie
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Min Ou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Bin Yan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mei-Lin He
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng-Yuan Mao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xun Zhao
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Lian-Zhen Zhong
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Chen
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiu-Yan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Rou-Jun Peng
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of VIP Inpatient, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jie Tian
- School of Engineering Medicine, Beihang University, Beijing, China
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| | - Lin-Quan Tang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Di Dong
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| |
Collapse
|
27
|
Wang R, Zhao R, Liang Z, Chen K, Zhu X. A Nomogram Based on Platelet Distribution Width-to-Lymphocyte Ratio to Predict Overall Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma. J Inflamm Res 2024; 17:4297-4308. [PMID: 38973997 PMCID: PMC11227859 DOI: 10.2147/jir.s462833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose To evaluate the prognostic significance of platelet distribution width-to-lymphocyte ratio (PDWLR) in patients with locoregionally advanced nasopharyngeal carcinoma (LA-NPC). Moreover, a nomogram based on PDWLR was built and validated to predict the overall survival (OS) of this population. Patients and Methods All LA-NPC patients who were diagnosed and treated between January 2015 and December 2017 at Guangxi Medical University Cancer Hospital were included. Cox regression analyses were performed to assess PDWLR and clinical features that might affect OS to screen for independent predictors. The independent predictors and important clinical variables were used to build and validate a nomogram for predicting OS. Then, the capability of the model was estimated by discrimination, calibration and clinical usefulness. Risk stratification was conducted using the nomogram-calculated risk score, and the comparison of survival in the high-risk group and the low-risk group was through Kaplan-Meier method. Results This study included 746 LA-NPC patients. Multivariate Cox analysis suggested that age (hazard ratio [HR]: 1.81, 95% confidence interval [CI]: 1.18-2.78, P = 0.007), gender (HR: 2.03, 95% CI: 1.12-3.68, P = 0.019), pre-treatment plasma Epstein-Barr virus (EBV) DNA (HR: 1.55, 95% CI: 1.01-2.39, P = 0.047), PDWLR (HR: 2.61, 95% CI: 1.67-4.09, P < 0.001) were independent predictors of OS. Compared to the 8th edition TNM staging system, the nomogram based on the above four factors and important clinical variables (T stage and N stage) demonstrated better predictive performance. Moreover, the model had the ability to identify individuals at high risk. Conclusion PDWLR was a promising negative predictor for patients with LA-NPC. The nomogram based on PDWLR demonstrated better predictive performance than the current staging system.
Collapse
Affiliation(s)
- Runzhi Wang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Rong Zhao
- Department of Radiation, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia autonomous Region, 010020, People’s Republic of China
| | - Zhongguo Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Kaihua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, 530199, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
- Guangxi Clinical Medicine Research Center of Nasopharyngeal Carcinoma, Nanning, Guangxi, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
28
|
An G, Liu J, Lin T, He L, He Y. Global trends in research of nasopharyngeal carcinoma: a bibliometric and visualization analysis. Front Oncol 2024; 14:1392245. [PMID: 39015496 PMCID: PMC11249725 DOI: 10.3389/fonc.2024.1392245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Objective This study aims to assess the current research status, focus areas, and developmental trends in nasopharyngeal carcinoma (NPC) through a bibliometric analysis. Methods Articles focusing on NPC published from 2000 to 2023 were retrieved from the Web of Science database. VOSviewer and CiteSpace were used for bibliometric and visual analysis. Results A total of 14516 related publications were retrieved. There has been a steady increase in the number of NPC-related publications from 2000 to 2023. China was the dominant country in this field with 8948 papers (61.64%), followed by the USA (2234, 15.39%). Sun Yat-sen University was the most influential institution, while Ma J was the most prolific author. Furthermore, Head And Neck-journal For The Sciences And Specialties Of The Head And Neck was the most prolific journal. International Journal of Radiation Oncology Biology Physics had the highest total citation counts. "Introduction chemotherapy", "Concurrent chemotherapy", "Epithelial-mesenchymal transition", "Cancer stem cells", "MicroRNAs", "LncRNA", "Exosomes", and "Biomarker" were the most common keywords. The reference "Chen YP, 2019, Lancet" had the highest citations and strong outbreak value. Conclusion The past two decades have witnessed a significant increase in research on NPC. The optimization of treatment mode is the most widely studied aspect at present. The mechanism of occurrence and development and the most favorable diagnostic and therapeutic targets are the research hotspots in the future.
Collapse
Affiliation(s)
- Guilin An
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jie Liu
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ting Lin
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lan He
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yingchun He
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
29
|
Chong LM, Wang P, Lee VV, Vijayakumar S, Tan HQ, Wang FQ, Yeoh TDYY, Truong ATL, Tan LWJ, Tan SB, Senthil Kumar K, Hau E, Vellayappan BA, Blasiak A, Ho D. Radiation therapy with phenotypic medicine: towards N-of-1 personalization. Br J Cancer 2024; 131:1-10. [PMID: 38514762 PMCID: PMC11231338 DOI: 10.1038/s41416-024-02653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
In current clinical practice, radiotherapy (RT) is prescribed as a pre-determined total dose divided over daily doses (fractions) given over several weeks. The treatment response is typically assessed months after the end of RT. However, the conventional one-dose-fits-all strategy may not achieve the desired outcome, owing to patient and tumor heterogeneity. Therefore, a treatment strategy that allows for RT dose personalization based on each individual response is preferred. Multiple strategies have been adopted to address this challenge. As an alternative to current known strategies, artificial intelligence (AI)-derived mechanism-independent small data phenotypic medicine (PM) platforms may be utilized for N-of-1 RT personalization. Unlike existing big data approaches, PM does not engage in model refining, training, and validation, and guides treatment by utilizing prospectively collected patient's own small datasets. With PM, clinicians may guide patients' RT dose recommendations using their responses in real-time and potentially avoid over-treatment in good responders and under-treatment in poor responders. In this paper, we discuss the potential of engaging PM to guide clinicians on upfront dose selections and ongoing adaptations during RT, as well as considerations and limitations for implementation. For practicing oncologists, clinical trialists, and researchers, PM can either be implemented as a standalone strategy or in complement with other existing RT personalizations. In addition, PM can either be used for monotherapeutic RT personalization, or in combination with other therapeutics (e.g. chemotherapy, targeted therapy). The potential of N-of-1 RT personalization with drugs will also be presented.
Collapse
Affiliation(s)
- Li Ming Chong
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Peter Wang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - V Vien Lee
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore
| | - Smrithi Vijayakumar
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore
| | - Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, 168583, Singapore
| | - Fu Qiang Wang
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, 168583, Singapore
| | | | - Anh T L Truong
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Lester Wen Jeit Tan
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Shi Bei Tan
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Kirthika Senthil Kumar
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore
| | - Eric Hau
- Department of Radiation Oncology, Westmead Hospital, Sydney, NSW, Australia
- Department of Radiation Oncology, Blacktown Haematology and Cancer Care Centre, Sydney, NSW, Australia
- Westmead Medical School, The University of Sydney, Sydney, NSW, Australia
- Centre for Cancer Research, Westmead Institute of Medical Research, Sydney, NSW, Australia
| | - Balamurugan A Vellayappan
- Department of Radiation Oncology, National University Cancer Institute, Singapore, 119074, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| | - Agata Blasiak
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore.
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore.
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Dean Ho
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore.
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore.
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
30
|
Rao VK, Kulm E, Grossman J, Buchbinder D, Chong H, Bradt J, Webster S, Šedivá A, Dalm VA, Uzel G. Long-term treatment with selective PI3Kδ inhibitor leniolisib in adults with activated PI3Kδ syndrome. Blood Adv 2024; 8:3092-3108. [PMID: 38593221 PMCID: PMC11222951 DOI: 10.1182/bloodadvances.2023011000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
ABSTRACT Activated phosphoinositide 3-kinase delta (PI3Kδ) syndrome (APDS) is an inborn error of immunity that manifests as immune deficiency and dysregulation; symptoms include frequent infections and lymphoproliferation. In our dose-finding and phase 3 placebo-controlled trials, treatment with the selective PI3Kδ inhibitor leniolisib reduced lymphoproliferation and normalized lymphocyte subsets. Here, we present 6 years of follow-up from the 6 adult patients in the original dose-finding trial receiving leniolisib. We used data from the ongoing open-label extension study, which was supplemented at later time points by investigators, including health-related quality of life (HRQoL) assessed through a clinician-reported questionnaire. We observed improvements in HRQoL: 5 of 6 patients experienced an increase in physical capabilities and socialization, and a decrease in prescribed medications. Immune subsets improved in all patients: mean transitional B-cell levels decreased from 38.17% to 2.47% and the CD4:CD8 T-cell ratio normalized to 1.11. Manifestations seen before and within the first year of leniolisib exposure, such as infections and gastrointestinal conditions, attenuated after year 2, with few new conditions emerging out to year 6. Thrombocytopenia or lymphopenia remained present in half of patients at year 6. Of 83 adverse events through year 5, 90.36% were grade 1; none were grade 4/5 nor deemed leniolisib related. Collectively, we saw an enhancement in HRQoL as well as durable changes in lymphocyte subsets and clinical manifestations, further supporting the use of leniolisib as a long-term therapeutic option for the treatment of APDS. This trial was registered at www.ClinicalTrials.gov as #NCT02859727.
Collapse
Affiliation(s)
- V. Koneti Rao
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Elaine Kulm
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Bethesda, MD
| | | | - David Buchbinder
- Division of Hematology, Children’s Hospital of Orange County, Orange, CA
| | - Hey Chong
- Division of Allergy and Immunology, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | | | - Sharon Webster
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Anna Šedivá
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Virgil A. Dalm
- Division of Allergy and Clinical Immunology and Department of Immunology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Gulbu Uzel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
31
|
Zhong Y, Chen J, Jiang J, Zhou W, Gao L, Zhang S, Yan W, Chen Y, Zhang D, Lu D, Lv Z, Xie Z, Huang Y, Guo W, Wang B, Yang J, Yang X, Wu Y, Zhang X. Plasma EBV quantification is associated with the efficacy of immune checkpoint blockade and disease monitoring in patients with primary pulmonary lymphoepithelioma-like carcinoma. Clin Transl Immunology 2024; 13:e1515. [PMID: 38835955 PMCID: PMC11147665 DOI: 10.1002/cti2.1515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
Objectives Primary pulmonary lymphoepithelioma-like carcinoma (PLELC) is a subtype of lung carcinoma associated with the Epstein-Barr virus (EBV). The clinical predictive biomarkers of immune checkpoint blockade (ICB) in PLELC require further investigation. Methods We prospectively analysed EBV levels in the blood and immune tumor biomarkers of 31 patients with ICB-treated PLELC. Viral EBNA-1 and BamHI-W DNA fragments in the plasma were quantified in parallel using quantitative polymerase chain reaction. Results Progression-free survival (PFS) was significantly longer in EBNA-1 high or BamHI-W high groups. A longer PFS was also observed in patients with both high plasma EBNA-1 or BamHI-W and PD-L1 ≥ 1%. Intriguingly, the tumor mutational burden was inversely correlated with EBNA-1 and BamHI-W. Plasma EBV load was negatively associated with intratumoral CD8+ immune cell infiltration. Dynamic changes in plasma EBV DNA level were in accordance with the changes in tumor volume. An increase in EBV DNA levels during treatment indicated molecular progression that preceded the imaging progression by several months. Conclusions Plasma EBV DNA could be a useful and easy-to-use biomarker for predicting the clinical activity of ICB in PLELC and could serve to monitor disease progression earlier than computed tomography imaging.
Collapse
Affiliation(s)
- Yu‐Min Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Ji Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jie Jiang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- School of Medicine, South China University of TechnologyGuangzhouChina
| | - Wen‐Bin Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- School of Medicine, South China University of TechnologyGuangzhouChina
| | - Ling‐Ling Gao
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Shui‐Lian Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Wen‐Qing Yan
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Yu Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Dong‐Kun Zhang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Dan‐Xia Lu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Zhi‐Yi Lv
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Zhi Xie
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Ying Huang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Wei‐Bang Guo
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Bin‐Chao Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jin‐Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xue‐Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Yi‐Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xu‐Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- School of Medicine, South China University of TechnologyGuangzhouChina
| |
Collapse
|
32
|
Pan Y, Chen Z, Hong W, Huang Z, Li Y, Cai S, Lai J, Lu J, Qiu S. A nomogram based on nutritional and inflammatory parameters to predict DMFS and identify beneficiaries of adjuvant chemotherapy in IVA-stage nasopharyngeal carcinoma. BMC Cancer 2024; 24:578. [PMID: 38734620 PMCID: PMC11088054 DOI: 10.1186/s12885-024-12330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVE This study aims to develop a nomogram integrating inflammation (NLR), Prognostic Nutritional Index (PNI), and EBV DNA (tumor burden) to achieve personalized treatment and prediction for stage IVA NPC. Furthermore, it endeavors to pinpoint specific subgroups that may derive significant benefits from S-1 adjuvant chemotherapy. METHODS A total of 834 patients diagnosed with stage IVA NPC were enrolled in this study and randomly allocated into training and validation cohorts. Multivariate Cox analyses were conducted to identify independent prognostic factors for constructing the nomogram. The predictive and clinical utility of the nomogram was assessed through measures including the AUC, calibration curve, DCA, and C-indexes. IPTW was employed to balance baseline characteristics across the population. Kaplan-Meier analysis and log-rank tests were utilized to evaluate the prognostic value. RESULTS In our study, we examined the clinical features of 557 individuals from the training cohort and 277 from the validation cohort. The median follow-up period was 50.1 and 49.7 months, respectively. For the overall cohort, the median follow-up duration was 53.8 months. The training and validation sets showed 3-year OS rates of 87.7% and 82.5%, respectively. Meanwhile, the 3-year DMFS rates were 95.9% and 84.3%, respectively. We created a nomogram that combined PNI, NRI, and EBV DNA, resulting in high prediction accuracy. Risk stratification demonstrated substantial variations in DMFS and OS between the high and low risk groups. Patients in the high-risk group benefited significantly from the IC + CCRT + S-1 treatment. In contrast, IC + CCRT demonstrated non-inferior 3-year DMFS and OS compared to IC + CCRT + S-1 in the low-risk population, indicating the possibility of reducing treatment intensity. CONCLUSIONS In conclusion, our nomogram integrating NLR, PNI, and EBV DNA offers precise prognostication for stage IVA NPC. S-1 adjuvant chemotherapy provides notable benefits for high-risk patients, while treatment intensity reduction may be feasible for low-risk individuals.
Collapse
Affiliation(s)
- Yuhui Pan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, 350014, China
| | - Zihan Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Wenquan Hong
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Zongwei Huang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Ying Li
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Sunqin Cai
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Jinghua Lai
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, 350014, China
| | - Jun Lu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, 350014, China
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, 350014, China.
| |
Collapse
|
33
|
Kong FF, Pan GS, Ni MS, Du CR, Hu CS, Ying HM. Prognostic value of lymph node-to-primary tumor ratio of PET standardized uptake value for nasopharyngeal carcinoma: a recursive partitioning risk stratification analysis. Ther Adv Med Oncol 2024; 16:17588359241233235. [PMID: 38379851 PMCID: PMC10878206 DOI: 10.1177/17588359241233235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Background Induction chemotherapy (IC) combined with concurrent chemoradiotherapy has become the standard treatment for locoregionally advanced nasopharyngeal carcinoma (LA-NPC). Data on the prognostic value of the lymph node-to-primary tumor ratio (NTR) of positron emission tomography (PET) standardized uptake value (SUV) for patients treated with IC were limited. Objectives To evaluate the prognostic value of the SUV NTR for patients with LA-NPC treated with IC. Design In all, 467 patients with pretreatment 18F-fluorodeoxyglucose PET/computed tomography (CT) scans between September 2017 and November 2020 were retrospectively reviewed. Methods The receiver operating characteristic (ROC) analysis was used to determine the optimal cut-off value of SUV NTR. Kaplan-Meier method was used to evaluate survival rates. The recursive partitioning analysis (RPA) was performed to construct a risk stratification model. Results The optimal cutoff value of SUV NTR was 0.74. Multivariate analyses showed that SUV NTR and overall stage were independent predictors for distant metastasis-free survival (DMFS) and regional recurrent-free survival (RRFS). Therefore, an RPA model based on the endpoint of DMFS was generated and categorized the patients into three distinct risk groups: RPA I (low risk: SUV NTR < 0.74 and stage III), RPA II (medium risk: SUV NTR < 0.74 and stage IVa, or SUV NTR ⩾ 0.74 and stage III), and RPA III (high risk: SUV NTR ⩾ 0.74 and stage IVa), with a 3-year DMFS of 98.9%, 93.4%, and 84.2%, respectively. ROC analysis showed that the RPA model had superior predictive efficacy than the SUV NTR or overall stage alone. Conclusion SUV NTR was an independent prognosticator for distant metastasis and regional recurrence in locoregionally advanced NPC. The RPA risk stratification model based on SUV NTR provides improved DMFS and RRFS prediction over the eighth edition of the TNM (Tumor Node Metastasis) staging system.
Collapse
Affiliation(s)
- Fang-Fang Kong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Guang-Sen Pan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Meng-Shan Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Cheng-Run Du
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Chao-Su Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai 20032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Hong-Mei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai 20032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
34
|
Kuan EC, Wang EW, Adappa ND, Beswick DM, London NR, Su SY, Wang MB, Abuzeid WM, Alexiev B, Alt JA, Antognoni P, Alonso-Basanta M, Batra PS, Bhayani M, Bell D, Bernal-Sprekelsen M, Betz CS, Blay JY, Bleier BS, Bonilla-Velez J, Callejas C, Carrau RL, Casiano RR, Castelnuovo P, Chandra RK, Chatzinakis V, Chen SB, Chiu AG, Choby G, Chowdhury NI, Citardi MJ, Cohen MA, Dagan R, Dalfino G, Dallan I, Dassi CS, de Almeida J, Dei Tos AP, DelGaudio JM, Ebert CS, El-Sayed IH, Eloy JA, Evans JJ, Fang CH, Farrell NF, Ferrari M, Fischbein N, Folbe A, Fokkens WJ, Fox MG, Lund VJ, Gallia GL, Gardner PA, Geltzeiler M, Georgalas C, Getz AE, Govindaraj S, Gray ST, Grayson JW, Gross BA, Grube JG, Guo R, Ha PK, Halderman AA, Hanna EY, Harvey RJ, Hernandez SC, Holtzman AL, Hopkins C, Huang Z, Huang Z, Humphreys IM, Hwang PH, Iloreta AM, Ishii M, Ivan ME, Jafari A, Kennedy DW, Khan M, Kimple AJ, Kingdom TT, Knisely A, Kuo YJ, Lal D, Lamarre ED, Lan MY, Le H, Lechner M, Lee NY, Lee JK, Lee VH, Levine CG, Lin JC, Lin DT, Lobo BC, Locke T, Luong AU, Magliocca KR, Markovic SN, Matnjani G, McKean EL, Meço C, Mendenhall WM, Michel L, Na'ara S, Nicolai P, Nuss DW, Nyquist GG, Oakley GM, Omura K, Orlandi RR, Otori N, Papagiannopoulos P, Patel ZM, Pfister DG, Phan J, Psaltis AJ, Rabinowitz MR, Ramanathan M, Rimmer R, Rosen MR, Sanusi O, Sargi ZB, Schafhausen P, Schlosser RJ, Sedaghat AR, Senior BA, Shrivastava R, Sindwani R, Smith TL, Smith KA, Snyderman CH, Solares CA, Sreenath SB, Stamm A, Stölzel K, Sumer B, Surda P, Tajudeen BA, Thompson LDR, Thorp BD, Tong CCL, Tsang RK, Turner JH, Turri-Zanoni M, Udager AM, van Zele T, VanKoevering K, Welch KC, Wise SK, Witterick IJ, Won TB, Wong SN, Woodworth BA, Wormald PJ, Yao WC, Yeh CF, Zhou B, Palmer JN. International Consensus Statement on Allergy and Rhinology: Sinonasal Tumors. Int Forum Allergy Rhinol 2024; 14:149-608. [PMID: 37658764 DOI: 10.1002/alr.23262] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Sinonasal neoplasms, whether benign and malignant, pose a significant challenge to clinicians and represent a model area for multidisciplinary collaboration in order to optimize patient care. The International Consensus Statement on Allergy and Rhinology: Sinonasal Tumors (ICSNT) aims to summarize the best available evidence and presents 48 thematic and histopathology-based topics spanning the field. METHODS In accordance with prior International Consensus Statement on Allergy and Rhinology documents, ICSNT assigned each topic as an Evidence-Based Review with Recommendations, Evidence-Based Review, and Literature Review based on the level of evidence. An international group of multidisciplinary author teams were assembled for the topic reviews using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses format, and completed sections underwent a thorough and iterative consensus-building process. The final document underwent rigorous synthesis and review prior to publication. RESULTS The ICSNT document consists of four major sections: general principles, benign neoplasms and lesions, malignant neoplasms, and quality of life and surveillance. It covers 48 conceptual and/or histopathology-based topics relevant to sinonasal neoplasms and masses. Topics with a high level of evidence provided specific recommendations, while other areas summarized the current state of evidence. A final section highlights research opportunities and future directions, contributing to advancing knowledge and community intervention. CONCLUSION As an embodiment of the multidisciplinary and collaborative model of care in sinonasal neoplasms and masses, ICSNT was designed as a comprehensive, international, and multidisciplinary collaborative endeavor. Its primary objective is to summarize the existing evidence in the field of sinonasal neoplasms and masses.
Collapse
Affiliation(s)
- Edward C Kuan
- Departments of Otolaryngology-Head and Neck Surgery and Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - Eric W Wang
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel M Beswick
- Department of Otolaryngology-Head and Neck Surgery, University of California Los Angeles, Los Angeles, California, USA
| | - Nyall R London
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shirley Y Su
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marilene B Wang
- Department of Otolaryngology-Head and Neck Surgery, University of California Los Angeles, Los Angeles, California, USA
| | - Waleed M Abuzeid
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Borislav Alexiev
- Department of Pathology, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Jeremiah A Alt
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Paolo Antognoni
- Division of Radiation Oncology, University of Insubria, ASST Sette Laghi Hospital, Varese, Italy
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Pete S Batra
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Mihir Bhayani
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Diana Bell
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Manuel Bernal-Sprekelsen
- Otorhinolaryngology Department, Surgery and Medical-Surgical Specialties Department, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Christian S Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Léon Bérard, UNICANCER, Université Claude Bernard Lyon I, Lyon, France
| | - Benjamin S Bleier
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Juliana Bonilla-Velez
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Claudio Callejas
- Department of Otolaryngology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Ricardo L Carrau
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Roy R Casiano
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Paolo Castelnuovo
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, ASST Sette Laghi Hospital, Varese, Italy
| | - Rakesh K Chandra
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Simon B Chen
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Alexander G Chiu
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Garret Choby
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Naweed I Chowdhury
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Martin J Citardi
- Department of Otorhinolaryngology-Head & Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Marc A Cohen
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Roi Dagan
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Gianluca Dalfino
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, ASST Sette Laghi Hospital, Varese, Italy
| | - Iacopo Dallan
- Department of Otolaryngology-Head and Neck Surgery, Pisa University Hospital, Pisa, Italy
| | | | - John de Almeida
- Department of Otolaryngology-Head and Neck Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Angelo P Dei Tos
- Section of Pathology, Department of Medicine, University of Padua, Padua, Italy
| | - John M DelGaudio
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Charles S Ebert
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ivan H El-Sayed
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, USA
| | - Jean Anderson Eloy
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - James J Evans
- Department of Neurological Surgery and Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christina H Fang
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center, The University Hospital for Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nyssa F Farrell
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Marco Ferrari
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
| | - Nancy Fischbein
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Adam Folbe
- Department of Otolaryngology-Head and Neck Surgery, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, USA
| | - Wytske J Fokkens
- Department of Otorhinolaryngology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Meha G Fox
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | - Gary L Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul A Gardner
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mathew Geltzeiler
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Christos Georgalas
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Nicosia Medical School, Nicosia, Cyprus
| | - Anne E Getz
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado, Aurora, Colorado, USA
| | - Satish Govindaraj
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stacey T Gray
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Jessica W Grayson
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bradley A Gross
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jordon G Grube
- Department of Otolaryngology-Head and Neck Surgery, Albany Medical Center, Albany, New York, USA
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick K Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, USA
| | - Ashleigh A Halderman
- Department of Otolaryngology-Head and Neck Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ehab Y Hanna
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard J Harvey
- Rhinology and Skull Base Research Group, Applied Medical Research Centre, University of South Wales, Sydney, New South Wales, Australia
| | - Stephen C Hernandez
- Department of Otolaryngology-Head and Neck Surgery, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Adam L Holtzman
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Claire Hopkins
- Department of Otolaryngology-Head and Neck Surgery, Guys and St Thomas' Hospital, London, UK
| | - Zhigang Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Zhenxiao Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Ian M Humphreys
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Peter H Hwang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Alfred M Iloreta
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Masaru Ishii
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Aria Jafari
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - David W Kennedy
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mohemmed Khan
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adam J Kimple
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Todd T Kingdom
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado, Aurora, Colorado, USA
| | - Anna Knisely
- Department of Otolaryngology, Head and Neck Surgery, Swedish Medical Center, Seattle, Washington, USA
| | - Ying-Ju Kuo
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Devyani Lal
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric D Lamarre
- Head and Neck Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ming-Ying Lan
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Matt Lechner
- UCL Division of Surgery and Interventional Science and UCL Cancer Institute, University College London, London, UK
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jivianne K Lee
- Department of Head and Neck Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Victor H Lee
- Department of Clinical Oncology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Corinna G Levine
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jin-Ching Lin
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua, Taiwan
| | - Derrick T Lin
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Brian C Lobo
- Department of Otolaryngology-Head and Neck Surgery, University of Florida, Gainesville, Florida, USA
| | - Tran Locke
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Amber U Luong
- Department of Otorhinolaryngology-Head & Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kelly R Magliocca
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Svetomir N Markovic
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gesa Matnjani
- Department of Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Erin L McKean
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Cem Meço
- Department of Otorhinolaryngology, Head and Neck Surgery, Ankara University Medical School, Ankara, Turkey
- Department of Otorhinolaryngology Head and Neck Surgery, Salzburg Paracelsus Medical University, Salzburg, Austria
| | - William M Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Loren Michel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shorook Na'ara
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, USA
| | - Piero Nicolai
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
| | - Daniel W Nuss
- Department of Otolaryngology-Head and Neck Surgery, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Gurston G Nyquist
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gretchen M Oakley
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Kazuhiro Omura
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Richard R Orlandi
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Nobuyoshi Otori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Peter Papagiannopoulos
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Zara M Patel
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - David G Pfister
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jack Phan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alkis J Psaltis
- Department of Otolaryngology-Head and Neck Surgery, Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Mindy R Rabinowitz
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan Rimmer
- Department of Otolaryngology-Head and Neck Surgery, Yale University, New Haven, Connecticut, USA
| | - Marc R Rosen
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Olabisi Sanusi
- Department of Neurosurgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Zoukaa B Sargi
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Philippe Schafhausen
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rodney J Schlosser
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ahmad R Sedaghat
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Brent A Senior
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raj Shrivastava
- Department of Neurosurgery and Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Raj Sindwani
- Head and Neck Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Timothy L Smith
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Kristine A Smith
- Department of Otolaryngology-Head and Neck Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carl H Snyderman
- Departments of Otolaryngology-Head and Neck Surgery and Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - C Arturo Solares
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Satyan B Sreenath
- Department of Otolaryngology-Head and Neck Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Aldo Stamm
- São Paulo ENT Center (COF), Edmundo Vasconcelos Complex, São Paulo, Brazil
| | - Katharina Stölzel
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Baran Sumer
- Department of Otolaryngology-Head and Neck Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Pavol Surda
- Department of Otolaryngology-Head and Neck Surgery, Guys and St Thomas' Hospital, London, UK
| | - Bobby A Tajudeen
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Brian D Thorp
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Charles C L Tong
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raymond K Tsang
- Department of Otolaryngology-Head and Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Justin H Turner
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mario Turri-Zanoni
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, ASST Sette Laghi Hospital, Varese, Italy
| | - Aaron M Udager
- Department of Pathology, Michigan Center for Translational Pathology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Thibaut van Zele
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Kyle VanKoevering
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Kevin C Welch
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sarah K Wise
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ian J Witterick
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Tae-Bin Won
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Stephanie N Wong
- Division of Otorhinolaryngology, Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Bradford A Woodworth
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter-John Wormald
- Department of Otolaryngology-Head and Neck Surgery, Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - William C Yao
- Department of Otorhinolaryngology-Head & Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Chien-Fu Yeh
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bing Zhou
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education, Beijing, China
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Yu-Chen, Luo MJ, Liu RP, Jin J, Deng SW, Tang LQ, Li XY, Liu LT, Luo DH, Sun R, Liu SL, Li JB, Liu Q, Wang P, Chen QY, Mai HQ, Guo SS. Phase I dose-escalation study of nab-paclitaxel combined with cisplatin and capecitabin as induction chemotherapy followed by concurrent chemoradiotherapy in patients with nasopharyngeal carcinoma. Radiother Oncol 2024; 191:110051. [PMID: 38135184 DOI: 10.1016/j.radonc.2023.110051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND AND PURPOSE Nab-paclitaxel is a promising albumin-bound paclitaxel with a therapeutic index superior to that of docetaxel, but the optimal dose of nab-paclitaxel combined with cisplatin and capecitabine as induction chemotherapy followed by concurrent chemoradiotherapy for patients with locally advanced nasopharyngeal carcinoma remains unknown. MATERIALS AND METHODS This was an open-label, single-arm study investigating the safety and efficacy of nab-paclitaxel + cisplatin + capecitabin as IC for three cycles, followed by cisplatin CCRT, conducted by using the standard "3 + 3" design in LA-NPC. If more than one-third of the patients in a cohort experienced dose-limiting toxicity (DLT), the dose used in the previous cohort was designated the maximum tolerated dose (MTD). The recommended phase 2 dose (RP2D) was defined as one level below the MTD. RESULTS From 29 May 2021 to 17 March 2022, 19 patients with LA-NPC were enrolled, one patient withdrew informed consent. Two DLTs occurred in cohort 4 (grade 4 febrile neutropenia and grade 3 peripheral neuropathy), and an MTD was established as 225 mg/m2. The most frequent grade 3 or 4 adverse events were neutropenia (16.7 %), hypertriglyceridemia (16.7 %), leukopenia (5.6 %) and peripheral neuropathy (5.6 %) during IC. CONCLUSION The RP2D is nab-paclitaxel 200 mg/m2 on day 1, combined with cisplatin 75 mg/mg2 on day 1 and capecitabin1000 mg/m2 on days 1-14, twice a day, every 3 weeks, for three cycles as an IC regimen prior to CCRT. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04850235.
Collapse
Affiliation(s)
- Yu-Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Mei-Juan Luo
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Rong-Ping Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Jing Jin
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Sheng-Wen Deng
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Lin-Quan Tang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Xiao-Yun Li
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Li-Ting Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Dong-Hua Luo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Sai-Lan Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Ji-Bin Li
- Clinical Trials Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Qing Liu
- Clinical Trials Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Pan Wang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Qiu-Yan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Shan-Shan Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinial Reserch Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China.
| |
Collapse
|
36
|
Jiang C, Huang LY, Zhou JH, Li ZM, Wang Y, Li S, Fu JC, Huang QT, Yan Q, Huang YY, Zuo M, Hu S, Gale RP, Liang Y, Yun JP, Huang YH. Epstein-Barr virus-based prognostic model in nodular sclerosis classic Hodgkin lymphoma. iScience 2024; 27:108630. [PMID: 38188529 PMCID: PMC10770718 DOI: 10.1016/j.isci.2023.108630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
The role of Epstein-Barr virus (EBV) in lymphoma cells of nodular sclerosis classic Hodgkin lymphoma (NScHL) is controversial. Our aim was to explore this and establish a clinically feasible model for risk stratification. We interrogated data from 542 consecutive subjects with NScHL receiving ABVD therapy and demonstrated EBV-infection in their lymphoma cells with EBV-encoded small RNAs (EBERs) in situ hybridization. Subjects were divided into training and validation datasets. As data from the training dataset suggested EBERs-positivity was the only independent prognostic factor for both progression-free survival (PFS) and overall survival (OS), we developed corresponding prognostic models based on it. Our models showed excellent performance in both training and validation cohort. These data indicate the close association of EBV infection and the outcomes of persons with NScHL receiving ABVD. Additionally, our newly developed models should help physicians estimate prognosis and select individualized therapy.
Collapse
Affiliation(s)
- Chen Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Li-Yun Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ji-Hao Zhou
- Department of Hematology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, P.R. China
| | - Zhi-Ming Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yu Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Shuo Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jian-Chang Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Qi-Tao Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Qin Yan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yu-Yuan Huang
- Department of Pathology, Dongguan Children’s Hospital, Dongguan, Guangdong, P.R. China
| | - Min Zuo
- Department of Hematology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, P.R. China
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yu-Hua Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
37
|
Lan K, Mao J, Sun X, Li S, Xie S, Sun R, Liu S, Mai H. Combined pre-treatment and middle-treatment Epstein-Barr virus DNA load contributes to prognostication and treatment modification in nasopharyngeal carcinoma patients. Ther Adv Med Oncol 2024; 16:17588359231221343. [PMID: 38188461 PMCID: PMC10771739 DOI: 10.1177/17588359231221343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Objective To investigate whether pre-treatment and middle-treatment plasma Epstein-Barr virus (EBV) DNA loads are useful predictors of prognosis and indicators of therapy modification in nasopharyngeal carcinoma (NPC) patients undergoing radical concurrent chemoradiotherapy (CCRT). Methods Plasma EBV DNA load was measured by quantitative polymerase chain reaction before treatment (pre-DNA) and during the second cycle of DDP (mid-DNA). The primary endpoint was 5-year progression-free survival (PFS). Results A total of 775 NPC patients treated with CCRT were included. In total, 553 patients with pre-DNA <4000 copies/mL and 222 with ⩾4000 copies/mL. A total of 559 patients had mid-DNA undetectable and 216 had detectable. Multivariate analysis showed that pre- and mid-DNA were independent prognostic predictors of PFS [hazard ratio (HR), 2.035; 95% confidence interval (CI), 1.406-2.944; p < 0.001; HR, 1.597; 95% CI, 1.101-2.316; p = 0.014]. The area under the curve of the combination of pre-DNA and mid-DNA for 5-year PFS was higher than that of pre-DNA, mid-DNA, and tumor node metastasis (TNM) stage (0.679 versus 0.622, 0.608, 0.601). In the low-risk group (pre-DNA <4000 copies/mL and undetectable mid-DNA), patients receiving ⩽200 mg/m2 showed similar efficacy as those receiving >200 mg/m2 cumulative cisplatin dose (CCD) but were associated with fewer all-grade late toxicities. However, in the high-risk group (pre-DNA ⩾4000 copies/mL or detectable mid-DNA), patients receiving >200 mg/m2 CCD showed a higher 5-year PFS (73.1% versus 58.6%, p = 0.027) and locoregional relapse-free survival (88.5% versus 76.1%, p = 0.028) than those receiving ⩽200 mg/m2 CCD. Conclusion The combination of pre-DNA and mid-DNA could be particularly useful for guiding risk stratification and early treatment modification for NPC treated with CCRT. A total of 200 mg/m2 cisplatin seemed to be the optimal dose for the low-risk patients, while >200 mg/m2 cisplatin may be adequate to achieve satisfactory survival outcomes in the high-risk group.
Collapse
Affiliation(s)
- Kaiqi Lan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jingrong Mao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Clinical Nutrition, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuesong Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Suchen Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Siyi Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, ChinaSun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Sailan Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, ChinaSun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Haiqiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
38
|
Huang X, Leo P, Jones L, Duijf PHG, Hartel G, Kenny L, Vasani S, Punyadeera C. A comparison between mutational profiles in tumour tissue DNA and circulating tumour DNA in head and neck squamous cell carcinoma - A systematic review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108477. [PMID: 37977279 DOI: 10.1016/j.mrrev.2023.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Head and neck cancer is the seventh most common malignancy globally. Head and neck squamous cell carcinoma (HNSCC) originates from squamous cells and 90% of HNC are HNSCC. The gold standard for diagnosing HNSCC is tissue biopsy. However, given tumour heterogeneity, biopsies may miss important cancer-associated molecular signatures, and more importantly, after the tumour is excised, there is no means of tracking response to treatment in patients. Captured under liquid biopsy, circulating tumour DNA (ctDNA), may identify in vivo molecular genotypes and complements tumour tissue analysis in cancer management. A systematic search was conducted in PubMed, Embase, Scopus and the Cochran Library between 2012 to early 2023 on ctDNA in HNSCC using publications written in English. We summarise 20 studies that compared mutational profiles between tumour tissue DNA (tDNA) and ctDNA, using a cohort of 631 HNSCC patients and 139 controls. Among these studies, the concordance rates varied greatly and the most mutated and the most concordant gene was TP53, followed by PIK3CA, CDKN2A, NOTCH1 and FAT1. Concordant variants were mainly found in Stage IV tumours, and the mutation type is mostly single nucleotide variants (SNV). We conclude that, as a biomarker for HNSCC, ctDNA demonstrates great promise as it recapitulates tumour genotypes, however additional multi-central trials are needed.
Collapse
Affiliation(s)
- Xiaomin Huang
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery, The School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Paul Leo
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Center for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia; Australian Translational Genomics Center, Brisbane, QLD, Australia
| | - Lee Jones
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Research Methods Group, School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, Australia
| | - Pascal H G Duijf
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Center for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia & SA Pathology, Adelaide, SA, Australia; Department of Medical Genetics, Oslo University Hospital, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Gunter Hartel
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lizbeth Kenny
- School of Medicine, University of Queensland, Brisbane, QLD, Australia; Cancer Care Service, Royal Brisbane Women's Hospital, Brisbane, QLD, Australia
| | - Sarju Vasani
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Otolaryngology, Royal Brisbane Women's Hospital, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery, The School of Environment and Science, Griffith University, Brisbane, QLD, Australia; Menzies Health Institute Queensland, Griffith University, QLD, Australia.
| |
Collapse
|
39
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
40
|
Wu S, Yuan X, Huang H, Li Y, Cui L, Lin D, Lu W, Feng H, Chen Z, Liu X, Tan J, Wang F. Nomogram incorporating Epstein-Barr virus DNA and a novel immune-nutritional marker for survival prediction in nasopharyngeal carcinoma. BMC Cancer 2023; 23:1217. [PMID: 38066499 PMCID: PMC10709872 DOI: 10.1186/s12885-023-11691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Since Immune response, nutritional status and Epstein-Barr Virus (EBV) DNA status have been confirmed to be relevant to the prognosis of patients with nasopharyngeal carcinoma (NPC), we believe that the combination of these factors is of great value for improving the predictive ability. LA (lymphocytes × albumin), a novel indicator, had not been studied yet in NPC. We combined it with EBV DNA and used nomograms to increase the accuracy of prognosis. METHODS A total of 688 NPC patients were retrospectively reviewed and further divided into training and validation cohort randomly. Kaplan-Meier analyses were used to to distinguish the different survival outcomes. Multivariate Cox analyses were used to identify the independent prognostic factors for progression-free survival (PFS) and overall survival (OS). Calibration curves, concordance indexes (C-indexes) and decision curve analyses (DCA) were used to evaluate the nomograms' predictive value. RESULTS Patients with low LA and positive EBV DNA correlated with poorer 5-year PFS and OS (all P < 0.005). In multivariate Cox analyses, LA and EBV DNA were both confirmed to be independent prognostic factors for PFS and OS (all P < 0.05). Prognostic nomograms incorporating LA and EBV DNA achieved ideal C-indexes of 0.69 (95% CI: 0.65-0.73) and 0.77 (95% CI: 0.71-0.82) in the prediction of PFS and OS. Otherwise, the calibration curves and DCA curves also revealed that our nomograms had pleasant predictive power. CONCLUSIONS LA is a novel and powerful biomarker for predicting clinical outcomes in NPC. Our nomograms based on LA and EBV DNA can predict individual prognosis more accurately and effectively.
Collapse
Affiliation(s)
- Shuting Wu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, P.R. China
| | - Xiaofei Yuan
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, P.R. China
| | - Haoran Huang
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, P.R. China
| | - Yanfei Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, P.R. China
| | - Linchong Cui
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, P.R. China
| | - Danfan Lin
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, P.R. China
| | - Wenxuan Lu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, P.R. China
| | - Huiru Feng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, P.R. China
| | - Zilu Chen
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, P.R. China
| | - Xiong Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, P.R. China.
| | - Jiajie Tan
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, P.R. China.
| | - Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, P.R. China.
| |
Collapse
|
41
|
Zou Q, Luo K, Kang L, Huang C, Mai J, Lin Y, Liang Y. Clinical significance of baseline Epstein-Barr virus DNA for recurrent or metastatic primary pulmonary lymphoepithelioma-like carcinoma. Future Oncol 2023; 19:2481-2492. [PMID: 38054449 DOI: 10.2217/fon-2023-0722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Background: This study aimed to evaluate the clinical significance of baseline Epstein-Barr virus (EBV) DNA in recurrent or metastatic primary pulmonary lymphoepithelioma-like carcinoma (PLELC). Methods: 75 patients with baseline EBV DNA were included. The relationships between baseline EBV DNA and clinical characteristics, survival and objective response rate were analyzed. Results: The baseline EBV DNA levels were related to the liver, chest wall, distant lymph node(s) or multiple sites of distant metastasis. The high baseline EBV DNA group (≥41,900 copies/ml) was related to shorter progression-free and overall survival in univariate analysis and remained significant for progression-free survival in multivariate analysis. Conclusion: The baseline EBV DNA is a valuable biomarker for predicting prognosis and reflecting tumor burden in recurrent or metastatic PLELC.
Collapse
Affiliation(s)
- Qihua Zou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Kongjia Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liping Kang
- Department of Medical Oncology, Yuebei People's Hospital, Shaoguan, China
| | - Caiwen Huang
- Department of Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences Shenzhen Center, Shenzhen, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shenzhen, China
| | - Jianliang Mai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yongbin Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Liang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
42
|
Sun XS, Wang JW, Han F, Zou RH, Yang ZC, Guo SS, Liu LT, Chen QY, Tang LQ, Mai HQ. Prognostic value of metastatic cervical lymph node stiffness in nasopharyngeal carcinoma: A prospective cohort study. Radiother Oncol 2023; 189:109939. [PMID: 37806561 DOI: 10.1016/j.radonc.2023.109939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES Extracellular matrix stiffness plays an important role in tumorigenesis. In this study, we assessed the prognostic value of metastatic cervical lymph node (CLN) stiffness measured using ultrasound shear wave elastography (SWE) in patients with nasopharyngeal carcinoma (NPC). METHODS A total of 325 consecutive patients with NPC and CLN metastases were prospectively enrolled in this study. The association between the CLN stiffness and patient characteristics was also evaluated. Survival analysis was performed for 307 patients with stage M0 disease. Distant metastasis-free survival (DMFS) was the primary endpoint. Log-rank test and multivariate analysis were used to explore the prognostic value of CLN stiffness. RESULTS Eighteen patients developed distant metastases before treatment (stage M1) and had significantly higher CLN stiffness (Pt-test < 0.001) than the other patients (stage M0). For stage M0 patients, those in the high-stiffness group had lower 3-year DMFS (83.3% vs. 91.7%, P = 0.013) and 3-year progression-free survival (PFS) (78.2% vs. 87.9%, P = 0.015) than those in the low-stiffness group. Multivariate analysis identified CLN stiffness and pretreatment Epstein-Barr virus (EBV) DNA as independent prognostic factors for DMFS and PFS. We further established stiffness-EBV risk stratification based on these two factors. The concordance index, receiver operating characteristic curve, and decision curve analyses showed that our risk stratification outperformed the TNM classification for predicting metastasis. CONCLUSION The stiffness of metastatic CLN is closely associated with the prognosis of patients with NPC. SWE can be used as a pretreatment examination for CLN-positive patients. A multicenter study is required to verify our results.
Collapse
Affiliation(s)
- Xue-Song Sun
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Jian-Wei Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, PR China; Department of Ultrasound, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Feng Han
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, PR China; Department of Ultrasound, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Ru-Hai Zou
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, PR China; Department of Ultrasound, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Zhen-Chong Yang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, PR China; Department of Ultrasound, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Shan-Shan Guo
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Li-Ting Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Qiu-Yan Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Lin-Quan Tang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| | - Hai-Qiang Mai
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China.
| |
Collapse
|
43
|
Alberti A, Stocker G, Lordick F, Hacker UT, Kobitzsch B, Haffner I, Baiocchi GL, Zamparini M, Tiberio GAM, Baronchelli C, Caruso A, Bossi P, Berruti A. Plasma EBV DNA as a prognostic factor in EBV associated gastric cancer: a multicenter, prospective study (EBV PRESAGE study). Front Oncol 2023; 13:1276138. [PMID: 37941551 PMCID: PMC10629611 DOI: 10.3389/fonc.2023.1276138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
Purpose The Cancer Genome Atlas Research Network identified Epstein-Barr-Virus (EBV)-positive gastric cancer as a distinct molecular subtype. The prevalence is 8-9% and the histological examination shows pronounced lymphocytic infiltration, elevated levels of IFN-γ and consequently overexpression of PD-L1. The role of plasma EBV DNA load as a prognostic factor in patients with this cancer subtype is still to be defined. Methods and analysis The present multicenter prospective observational study "EBV PRESAGE", involving German and Italian cancer centers, aims to evaluate the prognostic role of plasma EBV DNA in EBV-related gastric cancer (GC). The objective is to study the association between plasma EBV DNA load at different consecutive time points and the patient's prognosis. Every patient with a new diagnosis of gastric cancer (including gastroesophageal junction adenocarcinoma) will be screened for Epstein-Barr encoded small Region (EBER) on tissue biopsies using in situ hybridization (ISH). If EBER ISH is positive, blood analysis for plasma EBV DNA will be conducted. The plasma EBV quantitative analysis will be centralized, and extraction, detection, and quantification of EBV DNA in plasma samples will be performed using real-time PCR. Discussion We hypothesized that plasma EBV DNA represents a non-invasive tool for monitoring EBV-related GC and might be valuable as a prognostic marker.
Collapse
Affiliation(s)
- Andrea Alberti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at the Azienda Socio Sanitaria Territoriale (ASST)-Spedali Civili, Brescia, Italy
| | - Gertraud Stocker
- Department of Medicine II (Oncology, Gastroenterology, Hepatology and Pulmonology), University Cancer Center Leipzig (UCCL), University of Leipzig Medical Center, Leipzig, Germany
| | - Florian Lordick
- Department of Medicine II (Oncology, Gastroenterology, Hepatology and Pulmonology), University Cancer Center Leipzig (UCCL), University of Leipzig Medical Center, Leipzig, Germany
| | - Ulrich T. Hacker
- Department of Medicine II (Oncology, Gastroenterology, Hepatology and Pulmonology), University Cancer Center Leipzig (UCCL), University of Leipzig Medical Center, Leipzig, Germany
| | - Benjamin Kobitzsch
- Department of Medicine II (Oncology, Gastroenterology, Hepatology and Pulmonology), University Cancer Center Leipzig (UCCL), University of Leipzig Medical Center, Leipzig, Germany
| | - Ivonne Haffner
- Department of Medicine II (Oncology, Gastroenterology, Hepatology and Pulmonology), University Cancer Center Leipzig (UCCL), University of Leipzig Medical Center, Leipzig, Germany
| | - Gian Luca Baiocchi
- Surgical Unit, Department of Clinical and Experimental Sciences, University of Brescia at the Azienda Socio Sanitaria Territoriale (ASST), Cremona, Italy
| | - Manuel Zamparini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at the Azienda Socio Sanitaria Territoriale (ASST)-Spedali Civili, Brescia, Italy
| | - Guido A. M. Tiberio
- Surgical Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at the Azienda Socio Sanitaria Territoriale (ASST)-Spedali Civili, Brescia, Italy
| | - Carla Baronchelli
- Pathology Unit, Azienda Socio Sanitaria Territoriale (ASST)-Spedali Civili, Brescia, Italy
| | - Arnaldo Caruso
- Microbiology Unit, Department of Molecular and Translational Medicine, University of Brescia-Spedali Civili at the Azienda Socio Sanitaria Territoriale (ASST) – Spedali Civili, Brescia, Italy
| | - Paolo Bossi
- Medical Oncology and Hematology Unit, Humanitas University, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at the Azienda Socio Sanitaria Territoriale (ASST)-Spedali Civili, Brescia, Italy
| |
Collapse
|
44
|
Ji P, Lu Q, Chen X, Chen Y, Peng X, Chen Z, Lin C, Lin S, Zong J. Individualized Concurrent Chemotherapy for Patients with Stage III-IVa Nasopharyngeal Carcinoma Receiving Neoadjuvant Chemotherapy Combined with Definitive Intensity-Modulated Radiotherapy. Cancer Res Treat 2023; 55:1113-1122. [PMID: 37170497 PMCID: PMC10582526 DOI: 10.4143/crt.2022.1651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/10/2023] [Indexed: 05/13/2023] Open
Abstract
PURPOSE This retrospective study aimed to re-evaluate the effect of concurrent chemotherapy in patients with locally advanced nasopharyngeal carcinoma (NPC) in the era of intensity-modulated radiotherapy (IMRT). MATERIALS AND METHODS A total of 498 patients who received neoadjuvant chemotherapy (NCT) combined with concurrent chemoradiotherapy (CCRT) or IMRT were retrospectively reviewed. The distribution of baseline characteristics was balanced using propensity score matching. Additionally, the results of NCT+IMRT and NCT+CCRT were compared using Kaplan-Meier survival analysis, and differences in survival rates were analyzed using the log rank test. RESULTS There were no significant differences in overall survival (OS), progression-free survival (PFS), distant metastasis-free survival (DMFS), and local progression-free survival (LRFS) between the two groups. Patients were further categorized into risk subgroups based on pretreatment Epstein-Barr virus (EBV) DNA cutoff values using receiver operating characteristic curve analysis. There were no statistically significant differences in OS, PFS, DMFS, and LRFS between patients who received NCT+CCRT and NCT+IMRT in the high-risk group. In the low-risk group, although there were no differences between NCT+CCRT and NCT+IMRT in OS, PFS, and LRFS, patients who received NCT+CCRT had better DMFS than those who received NCT+IMRT. CONCLUSION Pretreatment EBV DNA level can be used to individualize concurrent chemotherapy for patients with locally advanced NPC. Patients with low pretreatment EBV DNA levels may benefit from concurrent chemotherapy, whereas those with high levels may not. Other treatment modalities need to be explored for high-risk patients to improve their prognosis.
Collapse
Affiliation(s)
- Pengjie Ji
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian,
China
| | - Qiongjiao Lu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian,
China
| | - Xiaoqiang Chen
- Department of Otolaryngology, Fujian Medical University Union Hospital, Fujian,
China
| | - Yuebing Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian,
China
| | - Xiane Peng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fujian,
China
| | - Zhiwei Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fujian,
China
- Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian,
China
| | - Cheng Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian,
China
| | - Shaojun Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian,
China
- Fujian Key Laboratory of Translational Cancer Medicine, Fujian,
China
| | - Jingfeng Zong
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian,
China
| |
Collapse
|
45
|
Zhou P, Zhou J, Lian CL, Yu YF, Zhou R, Lin Q, Wu SG. Residual plasma Epstein-Barr virus DNA after intensity-modulated radiation therapy is associated with poor outcomes in nasopharyngeal carcinoma. Future Oncol 2023; 19:2227-2235. [PMID: 37909289 DOI: 10.2217/fon-2023-0818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Aim: To investigate the effects of residual plasma Epstein-Barr virus (EBV) DNA levels after 3 months of intensity-modulated radiation therapy (IMRT) (postIMRT-EBV DNA) on prognosis in patients with nasopharyngeal carcinoma. Methods: Data from 300 patients were retrospectively collected for analysis. Results: Of these patients, 25 (8.3%) and 275 (91.7%) had positive and negative postIMRT-EBV DNA, respectively. Multivariate survival analysis showed that EBV DNA >688 IU/ml was independently associated with inferior distant metastasis-free survival (p = 0.003) and progression-free survival (p = 0.002). Moreover, postIMRT-EBV DNA was independently associated with inferior locoregional recurrence-free survival (hazard ratio: 4.325; p = 0.018), distant metastasis-free survival (hazard ratio: 10.226; p < 0.001) and progression-free survival (hazard ratio: 10.520; p < 0.001). Conclusion: Positive postIMRT-EBV DNA is a prognostic biomarker for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Ping Zhou
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center (Xiamen Branch), Xiamen, 361027, China
| | - Juan Zhou
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Chen-Lu Lian
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center (Xiamen Branch), Xiamen, 361027, China
| | - Yi-Feng Yu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Rui Zhou
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Qin Lin
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - San-Gang Wu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| |
Collapse
|
46
|
Hu YJ, Lu TZ, Zhang H, Fang M, Chen BJ, Guo QJ, Lin SJ, Feng P, Wang Y, Jiang TC, Gong XC, Pan JJ, Li JG, Xia YF. Locoregional radiotherapy improves survival outcomes in de novo metastatic nasopharyngeal carcinoma treated with chemoimmunotherapy. ESMO Open 2023; 8:101629. [PMID: 37660406 PMCID: PMC10594020 DOI: 10.1016/j.esmoop.2023.101629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/15/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND We aimed to investigate the efficacy of locoregional radiotherapy (LRRT) in patients with de novo metastatic nasopharyngeal carcinoma (dmNPC) receiving chemotherapy combined with anti-programmed cell death receptor-1 monoclonal antibodies (anti-PD-1 mAbs) as first-line treatment and identify optimal candidates for LRRT. MATERIALS AND METHODS We enrolled patients with dmNPC receiving platinum-based palliative chemotherapy and anti-PD-1 mAbs followed or not followed by LRRT from four centers. The endpoints were progression-free survival (PFS), objective response rate (ORR), and overall survival (OS). We used the inverse probability of treatment weighting (IPTW) to balance the baseline characteristics of the LRRT and non-LRRT groups to minimize selection bias before comparative analyses. Multivariate analyses were carried out using the Cox proportional hazards model. RESULTS We included 163 patients with dmNPC (median follow-up: 22 months). The median PFS was 20 months, and the ORR was 92.0%; the median OS was not achieved. After IPTW adjustments, patients who received LRRT had a significant survival benefit over those not receiving LRRT (median PFS: 28 versus 15 months, P < 0.001). The Epstein-Barr virus DNA (EBV DNA) level after four to six cycles of anti-PD-1 mAbs [weighted hazard ratio (HR): 2.19, 95% confidence interval (CI) 1.22-3.92, P = 0.008] and LRRT (weighted HR: 0.58, 95% CI 0.34-0.99, P = 0.04) were independent prognostic factors. Patients with undetectable EBV DNA levels after four to six cycles of anti-PD-1 mAbs (early EBV DNA clearance) benefitted from LRRT (HR: 0.41, 95% CI 0.22-0.79, P = 0.008), whereas those with detectable levels did not (HR: 1.30, 95% CI 0.59-2.87, P = 0.51). CONCLUSIONS Palliative chemotherapy combined with anti-PD-1 mAbs followed by LRRT was associated with improved PFS in patients with dmNPC, especially for patients with early EBV DNA clearance.
Collapse
Affiliation(s)
- Y-J Hu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou; Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou
| | - T-Z Lu
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang; NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang; Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang
| | - H Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - M Fang
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang; NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang
| | - B-J Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou
| | - Q-J Guo
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou
| | - S-J Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou
| | - P Feng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou; Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou
| | - Y Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou; Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou
| | - T-C Jiang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou; Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou
| | - X-C Gong
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang; NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang; Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang
| | - J-J Pan
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou.
| | - J-G Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang; NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang; Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang.
| | - Y-F Xia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou; Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou.
| |
Collapse
|
47
|
Yang Q, Xia L, Feng LF, Gong WJ, Zhu YY, Wang WX, Hua YJ, Li JB. Multi-trajectories of health-related quality of life and their associated factors in patients with nasopharyngeal carcinoma: A longitudinal study. Radiother Oncol 2023; 186:109743. [PMID: 37315581 DOI: 10.1016/j.radonc.2023.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND The trajectories of health-related quality of life (HRQoL) of nasopharyngeal carcinoma (NPC) during and after the treatment along with their associated factors are seldom investigated in longitudinal studies. This study aims to investigate the longitudinal trajectories of HRQoL over time and their associated factors in patients with newly diagnosed NPC. METHODS Between July 2018 and September 2019, a total of 500 patients were finally involved in this study. HRQoL was measured at four time points, from before treatment to the follow-up period after treatment. Group-based multi-trajectory modeling was applied to identify trajectories of five HRQoL functioning domains during the longitudinal period. Multinomial logistic regression models were applied to investigate potential independent factors associated with the multi-trajectory groups. RESULTS We identified four distinct multi-trajectory groups, including the "initially lowest functioning" group (19.8%), the "initially lower functioning" group (20.8%), the "initially higher functioning" group (46.0%), and the "consistently highest functioning" group (13.4%). Patients who were older than 45 years or had T4 stage disease were more likely to be in the "initially lowest functioning" group, while those with EBV DNA ≥ 1500 copies/mL before the treatment were more likely to be in the "initially lowest functioning" or the "initially lower functioning" groups. CONCLUSIONS We report the presence of heterogeneity in HRQoL trajectories among patients with NPC, and found that older age, advanced T stage, and higher EBV DNA level before treatment were significantly associated with poor HRQoL trajectories. Further studies are needed to examine the generalizability of these identified HRQoL trajectories and their associations with psychosocial and survival outcomes.
Collapse
Affiliation(s)
- Qi Yang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, PR China; State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, PR China
| | - Le Xia
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, PR China; State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, PR China
| | - Li-Fen Feng
- Department of Statistics, Government Affairs Service Center of Health Commission of Guangdong Province, Guangzhou, PR China
| | - Wei-Jie Gong
- Department of General Practice, Health Science Center, Shenzhen University, Shenzhen 518037, China
| | - Ying-Ying Zhu
- Clinical Research Design Division, Clinical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Wen-Xuan Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, PR China; Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Yi-Jun Hua
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, PR China; State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, PR China
| | - Ji-Bin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, PR China; Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| |
Collapse
|
48
|
Liang YJ, Chen QY, Xu JX, Liu XF, Xia JC, Liu LT, Guo SS, Song B, Wang P, Li JB, Liu Q, Mo HY, Guo L, Sun R, Luo DH, He J, Liu YN, Nie CP, Tang LQ, Li J, Mai HQ. A phase II randomised controlled trial of adjuvant tumour-infiltrating lymphocytes for pretreatment Epstein-Barr virus DNA-selected high-risk nasopharyngeal carcinoma patients. Eur J Cancer 2023; 191:112965. [PMID: 37540921 DOI: 10.1016/j.ejca.2023.112965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/29/2023] [Accepted: 06/25/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE The safety and objective clinical responses were observed in the phase I study using adjuvant autologous tumour-infiltrating lymphocytes (TILs) following concurrent chemoradiotherapy (CCRT) in nasopharyngeal carcinoma (NPC) patients. METHODS AND MATERIALS One hundred fifty-six patients with stage III-IVb and pretreatment Epstein-Barr virus DNA levels of ≥4000 copies/ml were randomly assigned to receive CCRT combined with TIL infusion (n = 78) or CCRT alone (n = 78). All patients received CCRT and patients assigned to the TIL group received TIL infusion within 1 week after CCRT. The primary endpoint was investigator-assessed progression-free survival (PFS) at 3 years. RESULTS After a median follow-up of 62.3 months, no significant difference was observed in the 3-year PFS rate between the CCRT plus TIL infusion group and CCRT alone group (75.6% versus 74.4%, hazard ratios, 1.08; 95% confidence intervals, 0.62-1.89). TIL infusion was safe without grade 3 or 4 adverse events and all the high-grade adverse effects were associated with myelosuppression caused by CCRT. Exploratory analysis showed that a potential survival benefit was observed with TILs in patients with lower levels of circulating CD8+TIM3+ cells, serum IL-8 or PD-L1. The infused TIL products in patients with favourable outcomes were associated with increased transcription of interferon-γ and a series of inflammatory related genes and a lower exhausted score. CONCLUSION The primary objective of prolonging PFS with CCRT plus TILs in high-risk NPC patients was not met. These findings may provide evidence for the design of future trials investigating the combination of TILs plus immune checkpoint inhibitors based on CCRT in high-risk NPC patients. TRIAL REGISTRATION NUMBER NCT02421640.
Collapse
Affiliation(s)
- Yu-Jing Liang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China; Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Qiu-Yan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Jing-Xiao Xu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Xiu-Feng Liu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Jian-Chuan Xia
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Li-Ting Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Shan-Shan Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Bin Song
- BGI-GenoImmune, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Wang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Ji-Bin Li
- Clinical Trials Centre, Sun Yat-sen University Cancer Centre, Guangzhou 510060, People's Republic of China
| | - Qing Liu
- Department of Medical Statistics and Epidemiology, Sun Yat-sen University Cancer Centre, Guangzhou 510060, People's Republic of China
| | - Hao-Yuan Mo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Ling Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Dong-Hua Luo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Jia He
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Yi-Na Liu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Cai-Ping Nie
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Lin-Quan Tang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Jiang Li
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China.
| |
Collapse
|
49
|
Huang X, Duijf PHG, Sriram S, Perera G, Vasani S, Kenny L, Leo P, Punyadeera C. Circulating tumour DNA alterations: emerging biomarker in head and neck squamous cell carcinoma. J Biomed Sci 2023; 30:65. [PMID: 37559138 PMCID: PMC10413618 DOI: 10.1186/s12929-023-00953-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/16/2023] [Indexed: 08/11/2023] Open
Abstract
Head and Neck cancers (HNC) are a heterogeneous group of upper aero-digestive tract cancer and account for 931,922 new cases and 467,125 deaths worldwide. About 90% of these cancers are of squamous cell origin (HNSCC). HNSCC is associated with excessive tobacco and alcohol consumption and infection with oncogenic viruses. Genotyping tumour tissue to guide clinical decision-making is becoming common practice in modern oncology, but in the management of patients with HNSCC, cytopathology or histopathology of tumour tissue remains the mainstream for diagnosis and treatment planning. Due to tumour heterogeneity and the lack of access to tumour due to its anatomical location, alternative methods to evaluate tumour activities are urgently needed. Liquid biopsy approaches can overcome issues such as tumour heterogeneity, which is associated with the analysis of small tissue biopsy. In addition, liquid biopsy offers repeat biopsy sampling, even for patients with tumours with access limitations. Liquid biopsy refers to biomarkers found in body fluids, traditionally blood, that can be sampled to provide clinically valuable information on both the patient and their underlying malignancy. To date, the majority of liquid biopsy research has focused on blood-based biomarkers, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), and circulating microRNA. In this review, we will focus on ctDNA as a biomarker in HNSCC because of its robustness, its presence in many body fluids, adaptability to existing clinical laboratory-based technology platforms, and ease of collection and transportation. We will discuss mechanisms of ctDNA release into circulation, technological advances in the analysis of ctDNA, ctDNA as a biomarker in HNSCC management, and some of the challenges associated with translating ctDNA into clinical and future perspectives. ctDNA provides a minimally invasive method for HNSCC prognosis and disease surveillance and will pave the way in the future for personalized medicine, thereby significantly improving outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
- Xiaomin Huang
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery (GRIDD), School of Environment and Science, Griffith University, QLD, Brisbane, Australia
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- University Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Ganganath Perera
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Sarju Vasani
- Department of Otolaryngology, Royal Brisbane Women's Hospital, Brisbane, QLD, Australia
- The School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Lizbeth Kenny
- The School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Paul Leo
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Translational Genomics Centre, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery (GRIDD), School of Environment and Science, Griffith University, QLD, Brisbane, Australia.
- Menzies Health Institute Queensland (MIHQ), Griffith University, Gold coast, QLD, Australia.
| |
Collapse
|
50
|
Kong FF, Pan GS, Du CR, Ni MS, Zhai RP, He XY, Shen CY, Lu XG, Hu CS, Ying HM. Prognostic value of circulating Epstein-Barr virus DNA level post-induction chemotherapy for patients with nasopharyngeal carcinoma: A recursive partitioning risk stratification analysis. Radiother Oncol 2023; 185:109721. [PMID: 37244356 DOI: 10.1016/j.radonc.2023.109721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND To evaluate the prognostic value of plasma Epstein-Barr virus (EBV) DNA level post-induction chemotherapy (IC) for patients with nasopharyngeal carcinoma (NPC). METHODS A total of 893 newly diagnosed NPC patients treated with IC were retrospectively reviewed. The recursive partitioning analysis (RPA) was performed to construct a risk stratification model. The receiver operating characteristic (ROC) analysis was applied to determine the optimal cut-off value of post-IC EBV DNA. RESULTS Post-IC EBV DNA levels and overall stage were independent predictors for distant metastasis-free survival (DMFS), overall survival (OS), and progression-free survival (PFS). The RPA model base on post-IC EBV DNA and overall stage categorized the patients into three distinct risk groups: RPA I (low-risk: stage II-III and post-IC EBV DNA < 200 copies/mL), RPA II (median-risk: stage II-III and post-IC EBV DNA ≥ 200 copies/mL, or stage IVA and post-IC EBV DNA < 200 copies/mL), and RPA III (high-risk: stage IVA and post-IC EBV DNA ≥ 200 copies/mL), with 3-year PFS of 91.1%, 82.6%, and 60.2%, respectively (p < 0.001). The DMFS and OS rates in different RPA groups were also distinct. The RPA model showed better risk discrimination than either the overall stage or post-RT EBV DNA alone. CONCLUSIONS Plasma EBV DNA level post-IC was a robust prognostic biomarker for NPC. We developed an RPA model that provides improved risk discrimination over the 8th edition of the TNM staging system by integrating the post-IC EBV DNA level and the overall stage.
Collapse
Affiliation(s)
- Fang-Fang Kong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Guang-Sen Pan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Cheng-Run Du
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Meng-Shan Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Rui-Ping Zhai
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xia-Yun He
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Chun-Ying Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xue-Guan Lu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Chao-Su Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China.
| | - Hong-Mei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China.
| |
Collapse
|