1
|
Kinasih SE, Devy SR, Koesbardiati T, Romadhona MK. Human migration, infectious diseases, plague, global health crisis - historical evidence. COGENT ARTS & HUMANITIES 2024; 11. [DOI: 10.1080/23311983.2024.2392399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 01/03/2025]
Affiliation(s)
- Sri Endah Kinasih
- Faculty of Social and Political Sciences, Universitas Airlangga, Surabaya, Indonesia
| | | | - Toetik Koesbardiati
- Faculty of Social and Political Sciences, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
2
|
Shum MHH, Lee Y, Tam L, Xia H, Chung OLW, Guo Z, Lam TTY. Binding affinity between coronavirus spike protein and human ACE2 receptor. Comput Struct Biotechnol J 2024; 23:759-770. [PMID: 38304547 PMCID: PMC10831124 DOI: 10.1016/j.csbj.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Coronaviruses (CoVs) pose a major risk to global public health due to their ability to infect diverse animal species and potential for emergence in humans. The CoV spike protein mediates viral entry into the cell and plays a crucial role in determining the binding affinity to host cell receptors. With particular emphasis on α- and β-coronaviruses that infect humans and domestic animals, current research on CoV receptor use suggests that the exploitation of the angiotensin-converting enzyme 2 (ACE2) receptor poses a significant threat for viral emergence with pandemic potential. This review summarizes the approaches used to study binding interactions between CoV spike proteins and the human ACE2 (hACE2) receptor. Solid-phase enzyme immunoassays and cell binding assays allow qualitative assessment of binding but lack quantitative evaluation of affinity. Surface plasmon resonance, Bio-layer interferometry, and Microscale Thermophoresis on the other hand, provide accurate affinity measurement through equilibrium dissociation constants (KD). In silico modeling predicts affinity through binding structure modeling, protein-protein docking simulations, and binding energy calculations but reveals inconsistent results due to the lack of a standardized approach. Machine learning and deep learning models utilize simulated and experimental protein-protein interaction data to elucidate the critical residues associated with CoV binding affinity to hACE2. Further optimization and standardization of existing approaches for studying binding affinity could aid pandemic preparedness. Specifically, prioritizing surveillance of CoVs that can bind to human receptors stands to mitigate the risk of zoonotic spillover.
Collapse
Affiliation(s)
- Marcus Ho-Hin Shum
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
| | - Yang Lee
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Centre for Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| | - Leighton Tam
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
| | - Hui Xia
- Department of Chemistry, South University of Science and Technology of China, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Oscar Lung-Wa Chung
- Department of Chemistry, South University of Science and Technology of China, China
| | - Zhihong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
- Centre for Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
3
|
Gopalaswamy R, Aravindhan V, Subbian S. The Ambivalence of Post COVID-19 Vaccination Responses in Humans. Biomolecules 2024; 14:1320. [PMID: 39456253 PMCID: PMC11506738 DOI: 10.3390/biom14101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has prompted a massive global vaccination campaign, leading to the rapid development and deployment of several vaccines. Various COVID-19 vaccines are under different phases of clinical trials and include the whole virus or its parts like DNA, mRNA, or protein subunits administered directly or through vectors. Beginning in 2020, a few mRNA (Pfizer-BioNTech BNT162b2 and Moderna mRNA-1273) and adenovirus-based (AstraZeneca ChAdOx1-S and the Janssen Ad26.COV2.S) vaccines were recommended by WHO for emergency use before the completion of the phase 3 and 4 trials. These vaccines were mostly administered in two or three doses at a defined frequency between the two doses. While these vaccines, mainly based on viral nucleic acids or protein conferred protection against the progression of SARS-CoV-2 infection into severe COVID-19, and prevented death due to the disease, their use has also been accompanied by a plethora of side effects. Common side effects include localized reactions such as pain at the injection site, as well as systemic reactions like fever, fatigue, and headache. These symptoms are generally mild to moderate and resolve within a few days. However, rare but more serious side effects have been reported, including allergic reactions such as anaphylaxis and, in some cases, myocarditis or pericarditis, particularly in younger males. Ongoing surveillance and research efforts continue to refine the understanding of these adverse effects, providing critical insights into the risk-benefit profile of COVID-19 vaccines. Nonetheless, the overall safety profile supports the continued use of these vaccines in combating the pandemic, with regulatory agencies and health organizations emphasizing the importance of vaccination in preventing COVID-19's severe outcomes. In this review, we describe different types of COVID-19 vaccines and summarize various adverse effects due to autoimmune and inflammatory response(s) manifesting predominantly as cardiac, hematological, neurological, and psychological dysfunctions. The incidence, clinical presentation, risk factors, diagnosis, and management of different adverse effects and possible mechanisms contributing to these effects are discussed. The review highlights the potential ambivalence of human response post-COVID-19 vaccination and necessitates the need to mitigate the adverse side effects.
Collapse
Affiliation(s)
- Radha Gopalaswamy
- Directorate of Distance Education, Madurai Kamaraj University, Madurai 625021, India;
| | - Vivekanandhan Aravindhan
- Department of Genetics, Dr Arcot Lakshmanasamy Mudaliyar Post Graduate Institute of Basic Medical Sciences (Dr ALM PG IBMS), University of Madras, Taramani, Chennai 600005, India;
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
4
|
Ansari AW, Ahmad F, Alam MA, Raheed T, Zaqout A, Al-Maslamani M, Ahmad A, Buddenkotte J, Al-Khal A, Steinhoff M. Virus-Induced Host Chemokine CCL2 in COVID-19 Pathogenesis: Potential Prognostic Marker and Target of Anti-Inflammatory Strategy. Rev Med Virol 2024; 34:e2578. [PMID: 39192485 DOI: 10.1002/rmv.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
A wide variety of inflammatory mediators, mainly cytokines and chemokines, are induced during SARS CoV-2 infection. Among these proinflammatory mediators, chemokines tend to play a pivotal role in virus-mediated immunopathology. The C-C chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1) is a potent proinflammatory cytokine and strong chemoattractant of monocytes, macrophages and CD4+ T cells bearing C-C chemokine receptor type-2 (CCR2). Besides controlling immune cell trafficking, CCL2 is also involved in multiple pathophysiological processes including systemic hyperinflammation associated cytokine release syndrome (CRS), organ fibrosis and blood coagulation. These pathological features are commonly manifested in severe and fatal cases of COVID-19. Given the crucial role of CCL2 in COVID-19 pathogenesis, the CCL2:CCR2 axis may constitute a potential therapeutic target to control virus-induced hyperinflammation and multi-organ dysfunction. Herein we describe recent advances on elucidating the role of CCL2 in COVID-19 pathogenesis, prognosis, and a potential target of anti-inflammatory interventions.
Collapse
Affiliation(s)
- Abdul Wahid Ansari
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Thesni Raheed
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Zaqout
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Muna Al-Maslamani
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Abdullatif Al-Khal
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Dermatology, Weill Cornell University, New York, New York, USA
- College of Medicine, Qatar University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
5
|
Mosmann J, Frutos MC, Origlia JA, Gallo Vaulet ML, García MG, Vilar G, Pérez C, Madariaga MJ, Cuffini C, Cadario ME. Are Mycoplasma pneumoniae coinfections frequent in COVID-19 patients? A systematic review. Rev Argent Microbiol 2024; 56:258-264. [PMID: 38991918 DOI: 10.1016/j.ram.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/09/2024] [Accepted: 05/06/2024] [Indexed: 07/13/2024] Open
Abstract
Understanding the proportion of SARS-CoV-2 patients with Mycoplasmapneumoniae coinfection is crucial for treating patients suffering from coronavirus disease (COVID-19), help to ensure responsible use of antibiotics and minimize the negative consequences of overuse. In addition, this knowledge could have an impact on empirical antibiotic management guidelines for patients with COVID-19. This systematic review aimed to identify the prevalence of M. pneumoniae in patients with coronavirus disease 2019 (COVID-19). A bibliographic search of studies published in Spanish or English was conducted using the PubMed search engine. Fourteen articles from different continents (America, Asia and Europe) were included, involving a total of 5855 patients in these studies. The mean age of COVID-19 patients with M. pneumoniae was 48 years old (range 1-107), most of whom were male. The detection of laboratory-confirmed M. pneumoniae infection varied between 0 and 33.3%. Most of patients referred fever, cough, and dyspnea, and received empirical antibiotic treatment. Bacterial coinfection was not associated with increased ICU admission and mortality. The prevalence of coinfection showed extremely dissimilar figures according to the population studied and diagnostic criteria. However, it is important to develop Latin American studies, given the heterogeneity observed in the studies conducted in different countries. Standardized definitions should be developed in order to be able to assess the impact of coinfections in patients with a diagnosis of COVID-19.
Collapse
Affiliation(s)
- Jessica Mosmann
- Instituto de Virología, Dr. J.M. Vanella, Facultad de Ciencias Médicas - Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - María Celia Frutos
- Instituto de Virología, Dr. J.M. Vanella, Facultad de Ciencias Médicas - Universidad Nacional de Córdoba, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Javier Anibal Origlia
- Cátedra de Patología de Aves y Pilíferos, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Lucia Gallo Vaulet
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Buenos Aires, Argentina
| | - Miriam Gabriela García
- Laboratorio de Virología y Biología Molecular, Hospital Interzonal General Agudos Pedro Fiorito, Buenos Aires, Argentina
| | - Gabriela Vilar
- Departamento de Bacteriología, INEI-ANLIS Dr. Carlos G Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
| | - Celeste Pérez
- Departamento de Bacteriología, INEI-ANLIS Dr. Carlos G Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Julia Madariaga
- Sección Serología y Pruebas Biológicas, Instituto de Zoonosis Luis Pasteur, Ciudad Autónoma de Buenos Aires, Argentina
| | - Cecilia Cuffini
- Instituto de Virología, Dr. J.M. Vanella, Facultad de Ciencias Médicas - Universidad Nacional de Córdoba, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Estela Cadario
- Departamento de Bacteriología, INEI-ANLIS Dr. Carlos G Malbrán, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Virología, INEI-ANLIS Dr. Carlos G Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
6
|
Sohrab SS, Alsaqaf F, Hassan AM, Tolah AM, Bajrai LH, Azhar EI. Genomic Diversity and Recombination Analysis of the Spike Protein Gene from Selected Human Coronaviruses. BIOLOGY 2024; 13:282. [PMID: 38666894 PMCID: PMC11048170 DOI: 10.3390/biology13040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Human coronaviruses (HCoVs) are seriously associated with respiratory diseases in humans and animals. The first human pathogenic SARS-CoV emerged in 2002-2003. The second was MERS-CoV, reported from Jeddah, the Kingdom of Saudi Arabia, in 2012, and the third one was SARS-CoV-2, identified from Wuhan City, China, in late December 2019. The HCoV-Spike (S) gene has the highest mutation/insertion/deletion rate and has been the most utilized target for vaccine/antiviral development. In this manuscript, we discuss the genetic diversity, phylogenetic relationships, and recombination patterns of selected HCoVs with emphasis on the S protein gene of MERS-CoV and SARS-CoV-2 to elucidate the possible emergence of new variants/strains of coronavirus in the near future. The findings showed that MERS-CoV and SARS-CoV-2 have significant sequence identity with the selected HCoVs. The phylogenetic tree analysis formed a separate cluster for each HCoV. The recombination pattern analysis showed that the HCoV-NL63-Japan was a probable recombinant. The HCoV-NL63-USA was identified as a major parent while the HCoV-NL63-Netherland was identified as a minor parent. The recombination breakpoints start in the viral genome at the 142 nucleotide position and end at the 1082 nucleotide position with a 99% CI and Bonferroni-corrected p-value of 0.05. The findings of this study provide insightful information about HCoV-S gene diversity, recombination, and evolutionary patterns. Based on these data, it can be concluded that the possible emergence of new strains/variants of HCoV is imminent.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Fatima Alsaqaf
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
| | - Ahmed Mohamed Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
| | - Ahmed Majdi Tolah
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, P.O. Box 21911, Rabigh 344, Saudi Arabia
| | - Leena Hussein Bajrai
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Sanito RC, Mujiyanti DR, You SJ, Wang YF. A review on medical waste treatment in COVID-19 pandemics: Technologies, managements and future strategies. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:72-99. [PMID: 37955449 DOI: 10.1080/10962247.2023.2282011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Since the outbreak of COVID-19 few years ago, the increasing of the number of medical waste has become a huge issue because of their harmful impact to environment. A major concern associated to the limitation of technologies for dealing with medical waste, especially conventional technologies, are overcapacities since pandemic occurs. Moreover, the outbreak of new viruses from post COVID-19 should become a serious attention to be prevented not only environmental issues but also the spreading of viruses to new pandemic near the future. The high possibility of an outbreak of new viruses and mutation near the future should be prevented based on the experience associated with the SARS-CoV-2 virus in the last 3 yr. This review presented information and strategies for handling medical waste during the outbreak of COVID-19 and post-COVID-19, and also information on the current issues related to technologies, such as incineration, pyrolysis/gasification, autoclaves and microwave treatment for the dealing with high numbers of medical waste in COVID-19 to prevent the transmission of SARS-CoV-2 virus, their advantages and disadvantages. Plasma technology can be considered to be implemented as an alternative technology to deal with medical waste since incinerator is usually over capacities during the pandemic situation. Proper treatment of specific medical waste in pandemics, namely face masks, vaccine vials, syringes, and dead bodies, are necessary because those medical wastes are mediums for transmission of the SARS-CoV-2 virus. Furthermore, emission controls from incinerator and plasma are necessary to be implemented to reduce the high concentration of CO2, NOx, and VOCs during the treatment. Finally, future strategies of medical waste treatment in the perspective of potential outbreak pandemic from new mutation viruses are discussed in this review paper.Implications: Journal of the air and waste management association may consider our review paper to be published. In this review, we give important information related to the technologies, managements and strategies for handling the medical waste and control the transmission of SARS-CoV-2 virus, starting from proper technology to control the high number of medical waste, their pollutants and many strategies for controlling the spreading of SARS-CoV-2 virus. Moreover, this review also describes some strategies associated with control the transmission not only the SARS-CoV-2 virus but also the outbreak of new viruses near the future.
Collapse
Affiliation(s)
- Raynard Christianson Sanito
- Surface Engineering Laboratory, Advanced Materials Research Center, Department of Mineral, Metallurgical and Materials Engineering, Laval University, Pavillon Adrien-Pouliot, Quebec City, Quebec, Canada
- CHU de Quebec, Hospital Saint-François d'Assise, Laval University, Quebec City, Quebec, Canada
| | - Dwi Rasy Mujiyanti
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, Taiwan
| |
Collapse
|
8
|
Kar M, Siddiqui T, Dubey A, Hashim Z, Sahu C, Ghoshal U. Respiratory bacterial co-infections and their antibiotic resistance pattern in COVID-19 patients at a tertiary care centre in India. Access Microbiol 2023; 5:acmi000514.v3. [PMID: 37424565 PMCID: PMC10323793 DOI: 10.1099/acmi.0.000514.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/23/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Patients with coronavirus disease-2019 (COVID-19) are prone to develop respiratory bacterial infections irrespective of their need for mechanical ventilatory support. Hypothesis/Gap Statement Information about the incidence of concomitant respiratory bacterial infections in COVID- 19 patients from India is limited. Aim This study aimed to determine the incidence of concomitant respiratory bacterial pathogens and their drug resistance in these patients. Methodology A prospective study was performed by including patients who were admitted to our tertiary care centre from March 2021 to May 2021 to evaluate secondary bacterial respiratory co-infections in patients via real-time PCR (RT-PCR)-confirmed cases of COVID-19 disease caused by SARS CoV-2. Results Sixty-nine culture-positive respiratory samples from patients with COVID-19 were incorporated into this study. The most commonly isolated bacterial microorganisms were Klebsiella pneumoniae (23 samples, 33.33 %) and Acinetobacter baumannii (15, 21.73 %), followed by Pseudomonas aeruginosa (13, 18.84 %). Among the microorganisms isolated, 41 (59.4 %) were multidrug-resistant (MDR) and nine (13 %) were extensively drug-resistant (XDR). Among the Gram-negative bacteria isolated, K. pneumoniae showed high drug resistance. Fifty carbapenem-resistant microorganisms were isolated from the patients included in our study. Concerning the hospital stay of the patients enrolled, there was an increased length of intensive care unit stay, which was 22.25±15.42 days among patients needing mechanical ventilation in comparison to 5.39±9.57 days in patients on ambient air or low/high-flow oxygen. Conclusion COVID-19 patients need increased length of hospitalization and have a high incidence of secondary respiratory bacterial infections and high antimicrobial drug resistance.
Collapse
Affiliation(s)
- Mitra Kar
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Tasneem Siddiqui
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Akanksha Dubey
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Zia Hashim
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh -226014, India
| | - Chinmoy Sahu
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Ujjala Ghoshal
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| |
Collapse
|
9
|
Imam MT, Almalki ZS, Alzahrani AR, Al-Ghamdi SS, Falemban AH, Alanazi IM, Shahzad N, Muhammad Alrooqi M, Jabeen Q, Shahid I. COVID-19 and severity of liver diseases: Possible crosstalk and clinical implications. Int Immunopharmacol 2023; 121:110439. [PMID: 37315370 PMCID: PMC10247890 DOI: 10.1016/j.intimp.2023.110439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
COVID-19-infected individuals and those who recovered from the infection have been demonstrated to have elevated liver enzymes or abnormal liver biochemistries, particularly with preexisting liver diseases, liver metabolic disorders, viral hepatitis, and other hepatic comorbidities. However, possible crosstalk and intricate interplay between COVID-19 and liver disease severity are still elusive, and the available data are murky and confined. Similarly, the syndemic of other blood-borne infectious diseases, chemical-induced liver injuries, and chronic hepatic diseases continued to take lives while showing signs of worsening due to the COVID-19 crisis. Moreover, the pandemic is not over yet and is transitioning to becoming an epidemic in recent years; hence, monitoring liver function tests (LFTs) and assessing hepatic consequences of COVID-19 in patients with or without liver illnesses would be of paramount interest. This pragmatic review explores the correlations between COVID-19 and liver disease severity based on abnormal liver biochemistries and other possible mechanisms in individuals of all ages from the emergence of the COVID-19 pandemic to the post-pandemic period. The review also alludes to clinical perspectives of such interactions to curb overlapping hepatic diseases in people who recovered from the infection or living with long COVID-19.
Collapse
Affiliation(s)
- Mohammad T Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ziyad S Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia
| | - Saeed S Al-Ghamdi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia
| | - Alaa H Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia
| | - Ibrahim M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia
| | | | - Qaisar Jabeen
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia.
| |
Collapse
|
10
|
Azhar EI, Velavan TP, Rungsung I, Traore T, Hui DS, McCloskey B, El-Kafrawy SA, Zumla A. Middle East respiratory syndrome coronavirus-a 10-year (2012-2022) global analysis of human and camel infections, genomic sequences, lineages, and geographical origins. Int J Infect Dis 2023; 131:87-94. [PMID: 36996998 PMCID: PMC10050196 DOI: 10.1016/j.ijid.2023.03.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVES The World Health Organization priority zoonotic pathogen Middle East respiratory syndrome (MERS) coronavirus (CoV) has a high case fatality rate in humans and circulates in camels worldwide. METHODS We performed a global analysis of human and camel MERS-CoV infections, epidemiology, genomic sequences, clades, lineages, and geographical origins for the period January 1, 2012 to August 3, 2022. MERS-CoV Surface gene sequences (4061 bp) were extracted from GenBank, and a phylogenetic maximum likelihood tree was constructed. RESULTS As of August 2022, 2591 human MERS cases from 26 countries were reported to the World Health Organization (Saudi Arabia, 2184 cases, including 813 deaths [case fatality rate: 37.2%]) Although declining in numbers, MERS cases continue to be reported from the Middle East. A total of 728 MERS-CoV genomes were identified (the largest numbers were from Saudi Arabia [222: human = 146, camels = 76] and the United Arab Emirates [176: human = 21, camels = 155]). A total of 501 'S'-gene sequences were used for phylogenetic tree construction (camels [n = 264], humans [n = 226], bats [n = 8], other [n=3]). Three MERS-CoV clades were identified: clade B, which is the largest, followed by clade A and clade C. Of the 462 clade B lineages, lineage 5 was predominant (n = 177). CONCLUSION MERS-CoV remains a threat to global health security. MERS-CoV variants continue circulating in humans and camels. The recombination rates indicate co-infections with different MERS-CoV lineages. Proactive surveillance of MERS-CoV infections and variants of concern in camels and humans worldwide, and development of a MERS vaccine, are essential for epidemic preparedness.
Collapse
Affiliation(s)
- Esam I Azhar
- Special Infectious Agents Unit Biosafety Level-3, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Vietnamese-German Center for Medical Research, Hanoi, Vietnam
| | - Ikrormi Rungsung
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Vietnamese-German Center for Medical Research, Hanoi, Vietnam
| | - Tieble Traore
- Emergency Preparedness and Response Program, World Health Organization Regional Office for Africa, Dakar Hub, Senegal
| | - David S Hui
- Department of Medicine and Therapeutics, Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Brian McCloskey
- Global Health Program, Chatham House, Royal Institute of International Affairs, London, United Kingdom
| | - Sherif A El-Kafrawy
- Special Infectious Agents Unit Biosafety Level-3, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alimuddin Zumla
- Division of Infection and Immunity, Centre for Clinical Microbiology, University College London, London, United Kingdom; National Institute for Health and Care Research Biomedical Research Centre, University College London Hospitals National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|
11
|
Kuperminc E, Heming N, Carlos M, Annane D. Corticosteroids in ARDS. J Clin Med 2023; 12:jcm12093340. [PMID: 37176780 PMCID: PMC10179626 DOI: 10.3390/jcm12093340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is frequently associated with sepsis. ARDS and sepsis exhibit a common pathobiology, namely excessive inflammation. Corticosteroids are powerful anti-inflammatory agents that are routinely used in septic shock and in oxygen-dependent SARS-CoV-2 related acute respiratory failure. Recently, corticosteroids were found to reduce mortality in severe community-acquired pneumonia. Corticosteroids may therefore also have a role to play in the treatment of ARDS. This narrative review was undertaken following a PubMed search for English language reports published before January 2023 using the terms acute respiratory distress syndrome, sepsis and steroids. Additional reports were identified by examining the reference lists of selected articles and based on personnel knowledge of the authors of the field. High-quality research is needed to fully understand the role of corticosteroids in the treatment of ARDS and to determine the optimal timing, dosing and duration of treatment.
Collapse
Affiliation(s)
- Emmanuelle Kuperminc
- Department of Intensive Care, Hôpital Raymond Poincaré, APHP University Versailles Saint Quentin-University Paris Saclay, 92380 Garches, France
| | - Nicholas Heming
- Department of Intensive Care, Hôpital Raymond Poincaré, APHP University Versailles Saint Quentin-University Paris Saclay, 92380 Garches, France
- Laboratory of Infection & Inflammation-U1173, School of Medicine Simone Veil, University Versailles Saint Quentin-University Paris Saclay, INSERM, 92380 Garches, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis), 92380 Garches, France
| | - Miguel Carlos
- Department of Intensive Care, Hôpital Raymond Poincaré, APHP University Versailles Saint Quentin-University Paris Saclay, 92380 Garches, France
| | - Djillali Annane
- Department of Intensive Care, Hôpital Raymond Poincaré, APHP University Versailles Saint Quentin-University Paris Saclay, 92380 Garches, France
- Laboratory of Infection & Inflammation-U1173, School of Medicine Simone Veil, University Versailles Saint Quentin-University Paris Saclay, INSERM, 92380 Garches, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis), 92380 Garches, France
| |
Collapse
|
12
|
Cappadona C, Rimoldi V, Paraboschi EM, Asselta R. Genetic susceptibility to severe COVID-19. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 110:105426. [PMID: 36934789 PMCID: PMC10022467 DOI: 10.1016/j.meegid.2023.105426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the coronavirus disease 2019 (COVID-19) pandemic. Clinical manifestations of the disease range from an asymptomatic condition to life-threatening events and death, with more severe courses being associated with age, male sex, and comorbidities. Besides these risk factors, intrinsic characteristics of the virus as well as genetic factors of the host are expected to account for COVID-19 clinical heterogeneity. Genetic studies have long been recognized as fundamental to identify biological mechanisms underlying congenital diseases, to pinpoint genes/proteins responsible for the susceptibility to different inherited conditions, to highlight targets of therapeutic relevance, to suggest drug repurposing, and even to clarify causal relationships that make modifiable some environmental risk factors. Though these studies usually take long time to be concluded and, above all, to translate their discoveries to patients' bedside, the scientific community moved really fast to deliver genetic signals underlying different COVID-19 phenotypes. In this Review, besides a concise description of COVID-19 symptomatology and of SARS-CoV-2 mechanism of infection, we aimed to recapitulate the current literature in terms of host genetic factors that specifically associate with an increased severity of the disease.
Collapse
Affiliation(s)
- Claudio Cappadona
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| |
Collapse
|
13
|
Brainard J, Jones NR, Harrison FC, Hammer CC, Lake IR. Super-spreaders of novel coronaviruses that cause SARS, MERS and COVID-19: A systematic review. Ann Epidemiol 2023:S1047-2797(23)00058-3. [PMID: 37001627 DOI: 10.1016/j.annepidem.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/12/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE Most index cases with novel coronavirus infections transmit disease to just one or two other individuals, but some individuals "super-spread"-they infect many secondary cases. Understanding common factors that super-spreaders may share could inform outbreak models, and be used to guide contact tracing during outbreaks. METHODS We searched in MEDLINE, Scopus, and preprints to identify studies about people documented as transmitting pathogens that cause SARS, MERS, or COVID-19 to at least nine other people. We extracted data to describe them by age, sex, location, occupation, activities, symptom severity, any underlying conditions, disease outcome and undertook quality assessment for outbreaks published by June 2021. RESULTS The most typical super-spreader was a male age 40+. Most SARS or MERS super-spreaders were very symptomatic, the super-spreading occurred in hospital settings and frequently the individual died. In contrast, COVID-19 super-spreaders often had very mild disease and most COVID-19 super-spreading happened in community settings. CONCLUSIONS SARS and MERS super-spreaders were often symptomatic, middle- or older-age adults who had a high mortality rate. In contrast, COVID-19 super-spreaders tended to have mild disease and were any adult age. More outbreak reports should be published with anonymized but useful demographic information to improve understanding of super-spreading, super-spreaders, and the settings in which super-spreading happens.
Collapse
|
14
|
Dwyer DE. The Origins of Severe Acute Respiratory Syndrome-Coronavirus-2. Semin Respir Crit Care Med 2023; 44:3-7. [PMID: 36646081 DOI: 10.1055/s-0042-1759564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An outbreak of severe pneumonia of unknown cause was identified in Wuhan, China in December 2019: the causative agent was a novel betacoronavirus, severe acute respiratory syndrome-cotonavirus-2 (SARS-CoV-2), a virus that joins a list of coronaviruses causing severe (e.g., SARS and Middle East respiratory syndrome) or milder (e.g., 229E, OC43, NL63, and HKU1) respiratory tract infection. The World Health Organization (WHO) classified the spreading outbreak as a pandemic on March 11, 2020. Many SARS-related coronaviruses (SARSr-CoVs) have been identified in bats, particularly in Rhinolophus horseshoe bats, animals that are common in southern China and Southeast Asia. Many of the features of SARS-CoV-2 that facilitate human infection-the furin cleavage site, the receptor binding domain that binds to the human ACE2 receptor-can be identified in SARSr-CoVs. Related coronaviruses can be detected in pangolins and other animals, and human SARS-CoV-2 itself can infect various animals, some of which can transmit SARS-CoV-2 back to humans. Investigation by the WHO and others pointed to the initial outbreak being centered on the Huanan wet market in Wuhan where wild and farmed animals were sold, and where environmental testing revealed widespread SARS-CoV-2 contamination. This supports the hypothesis that bats, probably via an intermediate animal, are the origin of SARS-CoV-2. Other possible origins have been postulated, such as an accidental or deliberate laboratory leak, or virus present in frozen foods, but evidence for these ideas has not surfaced. Study of the origins of SARS-CoV-2 have been complicated by intense media and political commentary, features that may slow the studies required to understand the viral origins. Such studies are complex and may be slow: international openness and co-operation is vital. Origins explanations are needed to predict or prevent future pandemics and support the "One Health" approach to disease.
Collapse
Affiliation(s)
- Dominic E Dwyer
- Public Health Pathology, New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
15
|
Väisänen E, Jiang M, Laine L, Waris M, Julkunen I, Österlund P. Infectious viruses from transfected SARS-CoV-2 genomic RNA. Front Bioeng Biotechnol 2023; 11:1129111. [PMID: 37064222 PMCID: PMC10098207 DOI: 10.3389/fbioe.2023.1129111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Abstract
SARS-CoV-2 emerged at the end of 2019, and like other novel pathogens causing severe symptoms, WHO recommended heightened biosafety measures for laboratories working with the virus. The positive-stranded genomic RNA of coronaviruses has been known to be infectious since the 1970s, and overall, all experiments with the possibility of SARS-CoV-2 propagation are carried out in higher containment level laboratories. However, as SARS-CoV-2 RNA has been routinely handled in BSL-2 laboratories, the question of the true nature of RNA infectiousness has risen along with discussion of appropriate biosafety measures. Here, we studied the ability of native SARS-CoV-2 genomic RNA to produce infectious viruses when transfected into permissive cells and discussed the biosafety control measures related to these assays. In transfection assays large quantities of genomic vRNA of SARS-CoV-2 was required for a successful production of infectious viruses. However, the quantity of vRNA alone was not the only factor, and especially when the transfected RNA was derived from infected cells, even small amounts of genomic vRNA was enough for an infection. Virus replication was found to start rapidly after transfection, and infectious viruses were detected in the cell culture media at 24 h post-transfection. In addition, silica membrane-based kits were shown to be as good as traditional TRI-reagent based methods in extracting high-quality, 30 kb-long genomic vRNA. Taken together, our data indicates that all transfection experiments with samples containing genomic SARS-CoV-2 RNA should be categorized as a propagative work and the work should be conducted only in a higher containment BSL-3 laboratory.
Collapse
Affiliation(s)
- Elina Väisänen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
- Infection and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- *Correspondence: Elina Väisänen,
| | - Miao Jiang
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
- Infection and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Larissa Laine
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Matti Waris
- Infection and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ilkka Julkunen
- Infection and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pamela Österlund
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
16
|
Highly pathogenic coronaviruses and the kidney. Biomed Pharmacother 2022; 156:113807. [PMID: 36242850 PMCID: PMC9550661 DOI: 10.1016/j.biopha.2022.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
Since the end of 2019, the outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has triggered a pneumonia epidemic, posing a significant public health challenge in 236 countries, territories, and regions worldwide. Clinically, in addition to the symptoms of pulmonary infection, many patients with SARS-CoV-2 infections, especially those with a critical illness, eventually develop multiple organ failure in which damage to the kidney function is common, ultimately leading to severe consequences such as increased mortality and morbidity. To date, three coronaviruses have set off major global public health security incidents: Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2. Among the diseases caused by the coronaviruses, the coronavirus disease 2019 (COVID-19) has been the most impactful and harmful. Similar to with SARS-CoV-2 infections, previous studies have shown that kidney injury is also common and prominent in patients with the two other highly pathogenic coronaviruses. Therefore, in this review, we aimed to comprehensively summarize the epidemiological and clinical characteristics of these three pandemic-level infections, provide a deep analysis of the potential mechanism of COVID-19 in various types of kidney diseases, and explore the causes of secondary kidney diseases of SARS-CoV-2, so as to provide a reference for further research and the clinical prevention of kidney damage caused by coronaviruses.
Collapse
|
17
|
Ranjbar M, Rahimi A, Baghernejadan Z, Ghorbani A, Khorramdelazad H. Role of CCL2/CCR2 axis in the pathogenesis of COVID-19 and possible Treatments: All options on the Table. Int Immunopharmacol 2022; 113:109325. [PMID: 36252475 PMCID: PMC9561120 DOI: 10.1016/j.intimp.2022.109325] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is cause of the novel coronavirus disease (COVID-19). In the last two years, SARS-CoV-2 has infected millions of people worldwide with different waves, resulting in the death of many individuals. The evidence disclosed that the host immune responses to SARS-CoV-2 play a pivotal role in COVID-19 pathogenesis and clinical manifestations. In addition to inducing antiviral immune responses, SARS-CoV-2 can also cause dysregulated inflammatory responses characterized by the noticeable release of proinflammatory mediators in COVID-19 patients. Among these proinflammatory mediators, chemokines are considered a subset of cytokines that participate in the chemotaxis process to recruit immune and non-immune cells to the site of inflammation and infection. Researchers have demonstrated that monocyte chemoattractant protein-1 (MCP-1/CCL2) and its receptor (CCR2) are involved in the recruitment of monocytes and infiltration of these cells into the lungs of patients suffering from COVID-19. Moreover, elevated levels of CCL2 have been reported in the bronchoalveolar lavage fluid (BALF) obtained from patients with severe COVID-19, initiating cytokine storm and promoting CD163+ myeloid cells infiltration in the airways and further alveolar damage. Therefore, CCL2/CCR axis plays a key role in the immunopathogenesis of COVID-19 and targeted therapy of involved molecules in this axis can be a potential therapeutic approach for these patients. This review discusses the biology of the CCL2/CCR2 axis as well as the role of this axis in COVID-19 immunopathogenesis, along with therapeutic options aimed at inhibiting CCL2/CCR2 and modulating dysregulated inflammatory responses in patients with severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mitra Ranjbar
- Department of Infectious Disease, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Ghorbani
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
18
|
Abu-Ismail L, Al-Shami K, Al-Shami M, Nashwan AJ. The effect of COVID-19 pandemic and wearing face masks on ophthalmology practice: What is known so far? A narrative review. Front Med (Lausanne) 2022; 9:1019434. [PMID: 36518743 PMCID: PMC9742357 DOI: 10.3389/fmed.2022.1019434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/07/2022] [Indexed: 08/29/2023] Open
Abstract
Face masks, along with other preventive measures, can help slow the spread of COVID-19. Despite the positive effect of the mask in combating the virus, it has some negative effects on the human body that must be followed up on and reduced. In this study, we discuss the impact of wearing face masks on the eye and the common issues associated with using them. The literature search was conducted using electronic databases such as PubMed and Google Scholar. Only articles published in English were included. A total of 39 relevant articles were deemed eligible. After the duplicate articles were removed, the titles and abstracts of 20 papers underwent full-text screening. The review comprised both prospective and retrospective investigations, case reports, and a series of reporting ocular symptoms following the use of face masks. The COVID-19 pandemic affected ophthalmology practices in managing patients. New factors must be considered, especially when dealing with anti-VEGF injections, such as the risk of endophthalmitis, tests and symptoms of patients with glaucoma, and the emerging symptoms associated with the COVID-19 vaccination. The use of face masks and breathing aids seemed to influence the tear film.
Collapse
Affiliation(s)
- Luai Abu-Ismail
- Department of Ophthalmology, Islamic Hospital, Amman, Jordan
| | - Khayry Al-Shami
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Manar Al-Shami
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
- Princess Basma Hospital, Ministry of Health, Irbid, Jordan
| | | |
Collapse
|
19
|
Corona: Impfung und Schwangerschaftsverlauf. DIE GYNÄKOLOGIE 2022. [PMCID: PMC9638266 DOI: 10.1007/s00129-022-05017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Eine SARS-CoV-2(„severe acute respiratory syndrome coronavirus 2“)-Infektion während der Schwangerschaft ist für die Mutter mit signifikanten Risiken verbunden. Auch Feten sind durch die Infektion gefährdet, da es zu Komplikationen wie Frühgeburtlichkeit und Wachstumsrestriktion bis hin zum intrauterinen Fruchttod kommen kann. Zwar werden Ig(Immunglobulin)G-Antikörper der Mutter auf den Feten übertragen, dennoch kann die Thrombosierung der Plazenta zu Komplikationen führen. Abhängig vom Krankheitsverlauf ist das Thromboserisiko für die Schwangere ebenfalls teilweise deutlich erhöht, weshalb in manchen Fällen eine Heparinisierung indiziert ist. Die Impfung gegen COVID(„coronavirus disease“)-19 bietet bei einer im Vergleich zu Nichtschwangeren ähnlichen Nebenwirkungsrate einen Schutz vor schweren Krankheitsverläufen und infektionsbedingten Schwangerschaftskomplikationen. Deshalb sollten alle Schwangeren über die Möglichkeit einer Impfung auch während der Schwangerschaft informiert werden, wobei die STIKO (Ständige Impfkommission am Robert Koch-Institut) die Vakzinierung während des zweiten Trimenons empfiehlt.
Collapse
|
20
|
DeWolf S, Laracy JC, Perales MA, Kamboj M, van den Brink MRM, Vardhana S. SARS-CoV-2 in immunocompromised individuals. Immunity 2022; 55:1779-1798. [PMID: 36182669 PMCID: PMC9468314 DOI: 10.1016/j.immuni.2022.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Immunocompromised individuals and particularly those with hematologic malignancies are at increased risk for SARS-CoV-2-associated morbidity and mortality due to immunologic deficits that limit prevention, treatment, and clearance of the virus. Understanding the natural history of viral infections in people with impaired immunity due to underlying conditions, immunosuppressive therapy, or a combination thereof has emerged as a critical area of investigation during the COVID-19 pandemic. Studies focused on these individuals have provided key insights into aspects of innate and adaptive immunity underlying both the antiviral immune response and excess inflammation in the setting of COVID-19. This review presents what is known about distinct states of immunologic vulnerability to SARS-CoV-2 and how this information can be harnessed to improve prevention and treatment strategies for immunologically high-risk populations.
Collapse
Affiliation(s)
- Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin C Laracy
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Mini Kamboj
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Santosha Vardhana
- Weill Cornell Medical College, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
21
|
Wang W, Zhou H, Zhu A. A nonparametric estimation for infectious diseases with latent period. COMMUN STAT-THEOR M 2022. [DOI: 10.1080/03610926.2020.1865402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wensheng Wang
- School of Economics, Hangzhou Dianzi University, Hangzhou, China
| | - Hui Zhou
- School of Economics, Hangzhou Dianzi University, Hangzhou, China
| | - Anwei Zhu
- College of Science, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
22
|
Nesari T, Kadam S, Vyas M, Huddar VG, Prajapati PK, Rajagopala M, More A, Rajagopala SK, Bhatted SK, Yadav RK, Mahanta V, Mandal SK, Mahto RR, Kajaria D, Sherkhane R, Bavalatti N, Kundal P, Dharmarajan P, Bhojani M, Bhide B, Harti SK, Mahapatra AK, Tagade U, Ruknuddin G, Venkatramana Sharma AP, Rai S, Ghildiyal S, Yadav PR, Sandrepogu J, Deogade M, Pathak P, Kapoor A, Kumar A, Saini H, Tripathi R. AYURAKSHA, a prophylactic Ayurvedic immunity boosting kit reducing positivity percentage of IgG COVID-19 among frontline Indian Delhi police personnel: A non-randomized controlled intervention trial. Front Public Health 2022; 10:920126. [PMID: 36052011 PMCID: PMC9424736 DOI: 10.3389/fpubh.2022.920126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/18/2022] [Indexed: 01/22/2023] Open
Abstract
Objective The world continues to face the COVID-19 crisis, and efforts are underway to integrate traditional medicine interventions for its effective management. The study aimed to determine the efficacy of the "AYURAKSHA" kit in terms of post-interventional percentage of COVID-19 IgG positivity, immunity levels, and quality of life (QoL) against COVID-19. Method This was a non-randomized controlled, prospective intervention trial, done after the distribution of 80,000 AYURAKSHA kits (constituent of Sanshamani Vati, AYUSH Kadha, and Anu Taila) among Delhi police participants in India. Among 47,827 participants, the trial group (n = 101) was evaluated with the positivity percentage of IgG COVID-19 and Immune Status Questionnaire (ISQ) scores as a primary outcome and the WHO Quality of Life Brief Version (QOL BREF) scores along with hematological parameters as a secondary outcome in comparison to the control group (n = 71). Results The data showed that the percentage of COVID-19 IgG positivity was significantly lower in the trial group (17.5 %) as compared to the control group (39.4 %, p = 0.003), indicating the lower risk (55.6%) of COVID-19 infection in the trial group. The decreased incidence (5.05%) and reduced mortality percentage (0.44%) of COVID-19 among Delhi police officers during peak times of the pandemic also corroborate our findings. The ISQ score and WHO-QOL BREF tool analysis showed the improved scores in the trial group when compared with the controls. Furthermore, no dysregulated blood profile and no increase in inflammation markers like C-reactive protein, erythrocyte sedimentation rate, Interleukin-6 (IL-6) were observed in the trial group. However, significantly enhanced (p = 0.027) IL-6 levels and random blood sugar levels were found in the control group (p = 0.032), compared to a trial group (p = 0.165) post-intervention. Importantly, the control group showed more significant (p = 0.0001) decline in lymphocyte subsets CD3+ (% change = 21.04), CD4+ (% change = 20.34) and CD8+ (% change = 21.54) levels than in trial group, confirming more severity of COVID-19 infection in the control group. Conclusion The AYURAKSHA kit is associated with reduced COVID-19 positivity and with a better quality of life among the trial group. Hence, the study encourages in-depth research and future integration of traditional medicines for the prevention of the COVID-19 pandemic. Clinical trial registration http://ctri.nic.in/, identifier: CTRI/2020/05/025171.
Collapse
Affiliation(s)
- Tanuja Nesari
- All India Institute of Ayurveda (AIIA), New Delhi, India,*Correspondence: Tanuja Nesari
| | - Sujata Kadam
- Department of Prasuti and Stri Roga (Obstetrics and Gynaecology), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Mahesh Vyas
- Department of Maulik Siddhant (Fundamental Principles), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Vitthal G. Huddar
- Department of Kaya Chikitsa (Internal Medicine), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Pradeep Kumar Prajapati
- Department of Ras Shastra and Bhaishajya Kalpana (Ayurvedic Pharmaceutics), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Manjusha Rajagopala
- Department of Shalakya Tantra (Eye and ENT), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Anand More
- Department of Roga Nidan and Vikriti Vigyan (Pathology), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Shri krishna Rajagopala
- Department of Bala Roga (Pediatrics), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Santosh Kumar Bhatted
- Department of Panchkarma (Penta Bio-Purification Methods), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Rama Kant Yadav
- Department of Kaya Chikitsa (Internal Medicine), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Vyasdeva Mahanta
- Department of Shalya Tantra (Surgery), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Sisir Kumar Mandal
- Department of Roga Nidan and Vikriti Vigyan (Pathology), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Raja Ram Mahto
- Department of Kaya Chikitsa (Internal Medicine), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Divya Kajaria
- Department of Kaya Chikitsa (Internal Medicine), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Rahul Sherkhane
- Department of Shalya Tantra (Surgery), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Narayan Bavalatti
- Department of Shalakya Tantra (Eye and ENT), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Pankaj Kundal
- Department of Shalakya Tantra (Eye and ENT), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Prasanth Dharmarajan
- Department of Panchkarma (Penta Bio-Purification Methods), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Meera Bhojani
- Department of Shareer Kriya (Physiology), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Bhargav Bhide
- Department of Dravya Guna (Materia Medica and Pharmacology), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Shiva Kumar Harti
- Department of Swastha Vritta (Preventive and Social Medicine), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Arun Kumar Mahapatra
- Department of Bala Roga (Pediatrics), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Umesh Tagade
- All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Galib Ruknuddin
- Department of Ras Shastra and Bhaishajya Kalpana (Ayurvedic Pharmaceutics), All India Institute of Ayurveda (AIIA), New Delhi, India
| | | | - Shalini Rai
- Department of Roga Nidan and Vikriti Vigyan (Pathology), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Shivani Ghildiyal
- Department of Dravya Guna (Materia Medica and Pharmacology), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Pramod R. Yadav
- Department of Ras Shastra and Bhaishajya Kalpana (Ayurvedic Pharmaceutics), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Jonah Sandrepogu
- Department of Kaya Chikitsa (Internal Medicine), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Meena Deogade
- Department of Dravya Guna (Materia Medica and Pharmacology), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Pankaj Pathak
- Department of Maulik Siddhant (Fundamental Principles), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Alka Kapoor
- Hospital - All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Anil Kumar
- All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Heena Saini
- Department of Roga Nidan and Vikriti Vigyan (Pathology), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Richa Tripathi
- Department of Roga Nidan and Vikriti Vigyan (Pathology), All India Institute of Ayurveda (AIIA), New Delhi, India
| |
Collapse
|
23
|
Lessons from SARS-CoV, MERS-CoV, and SARS-CoV-2 Infections: What We Know So Far. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:1156273. [PMID: 35992513 PMCID: PMC9391183 DOI: 10.1155/2022/1156273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/19/2022] [Indexed: 01/08/2023]
Abstract
Within past decades, human infections with emerging and reemerging zoonotic viral pathogens have raised the eminent public health concern. Since November 2002, three highly pathogenic and major deadly human coronaviruses of the βετα-genera (β-hCoVs), namely, severe acute respiratory distress syndrome-coronavirus (SARS-CoV), middle east respiratory syndrome-coronavirus (MERS-CoV), and SARS-CoV-2, have been globally emerged and culminated in the occurrence of SARS epidemic, MERS outbreak, and coronavirus disease 19 (COVID-19) pandemic, respectively. The global emergence and spread of these three major deadly β-hCoVs have extremely dreadful impacts on human health and become an economic burden. Unfortunately, clear specific and highly efficient medical countermeasures for these three β-hCoVs and their underlying fatal illnesses remain under development. Although they belong to the same family and share many features and convergent evolution, these three deadly β-hCoVs have some important and obvious differences. By utilizing their lessons and gaining a deeper understanding of these β-hCoVs, we can identify areas of improvement and provide preparedness plans for fighting and controlling the future reemerging human infections that might arise from them or from other potential pathogenic hCoVs. Therefore, this review summarizes the state-of-the-art information and compares the similarities and dissimilarities between SARS-CoV, MERS-CoV, and SARS-CoV-2, in terms of their evolution trait, genome organization, host cell entry mechanisms, tissue infectivity tropisms, transmission routes and contagiousness, and the clinical characteristics, laboratory features, and immunological abnormalities of their related illnesses. It also provides an overview of the emerging SARS-CoV-2 variants. Additionally, it discusses the challenges of the most proposed treatment options for SARS-CoV-2 infections.
Collapse
|
24
|
Mellema RA, Crandell J, Petrey AC. Platelet Dysregulation in the Pathobiology of COVID-19. Hamostaseologie 2022; 42:221-228. [PMID: 34879421 PMCID: PMC11949001 DOI: 10.1055/a-1646-3392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) encompasses a broad spectrum of clinical manifestations caused by infection with severe acute respiratory syndrome coronavirus 2.Patients with severe disease present with hyperinflammation which can affect multiple organs which often include observations of microvascular and macrovascular thrombi. COVID-19 is increasingly recognized as a thromboinflammatory disease where alterations of both coagulation and platelets are closely linked to mortality and clinical outcomes. Although platelets are most well known as central mediators of hemostasis, they possess chemotactic molecules, cytokines, and adhesion molecules that are now appreciated as playing an important role in the regulation of immune response. This review summarizes the current knowledge of platelet alterations observed in the context of COVID-19 and their impact upon disease pathobiology.
Collapse
Affiliation(s)
- Rebecca A. Mellema
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
| | - Jacob Crandell
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Aaron C. Petrey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
25
|
Loibner M, Barach P, Wolfgruber S, Langner C, Stangl V, Rieger J, Föderl-Höbenreich E, Hardt M, Kicker E, Groiss S, Zacharias M, Wurm P, Gorkiewicz G, Regitnig P, Zatloukal K. Resilience and Protection of Health Care and Research Laboratory Workers During the SARS-CoV-2 Pandemic: Analysis and Case Study From an Austrian High Security Laboratory. Front Psychol 2022; 13:901244. [PMID: 35936273 PMCID: PMC9353000 DOI: 10.3389/fpsyg.2022.901244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
The SARS-CoV-2 pandemic has highlighted the interdependency of healthcare systems and research organizations on manufacturers and suppliers of personnel protective equipment (PPE) and the need for well-trained personnel who can react quickly to changing working conditions. Reports on challenges faced by research laboratory workers (RLWs) are rare in contrast to the lived experience of hospital health care workers. We report on experiences gained by RLWs (e.g., molecular scientists, pathologists, autopsy assistants) who significantly contributed to combating the pandemic under particularly challenging conditions due to increased workload, sickness and interrupted PPE supply chains. RLWs perform a broad spectrum of work with SARS-CoV-2 such as autopsies, establishment of virus cultures and infection models, development and verification of diagnostics, performance of virus inactivation assays to investigate various antiviral agents including vaccines and evaluation of decontamination technologies in high containment biological laboratories (HCBL). Performance of autopsies and laboratory work increased substantially during the pandemic and thus led to highly demanding working conditions with working shifts of more than eight hours working in PPE that stressed individual limits and also the ergonomic and safety limits of PPE. We provide detailed insights into the challenges of the stressful daily laboratory routine since the pandemic began, lessons learned, and suggest solutions for better safety based on a case study of a newly established HCBL (i.e., BSL-3 laboratory) designed for autopsies and research laboratory work. Reduced personal risk, increased resilience, and stress resistance can be achieved by improved PPE components, better training, redundant safety measures, inculcating a culture of safety, and excellent teamwork.
Collapse
Affiliation(s)
- Martina Loibner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Paul Barach
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, United States
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Stella Wolfgruber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Christine Langner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Verena Stangl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Julia Rieger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Melina Hardt
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Eva Kicker
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Silvia Groiss
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Martin Zacharias
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Philipp Wurm
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gregor Gorkiewicz
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Peter Regitnig
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
26
|
Angelova G, Brazkova M, Mihaylova D, Slavov A, Petkova N, Blazheva D, Deseva I, Gotova I, Dimitrov Z, Krastanov A. Bioactivity of Biomass and Crude Exopolysaccharides Obtained by Controlled Submerged Cultivation of Medicinal Mushroom Trametes versicolor. J Fungi (Basel) 2022; 8:738. [PMID: 35887493 PMCID: PMC9319109 DOI: 10.3390/jof8070738] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this study is to characterize the bioactivity of mycelial biomass and crude exopolysaccharides (EPS) produced by Trametes versicolor NBIMCC 8939 and to reveal its nutraceutical potential. The EPS (1.58 g/L) were isolated from a culture broth. The macrofungal biomass was rich in protein, insoluble dietary fibers and glucans. The amino acid composition of the biomass was analyzed and 18 amino acids were detected. Three mycelial biomass extracts were prepared and the highest total polyphenol content (16.11 ± 0.14 mg GAE/g DW) and the total flavonoid content (5.15 ± 0.03 mg QE/g DW) were found in the water extract. The results indicated that the obtained EPS were heteropolysaccharides with glucose as the main building monosaccharide and minor amounts of mannose, xylose, galactose, fucose and glucuronic acid. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the complex structure of the crude EPS. Five probiotic lactic acid bacteria strains were used for the determination of the prebiotic effect of the crude EPS. The anti-inflammatory potential was tested in vitro using cell line HT-29. The significant decrease of IL-1 and IL-8 and increase of TGF-beta expression revealed anti-inflammatory potential of the crude exopolysaccharides from T. versicolor.
Collapse
Affiliation(s)
- Galena Angelova
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| | - Mariya Brazkova
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| | - Anton Slavov
- Department of Organic and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (A.S.); (N.P.)
| | - Nadejda Petkova
- Department of Organic and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (A.S.); (N.P.)
| | - Denica Blazheva
- Department of Microbiology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Ivelina Deseva
- Department of Analytical Chemistry and Physicochemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Irina Gotova
- LB-Bulgaricum PLC, R&D Center, 1000 Sofia, Bulgaria; (I.G.); (Z.D.)
| | - Zhechko Dimitrov
- LB-Bulgaricum PLC, R&D Center, 1000 Sofia, Bulgaria; (I.G.); (Z.D.)
| | - Albert Krastanov
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| |
Collapse
|
27
|
Sharma P, Behl T, Sharma N, Singh S, Grewal AS, Albarrati A, Albratty M, Meraya AM, Bungau S. COVID-19 and diabetes: Association intensify risk factors for morbidity and mortality. Biomed Pharmacother 2022; 151:113089. [PMID: 35569351 PMCID: PMC9080053 DOI: 10.1016/j.biopha.2022.113089] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/25/2023] Open
Abstract
Diabetes is a condition that affects a large percentage of the population and it is the leading cause of a wide range of costly complications. Diabetes is linked to a multi-fold increase in mortality and when compared to non-diabetics, the intensity and prevalence of COVID-19 ailment among diabetic individuals are more. Since its discovery in Wuhan, COVID-19 has grown rapidly and shown a wide range of severity. Temperature, lymphopenia, non-productive cough, dyspnoea, and tiredness are recognized as the characteristic of individuals infected with COVID-19 disease. In COVID-19 patients, diabetes and other related comorbidities are substantial predictors of disease and mortality. According to a recent study, SARS-CoV-2 (the virus responsible for covid-19 disease) may also lead to direct pancreatic harm, which could aggravate hyperglycemia and potentially cause the establishment of diabetes in formerly non-diabetic individuals. This bidirectional association of COVID-19 and diabetes load the burden on health care professionals throughout the world. It is recommended that gliptin medications be taken moderately, blood glucose levels must be kept under control, ACE inhibitors should be used in moderation, decrease the number of avoidable hospitalizations, nutritional considerations, and some other prevention measures, such as immunization, are highly recommended. SARS-CoV-2 may cause pleiotropic changes in glucose homeostasis, which could exacerbate the pathophysiology of pre-existing diabetes or result in new disease processes.
Collapse
Affiliation(s)
- Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India,Government Pharmacy College, Nagrota Bagwan, Kangra, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India,Corresponding author
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ali Albarrati
- Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania,Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania,Corresponding author at: Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
28
|
Shaveisi-Zadeh F, Nikkho B, Khadem Erfan MB, Amiri A, Azizi A, Mansouri N, Tarlan M, Rostami-Far Z. Changes in liver enzymes and association with prognosis in patients with COVID-19: a retrospective case-control study. J Int Med Res 2022; 50:3000605221110067. [PMID: 35903861 PMCID: PMC9340912 DOI: 10.1177/03000605221110067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/10/2022] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE COVID-19 has recently emerged as a serious threat to global health. This study examined the laboratory investigations of patients with COVID-19, with an emphasis on liver enzymes. METHODS This retrospective, single-center study was performed on patients with COVID-19 who were admitted to Imam Reza Hospital, Iran from March 2020 to February 2021. Laboratory tests included a complete blood cell count, white blood cell (WBC) count, neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), lymphocyte/monocyte ratio, and levels of aspartate aminotransferase, alanine aminotransferase (ALT), and alkaline phosphatase. Patient survival was among the outcome measures investigated in association with laboratory findings. RESULTS We enrolled 77 patients with COVID-19 and 63 healthy controls. In comparison with the control group, patients with COVID-19 showed COVID-19 increased ALT, WBC, neutrophils, NLR, and PLR, and decreased platelet counts and lymphocytes. CONCLUSION Although elevated levels of AST, NLR, PLR, and LMR were found in patients with COVID-19, they were not linked to mortality. Given the presence of AST in other tissues, the influence of SARS-CoV-2 on the liver should be interpreted with caution.
Collapse
Affiliation(s)
- Farhad Shaveisi-Zadeh
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bahram Nikkho
- Department of Pathology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Amir Amiri
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Azizi
- Department of Community Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasrin Mansouri
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Tarlan
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Rostami-Far
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of medical science, Sanandaj, Iran
| |
Collapse
|
29
|
Ning T, Liu S, Xu J, Yang Y, Zhang N, Xie S, Min L, Zhang S, Zhu S, Wang Y. Potential intestinal infection and faecal-oral transmission of human coronaviruses. Rev Med Virol 2022; 32:e2363. [PMID: 35584273 PMCID: PMC9348496 DOI: 10.1002/rmv.2363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/25/2022] [Accepted: 05/06/2022] [Indexed: 01/08/2023]
Abstract
Human coronaviruses (HCoVs) were first described in 1960s for patients experiencing common cold. Since then, increasing number of HCoVs have been discovered, including those causing severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the circulating coronavirus disease 2019 (COVID‐19), which can cause fatal respiratory disease in humans on infection. HCoVs are believed to spread mainly through respiratory droplets and close contact. However, studies have shown that a large proportion of patients with HCoV infection develop gastrointestinal (GI) symptoms, and many patients with confirmed HCoV infection have shown detectable viral RNA in their faecal samples. Furthermore, multiple in vitro and in vivo animal studies have provided direct evidence of intestinal HCoV infection. These data highlight the nature of HCoV GI infection and its potential faecal‐oral transmission. Here, we summarise the current findings on GI manifestations of HCoVs. We also discuss how HCoV GI infection might occur and the current evidence to establish the occurrence of faecal‐oral transmission.
Collapse
Affiliation(s)
- Tingting Ning
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Junxuan Xu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Yi Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Nan Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Sian Xie
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| |
Collapse
|
30
|
Schwab N, Nienhold R, Henkel M, Baschong A, Graber A, Frank A, Mensah N, Koike J, Hernach C, Sachs M, Daun T, Zsikla V, Willi N, Junt T, Mertz KD. COVID-19 Autopsies Reveal Underreporting of SARS-CoV-2 Infection and Scarcity of Co-infections. Front Med (Lausanne) 2022; 9:868954. [PMID: 35492342 PMCID: PMC9046787 DOI: 10.3389/fmed.2022.868954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) mortality can be estimated based on reliable mortality data. Variable testing procedures and heterogeneous disease course suggest that a substantial number of COVID-19 deaths is undetected. To address this question, we screened an unselected autopsy cohort for the presence of SARS-CoV-2 and a panel of common respiratory pathogens. Lung tissues from 62 consecutive autopsies, conducted during the first and second COVID-19 pandemic waves in Switzerland, were analyzed for bacterial, viral and fungal respiratory pathogens including SARS-CoV-2. SARS-CoV-2 was detected in 28 lungs of 62 deceased patients (45%), although only 18 patients (29%) were reported to have COVID-19 at the time of death. In 23 patients (37% of all), the clinical cause of death and/or autopsy findings together with the presence of SARS-CoV-2 suggested death due to COVID-19. Our autopsy results reveal a 16% higher SARS-CoV-2 infection rate and an 8% higher SARS-CoV-2 related mortality rate than reported by clinicians before death. The majority of SARS-CoV-2 infected patients (75%) did not suffer from respiratory co-infections, as long as they were treated with antibiotics. In the lungs of 5 patients (8% of all), SARS-CoV-2 was found, yet without typical clinical and/or autopsy findings. Our findings suggest that underreporting of COVID-19 contributes substantially to excess mortality. The small percentage of co-infections in SARS-CoV-2 positive patients who died with typical COVID-19 symptoms strongly suggests that the majority of SARS-CoV-2 infected patients died from and not with the virus.
Collapse
Affiliation(s)
- Nathalie Schwab
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Ronny Nienhold
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Maurice Henkel
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Albert Baschong
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Anne Graber
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Angela Frank
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Nadine Mensah
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Jacqueline Koike
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Claudia Hernach
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Melanie Sachs
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Till Daun
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Veronika Zsikla
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Niels Willi
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Tobias Junt
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kirsten D. Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
31
|
Çaltık Yılmaz A, Baskın E, Gülleroğlu K, Karakaya D, Akdur A, Moray G, Haberal M. COVID-19 Infections in Pediatric Renal Transplant Recipients. EXP CLIN TRANSPLANT 2022; 20:156-160. [PMID: 35384829 DOI: 10.6002/ect.mesot2021.p82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES The new coronavirus SARS-CoV-2 (COVID-19) first appeared in Turkey in March 2020, spread rapidly, and caused many deaths. Although COVID-19 is mostly a respiratory disease, it can cause kidney and multiorgan failure in some cases. We believe that by sharing information about the course and effects of COVID-19 infection in kidney transplant recipients receiving long-term immunosuppressive therapy our understanding will improve. MATERIALS AND METHODS Between March 2020 and October 2021, COVID-19 was researched in kidney transplant recipients under the age of 20 years who were followed at the Başkent University Transplantation Center. We documented the clinical characteristics and prognosis of pediatric kidney transplant recipients with COVID-19 disease. RESULTS Our study group included 23 patients with COVID-19 infection from 215 pediatric kidney transplant recipients. The mean age of the patients was 14.6 ± 4.7 years; there were 9 female patients. The mean follow-up time posttransplant was 62.3 ± 43.2 months. In 13 patients (56.5%), fever was the most frequent symptom. Most patients (n = 18, 78%) had minor symptoms and recovered completely after receiving supportive treatment. Four patients (17%) required hospitalization. One was diagnosed with COVID-19 infection 1 week after being treated with rituximab for acute antibody-mediated rejection. That patient died because of significant lung disease and multiorgan failure. CONCLUSIONS Despite the fact that most of our pediatric transplant recipients had mild symptoms of COVID-19, we believe that particular caution should be observed in patients who have recently received intensive immunosuppressive medications. As a result of potential new vaccines, national immunization programs, and the emergence of novel virus strains, the clinical picture may change in the future. We believe that, as information sharing increases, we will learn more about COVID-19 in renal transplant recipients.
Collapse
Affiliation(s)
- Aysun Çaltık Yılmaz
- From the Başkent University Department of Pediatric Nephrology, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
32
|
McLean RK, Graham SP. The pig as an amplifying host for new and emerging zoonotic viruses. One Health 2022; 14:100384. [PMID: 35392655 PMCID: PMC8975596 DOI: 10.1016/j.onehlt.2022.100384] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Pig production is a rapidly growing segment of the global livestock sector, especially in Asia and Africa. Expansion and intensification of pig production has resulted in significant changes to traditional pig husbandry practices leading to an environment conducive to increased emergence and spread of infectious diseases. These include a number of zoonotic viruses including influenza, Japanese encephalitis, Nipah and coronaviruses. Pigs are known to independently facilitate the creation of novel reassortant influenza A virus strains, capable of causing pandemics. Moreover, pigs play a role in the amplification of Japanese encephalitis virus, transmitted by mosquito vectors found in areas inhabited by over half the world's human population. Furthermore, pigs acted as an amplifying host in the first and still most severe outbreak of Nipah virus in Malaysia, that necessitated the culling over 1 million pigs. Finally, novel porcine coronaviruses are being discovered in high pig-density countries which have pandemic potential. In this review, we discuss the role that pigs play as intermediate/amplifying hosts for zoonotic viruses with pandemic potential and consider how multivalent vaccination of pigs could in turn safeguard human health.
Collapse
|
33
|
Prabhu S, Vijayakumar S, Praseetha P. Cyanobacterial metabolites as novel drug candidates in corona viral therapies: A review. Chronic Dis Transl Med 2022; 8:172-183. [PMID: 35572950 PMCID: PMC9086949 DOI: 10.1002/cdt3.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/09/2021] [Indexed: 02/01/2023] Open
Abstract
Most of the medical and nonmedical research labs, all around the world, are racing against time to produce an effective vaccine or an antiviral medicine for coronavirus disease 2019 (COVID‐19). Conventional medicines and novel nano‐materials including chemical and herbal‐based compounds are all into positive trials toward coronaviruses and other pandemic infections. Among them, natural immune boosters have attracted physicians because of their longevity and reliability for fewer side effects. This is a review article with a detailed picture of an unexplored antiviral source with maximum potency in curing viral infections. Cyanobacteriae have been known for centuries and are rich in secondary metabolites of proteins, biopeptides, and polysaccharides for prominent antiviral action against chest infections. But detailed exploratory research is required to purify, scale‐up, and commercialize the pharmacologically active agents from these drug reserves.
Collapse
Affiliation(s)
- Srinivasan Prabhu
- Department of Botany Annai Vailankanni Arts and Science College Thanjavur Tamil Nadu India
- Department of Botany A.V.V.M Sri Pushpam College, Poondi (Affiliated to Bharathidasan University) Thanjavur Tamil Nadu India
| | - Subramaniyan Vijayakumar
- Department of Botany A.V.V.M Sri Pushpam College, Poondi (Affiliated to Bharathidasan University) Thanjavur Tamil Nadu India
| | - Pabakaran Praseetha
- Department of Nanotechnology Noorul Islam Centre for Higher Education Kumaracoil Tamil Nadu India
| |
Collapse
|
34
|
Araya S, Tsegay YG, Atlaw A, Aragaw M, Tadlo G, Tsegaye N, Kahase D, Gebreyohanes Z, Bitew M, Berhane N. Organ function biomarker abnormalities, associated factors and disease outcome among hospitalized patients with COVID-19. Biomark Med 2022; 16:417-426. [PMID: 35234521 PMCID: PMC8890361 DOI: 10.2217/bmm-2021-0681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The aim of this study was to determine the magnitude of abnormal organ function tests and biomarkers in hospitalized patients with confirmed COVID-19 and to define the association among markers of organ failure, disease severity and its outcome in hospitalized COVID-19 patients in Ethiopia. Methods: A prospective cohort study was conducted among COVID-19 patients admitted to Millennium COVID-19 Treatment Center from December 2020 to June 2021. Results: The median age of the 440 study participants was 60.3 ± 1.3 years, and from these 71.3% of patients were male. Disease severity: p-value: 0.032; adjusted odds ratio (AOR) (95% CI): 4.4 (0.022-0.085); and the presence of any co-morbidity; p-value: 0.012; AOR (95% CI): 0.80 (0.47-0.83) was significantly associated with mortality. Aspartate transaminase, alanine transaminase and alkaline phosphatase parameter values of patients overall, were elevated - mainly among critical patients (56.9 ± 57.7, 58.5 ± 63 and 114.6 ± 60, respectively).
Collapse
Affiliation(s)
- Shambel Araya
- Addis Ababa University College of Health Science, Department of Medical Laboratory Science, Addis Ababa, Ethiopia
| | - Yakob G Tsegay
- Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia.,Department of Research & Development Center, College of Health Sciences, Defense University, Addis Ababa, Ethiopia
| | - Assegdew Atlaw
- Addis Ababa University, College of Health Science, Department of Medical Microbiology, Immunology & Parasitology, Addis Ababa, Ethiopia
| | - Mintsnot Aragaw
- Addis Ababa University College of Health Science, Department of Medical Laboratory Science, Addis Ababa, Ethiopia.,Department of Medical Laboratory Science, St. Paul Hospital Millennium Medical College (SPHMMC), Addis Ababa, Ethiopia
| | - Getachew Tadlo
- Department of Medical Laboratory Science, St. Paul Hospital Millennium Medical College (SPHMMC), Addis Ababa, Ethiopia
| | - Nebiyu Tsegaye
- Addis Ababa University College of Health Science, Department of Medical Laboratory Science, Addis Ababa, Ethiopia.,Department of Medical Laboratory Science, St. Paul Hospital Millennium Medical College (SPHMMC), Addis Ababa, Ethiopia
| | - Daniel Kahase
- Department of Medical Laboratory Sciences, College of Medicine & Health Sciences, Wolkite University, South Nation Nationality & Peoples, Ethiopia
| | - Zenebe Gebreyohanes
- Department of Medical Laboratory Science, St. Paul Hospital Millennium Medical College (SPHMMC), Addis Ababa, Ethiopia
| | | | - Nega Berhane
- Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
35
|
Tian D, Sun Y, Zhou J, Ye Q. The global epidemic of SARS-CoV-2 variants and their mutational immune escape. J Med Virol 2022; 94:847-857. [PMID: 34609003 PMCID: PMC8661756 DOI: 10.1002/jmv.27376] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
During the COVID-19 pandemic, genetic variants of SARS-CoV-2 have been emerging and spreading around the world. Several SARS-CoV-2 endemic variants were found in United Kingdom, South Africa, Japan, and India between 2020 and April 2021. Studies have shown that many SARS-CoV-2 variants are more infectious than early wild strain and produce immune escape. These SARS-CoV-2 variants have brought new challenges to the prevention and control of COVID-19. This review summarizes and analyzes the biological characteristics of different amino acid mutations and the epidemic characteristics and immune escape of different SARS-CoV-2 variants. We hope to provide scientific reference for the monitoring, prevention, and control measures of new SARS-CoV-2 variants and the development strategy of the second-generation vaccine.
Collapse
Affiliation(s)
- Dandan Tian
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, the Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - YanHong Sun
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, the Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - JianMing Zhou
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, the Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - Qing Ye
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, the Children's HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
36
|
Abstract
BACKGROUND Immune thrombocytopenia, also known as immune thrombocytopenic purpura (ITP), has emerged as a significant COVID-19 associated complication. This study analyzes the published literature of case reports and case series regarding COVID-19 infection associated with ITP. METHODOLOGY In this systematic review and meta-analysis, a systematic search was conducted through PubMed, Web of Science and Medline through Clarivate, and EBSCO to include the eligible studies. The authors utilized Review Manager 5.4 to conduct quantitative data synthesis for the condition of interest analysis. RESULTS A total of 13 eligible case reports and case series with 42 patients were included in this study; 54.8% of them were males. The pooled mean age of all participants was (59.5 ± 19) years and a median age of 63 years. The estimated mean time from diagnosis with COVID-19 to ITP development was (18.1 ± 21) and the mean time to recovery from ITP was (5.8 ± 4.8) days. The pooled random effect of mean platelet count in the included six studies was (14.52, CI [8.79, 20.25]). CONCLUSION our analysis show that ITP secondary to COVID-19 infection is slightly more prevalent among males (54.8%). Elderly patients were more vulnerable to have the disease as most of the cases were older than 50 years with a median age of 63 years. Most cases developed ITP within 2-3 weeks after COVID-19 infection and recovered in less than one week from ITP.
Collapse
|
37
|
Augustine R, S A, Nayeem A, Salam SA, Augustine P, Dan P, Maureira P, Mraiche F, Gentile C, Hansbro PM, McClements L, Hasan A. Increased complications of COVID-19 in people with cardiovascular disease: Role of the renin-angiotensin-aldosterone system (RAAS) dysregulation. Chem Biol Interact 2022; 351:109738. [PMID: 34740598 PMCID: PMC8563522 DOI: 10.1016/j.cbi.2021.109738] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 01/28/2023]
Abstract
The rapid spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19), has had a dramatic negative impact on public health and economies worldwide. Recent studies on COVID-19 complications and mortality rates suggest that there is a higher prevalence in cardiovascular diseases (CVD) patients. Past investigations on the associations between pre-existing CVDs and susceptibility to coronavirus infections including SARS-CoV and the Middle East Respiratory Syndrome coronavirus (MERS-CoV), have demonstrated similar results. However, the underlying mechanisms are poorly understood. This has impeded adequate risk stratification and treatment strategies for CVD patients with SARS-CoV-2 infections. Generally, dysregulation of the expression of angiotensin-converting enzyme (ACE) and the counter regulator, angiotensin-converting enzyme 2 (ACE2) is a hallmark of cardiovascular risk and CVD. ACE2 is the main host receptor for SARS-CoV-2. Although further studies are required, dysfunction of ACE2 after virus binding and dysregulation of the renin-angiotensin-aldosterone system (RAAS) signaling may worsen the outcomes of people affected by COVID-19 and with preexisting CVD. Here, we review the current knowledge and outline the gaps related to the relationship between CVD and COVID-19 with a focus on the RAAS. Improved understanding of the mechanisms regulating viral entry and the role of RAAS may direct future research with the potential to improve the prevention and management of COVID-19.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| | - Abhilash S
- Department of Microbiology, Majlis Arts and Science College, Puramannur, Malappuram, Kerala, 676552, India
| | - Ajisha Nayeem
- Department of Biotechnology, St. Mary's College, Thrissur, 680020, Kerala, India
| | - Shaheen Abdul Salam
- Department of Biosciences, MES College Marampally, Aluva, Ernakulam, 683107, Kerala, India
| | - Priya Augustine
- Department of Zoology, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, 641029, India
| | - Pan Dan
- Department of Cardiovascular and Transplantation Surgery, Regional Central Hospital of Nancy, Lorraine University, France; Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Pablo Maureira
- Department of Cardiovascular and Transplantation Surgery, Regional Central Hospital of Nancy, Lorraine University, France
| | - Fatima Mraiche
- College of Pharmacy, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, Australia; School of Medicine, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
38
|
Eassa HA, Helal NA, Amer AM, Fouad A, Bedair AF, Nagib R, Mansoor I, Hawash M, Abdul-Latif M, Mohammed KHA, Helal MA, Nounou MI. 3D-Printed Microfluidics Potential in Combating Future and Current Pandemics (COVID-19). RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:192-216. [PMID: 35894464 DOI: 10.2174/2667387816666220727101214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Coronavirus disease (COVID-19) emerged in China in December 2019. In March 2020, the WHO declared it a pandemic leading to worldwide lockdowns and travel restrictions. By May, it infected 4,789,205 and killed 318,789 people. This led to severe shortages in the medical sector besides devastating socio-economic effects. Many technologies such as artificial intelligence (AI), virtual reality (VR), microfluidics, 3D printing, and 3D scanning can step into contain the virus and hinder its extensive spread. This article aims to explore the potentials of 3D printing and microfluidic in accelerating the diagnosis and monitoring of the disease and fulfilling the shortages of personal protective equipment (PPE) and medical equipment. It highlights the main applications of 3D printers and microfluidics in providing PPE (masks, respirators, face shields, goggles, and isolation chambers/hoods), supportive care (respiratory equipment) and diagnostic supplies (sampling swabs & lab-on-chip) to ease the COVID-19 pressures. Also, the cost of such technology and regulation considerations are addressed. We conclude that 3D printing provided reusable and low-cost solutions to mitigate the shortages. However, safety, sterility, and compatibility with environmental protection standards need to be guaranteed through standardization and assessment by regulatory bodies. Finally, lessons learned from this pandemic can also help the world prepare for upcoming outbreaks.
Collapse
Affiliation(s)
- Heba A Eassa
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies, University of Saint Joseph, Hartford, CT 06103, USA
| | - Nada A Helal
- Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, TX, 78363, USA
| | - Ahmed M Amer
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Aliaa Fouad
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Asser F Bedair
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | | | - Motaz Hawash
- Dept of Food Science and Agri-Food Supply Chains, Harper Adams University, Newport, UK
| | | | - Kamilia H A Mohammed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al- Azhar University, Cairo, Egypt
| | - Mohamed A Helal
- Construction Planning Department, National Marine Dredging Company (NMDC), Abu Dhabi 11372, United Arab Emirates
| | - Mohamed Ismail Nounou
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies, University of Saint Joseph, Hartford, CT 06103, USA
| |
Collapse
|
39
|
Hui DS, Azhar EI, Memish ZA, Zumla A. Human Coronavirus Infections—Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and SARS-CoV-2. ENCYCLOPEDIA OF RESPIRATORY MEDICINE 2022. [PMCID: PMC7241405 DOI: 10.1016/b978-0-12-801238-3.11634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Pustake M, Tambolkar I, Giri P, Gandhi C. SARS, MERS and CoVID-19: An overview and comparison of clinical, laboratory and radiological features. J Family Med Prim Care 2022; 11:10-17. [PMID: 35309670 PMCID: PMC8930171 DOI: 10.4103/jfmpc.jfmpc_839_21] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 11/04/2022] Open
Abstract
In the 21st century, we have seen a total of three outbreaks by members of the coronavirus family. Although the first two outbreaks did not result in a pandemic, the third and the latest outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) culminated in a pandemic. This pandemic has been extremely significant on a social and international level. As these viruses belong to the same family, they are closely related. Despite their numerous similarities, they have slight distinctions that render them distinct from one another. The Severe Acute Respiratory Distress Syndrome and Middle East Respiratory Syndrome (MERS) cases were reported to have a very high case fatality rate of 9.5 and 34.4% respectively. In contrast, the CoVID-19 has a case fatality rate of 2.13%. Also, there are no clear medical countermeasures for these coronaviruses yet. We can cross information gaps, including cultural weapons for fighting and controlling the spread of MERS-CoV and SARS-CoV-2, and plan efficient and comprehensive defensive lines against coronaviruses that might arise or reemerge in the future by gaining a deeper understanding of these coronaviruses and the illnesses caused by them. The review thoroughly summarises the state-of-the-art information and compares the biochemical properties of these deadly coronaviruses with the clinical characteristics, laboratory features and radiological manifestations of illnesses induced by them, with an emphasis on comparing and contrasting their similarities and differences.
Collapse
Affiliation(s)
- Manas Pustake
- Department of Internal Medicine, Grant Government Medical College and Sir JJ Group of Hospitals, Mumbai, India
| | - Isha Tambolkar
- Department of Internal Medicine, BJ Government Medical College and Sassoon Hospital, Pune, India
| | - Purushottam Giri
- Department of Community Medicine, IIMSR Medical College, Badnapur, District. Jalna, Maharashtra, India
| | - Charmi Gandhi
- Department of Internal Medicine, Grant Government Medical College and Sir JJ Group of Hospitals, Mumbai, India
| |
Collapse
|
41
|
Oreh A, Akerele I, Nnabuchi C, Obazee D, Onyegbutulem H. Derangements of liver enzymes in a study of 201 COVID-19 patients in Abuja, Nigeria's federal capital territory. NIGERIAN JOURNAL OF MEDICINE 2022. [DOI: 10.4103/njm.njm_180_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
42
|
Kappi M, Chaman SM, Biradar BS, Bagalkoti VT. Coronavirus. DATA SCIENCE FOR COVID-19 2022. [PMCID: PMC8989067 DOI: 10.1016/b978-0-323-90769-9.00019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coronaviruses (CoVs) are a large family of viruses and are endemic in humans and animals, causing respiratory and intestinal infections. CoV has become a challenge in China region due to its recent outbreak at the start of the year 2020. The current outbreak of CoV disease has resulted in many fatalities and has forced the people of Wuhan Province in China to remain confined in their homes. Two other two forms of CoVs were epidemic in 2003 when the severe acute respiratory syndrome coronavirus (SARS-CoV) spread in Hong Kong and the Middle East respiratory syndrome coronavirus (MERS-CoV) spread in the Middle East region. This scientometric study is an attempt to trace the trends of research associated with “Coronavirus” for a period of 32 years using the Web of Science citation database. The database was searched on February 26, 2020, for CoV publications published from 1989 to 2020. Identified and analyzed parameters include year of publication, publication type, patterns of international collaboration, research institutions, journals, impact factor, h-index, language, and the number of times cited. Most of the research publications were from the United States (35,871), and the University of Hong Kong was the most productive institute (517, 4.10% publications). The Journal of Virology has published the most number of articles on CoV.
Collapse
|
43
|
Al-Tawfiq JA, Azhar EI, Memish ZA, Zumla A. Middle East Respiratory Syndrome Coronavirus. Semin Respir Crit Care Med 2021; 42:828-838. [PMID: 34918324 DOI: 10.1055/s-0041-1733804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The past two decades have witnessed the emergence of three zoonotic coronaviruses which have jumped species to cause lethal disease in humans: severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. MERS-CoV emerged in Saudi Arabia in 2012 and the origins of MERS-CoV are not fully understood. Genomic analysis indicates it originated in bats and transmitted to camels. Human-to-human transmission occurs in varying frequency, being highest in healthcare environment and to a lesser degree in the community and among family members. Several nosocomial outbreaks of human-to-human transmission have occurred, the largest in Riyadh and Jeddah in 2014 and South Korea in 2015. MERS-CoV remains a high-threat pathogen identified by World Health Organization as a priority pathogen because it causes severe disease that has a high mortality rate, epidemic potential, and no medical countermeasures. MERS-CoV has been identified in dromedaries in several countries in the Middle East, Africa, and South Asia. MERS-CoV-2 causes a wide range of clinical presentations, although the respiratory system is predominantly affected. There are no specific antiviral treatments, although recent trials indicate that combination antivirals may be useful in severely ill patients. Diagnosing MERS-CoV early and implementation infection control measures are critical to preventing hospital-associated outbreaks. Preventing MERS relies on avoiding unpasteurized or uncooked animal products, practicing safe hygiene habits in health care settings and around dromedaries, community education and awareness training for health workers, as well as implementing effective control measures. Effective vaccines for MERS-COV are urgently needed but still under development.
Collapse
Affiliation(s)
- Jaffar A Al-Tawfiq
- Infectious Disease Unit, Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia.,Division of Infectious Disease, Indiana University School of Medicine, Indianapolis, Indiana.,Division of Infectious Disease, Johns Hopkins University, Baltimore, Maryland
| | - Esam I Azhar
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ziad A Memish
- Research and Innovation Centre, King Saud Medical City, Ministry of Health and College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Hubert Department of Global Health, Emory University, Atlanta, Georgia
| | - Alimuddin Zumla
- Division of Infection and Immunity, Department of Infection, University College London and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
44
|
Nascimento GC, Santos GM, Moura SRB, de Carvalho ARB, da Silva Andrade L, Moura LKB, Mendes F, Moreira MASP, Moura MEB. Bibliometric Analysis Of Research on Coronavirus Infection and Patient Safety in Health Care. Open Nurs J 2021. [DOI: 10.2174/1874434602115010373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective:
The study aimed at analyzing the international scientific publications on coronavirus infection and patient safety in health care.
Methods:
This research is a bibliometric study carried out by searching published articles in theISIWebofKnowledge/WebofScience database and analyzing the results through bibliometric analysis software HistCite. The selected time frame was between 1970 and 2020, and we used the following descriptors: “coronavirus infection” OR “severe acute respiratory syndrome” OR “COVID-19/SARS-CoV-2”.
Results: We found 5,434 publications in 1,491 different journals; they are written by 18,274 authors linked to 4,064 institutions, which are located in 104 countries. In the citations analysis, the h-index was 155, and the average of citations each article received was 30.79.
Conclusion:
During the studied period, the Web of Science database showed two peaks of publications on coronavirus infections.The first comprised 768 articles published between 2003 and 2004 when a new coronavirus caused an outbreak of severe acute respiratory failure. The second consisted of 576 articles published between 2019 and 2020, during the period of the COVID-19 pandemic COVID-19. The knowledge on coronavirus infection should be widely shared so that new studies can be designed and the world scientific community can contribute to improving patient safety in healthcare and preventing new pandemics of severe acute respiratory infection caused by coronaviruses.
Collapse
|
45
|
Brantl V, Schworm B, Weber G, Schiefelbein J, Kreutzer TC, Michalakis S, Siedlecki J, Priglinger SG. Long-term ocular damage after recovery from COVID-19: lack of evidence at three months. BMC Ophthalmol 2021; 21:421. [PMID: 34872499 PMCID: PMC8648337 DOI: 10.1186/s12886-021-02179-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
IMPORTANCE A small number of COVID-19 patients has been reported to suffer from acute keratoconjunctivitis. In very rare cases, acute inflammatory retinal vein occlusion, papillophlebitis or retinopathy have been observed. OBJECTIVE To determine possible long-term effects on the eye, especially on the retina, in patients who had suffered from COVID-19 at least 3 months after recovery. DESIGN Prospective cross-sectional study. SETTING Hospital of the Ludwig Maximilians University, Munich. PARTICIPANTS Patients who had been tested positive for SARS-CoV-2 or for anti-SARS-CoV-2 IgG serum antibodies in the Hospital of the Ludwig Maximilians University, Munich between May and September. METHODS Patients who had tested positive were either hospitalized or discharged into home quarantine via the emergency room. Three months after recovery, they were invited to participate voluntarily for this study during their follow-up in our clinic. A complete ophthalmological exam including functional and imaging end points (including optical coherence tomography (OCT), OCT angiography) was performed. MAIN OUTCOMES AND MEASURES Visual acuity, slit lamp, bio microscopy and fundoscopy, multimodal imaging findings. RESULTS In total, 21 patients were examined. The mean age (SD) of the patients was 48.7 (18.3) years. Of these, 14 (66.6%) were hospitalized and 7 (33.3) were discharged home. Two hospitalized patients (9.5%) received invasive ventilation. During the infection, 14 of the 21 patients (66.6%) were in regular care whereas 2 patients (9.5%) received intensive care ventilation for 8.5 (SD) (0.7) days on average in the COVID ICU. Ophthalmological examination of the previously hospitalized group took place 111.4 (23.2) days after recovery and discharge from the hospital, while non-hospitalized patients were examined after mean 123.4 (44.7) days. All patients showed normal findings for anterior and posterior segment of both eyes. OCT and OCT-A showed no evidence of retinal damage, or vascular or microvascular events. CONCLUSION AND RELEVANCE This study with a small prospective cohort of 21 patients indicates that there might be no evidence of ocular complications at 3 months after recovery from COVID-19, without previous eye involvement. Further studies with more participants with and without acute ocular symptoms are necessary for final evidence.
Collapse
Affiliation(s)
- Victor Brantl
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstraße 8, 80336, Munich, Germany
| | - Benedikt Schworm
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstraße 8, 80336, Munich, Germany
| | - Gregor Weber
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstraße 8, 80336, Munich, Germany
| | - Johannes Schiefelbein
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstraße 8, 80336, Munich, Germany
| | - Thomas C Kreutzer
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstraße 8, 80336, Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstraße 8, 80336, Munich, Germany
| | - Jakob Siedlecki
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstraße 8, 80336, Munich, Germany.
| | - Siegfried G Priglinger
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstraße 8, 80336, Munich, Germany.
| |
Collapse
|
46
|
Tian D, Sun Y, Zhou J, Ye Q. The Global Epidemic of the SARS-CoV-2 Delta Variant, Key Spike Mutations and Immune Escape. Front Immunol 2021; 12:751778. [PMID: 34917076 PMCID: PMC8669155 DOI: 10.3389/fimmu.2021.751778] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
During the COVID-19 pandemic, SARS-CoV-2 variants have emerged and spread worldwide. The Delta (B.1.617.2) variant was first reported in India in October 2020 and was classified as a "variant of concern (VOC)" by the WHO on 11 May, 2021. Compared to the wild-type strain, several studies have shown that the Delta variant is more transmissible and has higher viral loads in infected samples. COVID-19 patients infected with the Delta variant have a higher risk of hospitalization, intensive care unit (ICU) admission, and mortality. The Delta variant is becoming the dominant strain in many countries around the world. This review summarizes and analyses the biological characteristics of key amino acid mutations, the epidemic characteristics, and the immune escape of the Delta variant. We hope to provide scientific reference for the monitoring and prevention measures of the SARS-CoV-2 Delta variant and the development strategy of a second-generation vaccine.
Collapse
Affiliation(s)
| | | | | | - Qing Ye
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
47
|
Li J, Zheng Y, Zhao L, Yue Z, Pan F, Chen Y, Yu B, Chen Y, Zhao G, Zhou Y, Gao Z. Investigation of the impact of SARS-CoV infection on the immunologic status and lung function after 15 years. BMC Infect Dis 2021; 21:1183. [PMID: 34819019 PMCID: PMC8611627 DOI: 10.1186/s12879-021-06881-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/01/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND We investigate the long-term effects of SARS-CoV on patients' lung and immune systems 15 years post-infection. SARS-CoV-2 pandemic is ongoing however, another genetically related beta-coronavirus SARS-CoV caused an epidemic in 2003-2004. METHODS We enrolled 58 healthcare workers from Peking University People's Hospital who were infected with SARS-CoV in 2003. We evaluated lung damage by mMRC score, pulmonary function tests, and chest CT. Immune function was assessed by their serum levels of globin, complete components, and peripheral T cell subsets. ELISA was used to detect SARS-CoV-specific IgG antibodies in sera. RESULTS After 15 years of disease onset, 19 (36.5%), 8 (34.6%), and 19 (36.5%) subjects had impaired DL (CO), RV, and FEF25-75, respectively. 17 (30.4%) subjects had an mMRC score ≥ 2. Fourteen (25.5%) cases had residual CT abnormalities. T regulatory cells were a bit higher in the SARS survivors. IgG antibodies against SARS S-RBD protein and N protein were detected in 11 (18.97%) and 12 (20.69%) subjects, respectively. Subgroup analysis revealed that small airway dysfunction and CT abnormalities were more common in the severe group than in the non-severe group (57.1% vs 22.6%, 54.5% vs 6.1%, respectively, p < 0.05). CONCLUSIONS SARS-CoV could cause permanent damage to the lung, which requires early pulmonary rehabilitation. The long-lived immune memory response against coronavirus requires further studies to assess the potential benefit. Trial registration ClinicalTrials.gov, NCT03443102. Registered prospectively on 25 January 2018.
Collapse
Affiliation(s)
- Jia Li
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Yali Zheng
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Lili Zhao
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Zhihong Yue
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Feng Pan
- Department of Radiology, Peking University People's Hospital, Beijing, 100044, China
| | - Yuehong Chen
- Institute of Microbial Epidemiology, Academy of Military Medical Sciences, Beijing, 100039, China
| | - Bing Yu
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Yanwen Chen
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Guangyu Zhao
- Institute of Microbial Epidemiology, Academy of Military Medical Sciences, Beijing, 100039, China
| | - Yusen Zhou
- Institute of Microbial Epidemiology, Academy of Military Medical Sciences, Beijing, 100039, China
| | - Zhancheng Gao
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
48
|
Mozafari Z, Chamjangali MA, Arashi M, Goudarzi N. Suggestion of active 3-chymotrypsin like protease (3CL Pro) inhibitors as potential anti-SARS-CoV-2 agents using predictive QSAR model based on the combination of ALASSO with an ANN model. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:863-888. [PMID: 34634208 DOI: 10.1080/1062936x.2021.1975167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus (SARS CoV-2) was introduced as an epidemic in 2019 and had millions of deaths worldwide. Given the importance of this disease, the recommendation and design of new active compounds are crucial. 3-chymotrypsin-like protease (3 CLpro) inhibitors have been identified as potent compounds for treating SARS-CoV-2 disease. So, the design of new 3 CLpro inhibitors was proposed using a quantitative structure-activity relationship (QSAR) study. In this context, a powerful adaptive least absolute shrinkage and selection operator (ALASSO) penalized variable selection method with inherent advantages coupled with a nonlinear artificial neural network (ANN) modelling method were used to provide a QSAR model with high interpretability and predictability. After evaluating the accuracy and validity of the developed ALASSO-ANN model, new compounds were proposed using effective descriptors, and the biological activity of the new compounds was predicted. Ligand-receptor (LR) interactions were also performed to confirm the interaction strength of the compounds using molecular docking (MD) study. The pharmacokinetics properties and calculated Lipinski's rule of five were applied to all proposed compounds. Due to the ease of synthesis of these suggested new compounds, it is expected that they have acceptable pharmacological properties.
Collapse
Affiliation(s)
- Z Mozafari
- Department of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - M Arab Chamjangali
- Department of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - M Arashi
- Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - N Goudarzi
- Department of Chemistry, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
49
|
Khan H, Winstone H, Jimenez-Guardeño JM, Graham C, Doores KJ, Goujon C, Matthews DA, Davidson AD, Rihn SJ, Palmarini M, Neil SJD, Malim MH. TMPRSS2 promotes SARS-CoV-2 evasion from NCOA7-mediated restriction. PLoS Pathog 2021; 17:e1009820. [PMID: 34807954 PMCID: PMC8648102 DOI: 10.1371/journal.ppat.1009820] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/06/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
Interferons play a critical role in regulating host immune responses to SARS-CoV-2, but the interferon (IFN)-stimulated gene (ISG) effectors that inhibit SARS-CoV-2 are not well characterized. The IFN-inducible short isoform of human nuclear receptor coactivator 7 (NCOA7) inhibits endocytic virus entry, interacts with the vacuolar ATPase, and promotes endo-lysosomal vesicle acidification and lysosomal protease activity. Here, we used ectopic expression and gene knockout to demonstrate that NCOA7 inhibits infection by SARS-CoV-2 as well as by lentivirus particles pseudotyped with SARS-CoV-2 Spike in lung epithelial cells. Infection with the highly pathogenic, SARS-CoV-1 and MERS-CoV, or seasonal, HCoV-229E and HCoV-NL63, coronavirus Spike-pseudotyped viruses was also inhibited by NCOA7. Importantly, either overexpression of TMPRSS2, which promotes plasma membrane fusion versus endosomal fusion of SARS-CoV-2, or removal of Spike's polybasic furin cleavage site rendered SARS-CoV-2 less sensitive to NCOA7 restriction. Collectively, our data indicate that furin cleavage sensitizes SARS-CoV-2 Spike to the antiviral consequences of endosomal acidification by NCOA7, and suggest that the acquisition of furin cleavage may have favoured the co-option of cell surface TMPRSS proteases as a strategy to evade the suppressive effects of IFN-induced endo-lysosomal dysregulation on virus infection.
Collapse
Affiliation(s)
- Hataf Khan
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Jose M. Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Katie J. Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | | | - David A. Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, United Kingdom
| | - Suzannah J. Rihn
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| | - Stuart J. D. Neil
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Michael H. Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
50
|
Wong ACP, Lau SKP, Woo PCY. Interspecies Jumping of Bat Coronaviruses. Viruses 2021; 13:2188. [PMID: 34834994 PMCID: PMC8620431 DOI: 10.3390/v13112188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
In the last two decades, several coronavirus (CoV) interspecies jumping events have occurred between bats and other animals/humans, leading to major epidemics/pandemics and high fatalities. The SARS epidemic in 2002/2003 had a ~10% fatality. The discovery of SARS-related CoVs in horseshoe bats and civets and genomic studies have confirmed bat-to-civet-to-human transmission. The MERS epidemic that emerged in 2012 had a ~35% mortality, with dromedaries as the reservoir. Although CoVs with the same genome organization (e.g., Tylonycteris BatCoV HKU4 and Pipistrellus BatCoV HKU5) were also detected in bats, there is still a phylogenetic gap between these bat CoVs and MERS-CoV. In 2016, 10 years after the discovery of Rhinolophus BatCoV HKU2 in Chinese horseshoe bats, fatal swine disease outbreaks caused by this virus were reported in southern China. In late 2019, an outbreak of pneumonia emerged in Wuhan, China, and rapidly spread globally, leading to >4,000,000 fatalities so far. Although the genome of SARS-CoV-2 is highly similar to that of SARS-CoV, patient zero and the original source of the pandemic are still unknown. To protect humans from future public health threats, measures should be taken to monitor and reduce the chance of interspecies jumping events, either occurring naturally or through recombineering experiments.
Collapse
Affiliation(s)
| | - Susanna K. P. Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Patrick C. Y. Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| |
Collapse
|